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Abstract 
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Abstract  

 

The exhaust gas from an internal combustion engine contains approximately 30% 

of the thermal energy of combustion. Waste heat recovery (WHR) systems aim 

to reclaim a proportion of this energy in a bottoming thermodynamic cycle to raise 

the overall system thermal efficiency. One of promising heat recovery 

approaches is to employ an inverted Brayton cycle (IBC) immediately 

downstream of the primary cycle. However, it is a little-studied approach as a 

potential exhaust-gas heat-recovery system, especially when applied to small 

automotive power-plants. Thus, this thesis presents comprehensive study of IBC 

as wasted heat recovery (WHR) system for a 2-litre turbocharged gasoline 

internal combustion (IC) engine. 

The basic IBC system consists of a radial turbine, a heat exchanger, and a 

centrifugal compressor in sequence. The use of the radial turbine is to further 

expand the exhaust gases from the turbocharged engine down to 

subatmospheric, so that the high turbine expansion ratio can be achieved. At the 

given turbine efficiency, the high turbine expansion ratio leads to the high specific 

power that generates by the turbine. Then, the residual heat in the expanded 

exhaust gas is rejected by the downstream heat exchanger in order to reduce the 

temperature of the exhaust gases. By doing so, the lower exhaust gas 

temperature leads to the higher gas density, thereby decreasing the compressor 

power consumption for the given compression ratio. The use of the centrifugal 

compressor is to pressurize the cooled gas back up to ambient. The IBC net 

power is the power differential between the turbine power generation and 

compressor power consumption. 

The main advantage of the IBC system is that the exhaust gases can be 

expanded below atmospheric pressure in the IBC turbine, thereby increasing the 

potential to recover thermal energy from the exhaust gases. The heat exchanger 

implemented between the turbine and compressor aims to lower the temperature 
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of the exhaust gases prior to the compression process. Since the role of this heat 

exchanger is to reject as much heat as possible, a liquid coolant loop with 

inexpensive materials offers a relatively light-weight, cost-effective solution. In 

addition, although the IBC system is installed immediately downstream of the top 

cycle and utilizes the exhaust gases as the operating fluid, it is still possible to 

leave the top cycle unaffected by adjusting its working pressure, that is, there is 

no back pressure caused by the employment of the IBC system. Finally, the 

characteristics of the IBC system is the simple configuration and relatively light 

weight. The key components – centrifugal compressor and radial turbine are quite 

mature technologies which has been widely used as turbochargers for 

automotive applications.   

The core of this thesis contains four main divisions. First, the IBC thermodynamic 

model was created by using finite-time thermodynamics (FTT) to perform the 

parametric study. The simulation results show that the increase of IBC inlet 

temperature, pressure, and turbomachinery efficiencies are beneficial to the IBC 

systemic performance at the given IBC expansion ratio. Moreover, there exists 

an optimum IBC expansion ratio that delivers the maximum specific power. Thus, 

the IBC system should be optimised according to the design conditions. 

In the second section, the correlated gasoline engine model was coupled with the 

high-fidelity IBC 1D model, in order to demonstrate the IBC heat-recovery 

capability as a bottoming WHR system for a commercial engine. The moderate 

improvement in the systematic performance was expected at engine high-load 

and high-speed conditions, due to the employment of an IBC system. Later, 

engine mini-map points for the Worldwide Harmonised Light Vehicle Test 

Procedure (WLTP) driving cycle were selected as the design conditions for the 

IBC prototype, as such mini-map points can fully represented the engine 

operating conditions during real-world driving. IBC 1D simulations were 

conducted to give the guidance of the turbomachinery selection. However, due 

to the limited access to the commercial turbomachinery, the selected compressor 

and turbine suffer the suboptimal performance at the design point. 
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Thus, the third section presented the performance optimisation of the selected 

compressor and turbine. The 3D modelling method was employed to evaluate the 

performance of all compressor and turbine design candidates. Due to the limited 

time, the compressor and turbine blades were trimmed to achieve the optimal 

performance. It is a common practice in the turbomachinery industry to optimise 

the existing design at the new design points. The optimal trimmed compressor 

and turbine, delivering the T-S efficiency of 72.32% and 77.38% respectively, 

were manufactured and employed in the IBC prototype. In parallel to the 

experiments of the IBC prototype, the compressor in-house design and 

optimisation procedure was created in order to achieve a high-performance 

compressor at the design points. By integrating Generic Algorithm (GA) 

optimisation method with the compressor design process, the final compressor 

design was able to reach at the T-S efficiency of 77.67%, which is 5.35 

percentage points higher than that of the trimmed commercial compressor. 

The experiments of the IBC prototype were conducted in the gas stand in 

University of Bath. This is the first experimental demonstration of the IBC 

application for the automotive use. The test results show that the IBC prototype 

is able to generate the net power when the selected IC engine works at motorway 

cruise conditions. The parametric study of the IBC prototype was also conducted 

in tests. Finally, an IBC 1D model was correlated to the test data, and then utilized 

to predict the corresponding power generation over all engine mini-map points. 

Besides, the correlated IBC model can be utilized for the further development of 

the IBC system. 
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Nomenclature 

 

𝐴 area 

𝜌 density 

�̇� mass flow rate  

𝛼1 discharge flow angle 

�̇� power extracted from the working fluid 

𝑈 turbine blade tip speed 

𝑊 gas velocity relative to the rotor blades 

𝐶 absolute gas velocity 

𝐶𝑝 specific isobaric heat capacity 

𝑅𝑔 gas constant of the working fluid 

𝐶𝑣 specific isochoric heat capacity 

𝑘 ratio of the specific heats 

𝑝 pressure 

𝑇 temperature 

𝑇0 average temperature 

𝑟 pressure ratio 

ℎ enthalpy 

𝐶𝑟  ratio of heat capacity rates 

𝑊 specific work 

�̇� heat rate 

𝐵 the constant related to heat-transfer 

V volume  
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𝜈 the velocity of the piston 

P power 

𝑓 friction force 

𝜈 the velocity of the piston 

𝐿 piston stroke length 

𝑁 engine speed  

𝑥1 piston position at maximum volume  

𝑥2 piston position at minimum volume  

𝜀2 pressure drop ratio at state 2 

𝜀4 pressure drop ratio at state 4 

n number of compression stages 

𝑚 flow mass 

𝐶𝑓  skin friction coefficient 

𝐷𝑝  length of mass element in flow direction 

𝐷  equivalent diameter 

𝐶𝑝𝑟𝑒𝑠𝑢𝑟𝑒  pressure loss coefficient 

𝐴𝑠 heat transfer surface area 

𝐻 heat transfer coefficient 

𝑇𝑓𝑙𝑢𝑖𝑑 equivalent diameter 

𝑇𝑤𝑎𝑙𝑙 pressure loss coefficient 

𝑅𝑃𝑀 turbocharger speed 

𝑦+ dimensionless wall distance 

𝑦 distance to the nearest wall 

𝑢𝜏 turbulent eddy viscosity 

𝑤 work 
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𝑃𝑅 pressure ratio 

 

Greek Symbols 

𝜃 azimuth angle 

𝜂 efficiency 

𝛾 compression ratio of the engine 

𝜇 friction loss coefficient  

 

Subscripts 

𝑖 turbine rotor inducer 

𝑒 turbine rotor exducer 

air mass flow rate of the intake air 

a actual processes 

am ambient condition 

c compression process inside the cylinder 

𝑐𝑜𝑜𝑙 coolant used in the inverted Brayton cycle 

e expansion process inside the cylinder 

ex heat exchanger 

final final exhaust outlet 

hl bypass heat leakage 

ic compressor in the inverted Brayton cycle 

ict whole compression processes in the inverted Brayton 

cycle 

IBC inverted Brayton cycle 

it turbine in the inverted Brayton cycle 

in input 



 
Nomenclature 

viii 

loss heat loss through the cylinder wall 

low subatmospheric pressure 

max Maximum value 

mean Mean velocity of the piston 

net net value 

opt optimum value 

out output 

O Otto cycle 

t turbocharger 

tc turbocharger compressor  

tt turbocharger turbine 

s ideal processes 

𝜇 friction loss  

Abbreviations 

IC internal combustion 

IBC inverted Brayton cycle 

GDI gasoline direct injection 

WHR waste heat recovery 

A/R area to radius 

FGT fixed geometry turbine 

VGT variable geometry 

ATEG automotive thermoelectric generator 

TEGs thermoelectric generators 

ICE internal combustion engine 

QW quantum-well 
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SUV sports utility vehicle 

RC Rankine cycle 

ORC organic Rankine cycle 

ETEIR engine thermal efficiency increasing ratio 

PBC pressurized Brayton cycle 

CVT continuously variable transmission 

APT atmospheric pressure turbine 

PES primary energy saving 

EGR exhaust gas recirculation system 

HAT humid air turbine 

CAD computer-aided design 

GA genetic algorithms 

ANN artificial neural network 

CFD computational fluid dynamics 

OF objective function 

T-T total-to-total 

DOE design of experiments 

FTT finite-time thermodynamics 

WLTP worldwide harmonized light vehicles test procedures 

NTU number of transfer units 

T-S total-to-static 

BMEP brake mean effective pressure 

BSFC brake-specific fuel consumption 

PMEP pumping mean effective pressure 

SST shear stress transport 

RMS residual mean square 
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1.1 Background and Motivation 

The development of sustainable energy technologies is a key part of the global 

scientific agenda and is one of the most difficult challenges facing engineers 

today. Observing that internal combustion engines are the most widely used 

source of primary power for machinery critical to the transportation, construction 

and agricultural sectors, one of the greatest areas for impact is the improvement 

in engine technology due to its extraordinary growth, especially in rapidly 

industrializing nations. Notably in transportation applications，the amount of CO2 

gas released from engine takes up 25% of global CO2 emissions [1]. In addition, 

the global demand of vehicles increases steadily and dramatically. Figure 1.1 

shows the number of passenger and commercial vehicles sold worldwide from 

1990 to 2017, and a forecast for 2018 [2]. The number of the total vehicle 

production significantly increased in 2015, then kept at a stable and sustainable 

pace from 2015 to 2017. In 2018, it is expected to reach at around 81 million. 

Despite developments in fuel cell and electric vehicle technology, it is now widely 

recognized that a large fraction of future vehicles will still rely on the internal 

combustion (IC) engine. Therefore, the use of IC engine in transportation is a 

major issue with the respect to concerns about energy conservation and 

environmental sustainability. Given the concerns above, the development of 

systems for energy recovery, electrification and storage are becoming the hot 
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research topics to improve the overall heat-work conversion efficiency and, 

therefore, reduce IC engine fuel consumption. 

In this thesis, a promising energy recovery system – inverted Brayton cycle (IBC) 

device will be comprehensively discussed using 0D, 1D, 3D simulations, and 

experimental tests. The IBC system is an exhaust-gas heat-recovery system 

which harvests thermal energy from the high-temperature exhaust gas expelled 

from IC engines, thereby increasing the overall thermal efficiency and, therefore, 

reducing emissions and carbon dioxide. It should be noted that it is also able to 

recover pressure energy from the exhaust gas, namely, that resulting from 

‘blowdown’ at the end of the power stoke. The basic IBC device consists of a 

radial turbine, a heat exchanger, and a centrifugal compressor in sequence, 

referred as a single-stage IBC system due to the employment of single cooling 

and compression process.  

 

Figure 1.1 Number of vehicles sold worldwide from 1990 to 2018 

 

1.2 IC Engine Energy Flow 

To achieve the thermal efficiency improvement, the energy balance and exergy 

balance in IC engine should be analysed, which allows engineers focus on 

addressing the most significant parasitic losses of the fuel energy. Extensive 
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studies on the energy flow reveal that waste heat produced during the thermal 

combustion process could be as high as 30-40% which is rejected to the 

environment through an exhaust pipe in the form of heat, while only 12-30% of 

the available energy in a fuel can be converted to the mechanical work or brake 

work [3-5]. One reason for this is that maximum compression ratio of IC engines 

is limited by several factors, such as engine knocking, even though the high 

compression ratio is desired due to the resulting efficient combustion and 

subsequent expansion stroke. Thus, the combusted gases released by the 

combustion chamber, referred as the exhaust gas, still contains various forms of 

energy due to an insufficient expansion stroke. Especially under part load, the 

energy contained by the exhaust gas is up to around 36% of the fuel energy. 

However, the exhaust gas energy is considered by some to be low-grade energy 

due to its high temperature but low pressure [6]. 

Liu et al. [7] presented an energy flow analysis in a turbocharged, gasoline direct-

injection (GDI) engine. As shown in Figure 1.2 (a), energy utilization efficiency of 

a modern gasoline engine is still low. The fuel energy can be divided into several 

parts – effective work, exhaust gas energy, coolant energy and other loss 

(unburned fuel energy and engine surface heat transfer). Under part load, the 

percentage of effective work changes from 27.8% to 33.5%, while that of exhaust 

gas energy varies between 23.7% and 35.8%. In most cases, exhaust gas energy 

almost equals effective work in quantity. However, the exhaust gas energy cannot 

be fully reused since it is a kind of low-grade energy. Therefore, engine exergy 

balance analysis was carried out, shown in Figure 1.2 (b). It can be observed that 

the percentage of exhaust gas exergy is always lower than that of effective exergy, 

but it is larger than the percentage of heat transfer exergy under most of 

conditions. Under part load, the percentage of exhaust gas exergy changes from 

9.4% to 16.8%, and it demonstrates a great potential for engine fuel economy 

improvement by the exhaust gas energy recovery.   
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Figure 1.2 Energy and exergy distribution of a turbocharged, direct 

injection gasoline. (a) Energy distribution of GDI engine. (b) Exergy 

distribution of GDI engine. [7] 

Ozkan et al. [8] analysed the energy balance and exergy balance of a Ford 1.8 L, 

four-cylinder, four-stroke, direct-injection compression ignition diesel engine. The 

test has been performed at the engine speed of 2000 rpm and the engine load of 

50%. According to the energy distribution shown in Figure 1.3, the percentage of 

energy contained by the exhaust gas is 32%, which is only slightly lower than that 

utilized by the drivetrain. Furthermore, the exergy distribution of the considered 

diesel engine, shown in Figure 1.4, reveals that 7.94% exhaust gas exergy is 

expected.  

 

Figure 1.3 Energy distribution of a Ford diesel engine 

In order to quantify exhaust energy available for the heat recovery system, 

exhaust gas from a typical light duty 4 cylinder spark ignition engine has been 

analysed by Chammas and Clodic [9]. The results show that the corresponding 

available exhaust gas energy ranges from 4.6 to 120 kW depending on the engine 
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operating conditions. However, given the conversion efficiency and the parasitic 

losses of the exhaust-gas heat-recovery systems, the maximum recoverable 

work is from 1.7 to 45 kW when the regeneration system operates between the 

average temperature of the exhaust gases and the outdoor temperature. 

 

Figure 1.4 Exergy distribution of a Ford diesel engine [8] 

These observations in terms of the energy quantity and quality of the gasoline 

and diesel engines exhaust gas have given rise to a recent trend for wasted heat 

recovery, as they point to the significant amount of energy in exhaust gas could 

be recovered that is otherwise simply wasted by discharging exhaust gas to the 

ambient. 

 

1.3 Exhaust Gas Energy 

As a major part of the loss from an internal combustion engine, the exhaust gas 

contains various forms of energy, and the main characteristic of the exhaust gas 

energy is unsteady caused by the working cycle and engine various operating 

conditions. Generally, the exhaust-gas flow energy can be classified into terms 

of kinetic energy, pressure energy, and thermal energy [7]. The kinetic energy 

can be neglected since it only accounts for small proportion of the total exhaust 
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gas energy, or more precisely, is lower than 0.6% at most engine operating 

conditions [6]. The remaining pressure energy in the exhaust gas is high-grade 

mechanical energy and can be directly recovered by an expansion process like 

that which occurs within a turbo-compounding turbine placed in the exhaust 

system. Theoretically, the recovery efficiency is limited by the component 

efficiency and the parasitic energy losses of an expansion device. After 

expansion, the remaining thermal energy could be considered as low-grade 

thermodynamic energy that can be recovered by some indirect or direct methods. 

In fact, the thermal energy occupies more than 90% of the exhaust energy under 

full load conditions and also represents the largest proportion under part load [6]. 

However, this thermal energy is impossible to completely convert into high-grade 

energy such as mechanical energy and electrical energy, and the corresponding 

recovery efficiency is limited by cycle and heat transfer efficiencies [10].  

 

1.4 Waste Heat Recovery System 

Although various vehicle-mounted thermal utilities adopted to recover energy 

from exhaust gas have been intensively investigated, the exhaust steam still 

contains high-grade heat content. The turbocharger is an example of this since it 

is widely employed to IC engines as an exhaust-gas energy-recovery device. The 

direct recovery method used by the turbocharger mainly aims to reclaim the 

pressure energy resulting from ‘blowdown’ at the end of the expansion. The 

blowdown event refers to the pressure pulse in the exhaust gas forming as the 

exhaust valve is opened. To be specific, due to the cylinder expansion ratio 

usually being insufficient to fully expand the gas to ambient pressure, the 

pressure in the cylinder is much higher than that in the exhaust manifold when 

the exhaust valve opens, especially before the piston reach top death centre. 

Therefore, once the exhaust valve is opened, any remaining combustion 

pressure in the cylinder is suddenly released producing a sudden pressure rise 

in the manifold [11]. The energy extracted by the turbine is used to compress the 

engine intake air, thereby allowing more fuel to be burnt and an increased engine 

power density. Thus, the employment of the turbocharger can offer a route to fuel 
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economy through downsizing. However, at many engine operation conditions, 

there is much more energy available to a turbine than that consumed by a 

compressor. The wastegate of the turbine, therefore, is introduced to divert a 

fraction of the exhaust gas, thereby reducing the power driving the turbine wheel 

to match the power required for a given boost level. By doing so, energy that 

could have been reclaimed is wasted. Thus, a significant amount of heat energy 

is available for a waste heat recovery (WHR) system conceived as bottoming 

cycle. Similar to the first stage of the exhaust-gas energy-recovery system, 

bottoming WHR cycles could further profitably exploit this discharged heat not 

only by direct recovery through exhaust gas expansion but also indirect recovery 

through heat transfer. 

In this thesis, the aim is to introduce IBC system as a bottoming WHR cycle of a 

turbocharged engine, instead of replacing the turbocharger. This is because that 

the turbocharger is not only designed for reducing the engine fuel consumption 

in some engine operating envelope, but achieve significant power gains and, 

therefore, provide a route towards engine downsizing. The benefits of engine 

downsizing are friction reduction as well as reduced thermal loss. Moreover, any 

reduction in engine mass can, in turn, lead a reduction in chassis, drivetrain and 

suspension masses. Thus, given that the turbocharger is highly beneficial to 

engine performance, the IBC system is designed and mounted downstream of 

the turbocharger turbine, even though an IBC system is able to recover more 

wasted energy without the turbocharger due to the higher exhaust temperature.  

 

1.5 Centrifugal Compressor 

A centrifugal compressor is the key component in IBC system. It is a fluid-flow 

machine that deliver a pressure rise by adding the kinetic energy to the working 

fluid through the rotor or impeller and, then, slowing the fluid in the diffuser to 

increase its static pressure. A cutaway view and a sketch of a centrifugal 

compressor are presented in Figure 1.5 and 1.6, respectively. Centrifugal 

compressors have several advantages. For instance, they are less sensitive to 
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changes in the mass flowrate, have low manufacturing cost, generate a higher 

pressure ratio per stage, have wide range of rotational speed and are easy to 

assemble [12].  

1.5.1 Compressor Inlet Casing 

The function of the inlet casing is to deliver the fluid to the impeller with minimum 

loss and to provide a uniform velocity profile at the impeller inlet. Typically, the 

stationary inlet casing is a simple pipe. In some applications, an air filter and noise 

reducing baffles are provided at the inlet casing. In addition, an inlet guide vane 

is sometimes placed at the inlet to impart a defined pre-swirl motion in order to 

achieve a desired aerodynamic performance. The variable inlet guide vane is 

able to regulate both the flow rate and the power consumption [13]. 

 

Figure 1.5 Cutaway view of a centrifugal compressor [14] 
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Figure 1.6 A sketch of a centrifugal compressor 

1.5.2 Compressor Impeller 

For the centrifugal compressor, the function of the impeller is to accelerate the 

working fluid through the impeller passages by the rotation of its aerodynamic 

surface that are highly curved and twisted, thereby gradually increasing the 

angular momentum of the fluid. By doing so, both the static pressure and the 

velocity are increased by the impeller.   

 

Figure 1.7 Different kind of impeller inducers. Blades are shaded gray, for 

the semi inducer and no inducer impeller the compressor inlet is shown 

dotted. 

In Figure 1.7, the axial inlet of the impeller is referred as the inducer. In practice, 

the inducer may not being axial, or employ no inducer at all [12]. Example of three 

Flow 
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different types of inducers is depicted in Figure 1.7. Aungier [15] claimed that the 

flow coefficient, representing the dimensionless mass flow into the compressor, 

was significantly impacted by the general shape of the impeller, especially the 

inducer. Generally, the impeller without the inducer, shown as the right one in 

Figure 1.7, has the smallest flow coefficient. In other words, it would provide the 

highest resistance to the working flow. In contrast, the impeller with the full 

inducer, shown to the left in Figure 1.7 has the largest flow coefficient. Although 

this type of impeller suffers the high manufacturing cost due to the complicated 

three-dimensional blade shape, the resulting highest efficiency among three 

kinds of impellers contributes to the wide use in automotive turbochargers. 

However, the efficiency of the full-inducer impeller is limited by its strong 

curvature needed to turn the inlet axial flow into radial. Naturally, the semi-inducer 

impeller would be expected to have flow coefficient and efficiency somewhere in 

between two to former examples. For a centrifugal compressor, the semi-inducer 

impeller blades sometimes are introduced and placed between two full-inducer 

impeller blades, in order to increase the operating range and efficiency at the off-

design conditions [16]. The reason of this could be explained by follows. It is a 

common practice to increase the number of impellers, thereby providing more 

guidance to the flow towards the impeller exit and minimizing blockage at the 

compressor inducer. However, the parasitic aerodynamic friction loss that is 

increased with the blade number can lead to a deterioration in the compressor 

efficiency. In addition, the blade number should be limited by the manufacturing 

cost, impeller weight, hub stresses, and desired inertia. Since the transient 

operation of the engine is of great important in its everyday operating condition, 

the turbocharger should be designed with a low inertia, in order to responding 

quickly to the transient changes of the engine [17]. Given the above analysis of 

the impeller blades, the semi-inducer impellers could be introduced between two 

full length blades to provide extra guidance to the flow in the impeller passage 

with minor additional aerodynamic friction loss and weight, while still keeping the 

number of blades at the compressor inlet. The semi-inducer impeller blade is 

usually referred as the splitter. 

Another critical region is the clearance gap between the tip of the rotating blades 

and the stationary shroud, shown in Figure 1.6. Unlike the large compressor 
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design, the conventional centrifugal compressor for automotive use is 

unshrouded, meaning that the shroud just outside the impeller is formed by the 

stationary housing. The main benefit of unshrouded impellers is that the 

mechanical stresses is much lower than that of the shrouded impeller, due to the 

less mass at the end of the blade tips. However, it has been proved that leakage 

flow over the blade tips is the most critical contributor to performance degradation 

[18]. Strong pressure gradients over the blade tips encourage leakage flows that 

distort the main flow pattern and, therefore, lead to a performance loss. Thus, the 

larger the tip clearance is, the lower the compressor efficiency and pressure 

capability. However, it is hard to keep the tip clearance small due to the thermal 

expansion and the component mechanical tolerance stacking requiring accurate 

alignment between the impeller and the diffuser, especially when a long rotating 

shaft is employed.  

The compressor performance is also significantly affected by the outlet of the 

compressor impeller, referred as exducer shown in Figure 1.7. Since the diffuser 

downstream of the compressor exducer prefers a flow that is relatively uniform in 

tangential and axial direction, the impeller exducer should be designed properly 

to provide a good guidance for the exit flow. There are three types impeller 

exducer – radial, forward swept, and backward swept, illustrated in Figure 1.8 

with outlet velocity triangles at exit. The radial impellers are widely employed due 

to their ease of manufacture [16]. In addition, the radial impeller only suffers from 

tensile stress under the rotating centrifugal force, while the forward and backward 

swept impeller need to consider the bending force. The backward swept impellers 

are widely utilized for automotive use, due to its wider operating range and 

broader efficiency characteristics. To be specific, at given shaft speed, the 

backward swept impeller reduces the Mach number in the diffuser and delivers a 

more favorable angle, thereby reducing the energy loss in the diffuser. However, 

Wang et al. [19] claimed that generally the lower pressure ratio is delivered by 

the backward impeller, compared to the radial impeller. This is because that 

increasing the back swept angle contributes to form the shock waves on splitter 

blade roots, which can cause a loss of total pressure.   
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Figure 1.8 Three types impeller exducer – radial, forward swept, and 

backward swept 

1.5.3 Compressor Diffuser 

The diffuser is a stationary component that is fitted directly downstream of the 

impeller. The function of the diffuser is to deaccelerate or ‘diffuse’ high-velocity 

fluid leaving the impeller and, therefore, further convert the kinetic energy into 

static pressure. The basic diffuser comprises two parallel walls which form a 

radial channel, referred as vaneless diffuser shown in Figure 1.9. Although the 

vaneless diffuser appears to be a geometrically simple device, it is a critical for 

the compressor efficiency due to the resulting high loss in stagnation pressure. It 

is beset by three serious fluid mechanical problems. The primary problem is the 

tendency of the flow boundary layers to separate from the diffuser walls if the 

diffusion rate is too rapid resulting in flow mixing. On the contrary, if the diffusion 

rate is too small, the fluid is exposed to a longer fluid path in diffuser and, 

therefore, the fluid friction losses become excessive. Additionally, the 

approximately half of the fluid energy at the impeller exit is kinetic energy. Thus, 

high velocity of the fluid leads to large viscous drag on the walls, thereby reducing 

the pressure recovery. [20] 
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Figure 1.9 Vaneless (a) and vaned (b) diffusers 

In contrast, the vaned diffuser utilizes vanes to guide the flow to achieve a desired 

flow field. Thus, at the design operating point the compressor with a vaned 

diffuser can deliver a better operating efficiency than that with vaneless diffuser. 

In addition, due to the higher diffusion rate of the vaned diffuser, a smaller diffuser 

diameter is required to deliver the target pressure recovery. Thus, the vaned 

diffuser is clearly advantageous where a small unit size is important [20]. 

However, at off-design operating points, the flow angle at the impeller exit is no 

longer aligned with the inlet angle of diffuser vanes. Thus, the incidence loss at 

the diffuser vane entry will increase as the air flow angle departs from the vane 

inlet angle, thereby deteriorating the compressor efficiency. As a result, the 

efficient operating range of the compressor with the vaned diffuser is limited.  

 

1.6 Radial Turbine 

Radial turbine is also the key component in IBC system. In a radial turbine, kinetic 

and thermal energy of the working medium is converted into shaft energy in 

passing from a large radius to a small radius. Figure 1.10 shows a radial turbine 

in the commercial Borg-warner turbocharger.  

Impeller 
Impeller 

Vaned Diffuser 
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Figure 1.10 Cutaway view of a turbocharger radial turbine [21] 

The working principle of the radial turbine is described as follows. The high-

temperature or high-pressure working fluid enters the inlet of turbine volute and 

is guided to the vaned or vaneless nozzle where the flow is turned into a direction 

tangential to the rotor. Then, the downstream rotor turns it into the axial direction 

in a controlled manner, causing a change in tangential momentum and a force to 

be exerted on the rotor blades. The velocity of the fluid discharging from the rotor 

is considerable. Thus, in order to further recover the kinetic energy, an axial 

diffuser is incorporated at the radial turbine exit. 

Radial turbines are extensively used in automotive turbocharger due to their 

several advantages. First, compared to the axial-flow turbine, the radial turbine is 

able to deliver better performance at lower flow rates when engine works in low 

load condition. Additionally, it can maintain good off-design performance. This is 

favorable characteristic to automotive engines which typically behave in a highly 

transient manner. Thus, the radial turbine is generally more beneficial to engine 

performance then the axial one. Moreover, the low manufacturing and 

maintaining cost, high level of robustness, and simple packaging requirements 

make the radial turbine more attractive for automobile applications. Given all 
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advantages presented above, a radial turbine is employed in IBC system to 

harvest energy by expanding the exhaust gas. 

1.6.1 Turbine Volute 

The primary function of the turbine volute is to feed the nozzle vanes or the rotor 

with uniform flow at the desired angle in order to optimise its overall performance. 

A spiral type of volute, shown in Figure 1.11, is typically used with radial inflow 

turbines. The working fluid enters the volute in a tangential direction, turned 

following the geometry of the volute to ideally distribute a uniform gas flow, and 

provide the required tangential momentum to the rotor by accelerating the flow. 

In addition to the flow distribution and acceleration, the volute should deliver the 

desired flow angle distribution at the volute exit to reduce the incidence losses 

caused by the mismatch between the flow angle and the inlet angle of the nozzle 

vanes or the rotor blades.  

 

Figure 1.11 Spiral casing of a radial inflow turbine 

The distribution of area to radius (A/R) ratio in circumferential direction is one of 

the key parameters to define the volute geometry. The parameter A/R is the ratio 

of volute cross-sectional area and its centroid distance to rotational center. The 

𝒓𝟏 
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distribution of A/R directly influences the flow angle distribution at the rotor inlet 

and, therefore, has a significant impact on the turbine performance. The 

parameter A/R can be deduced using incompressible theory with the 

consumption of uniform pressure distribution. 

See Figure 1.11, for incompressible flow, the mass flow rate going through a 

cross section at any azimuth angle 𝜃 is 

 �̇�𝜃 = 𝐴𝜃𝜌𝜃𝑉𝜃𝑟 (1.1) 

where 𝐴𝜃  and 𝜌𝜃  are the area and gas density at any azimuth angle θ , 

respectively. 𝑉𝜃𝑟 is the corresponding radial component of the gas velocity.  

For uniform mass flow distribution, the mass flow rate at given azimuth angle θ 

also is 

 �̇�𝜃 = �̇�1 ×
θ

2𝜋
 (1.2) 

where �̇�1 is the mass flow rate at volute discharge station 1.  

Apply the free-vortex assumption, the tangential velocity at the centroid of this 

section is obtained once the radius of the centroid is known  

 𝑉𝜃𝑡 = 𝑉1𝑡 ×
𝑟1
𝑟

 (1.3) 

Therefore, combine equation (1), (2), and (3), the expression of the parameter 

A/R is obtained with the consumption of constant gas density 

 

(
𝐴𝜃

𝐴1
) (

𝜌𝜃

𝜌1
) (

𝑟1
𝑟𝜃

) =
𝜃

2𝜋
tan−1 𝛼1 

𝐴𝜃

𝑟𝜃
=

𝐴1

𝑟1
×

𝜃

2𝜋
× tan−1 𝛼1 

(1.4) 

where 𝛼1 is the discharge flow angle defined as 𝛼1 = tan−1(𝑉1𝜃 𝑉1𝑡⁄ ). 
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Note that the desired 𝛼1 is determined by the desired inlet angle of the rotor, and 

𝐴1 𝑟1⁄  is a constant value once the size of the rotor is fixed. Hence, the parameter 

A/R is the linear function of the angle 𝜃. This simple expression is widely used in 

design practice due to the difficulty in obtaining the density variation inside the 

volute.  

On the same note, the volute cross-sectional shape is a key geometry which links 

the area and radius in the A/R. The optimal turbine performance can be achieved 

by optimizing volute cross sectional shape. However, the volute cross-sectional 

shape can sometimes be compromised for the engine level packaging. 

1.6.2 Turbine Nozzle 

As discussed in previous section, the volute provides most of the swirl required 

for correct incidence into the rotor if there is no vane existed in the nozzle. Thus, 

the vaneless nozzle can be used to simply stabilize the flow entering the turbine 

rotor. The resulting benefit is the low manufacture cost and high reliability since 

there is no complex geometry component exiting between two parallel walls of 

the nozzle.  

However, due to the benefits of vaned nozzle, it is becoming favorable in 

automotive turbocharger industry. Given the simplicity and reliability of the nozzle 

vans, it is common to use uncambered aerofoils with quite robust trailing edges 

which could distribute and accelerate the flow equally around the turbine rotor 

inlet with an optimum angle. The example of uncambered aerofoil nozzles is 

shown in Figure 1.12. Waston and Janota [22] claimed that the large number of 

the nozzle vanes can provide better flow guidance at the penalty of increased 

frictional losses and flow blockage. It should be noted that the issue of the flow 

blockage is critical for the internal combustion engine application. This is because 

blockage resulting from a choked flow can limit the flow capability and reduce the 

efficiency due to the induced shock wave, thereby lowering the engine 

performance. Thus, the nozzle opening will be sized to pass the range of engine 

mass flows without choking occurring in the throat of the passage at high 

pressure ratio [23].  
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Figure 1.12 Uncambered aerofoil nozzles 

Turbine nozzle vans could be stationary and is often referred as a fixed geometry 

turbine (FGT). The corresponding limitation is poor performance at off-design 

condition. A FGT is optimised for a specific engine condition. Given the wide 

operating envelop of the internal combustion engine, the turbine efficiency is 

limited at the majority of working condition. However, the existence of wastegate 

can avoid the efficiency drop at high mass flow by diverting excess exhaust gases 

away from the turbine. A wastegate is a simple valve that controls the flow of 

exhaust gas through the turbine and, therefore, control the boost pressure. It 

should be noted that the throttling loss is induced when the wastegate valve is 

open.  

Considering the advantages and disadvantages of FGT discussed herein, 

variable geometry turbine (VGT) is proposed and designed to increase boost 

pressure at low speeds, reduce response times, and decrease the boost at high 

engine speeds to prevent over-boosting. The variable geometry can be achieved 

by altering cross sectional area at turbine nozzle, referred as pivoting vane 

turbine. It has a ring of vanes mounted on pins that allow them to rotate axially. 

By doing so, the angle of the vanes is able to change in order to a position that 

provides the desired cross section between vanes, demonstrated in Figure 1.13. 

Vanes are closed when the engine mass flow is low in order to accelerate the 

airflow entering the rotor. With increasing the exhaust mass flow rate, the vane 
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open to prevent choke. Thus, the overall efficiency of a VGT is greater than that 

of a FGT due to the larger operating range. 

 

Figure 1.13 Pivoting vane turbine in fully closed (left) and fully open (right) 

positions [24] 

Despite the outstanding advantages of VGT, the peak efficiency of a VGT is often 

lower than a FGT equivalent, partially due to the leakage in the turbine casing 

and around the mountings of moving components. In addition, since the exhaust 

temperature is quite high 850 °C for diesel engines and 1000 °C for petrol engines, 

the thermal expansion of each component in VGT increase the metal-to-metal 

friction, which can cause the pivoting mechanism to stick. This will significantly 

reduce performance. [24] 

1.6.3 Turbine Wheel 

Similar to compressor rotor, the turbine rotor is composed of a solid hub with 

blades, shown in Figure 1.14. The main function of the turbine rotor is to extract 

energy from the working fluid and hence there is drop in enthalpy, pressure and 

absolute velocity. The discharged working fluid from the vaned nozzle goes into 

the radial portion of the rotor at the inlet, referred as inducer, then exist at the 

axial portion at the outlet, called as exducer.  
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Figure 1.14 A sketch of a radial turbine rotor 

By analyzing the velocity triangles at turbine rotor inducer and exducer, the 

following energy transfer equation in the rotor can be derived, 

 �̇� =  
1

2
�̇�[(𝑈𝑖

2 − 𝑈𝑒
2) − (𝑊𝑖

2 − 𝑊𝑒
2) + (𝐶𝑖

2 − 𝐶𝑒
2)] (1.5) 

where �̇� is the power extracted from the working fluid. �̇� is the mass flow rate. 

𝑈 is the blade tip speed. 𝑊 is the gas velocity relative to the rotor blades. 𝐶 is the 

absolute gas velocity. The subscript ‘𝑖’ denotes the rotor inducer, while ‘𝑒’ denotes 

the rotor exducer. 

Eq. 1.5 gives an indication of how the turbine rotor should be designed to 

maximize the energy transfer. The first term shows that the larger change in 

radius from the inlet to outlet is desirable with respect to the shaft power. The 

second term shows that the relative velocity at exducer must exceed that at 

inducer for positive work, that is, the flow must accelerate through the rotor 

passage in the relative frame of the reference. The last term illustrates that the 

absolute exit gas velocity must be minimized since this is a direct loss of the 

potential work. Thus, the exit swirl should be reduced, ideally to zero. 

Inducer 

Exducer 

Hub 
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The incident angle is defined as the difference between rotor inlet flow angle and 

blade angle at the rotor leading edge. According to Japikse and Baines [25], the 

optimum incidence for radial turbine is in the region of - 20° and - 40°. At the 

optimum incidence range, the rotor is typically tolerant to changes of only up to 

10° without a significant drop in efficiency. However, the nature of the 

reciprocation engine is the wide operating conditions, that is, the wide range of 

exhaust mass flow rates. Thus, the focus of turbine design for the automotive 

application should shift to off-design operation condition. Thus, the mixed flow 

turbine has been extensively studied to improve the efficiency over a wide range 

of the mass flow rate. The main difference between radial turbine and mixed flow 

turbine is shown in Figure 1.15. It could be clearly seen that the blade inlet angle 

at inducer is zero for the radial turbine rotor, while none-zero inlet blade angle 

results from a mixed flow turbine rotor.  

It is common knowledge that the optimal efficiency of the radial turbine could be 

achieved at the relatively high velocity ratio of around 0.7, whereas the peak 

efficiency for mixed flow turbines is at lower velocity ratios [26], which refers to 

the operating condition of high exhaust gas velocity and low turbine rotational 

speed. The velocity ratio is one of the key design parameters of turbines and 

defined as the ratio of the rotor tip velocity in relation to the isentropic spouting 

velocity which could be achieved if the available total-to-static enthalpy drop 

would be converted into kinetic energy by an isentropic process. The lower 

velocity ratio achieved by mixed flow turbines is also desirable for automotive 

application. This can be explained by follows. When exhaust energy is the 

greatest, the high pressure ratio and the associated low velocity ratio will mean 

that the turbine is operating near to its maximum shaft power. Thus, it is 

advantageous to reach the peak efficiency at the low velocity ratio, which the 

mixed flow turbine is designed for.   

As discussed with regard to the turbine energy transfer, the energy associated 

with the exit swirl velocity represents energy loss and efficiency reduction. To be 

specific, in a radial turbine, rotor losses could be reduced if there is an 

accelerating flow along the turbine rotor passage, so that the relative velocity at 

exducer should be high. In contrast, the absolute velocity at outlet should be low. 
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Thus, the exducer annulus area should be relatively large to reduce the exit 

dynamic head to a minimum. However, the ratio of the diameter of exducer tip to 

that of the exducer hub should be limited to avoid overstressing the blade, 

especially the blade surface at the exducer tip. 

 

 

Figure 1.15 Radial versus mixed flow turbines [26] 

 

1.7 Aim and Objectives 

The principle aim of this research is to fully study the heat recovery capability of 

IBC system as the bottom WHR cycle of an automotive IC engine, by numerical 

simulations and experimental tests. Thus, the main objectives are defined as 

follows: 

1. To review the literature in the field of exhaust-gas heat-recovery cycles, 

especially IBC system, and justify the contribution of investigating IBC 

system. 

2. To perform the parametric study of IBC system by numerical simulations 

to enhance the understanding of IBC performance at various operating 

boundary conditions. 

Radial Flow Turbine Mixed Flow Turbine 
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3. To design, manufacture, and test the prototype of IBC system at a selected 

IC engine operating condition on the basis of the numerical analysis results. 

4. To calibrate IBC system model against the test for the further use in IBC 

system development. 

 

1.8 Thesis Outline 

Chapter 1: Introduction 

This chapter introduces the importance and necessity of the extensive studies on 

the exhaust-gas heat-recovery devices for the automotive applications. Then, two 

critical IBC components – centrifugal compressor and radial turbine are 

introduced and discussed. 

Chapter 2: Literature Survey 

In this chapter, the published literature is reviewed to demonstrate the current 

state-of-the-art WHR technologies. In particular, WHR technologies include 

automotive thermoelectric generators, Rankine cycle, pressurized Brayton cycle, 

turbo-compounding, and inverted Brayton cycle. Then, the published 

turbomachinery design optimisation methods will be summarized, as centrifugal 

compressor and radial turbine for the IBC system will be designed and optimised 

in this research. 

Chapter 3: IBC Thermodynamic Modelling and Analysis 

This chapter contains the detailed description of IBC working principle as well as 

the thermodynamic model. Then, the parametric study of IBC system will be 

performed to fully understand its heat recovery capability. Afterwards, a 2-litre 

gasoline engine will be selected as the primary upper cycle for IBC system, in 

order to investigate the benefits of IBC system over a real-world driving cycle. 
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Chapter 4: IBC 1D Modelling and Analysis 

Higher fidelity engine and IBC system models will be developed and utilized to 

study the IBC system performance over various operating conditions. Since 1D 

models allows the employment of the compressor and turbine characteristic maps 

for the IBC system, the compressor/turbine size optimisation will be conducted at 

design conditions. Based on the optimisation results, a commercial compressor 

and turbine will be selected as the baseline turbomachinery designs for the IBC 

prototype. 

Chapter 5: Compressor and Turbine Design 

In this chapter, the further optimisation of the selected commercial compressor 

and turbine will be performed by 3D simulations with the blade trimming 

technology. The optimal turbomachinery will be manufactured for the IBC 

prototype. However, the blade trimming technology is only a simple method to 

optimise the existing turbomachinery geometry at the design condition. Thus, due 

to the limitation of the blade trimming technology, a compressor design and 

optimisation process will be developed to generate new compressor design which 

has better performance than the trimmed commercial compressor. 

Chapter 6: Experimental Procedure and Results 

The experimental facilities and test procedure used in this research will be 

presented. This chapter contains three sections. In the first section, the necessary 

changes and required setup for the existing gas stand cell will be described. The 

second section will show the test limitations and the test results analysis. Finally, 

the test data will be utilized to correlate the 1D IBC model. 

Chapter 7: Summary 

The final chapter will present the major finding of this thesis, and makes 

recommendations for the further research. 
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Chapter 2 – Literature Survey 

 

2.1 Introduction 

This chapter will present a comprehensive review of current WHR technologies 

available in public domain. According to the characteristic of IC engines exhaust 

gas, there are two categories of WHR systems – indirect recovery and direct 

recovery technologies. The definition of each category will be detailed, following 

by the review of the research and production examples of the dominate 

technologies in each category. Note that the WHR technologies comparison, 

discussion, and summary are heavily bias to IBC system. 

The second section in this chapter summaries the optimisation methods for the 

compressor and turbine designs. In general, there are two common optimisation 

methods applying to turbomachinery design – gradient-based optimisation and 

genetic algorithm optimisation. The advantages and disadvantages of each 

optimisation method will be analysed in order to select a proper optimisation 

method for this research. 

 

2.2 Waste Heat Recovery System 

As discussed in Introduction chapter, the exhaust-gas heat energy can be 

categorized into kinetic energy, pressure energy, and thermal energy. In 
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accordance with the characteristic of exhaust gas, the exhaust-gas heat-recovery 

methods can be divided into direct recovery, utilizing an expansion device, and 

indirect recovery through heat transfer and thermodynamic cycle.  

2.2.1 Indirect Recovery Based on Thermodynamic Cycle 

In general, the indirect recovery approaches utilize the wasted exhaust heat as 

an intermediate heat source for a separate bottoming power cycle. In order to 

integrate the bottoming cycle with the primary cycle, a binary fluid system is 

obtained in which the operating fluid of the bottoming cycle exploits heat from the 

primary cycle exhaust gas in a heat exchanger. In this scenario, the working 

pressure of the bottoming cycle is decoupled with engine exhaust back pressure 

by transferring heat in the heat exchanger. Therefore, the performance of the 

heat exchanger plays a very important role in an indirect exhaust-gas heat-

recovery system.  

The other critical factor is the working medium in the bottoming cycle, which 

determines exhaust gas energy recovery efficiency. Based on the operating 

characteristics of the working medium, there are two main kinds of the working 

medium forms – liquid working medium and gas working medium. The advantage 

of the liquid working medium is that it can achieve high working pressure with 

little compression work consumption. Furthermore, the phase change process of 

liquid is a very efficient way to store and release energy. However, the phase 

change process can increase the volume of the liquid working medium, thereby 

imposing problems on the flow path design, such as requiring a large-diameter 

turbine and heat exchanger. On the other hand, the bottoming cycle with gas 

working medium will be much simpler since no phase change process is involved 

during the heat transfer process. Moreover, the bottoming cycle can be designed 

as an open cycle and, therefore, there is no need for a condenser. Thus, it could 

be argued that it is more logical to consider the bottoming cycle with a gas working 

medium for automotive heat recovery.[7] 
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2.1.1.1 Automotive Thermoelectric Generators 

Automotive Thermoelectric Generators (ATEG) is one of the promising indirect 

recovery approaches for automotive use without any parasitic pollution. This 

technology converts thermal energy from the different temperature gradients, 

existing between hot and cold ends of a semiconductor, directly into electric 

energy, as shown in Figure 2.1. The advantages of ATEG include free 

maintenance, silent operation and high reliability since there is no moving and 

complex mechanical parts involved. Furthermore, ATEG is able to operate 

without any loads supplied by the engine drive trains. As a result, this would help 

to reduce the engine weight and direct the most of the increased power to the 

drive shaft, which would in turn help to improve the performance and fuel 

economy [27]. More importantly, this energy recovery technology can be applied 

without significant redesign, development and calibration of established engine 

sub-systems. 

 

Figure 2.1 Schematic of a typical thermoelectric device [28] 

The thermoelectric generators (TEGs) can generate electric power only when it 

is mounted where a temperature gradient exists. Therefore, in terms of the 

automotive engine, there are two main potential mounting allocations for ATEG 
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– the radiator and the exhaust gas system that are the two main heat outputs of 

the internal combustion engines. The radiators are used to reject the heat of the 

coolant that takes out the excess heat of the automotive engine in order to avoid 

overheating and seizure [29]. The main structure of the exhaust gas system is 

the exhaust manifold which is designed to discharge the expanded exhaust gas 

containing high-grade heat content. However, given its simplicity and low 

influence on the operation of the engine, present thermoelectric technologies are 

mostly mounted in the exhaust gas system, instead of the exhaust manifold [29]. 

Therefore, the typical layout of ATEG system consists of an exhaust gas system, 

a heat exchanger, a thermoelectric generator, a power conditioning system, and 

a battery pack, shown in Figure 2.2.  

 

Figure 2.2 A typical ATEG system [28] 

The ATEG operating process can be described as follow: 

(1) During the operation of ICEs, the waste heat rejected through the exhaust 

manifold is extracted by the heat exchanger mounted directly 

downstream of the catalytic converter of the exhaust gas system. 

(2) The thermal energy captured by the heat exchanger is transferred to the 

thermoelectric system to form the different temperature gradients, 

thereby producing electric power by the semiconductor. 

(3) Power conditioning is performed by the power converter to achieve 

maximum power transfer. 
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The performance of ATEG system is affected by several factors, such as the 

temperature of the exhaust gas available from the primary cycle, the 

effectiveness of the heat exchanger, and the thermoelectric materials. As the 

primary challenge of the employment of ATEG system, the thermoelectric 

materials have been extensively investigated within recent years. As far as 

author’s knowledge, Mori et al. [30] firstly stated that the application of 

thermoelectric in automobiles should require special design philosophy 

compared to general applications, but there is not enough information pointing 

out the special requirements, such as how far away from optimal performance a 

material may be. In order to determine essential elements in thermoelectric 

technology to be used specifically for automobile heat recovery applications, Mori 

et al. evaluated the effect of a thermoelectric system on fuel economy by applying 

commercially available thermoelectric materials and typical industrial techniques 

on a 2.0-litre midsize gasoline vehicle. The optimised parameter of ATEG system 

is the height of elements, which plays a very important role in terms of module 

performance. The height of elements determines the temperature difference of a 

module, thus affecting its electric motive force under certain thermal condition. 

Furthermore, it also determines the internal resistance of a module which affects 

current flow during electric power generation. The performance of ATEG has 

been evaluated under optimised specifications at four different driving modes. 

The results show that although the specifications of thermoelectric units have 

been optimised, only very modest improvement of the fuel economy was 

predicted. The maximum fuel economy improvement was 0.36% predicted under 

highway driving condition. The analysis of the energy flow of ATEG system 

indicated that the largest loss is due to the lack of the performance in 

thermoelectric material. In addition, the performance losses due to assembly and 

heat exchanger also occupies large proportion of the efficiency loss. 

Stobart et al. [31] also ascertained that the major barriers to a successful 

application of ATEG is the conversion efficiency of the thermoelectric material. In 

their study, ATEGs models mounted in four types of engines have been built and 

validated with the corresponding experiments. An annual fuel saving of 3.9 – 4.7% 

was predicted due to the installation of ATEG in the exhaust system of each 

engine. The predicted power output of ATEG system could potentially replace the 
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alternator of a small passenger vehicle. However, the economic analysis of 

ATEGs system applied in passenger vehicles revealed that the used modules 

would have to have 1/10th of the current unit cost with current thermoelectric 

materials. The further improvement of the conversion efficiency of thermoelectric 

materials are required to realize the practical application in vehicles. 

Karri et al. [32] presented predictions of the power produced and fuel saved when 

exhaust energy was recovered using a thermoelectric generator composed of two 

promising thermoelectric materials – quantum-well (QW) structured materials and 

commercially available Bi2Te3. The considered TEGs were simulated with an 

assumption that it is mounted in the exhaust stream of a sports utility vehicle 

(SUV). The coolant flow rate of the ATEG system and the aspect ratio of the 

thermoelectric legs have been optimised to maximum the power recovered by the 

thermoelectric generator. The results in terms of fuel saving are shown in Figure 

2.3. Positive fuel saving was predicted at all vehicle speeds when TEG was made 

of the QW materials. The corresponding maximum fuel improvement of around 

1.5% was observed at a vehicle speed of 112.7 km/h. However, negative fuel 

gains were registered at vehicle speeds of 48.3 and 80.6 km/h using Bi2Te3. This 

is because the parasitic losses associated with the employment of ATEG 

exceeded the power produced by the exhaust-gas heat-recovery system at lower 

vehicle speeds. To be specific, the dominant parasitic loss causing by using 

ATEG is the rolling resistance parasitic loss due to the TEG system weight. 

Moreover, it increases with vehicle speed. The power utilized to circulating the 

coolant in ATEG is less significant. The type of power loss is almost independent 

of the vehicle speed because the coolant system by-pass valve maintains an 

approximately constant pressure drop across the heater core even as the engine 

speed changes. It should be noted that the exhaust energy was underutilized 

because of space limitations, especially at higher vehicle speeds due to resulting 

higher temperature of the exhaust gas. 

Within the recent years, the revival of interests into the improvement of heat-to-

electricity conversion efficiency of the thermoelectric materials has brought many 

promising materials into the attention of many scientists and engineers. For 

example, BiTe (bismuth telluride), CeFeSb (skutterudite), ZnBe (zinc-beryllium), 
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SiGe (silicon-germanium), SnTe (tin telluride) and new nano-crystaline or nano-

wire thermoelectric materials are currently in development stage to improve the 

performance of ATEG. For studies in the thermoelectric materials applied in 

vehicles, the most of them intend to use BiTe-based bulk in ATEG due to its 

availability in the market and high applicability in low and high temperature range 

[33].  

 

Figure 2.3 Fuel saving caused by the employment of two kinds of ATEGs [32] 

In conclusion, ATEG is a potential exhaust-gas heat-recovery system and 

extensive studies have been performed to evaluate its heat recovery capability. 

To improve the current modest performance of ATEG, many promising 

thermoelectric materials with high conversion efficiency are in development stage. 

However, the poor conversion efficiency of ATEGs, typically lower than 4%, is 

still the primary challenge currently which hinder their adoption in the on-road 

market [34]. Without significant breakthroughs, the thermoelectric generator 

might be unfeasible to install in the exhaust system of the vehicle for the purpose 

of recovering wasted energy. 

2.1.1.2 Rankine Bottoming Cycle 

The other indirect recovery concept is to introduce a thermodynamic bottoming 

cycle at the exhaust system to generate electric power. In terms of researches 

on the thermodynamic bottoming cycles, one of the most popular basic working 

cycles is the Rankine cycle (RC). The basic configuration of Rankine bottoming 



 

Chapter 2 – Literature Survey 

32 

cycle is shown in Figure 2.4. By integrating an RC with the primary cycle, a binary 

fluid system is obtained in which the RC’s working fluid exploits heat from the 

primary cycle exhaust gas in a vaporizer heat exchanger, produces output power 

during the expansion process in a expander, and discharges residual heat to the 

environment in a condenser [35]. For continuation of the cycle, the working 

medium is pumped from low to high pressure and returned to the heat exchanger. 

As the working medium is a liquid, the compression process in the pump 

consumes little energy to achieve high pressure. 

 

Figure 2.4 Layout of Rankine bottoming cycle mounted immediately 

downstream of an IC engine 

Applications of the RC on an on-road vehicle as a the bottoming heat-recovery 

system were first investigated during the energy crisis in 1970s [36-38], but 

mainly for heavy duty trucks. For instance, Patel and Doyle from Mack Trucks [39] 

designed and built a prototype of such a system operating on the exhaust gas of 

a 288 HD truck engine in 1976. A 450 km on-road test demonstrated the technical 

feasibility of the system and its economic advantage with an improvement of 12.5% 

in fuel consumption. Following this, based on the work by Thermo Electron 

Corporation, Heywood [40] claimed a prediction in 1981 that a reduction of fuel 

consumption by 10–15% could be obtained with a RC–EHR system on diesel 

engines. 
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Recently, intensive efforts have been concentrated on the Organic Rankine cycle 

(ORC) applied as bottoming heat-recovery cycle for the internal combustion 

engine. This is due to the potentially low-grade temperature of the exhaust gas 

available from the transport engine and the organic fluids are superior to water 

when the required power is limited and the heat sourced temperature is low [41]. 

More specifically, the properties of the organic fluids mean that these working 

mediums often have lower heat of vaporization and can better follow the heat 

source to be cooled, thus reducing temperature differences and, consequently, 

irreversibilities at the evaporator. Furthermore, the turbine for organic cycles can 

provide higher efficiency at part load and are usually less complex due to the 

lower enthalpy drop of the fluids. It means that the ORC plant typically requires 

only a single-stage expander, resulting in a simple and more economical system 

in terms of capital costs and maintenance [42]. For the reasons presented herein, 

the thermodynamic characteristic of the potential organic working fluids has been 

extensively discussed under different engine operating conditions. Chen et al. [43] 

stated that a working fluid must not only have the necessary thermo-physical 

properties that match the application but also possess adequate chemical 

stability in the desired temperature range. They recommended that the 

thermodynamic and physical properties, stability, environmental impacts, safety 

and compatibility, and availability and cost are among the considerations when 

selecting a working fluid. In their study, the performance predictions of 35 different 

types of the organic working fluids under various working conditions indicate that 

the best working fluids with the highest efficiency cycles may not be the same for 

different operating conditions. 

Yang et al. [44] tested the combined system consisting of a six-cylinder four-

stroke diesel engine and a ORC with the working fluids of R245fa at the whole 

operating range of the selected engine. It should be noted that the evaporating 

pressure was considered as a variable. The research shows that, with an 

evaporating pressure of 3MPa, engine speed of 2200r/min and engine torque of 

1200N·m, the net power output of the ORC system, engine thermal efficiency 

increasing ratio (ETEIR), and the improvement ratio of BSFC all hit the maximum 

values, being 22.41kW, 8.085%, 7.423% respectively. Hountalas et al. [45] found 

that a 7% improvement in fuel efficiency was expected when an ORC technique 
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was applied to a high-efficiency, low-emissions, dual-fuel, low temperature 

combustion engine.  

In order to further improve the performance of the Rankine bottoming cycle, the 

modification of the basic Rankine cycle configuration have been proposed. The 

automotive manufacturer, BMW, conducted a two-loop Rankine cycle system on 

a four-cylinder gasoline engine to recover waste heat from the exhaust gas and 

the cooling system. The water and ethanol were selected as the working medium 

for two loops, respectively. The test bench measurements showed that an 

additional power of about 10% can be produced at typical highway cruising 

speeds [46]. 

Vaja et al. [41]  also proposed a ORC system to exploit the thermal energy from 

the exhaust gas and the engine cooling system. They claimed that up to a 12% 

increase in efficiency was observed by adopting this proposed cycle to a 

supercharged, natural gas engine. However, the resulting complexity and capital 

costs lead to a long payback period. In fact, ORCs only applied to the exhaust 

system still hold the most significant promise owing to cost, packaging, weight, 

and working fluid safety concerns. Furthermore, in the case of steam bottoming, 

the need for a high-pressure steam generator, a steam turbine, and a condenser 

might be unfeasible on a small scale. 

2.1.1.3 Pressurized Brayton Cycle 

Given the complexity of the conventional Rankin bottoming cycle, a much simpler 

thermodynamic cycle, the pressurized Brayton cycle (PBC), shown in Figure 2.5, 

was proposed as an alternative exhaust-gas heat-recovery system [47]. The 

pressurized Brayton cycle is a modified gas turbine cycle where the combustor is 

substituted by a heat exchanger which exploits thermal energy from the available 

hot gas stream from the primary topping cycle. Thus, the basic PBC consists of 

a compressor, a gas-gas heat exchanger, and a turbine. The ‘pressurized’ term 

is referred to a bottoming cycle loop that is above atmospheric pressure during 

heat addition. The working medium air is boosted to a certain pressure in the 

compressor, and then fed into the heat exchanger. After capturing the thermal 
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energy from the exhaust gas rejected by the primary cycle in the heat exchanger, 

the pressurized and heated air is able to drive the turbine to produce rotating work, 

and then rejected to the ambient. The work produced by the turbine proportionally 

transfer to the compressor by a shaft, in order to complete the compression 

process. The rest is to generate the electric power, which is regards as the net 

work produced by PBC. 

 

Figure 2.5 Layout of pressurized Brayton cycle mounted immediately 

downstream of an IC engine 

Since this kind of combined cycle decouples the working pressure of bottom cycle 

from the engine exhaust back pressure by the method of heat transfer, the 

parasitic loss for the engine is only caused by the pressure drops through the 

heat exchanger, which can cause the increase in the back pressure of the primary 

cycle. Then, the resulting increase of the pumping work can deteriorate the 

engine performance. For this reason, the exchanger is an important component 

in terms of the efficiency of the entire configuration. Furthermore, the other 

important parameters impacting the optimum selection of the heat exchanger is 

temperature differential [48]. High efficiencies of the cycle are achieved for small 

temperature differences in the heat exchanger, although this results in a large 

size of heat exchanger.  
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Romanov et al. [49] presented a comprehensive parametric study of a system 

consisting of gas turbine and PBC. The results show a high capability of energy 

recovery in terms of PBC. Approximately 11%-20% and 4%-6% increase in power 

output and efficiency respectively are expected depending on both the systematic 

operating condition and design parameters. 

Liu et al. [7] studied a SI engine model to identify the benefits of PBC as the 

bottoming heat-recovery cycle. The efficiency of the turbine and compressor was 

assumed to be 0.75 and 0.78, respectively. The effectiveness of the heat 

exchanger was fixed as 0.95. The performance predictions showed that the 

output power produced by PBC was quite low, only around 0.6 kW, due to the 

poor cycle efficiency. The reason was that the effective output work of this bottom 

cycle depended on the difference between the expansion work of turbine and the 

work consumed by the compressor. Furthermore, the working medium air did not 

fully expand in the turbine, that is, the air temperature after expansion was still 

every high. As a result, quite a number of the thermal energy was wasted again. 

The results also revealed that the heat exchanger effectiveness was quite 

sensitive to the air flow rate in PBC loop and even able to reach as low as 80%, 

which hinder the further performance improvement. Moreover, the other 

challenge of this technology has been specified as the intensive thermal stresses 

in the gas-gas heat exchanger. 

To improve the efficiency of PBC installations, the more complex configurations 

have been proposed by Czaja et al. [48]. Then, the performance of all considered 

PBCs have been analyzed with a typical gas turbine, shown in Figure 2.6. The 

GT10 gas turbine has been selected as the primary cycle. As shown in Figure 

2.6, regarding the complex PBC system in case 2, an extra compressor is 

adopted immediately downstream of an intercooling process. A first compressor 

stage compresses ambient air. Then, the compressed air is conveyed to an 

intercooler and cooled to the lowest possible temperature. After intercooling the 

compressed air is again compressed in a second air compressor and then air is 

heated up in the heat exchanger. The intercooler mounted between two 

compressors is to keep the temperature of the compressed air low before 

compression and make the work of compression more efficient. For the complex 
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PBC system in case 3, two additional compression processes are introduced 

before the original compressor. The increase in mechanical power output of three 

proposed cycles are plotted with various inlet pressure of the heat exchanger in 

Figure 2.7.  

 

          

 

Figure 2.6 Configurations of three proposed cycles [48] 

The results showed that the additional compression process can contribute to 

further improve the performance of the combined system. The significant 

improvement caused by adding one extra compression process can be observed, 

while only modest increase in output power was found when the third 

compression stage is introduced. Furthermore, the pressure drops through the 

heat exchanger significantly deteriorated the PBC performance in all three cases. 

It should be noted that there exists an optimal inlet pressure of the heat 

exchanger that delivers the maximum performance improvement.  

Case 1 Case 2 

Case 3 
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Figure 2.7  Mechanical power output of three proposed cycles as a function 

of pressure ratio [48] 

2.2.2 Direct Recovery Approaches 

Due to the limitation of the engine expansion ratio and various irreversible 

processes occurring in the cylinder, the exhaust gas does not fully expand in the 

firing cylinder. Therefore, once the exhaust valve is opened, any remaining 

combustion pressure in the cylinder is suddenly released producing a pressure 

pulse. This kind of energy can be exploited by a turbine to produce shaft work. 

This is the principle behind turbocharging system. However, as the additional 

expansion devices are directly connected to engine exhaust system, the level of 

working pressure in a bottom cycle will affect the engine’s pumping losses, 

thereby affecting the working performance of engine firing cylinder. Thus, how to 

  

 

Case 1 Case 2 

Case 3 



 

Chapter 2 – Literature Survey 

39 

match the bottom cycles with the working cycles of engine firing cylinder can 

become a technical difficulty. 

2.2.2.1 Turbo-compounding  

In terms of direct recovery approaches, an additional expansion process is 

usually required to fully expand the exhaust gas for energy recovery, shown in 

Figure 2.8. Therefore, the simple power turbine has been implemented 

immediately downstream of the turbocharger, known as the turbo-compounding 

system. The exhaust gas energy recovered by the additional turbine is 

transformed into shaft work which is either added to the engine torque directly or 

utilized to generate the electrical power, referred as the mechanical and electrical 

turbo-compounding respectively. The drawback of turbo-compounding system is 

that the maximum energy could be exploited by the power-turbine is limited by 

the pressure available to expand over. In theory, the best that turbo-compounding 

system can achieved is to only expand the gases from the blowdown pressure to 

the atmospheric pressure. Thus, the only way to increase the power-turbine 

expansion ratio is to raise the exhaust back-pressure in the turbocharger turbine 

and, therefore, the working pressure in the exhaust manifold. Consequently, the 

engine needs to work harder to expel the burned gases, which is represented by 

the increase in pumping loss. In addition, higher exhaust back-pressure on the 

engine can result in increased residual gases, delayed combustion, increased 

heat transfer in the cylinder, and disruption of engine thermodynamic balance 

[50]. 

The turbo-compounding application was firstly utilized in aircraft piston engine 

before the 1930s [51]. There are two main advantages of introducing the turbo-

compounding into aircraft propulsion: 1) aircraft piston engines are designed for 

long hours of operation at constant high load. This resulting high exhaust 

pressure and temperature that are desirable for a turbo-compounding system, 2) 

the low ambient pressure at high altitude encourages turbo-compounding to 

deliver high pressure ratio and, therefore, recover more energy from the exhaust 

gas. 
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In the 1950s and 1960s, the turbo-compounding applications were extensively 

found in boat and train engines, as these engines typically operate at high load 

for extended periods of time [52]. With intensive researches and developments, 

the modern power plants applied in maritime ships can achieve total efficiencies 

up to around 50% [53]. 

 

Figure 2.8  Turbocharging and turbo-compounding 

With the successful utilization of the turbo-compounding system as an exhaust-

gas heat-recovery device in the heavy-duty engines, construction equipment 

manufacturers such as Caterpillar started to exploit such compound systems to 

improve their high-duty diesel engines. The first commercialized compound truck 

engines were lunched by Cummins in 1981 [54]. Over a 50,000-mile highway 

driving test in the USA, the turbo-compounding system leads to a 4.7% reduction 

in the fuel consumption [55]. Caterpillar developed a 14.6L heavy-duty Diesel 

engine with a mechanical turbo-compounding system which adds the recovered 

energy to the engine crankshaft mechanically by a gearbox. Although up to 6% 

reduction in fuel consumption at full load was achieved due to the employment of 

the mechanical turbo-compounding system, the inefficient high-speed gearbox 

was the major weakness of this heat-energy recovery architecture [55]. 

Afterwards, the various compounded systems were mainly investigated and 

applied to high-displacement, high-load Diesel engine, such as Scania’s 6-
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cylinder 11L DTC 1101 Diesel engine, Isuzu’s Ceramic IDI, and Volvo’s D12-

500TC [56]. 

Although the fuel economy benefits of the turbo-compounding system were 

presented by academic researches and industrial R&Ds, this technology is still 

not widely applied to the road vehicle engine. This is due to several limitations, 

such as low available energy for the power turbine at low and part engine load, 

overall low power turbine efficiency due to variability requirements for each 

engine load, and the resulting higher exhaust back-pressure that deteriorates the 

engine performance by increasing the pumping loss. In addition, from the power 

turbine point of view, the gear ratio between the engine crank and the power 

turbine should vary depending upon the engine load points in order to maintain 

high efficiency of the power turbine and achieve fast response to engine loads 

changes. The variable speed of the power turbine can be achieved by the 

employment of the continuously variable transmission (CVT) for the mechanical 

turbo-compounding, or an electric generator for the electric variant. However, 

given the cost, packaging, efficiency, and the operating requirements, CVTs and 

electric generators for the turbo-compounding are still too immature to be applied 

for this particular use.  

In conclusion, the turbo-compounding technology is an exhaust-gas heat-

recovery system which adds a power turbine in the exhaust line to extract the 

wasted exhaust available from the primary cycle – mainly internal combustion 

engines. Due to the characteristics of the turbo-compounding device, its 

favourable primary cycle should operate at high load for extended periods of time. 

Thus, commercialized turbo-compounding systems are mainly found in aircraft 

piston engines, boat and train powertrains, and heavy-duty trucks. Although the 

basic turbo-compounding architecture is able to deliver decent improvement in 

the fuel economy with the additional benefit of simplicity, there are several 

limitations to the prospects for a wide spread application of turbo-compounding 

in the automotive industry. This is mainly because that the heavily transient 

engine operating conditions from low to high load in automotive use requires wide 

operating range of the power turbine. Moreover, the energy recovery capacity of 

the turbo-compounding is significantly dependent on the available expansion 
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ratio of the power turbine. The achievable expansion ratio for this technology only 

can be increased with the exhaust back pressure. However, as the power turbine 

is directly connected to engine exhaust system, the increasing exhaust pressure 

makes expelling burned gasses from the combustion chamber difficult, that is, by 

increasing the engine pumping loss. In addition, other system components, such 

as electric generators and CVT systems, still should be properly designed and 

developed to improve the overall performance of the turbo-compounding system 

so that it could be utilized widely in road vehicle engines. [53] 

2.2.2.2 Inverted Brayton Cycle 

Due to the drawbacks of the turbo-compounding system, a simple modification of 

the turbo-compounding system with a downstream heat exchanger and 

compressors with intercooling, termed as the Braysson cycle, has been proposed 

by Frost et al. [57]. The Braysson cycle, shown in Figure 2.9, consists of a 

conventional gas-turbine worked as the high-temperature heat addition process 

and the Ericsson cycle as the low-temperature heat rejection process. 

 

Figure 2.9 Layout of a combined Brayton and Ericsson bottomer gas 

turbine [35] 

Frost et al. [57] performed the First Law analysis for the Braysson cycle. The 

exergy analysis of an irreversible Braysson cycle has also been studied by Zheng 

et al. [58]. Furthermore, performance analysis and optimum criteria of an 
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endoreversible and irreversible Braysson heat engine have been intensively 

studied by using a concept of the finite-time thermodynamic for a typical set of 

operating condition [59-62]. The corresponding results revealed that there is a 

window of pressure ratio in the upper Brayton cycle where the Braysson cycle 

shows a significant improvement over the best that can be achieved with either 

the non-regenerative or the regenerative Brayton cycle, even over the 

conventional combined gas and steam turbines in a certain range of operating 

condition. However, the high vacuum (up to 0.04 bar) in the bottom cycle requires 

a large turbine and the cooling technique implemented with the compression 

process to obtain isothermal compression, that may hinder the practical 

application especially considering the added manufacturing difficulty and cost 

[63]. Thus, given the feasibility of Braysson cycle application, the Ericsson cycle 

should be improved by adding a heat sink – heat exchanger and replacing 

intercooled compressors with conventional compressors. In other words, the 

novel proposed architecture consists of a conventional turbine, heat exchangers, 

and compressors, referred as inverted Brayton cycle (IBC). The schematic 

diagram of the basic IBC system with an IC engine is shown in Figure 2.10. 

 

Figure 2.10 Layout of inverted Brayton cycle mounted immediately 

downstream of an IC engine 

As far as authors’ knowledge, the concept of inverted Brayton cycle has been first 

proposed and studied by Kohler in 1919 [64]. Instead of utilizing a heat exchanger, 
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a steam generator and condenser were employed to cool the working fluid after 

expansion. In 1944, the alternative cooling applications, using surface or spray 

type coolers, were studied by Hingst [65] to improve the overall performance. In 

1955, the function of IBC inlet temperature and turbine pressure ratio was 

established by Hodge [66], to evaluate the IBC overall thermal efficiency and 

specific power output. The function shows that the cycle inlet temperature plays 

a vital role in the IBC performance, as both the thermal efficiency and the 

optimum pressure ratio increases with the cycle inlet temperature. Thus, given 

the characteristic of IBC cycle, the preferable primary cycle should deliver high 

temperature exhaust gas in order to enhance the hear-recovery capability of IBC 

cycle. 

Preliminary analysis on the IBC has been concentrated on the case of an IBC as 

a bottoming cycle to a gas turbine, which is dubbed the mirror gas turbine.  The 

first investigation was performed by Wilson and Dunteman [67], who were 

inspired from a business case about a Ruston and Hornsby commercial gas 

turbine. In order to increase the overall energy generated by this gas turbine 

system, a waste-heat boiler was incorporated as a heat source for other uses by 

harvesting some remaining heat from the turbine exhaust. The downside of the 

additional heat boiler is that the parasitic pressure drop contributes to the 

increase of the turbine exhaust pressure, thereby reducing the pressure ratio 

across the turbine and, therefore, the corresponding power output. One customer 

attempted to eliminate this negative influence of the waste-heat boiler by 

employing a downstream induced draft fan to reduce the turbine exhaust 

pressure back to atmospheric. The customer reported that although the induced 

draft fan consumed the electric power to remain the atmospheric pressure at the 

turbine exit, the overall net power benefited from the increased power generated 

by the gas turbine itself. The resulting power gain encouraged Wilson to further 

improve this architecture by introducing an additional turbine between the main 

turbine and a waste-heat boiler, that is, inverted Brayton cycle as a bottoming 

cycle. In Wilson’s research, the thermodynamic performance and return on 

investment of IBC system were investigated based on the reasonable 

assumptions with respect to the technology at the time. The results showed that 

there is a window of IBC inlet temperature and pressure ratio where the cycle is 
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competitive with other methods of waste-heat utilization. Moreover, the average 

return on investment for the IBC device was up to 30 percent. This large return 

on investment was calculated on the assumption that the exhaust gas would be 

discharged into IBC at any operating points. It should be noted that the resulting 

back pressure will be negligible at design point, but undoubtedly increase at off-

design points. However, the gas turbine power loss caused by the back pressure 

was ignored in their research. Consequently, the return on investment were 

overestimated. The other limitation of their study is that the IBC system was only 

evaluated at one operating condition. In addition, a proper optimisation of the 

pressure ratio of the IBC turbine should be employed to maximum the IBC heat-

recovery capability in their study.    

Afterwards, Holmes [68] conducted a thermodynamic analysis of the combined 

system of marine gas turbine and IBC, in order to investigate performance, 

efficiency and fuel-consumption effects on marine gas turbine. The results 

showed a maximum increase in power and efficiency of around 12%. In addition, 

he reckoned that the upper cycle, which was marine gas turbine in his research, 

should be optimised to gain benefits from the employment of an IBC system. Thus, 

a matching process should be conducted when IBC system is introduced to any 

existing upper cycle. 

Tsujikawa at el. [69] performed a comprehensive parametric study of IBC system 

to reveal the influence of the IBC inlet temperature, pressure ratio, 

turbomachinery efficiencies, and the stage number of intercooling. Then, a 

conventional gas turbine and IBC system - mirror gas turbine were optimised to 

maximize the power output and thermal efficiency of the combined system. The 

results showed that even at atmospheric pressure the waste energy can be 

recovered successfully from the high temperature gas by employing IBC system 

as a bottoming heat-recovery cycle. Moreover, by introducing three stages 

intercooling, the IBC thermal efficiency can be improved by approximately 10 

percent when the IBC overall pressure ratio was limited up to 10. Finally, they 

found that the optimal combined system of a Brayton cycle and IBC was able to 

deliver up to 60% thermal efficiency in the case of a turbine inlet temperature of 

1500°C. However, since the IBC inlet pressure in the combined system was fixed 
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as 1 bar in their research, the influence of IBC inlet pressure on the whole system 

was not revealed. It should be noted that the benefit of multi-stages IBC, 

constructed from a expander followed by multiple heat exchangers and 

compressors, was also investigated by Kaneko [70]. The results showed that the 

improved systematic performance could be expected by an increase in the 

number of compression stages. In addition, a combined system between two-

stage IBC and a combustor, referred as two-stage atmospheric pressure turbine 

(APT), was able to achieve maximum overall thermal efficiency of 65% [71]. 

Figure 2.11 shows the basic configuration of an APT. Basically, it consists of a 

combustor and IBC system. The unpressurized burned gas with high temperature 

discharged by combustor is utilized as the energy source for IBC system. Thus, 

research above showed that multi-stages IBC are promising and should be 

considered as a potential bottoming heat recovery cycle. 

 

Figure 2.11 Schematic diagram of APT [71] 

In Agnew’s research [63], the influence of IBC inlet pressure on the system 

thermal efficiency of a mirror gas turbine was revealed by an optimisation study 

which was performed with a fixed upper cycle turbine inlet temperature, constant 

stack pressure and pressure, and real component efficiencies. This study 

indicated that the maximum specific work output and efficiency of the mirror gas 

turbine could be obtained when the inlet pressure to the bottom cycle is above 

atmospheric pressure.  
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Bianchi et al. [72, 73] investigated the used of IBC as an exhaust-gas heat-

recovery cycle for low-temperature cogenerative applications and repowering the 

existing gas turbines. Their studies showed that although the thermal efficiencies 

of cogenerative applications were deteriorated by the existing of IBC, the overall 

electrical efficiency increased by about 5%. Due to the thermal efficiency 

reduction of the cogenerative applications, they introduced an IBC as a bottoming 

cycle for gas turbines to avoid its side effects. The most widespread gas turbines 

on the market were selected as the main cycle to perform the IBC preliminary 

design. The results showed the maximum percentage of electrical power 

increased range from 10 to 30%. However, optimistic component efficiencies 

were assumed in their research. 

IBC performance was compared with various potential combination of Rankine 

and Brayton cycles by Alabdoadaim et al. [74-76]. In their studies, the baseline 

configuration introduced a simple IBC as the bottom cycle, while there were three 

alternative upper cycles – simple Brayton cycle, Brayton cycle with regeneration, 

and one with reheat. The results showed that the optimum value of bottom cycle 

expansion pressure was different for each cycle configuration. Furthermore, the 

regeneration cycle attained best efficiency value of 49.36% with component size 

similar to that of a simple gas turbine. In order to further exploit the heat energy 

carried by the exhaust, a Rankin cycle was introduced to recover the heat 

rejected by the cooler in IBC. There were two IBCs in parallel in their proposed 

novel configuration, shown in Figure 2.12. The use of two IBCs provides an 

opportunity for the stream in the Rankin cycle to be heated in two locations – one 

as an evaporator and the other as a superheater. This unconventional combined 

system attained a high thermal efficiency of 54 percent. The following study 

showed that the removal of the compressor of the second IBC contributes to the 

increase of the maximum thermal efficiency – up to 57.7%. However, the 

manufacturing difficulties and cost hinder the employment of their novel proposed 

configurations in practice. 

Moreover, further comparisons were conducted by Bhargave et al. [35]. Three 

small/medium power (100 kW to 30 MW) rating gas turbines and a microturbine 

are selected as the topping cycle to perform the systematic thermodynamic 
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performance evaluation and comparison among IBC, PBC, and ORC. The 

Primary Energy Saving (PES) index were introduced to quantify the overall 

system performance. Generally, ORC provides comparatively better results in 

terms of PES index and the overall electric efficiency. However, for the selected 

microturbine, IBC offer the best performance enhancement. The limitation of their 

research is that the component efficiencies of the bottoming cycle were fixed 

across over all simulations. Additionally, only one design point for each upper 

cycle was introduced to evaluate and compare proposed heat recovery 

technologies. 

 

Figure 2.12 System layout of conventional gas turnine with two IBCs in 

parallel [75] 
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Figure 2.13 Schematic overview of the IBC with a second recuperator and 

EGR [77] 

Microturbines are also considered as the potential top cycle for IBC. The major 

drawback of this technology is the employment of smaller turbocharger 

components which suffers low efficiency and low pressure ratio due to the high 

tip leakage loss. However, the low pressure level of the IBC results in high 

volumetric gas flows, thereby enabling the use of large, highly efficiency 

turbochargers components [78]. Tanaka et al. [79] developed a 50kW output 

power atmospheric pressure turbine (APT). In their research, it was designed to 

harvest heat energy from the exhaust gas available from industrial furnaces. The 

simulation results show that the overall electric efficiency of the proposed system 

is approximately 20%. Henke et al. [77] increased the complexity of an IBC by 

using two water heat exchangers, two recuperators, and exhaust gas 

recirculation system (EGR), shown in Figure 2.13. Compared with a conventional 

microturbines operating on the recuperated Brayton cycle, the total efficiency 

gain achieved by non-EGR configuration is from ~2% to ~4% points, varying with 

the coolant temperature. However, the total efficiency improves by additional 10% 

to 15% points when EGR is used with a recirculation rate of 85%. Kuifang [80] 

claims that the electrical efficiency of microturbines is typically about 30% which 

is limited by a state-of-the-art turbine inlet temperature – maximum around 950 °C. 

However, the microturbines performance could be enhanced by the employment 
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of humid air turbine (HAT). The resulting electric efficiency can reach up to 40%. 

Their study aims to further increase the electric efficiency of the microturbine 

based on HAT (mHAT) by introducing IBC as bottomer of a mHAT. The electric 

efficiency and specific work of mHAT with IBC are 2% points and 20% higher 

than of HAT cycle respectively when the turbine inlet temperature reaches the 

maximum – 950 °C. 

Although extensive studies about IBC as exhaust-gas heat-recovery system have 

been performed, there has been few experimental investigations. Fujii et al. [81] 

firstly conducted two basic experiments to investigate the performance of IBC at 

different working condition. The first one was to confirm the operation of inverted 

process of expansion, cooling, and compression by running IBC system without 

extracting power from IBC shaft, while the second one is to confirm the power 

generation by decoupling the IBC turbine and compressor. By doing so, the 

power harvested by IBC turbine was measured by the connected compressor, 

while the power consumed by IBC compressor equals to that by the motored 

compressor. Although in the first experiment IBC turbine and compressor 

successfully run at several idling speeds without generating any net power, the 

power out of IBC system in the second test were extremely low due to the 

maximum system thermal efficiency of approximately 1%. They reckoned that the 

low efficiency turbine, around 50% at all test points, deteriorated the system 

thermal efficiency. The further thermodynamic analysis shows that increasing the 

inlet temperature or turbomachinery efficiency of IBC can promote the 

performance of mirror gas turbine, but also ignored the influence of the IBC inlet 

pressure. 

In 2006, a prototype atmospheric pressure turbine (APT) was constructed and 

tested by Tanaka et al. [79]. The design pressure ratio was set to 3.3. The 

compressor and turbine were single-stage centrifugal and radial-flow devices 

respectively, and no intermediate cooling was introduced in the compression 

stage. The target power output of 3.3 kW was successfully delivered by the 

prototype. However, during the continuous operation at the speed of 96000rpm, 

a gas leak was found in the negative pressure part. Thus, the measured thermal 

efficiency was only 5.8% with the gas leak, while it was increased to 7.4% with 
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the improvement of seal performance. In order to further improve the 

performance of APT, better heat insulation on pipes were built. The final output 

power and thermal efficiency achieved by the prototype were 3.5 kW and 8.7%, 

respectively. Their key conclusion on the prototype bench test is that the 

mechanical and dissipative heat losses of such devices occupy large proportion 

of the total loss and, therefore, should be reduced to attain higher efficiency. 

Agelidou et al. [82] presented an experimental study of a conventional MGT 

operated in IBC mode. The test range of IBC rotation speed is from 180 000 rpm 

and 240 000 rpm. The turbine outlet pressure varies between 0.5 bar at part load 

and 0.3 bar at full load. Due to unexpected high mechanical losses on the shaft, 

the IBC system is unable to produce positive power output. 

As far as authors’ knowledge, the performance evaluation of the inverted Brayton 

cycle applied to a piston engine as an exhaust-gas heat-recovery system has 

only been performed by Bailey in 1985 [83], which aims to compare with the other 

two alternative power cycles – the Rankin cycle and the pressurized cycle. The 

common baseline for the comparison was the adiabatic-turbocompound high-

power diesel engine. The results indicated that, in terms of engine rated specific 

fuel consumption, all three alternative power cycles as the bottom heat-recovery 

system offer a significant improvement over the turbocompound diesel baseline. 

More specifically, the inverted and pressurized Brayton cycles delivered 

approximately half of the improvement in system thermal efficiency compared the 

Rankin bottoming cycle. However, given that many of the proposed organic 

Rankine systems tend to be complex, costly and on occasion, toxic, it seems 

logical to consider much simpler air Brayton systems for automotive heat 

recovery. Then, the comparison between pressurized and inverted Brayton cycle 

indicated that the performance of both cycles becomes competitive with each 

other, depended on the thermal characteristics of the heat exchanger. It should 

be noted that the recent study, conducted by Bhargava et al. [35], offers a 

performance comparison of the pressurized and inverted Brayton cycles as the 

bottoming heat-recovery thermodynamic cycles and shows IBC is superior to 

PBC. 
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2.3 Turbomachinery Design Optimisation  

Essentially, turbomachinery design optimisation mainly includes two engineering 

problems – geometry design and optimisation methods. Regarding design 

techniques for turbomachinery, it could be broadly divided into two categories: 

direct and inverse methods. The direct methods require a sensible first base 

design as a starting point. Then, a trial-and-error procedure is employed to 

repeatedly adjust the base design and evaluate the corresponding performance, 

until a satisfactory solution is accomplished. Typically, optimisation techniques 

are introduced into the trial-and-error procedure to guide the perturbations to 

geometrical parameters and reduce the computation cost. The optimisation 

fitness function should be integrated properly with the constraints and design 

parameters. Thus, the sensitivities that indicate how to change the geometry to 

achieve the design target can be studied by optimizing the fitness function. This 

approach is the most popular current way of performing the optimisation since 

computer capacities are continuously increasing. The inverse methods require 

the engineer to find a well-posited pressure or velocity distribution on the 

boundaries that reaches the design requirements and then determining a 

geometry that yields this target pressure or velocity. Although this design 

approach could deliver the final design with low and affordable computational 

cost due to the pre-defined specification of the flow field, its success highly 

depends on the engineers’ experience and insight. Moreover, it is usually difficult 

to directly apply constraints in the inverse design. [84, 85] 

Therefore, given the advance in the high-performance computing, the direct 

methods are better suited to the turbomachinery design, especially taking 

account into the extremely complex flow field and various constraints of the 

rotating device. Since the optimisation is required in the direct design, the design 

problem is posed as an optimisation problem, which the requirements are 

translated into an objective function dependent on geometric and other 

parameters of the design object. Thus, an efficient direct design should select a 

proper optimisation method based on the nature of the design problem, in order 

to achieve the design requirements with reasonable computation cost. Srinivasan 

[86] provides a general review of the optimisation techniques applied for the direct 
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design method. These optimisation techniques can be broadly classified into 

following groups: a) gradient-based optimisation techniques, b) global 

optimisation techniques. 

2.3.1 Gradient-based optimisation  

Gradient-based optimisations are typically local algorithms to find the minimum 

of the cost function by utilizing the gradient information of the function at each 

iteration. All variants of gradient-based optimisation techniques have been widely 

studied and applied to a variety of engineering problems. Their main advantage 

is the smaller number of function evaluations required to find the optimum, due 

to rapid convergence rates. In addition, they have capabilities of solving problems 

with a large numbers of design variables, especially when the number of design 

variables is considerably greater than the number of objectives and constraints. 

However, since the nature of gradient-based algorithms require that the objective 

functions are differentiable and continuous, they have difficulty solving discrete 

optimisation problems. Moreover, good initial design points are critical to increase 

the possibility of preventing locating a local optimum and, therefore, finding a 

better optimum solution. It should be noted that seeking for the global optimum is 

achievable by gradient-based optimisations when multiple random initial design 

points are presented in the design space. However, by doing so, the 

corresponding computational burden significantly increases due to the lack of 

effective guidance of the search direction.[86-88] 

The example of applying the gradient-based optimisation to a large and complex 

industrial design problem is shown below. Odeh [87] proposed and investigated 

one gradient-based algorithms – the MacNeal-Schwendler Corporation (MSC) 

Nastran optimisation technique in solving the weight optimisation of different 

metallic and composite laminated aircraft wing structures. Two key objectives are 

emphasized. First, the procedure of generating good initial starting points for the 

discrete and continues design variables should be properly established with 

consideration of the trade-off between covering whole design space and avoiding 

large number of design points. However, there is no clear methodology available 

to guide the selection of starting design points. Thus, the number of initial design 
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points and how to distribute them in the design space are conducted by intuition 

and previous experience. Second, since the design space of this aircraft wings 

weight optimisation is too large, tremendous design variables of different 

sensitivities, and highly nonlinear objective functions, a practical optimisation 

framework is critical to achieve the final optimised optimum design in a cost-

effective manner. In their study, an improved strategy, shown in Figure 2.14, was 

proposed. The key feature of this strategy is to take advantage of the previous 

optimal solution by introducing it as the initial candidates for the next optimisation 

process. Such iteration procedure was terminated when the aircraft wing mass of 

the optimised solution at each iteration is converged and all design requirements 

are satisfied. 

 

Figure 2.14 Flowchart of the improvement search for an optimum solution [87] 
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Gradient-based optimisation methods have been used to optimise the geometry 

of turbomachinery applications with various purposes, range from single blade 

row [89-91] to multi-row and multi-stage architectures [85, 92-94]. Regarding the 

integration of the optimisation approach with the geometric design, one of main 

challenge recognized by these studies is that proper parameterization methods 

and tools should be chosen to define the optimisation variables and the 

corresponding design space, with the consideration of the computational cost, 

the mechanical and manufacturing requirements. Some parameterization 

methods, such as Hicks-Henne shape functions, free-form deformation, and the 

surface nodes of the computation grids, possess a large degree of freedom and 

provide sensitivity derivatives at low computational efforts, which make them 

quite attractive for gradient-based optimisation methods. However, the 

disadvantage of these parameterization methods is that there is no direct 

connection to the computer-aided design (CAD) model. In other words, based on 

the afore-mentioned parameterization methods, the optimised grid point positions 

are the final output, while the geometry in most industrial CAD software typically 

consists of high-order surface such as non-uniform rational B-spline (NURBS) 

surfaces. Thus, Becker et al. [95] proposed an advanced NURBS fitting 

procedure for a post processor which is able to translates a given set of grid 

points into a NURBS surface with high accuracy. Figure 2.15 shows an example 

of translation process from an unstructured triangular parameterization with the 

computed control point, to an approximated NUERBS surface. The challenge is 

that the unstructured grid can be seen as an arbitrary point cloud with four known 

corner points. It should be noted that no matter how accurate the fitting procedure 

is, there still are fitting or approximation errors which may impair the optimality of 

the final design.  

On the other hand, the such parameterization methods lack the consideration of 

geometric constraints related to mechanical and manufacturing requirements, as 

only mathematic principles are applied for the parameterization [96]. This 

disadvantage may make the optimisation procedure computationally expensive, 

due to the high possibility of investigating an unfeasible design. Thus, a 

parametric CAD model should be introduced into the optimisation procedure, in 

order to facilitate the integration of constraints in the optimisation process and 
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allows design parameters to be easily varied while sustaining the geometric 

features feasible. In Lasse’s study [96], parametric blades of turbocharger radial 

turbine are optimised by a gradient-based optimisation algorithm to maximize the 

corresponding the total-to-static efficiency at multiple operating points. They 

claimed that the gradient-based optimisations are efficient for the optimisation 

problems with large design space, such as the blade shape optimisation, as the 

resulting computational cost is essentially dependent on the number of the 

defined objective and constraint functions, instead of the design variables. This 

benefit makes the gradient-based optimisations particularly suitable for the 

industrial design processes where the nature are the time restrictions and 

complex constraints with respect to manufacturing feasibility. Therefore, a 

gradient-based optimisation approach available in a commercial optimisation 

package – Sparse Nonlinear Optimiser is utilized by Lasse to optimise the turbine 

blade shape. The selected algorithm handles constraints by forming a smooth 

augmented Lagrangian merit function. The in-house CAD software is used to 

parameterize the turbine blades and predict the corresponding performance with 

the following design variables: meridional flow path, camber line surface, blade 

thickness distribution, and the number of blades. Figure 2.16 shows an example 

of the approach to parameterize the turbine blades hub and shroud in meridional 

flow path. The constraint of this optimisation is to remain the output power and 

the choking mass flow. Over all three design points, up to 4 percentage points of 

total-to-static efficiency improvement are achieved by the final optimal design. 
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Figure 2.15 Wing 3D model with the unstructured triangular grid and the 

computed control points. The structured grid with approximated NURBS 

surfaces. [95] 

 

Figure 2.16 Parameterization of the meridional flow path with three patches 

1-3 [96] 
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2.3.2 Global Optimisation – Genetic Algorithm  

Global optimisation techniques aim to find the global optimal solution to discrete 

and combinatorial optimisation problems that contain multiple local maxima or 

minima without any gradient information of the objective function. It is important 

to note that no algorithm can guarantee convergence on a global optimum in the 

general sense. Thus, it may be more accurate to refer to global optimisation 

algorithms as having global properties. Most of the global optimisation algorithms 

need quite large initial populations to cover the whole design space and initiate 

the optimisation process. Therefore, the problems with fewer design variables are 

favourable for the global optimisation algorithms in order to avoid numerous 

starting points and, therefore, reduce the computational cost. Venter [88] claims 

that global algorithms are well suited for optimisation problems with the design 

variables less than 50.  

One of global optimisation techniques – genetic algorithms (GA) has become very 

popular in the last decade. This method is generic population-based 

metaheuristic optimisation algorithm. To be specific, it heuristically mimics 

biological evolution such as reproduction, mutation, recombination, and selection. 

GA is metaheuristic inspired by the process of natural selection, which was 

initially introduced by John Holland in 1975 and developed by Goldberg in 1989. 

Then, it has been employed for solving numerical optimisation problems in a wide 

variety of application fields including engineering, biology, economics, agriculture, 

business, telecommunications, and manufacturing [97]. Generally, the genetic 

algorithm is designed to drive a population of candidate solutions of an 

optimisation problem to evolve toward better solutions. Essential differences that 

distinguish GA from other optimisation methods are that GA aims to cover the 

entire design space and thus reduce the probability to get trapped in a local 

minimum and that it is no longer necessary to compute the gradient of the 

objective function [98, 99].  

The main difficulty of turbomachinery design optimisation is that the objective 

function has numerous local optimum, due to the complex flow structures and 

geometrical parameters. Thus, given that GA could perform the global 
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optimisation efficiently, extensive studies shows the employment of GA on 

turbomachinery geometry optimisation.  

Benini [100] proposed to utilise GA combined with a commercial CFD code to 

maximise the impeller peak efficiency with the present of constraints on the 

impeller pressure ratio and operation range. In his study, Bezier curves are used 

to describe the shape of the blade on each layer. In addition, Bezier curves on 

each layer are defined as a function of meridional coordinates. By doing so, the 

surfaces of the compressor impeller are easy to manipulate parametrically and 

have continuous derivatives up to any required order. Thus, the outlined 

procedure is able to generate pairs of very good blade shapes using 14–16 

parameters. Figure 2.17 shows the described 3D parameterization of main and 

splitter blade shapes. 

 

Figure 2.17 3D parameterization of main and splitter blade shapes [100] 

Alexander et al. [101] performed a surface shape optimisation of the main blades 

and splitters of a centrifugal compressor by the combined optimisation method – 

artificial neural network (ANN) and GA. The objectives are to increase the 

isentropic efficiency and reduce the acoustic signature at multiple operating 

points. With implementing control points of each curve, the Bézier curves, B-

spline, and interpolated curve are used to parameterise the hub, shroud, blade 

leading edges and camber curves. It should be noted that three dependently 

camber curves are defined at near-hub, near-shroud and mid-span of blades 

respectively, to ensure that arbitrary blade surfaces are investigated and, 
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therefore, it is more likely to achieve a better optimal design. In total, 45 

optimisation parameters and 8 objective functions are defined to accomplish the 

design requirements. The results show that 1.4% points of the total-to-static 

efficiency and 23% reduction of the shock strength are achieved by the optimised 

compressor. 

In Lbaraki’s study [102], a similar approach combining ANN and GA was also 

applied to enhance the performance of the centrifugal compressor by optimizing 

the compressor impeller. Moreover, two optimised compressor designs were 

manufactured and tested to verify the proposed optimisation method to be valid. 

The test results showed the improvement of efficiency and the extension of 

operating range as promised by the optimisation method. The compressor 

characteristics of two optimised compressor designs are shown in Figure 2.18. 

OPT1 shows a higher maximum efficiency by 0.5% in the proximity of pressure 

ratio 1.8, and higher efficiency by 1% at the pressure ratio 2.2. However, OPT2 

has a lower maximum efficiency by 1% but an extended operating range 

compared with the baseline impeller. In addition, the reverse analysis of the 

obtained impellers using CFD was conducted to understand the internal flow 

structure and mechanism of efficiency improvement.  

Cho et al. [12] proposed to use the combination of design of experiments (DOE), 

ANN and GA to optimise the compressor blade. DoE was applied to generate the 

initial data space to train the ANN and GA was utilized to improve the accuracy 

of ANN during the optimisation process. Therefore, authors reckoned that the 

proposed combined optimisation process could decrease the computational time 

while obtaining the globally optimised result. In their research, Bézier curve was 

adopted to express the shape of the blades as this curve is superior in terms of 

smoothness and continuity. As shown in Figure 2.19, the flow passage was 

redesigned using a Bezier curve formulated by six control points at the hub and 

shroud, while only two control points of each Bézier curve is considered as design 

variables. For the camber curves defined at near-hub and near-shroud, 8 control 

points are implemented for the Bezier curve, while only 2 control points are design 

variables, shown in Figure 2.19. The performance of each design points was 
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evaluated by CFD on a single flow passage including portions of the inlet and 

diffuser. It should be noted that the 𝑘 − 𝜀 model is selected for turbulence closure.  

The efficiency and the pressure ratio are considered together as the objective 

function as follows: 

 

OF =  (1 − 𝜂𝑡−𝑡)  +  max [(
|𝛱 − 𝛱𝑟𝑒𝑞|

𝛱𝑟𝑒𝑞
− 0.1) , 0] (2.1) 

where OF is the objective function for the optimisation process. 𝜂𝑡−𝑡 and Π is the 

total-to-total efficiency and pressure ratio, respectively. Π𝑟𝑒𝑞  is the prescribed 

pressure ratio. 

 

 

Figure 2.18 Compressor map comparison between baseline and two 

optimised geometries, where OPT1 features increased peak efficiency and 

OPT2 a wider operating range [102] 
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Figure 2.19 (a) Parameterization of the flow passage. (b) parameterization 

of camber curves defined at near-hub and near-shroud.[12] 

The objective function is minimized during the optimisation function. Therefore, 

the maximum efficiency is obtained when the value of  1 − 𝜂𝑡−𝑡 is minimized. 

However, the expected range was set within 1% of the prescribed pressure ratio. 

Thus, 𝑚𝑎𝑥 [(
|𝛱−𝛱𝑟𝑒𝑞|

𝛱𝑟𝑒𝑞
− 0.1) , 0] could introduce a positive value of the penalty into 

the objective function when the pressure ratio error is over 1%. The optimisation 

process delivered a compressor design with the efficiency improvement of 1.4% 

while pressure ratio error is less than 1%. 

The combined optimisation process – DOE, ANN and GA was also applied to 

optimise the turbine blade in Van den Braembussche’ study [103]. However, his 

aim was to demonstrate the capability of this combined optimisation method to 

solve complex design problem by considering multiple operating points and 

multidisciplinary, referred as multi-objective optimisation. He reckoned that a 

good design must not only provide good off-design performance which could be 

delivered by multipoint optimisation, but respect the mechanical and 

manufacturing constraints, referred as multidisciplinary.  For each operating point, 

four penalty terms were introduced to concern the mechanical stresses, efficiency, 
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mass flow, and Mach number, respectively. Although an improved turbine design 

was achieved, he found that the outcome of this combined optimisation process 

still depends on the input of the designer in terms of a careful selection of design 

parameters, a clear definition of objectives and constraints as well as validation 

of results. 

Multi-objective optimisation of a centrifugal compressor impeller was also 

performed by Kim et al. [104] with the target of maximising both pressure ratio 

and isentropic efficiency of a vaneless radial compressor. A fast and elitist non-

dominated sorting genetic algorithm (NSGA-II) with a ε-constraint strategy for 

local search coupled with a surrogate model was used for this multi-objective 

optimisation. Four design variables are selected from two control points for 

constructing the shroud and hub contours. By doing so, the meridian flow path is 

optimised to achieve the required targets.  The optimisation process starts with a 

DoE. Then, the objective functions at each DoE point are evaluated to create the 

radial basis neural network. Subsequently, the neural network inputs – four 

variables are optimised by NSGA-II to get the maximum outputs of the neural 

network. The detailed optimisation procedure is shown in Figure 2.20. 

 

Figure 2.20 Multi-objective optimisation procedure [104] 
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The outcome of the hybrid multi-objective optimisation is a Pareto-optimal 

solution, shown in Figure 2.21. It reveals the competing nature of pressure ratio 

and isentropic efficiency, where any improvement of optimisation objective leads 

to the deterioration of the other optimisation objective. The conclusion made by 

Kim is that the proposed surrogate-based multi-objective evolutionary 

optimisation can be effectively used for various turbomachinery applications 

including fans, turbines, pumps, and so on. 

 

Figure 2.21 Pareto-optimal solution [104] 

2.4 Summary 

Firstly, this chapter reviewed the fundamentals, research and studies of favorable 

WHR technologies in the public domain. Give that the exhaust-gas heat energy 

consists of kinetic energy, pressure energy, and thermal energy, the exhaust-gas 

heat-recovery methods can be categorized into indirect and direct recovery 

approaches. 

Regarding indirect recovery approaches, the heat contained in IC engine exhaust 

gas will pass through a binary fluid system, typically a heat exchanger, and 

harvest by a separate bottoming power cycle. The advantage of the indirect 

recovery approaches is that the negative effect of the WHR applications on the 

primary cycle is minimized. This is, the only interaction between the primary cycle 

and the indirect WHR bottoming cycle is the back pressure caused by the 
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pressure drop of the heat exchanger, typically which is minor. Thus, three 

favorable indirect heat recovery technologies were reviewed – automotive 

thermoelectric generators (ATEG), Rankin bottoming cycle, and pressurized 

Brayton cycle. 

In conclusion, ATEG is a potential exhaust-gas heat-recovery system. To improve 

the performance of ATEG, many promising thermoelectric materials with high 

conversion efficiency are in development stage. However, the poor conversion 

efficiency of ATEGs, typically lower than 4%, is still the primary challenge 

currently which hinder their adoption in the on-road market [34]. Without 

significant breakthroughs, the thermoelectric generator might be unfeasible to 

install in the exhaust system of the vehicle for the purpose of recovering the 

wasted energy. 

On the other hand, although Rankine bottoming cycle has relatively complex 

configuration, the resulting net power is desirable. In an application to utilize low-

grade heat power conversion, such as the application for the automotive use, the 

organic working fluids with low boiling points should be selected to achieve better 

performance. Several studies show that the Organic Rankine cycle, as a 

bottoming WHR cycle, is able to deliver up to 12% increase in efficiency. However, 

the manufacturing cost, packaging issue, weight, and working fluid safety 

concerns of ORCs are primary challenges for its adaption on the transport engine. 

Given the complexity of the conventional Rankin bottoming cycle, a simplified 

cycle - the pressurized Brayton cycle was proposed and studied as an alternative 

exhaust-gas heat-recovery system. This technology is more favorable for gas 

turbines, instead of IC engines. This is due to the wide operating range in terms 

of the exhaust mass flow in IC engines. In addition, the poor gas-gas heat 

exchanger performance is the barrier to the successful application of this 

technology for automotive use. 

Direct recovery approaches directly utilize the exhaust gas as the working fluid to 

recover the wasted energy. Typically, an expender is introduced into the exhaust 

gas system to further expand the exhaust gas. By doing so, all sorts of exhaust 
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gas energy can be exploited to some extent. However, the resulting downside is 

the non-negligible back pressure generated by the expender. 

The simplest direct recovery approach is the turbo-compounding system, which 

just implement a power turbine immediately downstream of the turbocharged 

engine. This technology has been heavily applied on heavy-duty engines for 

aircraft piston engines, boat and train powertrains, and the heavy-duty engines 

for trucks, while rarely for the road vehicle engines due to its downsides, such as 

low overall turbine efficiency, high resulting back pressure, limited achievable 

expansion ratio, etc.  

In order to overcome the drawbacks of the turbo-compounding system, one or 

several stages of cooling and compression processes were introduced 

downstream of the power turbine in order to reduce the resulting back pressure 

and increase the achievable expansion ratio. The proposed system is referred as 

inverted Brayton cycle (IBC). This technology was extensively studied as the 

WHR bottoming cycle for gas turbine and decent power recovery capability was 

expected. In addition, various thermodynamic cycles were combined with IBC in 

order to further increase the recovered power. Regarding IBC applications for IC 

engines, only few related researches were found in public domain. The limited 

knowledge about IBC were gained by these researches.  

In summary, the indirect exhaust-gas heat-recovery applications include ATEGs, 

ORCs and pressurized Brayton cycle. ATEGs suffer from the poor conversion 

efficiency. To be specific, the conversion efficiency of the thermoelectric modules 

used commercially is less than about 10% and overall efficiency of ATEG devices 

is about 5 – 10% [105]. However, their advantages are free maintenance, silent 

operation due to no moving mechanical parts involved, and low resulting engine 

back pressure. Although ORCs are more attractive considering their heat 

recovery capability, the cost and size of ORC are primary challenges for its 

adaption on the transport engine. Moreover, the performance of pressurized 

Brayton cycle is limited due to the low effectiveness and the large size of the gas-

gas heat exchanger.  
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In contrast, the thermal characteristic of the inverted Brayton cycle seems quite 

suitable for automotive use due to its high performance and simple configuration. 

Although extensive parametric studies have been presented to discover the effect 

of various IBC boundary conditions in the gas turbine system, very little effort has 

been made to study the potential power system comprising a turbocharged 

engine and the inverted Brayton cycle. Moreover, there is no any experiment test 

to demonstrate the IC engine performance improvement by employing IBC as the 

bottoming heat recovery system. 
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Chapter 3 – IBC Thermodynamic Modelling 

and Analysis  

 

3.1 Introduction 

In this chapter, a parametric study of the inverted Brayton cycle (in isolation from 

the primary cycle) will be presented based on different boundary conditions. 

Following this, pressurized Brayton and turbocompounding systems, which can 

make use of conventional radial turbomachinery to recover thermal energy in a 

Brayton bottoming cycle, will be compared with IBC by using a turbocharged 

gasoline engine (Otto cycle) model as a base. All three alternative heat recovery 

systems are demonstrated in Figure 3.1. 

All thermodynamic models in this chapter are constructed using finite-time 

thermodynamics (FTT). Since classical thermodynamic analyses based on 

thermodynamic equilibrium do not consider the irreversibilities originating from 

finite-time and finite-size constraints, the finite-time thermodynamic approach is 

an important alternative method to optimise and analyse real thermal system 

[106-108]. In the irreversible Otto cycle model to be presented, the following 

internal irreversibility are included: engine compression and expansion 

efficiencies, temperature variant specific heats, pressure drop during the heat 

addition and rejection processes, heat loss through the cylinder wall, frictional 

loss as a function of mean piston velocity and a heat leak rate. The isentropic 

efficiencies of the turbine and compressor are applied to describe the actual 
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behaviour of the compressor and turbine. The intent is to demonstrate the cycle 

power output and thermal efficiency when various parameters of the inverted 

Brayton cycle are varied. The inverted Brayton cycle is also compared with 

pressurized Brayton cycle and turbo-compounding system to assess the 

advantages and disadvantages to this technique. 

 

Figure 3.1 [Top left] Turbocharging & Turbo-compounding; [Top right] 

Pressurized Brayton; [Bottom] Inverted Brayton 

IBC system also is considered with the data from a 2.0L gasoline turbocharged 

engine operating over a drive cycle to quantify its benefits. The IBC 

thermodynamic model is still constructed using FTT. The outlet boundary 

conditions of the IBC thermodynamic model are fixed as the ambient, while its 

inlet boundary conditions are set using experimental exhaust data taken from a 

turbocharged vehicle progressing through the worldwide harmonized light 

vehicles test procedures (WLTP).  This real-world on-road test procedure – WLTP 

defines a global harmonized standard for determining the levels of pollutants, 
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CO2 emissions, and fuel consumption. It is published due to the growing gap 

between official laboratory and real-world on-road emission value [109]. The 

influences of both single stage and two-stage IBC systems on the objective 

engine have been presented in this chapter. Further, an optimisation of the 

turbine pressure ratio in the single stage IBC has been performed to reveal the 

corresponding maximum benefits. 

It should be noted that the contents from Section 3.2 to Section 3.5.3 in this 

chapter have been published as a journal paper [110] in Journal of Engineering 

for Gas Turbines and Power. Furthermore, the contents in Section 3.5.4 have 

been published as a journal paper [111] in Journal of Engineering for Gas 

Turbines and Power. 

3.2 Principle of inverted Brayton cycle  

In this chapter, the performance of the IBC with various design parameters will 

be analysed as a bottoming exhaust-gas heat-recovery cycle integrated with a 

turbocharged engine. The schematic layout of proposed combined is shown in 

Figure 3.2.  

As shown in Figure 3.2, the inverted Brayton cycle consists of a turbine further 

exploiting the exhaust gas available from the upper cycle, a heat exchanger 

removing the residual heat of the expanded gas, and a compressor boosting the 

exhaust gas up to atmospheric condition. As only one compressor is employed 

in IBC in Figure 3.2, this proposed bottoming cycle is referred as single-stage IBC.  

The temperature-entropy diagram of the combined cycle power plant of the 

turbocharged engine and three-stage IBC system is shown in Figure 3.3. The 

subscript ‘s’ denotes an ideal state at the actual ending pressure of each process 

but at the same entropy value as the beginning thus describing the idealized 

processes. IBC is represented by the power cycle 𝟔 → 𝟕 → 𝟖 → 𝟗. The rest of the 

temperature-entropy diagram represent the temperature and entropy changes in 

the engine turbocharger and combustion chambers. The main processes of the 

IBC system are listed as below: 



 

Chapter 3 – IBC Thermodynamic Modelling and Analysis 

71 

 

 

Figure 3.2 A combined system consisting of a turbocharged engine and 

single-stage inverted Brayton cycle 

1. The expanded exhaust gas stream discharged by the turbocharged 

turbine is further expanded in the IBC turbine (T) section to below ambient 

pressure, thereby reclaiming energy from the exhaust. The mechanical 

power extracted during sub-atmospheric expansion is partially utilized to 

supply the subsequent compression process and overcome any parasitic 

energy loss of the IBC turbomachinery, such as the heat loss and 

mechanical friction. The rest, referred as the IBC net power, is converted 

into either the electric power by an electricity generator connected to the 

IBC turbo machine mechanically, or the shaft work which is added to the 

engine torque directly. 

2. The remainder of the heat in the exhaust after expansion is rejected by the 

downstream heat exchanger. The more effective the heat rejection, the 

greater the performance of the IBC system. That is, the lower the 

temperature of the exhaust gas after the heat exchanger the less the work 

required by IBC compressor for the same pressure ratio. However, the 

existence of pressure loss across the heat exchanger can deteriorated the 

system performance by lowering the inlet pressure of the IBC compressor 

and, therefore, increasing the energy for the corresponding compression 

process. Therefore, the heat exchanger effectiveness and the pressure 
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loss are considered as significant influences when considering the IBC 

performance. 

3. The cooled gases are re-compressed back up to the atmospheric pressure 

in the compressor section (C) and discharged to the ambient. 

 

Figure 3.3 Temperature and Entropy Diagram of the Turbocharged Engine 

with a single-stage IBC 

 

3.3 Model Description  

The turbocharged, gasoline (Otto cycle) engine was selected as a basis to 

perform a comparison between three alternative heat recovery cycles. The three 

alternatives considered are the inverted Brayton cycle, the turbocompounding 

system, and the pressurized Brayton cycle. However, the inverted Brayton cycle 

could equally be applied to other engine types, including non-turbocharged range 

extenders and large diesel engines which are more likely to operate at a fixed 

speed, high-load point suitable for heat recovery. The layout of the 

thermodynamic model of the turbocharged engine with the inverted Brayton cycle 

is illustrated schematically in Figure 3.4. The bottoming cycle is shown with three 

stages of compression processes as an example. To be specific, the model is 

composed of three components as shown in Figure 3.4: a 2-litre four-stroke, four-

cylinder gasoline engine, a turbocharger with a single stage of compression and 

expansion and the inverted Brayton cycle with three stages compression 
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processes. The corresponding temperature-entropy diagram of the process is 

shown in Figure 3.5.  

 

Figure 3.4 Schematic of the turbocharged engine with three stages of IBC 

Based on Figure 3.5, the entire processes of this combined system can be 

described as below. The air enters the cycle at state 1 through the turbo 

compressor, where it is pressurized and then leaves at state 2 into the Otto cycle. 

The air standard Otto cycle consists of four internally reversible branches: an 

isentropic compression process 𝟐 → 𝟑𝐬, a constant volume heat addition process 

𝟑𝐬 → 𝟒, an isentropic expansion process 𝟒 → 𝟓𝐬 and a constant volume heat 

rejection process𝟓𝐬 → 𝟐. Considering the internal irreversibility during the real 

compression and expansion processes, the high pressure gas at state 2 is 

compressed to state 3, and is heated at a constant volume to state 4, and is 

expanded to state 5. It subsequently expands and drops in temperature over the 

turbocharger turbine before leaving at state 6. The effect of a pressure drop inside 

the cylinder on the performance of the Otto cycle is presented in Figure 3.6. At 

state 6, the gas still carries a large amount of thermal energy, which is able to 

drive the turbine to produce further work. For the inverted Brayton cycle, this 

means that the gas is over-expanded within the next turbine to state 7 where the 

pressure of the gas can be below atmosphere. The depressurized gas then 

passes through an intercooler to remove the remainder of the heat (state 8) 
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before the gas is compressed back up to atmospheric pressure by one or more 

compressors.  

 

Figure 3.5 Temperature and Entropy diagram of a turbocharged engine 

with IBC 

 

Figure 3.6 P-V diagram of the air standard Otto cycle 
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3.4 Thermodynamic Model 

3.4.1 IBC Turbine 

In the ideal cycle, the working fluid is assumed to behave as an ideal gas with 

constant specific heats. However, in order to improve the accuracy of the 

predicted IBC performance, the specific heat with constant pressure (𝐶𝑝) varying 

with temperature is introduced in the IBC thermodynamic model. According to 

reference [108], for temperature range from 300 𝐾 to 3500 𝐾, the specific heat 

with constant pressure can be expressed as a function of temperature as follows: 

𝐶𝑝(𝑇) = 2.506 × 10−11𝑇2 + 1.454 × 10−7𝑇1.5 − 4.246 × 10−7𝑇 +

3.162 × 10−5𝑇0.5 + 1.3303 − 1.512 × 10−4𝑇−1.5 + 3.063 × 105𝑇−2 −

2.212 × 107𝑇−3  

(3.1) 

The relation between specific heat at constant pressure and constant volume is 

defined as: 

 𝐶𝑣 = 𝐶𝑝 − 𝑅𝑔 (3.2) 

where 𝑅𝑔 = 0.281 kJ/(kg K) is the gas constant of the working fluid. 

Any of reversible adiabatic processes can be broken up into a large number of 

infinitesimally-small processes with an infinitesimally-small change in 

temperature 𝑑𝑇  and pressure 𝑑𝑝  of the working fluid. Thus, for the ideal 

compression of the compressor and expansion of the turbine, the equation in 

terms of an infinitesimally-small process can be written as follows, 

 𝑝(𝑘−1)/𝑘

𝑇
=

(𝑝 + 𝑑𝑝)(𝑘−1)/𝑘

𝑇 + 𝑑𝑇
 (3.3) 

where k is the specific heat ratio and equals to 𝐶𝑝 𝐶𝑣⁄  . 

Specific heat ratio 𝑘  can be regarded as a constant for each of these 

infinitesimally-small processes when 𝑘 varies with temperature. Therefore, for 
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the reversible adiabatic process between states 𝑖  and 𝑗, the equation can be 

derived after natural logarithm processing of 

 𝐶𝑝(𝑇)In (𝑇𝑗 𝑇𝑖⁄ ) = 𝑅𝑔In (𝑝𝑗 𝑝𝑖)⁄     (3.4) 

where the temperature in the equation of 𝐶𝑝 is 𝑇 = (𝑇𝑗 − 𝑇𝑖) In(𝑇𝑗/𝑇𝑖)⁄  . 

Therefore, the equation for isentropic process can be written as 

 𝐶𝑝(𝑇)In
𝑇7𝑠

𝑇6
= 𝑅𝑔In 

1

𝑟𝑖𝑡
 (3.5) 

where  𝑟𝑖𝑡 is the expansion ratio across the turbocharger turbine. The subscript ‘s’ 

denotes an ideal state at the actual end of each process.  

Therefore, knowing the turbine inlet temperature and the turbine pressure ratio, 

the idealized outlet temperature of the turbine, 𝑇7𝑠, can be determined by the 

previous equation, thereby calculating the real outlet temperature 𝑇2. 

The turbine is considered as an open system due to mass flow across its 

boundaries. Thus, the specific work produced by the turbine is 

 
𝑊𝑖𝑡 = ℎ6 − ℎ7 = 𝜂𝑖𝑡 ∫ 𝐶𝑝(𝑇) 𝑑𝑇

𝑇6

𝑇7𝑠

 
(3.6) 

where 𝜂𝑖𝑡 is the isentropic efficiency of the IBC turbine.  

3.4.2 Heat Exchanger 

A simple counter-flow heat exchanger built by the Number of Transfer Units (NTU) 

method is employed with the consideration of the pressure loss. The NTU is 

utilized to calculate the rate of heat transfer in the heat exchanger and, therefore, 

yield the exhaust temperature at the heat exchanger outlet, when there is 

insufficient information to the perform a high-level accurate simulation. In this 

considered thermodynamic model, it is assumed that the NTU, defined as Eq. 3.7, 

is a fixed value during the entire WLTP driving cycle. 
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 𝑁𝑇𝑈 =
1

𝐶𝑟 − 1
 In (

𝜀 − 1

𝜀 𝐶𝑟 − 1
) (3.7) 

where 𝜀 is the heat exchanger effectiveness and 𝐶𝑟 is the ratio of heat capacity 

rates. 

The heat capacity rate is defined as the quantity of heat absorbed or released per 

unit temperature change per unit time for a certain mass flow rate. Therefore, 𝐶𝑒 

and 𝐶𝑐𝑜𝑜𝑙 for the exhaust gas and the coolant respectively are expressed as Eq. 

3.8, and denoting the smaller one as 𝐶𝑚𝑖𝑛 and the larger one as 𝐶𝑚𝑎𝑥. 

 
𝐶𝑒 = �̇�𝑒 ∗  𝐶𝑝(𝑇) 

𝐶𝑐𝑜𝑜𝑙 = �̇�𝑐𝑜𝑜𝑙 ∗  𝐶𝑝𝑐𝑜𝑜𝑙 
(3.8) 

where �̇�𝑒 is the mass flow rate of the exhaust gas. �̇�𝑐𝑜𝑜𝑙 is the coolant mass flow 

rate. 𝐶𝑝𝑐𝑜𝑜𝑙 is the specific heat capacity at constant volume for the coolant. 

Therefore, the ratio of heat capacity rates is defined as follows, 

 𝐶𝑟 = 
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
 (3.9) 

In the thermodynamic model considered in this chapter, a design operating point 

for the heat exchanger have been specified to calculate the NTU based on Eq. 

3.7. Then, for each operating point the 𝐶𝑟 can be re-calculated by the Eqs. 3.8 

and 3.9. As the NTU is assumed as a constant at the entire WLTP driving cycle, 

the corresponding heat exchanger effectiveness can be calculated as follows, 

  𝜂𝑒𝑥 = 
1 − exp[−𝑁𝑇𝑈(1 − 𝐶𝑟)]

1 − 𝐶𝑟 exp[−𝑁𝑇𝑈(1 − 𝐶𝑟)]
 (3.10)  
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Therefore, knowing the heat exchanger effectiveness, exhaust temperature at HE 

inlet, and the coolant inlet temperature, the exhaust temperature at heat 

exchanger outlet can be calculated by the following expression, 

 𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛 −  𝜂𝑒𝑥  (𝑇𝑖𝑛 − 𝑇𝑐𝑜𝑜𝑙) (3.11) 

where 𝑇𝑖𝑛 and  𝑇𝑜𝑢𝑡  is the temperature at the inlet and outlet of the heat 

exchanger, respectively. 𝑇𝑐𝑜𝑜𝑙 is the coolant inlet temperature. 

The reason of why the pressure loss has been considered in this study is that the 

IBC performance is deteriorated by the present of the pressure loss across the 

heat exchanger. The pressure drop between the inlet and outlet of the heat 

exchanger can lower the inlet pressure of the IBC compressor, thereby increasing 

the power consumed by the IBC compressor to pressurize the exhaust gas from 

sub-atmospheric pressure to the ambient. In this considered thermodynamic 

model, the pressure loss across heat exchanger is assumed as a quadratic 

function of the mass flow rate, given as follows, 

 𝑝𝑙𝑜𝑠𝑠 = 𝐴 ∗ �̇�𝑒
2 (3.12) 

where 𝑝𝑙𝑜𝑠𝑠 is the pressure loss and 𝐴 is coefficient of the pressure loss. 

The coefficient of the pressure loss is calculated by Eq. 3.12 with the exhaust 

mass flow rate and the pressure loss at the design operating point and fixed as a 

constant at the whole WLTP driving cycle. Thus, for each operating point the 

corresponding pressure loss can be calculated by Eq. 3.12 with the 

corresponding exhaust mass flow rate. 
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3.4.3 IBC Compressor 

As in the case for the turbine, the equation for the isentropic compression process 

can be written as: 

 𝐶𝑝(𝑇)In
𝑇9𝑠

𝑇8
= 𝑅𝑔In 𝑟𝑖𝑐 (3.13)  

According to Eq. 3.13, the idealized outlet temperature of the compressor, 𝑇4𝑠, 

can be deduced by the compressor ratio and the compressor inlet temperature, 

thereby calculating the real outlet temperature 𝑇4. 

As the compressor is an open system, the specific work by the compressor can 

be expressed as 

 𝑊𝑖𝑐 = ℎ4 − ℎ3 = (1/𝜂𝑖𝑐)∫ 𝐶𝑝(𝑇) 𝑑𝑇
𝑇4𝑠

𝑇3

 (3.14)  

where 𝜂𝑖𝑐 is the isentropic efficiency of the IBC compressor. 

Since the outlet pressure of the bottoming compressor is assumed as 1.05 bar, 

the pressure ratio across all the compression processes in IBC system, 𝑟𝑚𝑐 , is 

determined by the turbine outlet pressure termed as subatmospheric pressure 

𝑝𝑙𝑜𝑤. The relation can be written as: 𝑟𝑖𝑐𝑡 = 1.05/𝑝𝑙𝑜𝑤. According to reference [84], 

in order to maximize the power extracted by the inverted Brayton cycle, the 

optimal split of pressure between more than one compressor stages is 

considered as 

 𝑟𝑖𝑐 = 𝑟𝑖𝑐𝑡
1 𝑛⁄  (3.15)  

where n is the number of compressors stages in IBC system. 
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Since there are n stages of compressors, the total IBC compression specific work 

is 

 
𝑊𝑖𝑐𝑡 = 𝑊8,9 + 𝑊10,11 + 𝑊12,13 ⋯⋯ (3.16) 

 

3.4.4 IBC System Performance 

Based on all the analysis above, the IBC net specific work and efficiency is 

expressed as 

 𝑊𝐼𝐵𝐶 = 𝑊𝑖𝑡 − 𝑊𝑖𝑐 

𝜂𝐼𝐵𝐶 = 𝑊𝐼𝐵𝐶 ∫ 𝐶𝑝(𝑇) 𝑑𝑇
𝑇6

𝑇𝐼𝐵𝐶,𝑜𝑢𝑙𝑒𝑡

⁄  

(3.17)  

where 𝑇𝐼𝐵𝐶,𝑜𝑢𝑙𝑒𝑡 is the temperature at the IBC outlet, that is, the compressor outlet. 

3.4.5 Internal Combustion Engine 

Figure 3.6 shows a schematic of the air standard Otto cycle with different modes 

of irreversibility: cycle 2 → 3𝑠→ 4 → 5𝑠→ 2 represents the ideal Otto cycle. 

According to Mahmoud [107], process 3 → 4′ is the heat-addition at constant 

volume while process 4′ → 4′′ is the heat-addition at constant pressure due to 

the pressure drop. Similarly, process 5 → 2′  is the heat-rejection at constant 

volume while process 2′  → 2′′  is the heat-rejection at constant pressure. The 

pressure at state  4′ and state  4′′ are defined as follows, 

 𝑝4′ = 𝑝4′′ = 𝜀4𝑝4 (3.18)  

where 𝜺𝟒 is the pressure drop ratio at state 4 and the range of its value is 0 to 1. 

Similarly, the pressure at state  𝟐′ and state  𝟐′′ are defined as follows: 

 𝑝2′ = 𝑝2′′ =
𝑝2

𝜀2
 (3.19)  

where 𝜀2 is the pressure drop ratio at state 2 and the range of its value is 0 to 1. 

𝑛 



 

Chapter 3 – IBC Thermodynamic Modelling and Analysis 

81 

Using definitions (18) and (19) along with the thermodynamic relation, it is 

possible to calculate the temperatures at points  2′ ,  2′′ ,  4′  and  4′′ . The 

temperatures at these points are written as follows: 

 
𝑇2′ = 𝑇2 𝜀2⁄       𝑇2′′ = 𝜀2

(1−𝑘) 𝑘⁄  𝑇2 

(3.20) 
 

𝑇4′ = 𝜀4𝑇4           𝑇4′′ = 𝜀4
(𝑘−1) 𝑘⁄  𝑇4 

Considering the interval irreversibilities of the heat engine during the compression 

and expansion processes, the compression and expansion efficiencies are 

defined respectively as, 

 
𝜂𝑐 =

𝑇2 − 𝑇3𝑠

𝑇2 − 𝑇3
 (3.21) 

 
𝜂𝑒 =

𝑇4 − 𝑇5

𝑇4 − 𝑇5𝑠
 (3.22) 

Any of reversible adiabatic processes can be broken up into a large number of 

infinitesimally-small processes with an infinitesimally-small change in 

temperature 𝑑𝑇 and volume 𝑑𝑉 of the working fluid. Thus, the equation for the 

ideal compression and expansion processes in the cylinder can be written as 

follows.  

 𝑇𝑉𝑘−1 = (𝑇 + 𝑑𝑇)(𝑉 + 𝑑𝑉)𝑘−1 (3.23) 

Specific heat ratio k can be regarded as a constant for each of these 

infinitesimally-small processes when k varies with temperature. Therefore, for the 

reversible adiabatic process between states i and j, the equation can be derived 

after natural logarithm processing of Eq. 3.23, 

 𝐶𝑣(𝑇)In (𝑇𝑗 𝑇𝑖⁄ ) = 𝑅𝑔In (𝑝𝑖 𝑝𝑗)⁄  (3.24) 

where the temperature of 𝐶𝑣 in the equation is  𝑇 = (𝑇𝑗 − 𝑇𝑖) In(𝑇𝑗/𝑇𝑖)⁄ . 
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Therefore, equations for reversible adiabatic processes 2 → 3𝑠 and 4 → 5𝑠 are 

respectively as follows 

            𝐶𝑣(𝑇)In
𝑇3𝑠

𝑇2
= 𝑅𝑔In 𝛾          𝐶𝑣(𝑇)In

𝑇4

𝑇5𝑠
= 𝑅𝑔In 𝛾 (3.25)  

where 𝛾 is the compression ratio of the engine. 

Based on the bypass heat-leakage model advanced by Bejan [106], it is assumed 

that there exists a constant rate of bypass heat leakage (Q) from the heat 

reservoir to the heat sink. In this case, the temperature of the heat reservoir and 

the heat sink is defined as 𝑇4 and  𝑇2 respectively. Thus, the bypass heat leak 

rate is given by the following expression 

 �̇� ℎ𝑙 = 𝐶(𝑇4 − 𝑇2) (3.26) 

where 𝐶 is heat leak coefficient. 

Given the pressure drop during the compression and expression processes, the 

heat added to the heat engine consists of the constant volume process 3 →  4′ 

and the constant volume process 4′ → 4′′. Thus, the heat input with the three 

different modes of irreversibility (pressure drop, internal irreversibility, and heat 

leak) is given by: 

 (�̇�𝑂)𝑖𝑛 = �̇�𝑎𝑖𝑟(∫ 𝐶𝑣(𝑇) 𝑑𝑇
𝑇

4′

𝑇3

+ ∫ 𝐶𝑝(𝑇) 𝑑𝑇
𝑇4′′

𝑇4′

+ �̇� ℎ𝑙) (3.27) 

where �̇�𝑎𝑖𝑟 is the mass flow rate of the intake air. 

The heat rejected by the heat engine consists of the constant volume process 5 

→ 2′ and the constant volume process 2′ → 2′′. Thus, the heat output is: 

 (�̇�𝑂)𝑜𝑢𝑡 = �̇�𝑎𝑖𝑟(∫ 𝐶𝑣(𝑇) 𝑑𝑇
𝑇5

𝑇2′

+ ∫ 𝐶𝑝(𝑇) 𝑑𝑇
𝑇2′

𝑇2′′

+ �̇� ℎ𝑙) (3.28) 

For a real Otto-cycle, the heat loss through the cylinder wall is not negligible. 

Thus, the present approach assumes that the heat loss through the cylinder wall 
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is proportional to the average temperature of both the working fluid and the 

cylinder wall. The wall temperature is treated as a constant. So the heat leak is 

given by the following linear equation 

 �̇�𝑙𝑜𝑠𝑠 = �̇�𝑎𝑖𝑟𝐵(𝑇3 + 𝑇4−2𝑇0) (3.29) 

where B is the constant related to heat-transfer, 𝑇0 is the average temperature of 

the working fluid and cylinder walls, and it is given by, 𝑇0 = (𝑇4−𝑇3) ln (𝑇4 𝑇3⁄⁄ ). 

Taking into account the friction loss of the piston, Ge [108] recommend that the 

dissipation term can be represented by a friction force which in a linear function 

of the velocity, expressed as, 

 𝑓𝜇 = 𝜇𝜈 = 𝜇(𝑑𝑥 𝑑𝑡⁄ ) (3.30) 

where 𝜇 is a coefficient of friction loss, 𝜈 is the velocity of the piston, and 𝑥 is the 

piston displacement. Then the lost power due to friction is, 

 𝑃𝜇 = 𝑑𝑊𝜇 𝑑𝑡⁄ = 𝜇(𝑑𝑥 𝑑𝑡⁄ )(𝑑𝑥 𝑑𝑡⁄ ) = 𝜇(𝜈𝑚𝑒𝑎𝑛)
2 (3.31) 

where 𝜈𝑚𝑒𝑎𝑛 is the mean velocity of the piston. 

As the engine in our model is a four-stroke engine, the total distance the piston 

travels per cycles is, 

 4𝐿 = 4(𝑥1−𝑥2) (3.32) 

where 𝑥1  and  𝑥2  are the piston position at maximum and minimum volume 

respectively. L is the piston stroke length. If the engine operates at 𝑁 cycles per 

second, the mean velocity of the piston is, 

 𝑉𝑚𝑒𝑎𝑛 = 4𝐿𝑁 (3.33) 

Due to the four-cylinder engine in our model, the total lost power can be 

expressed as, 
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 𝑃𝜇 = 4𝜇(4𝐿𝑁)2 (3.34) 

Thus, the net power of the Otto cycle is 

 (𝑃𝑂)𝑛𝑒𝑡 = (�̇�𝑂)𝑖𝑛 − (�̇�𝑂)𝑜𝑢𝑡 − 𝑃𝜇 (3.35) 

The power input of the Otto cycle is  

 (𝑃𝑂)𝑖𝑛 = (�̇�𝑂)𝑖𝑛 + �̇�𝑙𝑜𝑠𝑠 (3.36) 

3.4.6 Turbocharger Compressor and Turbine 

The thermodynamic models of the compressor and turbine presented in the 

previous section are utilized to simulate the performance of the turbocharger. 

Thus, the power required for the turbocharger compressor is 

 
𝑃𝑡𝑐 = �̇�𝑎𝑖𝑟 ∗ (ℎ1 − ℎ2) = (�̇� ∗ 𝜂𝑡𝑐)∫ 𝐶𝑝(𝑇) 𝑑𝑇

𝑇2𝑠

𝑇1

 (3.37) 

Where 𝜂𝑡𝑐 is the isentropic efficiency of the turbocharger compressor. 

The required power of the turbocharger compressor is provided by the turbine. 

Therefore, the power done 𝑃𝑡𝑡  by the turbine is expressed as 

 𝑃𝑡𝑐 = 𝑃𝑡𝑡 = (�̇�𝑒 ∗ 𝜂𝑡𝑡) ∫ 𝐶𝑝(𝑇)𝑑𝑇    
𝑇5

𝑇6𝑠
 

    = �̇�𝑒 ∫ 𝐶𝑝(𝑇)𝑑𝑇    
𝑇5

𝑇6
 

(3.38) 

where 𝜂𝑡𝑡 is the isentropic efficiency of the turbocharger turbine. 

 

3.5 Thermodynamic Simulation Results and 

Discussion 

In order to perform this study, the following assumptions have been made:   
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 The effect of all duct pressure losses and leaving losses external to rotating 

components are neglected. In addition, fuel added on mass flow rate is 

ignored, that is, �̇�𝑒 equals to �̇�𝑎𝑖𝑟 . 

 The pressure and temperature of the intake air are considered as, 

𝑇1=𝑇𝑎𝑚=300 K, 𝑝1=𝑝𝑎𝑚=1.013 bar. The exhaust pressure of each model is 

taken as 1.04 bar.  

 The maximum temperature at the inlet of each turbine is considered as 1300 

K due to the limitation of the maximum temperature that conventional radial 

turbines can withstand, while the maximum temperature in the cylinder is 

chosen as 2200 K according to the material limits of the existing components.  

 In terms of IBC, the maximum turbomachinery efficiencies are chosen as 0.85 

and 0.9 for the compressor and turbine respectively and the mechanical 

efficiency of the turbo machines is assumed to be 0.95. The turbocharger 

turbine and compressor isentropic efficiencies are assumed as a constant 

0.75. The heat loss or gain on the turbomachinery components is not 

considered. 

Table 3.1 Engine parameters 

Description value 

Compression Ratio, 𝛾 8 

Exhaust mass flow rate, �̇�𝑒  0.15 𝑘𝑔/𝑠 

Piston stroke length, 𝐿     1 × 10−2 𝑚 

Engine speed, 𝑁 3000 𝑟𝑝𝑚 

Pressure drop ratio at states 2, 𝜀2 0.6 

Pressure drop ratio at states 4, 𝜀4 0.6 

Engine compression and expansion 

efficiencies, 𝜂𝑐 and 𝜂𝑒 
0.97 

Coefficient of friction loss, 𝜇 12.9 𝑁 ∙ 𝑠/𝑚 

Heat leak coefficient, 𝐶 0.05 𝑘𝐽/𝑘𝑔 ∙ 𝐾 

Heat loss coefficient, 𝐵 0.2 𝑘𝐽/𝑘𝑔 ∙ 𝐾 
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 A gas-liquid heat exchanger is adopted in the IBC to reject heat. The 

temperature of the liquid coolant is assumed to be 300 K.  

 A four-stroke, four-cylinder turbocharged gasoline engine is established as 

the baseline model. The engine parameters are listed in Table 3.1. All 

coefficients of various energy losses in this thermodynamic model have been 

calibrated with the GT-power model which is built based on the same engine 

geometry 

3.5.1 Inverted Brayton Cycle Parametric Study 

This section will consider the performance of the Inverted Brayton cycle in 

isolation from the engine. The T-s diagram for a three-stage intercooled inverted 

Brayton cycle has been shown in Figure 3.5, represented by the cycle from state 

7 to the final exhaust outlet. According to previous assumptions, the inlet pressure 

of the turbine,   𝑝6 , and the outlet pressure of the compressor, 𝑝𝑓𝑖𝑛𝑎𝑙 , are 

considered as 1.013 and 1.04 bar respectively. The baseline inlet temperature of 

the inverted Brayton cycle is assumed as 1000 K since the inverted Brayton cycle 

is adopted downstream of the engine and, therefore, high temperature exhaust 

gas flows directly into the IBC turbine. The isentropic efficiencies are chosen as 

0.75 and 0.8 for the compressor and turbine respectively. An effectiveness of 

0.95 may be considered as the maximum value attainable in a gas-to-liquid heat 

exchanger adopted between each component in the inverted Brayton cycle.  

Figure 3.7 shows the effect of the number of IBC compression stages on the 

specific work for six values of subatmospheric pressure 𝑝𝑙𝑜𝑤. This reveals that 

introducing an extra compression process can contribute to an increase in the 

specific work whatever the subatmospheric pressure is.  
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Figure 3.7 System specific work output as a function of subatmospheric 

pressure and number of IBC compression stages 

The improvement caused by the additional IBC stages can be explained as 

following. Typically, actual compression process of the centrifugal compressor is 

defined as polytropic process due to the heat loss during the process. The 

corresponding p-v diagrams is shown in Figure 3.8. However, there is a 

compression process that requires less amount of work, referred as isothermal 

compression. This type of compression process occurs when the fluid 

temperature remains constant during the compression. The pressure versus 

volume variation for isothermal compression is also illustrated in Figure 3.8. 

Although isothermal compression is able to minimize the compressor work, it is 

difficult to achieve isothermal compression by centrifugal compressors due to the 

difficulty of implementing sufficient cooling during the whole process. Thus, in 

practice, multiple stages of intercooling and compressors are introduced to 

approximate the isothermal compression. By doing so, the fluid is cooled between 

two compressions instead of during the compression in isothermal compression. 

In Figure 3.8, the red line shows the process path of introducing one-stage 

intercooling and compression. It should be noted that cooling process is assumed 

as isobaric process. 
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Figure 3.8 Comparison of the process paths of isothermal, polytropic, and 

two-stage intercooling compression [112]  

Figure 3.8 shows that the process path of three afore-mentioned compression for 

the same inlet state and exit pressure. Regarding the two-stage compression with 

intercooling, the gas is compressed in the first stage from 𝑃1 to an intermediate 

𝑃𝑥 , cooled at constant pressure to the initial temperature 𝑇1 , and finally 

compressed to 𝑃2 by the second stage of the compression. Comparing with the 

one-stage polytropic compression, the coloured area represents the work saved 

as a result of an additional compression with intercooling. Similarly, for same 

overall compression ratio, introducing compression stages with intercooling can 

reduce the power consumption of compression process, thereby increasing IBC 

net power output.  

However as shown in Figure 3.7, the thermal efficiency increment diminishes 

significantly moving from one to two stages and beyond. Moreover, the 

performance improvement is more sensitive to the number of compression stages 

when a lower sub-atmospheric pressure is achieved. Considering the cases with 

the same number of compression stages, it can be found that a decrease in the 

sub-atmospheric pressure results in an increasing turbine expansion ratio and 

thus a significant rise in performance. The exception is the case of the single-
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stage IBC where a sub-atmospheric pressure of 0.2 produces less power output 

than that of 0.3 or even 0.4. Note that this characteristic is heavily dependent on 

the efficiency of the IBC components and the exhaust temperature.  

 

Figure 3.9 Effect of compression stages and subatmospheric pressure on 

the thermal efficiency 

In order to further reveal the performance characteristics of the inverted Brayton 

cycle, the 𝑊𝐼𝐵𝐶  ~ 𝜂𝐼𝐵𝐶   curves are plotted in Figure 3.9, where 𝑊𝐼𝐵𝐶 and 𝜂𝐼𝐵𝐶 are, 

respectively, the specific work output and thermal efficiency of the IBC. The 

𝑊𝐼𝐵𝐶  ~ 𝜂𝐼𝐵𝐶   curves are presented for different numbers of the compression 

stages. For a fixed sub-atmospheric pressure (or fixed turbine expansion ratio), 

there is only a relatively slight change in the thermal efficiency with an increase 

in the number of compression stages. The maximum efficiency change is 

approximately 3.6 percentage points in the case of a sub-atmospheric pressure 

of 0.2 bar when the single-stage IBC is compared with that of two stages of 

compression. The thermal efficiency strongly depends on the sub-atmospheric 

pressure at any chosen value of compression stages. A six-percentage point 

improvement in the thermal efficiency for the single-stage IBC is expected as the 

working fluid at the outlet of the turbine is depressurized from 0.7 bar to 0.2 bar. 

It should also be noted that, similar to the trend of the specific work output 
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observed in Figure 3.7, a thermal efficiency drop for the single-stage IBC is 

predicted when the sub-atmospheric pressure decreases from 0.3 to 0.2. 

Regarding the number of compression stages, Figure 3.9 shows that the largest 

specific work rise is observed between one and two stages of IBC. This suggests 

that three compression stages or fewer appears most sensible. However, the 

number of compression processes has a weaker effect on the thermal efficiency 

of the IBC (in isolation). Moreover, an extra stage needs to adopt one more 

compressor and heat exchanger with the associated additional complexity and 

cost. Hence, the single-stage inverted Brayton may be considered as a good 

cost-to-benefit solution for applying a bottoming cycle for exhaust gas energy 

recovery in automotive applications. 

The variables that influence the thermal efficiency and the specific work of the 

single-stage inverted Brayton cycle are the isentropic efficiency of compression 

and expansion, 𝜂𝑖𝑐 and 𝜂𝑖𝑡  , the inlet pressure and temperature of the inverted 

Brayton cycle, 𝑝6 and 𝑇6  , subatmospheric pressure 𝑝𝑙𝑜𝑤  , the turbine expansion 

ratio 𝑟𝑖𝑡 and the effectiveness of the heat exchanger 𝜂𝑒𝑥  . Therefore, a numerical 

sensitivity study of the single-stage configuration is presented below to 

demonstrate the influence of the afore-mentioned variables. The baseline 

boundary conditions are assumed as 𝑇6 = 1000 K, 𝜂𝑖𝑐 = 0.75, 𝜂𝑖𝑡 = 0.8, 𝜂𝑒𝑥 = 0.95, 

and 𝑝6 = 1.013 bar. The rest of boundary conditions are considered as the same 

as that of previous analysis considering the multi-stage IBC.  

3.5.1.1 Effect of the inlet temperature  𝑻𝟔  and the subatmospheric 

pressure 𝒑𝒍𝒐𝒘 (𝒓𝒊𝒕 ) at fixed 𝜼𝒊𝒄 (0.75), 𝜼𝒊𝒕 (0.8), 𝜼𝒆𝒙 (0.95) and 

𝑷𝟔 (1.013 bar) 

Since the inlet pressure 𝑝6  is fixed for this analysis, the turbine expansion ratio 

𝑟𝑖𝑡 is a fixed value when the subatmospheric pressure 𝑝𝑙𝑜𝑤 is assumed. Figures 

3.10 and 3.11 illustrate the specific work and thermal efficiency as a function of 

the turbine outlet pressure  𝑝𝑙𝑜𝑤 , for different inlet temperatures  𝑇6  . The line that 

is highlighted with symbols indicates the baseline operating condition. Figure 3.10 

shows that the specific work output is a monotonically increasing function of the 
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IBC inlet temperature 𝑇6 . Simply, the higher the IBC inlet temperature, the larger 

the amount of energy carried by the exhaust gas and consequently the more 

power that can be exploited by the inverted Brayton cycle. Moreover, a large 

reduction in the specific work can be expected when the inlet temperature 

decreases significantly. For example, from 1400 K to 1000 K with the sub-

atmospheric pressure at 0.2 bar (and an expansion ratio of 5.06), the reduction 

in specific work is 133.13 𝑘𝐽/𝑘𝑔. Moreover, when the inlet temperature descends 

below to a certain value, there is no work generated by the IBC. For example, in 

this model, if 𝑇6  decreases below the threshold value of 544 K, the IBC net 

specific work is negative at any chosen value of the sub-atmospheric pressure.    

 

Figure 3.10 Specific work output variation depending on the bottoming 

turbine inlet temperature and subatmospheric pressure 

It can also be observed in Figure 3.10 that for a given inlet temperature  𝑇6  , as 

the 𝑝𝑙𝑜𝑤 decreases, the power output peaks and then decreases. The sub-

atmospheric pressure 𝑝𝑙𝑜𝑤 that produces maximum power increases with a 

reduction in the IBC inlet temperature  𝑇6  . That is, maximum power is obtained 

for a turbine pressure ratio which tends to be lower when  𝑇6  is lower. Therefore, 

there is an optimum sub-atmospheric pressure (or turbine pressure ratio) which 

changes with the variation of the inlet temperature.   
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Figure 3.11 . Thermal efficiency variation depending on the bottom 

compressor inlet temperature and subatmospheric pressure 

The IBC thermal efficiency for the same conditions is presented in Figure 3.11. 

An increasing trend in the thermal efficiency can be expected with an increase 

in  𝑇6  . However, the efficiency increment provided by the increase of   𝑇6  from 

1000 K to 1400 K is smaller than that from 700 K to 1000 K. The characteristic of 

thermal efficiency with the variation of  𝑝𝑙𝑜𝑤 is similar to that of the specific work, 

namely, there is an optimum sub-atmospheric pressure that delivers a peak 

efficiency. Moreover, the optimal 𝑝𝑙𝑜𝑤 decreases as the turbine inlet 

temperature   𝑇6  increases. When IBC inlet temperature increases beyond a 

certain value, the thermal efficiency is monotonically decreasing function of IBC 

inlet temperature 𝑇6 .  

3.5.1.2 Effect of the turbomachinery efficiencies ( 𝜼𝒊𝒄  𝐚𝐧𝐝   𝜼𝒊𝒕 ) and the 

subatmospheric pressure  𝒑𝒍𝒐𝒘(𝒓𝒊𝒕)  at fixed 𝒑𝟔  (1.013 bar), 

𝜼𝒆𝒙 (0.95) and 𝑻𝟔 (1000 K) 

Figure 3.12 shows the effect of the turbomachinery efficiency on the specific work 

and the thermal efficiency, respectively. The trend with increasing 

turbomachinery efficiency is clear, that is, a significant rise in IBC performance is 

to be expected as the component isentropic efficiencies approach unity. The 

optimum subatmospheric pressure (𝑝𝑙𝑜𝑤)𝑜𝑝𝑡 that delivers the maximum specific 
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work (𝑊𝐼𝐵𝐶)𝑚𝑎𝑥 and the maximum IBC cycle efficiency (𝜂𝐼𝐵𝐶)𝑚𝑎𝑥  increases as 

the turbine and compressor become less efficient.   

 

 

Figure 3.12 IBC performance versus subatmospheric pressure value is 

plotted for different values of turbomachinery efficiency (Turbine isentropic 

efficiency –  𝜼𝒊𝒕 , Compressor isentropic efficiency – 𝜼𝒊𝒄 ). The values are (a) 

0.9, 0.85; (b) 0.85, 0.8; (c) 0.8, 0.75; (d) 0.75, 0.7; (e) 0.7, 0.65. 

3.5.1.3 Effect of the inlet pressure  𝒑𝟔 and IBC expansion ratio 

 𝒓𝒊𝒕 (𝒑𝒍𝒐𝒘 ) at fixed 𝜼𝒊𝒄 (0.75), 𝜼𝒊𝒕 (0.8), 𝜼𝒆𝒙 (0.95) and 𝑻𝟔 (1000 K) 

In Figure 3.13, the solid lines indicate the variation of the specific work and 

thermal efficiency when the sub-atmospheric pressure changes from the 0.9 bar 

to 0.1 bar at different values of the turbine inlet pressure. The dash lines are 

turbine pressure ratio 𝑟𝑖𝑡  contours. Both the specific work and thermal efficiency 
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are monotonically increasing function of the inlet pressure at any chosen values 

of the turbine expansion ratio. However, increasing the IBC inlet pressure leads 

to a higher back pressure of the engine which can negatively influence its 

performance. Hence, a system compromise is required to select the optimum IBC 

inlet pressure. In addition, Figure 3.13 shows that the optimum turbine pressure 

ratio (𝑟𝑖𝑡)𝑜𝑝𝑡 corresponding to the maximum specific work (𝑊𝐼𝐵𝐶)𝑚𝑎𝑥  increases 

with the increases of 𝑝6 . The thermal efficiency at maximum power output point 

increases with the increases of  𝑝6  as well. When the IBC inlet pressure  𝑝6   is 

fixed, with an increasing turbine pressure ratio 𝑟𝑖𝑡 , the power and efficiency of the 

IBC first increases and then decreases beyond an optimum value.   

 

Figure 3.13 . 𝑾𝑰𝑩𝑪~ 𝜼𝑰𝑩𝑪 curves varying with 𝒑𝟔  and 𝒓𝒊𝒕  

3.5.1.4 Effect of the subatmospheric pressure  𝒑𝒍𝒐𝒘 ( 𝒓𝒊𝒕 )  and the 

effectiveness of the heat exchanger  𝜼𝒆𝒙  at fixed 𝜼𝒊𝒄 (0.75), 

𝜼𝒊𝒕 (0.8), 𝒑𝟔 (1.013 bar) and 𝑻𝟔 (1000 K) 

The 𝑊𝐼𝐵𝐶~ 𝜂𝐼𝐵𝐶   curves, with a variation in the heat exchanger effectiveness and 

atmospheric pressure, are plotted in Figure 3.14. The solid lines indicate the 

variation of the IBC performance characteristic caused by 𝑝𝑙𝑜𝑤 approaching 0.2 

bar at different values of the heat exchanger effectiveness. The effectiveness 

decreases from 0.95 to 0.75 with an interval of 0.05 and the dash lines represent 

0

30

60

90

120

150

0.00 0.05 0.10 0.15 0.20 0.25

S
p
ec

if
ic

 W
o
rk

 O
u
tp

u
t 

(k
J/

k
g
)

Thermal Efficiency

 

 

 

 

𝑝6  = 1.6 bar 

1.4 

1.2 1.013 

𝑟𝑖𝑡 = 2 

 

 

 

4 

6 

8 

Subatmospheric Pressure 
Decreases 



 

Chapter 3 – IBC Thermodynamic Modelling and Analysis 

95 

turbine pressure ratio contours. An increase in the effectiveness of the heat 

exchanger can contribute to a significant improvement in the IBC performance at 

this level of turbomachinery efficiencies (0.75/0.8 for compressor/turbine 

respectively). An increase in the effectiveness 𝜂𝑒𝑥   lowers the outlet temperature 

of the heat exchanger, thereby increasing the density of the exhaust gas and 

increasing the pressure ratio across the compressor for same power input. 

Consequently, the resulting lower backpressure of the turbine can contribute to 

an increase the expansion ratio, thereby increasing the energy extracted from the 

exhaust gas.   

  

Figure 3.14 The 𝑾𝑰𝑩𝑪~ 𝜼𝑰𝑩𝑪 curves varying with 𝒑𝐥𝐨𝐰 and 𝜼𝒆𝒙 

3.5.2 System Study of Internal Combustion Engine with Three 

Alternative Cycles  

In order to specify the strengths and weaknesses of three alternative cycles – 

IBC, pressurized Brayton cycle, and a turbocompounding system, an irreversible 

Otto-cycle model with an array of losses is used as a base for the bottoming cycle. 

The input power of the whole system equals to the thermal input to the Otto cycle, 

while the output power of the system consists of two parts - the net power of the 
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Otto cycle and the net power produced by the bottoming cycle. Therefore, the 

efficiency of the whole system is 

 
𝜂 =

𝑃𝑜𝑢𝑡𝑝𝑢𝑡

(𝑃𝑂)𝑖𝑛
=

(𝑃𝑂)𝑛𝑒𝑡 + 𝑊𝐼𝐵𝐶  ∗  �̇�𝑎𝑖𝑟 

(�̇�𝑂)𝑖𝑛 + �̇�𝑙𝑜𝑠𝑠

 (3.39)  

As discussed in the introduction to this chapter, it is also possible to construct a 

bottoming Brayton cycle that is arranged in a similar way to a standard gas turbine, 

referred to the pressurized Brayton cycle. The difference is that the combustor in 

the gas turbine is replaced by a heat exchanger working as the heat addition 

process as shown in Figure 3.15. Thus, it is interesting to compare the inverted 

Brayton cycle to the pressurized Brayton cycle to understand their relative merits. 

Moreover, the turbocharged engine with an IBC can be considered as an 

extension of a turbo-compounding engine that only consists of a power-turbine. 

Thus, turbo-compounding, pressurized and inverted Brayton cycle systems are 

all compared as potential heat recovery systems for use with a turbocharged 

gasoline engine which has been fully described in the thermodynamic model. The 

comparison is made in terms of the system thermal efficiency, to highlight the 

strengths and weaknesses of each configuration.    

 

Figure 3.15 Schematic of the turbocharged engine with the pressurized 

Brayton cycle 

Besides the mean pressure over which they operate, one of the main differences 

between the inverted and pressurized Brayton cycles is the operation of the heat 
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exchanger. A pressurized Brayton must have an air-to-air heat exchanger with 

material that is able to operate at high exhaust gas temperatures whereas the 

heat exchanger in an inverted Brayton cycle must reject a large amount of heat, 

but this can be achieved via a liquid coolant. It also has the advantage of only 

being exposed to exhaust gases that have already been expanded across the 

turbine.    

 

 

Figure 3.16 Comparison three alternative power cycles at different values 

of the turbomachinery efficiency, heat exchanger effectiveness and 

turbine pressure ratio 

In Figure 3.16, the solid lines with numbers indicate the variation of the thermal 

efficiency in terms of the turbocharged engine with the inverted Brayton cycle, 

while the dash lines with numbers indicate the pressurized Brayton cycle and the 

solid line with ‘TS’ represent turbo-compounding system. The numbers represent 
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the expansion ratio of the bottoming turbine in the pressurized and inverted 

Brayton cycle. The baseline configuration of the turbocharged engine without 

heat recovery is shown with the solid line with ‘O’. The power produced by the 

bottoming cycle is converted into shaft work which is added to the engine torque 

directly. The transmission efficiency is assumed to be 0.95. The horizontal axis 

represents the compressor/turbine isentropic efficiency of the inverted Brayton 

cycle as well as the pressurized Brayton cycle. The outlet temperature and 

pressure from the turbocharger turbine, (1112.6 K and 1.54 bar respectively), are 

calculated based on the thermodynamic relations in turbocharged gasoline 

engine and the boundary condition of the system intake air. Figure 26 shows that 

the base model system thermal efficiency is slightly under 38% (BSFC ~ 215 

g/kWh) which is a typical peak of a gasoline engine. For the pressurized and 

inverted Brayton cycle, there exists a window of turbomachinery efficiency for 

which those cycles can always improve the performance of the turbocharged 

engine. The maximum efficiency rise is produced by the inverted Brayton cycle 

(single stage is considered here) with a pressure ratio of 4. However, with the 

decrease of turbomachinery efficiency, the thermal efficiency of systems with high 

expansion ratios will, at some critical value, decrease below the same system 

with a lower expansion ratio. One of the most important outcomes is that for a set 

of bottoming cycle boundary conditions (turbomachinery efficiency, heat 

exchanger effectiveness, and turbine expansion ratio), the improvement in the 

engine system efficiency caused by adopting the inverted Brayton cycle is 

significantly greater than that achieved by the pressurized Brayton cycle.   

In this simplified model, the turbine efficiency of the turbocompounding turbine 

varies from 0.6 to 0.9. The results show a significant efficiency improvement over 

the base configuration despite simply using the remaining blowdown pressure 

after the turbocharger. This simple model suggests that the pressurized Brayton 

cycle rarely out-performs the turbo-compounding device apart from the highest 

pressure ratios and component efficiencies. The inverted Brayton cycle, however, 

generally improves system efficiency beyond the turbo-compounding option for 

reasonable values of component efficiencies. When the turbine expansion ratio 

increases, or the heat exchange effectiveness decreases, higher turbomachinery 

performance in IBC is required in order to achieve superior system efficiencies 
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compared to the turbo-compounding system. It should be noted, however, that 

the model assumes that the turbo-compounding device does not increase engine 

pumping work but purely reclaims the remaining pressure after the turbocharger 

turbine. 

3.5.3 System Effect of IBC Compression Stages 

The earlier section concerning the isolated inverted Brayton cycle reveals that 

introducing additional compression stage can promote the performance 

improvement from the IBC and less than 3 compression stages seem most 

sensible considering complexity and cost. Therefore, Figure 3.17 shows the 

influence of introducing a second compression stage on the performance of the 

whole system at the different values of the IBC turbine expansion ratio. The 

parameters of the engine model are the same as the previous section. The 

effectiveness of the heat exchanger is selected to be a conservative 0.85. 

 

Figure 3.17 Efficiency of turbocharged engine with various stages IBC 

versus system efficiency 

In Figure 3.17, the solid lines indicate the turbocharged engine with the one stage 

IBC, while the dashed lines represent that with two stages. The number related 

to each line shows the value of the IBC turbine pressure ratio. Comparing cases 
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with same expansion ratio, the system efficiency increments due to introducing 

an extra compression stage can be expected. At any chosen values of the 

turbomachinery efficiency, the system efficiency increment is larger when the IBC 

turbine pressure ratio is 4. It seems that higher expansion ratios across the IBC 

turbine can contribute to a higher system efficiency increment with added 

compression and intercooling stages. This trend is the same as that found in the 

analysis of the isolated inverted Brayton cycle. Not only does an extra 

compression stage help at higher efficiencies, it also helps to minimize the drop 

in system efficiency that occurs when the turbomachinery efficiency drops. This 

is especially true for cases with high expansion ratios that drop off quicker when 

the turbomachinery is not performing at peak efficiency. 

3.5.4 IBC Performance over Driving Cycle  

In this section, the exhaust conditions available from the engine test bench data 

were introduced as the inlet conditions of the IBC thermodynamic model to 

quantify the power recovered by IBC, thereby revealing the benefits of IBC to this 

particular engine. It should be noted that the test bench data of the baseline 

engine were collected by WLTP. It defines a global harmonized standard for 

determining the levels of pollutants and CO2 emissions, fuel consumption. The 

IBC thermodynamic model will be simulated with the following variables: IBC inlet 

pressure, turbine pressure ratio, heat exchanger effectiveness, turbomachinery 

efficiencies, and the IBC compression stage. The aim of this section is to analysis 

the performance of IBC system when it is applied to a light-duty automotive 

engine operating in a real-world driving cycle. 

3.5.4.1 Engine Bench Test Data 

A 2.0L gasoline turbocharged engine is selected as a primary power cycle to 

assess the benefits of the IBC system. The selected turbocharged engine has 

been tested over the WLTP in an SUV vehicle and the measured exhaust 

conditions have been utilized as the boundary conditions of the IBC 

thermodynamic model. It should be noted that the engine speed and torque are 

used to deduce the brake power output. The WLTP Class 3 test cycle, shown in 
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Figure 3.18, consists of four parts for Low, Medium, High, and Extra High speed. 

Table 3.2 provides the main descriptive parameters of WLTP class 3 test cycle. 

Table 3.2 Main descriptive parameters of WLTP class 3 test cycle 

 low Medium High 
Extra 
High 

Total 

Duration (s) 589 433 455 323 1800 

Stop Duration (S) 156 48 31 7 242 

% of Stops 26.5% 11.1% 6.8% 2.2% 13.4% 

Maximum Speed 
(Km/h) 

56.5 76.6 97.4 131.3  

 

 

Figure 3.18 WLTP driving cycle 

Figure 3.19 shows the time distribution of engine operating points on the engine 

map. Since the sampling frequencies for each measured data, such as engine 

speed and exhaust temperature, are different, the lowest frequency of these 

channels is chosen as the global sampling frequency for data collection of the 

various engine parameters. 
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Figure 3.19 Time distribution of engine operating points on the engine map 

As the WLTP driving cycle is designed to represent real world vehicle operation 

on urban and extra-urban roads, motorways, and freeways, the predicted IBC 

performance regarding to WLTP testing data should represent the practical use 

of an IBC in a vehicle. The exhaust conditions required by the IBC thermodynamic 

model are the exhaust temperature, the exhaust pressure, and the exhaust mass 

flow rate. According to the previous IBC study in this Chapter the higher the inlet 

pressure of the IBC, the greater the energy derived from the IBC system. 

However, since the IBC system is adopted directly downstream of the 

turbocharged engine, higher IBC inlet pressure can deteriorate the engine 

performance by raising the engine back pressure and, therefore, increasing the 

parasitic pumping work. Additionally, the influences of the engine back pressure 

on its performance are absent in the IBC thermodynamic model presented here. 

Thus, throughout this section, the IBC inlet pressure is fixed at 1 bar to leave the 

engine unaffected by the existence of IBC system. The exhaust mass flow rate 

and temperature directly downstream of the turbocharged engine are plotted in 

Figure 3.20 and 3.21, respectively. It should be noted that in most applications, it 

would be desirable to place the IBC after catalyst. Thus, the author emphasis that 

the present analysis uses pre-catalyst temperature and, thus, would need to be 

re-assessed using post-catalyst temperature. In some cases, this may result in 

greater heat due to the exothermic reaction in the catalyst. 

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8  

Speed (rpm)

Time Distribution on Engine Map (%)

 

T
o

rq
u

e
 (

n
o

rm
a

li
z
e
d

)

0.005

0.01

0.015

0.02

0.025

0.03

Percentage



 

Chapter 3 – IBC Thermodynamic Modelling and Analysis 

103 

 

Figure 3.20 Exhaust mass flow rate 

 

Figure 3.21 Exhaust temperature 

3.5.4.2 Model Conclusion and Assumptions 

In this section, the exhaust outlet boundary condition (the temperature, pressure 

and mass flow rate of the exhaust gas) available from the objective engine bench 

testing is introduced as the inlet boundary conditions of the IBC thermodynamic 

model to quantify the energy recovered by the IBC system. In order to perform 

this study, the following additional assumptions have been made: 

 A liquid-to-air counter-flow heat exchanger is adopted in the IBC to simply 

reject heat. Water is considered as the coolant and the corresponding 
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specific heat at constant pressure is assumed as 4.2 𝑘𝐽/(𝑘𝑔 𝐾).  The 

coolant inlet temperature and mass flow rate are assumed to be 315 𝐾 

and 0.4 𝑘𝑔/𝑠, respectively. The design point for the heat exchanger is 

taken as 600 𝐾 exhaust temperature and 0.1 𝑘𝑔/𝑠 exhaust mass flow rate.  

The design point heat exchanger effectiveness is considered as 0.9. 

Finally, the pressure loss across the heat exchanger is 0.025 bar at the 

design operating point. 

 The mechanical connection is employed to transfer the recovered power 

from the turbo machines to the engine shaft. Thus, the transmission 

efficiency (𝜂𝑚) of 0.95 is considered to represent any parasitic mechanical 

loss. 

 The deviation of the turbomachinery from the idealized behaviour is 

described by the isentropic component efficiencies. A range of 

turbomachinery isentropic efficiencies between 0.7 – 0.8 for both the 

compressor and turbine are considered in this study. Note that the 

isentropic efficiencies of the compressor and turbine are assumed as a 

fixed value during the entire WLTP driving cycle. The author recognize that 

the fixed turbomachinery efficiencies are difficult to achieve in practice, but 

this assumption aims to reveal the influence of turbomachinery 

performance at the system level. 

The specific work extracted by IBC turbine can be calculated using Eq. 3.6 with 

the inlet and idealized outlet temperatures (𝑇6 and 𝑇7𝑠, respectively), and the IBC 

turbine isentropic efficiency 𝜂𝑡. Then, the turbine power is equal to the turbine 

specific work times the mass flow rate of the working fluid �̇�𝑒,  It should be noted 

that the inlet temperature (𝑇6) and exhaust mass flow rate (�̇�𝑒) of an IBC system 

are taken from the vehicle test data. The isentropic efficiencies of the IBC 

compressors are equal and represented by  𝜂𝑖𝑐. The power added to the working 

fluid by the individual compressor is equal to the work specific work in Eq. 3.14 

times the exhaust mass flow rate �̇�𝑒. Therefore, the net power 𝑃𝐼𝐵𝐶 produced by 

IBC system is defined as the difference between the power produced by the IBC 

turbine and that consumed by the IBC compressor(s). Since it is assumed that 
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the power recovered by the IBC is converted into shaft power which is added to 

engine torque directly, the mechanical loss is represented by a transmission 

efficiency 𝜂𝑚 in the thermodynamic model.  

The performance of the system is represented as brake specific fuel consumption 

(BSFC) defined as follow, 

 𝐵𝑆𝐹𝐶 =  
𝑚𝑓

𝑃𝑠𝑦𝑠𝑡𝑒𝑚
 (3.40)  

where 𝑚𝑓 is the fuel consumption rate and 𝑃𝑠𝑦𝑠𝑡𝑒𝑚 is the power produced by the 

system. 

As the engine speed and torque have been measured over the WLTP drive cycle, 

the engine brake power 𝑃𝐼𝐶 can be calculated by multiplying the engine speed by 

the brake torque. The benefits of IBC system are defined as the resulting BSFC 

improvement expressed as, 

𝐵𝑆𝐹𝐶 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  
𝐵𝑆𝐹𝐶𝐼𝐶 − 𝐵𝑆𝐹𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝐵𝑆𝐹𝐶𝐼𝐶
 

                                               =  

𝑚𝑓

𝑃𝐼𝐶
−

𝑚𝑓

𝑃𝐼𝐶 + 𝜂𝑚 ∗ 𝑃𝐼𝐵𝐶
𝑚𝑓

𝑃𝐼𝐶

 

                                                              =
𝜂𝑚 ∗ 𝑃𝐼𝐵𝐶

𝑃𝐼𝐶 + 𝜂𝑚 ∗ 𝑃𝐼𝐵𝐶
 

(3.41)  

where 𝐵𝑆𝐹𝐶𝐼𝐶  is the brake specific fuel consumption of the objective engine. 

𝐵𝑆𝐹𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is the brake specific fuel consumption of the combined system – 

the objective engine integrating with IBC.   

It should be noted that the fuel consumption rate is eliminated during the 

deduction of the BSFC improvement. Thus, the BSFC improvement is evaluated 

by the engine brake power and IBC power output every second, then averaged 

over the testing time to yield the average BSFC improvement. 
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3.5.4.3 Single-stage IBC System 

This section presents the influence of the single-stage IBC system on the system 

efficiency in terms of drive cycle BSFC improvement. Figure 3.22 shows the effect 

of the IBC turbomachinery efficiency on the average BFSC improvement for five 

values of the turbine pressure ratio. The compressor and turbine efficiencies are 

assumed to be equal and increases from 0.7 to 0.8 with an interval of 0.05.  The 

trend with increasing turbomachinery efficiency is clear, that is, a significantly rise 

in the average BSFC improvement at a given turbine pressure ratio. When the 

turbomachinery efficiencies are 0.7, the average BSFC improvement is lower 

than 0.5%, even approaches zero as the turbine pressure ratio reaches at 3.5. It 

reveals that when the IBC turbomachinery efficiency descends below a certain 

value, there is no work generated by IBC and, therefore, the IBC system should 

be bypassed.  

 

Figure 3.22 The benefits of single stage IBC 

According to the previous IBC study in this Chapter, an optimum turbine pressure 

ratio exists that delivers the maximum average BFSC improvement. This theory 

can be clearly observed in Figure 3.22 when the turbomachinery efficiencies are 

0.8/0.8. Here the average BSFC improvement reaches a peak of 3.02% and the 

decreases as the turbine pressure ratio increases. It should be noted that the 
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average BSFC improvement is calculated over the entire duration of WLTP 

driving cycle and the engine stop phase accounts for 13.4%. At the 

turbomachinery efficiencies of both 0.75/0.75 and 0.7/0.7, the average BSFC 

improvement is a monotonically decreasing function of the turbine pressure ratio. 

Thus, the optimum turbine ratio should be below 1.5 for both two cases. This 

suggests that for WLTP driving cycle, the objective engine should be integrated 

with low pressure ratio IBC system when the IBC turbomachinery is unable to 

achieve high efficiencies. 

 

Figure 3.23 Heat transfer rate in the heat exchanger 

Figure 3.23 shows the required heat transfer rate in the IBC heat exchanger 

during WLTP driving cycle when the turbomachinery efficiencies are 0.8/0.8 and 

the turbine pressure is 2. Unsurprisingly, the relative higher rate of heat rejection 

is expected at the part of the extra high engine speed. The corresponding 

average effectiveness of the heat exchanger is 0.92. The maximum heat transfer 

rate is 80.89 kW, which indicates that a relatively large size of the heat exchanger 

should be adopted. However, it should be noted that there is only 21 seconds 

when heat transfer rate in heat exchanger exceeds 40 kW, while the duration of 

WLTP driving cycle is 1800 seconds. Therefore, there is no need to employ a 

relatively large and heavy heat exchanger to meet all required heat transfer rate 

during WLTP driving cycle. A reasonable compromise between the system 

performance and the heat exchanger size should be reached. 
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3.5.4.4 Effect of IBC Compression Stages 

According to the previous IBC study in this Chapter, an extra stage of 

compression processes in IBC system is a benefit to its specific power output. A 

rise in the IBC specific power output is found as the number of compression 

stages increase, depending on the expansion pressure in IBC. In addition, the 

IBC performance improvement is quite small when the third compression process 

is introduced. It should be noted that the extra compression stage needs to adopt 

one more compressor and heat exchanger. Thus, given the complexity and tiny 

improvement associated with the third compression stage, two-stage or single 

stage IBC should be considered as the most sensible configuration for automotive 

application. Considering the discussion above, the benefits of introducing a 

second compression stage is presented in this section. The additional heat 

exchanger is presented by the same thermodynamic heat exchanger model used 

in the ‘Single-stage IBC system’ section.  

 

Figure 3.24 Average BSFC improvement due to various stages IBC versus 

IBC expansion ratio 

Figure 3.24 shows the influence of adopting a second compression stage on the 

performance of the combined cycle power plant for three levels of turbomachinery 

performance. The solid lines indicate the turbocharged engine with the two stage 

IBC, while the dashed lines represent that with a single stage. Compared cases 

with same turbomachinery efficiencies, the increment of the average BFSC 
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improvement due to the employment of the second compression stage can be 

expected and seems more sensitive when a higher expansion ratio is achieved. 

For example, a 2.24 percentage point increment of the average BFSC 

improvement is predicted due to the existence of the second compressor when 

the turbomachinery efficiencies are 0.8/0.8 and the expansion ratio is 3.5. 

However, with reducing the turbomachinery efficiencies to 0.7/0.7, only 0.5 

percentage point increment is expected. In addition, for the highest level of 

turbomachinery performance assumed in this study, the expansion ratio of the 

two-stage IBC that delivers the maximum BSFC improvement (4.41%) is 3, while 

that of the single stage IBC is only 2. Therefore, given the optimum expansion 

ratio and the benefits of the second stage compression, the high turbine pressure 

ratio should be achieved to maximize the performance improvement when the 

two-stage IBC system is employed as the exhaust-gas heat-recovery system. 

On the other hand, it seems that the higher turbomachinery efficiency can 

contribute to a higher system performance improvement with the additional 

compression stage. The maximum increment of the average BSFC improvement 

is only 1.37% and 0.57% when the turbomachinery efficiencies are 0.75/0.75 and 

0.7/0.7, respectively. Therefore, the second compression and intercooling stage 

should be employed to promote the system performance only if high efficiencies 

of the turbomachinery are achieved. 

3.5.4.5 IBC Turbine Pressure Ratio Optimisation 

The optimum turbine pressure ratio varies with the IBC inlet boundary conditions 

– exhaust temperature and pressure when all component efficiencies are fixed. 

Therefore, the objective of the optimisation is to find the optimum turbine pressure 

ratio of single stage IBC that maximizes the average BSFC improvement at 

certain component efficiencies. Since the impact of the engine back pressure is 

absent in the current thermodynamic model, the IBC inlet pressure is fixed at 1 

bar in the optimisation process. In the case of the fixed IBC inlet pressure, the 

optimum expansion ratio across IBC turbine only varies with the exhaust 

temperature. In addition, the average exhaust temperature at each part of WLTP 

driving cycle varies significantly due to the different corresponding engine speed. 
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Therefore, the IBC turbine pressure ratio will be optimised to deliver maximum 

BSFC improvement at each individual part of WLTP driving cycle – low, medium, 

high, and extra high speeds. The IBC turbine and compressor efficiencies are 

chosen as 0.8.  

 

Figure 3.25 Comparison between optimised IBC with that of fixed 

expansion ratio 

The optimisation tool in Matlab – ‘fiminbnd’ is utilized to solve this single variable 

optimisation problem. Its algorithm is based on golden section search and 

parabolic interpolation. Figure 3.25 shows the predicted performance of the 

optimised IBC system compared with cases of the fixed expansion ratio. The 

horizontal axis represents the four parts of the WLTP driving cycle. It should be 

noted that individual dots should be used to present the BSFC improvement at 

each WLTC part, because the X axis in Figure 3.25 is discrete. However, 
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continuous dashed lines are used in order to clearly show the tendency of the 

BSFC improvement across over all WLTC parts. 

With the turbomachinery efficiencies of 0.8/0.8, the maximum average BSFC 

improvement in all cases of single stage IBC system can be expected when the 

expansion ratio is 2. Thus, both the optimisation results and the case with the 

expansion ratio of 2 are listed in Table 3.3. 

Table 3.3 Optimisation results 

  
% of Whole 

Driving 
Cycle 

Average BSFC 
Improvement (%) Optimum Turbine 

Pressure Ratio Turbine PR = 
2 

Optimal 
Turbine PR 

Whole Driving 
Cycle 

 3.02% 3.15% 
 

Low 32.70% 1.96% 2.10% 1.70 

Medium 24.05% 2.76% 2.76% 2.07 

High 25.25% 3.80% 3.89% 2.26 

Extra High 18.00% 4.19% 4.53% 2.65 

 

As is shown in Table 3.3, the higher optimum turbine pressure ratio is expected 

when the engine load and vehicle speed increases from low to extra high. Since 

the exhaust gas temperature is the only variable which affects the optimum 

expansion ratio, it means that the optimum expansion ratio increases with the 

increase of the exhaust temperature. Since the average exhaust mass flow rate 

increases with engine speed as well, may be possible to match a fixed geometry 

turbomachine that operates near to the optimum expansion ratio during the entire 

WLTP driving cycle.  

Compared with the case of the expansion ratio of 2, only 0.13 percentage 

increment of the average BSFC improvement can be expected when the turbine 

pressure ratio is optimised. This is because that a small increment of the average 

BSFC improvement caused by the expansion ratio optimisation can be predicted 

due to the low-grade heat energy contained in the low-temperature exhaust gas. 
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The ‘Low’ part counts for 32.7% of the whole WLTP driving cycle. The relative 

higher increment of the average BSFC improvement is expected at the Extra High 

part. However, the Extra High part only occupies 18% of the whole WLTLP driving 

cycle. 

 

3.6 Thermodynamic Simulation Conclusion 

The inverted Brayton bottoming cycle applied to a standard internal combustion 

engine has been modelled with an Otto cycle and a Brayton cycle. The intent is 

to understand the viability of Brayton cycles (in particular the intercooled, inverted 

variety) to reclaim thermal energy from current automotive power plants. Although 

the potential for heat recovery may be somewhat less compared to the Rankine 

cycle, the appeal of the Brayton cycle is its relative simplicity and the use of 

readily available radial turbomachinery components.   

In order to understand the performance of the inverted Brayton bottoming cycle 

in isolation, the parametric study presented in this research has shown the 

potential to deliver a reasonable specific power output from heat recovery. The 

rise in IBC performance has been shown to be dependent on five factors to 

varying degrees - the number of compression stages, the cycle inlet temperature 

and pressure, the isentropic efficiency of the turbomachinery and the 

effectiveness of the heat exchanger. However, in order to achieve the maximum 

specific power, this will correspond to a specific optimal expansion ratio that is 

dependent on the boundary condition of the IBC. The following specific 

conclusions have been derived from this research:  

1. An extra stage of compression processes in the inverted Brayton cycle is a 

benefit to the specific power output. A rise in the IBC thermal efficiency is 

found as the compression stages increase, depending on the 

subatmospheric pressure in IBC. However, an extra compression stage 

consists of one additional compressor and heat exchanger. Thus, given a 
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benefit versus complexity/cost analysis, one stage could thus be considered 

as the most sensible configuration for automotive applications.  

2. With an increase in the expansion ratio of the IBC (reduction in post-turbine 

pressure), the maximum specific power output peaks and then can drop 

depending on the turbine inlet temperature and component efficiencies. Thus, 

the optimum expansion ratio will dependent on these boundary conditions. 

Thus, careful design of IBC turbomachinery will be needed to match the 

optimal operating point to the upstream hardware.  

3. There is a minimum threshold value of the IBC inlet temperature and/or 

turbomachinery efficiency that is needed to ensure that there is positive work 

produced by the inverted Brayton cycle. Unsurprisingly, increasing the inlet 

temperature and/or turbomachinery performance leads to higher specific 

power output.   

4. The IBC performance is a monotonically increasing function of the 

turbomachinery efficiency. Moreover, a significantly improvement in the 

maximum specific power can be expected if the turbine and compressor 

isentropic efficiencies increase from 0.7/0.65 to 0.9/0.85.  

5. Similarly, a large increase of the power output is found with an increase in 

the IBC inlet pressure. However, it should be highlighted that the performance 

of the engine may be deteriorated by this higher back pressure. In contrast 

to a turbocompounding device, the strength of the IBC is that it does not need 

to operate with high backpressures to operate successfully.  

6. Increasing the effectiveness of the heat exchanger increasing the density of 

the gases in the IBC compressor and thus, increase the pressure ratio for the 

same power input. The resulting lower backpressure of the turbine increases 

the expansion ratio and the energy exploited from the exhaust gas. Hence, 

the effectiveness of heat exchanger can positively affect the IBC performance.  

Then, the system benefits from adding an inverted Brayton cycle to a 

turbocharged Otto cycle has been analysed. In addition, a comparison of the 
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inverted Brayton cycle, turbocompounding system and the pressurized Brayton 

cycle is also made. The following conclusions can be drawn from this research:   

7. The maximum system efficiency improvement is produced by adopting the 

inverted Brayton cycle as a bottoming heat-recovery cycle. That is, the IBC 

is the best of the three options if the component efficiencies can be 

maintained. The IBC is substantially better compared to the pressurized 

Brayton cycle.  

8. The highest system efficiency predicted for the Otto cycle with a single stage 

IBC is 53% with a pressure ratio of 4 and component efficiencies of 𝜂𝑖𝑐 (0.85), 

𝜂𝑖𝑡 (0.9), 𝜂𝑒𝑥 (0.95). This is a substantial increment over the base 

configurations and illustrates the potential of heat recovery in raising system 

BSFC.   

9. A minimum requirement for turbomachinery efficiency is needed to improve 

beyond the turbo-compounding system. Therefore, the inverted Brayton 

cycle offers an excellent bottoming heat-recovery cycle only if high 

performances of the turbomachinery and heat exchanger are achieved.  

10. The system performance improvement caused by adopting the second 

compression stage is clear and expected. The corresponding efficiency 

improvement is more sensitive when the pressure ratio of the bottoming 

turbine is higher.   

Moreover, since the IBC system is adopted directly downstream of the engine, 

the exhaust conditions of the upper cycle should be introduced as the inlet 

boundary conditions of the IBC thermodynamic model. Thus, experimental 

exhaust data from a 2.0L turbocharged gasoline engine operating over a WLTP 

driving cycle have been used as the boundary conditions. Since it is assumed in 

this research that the IBC should not impose any additional backpressure post 

catalyst the IBC inlet and outlet boundary conditions are fixed at 1 bar. Note that 

the WLTP driving cycle is designed to represent real world vehicle operation. 

Thus, the predicted performance of IBC system based on WLTP testing data 

could reasonably represented the practical use of IBC system on a vehicle. 
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In terms of the single stage IBC system integrated with the objective engine, the 

maximum resulting average BSFC improvement is 3.02% when the IBC 

turbomachinery efficiencies is 0.8/0.8 and the expansion ratio is 2. It should be 

noted that the average BSFC improvement is deduced on the whole WLTP 

driving cycle and that 13.4% of WLTP is engine stop phase. Unsurprisingly, the 

system performance is deteriorated by the decrease of turbomachinery efficiency. 

When the IBC turbomachinery efficiency descends below a certain value, there 

is no work generated by IBC and, therefore, the IBC system should be bypassed. 

The two-stage IBC system should be employed when the high performance of 

IBC turbo machine can be achieved. In addition, the IBC turbine in the two-stage 

IBC needs to operate with a high expansion ratio area to deliver the maximum 

improvement of the system performance. 

The optimisation of the expansion ratio in a single stage turbine has been 

presented. The results show that an increase in the optimum expansion ratio can 

be expected when the WLTP driving cycle move from the ‘Low’ part to the ‘High’ 

part. Since the average exhaust mass flow rate increases from the ‘Low’ part and 

‘High’ part as well, this trend could be matched to a fixed geometry turbo machine 

that is designed to operate at the optimum expansion ratio during the whole 

WLTP driving cycle.  
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Chapter 4 – IBC 1D Modelling and Analysis 

 

4.1 Introduction 

In this chapter, a validated 2-litre downsized turbocharged SI engine model has 

been built and simulated under steady state condition by GT-Power code, in order 

to quantify the performance improvement due to the employment of the inverted 

Brayton cycle (IBC). GT-Power code is a commercial engine performance 

analysis code built on one-dimensional computational fluid dynamics (CFD) 

which is capable of predicting various operating parameters of the internal 

combustion engine and its developed configurations [113]. Real characteristic 

maps of turbine and compressor provided by the manufacturers was optimised 

by scaling the map mass flow rate to achieve the lowest break specific fuel 

consumption (BSFC). Based on optimised characteristic maps, the IBC 

systematic thermodynamic performance was evaluated with two variables – the 

expansion pressure ratio and turbomachinery efficiency, under various engine 

loads. 

In order to demonstrate the IBC heat-recovery capability in real world driving 

cycle, the real characteristic maps of turbine and compressor was introduced and 

re-sized at one mini-map point. Mini-map points are a set of steady state engine 

operating points with the allocated weighting, which are typically utilized to 

present a particular driving cycle. Then, the performance of IBC system with the 

matched turbine and compressor were predicted at the rest of mini-map points. 
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Finally, based on the re-sized characteristic maps of turbine and compressor, a 

commercial compressor and turbine were selected to perform the 3D simulation 

for the further performance improvement.  

It should be noted that the contents from Section 4.3 to Section 4.4.3 have been 

published as a conference paper [114] in JSAE/SAE 2015 International 

Powertrains, Fuels & Lubricants Meeting. Moreover, the contents in Section 4.4.4 

have been published as a conference paper [115] in Proceedings of the 2nd 

Conference on Engine Process. 

 

4.2 1D Modelling Approach 

Nowadays, the demand of the engine modelling is extensively increasing in the 

engine design and development process. It enables engineers to develop and 

demonstrate new technology concepts which are potentially beneficial to engine 

performance, even before the first prototypes are available. In addition, it is useful 

in predicting engine performance and simulating parameters that are difficult or 

impossible to measure in experiments. There are several favourable engine 

models utilized in the state-of-the-art engine development – black box model, 

mean value model, 1D model and multi-dimensional model. Typically, for a 

particular research, the modelling approaches should be selected with respect to 

the simulation accuracy requirement, computational cost, model capability and 

availability. 

In this study, the 1D modelling approach was chosen to simulate and analyse the 

combined system – IC engine and IBC system, due to its accuracy, limited 

available simulation time, and the flexibility and capability of integrating different 

models. The 1D engine model was provided by research partners and fully 

correlated with engine bench tests. The simulation environment of this 1D engine 

model is GT-power which is commercial 1D fluid dynamic simulation code 

developed and licensed by Gamma Technologies Inc. Basically, engine 

simulation performed in GT-power code can be described as follows. The Navier-
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Stokes equations are solved in one dimension for the working fluid in pipes and 

flowsplits. Moreover, simplified models, such as maps and look-up tables, are 

employed to predict the performance of other critical engine components, for 

example valves, throttles, turbocharger, non-predictive combustion model, and 

so on. Typically, extensive test data is required to correlate these simplified 

models, so as to ensure the simulation accuracy. 

In the following sub-sections, the brief descriptions of the simulation methods for 

critical engine components are presented. 

4.2.1 Flow Modelling 

The flow modelling in pipes are extremely critical, as the majority of components 

in engine air path system can be essentially categorized as pipes. In order to 

achieve high simulation accuracy, firstly the whole piping system should 

represent the geometry of the corresponding real engine. Secondly, the proper 

simulation method should be employed. In GT-power, the flow model involves the 

solution of the Navier-Stokes equations, namely the conservation of continuity, 

momentum and energy equations. These equations are solved in one dimension, 

which means that all quantities are averaged across the flow direction [116].  

Before introducing the Navier-Stokes equations, two available solvers for these 

equations are described first. Basically, the different time integration methods are 

utilized in these two solvers – explicit and implicit solvers. The explicit solver 

should be used when wave dynamic is important and crank angle resolved results 

are required. It is beneficial to simulate highly unsteady flow which occurs in 

engine air flow and fuel injection systems. However, although this solver 

produces more accurate prediction of pressure wave dynamic, the associated 

small time scale cause high computational cost. On the contrary, the implicit 

solution is more efficient where high frequency pressure fluctuations are not of 

interest. The corresponding use cases are non-engine simulations, such as 

exhaust system warm-up and cooling system. In this study, the explicit solver is 

selected for all 1D simulations due to the existence of IC engine in the combined 

system. 
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The solver aims to solve the Navier-Stokes equations within the defined sub-

volumes in each pipe. The aim of discretizing the piping system into many sub-

volumes is to improve the model fidelity and simulation accuracy. The type of 

discretization is referred to as a staggered grid, shown in Figure 4.1. 

 

Figure 4.1 Schematic of staggered grid approach [116] 

As shown in Figure 4.1, these sub-volumes are connected by boundaries. The 

scalar variables, such as pressure, temperature, density, and internal energy, are 

assumed to be uniform over each sub-volume and calculated at centroid. The 

vector variables, such as mass flux, velocity and mass fraction fluxes, are 

calculated at boundaries. 

After sub-volumes creation, the Navier-Stokes equations – conservation of mass, 

energy and momentum are solved by the explicit and implicit solvers inside the 

sub-volumes and at boundaries. Mass conservation states that the rate of change 

of mass within a sub volume equals the sum of mass flux in and out of the sub 

volume: 

 𝑑𝑚

𝑑𝑡
 =  ∑ �̇�

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

 
(4.1) 

where �̇� is the boundary mass flux into the volume and �̇� is the mass of the 

volume. 
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Momentum conservation states that the rate of change of momentum in the sub 

volume is equal to the net pressure forces and wall shear forces acting in a 

system plus the net flow of momentum in and out of the sub volume: 

𝑑�̇�

𝑑𝑡
 =  

𝑑𝑝𝐴 + ∑ (�̇�𝑢)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 − 4𝐶𝑓
𝜌𝜇|𝜇|

2
𝑑𝑥𝐴
𝐷 − 𝐶𝑝𝑟𝑒𝑠𝑢𝑟𝑒 (

1
2 𝜌𝜇|𝜇|)𝐴

𝑑𝑥
 (4.2) 

Where: 

�̇� boundary mass flux into the volume 

𝑑𝑝 pressure differential across 𝑑𝑥 

A flow area 

𝜇 velocity at boundary 

𝐶𝑓 skin friction coefficient 

𝐷𝑝 length of mass element in flow direction 

𝜌 density 

D equivalent diameter 

𝐶𝑝𝑟𝑒𝑠𝑢𝑟𝑒 pressure loss coefficient 

Energy conservation states that the rate of change of energy in a sub volume is 

equal to the sum of energy transfer in and out of the sub volume. Energy transfer 

in the volume involves energy connected to work, mass flow and heat transfer: 

𝑑(𝑚𝑒)

𝑑𝑡
 =  −𝑝

𝑑𝑉

𝑑𝑡
 + ∑ (�̇�ℎ)

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

 − 𝐻𝐴𝑠(𝑇𝑓𝑙𝑢𝑖𝑑  −  𝑇𝑤𝑎𝑙𝑙) (4.3) 

Where: 

𝑚 mass of the volume 

𝑒 total internal energy per unit mass 

𝑝 pressure 

𝑉 volume 

ℎ total enthalpy 

𝐴𝑠 Heat transfer surface area 

𝐻 Heat transfer coefficient 

𝑇𝑓𝑙𝑢𝑖𝑑 equivalent diameter 

𝑇𝑤𝑎𝑙𝑙 pressure loss coefficient 
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4.2.2 Combustion Modelling 

When the working fluid has been predicted in the air path system, a well 

calibrated combustion model is required to predict the amount of chemical energy 

released as heat in the cylinder during the combustion phase. In GT-power, 

combustion models can be categorized into predictive, non-predictive, and semi-

predictive modelling. The combustion model selection depends on the intended 

use of the engine model and the availability of experimental data.   

In theory, predictive combustion models are an appropriate choice for all engine 

simulation, as any change of in-cylinder combustion caused by varying engine 

parameters or operating conditions could be accurately captured by a well 

calibrated predictive combustion model. However, numerous efforts and test data 

are required to calibrate the predictive combustion model. In addition, due to the 

high-level complexity of calculation associated with the predictive combustion 

model, the corresponding computation time is significantly higher. Thus, it is 

recommended when the simulations aim to study a variable that has a direct and 

significant effect on in-cylinder combustion. 

On the contrary, the non-predictive combustion models simply impose a fixed 

burn rate as a function of crank angle.  The burn rate is the instantaneous rate of 

fuel consumption within the cylinder combustion process and utilized to describe 

the corresponding heat releasing. Thus, the combustion is fixed regardless of any 

change of in-cylinder conditions, such as changes in residual fraction or injecting 

time. In conclusion, the non-predictive models are recommended when the 

variables of interest have a minimal effect on the burn rate. 

Compared with the predictive combustion models, a semi-predictive combustion 

models have less physical sub-models to predict the in-cylinder combustion. The 

function of the absent physical sub-models is achieved by imposing the 

combustion burn rates in non-predictive combustion models. It means that the 

changes of the combustion burn rate will be predicted based on operating 

conditions, such as engine speed, intake manifold, and spark time in gasoline 
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engines. The method provides limited predictability without the significant 

computation penalty.    

Since the engine hardware in this research was available, extensive experiments 

have been conducted to measure any parameters related to engine combustion, 

then calculate the combustion heat release. Therefore, the predictability of the 

combustion model was not required. In addition, the engine block geometries 

remain unchanged in the investigation of IBC system. Moreover, the control 

parameters were not to be varied in a wide range in simulation studies. Thus, 

non-predictive combustion model – ‘EngCylCombSIWiebe’ was selected to 

simulate engine combustion. This combustion model utilizes the Wiebe function 

to fit the SI combustion burn rate profile. The spark-50% burn duration, 10% to 

90% duration, and exponent are the required inputs of Wiebe function. These 

inputs have been calibrated with the experiment data. 

4.2.3 Turbocharger modelling 

4.2.3.1 Compressor and Turbine Modelling 

Since IBC system consists of a turbine and one or several compressors, the 

turbocharger simulation methodology is vital for the IBC systematic simulation. 

Generally, turbocharger simulations can be categorized into 0D, 1D and 3D, with 

respect to the simulation complexities. In GT-power, the turbine and compressor 

are simulated as 0D elements. In other words, the performance maps of the 

turbine and compressor should be provided by the user and utilized to model the 

corresponding performance. This simulation method is widely used in 1D engine 

simulations due to the simplicity and the reasonable accuracy in the measured 

operating range. However, the extrapolation method is also available in GT-

power to enable the prediction capability when the turbine and compressor work 

at the operating points where there is no test data available.  

Typically, the turbocharger manufacturers supply turbine and compressor 

performance maps. They are summarized as a series of performance data points 

measured in experiments, each of which describes the operating condition by 

speed, pressure ratio, mass flow rate, and thermodynamic efficiency. However, 
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in order to avoid the effects of the variations in the measurement condition and 

applications, the provided performance maps have been corrected to a reference 

condition. To be specific, the inlet temperature and inlet total pressure for each 

of the data points should be corrected to a chosen reference temperature and 

pressure. The reference temperature and pressure are provided along with the 

performance maps. In terms of the speed and mass flow rate, the formulas to 

perform the corrections are given below: 

 

𝑅𝑃𝑀𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  =  𝑅𝑃𝑀𝑎𝑐𝑡𝑢𝑎𝑙 √
𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
⁄  

�̇�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  =  �̇�𝑎𝑐𝑡𝑢𝑎𝑙  ∗  √
𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑝𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
⁄  

 

(4.4) 

where 𝑅𝑃𝑀𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the corrected turbocharger speed of compressor or turbine

𝑅𝑃𝑀𝑎𝑐𝑡𝑢𝑎𝑙 is the physical turbocharger speed 𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙 is the total temperature 

at inlet of compressor or turbine 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the chosen reference temperature

𝑝𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙 is the total pressure at inlet of compressor or turbine 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is the 

chosen reference pressure 

Once the performance maps of the turbine and compressor are introduced in GT-

power models, the turbocharger speed and pressure ratio will be utilized as inputs 

to the performance maps. Then, the mass flow rate and thermodynamic efficiency 

are looked up in the performance maps and imposed in the solution. It should be 

noted that the pressure ratio and efficiency of the compressor are usually total-

to-total values which are directly linked to compressor power, while total-to-static 

values are typical for turbines. This is because the kinetic energy of the working 

fluid at the turbine outlet are usually not utilized for the turbocharged engine. 

Nevertheless, standards vary among the turbocharger manufacturers. Care must 

be taken when comparing and using the turbocharger performance maps, since 

the flow characteristics and efficiency might be changed when different methods 

are used. In this study, total-to-total values are used for compressors and total-

to-static values are used for turbines. 



 

Chapter 4 – IBC 1D Modelling and Analysis 

124 

4.2.3.2 Shaft Modelling 

The other critical component in turbocharger is the shaft which is used to 

mechanically connect the compressor and turbine. In GT-power, shaft 

connections should be introduced to represent the total rotational inertia of the 

turbine wheel, compressor wheel, and shaft. In addition, the power balance 

across the shaft is calculated instantaneously for the simulation of power 

imbalance at the turbocharger shaft. At steady-state simulations, it is 

recommended that the turbo inertia should be set quite high for the first three of 

four engine cycles so that the turbo speed does not experience a dip while the 

velocity in the manifolds is developing. Then, the inertia should be made very low 

to allow the simulation to reach steady state very quickly. Finally, the real value 

of the turbo inertia provided by the turbocharger manufacturers should be used 

to the rest of the simulation. On the other hand, since the turbo inertia will 

significantly affect the turbo speed transient response and, therefore, the 

transient engine performance, it is very important that an accurate value for the 

turbo inertia is specified in transient simulations. 

In theory, the turbocharger bearing mechanical loss should be specified in the 

simulation. However, most turbocharger suppliers use the compressor as load 

when the turbine is mapped on a conventional gas-stand. Thus, the bearing 

mechanical loss has been lumped in the turbine efficiency map. In this case, there 

is no need to specify any mechanical loss torque or efficiency in this simulation. 

In this research, the bearing friction was modelled implicitly in the turbine 

efficiency, as it has been included in the turbine efficiency map.  

 

4.3 Model Description  

In order to reveal the energy saving potential of an IBC, a 2-litre 4-cylinder 

turbocharged gasoline engine was considered as the primary cycle in this 

research. The engine boosting system consists of a turbocharger and a 

supercharger placed in series. The 1D detail model of the considered engine is 
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developed in GT-power and integrated with the proposed bottoming cycle, shown 

in Figure 4.1. The proposed SI engine model was built based on the design 

geometry and validated with the test bench data in order to improve the accuracy 

of the predicted results. Boundary conditions of the system at inlet and outlet are 

fixed as the parameters of standard atmospheric state – the pressure of 0.99 bar 

and temperature of 298 K. The SI Wiebe combustion sub-model is employed to 

describe the heat release during combustion. The S-shaped Wiebe function 

associated with this combustion model is empirical constructed and able to define 

combustion profile approximately but quite accurately. The other boundary 

conditions, such as mechanical friction loss, combustion efficiency, flow 

coefficient of intake and exhaust valve, were calibrated by the tested data of this 

gasoline engine.  

The efficiency of electric generator connected to IBC is considered as 95%. For 

the sake of simplicity, 95% power retrieved by the bottoming cycle is transferred 

directly to the engine by a GT-power module which can add energy to any 

connected objective part by effectively providing a speed-dependent torque. 

 

Figure 4.2 Numerical model of the combined system in GT-Power 

Inverted 
Brayton Cycle 

SI Engine 

Turbocharger 
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Although ideally the turbocharging system should be re-matched to deliver the 

optimal system performance, the original turbocharging system was unchanged 

to ensure that all variables are related to the proposed heat-recovery cycle. 

The operating speed of IBC turbomachinery is controlled to achieve the fixed 

pressure ratio target. The corresponding isentropic efficiency is set as a constant 

by scaling the map efficiency. In this case, the sensitivity of IBC conditions to the 

performance of the combined system can be evaluated.  

The heat exchanger is built as a simple pipe in GT-power. The effectiveness of 

the heat exchanger is mainly influenced by the heat capacity of the two kinds of 

working fluids when the design parameters are fixed. That is, the effectiveness 

might vary with the operating condition of two working mediums, such as the 

mass flow rate, temperature, and working pressure. Nevertheless, the heat 

exchanger effectiveness in this research was fixed as 0.85 by varying the wall 

temperature, in order to evaluate the systematic performance with various heat 

exchanger performances. The temperature of coolant fluid was assumed as 300K. 

In this chapter, real characteristic maps for the turbine and compressor in the 

primary cycle was firstly re-sized for IBC turbine at the engine speed of 4500 rpm 

and the full-load Brake Mean Effective Pressure (BMEP) of 30.9 bar. Then, the 

optimised IBC was utilized to perform a parametric study at engine speed 4500 

rpm with various engine loads. Since engine speed in these investigations is fixed 

as 4500 rpm, the second stage, the supercharger, is declutched. This means that 

only the turbocharging system boosts the intake air and affects the system 

performance at this engine speed. Therefore, the target engine can be regarded 

as a turbocharged engine to investigate the influence of IBC on it. The valve 

timing, cam profiles and profile control terminate value for the SI Wiebe 

combustion model have been fixed throughout all simulations to ensure the 

predicted effect on the engine performance was due to IBC only. 

In order to achieve the turbomachinery re-sizing, the attribute ‘Mass Multiplier’ 

within the GT-power IBC turbine module is selected to scale the reference map 

mass flow rate. The GT-power code calculates the instantaneous pressure ratio 
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and speed, then looks up the mass flow rate in the map. Consequently, the rate 

is multiplied by the value of that attribute before it is imposed. Thus, the attribute 

‘Mass Multiplier’ for the turbine was considered as a design variable. The rest of 

design variables were the ‘Mass Multiplier’ of the IBC compressor and the torque 

applied on the shaft of IBC turbomachinery as the power extraction. Thus, an 

optimisation method required in this research should be able to solve a multi-

variable optimisation problem. The genetic algorithm (GA) was employed as the 

optimisation approach in this research, as it has the capability to mimic the 

process of natural evolution and is thus considered to be one of the most useful 

approaches to solve this kind of problem [117]. 

Later, the IBC expansion ratio was optimised over the entire operating range of 

the target engine. The engine baseline GT-power model was utilized to predict 

the exhaust condition at the turbocharger outlet which was considered as the IBC 

inlet.  The computational cost of the IBC GT-power model is too high to perform 

the proposed optimisation. Thus, IBC thermodynamic model presented in 

Chapter 3 was employed for the proposed optimisation.    

 

4.4 Result and Discussion 

4.4.1 IBC Compressor/Turbine Size Optimisation 

The single-objective optimisation process was carried out by varying the load 

applied to the IBC turbomachinery shaft, mass flow multipliers of IBC turbine and 

compressor. The engine operating point is 4500 rpm with a BMEP of 30.9 bar 

and the BSFC is selected as the optimal objective function to be minimized. The 

optimal values of design parameters and corresponding predicted results are list 

in Table 4.1. The original turbocharged SI engine is referred as the baseline, 

which the turbocharged engine with IBC is as the combination. 

Table 4.1 shows that, compared to the baseline, the pumping loss of the 

combined system is increased. Nevertheless, the corresponding fuel economy 
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(BSFC) is reduced by 5.91%. This is because that the optimised IBC system has 

the capability of recovering more than the parasitic power lost caused by the 

higher back pressures due to the presence of IBC components. In theory, the 

thermodynamic behaviour of IBC determines that the primary cycle could be 

unaffected by mounting IBC as the bottom heat-recovery cycle with properly 

turbomachinery matching. In other words, IBC is able to extract the wasted 

energy from the exhaust system without any additional back pressure of engine 

and, thus, no parasitic power lost is present. However, the increased exhaust 

manifold pressure is observed in the result from the GA optimisation. This is due 

to the optimal trade-off performance between the recovered power and the 

resulting power loss. On the other hand, since the real characteristic maps of the 

turbocharger in this proposed system are optimised and applied for IBC 

turbomachinery and both ‘Mass Multiplier’ values of IBC compressor and turbine 

modules are more than a unit, the physical size of the IBC turbomachinery should 

be bigger than that of the turbocharger in the primary cycle in order to deliver 

maximum performance improvement.  

Table 4.1 GA optimisation results 

Optimisation 
Results 

Turbine/Compressor Mass Multiplier = 1.37/2.04 
Torque = 1.43 N-m 

 Baseline Combination  Improvement 

BMEP (bar) 30.926 30.926  

BSFC (g/kW*h) 233.984 220.163 5.91% 

PMEP (bar) 0.458 0.848  

System efficiency 35.88 38.24 
2.25 percent 

points 

    

The optimisation process in this section is to establish proper characteristic 

turbomachinery maps to perform the parametric study and provide guidance for 

the design of practical IBC applications, which is not a normal matching process. 

Therefore, although only 2.25 percent points in terms of systematic efficiency 

improvement is predicted shown in Table 4.1, the further performance 

improvement of the combined system can be achieved by performing proper 

matching processing for IBC turbomachinery. 
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4.4.2 Parametric Study of the Combined System based on the 

Optimal Turbine and Compressor Maps 

Although the parametric study of the IBC system in isolation from the engine has 

been performed in the previous chapter by 0D modelling, the interactions 

between engine and IBC system are not investigated. Thus, parametric study of 

the combined system of SI engine and IBC system is performed in this section. 

To be specific, the operational characteristics of turbocharged engine 

incorporating IBC are evaluated under a range of conditions from low engine 

loads (BMEP = 12bar) to very high loads (BMEP = 40bar) at a fixed engine speed 

of 4500 rpm and the IBC expansion ratio of 3. As described in Model Description 

section, the operating speed of IBC turbomachinery is controlled to ensure that 

the turbine delivers the pressure ratio of 3. In addition, the map efficiency of the 

turbine and compressor is scaled to achieve the desired isentropic efficiency. 

Three cases are considered and listed in Table 4.2. 

Table 4.2 IBC turbomachinery efficiencies 

CASE Compressor Turbine  

1 0.8 0.85 

2 0.6 0.65 

3 none none 

   

In case 1, the performance of the turbocharged engine with IBC is evaluated at 

the IBC turbine/compressor efficiency of 0.85/0.8 respectively, while only 0.65/0.6 

in case 2. Case 3 is to present the performance investigation of the original 

turbocharged engine (without the IBC) as the reference case. The solid lines 

indicate the system efficiency of three cases, while the dash lines represent the 

corresponding efficiency increment in case 1 and 2 respectively. In theory, at any 

IBC boundary conditions, the fixed IBC expansion ratio can be achieved by 

adjusting the turbomachinery speed which is controlled by the torque on its shaft. 

The corresponding BSFC is plotted in Figure 4.3. 
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Figure 4.3 Variation of the system efficiency at different values of BMEP  

 

Figure 4.4 BSFC versus BMEP at different IBC turbomachinery efficiency 

It is obvious from Figure 4.3 that including an IBC downstream of the turbocharger 

can improve the system efficiency at any chosen value of work output, in the case 

of the bottoming turbine (𝜂𝑖𝑡) and compressor (𝜂𝑖𝑐) isentropic efficiency of 0.85 

and 0.8 respectively. With increasing the power output, the efficiency increment 

increases to the peak of 4.98 percentage points at a BMEP of 34 bar, then 
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decreases steeply. The operating point with the maximum system efficiency in 

case 1 is referred as A. The corresponding maximum BSFC improvement is 

equals to 12.12%, shown in Figure 4.4. Moreover, the maximum system thermal 

efficiency, 41.12%, is expected at BMEP of 34 bar following by an efficiency drop.  

The reduction of the system efficiency at high engine load range can be fully 

explained as follows. The wastegate of the turbocharger turbine tends to close in 

order to increase the amount of power that the turbine can deliver to the 

compressor, thereby increasing the boost level that the compressor provides and 

consequently increasing the system power output. However, it can be observed 

in Figure 4.5 that the turbocharger turbine wastegate in the proposed system is 

completely closed at BMEP of 34. Thus, to further increase the system power 

output, the wastegate of IBC turbine needs to open. Consequently, turbocharger 

turbine outlet pressure drops, thereby increasing its expansion ratio and raising 

the boost level of the intake charge provided by the turbo compressor. 

 

Figure 4.5 Turbine wastegate position in Case 1 and 3 

By bypassing the bottoming turbine some portion of the exhaust gas available 

from first-stage expansion is diverted, thereby limiting the amount of power that 

the IBC can extract. Figure 4.6 shows the trend of power extracted by the IBC 
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turbine and that consumed by the IBC compressor. As can be seen in Figure 4.6, 

the extracted power becomes stable beyond a BMEP of 34 bar where the 

wastegate of the IBC turbine is open. The power consumed by the IBC 

compressor, which is utilized to boost the sub-atmospheric exhaust gas back to 

the ambient, is approximately constant with the targeted BMEP increase from 12 

to 34 bar. The compressor power then increases in order to depress the exhaust 

pressure in order to deliver increasing BMEP via the turbocharger. Therefore, the 

margin between two curves in Figure 4.6, which represent the net positive 

bottoming energy recovery, is reduced when the target BMEP is beyond 34 bar. 

 

Figure 4.6 Energy flow analysis of IBC at various BMEP in Case 1 

In conclusion, in order to increase the engine power output, the first-stage turbine 

wastegate progressively closes until it delivers the maximum power from the 

available pressure ratio. Interestingly, however, the IBC system can then be used 

to further boost the engine power output by depressing the exhaust system 

pressure, leading to an increased turbocharger turbine pressure ratio. This is 

achieved by opening the IBC turbine wastegate. Consequently, the resulting 

decrease in the net power provided by IBC heat-recovery system deteriorates the 

system efficiency. 
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Similar to the case of high IBC turbomachinery efficiency, the system efficiency 

verses system power output curve is a parabolic-like shape when 𝜂𝑖𝑡  and 𝜂𝑖𝑐 

decrease to 0.65 and 0.6 respectively, as shown in Figure 4.3. The maximum 

efficiency increment is only 1.54 percent points expected at BMEP of 30 bar 

where 4.12% BSFC improvement is predicted. This operating point is referred as 

B. Furthermore, the system efficiency of the baseline and the combined cycle 

becomes competitive with each other at this low-level turbomachinery efficiency. 

The systematic performance deterioration caused by IBC is existed when the 

targeted BMEP is below around 21 bar or beyond approximate 36 bar. This 

demonstrates the importance of turbomachinery efficiency to maintain a broad 

window of operating conditions where IBC cycle can produce positive output work.  

Figure 4.7 shows the influence of the employment of the IBC on the outlet 

temperature and pressure of the turbocharged engine with the various system 

power outputs and two levels of IBC turbomachinery efficiencies. It can be seen 

that, for both case 1 and 2, the increase of the expected power output can 

contribute to a reduced outlet temperature of the topping cycle. This can be 

explained as follows. The wastegate of turbocharger turbine will close to achieve 

higher BMEP target. The resulting higher expansion ratio lowers the temperature 

of the exhaust gas at the turbocharger turbine outlet, which is directly connected 

to the IBC turbine. Thus, a temperature drop with increased BMEP is expected. 

Moreover, it seems that the bottoming turbomachinery efficiency only slightly 

impact the outlet temperature of the primary cycle. The maximum difference in 

terms of the outlet temperature between two considered cases is only 7.4 ℃. On 

the other hand, both case 1 and 2 demonstrates that the IBC inlet pressure 

increases with the increase of the expected power output until the bottom turbine 

wastegate is open leading to a turbocharger outlet pressure that remains stable 

at approximately 1.7 bar. Additionally, the IBC with lower turbomachinery 

efficiency can increase the back pressure of the topping cycle. This indicates that 

lower IBC component performance not only limits the energy-recovery 

capabilities of the IBC but also deteriorates the topping cycle performance due to 

the increase of the back pressure. More importantly, a reduction of the outlet 

pressure of the topping cycle caused by the IBC is observed in low-grade engine 

load.  
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Figure 4.7 Comparison of three cases in terms of outlet boundary 

conditions of the topping cycle 

4.4.3 Working Condition: Fully Closed Turbine Wastegate 

With the benefit of the previous analysis, the best performance that the proposed 

system can achieve is to operate the system where the wastegates of the topping 

and bottoming turbines are closed. Therefore, a further study is warranted to 

evaluate the influences of the IBC turbine pressure ratio and turbomachinery 

efficiency on the system performance under these working conditions (closed 

wastegates). 
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The maximum efficiency that the proposed system can deliver is evaluated with 

a bottoming cycle expansion ratio of 2, 3 and 4 as shown in Figure 4.8. The trend 

with increasing turbomachinery efficiency is clear and expected at any chosen 

IBC expansion ratio. That is, a significant rise in system efficiency is 

demonstrated as the component efficiencies increase. Moreover, the efficiency 

improvement is more sensitive to the turbomachinery efficiency with a higher IBC 

expansion ratio. The graph also shows that optimal values of IBC expansion ratio 

at which the system efficiency attains its maximum value are varied with the 

turbomachinery efficiency. For example, at the lowest turbomachinery efficiency, 

the proposed system with the IBC expansion ratio of 2 can achieve a higher value 

of maximum system efficiency, compared to that of 3 and 4. However, when the 

best chosen efficiency of IBC turbomachinery is attained, the best system 

performance is predicted in the case of IBC expansion ratio of 4. Thus, the lower 

IBC expansion ratio can promote the system efficiency at the low level of 

turbomachinery efficiency while higher expansion ratio should be applied when 

component efficiencies are high.  

 

Figure 4.8 System performance investigation at optimal operating point 

with different IBC expansion ratio and turbomachinery efficiency 

(compressor/turbine) 
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topping and bottoming turbine wastegates are closed. The maximum efficiency 

increment is 6.15 per cent points when IBC expansion ratio is 4 and the 

turbomachinery efficiency is 0.9 and 0.85 for the turbine and compressor 

respectively. However, adopting an IBC deteriorates the system performance 

when IBC expansion ratio is 4 and the IBC turbomachinery efficiency is the below 

approximately 60%. 

 

Figure 4.9 Corresponding system efficiency increment at optimal operating 

point of IBC 
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• The exhaust back pressure on the compressor outlet is taken as 0.99 bar.  

• A range of turbomachinery efficiencies are selected between 0.65 – 0.8 

for both the compressor and turbine. These are considered here as a 

sensitivity study only. The author recognize that the top end of this range 

may be difficult to achieve in practice, but the wish to show the trend with 

rising component efficiencies. 

• The temperature of the coolant in the IBC heat exchanger is assumed to 

be 300 K. The pressure loss caused by the heat exchanger is not 

considered here. It should be noted that the pressure loss across the heat 

exchanger can lower the inlet pressure of the IBC compressor, thereby 

increasing the power consumed by the IBC compressor to pressurize the 

exhaust gas from sub-atmospheric pressure to the ambient. Therefore, 

the pressure loss across the heat exchanger will deteriorate the 

performance of IBC. 

 

 

Figure 4.10 Temperature (top left), pressure (top right), and mass flow 

(bottom) of the exhaust gas at the turbocharger turbine outlet 
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Figure 4.10 shows that changing the vehicle speed and engine loads causes the 

exhaust gas temperature at the turbocharger turbine outlet to vary from ~850K to 

~1220K. The maximum outlet pressure of the turbocharger turbine presented in 

Figure 4.10 is above atmospheric pressure – that is, up to 1.55 bar. This is due 

to a module placed downstream of the baseline engine model in order to 

represent the influence of the after-treatment devices. Figure 4.10 also shows the 

exhaust mass flow rate against engine speed and loads. As the IBC unit is 

installed immediately downstream of the turbocharger turbine, the outlet condition 

of the turbocharger turbine is considered as the inlet condition of the IBC 

thermodynamic model. The IBC turbine pressure ratio has been optimised at 

each engine operating point to deliver the maximum recovered power. Figures 

4.11 and 4.12 show BSFC improvement potential from the IBC at different IBC 

turbomachinery efficiencies (turbine/compressor) and the corresponding 

optimised IBC turbine pressure ratio, respectively.  

  

  

Figure 4.11 BSFC improvement (fraction) due to the employment of IBC 

bottoming cycle 
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It can be seen in Figure 4.11 that the maximum BSFC improvement of 

approximately 13% is delivered by IBC with the turbomachinery efficiency of 

0.8/0.8 (turbine and compressor, respectively) when the engine speed is 6500 

rpm at full load condition. The amount of the power produced by the IBC is 

significantly deteriorated by the reduction of the turbomachinery efficiency, 

thereby decreasing the BSFC improvement. The maximum BSFC improvement 

with the turbine/compressor efficiency of 0.65/0.65 is 7.1%. It should be noted 

that the IBC power output can be negative at low engine speed and part-loads, 

depending on the IBC turbomachinery efficiency. The range of the engine 

operating points where there is no net work produced by IBC system increases 

with decreasing IBC turbomachinery efficiency. 

  

  

Figure 4.12 Optimised IBC turbine pressure ratio in the engine map 
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However, increasing IBC inlet pressure leads to a higher back pressure of the 

engine which can negatively influence its performance. Hence, a system 

compromise is required to select the optimum IBC inlet pressure. 

4.4.5 IBC Compressor/Turbine Matching at Engine Mini-Map 

Points 

The performance evaluation of IBC system has been presented at the steady-

state engine operating points in pervious sections. The promising improvement 

achieved by IBC system was found in the simulation results. However, IC engine 

operation conditions in practice are highly dynamic. In other words, the exhaust 

conditions available from the turbocharger turbine outlet vary within the wide 

range of the pressure, temperature, and mass flow rate. Based on the previous 

0D and 1D simulation results, it has been clearly revealed that the inlet condition 

of IBC system, which is the outlet condition of the primary cycle, can significantly 

impact the performance of the IBC turbine and compressor and, thus, affect the 

amount of the energy recovered by IBC system. Therefore, IBC system coupled 

with the selected SI engine should be investigated over engine transient condition, 

to fully present its capability of the energy recovery. At vehicle level, various types 

of driving cycles are introduced by different countries and organizations to assess 

the performance of vehicle, such as engine fuel consumption and polluting 

emissions. These driving cycles are designed to represent the real-life driving. 

Thus, these cycles are also used as an important input in designing and 

evaluating future powertrain systems and vehicle concepts. In order to reveal the 

benefits of IBC system in real-life driving, a driving cycle should be selected to 

design and optimise the IBC system.  

However, there are three roadblocks to perform the transient simulations of the 

combined system over driving cycles. First, running an engine model in a 

transient mode causes high computation cost. Second, a sophisticated control 

strategy should be developed for the combined system, to maximize the benefits 

achieved by IBC system. Most important, the control unit is required to ensure 

that the engine is always able to meet the torque demand at any operating 

condition. Thus, the control strategy must adjust the wastegates of the 
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turbocharger turbine and IBC turbine, even the IBC bypass system if required, to 

control the back pressure caused by the existence of the IBC system. This is 

because that the back pressure is able to cause the reduction of the combustion 

efficiency, thereby harming the engine performance. In consequence, the engine 

is no longer able to deliver the torque demand, even when the power recovered 

by IBC system is directly fed back to engine. However, the control strategy only 

can be developed when the system characters have been fully studied. Moreover, 

the development of the control strategy is out of the scope of this project. The 

final roadblock is that SI engine GT-power model available in this research does 

not have transient simulation capability. In GT-power, in order to perform the 

transient simulation, all inputs must be controlled depending on operating 

conditions by using either some forms of look-up or predictive models. In addition, 

it is critical to calibrate the engine model against the transient engine test data, in 

order to gain transient capability. However, since the selected SI engine model in 

this research is only calibrated against the steady-state engine test data, the 

transient simulations of the proposed system – SI engine and IBC system cannot 

be performed. 

In conclusion, the performance of IBC system with the selected SI engine should 

be evaluated over a transient condition which should be a legislated driving cycle. 

However, the three roadblocks described above hinder the required simulations. 

Thus, an alternative investigation – mini-map investigation was proposed. Mini-

map consists of a set of steady-state operating points with weighting, which is 

designed to represent for the chosen driving cycle. Thus, the simulation results 

at such mini-map can be used to reveal the benefits of IBC system over the 

corresponding driving cycle. This is an industry common practice. 

4.4.5.1 Engine Mini-map Operating Points 

The mini-map introduced in this research was generated by the vehicle simulation 

tool, referred as CalSim. It is an internal JLR MATLAB/Simulink-based vehicle 

modelling tool.  
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The engine test data used in this section is same as the one shown in Section 

3.5.4.1. The test has been conducted over the WLTP in an SUV vehicle with 2-

litre turbocharged SI engine. Figure 4.13 shows the time distribution of engine 

operating points on the engine map, against the corresponding mini-map points. 

The main descriptive parameters of WLTP Mini-mapping points with weighting 

are listed in Table 4.3. 

 

Figure 4.13 Time distribution of engine operating points on the engine map 

As there is no engine steady-state bench test conducted at any mini-map point, 

the exhaust temperature and mass flow rate shown in Table 4.3 were predicted 

at a pipe directly downstream of the turbocharger turbine in the calibrated SI 

engine GT-power model described in Section 4.3. Since the chosen SI engine 

GT-power model is well calibrated at other steady-state conditions, the predicted 

exhaust temperature and mass flow rate are representative and reliable, which 

could be introduced as the inlet boundary conditions of IBC system to perform 

the following analysis. 
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Table 4.3 Descriptive parameters of WLTP Mini-mapping points 

Case 

Number 

Engine 

Speed 

Brake 

Torque 
BMEP 

Mini-map 

Weightings 

Brake 

Power 

Exhaust 
Temp. 

Exhaust 
Mass flow 

[-] [rpm] [Nm] [bar] [%] [kW] [K] [kg/h] 

1 800 20 1.3 17.39% 1.7 717.9 12.7 

2 1100 0 0.0 4.55% 0.0 636.6 8.9 

3 1400 60 3.8 7.16% 8.8 830.9 41.3 

4 1600 20 1.3 8.33% 3.4 753.5 24.1 

5 1600 120 7.6 7.86% 20.1 945.0 81.9 

6 1800 60 3.8 8.05% 11.3 885.9 53.5 

7 1900 180 11.3 5.23% 35.8 1007.1 140.6 

8 2000 100 6.3 5.31% 20.9 950.9 88.4 

9 2300 280 17.6 2.89% 67.4 1088.2 277.5 

10 2400 120 7.6 9.97% 30.2 1008.3 123.5 

11 2600 180 11.3 5.25% 49.0 1057.3 189.8 

 

 
       

4.4.5.2 IBC Turbine and Compressor Matching 

The IBC turbine and compressor matching should be conducted at one mini-map 

point, then evaluated at the rest of mini-map points. In the previous study, Figure 

4.11 shows that for the selected SI engine, IBC power output can be negative at 

engine low-load and low-speed conditions. This is because that at these engine 

operating points, the exhaust mass flow and temperature are too low to recover 

the wasted heat energy. Thus, IBC system should be designed to work at the 

condition when the exhaust mass flow and temperature are relatively high. In 

addition, JLR reckons that mini-map point 11 is considered as the engine 

operating point when the vehicle is in cruising mode. Thus, mini-map point 11 is 

selected as the design point for IBC system, as in this research IBC is mainly 

designed to recover the wasted heat energy at vehicle cruising mode. However, 

IBC performance will still be evaluated over entire WLTP driving cycle. 

In the matching process, there are two design targets. The first design target is 

to remain the SI engine unaffected. Thus, the back pressure generated by IBC 

system must be fixed as 1 bar. The best modelling approach to achieve the inlet 
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pressure of 1 bar is that only IBC model is utilized in the matching process and 

the corresponding inlet pressure is imposed as 1 bar. By doing so, there is no 

need to predict SI engine performance in the matching process. The second 

target is to maximize the power generated by IBC system. Thus, the real 

characteristic maps for the turbocharger in SI engine are adopted and optimised 

by changing their size.  

4.4.5.3 IBC Model Description 

The IBC model in the matching process is built in GT-power and described below: 

1. The single-stage IBC GT-power model is built in isolation from the SI 

engine, shown in Figure 4.14. The real characteristic maps of the SI engine 

turbocharger are introduced as the baseline for IBC system. 

 

Figure 4.14 Single-stage IBC GT-power model 

 
 

Commercial Comp. Commercial Tub. 
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2. The exhaust mass flow rate and temperature at mini-map 11 is introduced 

as the inlet boundary conditions of the IBC model.  

3. Simple heat exchanger model is employed. The HE effectiveness is fixed 

as 0.9 and the coolant temperature is 315 K. The resulting pressure loss 

is fixed as 0.01 bar. 

4. The outlet boundary conditions of the IBC system are fixed as the 

parameters of standard atmospheric state – the pressure of 1 bar and 

temperature of 298 K. 

5. It is assumed that an electric generator is connected to the IBC shaft, to 

convert the mechanical energy generated by IBC system to the electric 

energy. Thus, 30% recovered energy is assumed as the energy loss due 

to the friction loss at the IBC shaft and the efficiency loss in the electric 

generator. 

6. GA optimisation approach is utilized to maximize the power generation of 

IBC system, by sizing the IBC compressor and turbine. The attributes 

‘Mass Multiplier’ within the GT-power turbine and compressor modules are 

applied to achieve the map sizing, respectively. The third optimal variable 

is the IBC shaft speed, as it is able to affect the IBC power generation and 

the resulting back pressure. Since the inlet pressure must be fixed as 1 

bar to keep the SI engine unaffected, it must be introduced as the 

constraint function in the optimisation process. 

4.4.5.4 Optimisation Results 

The optimal variables and corresponding predicted results are list in Table 4.4. 

The original turbocharged SI engine at mini-point 11 is referred as the baseline, 

which standalone IBC system is as the IBC. It should be noted that the power 

generated by IBC in Table 4.4 has taken account of 70% combined efficiency of 

the shaft mechanical and the electric generator efficiencies.  
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Table 4.4 Results of turbine and compressor matching 

Optimisation 
Results 

Turbine/Compressor Mass Multiplier = 0.60/0.57 
Shaft Speed = 112320 rpm 

 Baseline IBC  Improvement 

BMEP (bar) 11.3   

Power (kW) 48.97 1.46 2.98% 

BSFC (g/kW*h) 252.3 245.0 2.90% 

 Pressure Ratio Efficiency Power (kW) 

IBC Compressor 1.94 79.87% 5.20 

IBC Turbine 1.93 75.80% 7.29 

 

Since the optimisation is performed with the IBC system in isolation from the SI 

engine, the BSFC in IBC column is calculated based upon the SI engine power 

and IBC power, showing in Eq. 4.5. 

 𝐵𝑆𝐹𝐶𝑒𝑛𝑔𝑖𝑛𝑒  =  
𝑟

𝑃𝑒𝑛𝑔𝑖𝑛𝑒
 

𝐵𝑆𝐹𝐶𝑒𝑛𝑔𝑖𝑛𝑒+𝐼𝐵𝐶 = 
𝑟

𝑃𝑒𝑛𝑔𝑖𝑛𝑒 + 𝑃𝐼𝐵𝐶
 

 

(4.5) 

where 𝑟 is the fuel consumption rate in grams per second (g/s). 𝑃 is the net power 

produced by SI engine and IBC, respectively. 

Thus, the BSFC improvement caused by IBC is  

 
𝐵𝑆𝐹𝐶 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  

𝐵𝑆𝐹𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 − 𝐵𝑆𝐹𝐶𝑒𝑛𝑔𝑖𝑛𝑒

𝐵𝑆𝐹𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 

                                             =
𝑃𝐼𝐵𝐶

𝑃𝑒𝑛𝑔𝑖𝑛𝑒 + 𝑃𝐼𝐵𝐶
 

(4.6) 

As shown in Table 4.4, the 2.9% of BSFC improvement has been achieved by 

matching the compressor and turbine characteristic maps. It should be noted that 

the IBC inlet pressure is fixed as 1 bar. In other words, no back pressure is 

generated by the employment of IBC system, thereby leaving the engine 
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performance unaffected. However, in Section 4.4.1, the compressor/turbine 

maps size optimisation at the engine operating point of 4500 rpm speed and 30.9 

bar BMEP shows that the maximum power of the combined system is achieved 

when the inlet pressure of IBC is higher than 1 bar.  

In this section, the reason of why the IBC inlet pressure is fixed as 1 bar is 

explained below. The previous study shows that the recovered power by IBC 

system can be higher than the resulting engine power loss when the IBC inlet 

pressure is beyond atmospheric pressure. However, the rise of the exhaust back 

pressure can cause a massive increase of exhaust residual gas fraction. In 

addition, this is also the reason for the irregular combustion phenomena, referred 

as knocking. The knock margin is reduced when engine operates at the lower 

engine speed range with high engine torque. Thus, the mini-map 11 is the quite 

sensitive operating condition for the engine knocking. However, the SI engine 

GT-power model available in this research is no capable of predicting the irregular 

combustion. Moreover, the effects of the back pressure in engine combustion is 

out of the research scopes. Therefore, in the matching process of the compressor 

and turbine maps, the inlet pressure was remained at 1 bar, despite the fact that 

the additional back pressure is beneficial to the systematic performance of the SI 

engine with IBC system.  

The re-sized compressor and turbine maps are introduced in IBC system in order 

to evaluate its benefits at the rest of mini-map points. The combined GT-power 

model – SI engine with IBC system is utilized to perform the corresponding 

simulations. A PID controller is utilized to remain IBC inlet pressure at 1 bar, by 

changing the IBC turbo speed. Although the pressure loss across the heat 

exchanger should vary the exhaust mass flow rate, it is fixed as 0.01 bar over all 

mini-map points due to the absence of the detailed heat exchanger model. 

However, the heat exchanger was designed and manufactured by the additive 

manufacturing by a research partner in this project. At the experiment stage, it 

was tested individually, then along with the whole IBC system. 

It should be noted that the 30% of total recovered power is considered as the 

mechanical loss and electric generator power loss, and deducted from the power 
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generated by IBC at all mini-map points. The heat exchanger effectiveness is 

fixed as 0.9.  

The corresponding simulation results are shown in Table 4.5. It shows that IBC 

with the optimised compressor and turbine is only able to produce net power at 

mini-map points 7, 9, 10, and 11. This is because that the exhaust mass flow 

rates at mini-map points 1 – 6 and 8 are significantly lower than that at mini-map 

11 where the IBC compressor and turbine are matched. In a consequence, 

efficiencies of IBC compressor and turbine drop too low to generate net power at 

mini-map points 1 – 6 and 8. 

Table 4.5 Performance evaluation of optimised compressor and turbine 

Optimisation 
Results Turbine/Compressor Mass Multiplier = 0.60/0.57 

 OP 7 OP 9 OP 10 OP 11 

Engine BMEP (bar) 11.3 17.6 7.6 11.3 

Combined System BMEP (bar) 11.3 17.5 7.6 11.3 

Engine Power (kW) 35.78 67.17 30.40 48.97 

IBC Power (kW) 0.50 3.94 0.33 1.50 

Engine BSFC (g/kW*h) 255.19 269.06 269.78 252.23 

Exhaust Mass Flow (kg/h) 140.6 262.17 123.5 189.8 

IBC Inlet Pressure (bar) 1.00 1.31 1.00 1.00 

IBC Turbine Eff. 78.69% 72.41% 77.18% 75.82% 

IBC Turbine PR 1.30 2.39 1.21 1.90 

IBC Turbine Power (kW) 2.27 13.13 1.45 7.23 

IBC Compressor Eff. 75.93% 69.20% 73.96% 79.76% 

IBC Compressor PR 1.31 1.82 1.21 1.92 

IBC Compressor Power (kW) 1.56 8.19 0.98 5.08 

BSFC Improvement (%) 1.38% 5.13% 1.06%  2.98% 

IBC / Engine Power Ratio 0.014 0.054 0.011 0.031 
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The simulation results show that the maximum net power recovered by IBC is 

3.94 kW at mini-map point 9. Although the turbine and compressor efficiencies 

are relatively low at mini-map point 9, the high exhaust mass flow rate is beneficial 

to the power recovery. Moreover, since the turbine and compressor maps were 

matched at mini-map point 11, the high exhaust mass flow rate at mini-map point 

9 contributes to the fact that the corresponding IBC inlet pressure is above 

atmospheric pressure. Consequently, with the back pressure of 1.31 bar, the SI 

engine is only able to deliver 67.17 kW brake power, which is 0.3 kW less than 

the case without any back pressure. Thus, at mini-map point 9 the IBC net power 

is required to compensate the engine performance deterioration. Then, any 

surplus power is considered as the performance improvement caused by the 

employment of IBC system. However, 5.13% of BSFC improvement is still 

expected at mini-map point 9, even though 0.3 kW of engine power reduction is 

caused by the back pressure of 1.31 bar. Overall, based upon the weighting at 

mini-map point 7, 9, 10, and 11, IBC with optimised compressor and turbine map 

can only deliver 0.66% BSFC improvement over the entire WLTP driving cycle. 

However, it should be noted that the compressor and turbine maps are optimised 

for the vehicle cruising mode, instead of the overall driving cycle.  

At mini-map points 7, 10 and 11, the IBC system with optimised turbomachinery 

is able to remain the atmospheric pressure at the IBC inlet, thereby leaving the 

engine performance unaffected. Since the turbine and compressor marching 

process was conducted at mini-point 11, the highest BSFC improvement of 2.98% 

is found at this point. Although the quantity of the IBC net power is low at mini-

map point 7 and 10, the corresponding BSFC improvement is still more than 1 

percentage due to the relatively low engine power at these points. 

At mini-map point 11, the IBC net powers listed in Table 4.4 and 4.5 are slightly 

different. This is because at matching process, IBC GT-power model built in 

isolation from the SI engine was utilized. Thus, the exhaust gas in the 

corresponding simulations was assumed as air. However, the IBC performance 

evaluation at mini-map points was conducted by the combined GT-power model. 

Thus, the exhaust gas properties were predicted by the combustion model 

embedded in SI engine model. In conclusion, the IBC net power discrepancy is 
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caused by the different working fluids feeding into IBC system. The re-sized 

turbine and compressor characteristic maps are shown in Figure 4.15. 

 

 

Figure 4.15 Compressor (top) and turbine (bottom) characteristic maps with 

operating points 

4.4.5.5 Compressor and Turbine Selection 

In the previous section, the compressor and turbine maps were re-sized to deliver 

the optimal performance of the IBC system. Thus, a commercial compressor and 
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turbine can be selected by matching the optimal turbomachinery map size and, 

thus, considered as the baseline design for the later study. Due to the limited 

access to the commercial turbomachinery characteristic maps, only two 

commercial compressors have similar operating ranges of mass flow rate and 

pressure ratio to that of the optimised one, while only three for turbines. Thus, all 

combination of available compressors and turbines were investigated to select 

the best combination that delivers the maximum IBC net power at the mini-map 

point 11. 

The IBC GT-power model presented in the turbomachinery matching process 

was utilized to perform the compressor and turbine selection. The exhaust mass 

flow rate and temperature were introduced at the IBC inlet, while the IBC outlet 

was set as the ambient. The coolant temperature was fixed as 315 K. However, 

the HE pressure drop and effectiveness were assumed as 0.05 bar and 0.96, 

respectively. These assumptions represent the worst-case scenario according to 

the heat exchanger 3D CFD analysis performed by the project partner. Regarding 

the power loss, 30% power differential between turbine and compressor was 

considered as the friction loss at the IBC shaft and the efficiency loss in the 

electric generator. 

In order to eliminate the negative effect of the back pressure on the engine 

performance, the IBC shaft speed was controlled to deliver the inlet pressure of 

1 bar. The predicted IBC net power was selected to represent its performance 

and, thus, it was considered as the only criteria to select the compressor and 

turbine. 

The 1D simulations results are presented in Table 4.6. There is no performance 

prediction for the combination of compressor candidate 1 and turbine candidate 

B, as the resulting IBC inlet pressure is unable to reach at 1 bar. The highest IBC 

net power of 0.91 kW is found at the case of combination of the compressor 

candidates 2 and turbine candidate B. The resulting BSFC improvement is 1.82%, 

which is lower than 2.98% of the optimal compressor and turbine shown in Table 

4.5. This is because that the higher heat exchanger pressure drop, 0.05 bar, was 

assumed in the analysis of compressor and turbine selection. In addition, 
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comparing to 79.76% efficiency delivered by the optimised compressor, the 

compressor candidate 2 of 75.7% contributes to the lower predicted IBC net 

power. Even worse, the relatively low turbine efficiency of 70% further 

deteriorates the IBC performance. 

Table 4.6 Performance evaluation of all combinations 

Mini-map Point 11:  Exhaust Temp.=1057.3 K                             
Exhaust Flow Rate=189.8 kg/h 

Engine Power=49 kW  

BSFC=252.3 g/kW*h 

Compressor Candidates 1 2 

Turbine Candidates A B C A B C 

IBC Net Power (kW)  0.69  0.82 0.72 0.91 0.76 

IBC Shaft Speed (krpm) 140.5  129.6 136.2 125.4 102.7 

IBC Inlet Pressure (bar) 1.0  1.0 1.0 1.0 1.0 

Turbine Eff. 71.7%  73.6% 68.1% 70.0% 69.4% 

Turbine PR 1.83  1.69 2.23 2.00 1.60 

Turbine Rack Position 0.52  1.00 0.47 1.00 1.00 

Turbine Power (kW) 6.45  5.82 7.92 7.11 4.95 

Comp. Inlet Pressure 
(bar) 

0.50  0.54 0.40 0.45 0.57 

Comp. Inlet Temp. (°C) 60.85  61.18 60.10 60.51 61.62 

Compressor Eff. 69.9%  71.1% 75.2% 75.7% 76.3% 

Compressor PR 1.98  1.82 2.46 2.17 1.71 

Compressor Power (kW) 5.47  4.65 6.89 5.81 3.87 

BSFC Improvement (%) 1.38%  1.64% 1.45% 1.82% 1.52% 

IBC / Engine Power 
Ratio 

0.014  0.017 0.015 0.019 0.015 

 

As a result, the commercial compressor candidate 2 and turbine candidate B 

were selected as the baseline design to perform the later study, due to the 

resulting highest IBC net power. However, relatively low efficiencies of the 

selected compressor and turbine were found. In other words, compressor and 
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turbine optimisation should be taken to improve their performance at the 

operating condition of mini-point 11. Modifying blade height is the common 

method to adjust the performance of the existing compressor and turbine without 

major changes of the blade shape. Thus, the compressor and turbine blades will 

be trimmed or extruded to improve their performance and described in detail in 

the next chapter. 

 

4.5 1D Simulation Conclusion 

The inverted Brayton bottoming cycle applied to a turbocharged SI engine has 

been modelled in GT-power. The intent is to investigate the potential performance 

of an IBC to recover residual heat from the exhaust gas stream available from a 

current automotive plant. Although some studies of heat recovery cycles have 

indicated that bottoming ORC technology have a higher capability of extracting 

energy from the exhaust in comparison with the Brayton cycles, the appeal of the 

latter is its relative simplicity and the use of readily available radial 

turbomachinery components. Currently, two main Brayton cycles, the pressurized 

and inverted cycle, are considered potential exhaust-gas heat-recovery systems. 

The pressurized Brayton cycle utilizes a separate working fluid to obtain heat 

from the primary cycle through a gas-to-air heat exchanger. However, the 

inverted Brayton cycle utilizes the exhaust gas as a working fluid and the heat 

transfer process simply cools the gases prior to compression - which may prove 

simpler to implement. More importantly, the predicted performance of the inverted 

Brayton cycle is superior to that of the pressurized Brayton cycle. Nonetheless, 

there are practical difficulties such as fouling, condensation and sub-atmospheric 

operation that are not considered in this work. 

A validated turbocharged engine incorporating a bottoming IBC has been 

modelled in GT-power. The optimisation process has been presented at the 

engine speed of 4500 rpm and BMEP of 30.9 bar, in terms of three IBC operating 

parameters – torque applied on the IBC turbomachine shaft, compressor mass-

flow multiplier and turbine mass-flow multiplier, in order to perform the 
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subsequent parametric study and provide guidance for the design of a practical 

IBC. In this study, the characteristics maps of the turbocharger in the topping 

cycle have been considered as the reference maps for IBC turbomachinery. This 

demonstrated that 2.25 percentage points of system efficiency increment can be 

expected due to the employment of an IBC with scaled turbocharger component 

maps. Since standard turbocharger maps where used, performance with a more 

appropriate match is expected to yield further system efficiency improvement. It 

should be noted that although adopting an IBC as a bottoming heat-recovery 

cycle does not require pressure from the topping power plant to operate, this 

research demonstrates that a small increase in the back pressure of the primary 

cycle is to be expected if the system is optimised for BSFC. This outcome results 

from the optimal trade-off between the heat recovered power and the resulting 

power loss due to pumping work. 

The further study has been focused on the IBC performance at various engine 

loads with two levels of the IBC turbomachinery efficiency. The bottoming 

expansion ratio is fixed at 3:1. In this case, the employment of an IBC with high 

turbomachinery efficiencies leads to varying degrees of performance 

improvement depending on the engine operating point. However, with a decrease 

in the turbomachinery efficiencies, the range of engine loads where IBC could 

boost the system performance is reduced. The maximum efficiency of a 

combined system is expected when both the topping and bottoming turbine 

wastegates are closed. The corresponding maximum efficiency increment is 4.98 

percent points. Moreover, adopting an IBC as the bottoming cycle significantly 

influences the back pressure of the topping cycle, while only slight changes of 

the topping cycle outlet temperature is predicted caused by the employment of 

IBC. 

The parametric study of the proposed system performance at the operating point 

where the wastegates of the topping and bottoming turbines are closed indicated 

that up to 6.15 percent points of efficiency improvement can be expected at IBC 

expansion ratio of 4 and an IBC compressor and turbine efficiency of 0.85 and 

0.9 respectively. It also was found that the IBC with the high turbomachinery 

efficiency should operate at high expansion ratio in order to achieve higher 
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performance of the combined power cycle, while that with low efficiency - low 

expansion ratio can recover more energy from the exhaust gas. In this scenario, 

the deterioration in the system efficiency when the low efficiency IBC with 

expansion ratio of 3 is adopted, predicted in case 2, can be avoided by changing 

the torque on the IBC shaft to lower the IBC expansion ratio.  

The simulation of IBC thermodynamic model coupled with SI engine GT-power 

model revealed that the IBC system can deliver a reasonable BSFC improvement 

over whole engine operating up to a maximum value of 13% at 6500 rpm under 

full load conditions with IBC turbomachinery efficiencies of 80%. Nevertheless, 

the IBC performance can be negatively affected by a reduction of the 

turbomachinery efficiency such that at some part load engine operating points, 

the net IBC power output is negative. 

Afterwards, the commercial radial turbomachinery for IBC system has been re-

matched based on the real-world driving cycle. However, given the lack of the 

transient GT-power models, the absence of control strategy, and high 

computation cost, the matching process was performed at one of mini-map points. 

Mini-map points were a set of steady state engine operating points with weights, 

generated by the research partner – JLR, to present engine performance of the 

real work driving cycle. In this research, mini-map points over WLTP driving cycle 

was chosen to evaluate the IBC performance. The commercial turbomachinery 

was re-sized at mini-point 11. The resulting IBC net power of 1.5 kW was 

expected. However, due to the wide range of exhaust mass flow rate at mini-map 

points, the net power only can be delivered at mini-map point 7, 9, 10, and 11 

with the optimal compressor and turbine. Then, an existing compressor and 

turbine was selected based upon the optimised size of the turbomachinery. 

However, the 1D simulation results show that both the selected compressor and 

turbine suffer relatively low efficiency at mini-map point 11. Thus, blade trimming 

will be applied to the selected compressor and turbine to improve their 

performance in the next chapter. The trimmed turbomachinery performance will 

be evaluated by 3D modelling in order to achieve the final design for the IBC 

system prototype. 
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Chapter 5 – Compressor and Turbine Design 

 

5.1 Introduction 

In Chapter 4, a commercial compressor and turbine were selected for the IBC 

prototype, based upon 1D simulation results. However, two issues hider the 

directly employment of the selected turbomachinery. First, both compressor and 

turbine suffer suboptimal efficiency at the IBC design operating point. Second, 

there are uncertainties about the influence of inlet boundary conditions in the 

turbomachinery characteristic maps. In 1D simulations, the turbomachinery 

characteristic maps provided by the manufacturer is imposed and utilized to 

predict the corresponding performance. These characteristic maps are measured 

by the standard turbomachinery mapping process, that is, the boundary 

conditions at the compressor inlet and the turbine outlet are fixed as the ambient 

during the mapping process. This is because the presented test conditions are 

able to fully represent the operating condition when the compressor and turbine 

are used as the turbocharger for IC engines. However, regarding IBC system, the 

ambient condition is expected at the compressor outlet and turbine inlet, instead 

of the compressor inlet and turbine outlet. Thus, given the uncertainties above 

and the poor efficiencies of the selected compressor and turbine, turbomachinery 

3D modelling performed by ANSYS CFX were conducted in this chapter to predict 

and optimise the IBC compressor and turbine performance. Moreover, the study 

about the effect of the inlet boundary conditions on turbomachinery performance 

characteristic maps will be presented in Chapter 6. 
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At the beginning of this chapter, the 3D model settings were described and 

selected in detail, to ensure that 3D simulation results are reliable. Five critical 

steps for completing 3D simulations were followed in this research, 1) generating 

model geometry and flow domain which are able to fully represent a physical 

nature of the simulation target, 2) generating computational grids with the trade-

off between the computational cost and the simulation accuracy, 3) establishing 

the boundary and initial conditions, 4) setting up the proper solver, and 5) 

performing the simulations. 

Then, impeller trimming approach was applied to compressor and turbine in order 

to improve their performance at the design point. It is a common practice in the 

turbocharger industry to modify an existing impeller design to meet a new flow or 

pressure ratio at the design point. The resulting benefit is that the sophisticated 

knowledge of designing a new compressor or turbine from scratch is excluded in 

the performance improvement process. In addition, less time and effort are 

required by trimming impeller blade. Thus, given the limited time for the 

compressor and turbine design in this research, both selected commercial 

compressor and turbine were re-sized by trimming impellers in order to achieve 

optimal performance at the desired operating conditions.   

Afterwards, the performance of various trimmed compressors and turbines were 

estimated by ANSYS CFX. The optimal compressor and turbine designs were 

manufactured and employed in IBC prototype.  

In parallel with the experiment tests of IBC prototype, a procedure of the 

compressor in-house design and optimisation was built. This procedure 

generated a high-performance compressor design that delivered the T-S 

efficiency of 77.46%, which is 8.08 percentage points higher than the trimmed 

commercial compressor. The presented procedure also can be utilized to design 

turbine in order to achieve high performance at the design condition. However, 

due to the limited time, the turbine design is excluded in this research.      
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5.2 3D Modelling Methodology 

In this chapter, 3D simulations were performed primarily using computational fluid 

dynamics (CFD). Basically, it uses numerical analysis and data structures to 

analyse and solve problems that involve fluid flows. Regarding the physical 

aspects of any fluid flow, the following three fundamental principles are employed: 

(1) mass is conserved; (2) Newton’s second low: 𝐹 =  𝑚𝑎 ; (3) energy is 

conserved. These fundamental principles can be expressed in terms of 

mathematical equations, which are typically partial differential equations.  

This section will provide some general information on CFD theory. First, the 

governing equations describing fluid flow are introduced. Second, the most 

common turbulence models using in CFD are briefly described. Finally, boundary 

conditions and meshing methodology are given, as they play vital roles in CFD 

simulations.  

5.2.1 Governing Equations 

In CFD, instead of getting an analytical solution for the whole flow field, the 

complex fluid domain is subdivided into a collection of subdomains, with each 

subdomain represented by a set of element equations to the original problem. In 

any closed system, the laws of conservation of mass, momentum and energy 

must apply to every subdomain. In particular, the Navier-Stokes equations denote 

conservative equations for physical quantities of mass, momentum, and energy. 

The4 continuity equation for any element is:  

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
 +

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
 =  0 (5.1) 

or 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗� ) =  0 (5.2) 
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In turbomachinery applications, gravitational effects are ignored, so the 

momentum equations become: 

𝜌
𝐷𝑢
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=
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(5.3) 

Finally, ignoring internal heat generation and gravity, the conservation of energy 

equation is: 
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(5.4) 

This system of equations comprises the Navier-Stokes equations for three-

dimensional, viscous flow. The purpose of the CFD flow solver is to discretize the 

Navier-Stokes equations. There are many different discretization techniques. 

However, the purpose of all these discretization methods is to replace the 

derivatives with a difference approximation and, thus, convert the partial 

differential equations into a system of algebraic equations which can be easily 

solved. [118] 

It should be noted that there are two sources of error which can influence the 

numerical solution of Navier-Stokes equations. The first source is the 

discretization error. It is defined as the difference between the exact analytical 

solution of the partial differential equation and the exact solution of the 

corresponding difference equation. Simply, the discretization error is the 



 

Chapter 5 – Compressor and Turbine Design 

160 

truncation error for the difference equation plus any errors introduced by the 

numerical treatment of the boundary conditions. Truncation error is the error 

made by truncating an infinite sum and approximating it by a finite sum. The 

second source of error is defined as round-off error. It is the numerical error 

introduced after a repetitive number of calculations in which the computer is 

constantly rounding the numbers to some significant figure. [119] 

5.2.2 Turbulence Modelling 

The simulation of the turbulent flow is a significant problem in computational fluid 

dynamics, as the outstanding feature of the turbulent flow is that the molecules 

move in a chaotic motion along complex irregular path. In addition, turbulence 

typically operates on a wide range of length scales. Thus, the range of length 

scales and complexity of involved in turbulence make most modelling approaches 

prohibitively expensive. In consequence, the trade-off between the computational 

time and the simulation accuracy should be took. 

Despite the performance of modern supercomputers, a direct simulation of 

turbulence by the time-dependent Navier-Stokes equations, referred as the Direct 

Numerical Simulation (DNS), is only applicable when the relatively simple flow 

with low Reynolds numbers is investigated. To be specific, the mesh resolution 

and time scale must be smaller than a viscously determined scale known as the 

Kolmogoroff scale [120]. Therefore, instead of precisely resolving the turbulent 

flow field, various turbulence models were developed to simulate the turbulence 

in approximate manner. Since there is no single turbulence model which is able 

to predict reliably all kinds of turbulent flows, it is extremely important to select a 

proper turbulence model based on the simulation problems, accuracy 

requirements, and computational efforts. 

In this research, the 𝐾 − 𝜔 Shear Stress Transport (SST) turbulence model was 

used for the modelling. This turbulence model was proposed by Menter in 1994 

[121], by combining the 𝐾 − 𝜔  model of Wilcox [122] with a high Reynolds 

number 𝐾 − 𝜀 model. In 𝐾 − 𝜀 model, the turbulent simulation is based on the 

solution of equations for the turbulent kinetic energy 𝐾 and turbulent dissipation 



 

Chapter 5 – Compressor and Turbine Design 

161 

rate 𝜀. The one of key features of 𝐾 − 𝜀 model is that damping function is required 

in order to stay valid through the viscous sublayer to the well. However, the 

weakness of the damping function is that the corresponding numerical stability is 

quick low. On the contrary, although the 𝐾 − 𝜔 model was developed based on 

the 𝐾 − 𝜀 model, the 𝐾 − 𝜔  model requires no the damping function. [123] 

One major feature of the 𝐾 − 𝜔 SST turbulence is that merits of the 𝐾 − 𝜔 model 

and the 𝐾 − 𝜀 model are combined. To be specific, since there is no damping 

function in the 𝐾 − 𝜔 model, it allows the 𝐾 − 𝜔 formulation to apply all the way 

down to the wall through the viscous sub-layer. On the other hand, the SST 

formulation also switches to a 𝐾 − 𝜀 behaviour in the free-steam and, therefore, 

avoids the common 𝐾 − 𝜔 problem that it is too sensitive to the inlet free-stream 

turbulence properties. Furthermore, the additional advantage of the 𝐾 − 𝜔 SST 

model is that the accuracy of the flow field prediction is improved, especially with 

strong adverse pressure gradients and separating flow.  

5.2.3 Meshing 

In CFD, the computational grid size and type must be appropriate based upon 

the complexity of model geometry and simulation requirements, as the 

computational solutions of partial differential equation will be approximated in 

each grid. Thus, the rate of convergence, solution accuracy, and computational 

cost are significantly impacted by the quantity of the computational grid. 

Basically, the computational grid is generated by partitioning space into elements. 

Thus, it is a discrete representation of the geometry of the problem. There are 3 

primary types of grids, showing as follows: 

 Structured grids: Structured grids are identified by regular connectivity. 

By generating this type of the computational grid, the possible element 

choices are restricted to the quadrilateral in 2D and hexahedra in 3D. The 

regularity of the computational grid results in the regularity of the 

connectivity, thereby achieving high space efficient. Given the 
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characteristics of the structured grid, it is typically used for the model with 

low level of geometry complexity. 

 Unstructured grids: Unlike structured grids, unstructured girds are 

identified by irregular connectivity. It cannot easily be expressed as a two-

dimensional or three-dimensional array in computer memory. This allows 

for any possible element that a solver might be able to use. Compared to 

structured meshes, this model can be highly space inefficient since the 

neighbourhood connectivity must be explicitly stored. However, the 

advantage of this grid type is that there is no constraint on the geometry 

complexity. Furthermore, another benefit of the unstructured grids is that 

grid refinement and coarsening can be handled in a relatively native and 

seamless manner. In addition, it is advisable to employ unstructured grids 

near walls in order to resolve the boundary layers accurately. [98] 

 Hybrid grids: A hybrid mesh is a mesh that contains structured portions 

and unstructured portions. It integrates the structured meshes and the 

unstructured meshes in order to use the most appropriate grid in any 

combination. Those parts of the geometry that are regular can have 

structured grids and those that are complex can have unstructured grids. 

Note that these grids can be non-conformal which means that grid lines do 

not need to match at block boundaries. 

In addition, dimensionless wall distance, referred as 𝑦+, is extremely important 

for the simulation accuracy and stability. This is because that the fluid flow field 

near the boundary well is very complex. Thus, in order to capture the complex 

flow phenomenon correctly, a fine mesh near domain walls has to be applied.  

The 𝑦+ value is a common metric used to measure grid quality near the well. This 

is a non-dimensional measurement which is defined as: 

𝑦+ =
𝑢𝜏𝑦

𝑣
 (5.5) 

where 𝑦 is the distance to the nearest wall. 𝑢𝜏 is the turbulent eddy viscosity.  
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A smaller value of 𝑦+ corresponds to a finer near-wall grid and is a very useful 

measure in turbomachinery, since velocities in the flow passage are very high 

and consequently velocity gradients at walls are very high

5.2.4 Convergence 

Since the nature of the fluid flow problems is highly nonlinear, the governing 

Navier-Stokes equations only can be solved analytically when the restrictive 

conditions are imposed. As a result, CFD solutions must be calculated iteratively 

to reach a valid solution, either in a time-independent sense in the cases of 

steady-state, or at each time step in the cases of transient simulations.  

In this study, only steady-state simulations were performed. Generally, there are 

three criteria that could be utilized to assess the convergence of a steady-state 

CFD analysis, shown as following: 

 Residual mean square (RMS) error values should be reduced to an 

acceptable value, typically 10-4 or 10-5. 

In CFD analysis, residual value is used to measure the local imbalance of a 

conserved variable in each control volume. Since RMS error directly 

quantifies the error in the solution of the system equations, it is the key 

parameters to evaluate the convergence of the CFD simulations. In addition, 

it should be noted that the RMS error will never be zero in any CFD simulation. 

However, the lower the residual value is, the more numerically accurate the 

solution. Typically, RMS error levels of 1E-4 are considered to be loosely 

converged. Levels of 1E-5 are well converged, while levels of 1E-6 are tightly 

converged. The following plot is an example of residual monitors. It shows 

that the various RMS errors gradually decrease down to levels of 1E-5 when 

the simulation iteration reach at 300 time steps. 
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Figure 5.1 Example: residual monitors 

 

Figure 5.2 Example: quantities of interest monitors 

 Quantities of interest have reached a steady solution. 

Theoretically, the solution field should not change iteration to iteration for an 

analysis to be deemed converged in a steady state analysis. Thus, monitoring 

integrated quantities of interest can help user judge whether the simulations 
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reach converged solutions. As a result, prior to starting a simulation, the users 

must clearly define what our values of interest are, such as force, drag, 

average temperature, or mass flow rate. Figure 5.2 shows the monitor value 

– mass flow rate at system outlet, changes less and less between iterations. 

After 200 iterations, the change of the mass flow rate is negligible, which 

indicates that the simulation is converged with respect of the monitored 

parameter.    

 The domain has imbalance of less than 1%. 

Since the CFD code is designed to solve conservation equations, overall 

property conservation of each domain should be achieved in order to 

generate reliable simulation results. Similar to RMS error, the CFD solution 

imbalances will never be exactly zero, as all physical systems are 

represented by a set of numerical equations. However, the imbalances 

should be sufficiently small before considering the solution converged. 

Typically, the aim for solution imbalances is below 1%. Note that more 

sensitive applications may require tighter convergence. As can be seen in 

Figure 5.3, after the initial start-up period, the solution imbalances gradually 

decrease as the solution progresses. 

 

Figure 5.3 Example: solution imbalances 
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5.2.5 Boundary Conditions 

Boundary conditions in CFD modes are vital for the behaviour of the 

corresponding simulation. Thus, they must be defined properly and accurately, 

based upon the physical nature of simulation case and simulation requirements. 

The primary types of boundary that must be considered are the wall boundary, 

and the flow inlet and exit boundaries.   

At inlets and outlets of the fluid domain, the user can define the boundaries as 

‘inlet’, ‘outlet’, or ‘opening’. If ‘inlet’ and ‘outlet’ are selected to apply as the 

boundary conditions of the fluid domain, the one-way flow boundary conditions 

are expected. In other words, the solver enforces the inflow or outflow by erecting 

artificial walls on those faces where the fluid attempts to flow opposite to the 

defined flow direction. On the contrary, ‘open’ boundary condition allows the fluid 

free to flow into or out of the boundary. It is typically selected when the full 

prescription of information at the boundary is not readily available. 

The following combinations of boundary conditions are all valid configurations 

commonly used in CFD simulation. They are listed from the most robust option 

to the least robust. 

 Most Robust: Velocity/mass flow at an inlet and static pressure at an 

outlet. The inlet total pressure is an implicit result of the prediction. 

 Robust: Total pressure at an inlet and velocity/mass flow at an outlet. The 

static pressure at the outlet and the velocity at the inlet are part of the 

solution. 

 Sensitive to Initial Guess: Total pressure at an inlet and static pressure 

at an outlet. The system mass flow is part of the solution. 

 Very Unreliable: Static pressure at an inlet and static pressure at an outlet. 

Since the inlet total pressure level and the mass flow are both an implicit 

result of the prediction, this combination is not recommended. 
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 Not Possible: Total pressure cannot be specified at an outlet. The total 

pressure boundary condition is unconditionally unstable when the fluid 

flows out of the domain where the total pressure is specified. 

Unlike ‘inlet’, ‘outlet’ and ‘open’ boundary conditions, ‘wall’ boundary condition is 

required to bound fluid and solid regions. Since all the fluid has to be contained 

inside walls, ‘wall’ boundary condition is natural extension into the numerical 

simulation process. However, walls allow the permeation of heat and additional 

variables into and out of the domain through the setting of flux and fixed value 

conditions at wall boundaries. In turbomachinery simulations, walls are usually 

taken to be adiabatic. Thus, there is no heat transfers across the well. 

Since the working fluid is defined as the viscous flow in turbomachinery 

simulations, the most common type of wall boundary condition implementation is 

the no-slip boundary. It means that the fluid immediately next to the wall assumes 

the velocity of the wall. In the CFD simulation, walls can be specified as stationary 

or moving with an imposed velocity. 

It is very common in turbomachinery 3D simulations that only one passage 

impeller is modelled in steady-state condition. The resulting benefit is to reduce 

the computational effort and resource, as the employment of the single-passage 

modelling reduces the model size and the quantity of the computational grids. 

Thus, it should be assumed that the flow field entering in one side of the interface 

in the single passage impeller is equal to the flow field exiting from the second 

side of the interface. Given the assumption above, rotational periodic boundary 

conditions are often used to ensure that the flow patterns at both periodic 

boundaries are identical. Note that the periodic boundary condition is not only 

applied in turbomachinery 3D simulation, but in the case when the physical 

geometry, expected flow pattern, and the thermal solution are of a periodically 

repeating nature.  

There are two types of periodic boundaries: 



 

Chapter 5 – Compressor and Turbine Design 

168 

 

Figure 5.4 Use case of transnational periodic boundary condition 

 

Figure 5.5 Use case of rotational periodic boundary condition 

 Transnational periodic boundary condition: In this case the two sides of 

the interface must be parallel to each other such that a single translation 
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transformation can be used to map interface zone 1 to interface zone 2, 

showing in Figure 5.4.  

 Rotational periodic boundary condition: In this case the two sides of the 

periodic interface can be mapped by a single rotational transformation 

about an axis. The example use case is shown in Figure 5.5. The rotational 

periodic boundary condition can apply to interface zone 1 and interface 

zone 2 shown in Figure 5.5. This type of periodic boundary condition only 

can be used when the boundaries are of equal shape and equal area. 

 

5.3 Model Description  

In this section, the compressor and turbine models used in this research were 

fully described and simulated in the commercial software package ANSYS-CFX 

R16.1. The code solves the three-dimensional Reynolds-averaged Navier-Stokes 

(RANS) equations in a fully implicit manner using a hybrid finite-element / finite-

volume discretization approach. All simulations can be completed by the following 

five steps: generating model geometry and flow domain, generating 

computational grids, establishing the boundary and initial conditions, setting up 

the proper solver, and performing the simulations.  

5.3.1 Centrifugal Compressor 

The commercial centrifugal compressor 2, presented in Chapter 4, is selected as 

the baseline, as the matching process show that this compressor can deliver the 

best systematic performance compared with the other available compressors. 

The following subsections shows the four steps of the model setup for the 

selected compressor.  

5.3.1.1 Model Geometry and Flow Domain Generation 

A detailed description of the impeller geometry was obtained from the project 

partner. That geometry was imported into BladeGen software which is a 
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commercial package of ANSYS. The detailed geometry included: x, r coordinates 

for hub and shroud profiles, leading and trailing edge coordinates for both the 

main blade and the splitter blade, as well as thickness and either beta or theta 

values at multiple spanwise locations along the meridional length of the impeller 

blade. Based upon the required parameters presented above, an accurate 3D 

model of the passage geometry can be generated by BladeGen. A representative 

view of the 3D geometry of a single passage and a meridional profile are 

presented in Figure 5.6. Note that the vaneless diffuser is included in the single 

flow passage domain, highlighted in Figure 5.8. In practice, the compressor rotor 

is a rotating part while the diffuser is stationary. Thus, the single flow passage 

domain has to be divided into sub-domains when the computational grids are 

created. The meshing details are presented in the next section.  

 

Figure 5.6 Meridional contour of the compressor flow path (right) and 3D 

view of main blades and splitters (left) 

The selected commercial compressor consists of 7 main blades with 7 splitters, 

followed by a vaneless diffuser. The dimensions of the main blades are such that 

its inlet and exit tip diameters are 35 mm and 65 mm, respectively. The blade 

height at the impeller inlet and exit are 10.26 mm and 3.85 mm, respectively. Its 

tip clearance of 0.1 mm at the inlet and exit can be found. As described in the 

Introduction chapter, the tip clearance is a small gap between the blade tip and 

the stationary shroud. Thus, this type of tip clearance is referred to as unshrouded. 

Hub 
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Diffuser 
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On the contrary, if the shroud is physically connected to the blades and, therefore, 

rotating with the rotor at same speed, it is referred as shrouded. 

In this research, the entire compressor 3D model, shown in Figure 5.7, consists 

of three distinct regions: an inlet domain, a single flow passage, and the volute. 

In practice, the flow fields in each compressor flow passage are distinctive due to 

multiple reasons, such as the location of the volute tongue and the uneven flow 

at the rotor inlet. However, given the numerous computational cost associated 

with full compressor rotor modelling, it is common to complete the simulation with 

the single flow passage. More importantly, single passage simulations are 

enough to resolve all the important flow mechanisms at stable steady-state 

operating point. In order to complete the single flow passage simulation, the 

rotational periodic boundary condition available in ANSYS CFX should be applied 

at two periodic boundaries in azimuthal direction, highlighted in Figure 5.8.  

 

Figure 5.7 Computational domain including inlet pipe, single flow passage 

and volute 

It can be seen in Figure 5.7 that the inlet pipe is extended to ensure that there is 

no flow recirculation at the domain inlet. The flow recirculation near the rotor 

inducer typically occurs when the centrifugal compressor operates near surge. 
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Thus, the location of the inlet boundary is extended sufficiently long to ensure 

enough distance between the domain inlet and possible recirculation regions. In 

addition, only 1/7 of the inlet pipe is built so that the proportion of inlet pipe can 

align with that of the single flow passage. 

 

Figure 5.8 Single flow passage with meshes 

The volute domain is created based upon the geometry of the commercial 

compressor volute. However, the compressor impellers are trimmed to deliver 

optimal performance at design operating point. Thus, the volute shape has to be 

modified according to the flow field at its inlet boundary. The cross-section of the 

compressor volute is demonstrated in Figure 5.9. The cross-section shape is 

defined by a circular arc in three quadrants and a square in the fourth quadrant. 

In order to define and vary the volute shape, the area to radius ratios 𝐴𝑐 𝑟𝑐⁄  is 

selected as the design variable for optimisation. Area to radius ratio for this shape 

is  

𝐴𝑐

𝑟𝑐
 =  

𝑅2 (1 + 3𝜋 4⁄ )

𝑟3  +  𝑅(1 − 1 9𝜋⁄ ) 
 (5.6) 
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Figure 5.9 Volute domain with the highlighted cross-section shape 

5.3.1.2 Meshing 

The three domains described in previous section were meshed separately and 

assembled in the pre-processor, shown in Figure 5.10. Due to the advantages of 

unstructured grids described in Section 5.2.3, unstructured grids are employed in 

the flow domain of the inlet pipe and volute. For the inlet pipe, an unstructured 

grid consisting of tetrahedral elements are generated using ANSYS MESHING. 

Near wall gradients in the inlet pipe domain are resolved using six prismatic 

elements, to better catch flow details near wall. The boundary wall refinement is 

also implemented for the volute domain. Due to the relatively complex, spiral 

volute domain was meshed into unstructured tetrahedral grids by ANSYS 

MESHING. It should be noted that in the optimisation process, the shape of the 

volute varies to maximize the compressor efficiency at the design operating point. 

Therefore, in order to remain the simulation fidelity at each design, mesh 

generations for different volute models are performed by the same considerations. 

For example, the maximum thickness and growth rate of boundary layer meshes 

are defined to have the same topology for all cases. Due to the identical meshing 

method throughout this study, the meshing quantity in the volute domain is a 

monotonic function of the volute volume which changes with its geometry. 

 



 

Chapter 5 – Compressor and Turbine Design 

174 

 

Figure 5.10 Inlet, single flow passage, and volute mesh 

For the single flow passage domain, the structured hexahedral mesh is generated 

in ANSYS TURBOGRID. The corresponding detail of the computational grids is 

shown in Figure 5.11 with enlargements of the areas of interest. Cell biasing is 

applied to refine the mesh near the wall regions – all blade surfaces, hub and 

shroud. The tip clearance region is a zone of very high gradients and, therefore, 

there are 10 elements between the blade tip and the shroud. Typically, the 

meshing quality near wall is judged on the basis of the dimensionless wall 

distance from the wall to the first node, referred as 𝑦+ . However, 𝑦+  is only 

calculated based on the flow gradients near wall which is solved by the CFD 

simulation. Thus, it is impossible to adjust the 𝑦+ value when the flow domain is 

meshed. Therefore, several iterations should be performed between the 

refinement of the mesh near wall and the calculation of 𝑦+ value. To obtain a 

good balance between computational accuracy and resource intensity, the 

meshes were kept to the 𝑦+ value of around 1 near the blade surface.  
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Figure 5.11  Single flow passage with detailed view of interest 

5.3.1.3 Boundary Treatment and Fluid Domain Properties 

As discussed in previous section, the selection of boundary conditions is very 

important, as boundary conditions must represent the physical nature of the 

bounds of each domain. Note that all the boundary conditions in all simulations 

are set to represent the steady-flow condition in the laboratory, instead of the 

actual on-engine operating conditions. The main difference is that the exhaust 

gas discharged by IC engine is highly pulsating. However, only stable flow is 

available in the laboratory in the University of Bath due to the limitation of the test 

facility. 
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In ANSYS CFX, the setup of the CFD model properties was performed in CFX-

Pre. The identical setup described as following are applied to all trimmed 

compressor models. 

In Section 4.4.5.5, the turbomachinery matching process shows that the 

commercial compressor candidate 2 was selected as the baseline design for the 

optimisation. Therefore, a total pressure of 45 kPa and a total temperature of 

60 °C are imposed as the compressor inlet condition at the design operating point, 

shown in Table 4.6. Thus, the total pressure and total temperature are imposed 

at the inlet plane of the inlet pipe and ‘inlet’ is selected as the boundary condition. 

The inlet flow angles were fixed as normal to the inlet boundary. The compressor 

exit is set at the outlet plane of the volute domain with ‘outlet’ boundary condition. 

Since the total-to-static compression ratio of 2.22 is the design target, the area-

averaged static pressure of 100 kPa is set as at the outlet plane. The working 

fluid is considered as a calorically perfect gas. Walls exposed to the environment 

are assumed to be adiabatic, as it is assumed that the heat transfer to the 

surroundings is neglected in all simulations. No-slip wall boundary conditions are 

applied to all the walls. This simply means that the velocity relative to the motion 

of the wall is set to zero.  

Throughout this study, the flow is assumed to be fully turbulent with turbulence 

closure being ensured by Menter’s k-𝜔 SST model, as this turbulence model has 

proven to give relatively accurate results when experiencing flow separation 

under adverse pressure gradients [124]. 

Both inlet and volute domain are stationary, while the single flow passage is set 

as a rotating frame of reference with a rotational speed of 125,000 rpm which is 

the design operating condition. The interface between stationary and rotating 

domain must be selected properly to ensure that there is no change in the flow 

transferred from one domain to next. Thus, there are two important interfaces in 

the described compressor model. Interface 1 is the intermedium plane between 

the exit of the inlet pipe and the inlet of the single flow passage, while Interface 2 

is between the outlet of the single flow passage and the inlet of the volute, 

highlighted in Figure 5.7. The ‘frozen rotor’ is recommended by Copeland [23], to 



 

Chapter 5 – Compressor and Turbine Design 

177 

apply to such interfaces. This is because that ‘frozen rotor’ is suitable for the case 

that the frame of reference is changed but the relative orientation of the 

components across the interface is fixed. In addition, the two connected frames 

of reference have a fixed relative position throughout the calculation. This type of 

interface is most useful when circumferential variation of the flow is large relative 

to the rotating speed of the domain. Thus, given the description of ‘frozen rotor’ 

interface, both Interface 1 and 2 is set as ‘frozen rotor’. As can be seen in Figure 

5.8, rotational periodic boundary is used on the periodic pairs of the single flow 

passage and inlet pipe domain, respectively.  

As described above, the single flow passage is set as a rotating domain. However, 

the shroud and diffuser walls containing in the single flow passage are stationary 

in practice. Thus, counter-rotating wall velocity is imposed to them, rendering 

them stationary in the absolute frame of reference.  

Table 5.1 summarizes the boundary conditions used throughout the steady state 

simulations.  

Table 5.1 CFD boundary conditions for compressor modelling 

Analysis Type Steady State 

Medium Air, ideal gas 

Walls Adiabatic, Hydraulically Smooth 

Inlet Stagnation Temperature and Pressure 

Outlet Static Pressure Outlet 

Interface Frozen rotor 

Turbulence Model Menter’s k − ω SST 

Advection Scheme High Resolution 

Turbulence Numerics High Resolution 
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5.3.1.4 Solver 

The solver used to compute the flow field was ANSYS CFX, a Reynolds-Average 

Navier-Stokes solver. Each computational model run for a minimum of 1,000 

iterations. A convergence solution was deemed to be reached when the RMS 

residuals decrease below a threshold of 10E-5 and domain imbalances have 

dropped below 1%. Moreover, total-to-static (T-S) isentropic efficiency and T-S 

pressure ratio need to settle to stationary levels. Isentropic efficiency was defined 

as the ratio of the isentropic total enthalpy change to the actual total enthalpy 

change, while T-S pressure ratio was simply defined as the ratio of total pressure 

at inlet boundary to the static pressure at the outlet boundary, shown as 

followings. 

𝜂𝑇𝑆,𝑖𝑠  =  
ℎ𝑡,𝑖𝑠

2 − ℎ𝑡
1

ℎ𝑡
2 − ℎ𝑡

1  

𝑝𝑇𝑆  =  
𝑝𝑠

2

𝑝𝑡
1 

(5.7) 

where station 1 refers to the domain inlet and station 2 to the outlet. Total enthalpy 

and pressure at each station are determined as mass flow averaged properties. 

5.3.2 Radial Turbine 

Based on the 1D simulation analysis presented in the previous chapter, the 

commercial radial turbine B is chosen as the baseline. Its blades are trimmed to 

shift the turbine optimal operating point to the design condition. The turbine model 

setup is described in detail at the following subsections. 

5.3.2.1 Model Geometry and Flow Domain 

The detailed geometry and computational domain are provided by the project 

partner, to represent the selected turbine. Similar to the compressor model, 

BladenGen in ANSYS is utilized to characterize the shape of the turbine impeller. 

The main dimensions of the selected turbine are listed in Table 5.2. 
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To simplify the analysis, the turbine model was divided into different regions: 

volute, single turbine passage, straight outlet pipe. The volute is designed to feed 

the stator as uniformly as possible and significantly affect turbine performance. 

Thus, it has to be scaled to maximize the turbine performance, as the turbine 

blades are trimmed to adjust flow capacity. In order to re-size the volute, the 

volute parameter - area to radius ratios 𝐴𝑐 𝑟𝑐⁄  is selected as a design variable. 

The definition of area to radius ratios is expressed in Eq. 5.6. The original volute 

is shown in Figure 5.12 as an example. 

Table 5.2 Primary geometric information of the commercial turbine 

Impeller inlet diameter (mm) 62.00 

Impeller outlet diameter (mm) 47.00 

Impeller inducer height (mm) 9.60 

Impeller exducer height (mm) 17.10 

Tip clearance (mm) 0.15 

Number of blades 11 

 

 

Figure 5.12 3D view of original volute of commercial turbine 
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In BladenGen, the turbine blades are created by the same methodology applied 

for the compressor. The corresponding single passage flow domain is plotted 

against to the 3D geometry of blades in Figure 5.13.  

 

Figure 5.13 Impellers with single-passage flow domain 

Given that the turbine exit flow is highly rotational, the pressure distribution near 

the rotor exducer shows a significantly non-uniformity. Thus, the extended duct 

allows the exit plane to move to a region where the unequal flows has been mixed 

sufficiently. The use of outlet domain extension is a practice over the CFD 

industry to improve the numerical stabilization of the solution. It should be noted 

that in IBC system there is a heat exchanger immediately downstream the turbine 

outlet. In other words, there is no long duct existing between the turbine and heat 

exchanger in the test configuration. Since only single turbine impeller is employed 

to predict the turbine performance, 1/11 of exit duct, shown in Figure 5.14, is 

introduced in order to further reduce the computational cost.   

5.3.2.2 Meshing 

Due to the different geometry complexity of each domain, the meshing 

methodology should be selected properly to faithfully reproduce the geometry. In 

this research, the meshing method selection is followed by the recommendation 

Single Passage 
Flow Domain 
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in Copeland’s study [23]. Regarding to the volute, an unstructured tetrahedral is 

used with boundary wall refinement. Due to the importance of the volute tongue, 

a smaller cell size in this region is applied. Similar to the turbine volute, ANSYS 

MESHING is used to obtain unstructured tetrahedral meshing in the exit duct.   

       

 

Figure 5.14 Inlet pipe (top right), impeller (top left), and volute (bottom) 

Due to the relatively complex of the rotor, ANSYS TURBOGRID is utilized to 

generate the structured hexahedral meshing. Following the same criteria as in 

the compressor rotor model, the cell resolution close to the walls is increased to 

fully capture the complex flow characteristics. In order to quantify the wall 

refinement, 𝑦+ value is calculated in simulations and targeted at around 1 near 
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the impeller surface. The described computational domains of the turbine model 

are plotted individually with the meshing in Figure 5.14. 

5.3.2.3 Boundary Treatment and Fluid Domain Properties 

Based on the analysis of the 3D modelling methodology, the boundary conditions 

for all operating points, shown in Figure 5.15, were selected as: 

 

Figure 5.15 View of full turbine 3D model 

Inlet 

The IBC inlet plane is set at the inlet of the turbine volute. Although specifying the 

mass flow rate and temperature at the inlet boundary results in a more robust 

simulation, total pressure of 1 bar and total temperature of 1023 K with axial-flow 

direction are specified instead so that the calculated mass flow rate through the 

domain could be used to validate the trimmed turbine against the design condition.  

Outlet 

Inlet 

Frozen Rotor 
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Outlet 

The turbine exit is set at the outlet plane of the exit duct with ‘outlet’ boundary 

condition. Based on IBC 1D simulation analysis, the total-to-total (T-T) expansion 

ratio of 2 is the design operating condition. However, only area-averaged static 

pressure can be specified at the ‘outlet’ boundary condition. The difference 

between the total and static pressure is the dynamic pressure, which represents 

the kinetic energy of the flowing fluid. Since the fluid velocity at the turbine outlet 

is quite high, the resulting dynamic pressure should be considerable. However, 

since the turbine model is simulated standalone, it is unknown how much static 

pressure can be recovered by reducing the fluid velocity due to the downstream 

heat exchange. Thus, three simulation cases are performed with different the 

area-averaged static pressure of 1.8, 2, and 2.2 bar, respectively. 

Fluid Property 

Similar to the compressor model, the calorically perfect gas is selected as the 

working fluid. 

Domain Property 

With respect to the turbine working condition, the exit duct and volute are set as 

the stationary, while the turbine single flow passage is the rotating with a 

rotational speed of 125,000 rpm. It should be noted that counter-rotating wall 

velocity is imposed to the shroud and diffuser walls, as in practice they are 

stationary. 

Domain Interface 

The detailed discussion about the interface selection is presented in the 

compressor model description. Thus, ‘frozen rotor’ is imposed at all rotor-stator 

interfaces, shown in Figure 5.15. The ‘periodic interface’ is applied for pitchwise 

boundaries of the single-flow passage and the exit duct domain.  

The setup summary of the turbine was listed at Table 5.3. 
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Table 5.3 Turbine model setup summary 

Analysis Type Steady State 

Medium Air, ideal gas 

Walls Adiabatic, Hydraulically Smooth 

Inlet Stagnation Temperature and Pressure 

Outlet Static Pressure Outlet 

Interface Frozen rotor 

Turbulence Model Menter’s k − ω SST 

Advection Scheme High Resolution 

Turbulence Numerics High Resolution 

 

5.3.2.4 Solver 

The solver and converge criteria for the turbine 3D simulations are the same as 

that in compressor simulations. However, instead of motoring the total-to-static 

related parameter, the T-T isentropic efficiency and pressure ratio in turbine 

simulations are required to settle to stationary levels. 

5.3.3 Grid Sensitivity Study 

As discussed about 3D modelling methodology, computational fluid dynamic 

(CFD) using a conservative finite volume method discretize the computational 

domain by discrete control volumes ensuring conservation of mass, momentum 

and energy. Consequently, the resulting computational solutions are significantly 

affected by the mesh quantity and quality. It is a common practice for 3D CFD 

community to perform the mesh sensitivity study to achieve the independence of 

the solution. Typically, sufficient fine-grid resolution is required to reproduce the 

exact solution. However, the computational effort should also be taken account 

to determinate the grid properties. 
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Figure 5.16 Mesh sensitivity study of the selected commercial turbine 
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Theoretically, the mesh sensitivity study should be performed for all domains in 

the compressor and turbine models. Due to the limited computational resource, 

only single-flow passage was selected to investigate the effect of the grid 

resolution. This is also because that the majority of pressure changes occur at 

the rotor, the diffuser for compressor, and nozzle for turbine.  

Thus, for both compressor and turbine mesh sensitivity studies, 7 levels of mesh 

density were defined from 0.1E+6 to 1.7E+6 cells with an interval of 0.2E+6. 

Regarding turbine, the volute and outlet pipe were structured with 0.6E+6 and 

0.1E+6 cells respectively, while the compressor inlet pipe and volute were 0.7E+6 

and 0.2E+6.  

The simulation results of turbine mesh sensitivity study are shown in Figure 5.16. 

For all variables of interest, the corresponding predictions tend to converge with 

increasing the mesh density. To be specific, comparing to the case with the finest 

mesh, 0.016% and 0.008% differential of the predicted mass flow rate and 

efficiency, respectively, were found for the case with 1.1E+6 cells, while 0.231% 

and 0.112% for that with 0.3E+6 cells. Since the differential of the predicted mass 

flow rate decrease from 0.050% to 0.016% by increasing the cells from 0.8E+06 

to 1.1E+06, the latter was set as the mesh target for all trimmed turbines. 

Regarding the compressor mesh sensitivity study, Figure 5.17 shows the effect 

of the mesh density on the mass flow rate, T-S efficiency, and T-T pressure ratio 

predicted by the proposed compressor model. As it can be seen in Figure 5.17, 

all parameters of interest tend to be converged with the increase of the cell 

number. Compare to the case with the finest rotor mesh, only 0.039% higher T-T 

pressure ratio is predicted by the case with the coarsest rotor mesh, while 0.681% 

higher mass flow rate is found. Considering the trade-off between simulation 

accuracy and computational time, the mesh number of 0.8E+6 is chosen for the 

rotor meshing target, as the resulting difference of all presented parameters are 

lower than 0.010% comparing to the case with the finest rotor mesh.  
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Figure 5.17 Mesh sensitivity study of the selected commercial compressor 
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5.4 Blade Trimming 

Industrial compressor and turbine manufacturers often have to respond instantly 

to new blades designs or in an aftermarket situation to modification of an existing 

rotor. In order to deal with this, design from scratch is out of the question due to 

the limited time. In addition, the sophisticated knowledge of designing a new 

compressor or turbine is indispensable. Thus, size scaling or geometry 

modification are typical methods used to adjust the corresponding performance. 

In this research, blade trim is applied to optimise the performance of the selected 

commercial compressor and turbine at the IBC design operating point.    

5.4.1 Compressor Impeller 

The blade trimming has been widely adopted by compressor industry to expand 

a single high-flow design to a family of compressors in order to cover a wide flow 

range. It means that the trimming methods can be used to modify an existing 

impeller design to meet a new flow or pressure ratio design point. Thus, the 

selected commercial compressor can be trimmed to achieve the optimal 

operating performance at the design point. Figure 5.18 shows the three primary 

trimming methods.  

Radial trimming is mainly utilized to reduce the total pressure rise across the 

impeller by trimming in the radial direction. There is an alternative to the radial 

trimming, called as axial trimming. The advantages of the axial trimming are that 

reducing the outlet height will lower the specific speed of the impeller and push a 

specific speed machine toward a more favourable value of specific speed. The 

third method is flow trimming. The corresponding purpose is to modify the flow 

coefficient of a compressor, thereby increasing the compressor efficiency at 

design operating region. It should be noted that the pressure ratio is unchanged 

by the flow trimming. However, in order to achieve the compressor performance 

improvement, the volute need to be resigned due to the reduction of the tip height. 
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(a)                                                        (b)  

 
                                Original Design        Trimmed Blades and Shroud 

(C) 

Figure 5.18 (a) Axial Impeller Trimming (b) Flow Trimming (c) Radial 

Impeller Trimming 

5.4.2 Turbine Impeller 

The turbine trim is a common practice used in turbochargers for adjusting flow 

capacity, in order to achieve the optimal performance at the desired operating 

condition. It is defined as the ratio of the effective outlet diameter to the turbine 

rotor inlet tip diameter. Thus, rotor exit and inlet tip diameter should be modified 

separately to perform the turbine trim. 

The sensible method to quantify the modification at the turbine rotor exit is the 

percentage of the increased or reduced exit area, shown in Figure 5.19. The 

reference is the baseline turbine. The 50% reference means that the outlet exit 

area of the trimmed turbine is only 50% of that of the baseline turbine. ‘100%’ 

trim, shown in Figure 5.19, is of course not practically feasible, but shows the 

maximum limit of outlet area for a radial turbine. [125] 

Rotating 
Axis 

Rotating 
Axis 
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Figure 5.19 Example of turbine rotor exit trim 

Second to the trim variation, the turbine inlet tip diameter could be altered by 

simply extending or shortening, shown in Figure 5.20. However, this parameter 

is slightly more difficult to assess as it is constrained by the maximum tip speed 

of the turbine. Note that for the turbocharger application the frame size and weight 

of the radial turbine is an important parameter consideration, as it can significantly 

affect the turbocharger transient response. However, in this research, the turbine 

optimisation only is conducted at one design operation point. Thus, transient 

response of compressor and turbine are excluded from optimisation objectives. 

 

Figure 5.20 Example of turbine rotor inlet tip diameter trim 
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5.5 3D Simulation Results: Trimmed Compressor and 

Turbine 

5.5.1 Compressor 3D Modelling Results 

Based upon the discussion about blade trimming methods, the flow trimming was 

applied to vary the compressor blade height, as this method is able to modify the 

flow coefficient without significantly changing the pressure ratio. Thus, in this 

research, the compressor inducer height and exducer height were set as 

variables for the performance optimisation. In order to properly collect and diffuse 

the working fluid from the compressor rotor, the vaneless diffuser and the volute 

shape have to be optimised by varying the diameter and area to radius (A/R) 

ratios, respectively.  

All trimmed compressors were evaluated by ANSYS CFX with the proposed 

setup in previous section. By doing so, the mass flow rate of each trimmed 

compressor was predicted. As a result, a DoE was set up parameterizing inducer 

height, diffuser diameter, and volute A/R ratio, in order to reach the optimal 

compressor efficiency at the design operating point. For a given inducer height, 

diffuser diameter, and volute A/R ratio, the parametric sweep of compressor 

exducer height was performed to reach the design mass flow rate. 

Due to the limited computational resource, only three alternative volutes were 

proposed to couple with the trimmed compressor rotor. The primary parameters 

of all available volutes are listed in Table 5.4. The corresponding cross-section 

view were shown in Figure 5.9. Since the diffuser diameter specifies the inlet 

plane of the volute, it was considered as a design parameter for volutes.  

Regarding the exducer height, three values were proposed – 3.50 mm, 3.75 mm, 

and 4.25 mm. A range of the inducer height was selected between 9.76 and 13.26 

mm, in order to ensure that the proposed compressors deliver the design mass 

flow rate of 0.055 kg/s.  
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Table 5.4 Design variables of alternative volutes 

Volute A/R Ratio (mm) Diffuser Dia. (mm) 

A 6.0 110 

B 6.6 130 

C 8.0 130 

 

In this research, five simulation cases were investigated, shown in Table 5.5. For 

each simulation case, the parametric sweep of compressor exducer height was 

performed. Then, only the compressor delivering the predicted mass flow rate of 

0.055 kg/s was considered as candidates. The simulation results are listed in 

Table 5.5. Since the volute geometry for the original commercial compressor is 

unavailable in this research, the corresponding 3D simulation is unable to be 

performed and, therefore, there is no simulation result of the commercial 

compressor in Table 5.5. 

Table 5.5 Compressor blade trimming simulation results 

Simulation Case 1 2 3 4 5 

Volute A B B C C 

Exducer Height (mm) 3.75 3.75 4.25 3.50 3.75 

Inducer Height (mm) 12.61 11.22 11.16 10.71 10.87 

Mass Flow Rate (kg/s) 0.055 0.055 0.055 0.055 0.055 

T-S Pressure Ratio 2.22 2.22 2.22 2.22 2.22 

T-S Efficiency 70.94% 72.32% 72.11% 70.55% 71.10% 

 

In all simulation cases, the predicted T-S pressure ratio is equal to 2.22, as all 3D 

simulations were performed with the fixed inlet total pressure of 0.45 bar and 

outlet static pressure of 1 bar. With such boundary conditions, the mass flow rate 

through the compressor is a parameter that will be predicted by the 3D simulation. 

Note that the inducer height was optimised in each case to ensure that the design 
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mass flow rate of 0.055 kg/s was achieved. Thus, different inducer heights were 

expected for each case, shown in Table 5.5. According to the 0D and 1D 

numerical analysis of IBC system, the higher compressor efficiency is beneficial 

to the IBC performance. Thus, the proposed compressor in simulation case 2 that 

delivers the maximum efficiency of 72.11% in all cases was selected as the 

compressor design for the IBC prototype.  

Note that its predicted efficiency is still quite low. This is because the insufficient 

amount of simulations cases was considered in this section. In other words, the 

further optimisation should be taken to improve the selected the compressor. 

Nonetheless, according to the project plan, there is no enough time to perform 

the further compressor optimisation before the scheduled IBC rig tests. In 

conclusion, even though the best design among all alternative compressors only 

delivers 72.11% total-to-static efficiency, it was still selected and manufactured 

for the IBC prototype. 

5.5.2 Turbine 3D Modelling Results 

Since the turbine design target is to increase its efficiency instead of altering the 

pressure ratio, only turbine exducer height is trimmed in the research to adjust 

flow capacity. Furthermore, the resulting flow changes require the turbine volute 

to be re-sized, so that the uniform flow field could be generated at the inlet of the 

rotor. The volute sizing can be achieved by altering its area to radius ratios. In 

summary, the turbine exducer height and the volute A/R ratio are selected as the 

design variables. 

The volute employed in the selected commercial turbine is considered as the 

baseline. In other words, the cross-section shape of the commercial volute 

remains unchanged. The A/R ratio varies in a wide range from 13 to 21 mm. 

In theory, the multiple heights of turbine exducer should be investigated to 

achieve the optimal design. However, due to the limited time available for the 

turbine design, only turbine rotor with the exducer height of 16.1 mm is 

considered as the turbine design in this research, that is, the commercial turbine 

rotor is trimmed down by 1 mm at the impeller exducer.  
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As the described model settings, total pressure of 1 bar and total temperature of 

1023 K are imposed as the inlet boundary of the turbine, while only static pressure 

is applicable at the outlet boundary. However, the turbine design target is T-T 

pressure ratio. In addition, since there is no heat exchanger model simulating with 

the turbine, the extent to which the outlet static pressure is recovered from the 

available total energy is unknown. Thus, the sweep of T-S pressure ratio is 

investigated from 2 to 2.2 bar with an interval of 0.2 bar, to ensure that the turbine 

operating condition of T-T pressure ratio of 2 in tests is covered by simulations. 

In other words, the static pressure at the turbine outlet is set as 0.56, 0.5, and 

0.45 bar. 

With the described model settings, the turbine mass flow is a parameter that the 

CFD simulations will estimate. Thus, the turbine design candidate is selected for 

the IBC rig test only when the predicted mass flow rate is 0.055 kg/s and T-S 

efficiency is the maximum among all candidates. 

Figure 5.21 shows that T-S efficiency is a function of volute A/R ratio. The blue 

line with circle markers represents the simulation case with T-S pressure ratio of 

1.8, that is, imposing 0.56 bar as the static pressure at the turbine outlet. Whereas, 

the red line with square markers and the green line with triangle markers are 

cases with that of 2 and 2.2, respectively. The black dashed line represents the 

alternative turbine designs that deliver the mass flow rate of 0.055 kg/s at given 

operating boundaries. In Figure 5.21, except the simulation case with total-to-

static pressure ratio of 1.8, T-S efficiency increases with the reduction of the 

volute A/R ratio. Regarding the case of T-S pressure ratio of 1.8, the optimal T-S 

efficiency of 79.52% is reached when the volute with A/R ratio of 13.5 mm is 

employed. In addition, Figure 5.21 shows that the predicted mass flow rate is a 

monotonically decreasing function of the volute A/R ratio, that is, the turbine mass 

flow rate increase with the volute volume. Since the mass flow rate at the design 

operating point is 0.055 kg/s, any alternative turbine design represented by the 

black dashed line can be considered as the turbine design for the IBC prototype. 

Thus, the rotor with the exducer height of 16.1 mm and the volute with the A/R 

ratio of 15.5 mm are selected for the final turbine design, as it delivers the optimal 

performance at the design operating point.  
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Figure 5.21 Effect of volute A/R ratio on the turbine T-S efficiency 

 

5.6 In-house Compressor Design  

In the previous section, a compressor design with T-S efficiency of 72.32% at the 

design operating point was selected as the IBC compressor for tests. Note that 

its efficiency is relatively low comparing to the maximum efficiency of typical 

centrifugal compressors – around 80%. Thus, during the IBC tests, a new 

centrifugal compressor was designed from scratch and optimised in order to 

deliver higher efficiency at the design operating point. Although it cannot be 

manufactured and tested due to the project budget limitation, the corresponding 

benefits for IBC systematic performance can be evaluated by 1D numerical 

simulations. 
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Similar to the compressor, the selected turbine design in the previous section 

should be also optimised further. However, the project plan for this research is 

unable to include the turbine optimisation due to the time limitation. Thus, only 

compressor design and optimisation were performed in this research and the 

corresponding approach is considered as the example to demonstrate the 

capability of designing and optimizing. 

In this research, the compressor rotor preliminary design was generated by a 

program available in ANSYS, referred as VISTA CCD. It is developed to generate 

rotor one-dimensional meanline design of a centrifugal compressor with the given 

machine duty, such as mass flow, pressure ratio, etc. In addition, ANSYS have a 

function to convert the produced 1D impeller design to a 3D impeller geometry 

with some initial guesses, such as the impeller camber and thickness distributions. 

Based on the preliminary 3D compressor design, the compressor impeller and 

volute can be optimised to further improve its performance at design conditions.  

The optimisation process needs to repeatedly modify the impeller shape and 

analyse the corresponding aerodynamic performance, until the optimal 

performance is achieved. Therefore, extensive potential candidates have to be 

investigated, which requires tremendous amount of the computational time. In 

addition, due to the complexities of turbomachinery blade shape, multi-variables 

should be utilized to define the blade geometry. As a result, the selected 

optimisation method should be able to solve the multi-variables optimisation 

problem. Moreover, the main difficulty of turbomachinery design optimisation is 

that the objective function has numerous local optimums, due to the complex flow 

structures and geometrical parameters. Thus, based on the nature of the 

optimisation problem in this research, genetic algorithm optimisation was 

selected to perform the compressor design optimisation. 

5.6.1 Genetic Algorithm Optimisation 

Genetic algorithm (GA) optimisation is metaheuristic inspired by the process of 

natural selection, which was initially introduced by John Holland in 1975 and 

developed by Goldberg in 1989. Then, it has been employed for solving numerical 
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optimisation problems in a wide variety of application fields including engineering, 

biology, economics, agriculture, business, telecommunications, and 

manufacturing [97]. Generally, the genetic algorithm is designed to drive a 

population of candidate solutions of an optimisation problem evolve toward better 

solutions. Essential differences that distinguish GA from other optimisation 

methods are that GA allow to cover the entire design space and thus reduce the 

probability to get trapped in a local minimum [98, 99]. In addition, this theory 

basically relies on the notion that the genetic material exchanged by specimen 

with favourable genetic predisposition will result in superior offspring over the 

course of several generations. 

 

Figure 5.22 Flowchart of the genetic algorithm principle 

Figure 5.22 depicts the operational principle of a standard GA. At beginning of 

the process, a pool of initial random population of N is generated within the 

boundaries of the design space. Each individual in the initial pool is encoded in 

binary as strings of 0s and 1s. Then, a solver and objective function are used to 
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evaluate each individual so that the favourable individuals can be selected as 

parents for the next generation. The corresponding binary strings, referred as 

genetic material, is subsequently mutated and altered by the genetic operators – 

crossover and mutation. By doing so, the new set of individuals are created and 

considered as the next generation. It is followed by an evaluation of each new 

individual. The whole process will be terminated when the stopping criteria is 

reached. In this research, the compressor optimisation stops when the maximum 

compressor efficiency in each generation is converged. 

5.6.1.1 Initialization 

As discussed above, the initial population is generated randomly within the 

boundary of the optimisation problem. Population size is vital parameter in GA 

optimisation program, especially considering the evolutionary computation and 

the quality of the results. The population size of candidate solutions depends on 

the nature of the optimisation problem. The ‘small’ population size could guide 

the algorithm to poor solutions. However, the corresponding computation cost 

would increase with the population size. Thus, a trade-off should be achieved in 

order to feed the algorithm with ‘enough’ candidates, thereby obtaining ‘good’ 

results. ‘Enough’ is directly related to instances in the search space and diversity 

[126]. Rao [99] claims that the size of the population should be 2 to 4 times of the 

number of design variables 𝑛. Schaffer, et. al. [127] intended to find out the 

optimum parameter setting for a binary GA. The discrete sets of parameter values 

for the population size, mutation rate, crossover rate, and the number of 

crossover points have been investigated. Due to a wide range for each GA 

parameter, a total of 8400 parameter combinations were adopted by GA to solve 

a small set of numerical optimisation problems. With the consideration of the 

computation cost and the final optimum solution for each parameter combination, 

they found that the best on-line performance resulted for the following parameter 

settings: population size 20-30, crossover rate 0.75-0.95, and mutation rate 

0.005-0.01. It should be noted that the best parameter settings for each numerical 

test suite are quite similar. In other words, the best parameter settings were 

independent of the optimisation problem to some extent.  
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5.6.1.2 Selection 

During each successive generation, the superior individuals are selected by the 

selection operator to breed a new generation. Indeed, the selection operators 

should be properly chosen in order to guide the evolution in a desired direction. 

There are many approved selection operators built in various selection criterions.  

The roulette-wheel selection is frequently used in genetic algorithms, due to its 

simplicity of implementation and straightforward interpretation [128]. Its selection 

mechanism is that the fitter individuals is more likely to be selected and will go 

forward to for the mating pool for the next generation. In other words, this method 

evaluates the probability of selection based on its fitness. It can be briefly 

described as follows. Assuming there are 𝑁 individuals in a generation and the 

corresponding fitness is 𝑓𝑖 > 0 ( 𝑖 = 1,2, … , 𝑁). A percentage of total fitness is 

thus given as 

𝑝𝑖  =  
𝑓𝑖

∑ 𝑓𝑖
𝑁
𝑖=1

  (𝑖 = 1,2, … ,𝑁) (5.8) 

These percentage fitness values can then be used to size the sectors of each 

individual in a roulette wheel. The selection of an individual is equivalent to 

choosing randomly a point on the wheel and locating the corresponding sector. 

By doing so, it is achieved that the better fitted an individual, the larger the 

probability of selecting and mating. 

The rank selection is also fitness-based selection method. Unlike the roulette-

wheel selection assigning the selection probability proportional to the individual 

fitness, the rank selection rates the fitness of each individual and then the 

individual’s selection probabilities are allocated by a mapping function according 

to its rank [129]. Although the mapping function could be linear (linear ranking) or 

non-linear (non-linear ranking), the rank selection, generally, leads to populations 

of larger variability. This is because, with a specified mapping function, the 

selection probabilities would be same whether the fittest candidate is ten times 

fitter than the next fittest or 0.01% fitter. Thus, this selection strategy prevents 

premature coverage by tempering selection pressure for large fitness differentials 
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that occur in early generations. Conversely, the selection pressure could be 

amplified when the small fitness differences are found in later generation. 

However, this method can lead to slower convergence, because the best 

chromosomes do not differ so much from other ones [130]. In other words, the 

rank selection could be computationally expensive. 

The tournament selection is probably the most widely used selection strategy in 

evolution algorithms due to its efficiency and simple implementation [131]. The 

tournament selection starts with randomly picking 𝑁 individuals in the existing 

population and staging a tournament to determine which one get selected. 𝑁 is 

the tournament size, commonly set to 2. The selection procedure is that a random 

value between zero and one, called as the probability parameter, is generated 

and, then, compared with a pre-determined selection probability. If the random 

value is less than or equal to the pre-determined selection probability, the fittest 

individual wins and will be selected as one of the next generation population. 

Otherwise, the weakest individual is chosen. The probability parameter is able to 

preserves diversity of each generation, although keeping diversity may 

deteriorate the convergence speed. In practice, the probability parameter is set 

to be greater than 0.5 in order to favour fittest individual. The tournament 

selection has several benefits: it provides easily adjustable selection pressure, 

keeps low probability of dominating by the large fitness individuals, and no need 

to scale the individuals’ fitness to perform the selection.     

5.6.1.3 Crossover & Mutation 

After establishing the mating pool by the selection procedure, the two basic 

genetic operators – crossover and mutation, are utilized to produce child 

generation based on the parental generation in the mating pool.  

The mutation operator is designed to maintain genetic diversity in each 

generation and prevent the algorithm trapping in a local minimum by stopping the 

solutions becoming too close to one another. Mutating can be achieved by 

altering one or more gene values in individuals’ chromosomes from its initial state. 

By doing so, the generated individuals in child generation may change entirely 
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from the parental generation. In other words, the mutation is able to introduce a 

random walk through the entire search space and ensures that the probability of 

attaining any potential solution is greater than zero. The possibility of mutation is 

defined by a mutation rate – 𝑃𝑚. It should be noted that the mutation rate should 

be set at a low value to prevent losing ‘good’ individual [132]. 

The crossover is a process of taking more than one parental individual and 

producing a child individual. It evolves exchanging the genetic material of parental 

individuals, allowing reproduce high quality notions according to their 

performance and crossing these notions with many other high-performance 

notions from other individuals. Thus, it encourages the algorithm evolve towards 

better solutions. 

In summary, an example of crossover and mutation is demonstrated in Figure 

5.23. 

 

Figure 5.23 Crossover and mutation operations in genetic algorithm 

5.6.2 Compressor Design and Optimisation 

The in-house compressor design process consists of two stages. At first stage, 

the preliminary rotor geometry was generated with the design requirements and 

sensible guesses for the geometry parameters. Then, it was optimised with the 

vaneless diffuser and volute by using the genetic algorithm optimisation method. 

The optimised compressor design was considered as the baseline for the second 

stage optimisation. The aim is to optimise the compressor impeller shape to 
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further reduce various energy loss during the compression process. The resulting 

design is the final in-house compressor design that will compare with the trimmed 

commercial compressor.  

5.6.2.1 Preliminary Design Optimisation 

In this research, the preliminary rotor design was produced by ANSYS VISTA 

CCD, in the consideration of the compressor duty at the design conditions. 

However, the process still requires initial guesses on the compressor 

aerodynamic data and impeller geometry, such as incidence angle at shroud, hub 

diameter, vane inlet angle, etc. It should to be noted that the program developers 

claim that the VISTA CCD aims to avoid over-sophistication and the potentially 

frustrating data preparation. This is especially beneficial at the very beginning of 

the compressor design, as the only available design requirements in early phase 

are the required pressure ratio and mass flow, a speed constraint, and perhaps 

one or two geometric constraints. Thus, in order to reduce the required data, the 

default data settings have been sophistically tuned and, therefore, are reliable for 

the preliminary rotor design.   

 

Figure 5.24 ‘Duty and Aerodynamic Data’ settings for preliminary rotor 

design 
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Figure 5.25 ‘Gas properties’ settings for preliminary rotor design 

 

Figure 5.26 ‘Geometry’ settings for preliminary rotor design 

All user interfaces of this commercial program are shown in Figure 5.24, 5.25, 

and 5.26, which contain the date settings used in this research. In ‘Duty and 

Aerodynamic Data’ tab, the pressure ratio of 2.22 and mass flow of 0.055 kg/s 
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was considered as the design condition. At the inlet, the temperature and 

pressure were fixed as 60 °C and 0.45 bar. However, as the target of the in-house 

compressor design is to deliver required pressure ratio with the imposed inlet 

boundary conditions at mass flow of 0.055 kg/s, there is no constraint on the 

compressor rotational speed. Thus, the rotational speed was selected as the 

design variable. Regarding the working fluid, air was selected with the 

assumption of ideal gas. Due to the limited computational resource, only 

backsweep angle at the compressor shroud was defined as the design geometry 

variable. The rest of the required settings in ‘Geometry’ tab was specified by 

referring to the impeller geometry parameters of the trimmed commercial 

compressor. Due to the benefits of VISTA CCD described herein, the default 

value was kept for the data settings which were unspecified in this section.  

 

 

Figure 5.27 Flowchart of the compressor preliminary design optimisation 

process 
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Since VISTA CCD only produces a preliminary rotor design, the diffuser and 

volute are required to perform the compressor 3D simulations. In this research, 

the vaneless diffuser is employed downstream of the rotor. The diameter of the 

diffuser is considered as a design variable for optimisation. Regarding the volute, 

the cross-section shape is designed as same as the volute of the selected 

commercial compressor, shown in Figure 5.9, defined by a circular arc in three 

quadrants and a square in the fourth quadrant. The area to radius ratios is 

optimised for the compressor efficiency. 

In summary, the preliminary compressor design optimisation process is shown in 

Figure 5.27. It shows that the GA optimisation algorithm firstly generates the 

value for the four selected design variables. Then, the rotational speed and 

backsweep angle are fed into VISTA CCD to generate the rotor geometry. The 

rest of the required settings for VISTA CCD are shown in Figure 5.24, 5.25, and 

5.26. The A/R ratio and diffuser diameter are utilized to generate the vaneless 

diffuser and the volute. Afterwards, the rotor, vaneless diffuser, and volute 

proposed in the previous step are assembled in the pre-processor and 

conditioned by the described model setting in Section 5.3.1, except the outlet 

boundary condition. Instead of specifying the static outlet pressure, the mass flow 

rate of 0.055 kg/s is imposed at the compressor outlet for all compressor design 

candidates in the optimisation process. By doing so, the T-S pressure ratio has 

to be approximated by ANSYS CFX solver and included in the optimisation cost 

function to ensure that the optimal compressor design delivers the T-S pressure 

ratio falling within a range of ± 5% error in T-S pressure ratio target of 2.22. In 

addition, the T-S efficiency is also approximated by ANSYS CFX solver. Then, 

the cost function, expressed as Eq. 5.9, is used to evaluate the compressor 

design and, therefore, the GA optimisation algorithm is able to produce the 

population for the next generation. Note that high penalty, up to 10, is given when 

the restriction for T-S pressure ratio is unsatisfied. Regarding the GA parameter 

setting, the population size is set as 20, while crossover and mutation rate are 

selected as 0.8 and 0.01, respectively. The tournament selection is employed at 

the selection operator for this compressor optimisation, due to its advantage 

described in previous section. Regarding the optimisation stop rules, three criteria 

are defined as follows: 1) maximum number of generations (16) is reached, 2) 
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the average fitness value of the current generation is <10E6 higher than that of 

the previous generation, 3) the best fitness value does not change within the last 

three generations. The GA optimisation will stop when any one of the afore-

mentioned criteria is met.   

Cost Function = {
− T-S Efficiency, if  2.33 ≥ T-S PR ≥ 2.11

10, otherwise
 (5.9) 

Figure 5.28 demonstrates the definitions of all presented compressor parameters 

in this optimisation process. 

 

 

Figure 5.28  Definitions of all presented compressor parameters   
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Figure 5.29 shows that the compressor preliminary design optimisation took 231 

different design variants, which is more 11 generations, to reach the convergence. 

In other words, the compressor efficiency settles down after initially showing a 

large spread, due to the nature of GA optimisation algorithm. However, there are 

still outliers until the end of the optimisation. This is caused by the existence of 

mutation operator.  

 

Figure 5.29 Optimisation results showing convergence of T-S efficiency 

and T-S pressure ratio 

According to the IBC 0D and 1D simulations results, the higher compressor 

efficiency is, the higher net work the IBC system delivers. Thus, the candidate 

with the maximum efficiency of 74.47% is selected as the preliminary compressor 

design, which is 2.15 percentage points higher than that of the trimmed 

commercial compressor. The primary geometric information of the selected 

compressor design is listed in Table 5.5, in comparison with that of the trimmed 

commercial compressor. In addition, Figure 5.30 shows the geometry 

comparison between the preliminary compressor design and the trimmed 

commercial compressor – (a) blade-to-blade view near hub (20% span), (b) flow 



 

Chapter 5 – Compressor and Turbine Design 

208 

passage shape comparison, and (c) blade 3D geometry comparison. In subplot 

(a), the M-Prime on the X-axis represents the radius normalized distance along 

the meridional curve from the leading edge (LE) and trailing edge (TE), while 

Theta on the Y-axis is circumferential coordinate of the blade surface in a 

cylindrical coordinate system. It can be clearly seen in Figure 5.30 (b) that the 

rotor height of the preliminary compressor design is shorter than that of the 

trimmed commercial compressor, while the blade passage is wider.  

 
 

 

(a) 
 

  

(c) (d) 
 

Figure 5.30 Geometry comparison between the preliminary compressor 
design and the trimmed commercial compressor 
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5.6.2.2 Compressor Blade Optimisation 

The second optimisation run is to improve the performance of the preliminary 

compressor design by optimizing the blade shape, as the blade shape of the 

preliminary compressor design was generated by VISTA CCD with some default 

settings. Thus, it is necessary to properly design and optimise the blade shape. 

The optimised vaneless diffuser and volute generated in the first optimisation 

process were employed and remained as unchanged through the second 

optimisation run. In addition, the 3D modelling boundary conditions were set as 

same as that in the first optimisation run.  

The settings of GA optimisation algorithm used in the first optimisation run was 

also used for the blade shape optimisation, as the same amount of the design 

variables were employed. The design variable selection in this optimisation 

referred to the recommendation in Tüchler’s research [133]. He performed a 

comprehensive compressor blade design optimisation at multiple operating 

points and investigated the importance of each geometric parameter of the 

compressor blade. However, given the computational cost, only four blade 

parameters were selected as the design variables, referred as 1) main blade inlet 

angle at shroud, 2) splitter inlet angle at shroud, 3) backsweep angle at shroud 

and 4) stack position for both main blade and splitter. These four design variables 

are depicted in Figure 5.31. It is important to note that the rotational speed of 

112,900 rpm were imposed, as the previous compressor optimisation shows that 

the selected preliminary compressor is able to deliver highest efficiency among 

all candidates at the rotational speed of 112,900 rpm. 

The cost function in this optimisation is expressed by Eq. 5.10 and the 

optimisation target is to minimize the cost function. As can be seen in Eq. 5.10, 

the narrower tolerance band of T-S pressure ratio, which is ± 1.5% error in T-S 

pressure ratio target of 2.22, was applied in cost function. 

Cost Function = {
− T-S Efficiency, if  2.25 ≥ T-S PR ≥ 2.19

10, otherwise
 (5.10) 
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Figure 5.31 Parametrisation of the presented design variables 

Figure 5.32 shows the predicted performance of all compressor design 

candidates generated by GA optimisation. In total, the compressor blade 

optimisation investigated 320 candidates, which is 16 generations. It should be 

noted that the maximum number of generations is set as 16. Thus, it indicates 

that the maximum number of generations should be increased so that the fitness 

value can be converged. However, the intention of developing in-house 

compressor design process is to demonstrate the capability of designing and 

optimizing. In addition, due to the limited time, the best candidate in the final 

generation was selected as the final in-house compressor design.  

The optimisation results show that with the growth of generations, the compressor 

T-S efficiency gradually converged and the corresponding maximum at each 

generation continuously increased. Regarding compressor T-S pressure ratio, 

since high penalty was given to the candidates that delivered T-S pressure ratio 

outside of the tolerance band, the compressor design requirements were 

achieved when the optimisation process approached the termination. 
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Figure 5.32 Optimisation results showing convergence of T-S efficiency 

and T-S pressure ratio 

In this optimisation, the maximum T-S efficiency of 77.46% was expected and the 

corresponding blade shape was selected as the final compressor design. In other 

words, the compressor blade optimisation delivered 3.20 percentage points of T-

S efficiency improvement, comparing to the preliminary compressor design. At 

design operating points, T-S pressure ratio delivered by the final compressor 

design is 2.20. Figure 5.33 shows the geometry comparison between the 

preliminary and the final compressor – (a) blade-to-blade view near hub (20% 

span) and (b) blade 3D geometry comparison. During compressor blade 

optimisation process, the hub and shroud curve are kept unchanged. Thus, the 

flow passage of the final compressor design is same as that of the preliminary 

design. It can be clearly seen in Figure 5.33 (a) that the backsweep angle near 

hub of the final compressor design is larger than the preliminary. To be specific, 

due to the compressor blade optimisation, the backsweep angle at the hub 

increase from 25.25 to 31.34 degree, shown in Table 5.6.  
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Figure 5.33 Geometry comparison between the final compressor design 

and the preliminary compressor design 

The primary geometric information of all alternative designs is listed in Table 5.6. 

It should be noted that since the second optimisation run is to only optimise the 

impeller geometry. Thus, the compressor rotor and volute geometry maintain 

unchanged during the optimisation process. 

Preliminary 
Compressor 

Design 

Final 
Compressor 

Design 
 

  Preliminary Compressor Design                                  Final Compressor Design 



 

Chapter 5 – Compressor and Turbine Design 

213 

Table 5.6 Primary geometric information of all alternative design 

Geometric Parameters Final Design 
Preliminary 

Design 
Trimmed 

Compressor 

Rotational Speed (rpm) 112900 112900 125000 

Backsweep Angle at Shroud (deg) 52.72 39.83 34.00 

Backsweep Angle at Hub (deg) 31.34 25.25 27.78 

A/R Ratio 9.27 9.27 6.50 

Diffuser Diameter (mm) 114 114 130 

T-T Efficiency 79.13% 75.83% 73.23% 

T-S Efficiency 77.67% 74.47% 72.32% 

T-S Pressure Ratio 2.20 2.26 2.24 

Mass Flow Rate (kg/s) 0.055 0.055 0.055 

Hub Diameter (mm) 12.70 12.70 14.47 

Inducer Height (mm) 13.57 13.57 11.41 

Inducer Diameter 39.75 39.75 37.29 

Exducer Height (mm) 5.20 5.20 3.75 

Exducer Diameter (mm) 66.94 66.94 65.00 

Axial Length (mm) 21.79 21.79 25.11 

 

5.6.2.3    Entropy Generation Analysis of Compressor Designs 

In previous sections, preliminary and final optimised compressor designs are 

presented with the optimisation procedures. The 3D simulations show that the 

both in-house compressor designs have higher efficiency than that of the trimmed 

commercial compressor presented in Section 5.5.1. Thus, in this section, a loss 

examination based on the entropy generation analysis is performed to give traces 

of the reasons for performance improvement.  

First, entropy production over inlet pipe, impeller, diffuser, and volute is evaluated 

for three compressor designs – trimmed commercial design, preliminary 

compressor design, and final optimal design. Figure 5.34 shows the breakdown 

of entropy production of each compressor design. The trimmed commercial 

compressor is selected as the baseline. Thus, all data is normalised to the total 

entropy production of the trimmed commercial compressor for the sake of clarity. 
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Figure 5.34 Breakdown of entropy generation at each section of 

compressor  

It should be noted that the entropy production over the inlet pipe for all three 

design are too tiny to be spotted in Figure 5.34. In other words, at the design 

conditions, the energy loss in the inlet pipe is negligible for all three candidates. 

Similarly, all candidates achieve relatively low irreversibility across the volute, 

while the majority of the energy loss is found across the impeller and diffuser. The 

final optimal design reduces approximately 40% of total entropy production of the 

baseline, which approximately 21 and 19 percentage points of the reduction are 

contributed by the optimised impeller and diffuser, respectively. Since final 

optimal compressor design is generated based on the preliminary design by 

optimising the compressor blades, it can be stated that 9 percentage points 

reduction of the entropy generation is achieved by the blade optimisation, shown 

in Figure 5.34. It should be noted that although the diffusers of both preliminary 

and final designs are identical, the entropy generation difference of around 7 

percentage points are found across the volute. This is because that optimising 

the compressor blade leads to the change of the flow field at the rotor outlet, 

which consequently causes the reduction of energy loss in the downstream 

diffuser. Indeed, this phenomenon is expected, as the target of the blade 

optimisation is to improve the overall efficiency of the compressor, that is, 

minimising the irreversibility at all sections of the compressor is achieved by 

optimising the blade geometry.  
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To facilitate the understanding of loss mechanisms on the local level, Tüchler 

[133] proposed to use the concept of the local entropy generation rate. It 

decomposes losses into contributions through dissipation and heat transfer. It 

can be further differentiated in a mean-time and a fluctuating term, expressed as 

follows: 

�̇�𝑃𝑅𝑂𝐷 = �̇�𝑃𝑅𝑂𝐷,𝐷 + �̇�
𝑃𝑅𝑂𝐷,𝐷′

+ �̇�𝑃𝑅𝑂𝐷,𝐶 + �̇�
𝐼,𝐶′

 (5.11) 

Table 5.7 Comparison of blade-to-blade view of Mach number and 

normalized local entropy generation rate near the shroud (80% span) and 

midspan (50% span)  
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Table 5.7 shows that Mach number and local entropy generation rate are 

evaluated at the blade-to-blade planes near the shroud (80% span) and midspan 

(50% span). This evaluation is conducted at all three compressor designs in order 

to demonstrate the reasons of performance gains of in-house compressor 

designs. The local entropy generation rate is normalized to the maximum entropy 

generation rate at the trimmed commercial compressor.  

At midspan of blade-to-blade plane, the flow field in the trimmed commercial 

compressor reveals separation bubbles near the trailing edge of both main blade 

and splitter (marked 1 in Table 5.7). These separation bubbles are characterised 

by subtle low flow velocity, called stall cells.  Looking at the corresponding entropy 

generation, it can be found that there is a pronounced entropy generation at the 

region between the stall cells and the flow encircling it (marked 2 in Table 5.7). 

However, although even bigger stall cells are found at similar region for the 

prelimary design (mark 3) and final design (mark 5), the corresponding entropy 

generation is lower (mark 4 and 6 for the prelimary and final designs, respectively). 

This is because that for both in-house designs the velocity of the flow encircling 

the stall cells is lower than that of the trimmed commercial compressor. It should 

be noted that, for all designs, afore-mentioned stall cells are enlarged near the 

shroud (80% span) and build up back to the flow passage. Consequently, the 

larger entropy generation is found at the edge of these stall cells. However, the 

trimmed commercial design still suffers the highest loss than in-house designs. 

In addition, the entropy generation comparison between the preliminary and final 

design shows that the blade optimisation does lower the irreversibility occurring 

near the trailing edge and, therefore, improve the compressor performance. 

In Table 5.7, the evaluation of the local entropy generation shows that larger 

region of high entropy generation near the blade surface is found at both suction 

and pressure sides of the main blade and splitter for in-house designs. Even 

though, the blade optimisation can contribute to the reduction of high entropy 

generation at both midspan and near the shroud, especially when the marked 

region 7 is compared with the marked region 8, it still means that the further blade 

optimisation of the final optimal design should be performed to enhance the 

compressor performance at the design conditions.  
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5.7 Conclusion 

In order to achieve high turbomachinery performance, the selected commercial 

compressor and turbine are required to be re-sized by trimming impellers. The 

performance of various trimmed compressors and turbines were estimated by 3D 

modelling in ANSYS CFX. Then, the turbomachinery designs with the highest T-

S efficiencies were selected to apply in IBC prototype. 

By reviewing 3D modelling methodology of turbomachinery, the proper settings 

were applied to the compressor and turbine models. To be specific, the detailed 

description of the compressor and turbine impeller geometry was obtained from 

the project partner and the corresponding flow domains were generated in a 

commercial package of ANSYS, referred as the BladeGen code. All boundary 

conditions were imposed in accordance with the IBC design conditions. Since the 

computational grid size and type significantly affect the numerical solution for the 

given 3D simulation problem, meshing sensitivity studies for both the compressor 

and turbine were performed to achieve mesh-independent numerical solutions. 

By doing so, the mesh number of 0.8E+6 was chosen for the compressor rotor 

meshing target, while 1.1E+7 was for the turbine rotor.      

Regarding the compressor impeller trimming optimisation, the selected design 

variables were volute A/R ratio, diffuser diameter, inducer height, and exducer 

height. Due to the limited time, only three volute design were proposed, which 

were generated based upon the selected volute A/R ratio and diffuser diameter. 

Since the pressure was imposed at inlet and outlet boundaries of all compressor 

simulations, the inducer height has to be varied to deliver the design mass flow 

rate for given exducer height. By completing the Design of Experiments (DoE) 

study of the proposed design variables, the optimal compressor design was 

selected for the IBC prototype and the corresponding T-S efficiency was 72.32%. 

On the other hand, the multiple heights of turbine exducer should be investigated 

to achieve the optimal design. However, only one turbine rotor was investigated 

in this research. This is because that there is no enough time to investigate 

various blade trimming. In addition, the 3D simulation results show that this rotor 
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is able to deliver decent T-T efficiency at the design point. Thus, only A/R ratio of 

the turbine volute was optimised. Based on the optimisation results, the rotor with 

the exducer height of 16.1 mm and the volute with the A/R ratio of 15.5 mm are 

selected for the final turbine design. 

Finally, a compressor in-house design and optimisation process was created in 

parallel to the test of the IBC prototype. Although the final in-house design will 

not be manufactured due to the limited budget, the presented compressor design 

and optimisation process can be used to design IBC compressor in the further. 

In addition, this procedure also can be utilized to design and optimise the IBC 

turbine. The compressor preliminary design was generated by VISTA CCD with 

some initial guesses, and optimised by using GA optimisation method. As a result, 

the T-S efficiency of the optimal preliminary design was 74.47%, which is 2.15 

percentage points higher than that of the trimmed commercial compressor. Later, 

the impeller optimisation was performed to further improve the performance of 

the preliminary design. Four impeller parameters were selected as the design 

variables, referred as 1) main blade inlet angle at shroud, 2) splitter inlet angle at 

shroud, 3) backsweep angle at shroud and 4) stack position for both main blade 

and splitter. The optimisation results show that the high-performance compressor 

design was achieved. Its T-S efficiency was 5.35 percentage points higher than 

that of the trimmed commercial compressor. 
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Chapter 6 – Experimental Procedure and 

Results 

 

6.1 Introduction 

All tests throughout this study will be conducted on a steady-state turbocharger 

facility, also known as the gas stand, developed within Powertrain & Vehicle 

Research Centre in University of Bath. This gas stand is designed and developed 

for generating characteristic maps of radial turbochargers. In order to complete 

the proposed tests in this study, this gas stand will be re-configured and installed 

more instrumentations. The design target engine for IBC system is a 2-litre 

turbocharged gasoline engine. The design operating condition is the motorway 

cruise condition. This corresponds to the exhaust flow rate of 0.055 kg/s at 

temperature of 750°C, which will be imposed as the inlet condition of the IBC 

system in tests. However, test parameter sweeps for IBC inlet temperature, inlet 

pressure, coolant temperature and IBC shaft speed will be conducted to 

investigate IBC systemic performance at off-design condition. 

Both the turbine and compressor tested in the study are trimmed versions of the 

commercial turbocharger which were designed and optimised in Chapter 5. The 

other key component – air-to-liquid heat exchanger is provided by the project 

partner. In order to maximize the cooling capacity and minimize the pressure drop, 

novel flow paths are designed by CFD analysis and manufactured by additive 
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manufacturing techniques. The heat exchanger design process will be not 

presented in this research. 

It should be noted that the contents in Section 6.3 have been published as a 

journal paper [134] in Journal of Engineering for Gas Turbines and Power. 

6.2 Test Facility 

In a general summary, the basic gas stand consists of three main modules that 

can be distinguished within the facility: turbine module, compressor module, and 

lubrication module, shown in Figure 6.1. The detailed schematic diagram of test 

facility is demonstrated in Figure 6.2.  

 

Figure 6.1 General turbocharger module arrangement 
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Figure 6.2  Schematic diagram of gas stand facility 

6.2.1 Basic Turbine Module 

The turbine module consists of an air supply, heating system, turbine mounting 

bracket, and gas discharging system, shown in Figure 6.3. 
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Figure 6.3 Turbine module 

The pressurized air of up to 7 bar is supplied externally from the test facility by 

two industrial rotary type compressors, referred as Ingersoll Rand model R110N 

A10.0. The moisture is removed via HHDp 1800 Hankison refrigerated 

compressed air drier. Since the air need to be cooled to a very low temperature 

in the air dehumidification process, the air arriving at the test facility is dry and 

cold (~ 15°C). The mass flow rate and the corresponding pressure are mainly 

controlled by the actuated ball valve – component 3. The downstream systems 

are parallel pipes with motorized butterfly valves installed respectively. There are 

two reasons for such parallel arrangement. First, it reduces the heating burden of 

the downstream electric heaters. At given mass flow rate, the heated air 

temperature is limited due to the maximum heating capability of the electric heater. 

Splitting the air allows two separate electric heaters to heat the air up to the 

required temperature. Second, it provides two independent flows and, therefore, 

enables that twin-entry turbine can be tested in this facility. As can be seen in 

Figure 6.3, each of the parallel supply air branches include 2 differently sized 

differential pressure V-cone mass flow meters - component 6 and 7. By doing so, 

the precision of the mass air flow measurements can be increased, as the smaller 

V-cone is recommended to measure flows in a range between 0.015 kg/s and 

0.15 kg/s while the larger one from 0.04 kg/s to 0.4 kg/s. Thus, the pressured air 

is directed by the 3-way valve to the small V-cone when the mass flow rate is low, 

while directed to the bigger one at high mass flow rate. Downstream of flow 
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sensors, the air is fed into the recuperator where it is heated up by the exhaust 

gas discharging from the tested system. Each recuperator is capable of re-using 

a significant amount of energy from the exhaust flow. This is not only designed to 

save energy, but further relieve the heating burden of the electric heaters. One of 

the electric heaters is designed and manufactured by Axis Design which can 

deliver up to 88 kW thermal power, whereas the second one by OSRAM Sylvania 

up to 96 kW. Note that the maximum temperature of the air at the inlet of electric 

heaters is 350°C. This is because that all electric connections are located in the 

upper part of the heaters. Thus, a temperature sensor is installed upstream of 

each electric heater to monitor the air temperature. If the corresponding 

temperature reaches the maximum tolerable temperature of 350°C, a bypass 

circuit is engaged to mix the exhaust flow with the cold fresh air withdrawn 

upstream from the main motorised mass flow control valve, to reduce 

temperature of the air fed into the hot side of the recuperator. 

Electrically controlled roof extraction fan is employed to discharge the exhaust 

gas from the test cell. By doing so, it keeps the room temperature unaffected by 

the exhaust gas.  

 

Figure 6.4 Compressor module 
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6.2.2 Basic Compressor Module 

The basic compressor module is relatively simple, as typically compressor inlet 

condition in tests is ambient temperature and pressure. Furthermore, there is 

motorised gate valve downstream of the compressor outlet to restrict the working 

fluid, thereby controlling the mass flow rate and generating the backpressure. The 

standard arrangement of the compressor module is shown in Figure 6.4. 

Similar to basic turbine module, there are two mass flow sensors, component 6 

and 7, mounted upstream of the compressor inlet, which is able to achieve high 

measurement precision within a wide mass flow range. To reduce the noise 

generated during the compressor operation, an inline racing silencer, component 

14, is installed at the outlet of the compressor module. 

6.2.3 Lubrication Module 

The lubrication module is designed to lubricate the turbocharger bearings as well 

as absorbing heat. The lubricating oil is conditioned by Regloplas 300s unit. It is 

equipped with variable speed magnetic drive pump to vary the mass flow rate 

and temperature of the lubricating oil. In tests, the oil temperature is controlled to 

remain at 90°C. 

6.2.4 Test Facility Modifications 

Since the basic gas stand is designed to test turbochargers, necessary 

modifications must be made in order to test IBC system. A CAD screenshot of 

the modified test configuration is shown in Figure 6.5.  

The air supply and heating system of the basic gas stand remain unchanged. As 

a result, the working fluid of the IBC system in tests was the air rather than the 

exhaust gas discharging from the turbocharged IC engine. In other words, the 

discrepancy of the gas properties between the fresh air and the engine exhaust 

gas was neglected in the test. The inlet temperature and pressure of the IBC 

system were controlled by electric heaters and the actuated valves, respectively. 
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Figure 6.5 3D review of test configuration 

After the expansion in the IBC turbine, the discharged air is cooled using the 3D 

printed Inconel heat exchanger provided by the project partner, shown in Figure 

6.6. The chilled water is supplied from a cooling system as the coolant. The novel 

flow paths in the heat exchanger contribute to the very high performance of 

approximately 97% effectiveness with a pressure drop of 1.5 kPa at the gas flow 

rate of 0.05 kg/s. Although the prototype of the heat exchanger tested in this study 

was cubic, shown in Figure 6.6, its shape could be very flexible in order to fit into 

the modern vehicles thanks to the selected manufacturing technique of the 

Selective Laser Melting Additive Manufacturing (AM). In addition, the design 

freedom with AM also enables the use of highly efficient heat transfer surfaces 

that offer a better trade-off between pressure drop and effectiveness. Since afore-

mentioned parameters of the heat exchanger significantly influence the inlet 

condition of the IBC compressor, and therefore compressor work as well as IBC 

power output, the heat exchanger is key to the success of the IBC system. 
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Figure 6.6 Selectively laser melted, high performance heat exchanger 

 

Figure 6.7 Turbomachinery housing for IBC compressor and turbine 

In the proposed test, the compressor inlet is connected to the heat exchanger 

outlet, instead of the ambient in the normal turbocharger test. Thus, the exhaust 

gas from the compressor was discharged directly outside the test cell by the gas 

discharging system, instead of feeding into the recuperators. This is because that 

the air temperature at the IBC compressor outlet could be as low as around 45°C 
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and, therefore, it is not worthwhile to recycle the thermal energy in the exhaust 

gas through the recuperators. Regarding the IBC turbomachinery housing, its 

configuration is same as that of the normal turbocharger, shown in Figure 6.7.  

 

Figure 6.8 Modified lubrication system 

In order to control the IBC shaft speed, a Rotrex drive dynamometer is 

mechanically connected to it, shown in Figure 6.5. In other words, the shaft power 

can be extracted from or supplied to the IBC shaft by this dynamometer. A high-

speed torque meter is also attached to the IBC shaft to precisely measure the 

torque and speed. Thus, the measured power is the net power generated by IBC 

system, as the shaft friction loss has been considered by the direct measurement 

method. Note that energy conversion loss should be considered in the 

commercial IBC system, as typically shaft torque generated by the IBC system is 

unable to exploit directly by the vehicle system due to its high rotating speed. 

Thus, for the commercial IBC products, an electric generator is proposed to 

convert the mechanical into electric energy which could be easily stored and 

utilized by vehicle system. However, in the test, no energy conversion loss was 

considered. 

Since the system between the turbine outlet and compressor inlet operates under 

vacuum, the lubrication system must be able to operate under vacuum to avoid 
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oil being sucking into the system during operation. In order to depressurize the 

lubrication loop, a vacuum pump is introduced, shown in Figure 6.8. The vacuum 

pressure is controlled by a PID controller to automatically track a pressure just 

below the compressor inlet pressure. The lubricating oil is heated using hot water 

to give the required viscosity.  A sight glass is installed to monitor the oil exiting 

the bearing housing to ensure there is no excessive aeration. It was proved that 

this system was very successful to limit oil ingestion in the test.  

The entire test facility for IBC system is shown in Figure 6.9. 

 

Figure 6.9 IBC with high speed dynamometer installed in hot gas stand 

6.2.5 Instrumentation 

Generally, the pressure transducers are considered as a cost-effective 

instrumentation to acquire pneumatically averaged pressures. Thus, in tests, the 

pressure transducers were carefully selected based upon the operative ranges 
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and the locations. The pneumatically averaged pressures are achieved by 

installing a ring connected with 4 tapings, shown in Figure 6.10. The taping is 

perpendicular to the tube wall whereas angle between each taping is fixed at 90 

deg. In addition, all transducers were calibrated using a DPI-510 pressure 

calibrator before each test setup. In the IBC system, inlets and outlets of both 

compressor and turbine are the key location where the pressure transducers 

must be installed. 

 

Figure 6.10 Ring for pneumatically averaged static pressure measurement 

Regarding temperature measurements, turbine inlet temperature is measured by 

averaging four K type thermocouples and the outlet temperature using a single K 

type. The main reasons for theirs use are the wide operative range from -200 to 

1250°C and the robustness of reading. Compressor inlet and outlet temperatures 

are measured by averaging four class A PRTs. The configuration of four 

temperature sensors is similar to that of pressure transducers. However, instead 

of building a ring outside the pipe, the temperature sensors are inserted 

perpendicularly to the pipe walls. To be specific, the temperature sensors at 0 

and 180 degrees is inserted at 1/3 of the diameter of the pipe, while 90 degrees 

ones is at 1/2 diameter and 270 one is at 1/4 diameter. Such configuration is 

recommended by SAE J1723 [135]. The temperature reading is a value between 

the static and total temperature. ASME PTC 10 [136] reckon that if the air velocity 
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is below 38 m/s, the velocity temperature is negligible. Since the velocities 

measured were all below this value, the measured temperatures were taken to 

be total temperature. Note that the temperature readings were checked for 

credibility before each test. Faulty or disconnected thermocouples would exhibit 

a constant maximum value or unstable random reading.  

Table 6.1 Instrumentation details 

Parameter Sensor type Sensor Accuracy 

torque Phase shift meter ± 0.0011 Nm 

rotational speed Phase shift meter ± 0.05% 

turbine inlet pressure Pressure transducer ± 250 Pa 

turbine inlet 
temperature 

4 x K type 
thermocouple 

± 2.5°C or 

± 0.75%*T 

turbine outlet pressure Pressure transducer ± 500 Pa 

turbine outlet 
temperature 

K type thermocouple 
± 2.5°C or 

± 0.75%*T 

compressor inlet 
pressure 

Pressure transducer ± 80 Pa 

compressor inlet 
temperature 

Class A PRT ± (0.15 + 0.002∗T) 

compressor outlet 
pressure 

Pressure transducer ± 500 Pa 

compressor outlet 
temperature 

Class A PRT ± (0.15 + 0.002∗T) 

mass flow rate Calibrated V-cone ± 0.5% 

V-cone pressure drop Pressure transducer ± 16 Pa 

V-cone upstream 
pressure 

Pressure transducer ± 280 Pa 

V-cone upstream 
temperature 

Class A PRT ± (0.15 + 0.002∗T) 

 

All pipework was insulated to eliminate the influence of the heat dissipation 

through turbocharger housing and pipes on the temperature measurements error. 

Although there may be no insulation in the commercial IBC products due to the 

corresponding cost, the insulation is necessary in tests. This is because that the 

pipes in test is deliberately designed to be longer than that in the commercial 

products in order to install various sensors. Thus, without any insulation, the heat 
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dissipation in tests could be much higher, thereby significantly diverting the test 

results from the practical use.  

The air mass flow rate is measured upstream of the heaters using V-Cone flow 

meters, highlighted as component 6 and 7 in turbine module (Figure 6.3). The 

IBC shaft torque and speed are measured with a phase shift type torque meter.  

Details of the instrumentation are listed in Table 6.1. 

6.2.6 Performance Analysis 

In the test, compressor and turbine efficiencies cannot be measured directly. 

Thus, following assumptions and formulas were used to calculate them.  

A semi-perfect gas is assumed, that is, the specific heat 𝑐𝑝 at constant pressure 

is assumed to be a function of temperature only. The compressor efficiency and 

work are calculated first, as the measurements related to compressor are reliable. 

Then, the turbine work and efficiency are calculated based on the compressor 

performance analysis. In the following formulas, subscripts 1 refers to the turbine 

inlet, 2 to turbine out, 3 to compressor inlet and 4 to compressor outlet. Since the 

reading of the pressure transducers is the static pressure, the following function 

is used to calculate the total pressure at the compressor inlet. 

 
𝑝3𝑡 = 𝑝3𝑠  ∗  [

𝑇3𝑡

𝑇3𝑠
]
(
𝐶𝑝3
𝑅

)

 (6.1) 

where subscripts 𝑡 refers to total while 𝑠 to static. 𝑅 = 0.281 kJ/(kg K) is the gas 

constant of the working fluid. 

𝐶𝑝 is the specific heat at constant pressure which is determined from the ratio of 

specific heat 𝛾, 

 𝐶𝑝 =
𝛾𝑅

𝛾 − 1
 (6.2) 

where 𝛾 for air is equals to 1.42592 –  8.03974(10−5)𝑇.[137] 
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The compressor total-to-static (T-S) pressure ratio 𝑃𝑅𝑐𝑇𝑆
 is given by 

 𝑃𝑅𝑐𝑇𝑆
=

𝑝4𝑠

𝑝3𝑡
 (6.3) 

Thus, the compressor T-S isentropic efficiency  

 

𝜂𝑐𝑇𝑆
=

(𝑃𝑅𝑐𝑇𝑆
)
𝛾−1
𝛾 − 1

𝑇4𝑡

𝑇3𝑡
− 1

 (6.4) 

The compressor work 𝑤𝑐 is calculated using 

 
𝑤𝑐 =

𝑐𝑝3
+ 𝑐𝑝4

2
(𝑇4𝑡 − 𝑇3𝑡) (6.5) 

Given the difficulty in accurately measuring the temperature of the flow at the 

turbine exit, the turbine efficiency and work cannot be calculated by turbine outlet 

measured temperature. The typical approach in turbocharger testing is to assume 

that the turbine work is equal to the compressor work times a factor to account 

for mechanical losses. However, in IBC tests, the shaft power was directly 

measured by the torque meter, which the shaft mechanical loss has been 

considered. Thus, the turbine work 𝑤𝑡 is assumed as 

 𝑤𝑡 = 𝑤𝑐 + 𝑤𝑜 (6.6) 

where 𝑤𝑜 is the measured torque. 

The turbine total-to-total (T-T) pressure ratio is 

 𝑃𝑅𝑡𝑇𝑇
=

𝑝1𝑡

𝑝2𝑡
 (6.7) 

Thus, the turbine T-T isentropic efficiency, 𝜂𝑡𝑇𝑇
 is given by 

 𝜂𝑡𝑇𝑇
=

𝑤𝑡

𝑐𝑝𝑇1𝑡 (1 − (
1

𝑃𝑅𝑡𝑇𝑇
)

𝛾−1
𝛾

)

 

(6.8) 
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6.3 Test Results and Discussion 

For the results analysis below, specific work was introduced to represent the IBC 

performance, as the mass flow rate varied in a wide range at all test conditions. 

Thus, in order to eliminate the influence of mass flow rate discrepancy, the 

measured shaft power was divided by the corresponding mass flow rate to 

conduct the specific work. In addition, the work required to pump the coolant for 

the heat exchanger is not subtracted from the net power, as it is negligible. 

The design operating speed is 125,000 rpm. However, due to the rotordynamic 

issues, the speed was limited to approximately 80,000 rpm. Nonetheless, the test 

results were still valuable, as this is the first experiment test to demonstrate the 

performance of the IBC system for the automotive use. In addition, the test results 

could be utilized to correlate 1D GT-power model, thereby increasing the 

simulation fidelity.  

In conclusion, the baseline conditions of 70,000 rpm, 550°C IBC inlet temperature, 

and 10°C coolant temperature were chosen. Test boundary conditions sweeps 

were conducted for IBC inlet temperature, inlet pressure, coolant temperature 

and IBC shaft speed. 

6.3.1 Test Limitations 

There are two main limitations in all tests conducted in this study.  

The first limitation is the method used to calculate the turbine work and efficiency. 

As discussed above, turbine outlet temperature cannot be used to calculate the 

turbine work and efficiency due to its low-accuracy measurement. Thus, turbine 

work was defined as the differential between the measured shaft torque and the 

measurement-based calculated compressor work. In other words, the turbine 

work presented in tests was equal to the actual turbine work minus the bearing 

losses. By doing so, the turbine performance is underestimated, especially when 

the rotational speed is high and, therefore, the bearing loss is relatively large. 

Thus, calculated turbine work and efficiency are lower than the actual values. 
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Note that thermodynamically calculated compressor performance is unaffected 

by the bearing loss. 

The second one is related to the heat transfer. It is generally agreed that the 

turbocharger cannot be considered adiabatic and the heat transfer results in 

inaccurate measurements of turbocharger flow properties, thereby causing errors 

in the corresponding performance analysis. In the test, heat is transferred due to 

convection from the hot turbine gas to the housing. Then, it can be lost to 

atmosphere, lubricating oil, and cooling water. In addition, all afore-mentioned 

four sinks can be the intermedia to transmit heat finally to the compressor gas. 

Thus, the heat transfer in the test affects the performance evaluation of both 

compressor and turbine, due to the resulting changes of their inlet and outlet 

temperature. Despite of the insulation applied in the IBC prototype, heat transfer 

cannot be completely prevented and still can transmit from the turbine gas to 

compressor gas. 

In terms of IBC tests conducted in this study, the net power generated by IBC 

system was directly measured and, therefore, unaffected by the heat transfer. 

The following analysis only considers the effect on the calculated compressor 

and turbine performance.  

Starting with compressor, it can be seen in Figure 6.5 that the compressor inlet 

is far away from any heat resource. Thus, only heat transfer is the heat loss 

through pipe walls between the measurement location and the compressor inlet. 

It means that the reading of the temperature sensor 𝑇3𝑡 is higher than the actual 

temperature at the compressor inlet. This results in the underestimated 

compressor work (Eq. 6.5) and overestimated compressor efficiency (Eq. 6.4). 

Note that in IBC system tests, the compressor inlet temperature was up 40°C due 

to the high-performance heat exchanger and low coolant temperature. Thus, with 

the insulation, the heat loss through pipes is negligible at compressor inlet.  At 

the compressor outlet, the heat transfer to the compressor gas from housing 

tends to increase 𝑇4𝑡. However, the heat loss to ambient occurring between the 

compressor outlet and the measurement location gives rise to the lower  𝑇4𝑡 

measurements. Overall, 𝑇4𝑡 could be either overestimated or underestimated.  
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Regarding to the turbine, in Eq. 6.6 the error in compressor work leads to an error 

in turbine work in the same direction at the given IBC work output. However, due 

to the heat transfer, 𝑇1𝑡 is overestimated. Errors in both 𝑇1𝑡 and the turbine work 

then lead to an error in the turbine efficiency. 

Since all test speeds, only up to 80,000 rpm, are quite low, the effect of heat 

transfer on 𝑇4𝑡 is the main contributor to errors in the turbocharger performance 

analysis. This is mainly because that at low speeds, both the compressor power 

and the corresponding temperature rise are small. It means that any heat transfer 

will give rise to a large relative error in 𝑇4𝑡 . Although heat transfer to the 

atmosphere will be reduced due to the lower exit temperature, it could still be a 

very significant as a fraction of the compressor temperature rise. Moreover, at 

low shaft speed, the lower gas temperature in the compressor also leads to an 

increased temperature gradient from the turbine gas to the compressor gas, 

which tends to give more heat transfer to the compressor gas. Another factor is 

that the gas velocity will be lower at the lower rotational speed. This leads to 

higher residence time of gas inside the compressor and, therefore, more time for 

heat transfer. 

In conclusion, heat transfer around compressor and turbine can significantly 

affect their performance and any analysis based on the test measurements. More 

importantly, it cannot be determined that the turbocharger performance is 

overestimated or underestimated by the performance analysis, due to the 

uncertainty in measurement of 𝑇4𝑡 . Thus, CFD simulations were required to 

compare against the experimental results for the same reduced mass flow rate. 

The turbine and compressor efficiencies comparison are presented in Figure 6.11. 

The results in Figure 6.11 show that the experimentally determined compressor 

efficiency is higher than the CFD predicted efficiency. Based on the preceding 

discussion, if the CFD is accurate, the main contributor to the overestimated 

performance is the temperature reduction at the compressor exit, causing by the 

heat transfer through pipe wall. According to Eq. 6.5 and Eq. 6.6, this leads to a 

lower compressor work and hence a lower turbine work at given net IBC work. In 

addition, turbine work will be further decreased by subtracting the bearing loss. 
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Therefore, the underestimated turbine work results in a pessimistic turbine 

efficiency. 

 

Figure 6.11 Efficiency comparison of CFD and experiment 

Therefore, due to the uncertainty in the turbomachinery performance analysis, 

experimentally determined efficiency and work of both compressor and turbine 

will not be presented. Instead, CFD predicted efficiencies and work of compressor 

and turbine were used to present the influence of IBC boundary conditions 

changes. Due to the computational cost of CFD simulations, compressor and 

turbine 3D simulations were only performed at part of test operating points. These 

selected test points are enough to demonstrate the influence of the studied 

parameters. Whereas, all test data were utilized to correlate the 1D GT-power 

model, in order to achieve high-fidelity simulation results. 

It is important to note that although compressor and turbine efficiencies calculated 

by the test data are unreliable, the IBC shaft power is known with high confidence. 

This is because it was measured directly by the torque meter and the only source 

of error is the instrumentation measurement accuracy.  
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6.3.2 Test Data Analysis  

1D and 3D simulations presented in previous chapters show that pressure drop 

across the IBC system significantly affect IBC net power. However, only IBC inlet 

pressure was controlled in all tests, excluding the outlet pressure. Since the 

exhaust gas at IBC outlet is discharged directly to the ambient, it is reasonable to 

neglect the changes of IBC outlet pressure. Also, the test measurements show 

that the maximum pressure difference at IBC outlet in all tests was only up to 

0.002 bar. Thus, it was assumed that the IBC outlet pressure was uncharged in 

all tests. 

For all tests, the baseline conditions of 70,000 rpm, 550°C IBC inlet temperature, 

1 bar inlet pressure, and 10°C coolant temperature were chosen. The sensitivity 

study for IBC inlet temperature, inlet pressure, coolant temperature and shaft 

speed were conducted in the test. For each parameter, a sweep was performed 

under the condition that the rest of studied parameters remain as same as the 

baseline. 

Figure 6.13 shows the variation of the IBC measured specific work when the inlet 

pressure increases from 1 bar to 1.05 bar. Figure 6.13 (a) shows that the IBC 

specific work is monotonically increasing function of the inlet pressure. The 0.05 

bar pressure increment at IBC inlet results in the specific work increase of 5.37 

KJ/kg, which is 0.36 kW. Moreover, despite the slight increase of the turbine 

pressure ratio shown in Figure 6.13 (b), the net effect of raised inlet pressure is 

to increase the pressure downstream of the turbine and hence to reduce the 

compressor ratio. The pressure ratio changes are also confirmed by the 1D 

simulations shown in Figure 6.12. In this plot, the predicted operating points are 

presented against the compressor and turbine performance maps. It should be 

noted that since there is no mapping test data for neither compressor nor turbine, 

the corresponding performance maps are generated by 3D simulations. Then, 

the virtual performance maps of the compressor and turbine are introduced in 

IBC 1D models to predict their performance with imposing the test conditions at 

the inlet boundary. It can be clearly seen in Figure 6.12 (a) that the increasing the 

IBC turbine inlet pressure leads to the rise of the turbine expansion ratio, that is, 
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the operating conditions shifts from Point 1 to Point 3. On the contrary, sight 

compression ratio reduction is found in Figure 6.12 (b).  

On the other hand, the CFD simulations in Figure 6.13 (c) show that the 

compressor efficiency reduces in few percentages with the inlet pressure rise. 

Overall, due to the effect of the reduction in both compressor efficiency and 

pressure ratio, the compressor specific work predicted by CFD simulations 

remains roughly same. On the other hand, the increase turbine pressure ratio 

leads to more turbine work, despite its efficiency drop. Therefore, raising the inlet 

pressure is able to increase the net IBC specific work. 

 

   

(a) 

  

(b) 

Figure 6.12 Predicted turbine (top) and compressor (bottom) operating 

points against their own performance maps 
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(a) 

 

(b) 

 

(c) 

Figure 6.13 Specific work and turbomachinery performance as a 

function of IBC Inlet  
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(a) 

 

(b) 

 

(c) 

Figure 6.14 Specific work and turbomachinery performance as a function 

of IBC inlet temperature 
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(a) 

  

(b) 

Figure 6.15 Predicted turbine (top) and compressor (bottom) operating 

points against their own performance maps 

The effect of IBC inlet temperature is given in Figure 6.14. The test results show 

that the IBC inlet temperature rise contributes to increase the net specific work. 

This trend is aligned with the theoretical analysis, that is, the more thermal energy 

the working fluid contains, the more power the heat recovery system could 

potentially recovery. However, in practice, the turbine efficiency decreases due 

to the change in operating point. This tends to comprise the positive impact of 

raised inlet temperature on turbine work and, therefore, the net specific work. It 

should be noted that the turbine efficiency reduction found in this test condition is 

just caused by the operating region where the turbine currently operates. In other 

words, the inlet temperature rise does not necessarily lead to the decrease of the 

turbine efficiency. This can be explained as follows. In Figure 6.15 (a), 1D turbine 

simulation results shows that the increase of the turbine inlet temperature forces 
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the turbine operating point to move towards the region with higher reduced mass 

flow rate and higher expansion ratio, that is, from Point 1 to Point 3 in Figure 6.15 

(a). However, since Point 1 is already in the peak efficiency region of the turbine 

performance map, the afore-mentioned operating shift leads to the reduction of 

the turbine efficiency. Thus, the rise of the turbine inlet temperature could 

contribute to the turbine efficiency growth, when Point 1 operates in the region 

underneath the peak turbine efficiency region. In conclusion, although turbine 

efficiency drop is found, the trend of increased inlet temperature leading to more 

net specific work is clearly demonstrated.   

Figure 6.16 presents the influence of compressor inlet temperature on the IBC 

performance. Although the coolant temperature is selected to perform sensitive 

study, the compressor inlet temperature is more proper parameter to demonstrate 

the combined effect of both the heat exchanger and coolant temperature. As can 

be seen in Figure 6.16 (a), the IBC net work is a monotonically decreasing 

function of the IBC inlet temperature. This is because that, generally the lower 

the working fluid temperature at the compressor inlet, the less the work required 

by IBC compressor for the given pressure ratio. The net specific power does 

indeed trend upwards. 

Note that the compressor reduced mass flow is expressed as follows, 

 �̇�𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑚 ̇ √𝑇𝑐,𝑖𝑛 𝑃𝑐,𝑖𝑛⁄  (6.9) 

where 𝑚 ̇ is the mass flow rate.  𝑇𝑐,𝑖𝑛 and 𝑃𝑐,𝑖𝑛 is the compressor inlet temperature 

and pressure. 
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(a) 

 

(b) 

 

(c) 

Figure 6.16 Specific work and turbomachinery performance as a function 

of compressor inlet temperature 
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(a) 

  

(b) 

Figure 6.17 Predicted turbine (top) and compressor (bottom) operating 

points against their own performance maps 

Thus, based on the definition of the compressor reduced mass flow, it decreases 

with the inlet temperature at given inlet pressure, thereby leading to the increase 

of compression ratio at given rotation speed. However, in IBC test, the IBC 

compressor outlet is directly connected to the ambient, that is, the outlet pressure 

is fixed. Thus, as the result of increasing compression ratio, the compressor inlet 

pressure will decrease. According to Eq. 6.9, the consequence of compressor 

inlet pressure should be the increase of the reduced mass flow and, therefore, 

the decrease of the compression ratio. In conclusion, for IBC system, the 

reduction of compressor inlet temperature has paradoxical effects on the 

compression ratio. However, Figure 6.16 (b) shows the measured compressor 

pressure ratio decreases with the increase of the compressor inlet temperature. 
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It means that at given IBC shaft speed, the changes of reduced mass flow rate 

are dominated by the compressor inlet temperature. Increasing the IBC 

compressor inlet temperature leads to the reduction of the compression ratio. 

This observation can also be found in Figure 6.17 (b). This plot shows the 

compressor performance predicted by 1D simulations. 

In addition, the compressor efficiency is unchanged but the increase in turbine 

efficiency is an effect that should tend to increase net specific power rather than 

reduce it. This is caused by the reduction of turbine pressure ratio which is the 

consequence of compressor pressure ratio drop. 

In Figure 6.18 (a), the test results show that the increase of the rotational speed 

is beneficial to the IBC net work. Figure 6.19 shows the predicted compressor 

and turbine operating points against their own performance maps. It can be 

clearly seen in Figure 6.18(a) that although both compressor and turbine work 

increase with the rotational speed, the higher rise in turbine work leads to the 

overall IBC performance improvement. Since both compressor and turbine 

efficiencies, predicted by CFD simulations, only change slightly, it can be gleaned 

that the resulting increase of the pressure ratio is the dominant contributor to the 

net work increase. This confirms the thermodynamic analysis presented in 

Section 3.5.1.4 that specific work increases with the reduction of turbine outlet 

pressure when both compressor and turbine efficiencies remain unchanged. The 

thermodynamic analysis also shows that at given IBC inlet temperature and 

turbomachinery efficiencies, the optimum turbine pressure ratio can be found to 

deliver the maximum specific power. Thus, it is clear that the present IBC system 

has not reached optimal operating pressure ratio at the rotational speed of 80,000 

rpm. 

 

 

 

 



 

Chapter 6 – Experimental Procedure and Results 

246 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.18 Specific work and turbomachinery performance as a function 

of IBC rotational speed 
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(a) 

  

(b) 

Figure 6.19 Predicted turbine (top) and compressor (bottom) operating 

points against their own performance maps 

The heat exchanger performance is shown in Figure 6.20. Thanks to Selective 

Laser Melting additive manufacturing, over 99% of effectiveness is delivered by 

the tested heat exchanger while only imposing a 2.5 ~ 3.5 kPa pressure drop. 

The IBC thermodynamic analysis shows that the higher effectiveness and lower 

pressure drop of the heat exchanger are desirable for the IBC performance. Thus, 

the present heat exchanger has extraordinary performance that boosts the IBC 

net work. 
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Figure 6.20 Heat exchanger effectiveness and pressure loss versus exhaust 

mass flow rate 
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4.4.5.1. Finally, a high-fidelity GT-power model can be used as a baseline and, 

therefore, perform the system design and optimisation with new operating points. 

6.4.1 Model Description 

A single-stage IBC GT-power model shown in Figure 6.21 is used to correlate 

against the test data. Note that there is no engine model in the proposed model. 

By doing so, the test inlet conditions can be directly imposed at the inlet of IBC 

model. The characteristic maps of compressor and turbine were generated by 

CFD simulations and inserted into compressor and turbine module, respectively. 

The efficiency and pressure ratio maps of compressor and turbines are shown in 

Figure 6.22. Although there are discrepancies between the real characteristic 

maps and the CFD predicted ones, the lack of the compressor and turbine 

mapping test data encourages the use of virtual turbomachinery maps.  

 

Figure 6.21 Numerical model of IBC system 

It is important to note that in IBC system the pressure between turbine outlet and 

compressor inlet is subatmospheric, which is abnormal working conditions of the 
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conventional turbocharger. Thus, the typical approach to mapping compressor 

and turbine is doubtful for IBC application. In order to select a proper mapping 

approach in this study, a corresponding investigation was performed by turbine 

3D simulations. As can be seen in Figure 6.22, there are two different 

characteristic maps for turbine efficiency and pressure ratio. The black solid lines 

represent the characteristic map generated by typical mapping approach that the 

turbine outlet pressure is set as ambient, while the red dash lines are the 

approach with the subatmospheric at the turbine outlet. Clearly in Figure 6.22, 

pressure ratios mapped by two approaches are diverse, especially at higher mass 

flow parameter. In terms of efficiency, larger discrepancy is found at higher 

reduced turbomachinery speed. In conclusion, characteristic maps generated by 

typical mapping approach is unable to represent the turbomachinery performance 

in IBC system. Thus, in this research, both compressor and turbine mapping were 

performed with the subatmospheric at the compressor inlet and turbine outlet, 

respectively. 

Regarding the variations in inlet conditions, the mass flow rate and temperature 

from test were imposed in the IBC GT-power model, while the resulting inlet 

pressure was calculated by the code. At the IBC outlet, the flow temperature and 

pressure were fixed as the measurements from the test. 

The heat exchanger in the proposed model was represented by a single pipe, 

instead of a heat exchanger module with detailed structure. This is because that 

the standalone performance of the heat exchanger is out of research scopes. The 

parameters of interest are the heat exchanger outlet temperature and pressure 

which can be accurately predicted by a single pipe with the proposed pressure 

drop and heat exchanger effectiveness. To be specific, the attribute ‘Friction 

Coefficient Multiplier’ in the ‘Pipe’ module can be controlled to ensure that the 

imposed pressure drop is achieved in the simulation. Whereas, the attribute 

‘Imposed Wall Temperature’ can used to heat or cool the working fluid to the 

temperature set point, by imposing an unrealistic large heat transfer rate between 

the fluid and the wall. By doing so, the heat exchanger outlet temperature and 

pressure can be manipulated directly based on the correlated heat exchanger 
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effectiveness and pressure drop. The correlated process was described in the 

following section.  

Shaft speed was specified to represent the conditions in the test. However, the 

mechanical loss only can be estimated by comparing the predicted power to the 

experimental values, as it is difficult to measure the shaft friction loss in tests. To 

be specific, 1D simulations were firstly performed without any shift loss. Then, it 

assumes that any power difference between the prediction and the measurement 

is caused by the shaft friction loss.  

  

  

Figure 6.22 CFD predicted efficiency and pressure ratio of compressor 

(top) and turbine (bottom) 

Compressor Efficiency and PR Maps 

Turbine Efficiency and PR Maps 
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6.4.2 Model Correlation 

Shaft friction torque, heat exchanger effectiveness and pressure drop in IBC GT-

power model were three key parameters required to correlate against the test 

data. First, heat exchanger effectiveness and pressure drop were fitted by the 

mass flow rate, in order to ensure that the simplified heat exchanger model is 

able to represent its performance in tests. Then, in absent of the bearing friction 

model, the shaft power was predicted by the IBC model that has contained the 

correlated heat exchanger model. By doing so, the friction torque can be 

conducted by comparing the predicted power to the experimental values. 

6.4.2.1 Heat Exchanger Correlation 

In order to simplify the heat exchanger model, a single pipe was introduced as 

the heat exchanger in IBC 1D GT-power model. The pipe outlet temperature and 

the corresponding pressure drop were manipulated by varying the ‘Pipe’ 

attributes ‘Imposed Wall Temperature’ and ‘Friction Coefficient Multiplier’, 

respectively. It was achieved by two independent PID controllers. 

In IBC system, the pressure drop and effectiveness of the heat exchanger are 

key parameters which must be correlated. However, due to the lack of the 

detailed heat exchanger model, it has to assume that the effectiveness in 

simulation is a linear function of the mass flow rate of the working fluid at the hot 

side, while pressure drop is a quadratic function of that, given in Eq. 6.12 in 

Chapter 3. Based on the test data, the best fits for effectiveness and pressure 

drop are shown in Figure 6.23. 

In Figure 6.23, the coefficient of determination, denoted 𝑅2, is presented with the 

regression lines for heat exchanger effectiveness and pressure drop. The 

coefficient of determination is the proportion of the variance in the observations 

that predictable from the predictors. It is a statistical measure of how well the 

regression predictions approximate the real data points. Its value is typically 

between 0 and 1. The value of 0 indicates that the statistical model explains none 

of the variability of the response data around its mean, while 1 means it explains 

all the variability. Thus, generally higher the coefficient of determination the better 
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quality of the regression line. However, the value of  𝑅2 is lower than would be 

desired, that is, 0.3113 and 0.1144 for the regression lines of heat exchanger 

pressure drop and effectiveness, respectively. This is because that a single 

parameter, mass flow rate in this study, is unable to fully describe the heat 

exchanger performance. A better statistical model can be built by introducing 

more predictors. Since a simplified heat exchanger was employed in 1D model, 

the fitted regression lines presented in Figure 6.23 were still introduced to predict 

the heat exchanger performance. The poor quality of the regression lines was 

considered as the model limitations. 

 

 

Figure 6.23 Fitting curves for heat exchanger pressure drop and 

effectiveness 
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6.4.2.2 Mechanical Loss Correlation 

Since there is no bearing friction loss model in the proposed IBC GT-power model 

to predict the mechanical loss, it could be estimated by the power difference 

between the predicted power and the experimental value, with the assumption 

that the frictional power is a linear function of the speed. In other words, a 

constant friction torque was applied for the whole test points in simulations.  

In order to perform the mechanical loss correlation, the experimentally measured 

conditions – IBC inlet temperature, inlet pressure, speed, coolant temperature, 

and flow rate were introduced into the model, shown in Table 6.2. The regression 

lines presented in Figure 6.23 were employed to predict the heat exchanger 

effectiveness and pressure drop. The IBC outlet boundary condition was 

assumed as the ambient conditions. 

First, the IBC shaft power was predicted without any bearing loss at all test 

conditions and the corresponding results are listed as model prediction shaft 

power in Table 6.2. Then, the power difference between the predicted power to 

the experimental values, referred as ∆𝑃, was calculated at each test conditions.  

Thus, the corresponding friction torque can be calculated as follows, 

 𝑇𝑙𝑜𝑠𝑠  =
∆𝑃 

2𝜋 (𝑛𝑟𝑝𝑚 60⁄ ) 
 (6.10) 

where 𝑛𝑟𝑝𝑚 is the turbomachinery speed. 

Given the assumption of the constant friction torque, the average friction torque 

is calculated over all test conditions and, therefore, applied to the shaft as a fixed 

loss. By doing so, the friction torque has been correlated, referred as average 

𝑇𝑙𝑜𝑠𝑠 in Table 6.2.  

 



 
 

 

Table 6.2 Main IBC test and corresponding simulation results 

Test Condition 
Test 

Results 
Model Prediction 

Avg. Tloss = 
0.0234 N-m 

Model Prediction  
with Bearing Loss 

Inlet Prs. 
Inlet 

Temp. 
Coolant 
Temp. 

IBC 
Speed 

Mass Flow 
Rate 

Shaft 
Power 

Shaft 
Power 

∆𝐏 
Calculated 

Torque Loss 
Shaft 
Power 

∆𝐏 Error 

kPa C C rpm kg/s kW kW kW N-m kW kW % 

100.2 550 10 70 0.0475 0.534 0.676 0.14 0.0195 0.51 -0.03 -5% 

102.8 549 10 70 0.0509 0.717 0.916 0.20 0.0272 0.74 0.03 4% 

105.3 550 10 70 0.0537 0.892 1.107 0.21 0.0294 0.94 0.04 5% 

100.2 550 10 65 0.0452 0.475 0.571 0.10 0.0141 0.41 -0.06 -13% 

100.4 549 10 80 0.0514 0.687 0.868 0.18 0.0216 0.67 -0.01 -2% 

102.8 599 10 70 0.0498 0.842 1.046 0.20 0.0279 0.87 0.03 4% 

100.2 654 10 65 0.0435 0.644 0.776 0.13 0.0195 0.62 -0.03 -4% 

100.2 650 10 70 0.0457 0.767 0.903 0.14 0.0186 0.73 -0.03 -5% 

100.3 649 10 80 0.0494 0.977 1.182 0.21 0.0247 0.99 0.01 1% 

100.3 650 20 80 0.0486 0.868 1.081 0.21 0.0255 0.89 0.02 2% 

100.2 550 20 70 0.0466 0.475 0.595 0.12 0.0165 0.42 -0.05 -11% 

105.3 550 20 70 0.0528 0.803 1.012 0.21 0.0286 0.84 0.04 5% 

105.3 550 30 70 0.0519 0.708 0.923 0.22 0.0295 0.75 0.04 6% 

102.8 550 30 70 0.0490 0.554 0.735 0.18 0.0248 0.56 0.01 2% 

100.2 550 30 70 0.0457 0.387 0.520 0.13 0.0182 0.35 -0.04 -10% 

100.3 650 30 80 0.0475 0.709 0.949 0.24 0.0288 0.75 0.05 6% 

100.0 601 10 80 0.0503 0.824 1.027 0.20 0.0242 0.83 0.01 1% 

100.0 600 20 80 0.0496 0.741 0.934 0.19 0.0231 0.74 0.00 0% 

100.0 600 30 80 0.0489 0.663 0.857 0.19 0.0232 0.66 0.00 0% 

100.0 600 40 80 0.0483 0.578 0.784 0.21 0.0246 0.59 0.01 2% 

100.0 600 50 80 0.0473 0.450 0.677 0.23 0.0272 0.48 0.03 7% 

97.6 600 10 65 0.0431 0.529 0.644 0.12 0.0169 0.49 -0.04 -8% 
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6.4.2.3 Performance Evaluation of Correlated Model 

The correlated IBC 1D model were utilized to predict the IBC performance at 

test points, in order to evaluate its fidelity. Thus, IBC inlet temperature, flow 

mass rate, speed, and coolant temperature available from the test 

measurements, shown in Table 6.2, were imposed as the boundary conditions 

of the correlated IBC model. The heat exchanger was represented by a simple 

pipe. Its effectiveness and pressure drop were a function of the working fluid, 

expressed in Figure 6.23. Moreover, a fixed friction torque of 0.0234 N-m was 

applied at the turbomachinery shaft.  

 

Figure 6.24 Scatter plot for measured and predicted IBC power 

The simulation results, referred as ‘Model Prediction with Bearing Loss’, are 

shown in Table 6.2. The predicted IBC power is plotted against the experiment 

measurements in Figure 6.24. The black dashed lines represent the 90% 

proportional prediction interval while blue dashed lines are 95%. It can be 

found in tests that the maximum power generated by the IBC prototype is 

0.997 kW, while the minimum power is 0.387 kW. In comparison to the 1D 

simulation results in Chapter 4, the measured IBC net power was relatively 

low. This is mainly because the presented IBC prototype is designed at the 

operating condition with higher shaft speed and pressure ratio, thereby 

theoretically higher IBC net power. Figure 6.24 shows that, at 68.18% of total 

test points (15 of 22), the absolute prediction error in IBC net power is equals 

or lower than 5%, while that at 86.36% of total test points is equals or lower 
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than 10%. The negative prediction error listed in Table 6.2 represents that the 

correlated IBC model underestimated the IBC performance. The largest 

prediction error of -13% was found at the lowest turbocharger speed and the 

lowest inlet temperature in tests. However, the corresponding ∆𝑃 is only 0.06 

kW. Thus, the prediction error in IBC net power were accepted to be 

satisfactory.  

Since only inlet temperature and mass flow rate were imposed as the IBC inlet 

boundary conditions, the inlet pressure of IBC system was predicted based 

upon operating conditions. The scatter plots of prediction versus test 

observation of IBC inlet pressure, turbine pressure ratio, and compressor 

pressure ratio are shown in Figure 6.25. Regarding the IBC inlet pressure, the 

prediction errors at all test conditions were below ± 2%, shown in Figure 6.25 

(a). Moreover, only ± 5% prediction errors of turbomachinery pressure ratio 

were found in Figure 6.25 (b) and (c). It also can be found that the predicted 

compressor and turbine pressure ratios are constantly higher than the 

measurements. It should be noted that the compressor and turbine 

performance at mapping points are predicted by 3D simulations. In this 

research, mapping points are grouped by the rotational speeds. At each 

selected rotational speed, a large range of mass flow rate is imposed at the 

inlet boundary of the compressor and turbine 3D models. Regarding the 

compressor, the surge and chock lines are defined by the converged 

simulation points at each rotational speed with the lowest and highest mass 

flow rate, respectively. The predicted performance of all converged mapping 

points is introduced into the compressor and turbine module in 1D IBC model. 

Afterwards, compressor and turbine performance maps are generated in 1D 

code by the interpolation and extrapolation of these imposed mapping points. 

Thus, there are two sources of errors in compressor and turbine performance 

predictions: 1) 3D simulation errors, 2) map interpolation and extrapolation 

errors in 1D code. Since there is no test data at the selected mapping points 

for compressor and turbine, it is hard to assess the reasons why 1D 

simulations always predict higher pressure ratio of compressor and turbine 

than the measurements. Further tests should be conducted to investigate this 

observation.  
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(a) 

 

(b) 

 

(c) 

Figure 6.25 Scatter plot for prediction versus test observation of IBC inlet 

pressure (top), turbine pressure ratio (middle), and compressor pressure 

ratio (bottom) 
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Figure 6.26 Predicted compressor and turbine operating points at all test 

cases 
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In Figure 6.26, the compressor and turbine predicted operating points were 

plotted in the efficiency maps, respectively. It shows that both compressor and 

turbine operated at off-design conditions in all test cases, that is, the maximum 

turbomachinery efficiencies have been not reached in tests. This contributes 

to the relatively low measured IBC net power. Moreover, the IBC inlet 

temperature in the test was only up to 650 K which is much lower than the 

design condition of 1023 K inlet temperature. According to the sensitivity 

studies performed by the thermodynamic analysis in Section 3.5.1.1, low inlet 

temperature is also the contributor to the deterioration the IBC net power. 

In conclusion, although the correlated IBC GT-power 1D model delivered up 

to 13% prediction error of IBC net power at all test cases, 86.36% of total test 

points have prediction errors lower than 10%. Furthermore, the correlated IBC 

model is capable of accurately predicting the pressure at any component inlets 

and outlets. Thus, pressure ratios of compressor and turbine predicted by IBC 

model were highly correlated to the test measurements, only with errors less 

than ± 5%. Overall, the simulation results indicate that the presented 

correlated IBC model is able to deliver high fidelity simulations on IBC 

performance. 

6.4.3 Model Prediction at WLTP Mini-map Points 

Given that the correlated IBC 1D model has enough accurate to simulate the 

IBC performance, the performance of the tested IBC prototype was predicted 

at mini-map point 7, 9, 10, and 11 by the correlated model. The mini-map 

points are steady-state operating points which are able to present the chosen 

driving cycle. In Section 4.4.5.1, the generation process of the mini-map points 

of 2-litre turbocharged engine over WLTP driving cycle were described in detail. 

In simulations, the coolant temperature was fixed as 60°C and 70% combined 

efficiency of the shaft mechanical and the electric generator efficiencies was 

considered. The turbomachinery speed was controlled to remain the IBC inlet 

pressure at 1 bar, in order to leave the turbocharged SI engine unaffected. 

However, since the mass flow rate at mini-map point 9 is too high to reach at 
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1 bar inlet pressure, the corresponding IBC speed was controlled to minimize 

the IBC inlet pressure.  

 

(a) 

 

(b) 

Figure 6.27  Predicted compressor (a) and turbine (b) operating points 

at mini-map point 7, 9, 10, and 11. 
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Figure 6.27 shows the predicted compressor and turbine operating points 

against the compressor and turbine performance maps, respectively. Note that 

the both compressor and turbine in IBC prototype were designed at mini-point 

11 by trimming blades of the existing commercial compressor and turbine, 

respectively. However, it can be clearly seen in Figure 6.27 that neither 

compressor nor turbine operates in the peak efficiency region at the point 11 

where the exhaust conditions of the engine mini-map point 11 is considered 

as IBC inlet conditions. This is mainly because that trimming blade height of 

compressor and turbine is only able to deliver suboptimal designs. In order to 

make both IBC compressor and turbine operate at the peak efficiency region, 

fully optimisation should be performed at all stages of compressor and turbine, 

such as blade geometry and volute. 

The simulation results predicted by the correlated IBC model are listed in Table 

6.3. At point 11, the IBC rotational speed is 121,605 rpm which is lower than 

the design condition of 125,000 rpm. This is partially due to the mass flow 

discrepancy between the mini-point 11 and the design condition. To be specific, 

the exhaust mass flow rate at mini-map point 11 is 0.053 kg/s, while the mass 

flow rate of the design point is fixed as 0.055 kg/s. It was decided by project 

partners. Furthermore, the map interpolation and extrapolation method for 

compressor and turbine will approximate the corresponding performance at 

the operating points where there is no imposed data for the performance map. 

Therefore, simulation errors are introduced by the map interpolation and 

extrapolation method. Consequently, both compressor and turbine operating 

points at mini-map point 11 are slightly different than the design conditions. 

The simulation results in Table 6.3 shows that the compressor and turbine 

efficiencies were found as 71.15% and 74.81%, respectively. However, 3D 

simulations presented in Section 5.5 shows that the compressor and turbine 

efficiencies at design conditions were 72.11% and 77.20%. Despite the 

relatively low turbomachinery efficiencies, the IBC net power of 1.37 kW was 

predicted at mini-map point 11. The resulting BSFC improvement is 2.72%. 

Note that only 70% of power differential between compressor and turbine is 

considered as the IBC net power due to the consideration of the mechanical 

and the electric generator loss. 
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Table 6.3 IBC performance prediction at mini-map points 

 OP 7 OP 9 OP 10 OP 11 

Engine BMEP (bar) 11.3 17.6 7.6 11.3 

Engine BSFC (g/kW*h) 255.19 269.06 269.78 252.23 

Exhaust Temperature (K) 1007.1 1088.2 1008.3 1057.3 

Exhaust Mass Flow (kg/s) 0.039 0.077 0.034 0.053 

Engine Power (kW) 35.78 67.17 30.4 48.97 

IBC Power (kW) 0.44 3.34 0.28 1.37 

IBC Inlet Pressure (bar) 1.00 1.44 1.00 1.00 

IBC Shaft Speed (rpm) 63,483 103,445 53,738 121,605 

Turbine Eff. 75.18% 69.54% 74.47% 74.81% 

Turbine PR 1.28 2.08 1.20 2.16 

Turbine Power (kW) 2.02 10.82 1.31 8.38 

Comp. Inlet Temp. (K) 331.57 335.77 331.07 332.85 

Comp. Inlet Pressure. (bar) 0.76 0.62 0.82 0.45 

Compressor Eff. 74.27% 59.89% 73.82% 71.15% 

Compressor PR 1.31 1.60 1.22 2.24 

Compressor Power (kW) 1.40 6.05 0.90 6.42 

HE Effectiveness 99.46% 98.79% 99.55% 99.20% 

HE Pressure Drop (kPa) 1.90 6.93 1.47 3.46 

BSFC Improvement (%) 1.21% 4.72% 0.94% 2.72% 

IBC / Engine Power Ratio 0.012 0.050 0.009 0.028 

 

At mini-point 9, the minimum inlet pressure predicted by the correlated IBC 

model is 1.44, with the turbomachinery speed of 103,445 rpm. Although the 

predicted turbomachinery efficiencies are lower than 70%, IBC net power still 

reaches at 3.34 kW due to the benefit of the high inlet pressure. As a result, 

the BSFC improvement of 4.72% at mini-map point 9 is the largest among all 
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mini-map points. Nevertheless, it is important to note that high back pressure 

has a significant adverse effect on the operation and reliability of the engine. 

Since the combustion model in the validated SI engine GT-power model, 

presented in Chapter 4, is unable to fully capture the influence of the back 

pressure, there is no need to perform the simulation of the combined system 

of SI engine and the correlated IBC model. 

The mass flow rate at mini-point 7 and 10, 0.039 kg/s and 0.034 kg/s 

respectively, is much lower than the design mass flow rate of 0.055 kg/s. Thus, 

the low net power was expected at the mini-point 7 and 10. However, the 

corresponding BSFC improvements are moderate, 1.21% and 0.94% for mini-

map point 7 and 10 respectively. This is because the relative low engine power 

is delivered at these two operating conditions. 

Regarding the overall WLTP driving cycle, only 0.44% BSFC improvement can 

be delivered by IBC prototype based upon the weighting of all listed mini-map 

points in Table 6.3. Such low BSFC improvement over entire WLTP cycle is 

caused by the fact that the IBC device in this research is designed for the 

vehicle cruising, instead of the overall driving cycle. 

 

6.5 Conclusion 

In this research, the IBC prototype has been successfully demonstrated 

experimentally. This is the first experiment of IBC system designed for the 

automotive use. The parametric studies of IBC shaft speed, coolant 

temperature, inlet temperature and pressure were conducted in the test. 

Moreover, it is also one of few works in the public domain that provide IBC 

experimental results. 

In the test, the design turbomachinery speed of 125,000 rpm cannot be 

reached due to the rotordynamic issues. Thus, shaft speed was limited up to 

80,000 rpm. However, the maximum specific work output of 19.78 kJ/kg was 

still found with the test condition of 100.3 kPa inlet pressure, 605 K inlet 
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temperature, 10°C coolant temperature, and 80,000 rpm turbomachinery 

speed. The corresponding measured net power is 0.98 kW. Since the IBC net 

power was measured by the torquemeter which was mechanically connected 

to the IBC shaft, any mechanical loss has been subtracted from the IBC power. 

Furthermore, the test results show increasing turbine inlet temperature and 

pressure contribute to the increase of the specific work output. In addition, 

lower coolant temperature results in higher heat rejection from the working 

fluid and, therefore, the lower inlet temperature. The resulting benefit shown 

in the test results is the rise of the specific IBC work output. Moreover, the 

specific work also increased with speed. The test results were in line with what 

would be expected from the thermodynamic analysis and 1D GT-power 

simulations. 

However, due to the heat transfer from the turbine to compressor, the 

experimentally determined turbomachinery efficiencies were unreliable. In 

addition, heat loss through the pipe wall and turbocharger housing caused the 

errors in temperature measurements. Thus, turbine and compressor CFD 

simulations were conducted to predict the corresponding performance. The 

comparison between simulations and tests shows the experimentally 

determined compressor efficiency was overestimated, while the turbine 

efficiency was underestimated. As a result, CFD predicted turbomachinery 

efficiencies were plotted and analyzed to determine the true trend in efficiency. 

It is very important to note that the IBC net power was measured by a 

torquemeter which is mechanically connected to IBC shaft. Thus, despite the 

challenges in characterizing the individual efficiencies thermodynamically, the 

IBC net power was measured with high confidence. 

Afterwards, all test data was utilized to correlate the IBC GT-power model. In 

order to simplify the IBC GT-power model, a simple pipe was introduced to 

represent the heat exchanger. Two regression lines were fitted to approximate 

the experimentally determined heat exchanger effectiveness and pressure 

drop. In terms of the IBC shaft friction loss, an assumption of constant friction 

torque was applied due to the lack of the detailed bearing model. The 1D 
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simulations show that the predicted IBC net power had a maximum error of -

13%. However, the absolute prediction error at 86.36% of total test points (19 

out of 22) was lower than 10%. More importantly, the predicted 

turbomachinery pressure ratio and IBC inlet pressure had maximum error of 

±5%. In conclusion, the comparison with the test data provided enough 

confidence in the simulation fidelity of the correlated GT-power IBC model. 

Thus, the correlated GT-power IBC model was employed to evaluate the mini-

map points generated by 2-litre turbocharged engine over WLTP driving cycle. 

Note that the mini-map 11 is the design point of the tested IBC prototype. The 

simulations results show that the IBC net power of 1.37 kW was expected, 

which provided 2.72% BSFC improvement. Due to the low mass flow rate at 

mini-point 7 and 10, only 0.44 kW and 0.28 kW IBC net power were predicted, 

respectively. Moreover, the IBC inlet pressure at mini-map point 9 is unable to 

remain at 1 bar. This is mainly because the mass flow rate at the mini-map 9 

is much higher than the design conditions. Thus, benefiting from the high IBC 

inlet pressure, the predicted IBC net power was as high as 3.34 kW. 
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Chapter 7 – Summary 

 

7.1 Research Conclusion 

In this research, inverted Brayton cycle (IBC) has been comprehensively 

studied by simulations and tests. It was considered as the exhaust-gas heat-

recovery systems for a commercial 2-litre turbocharged gasoline engine. 

Based upon intensively 0D, 1D, and 3D simulations of the IBC system, the IBC 

prototype was designed, manufactured, and tested in this research. This is the 

first experiment of IBC system designed for the automotive use. More 

important, decent heat-recovery capability of the IBC system was 

demonstrated experimentally.  

The basic IBC system consists of a turbine, a heat exchanger, and a 

compressor in sequence. The use of IBC turbine is to fully expand the exhaust 

gas available from the upper cycle to below atmospheric pressure, thereby 

harvesting the wasted energy. The remaining heat in the exhaust after 

expansion is rejected by the downstream heat exchanger. Then, the cooled 

exhaust gases are compressed back up to the atmospheric pressure by the 

compressor and discharged to the ambient. The net work produced by IBC 

system is defined as the power differential between the power harvested by 

the IBC turbine and that consumed by the IBC compressor. The use of the 

heat exchanger is to minimise the inlet temperature of the IBC compressor. 

The resulting higher gas density leads to the lower power consumption of the 

compressor for the given compression ratio. However, the heat exchanger 
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outlet temperature is limited by the effectiveness of heat exchanger and the 

temperature of the coolant.  

At the beginning of this research, a model of an air-standard, irreversible Otto-

cycle and the IBC using finite-time thermodynamics (FTT) was presented to 

study heat recovery applied to an automotive IC engine. The other two 

alternatives power cycles, the pressurized Brayton cycle and the turbo-

compounding system, were compared with the IBC to specify the strengths 

and weaknesses of three alternative cycles. The performance of the system 

was defined as the specific power output and thermal efficiency was 

considered using parametric studies. The simulation results show that the 

performance of the IBC can be positively affected by five critical parameters – 

the number of compression stages, the cycle inlet temperature and pressure, 

the isentropic efficiency of the turbomachinery and the effectiveness of the 

heat exchanger. There existed an optimum pressure ratio across the IBC 

turbine that the IBC delivers the maximum specific power. In the view of the 

specific power, installing a single-stage of the IBC appeared to be the best 

balance between performance and complexity. Three alternative cycles were 

compared in terms of the thermal efficiency. The results indicated that the 

pressurized and inverted Brayton cycles can improve the performance of the 

turbocharged engine only when the turbomachinery efficiencies are higher 

than a value which changes with the operating condition. High performance of 

the IBC turbomachinery is required to ensure that the turbocharged engine 

with the IBC is superior to that with the other two alternative heat-recovery 

power cycles. The further IBC performance investigation was performed over 

driving cycle. The exhaust boundary conditions of a 2-litre gasoline 

turbocharged engine were measured over WLTC driving cycle and imposed 

as the inlet boundary conditions of the IBC thermodynamic model. Since there 

was no compressor and turbine characteristic maps employed in the 

thermodynamic model, the turbomachinery efficiencies and pressure ratio 

were assumed as the constant over the whole driving cycle. The simulation 

results show that the maximum resulting average BSFC improvement was 

3.02% when the IBC turbomachinery efficiencies was 0.8/0.8 and the 

expansion ratio was 2. With the decrease of the of turbomachinery efficiency, 
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the IBC net work was deteriorated. Even, there was no net work at all when 

the IBC turbomachinery efficiency descended below a certain value. Then, the 

optimisation of the expansion ratio in the single-stage IBC was performed over 

WLTP driving cycle. The simulation results show that an increase in the 

optimum expansion ratio can be expected when the WLTP driving cycle move 

from the ‘Low’ part to the ‘High’ part. Since the average exhaust mass flow 

rate increases from the ‘Low’ part and ‘High’ part as well, this trend could be 

matched to a fixed geometry turbo machine that is designed to operate at the 

optimum expansion ratio during the whole WLTP driving cycle. 

Later, the validated 2-litre turbocharged SI engine model was coupled with the 

IBC 1D model, in order to quantify the resulting performance improvement of 

a real IC engine. A commercial code, referred as GT-power, was utilized to 

perform the proposed 1D simulations. It allows the use of the real compressor 

and turbine characteristic maps in the IBC model, thereby producing the 

sensible evaluation of the IBC system at various operating conditions. The first 

design point was the high speed, high load engine working condition, that is, 

the engine speed of 4500 rpm and BMEP of 30.9 bar. By re-sizing the available 

commercial turbomachinery maps, 2.25 percentage points of system 

efficiency increment can be expected due to the employment of an IBC. The 

corresponding BSFC improvement was up to 5.91%. Then, the parametric 

study of IBC system with the scaled turbomachinery maps was performed at 

various engine loads with the engine speed of 4500 rpm. The simulation 

results show that, with increasing the engine power output, the system 

efficiency increment increased to the peak at a certain engine load, then 

decreased steeply. The engine operating condition that delivers the maximum 

performance improvement was shifted by varying the turbomachinery 

efficiencies. However, the optimal performance of the combined system was 

always achieved where the wastegates of the topping and bottoming turbines 

were closed. Thus, the parameter sweep of turbomachinery efficiencies and 

pressure ratio was conducted under conditions of the fully closed wastegates. 

The maximum efficiency increments of 6.15 per cent points was found when 

IBC expansion ratio was 4 and the turbomachinery efficiency was 0.9 and 0.85 

for the turbine and compressor respectively. Afterwards, an engine operating 
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condition that represented the vehicle cruising mode was selected as the 

design point for the IBC prototype. In order to select proper commercial 

compressor and turbine for the design condition, the turbomachinery sizing 

optimisation was performed, and the resulting optimal maps were considered 

as the reference for the turbomachinery selection. As a result, the selected 

commercial compressor and turbine was able to generate the net power of 

0.91 kW which was equivalent to the BFSC improvement of 1.82%. However, 

the selected turbine only delivered the efficiency of 70.0%, while slightly higher 

compressor efficiency of 75.7% was found. Thus, it is necessary to trim the 

compressor and turbine blades so that higher turbomachinery performance 

can be expected at the design point of the IBC prototype. 

Then, the commercial software package ANSYS-CFX were utilized to evaluate 

the performance of all trimmed turbomachinery design. All simulations were 

completed by the following five steps: generating model geometry and flow 

domain, generating computational grids, establishing the boundary and initial 

conditions, setting up the proper solver, and performing the simulations. Since 

the computational grid size and type significantly affect the numerical solution 

produced by 3D CFD simulations, it is a common practice to complete the 

mesh sensitivity study to achieve the mesh-independent numerical solution. In 

this research, considering the trade-off between the computational cost and 

simulation accuracy, the mesh number of 0.8E+6 was chosen for the 

compressor rotor meshing target, while 1.1E+6 was set for the turbine rotor. 

In order to improve the efficiency of the existing compressor, parameter 

sweeps were performance for the impeller inducer height, exducer height, 

diffuser diameter, and volute A/R ratio. Since the pressure was imposed at the 

inlet and outlet boundaries for all compressor simulation, the compressor 

designs were selected as candidates only when the corresponding predicted 

mass flow rate met the design target of 0.055kg/s. As a result, the candidate 

design with the highest efficiency of 72.32% was selected as the compressor 

design for the IBC prototype. Regarding turbine design, the impeller exducer 

was supposed to be trimmed to achieve the optimal efficiency at the design 

point. However, the rotor design with 1mm trimming down at the exducer 

delivered relatively high efficiency. In addition, due to the project plan, there 
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was no enough time to perform a proper investigation on the blade trimming. 

Thus, the selected commercial turbine impellers were trimmed down 1mm at 

the exducer and the trimmed rotor was selected as the turbine rotor design. 

As the turbine volute is vital to the turbine performance, a parameter sweep 

for the turbine volute ratio was conducted. The simulation results show that 

the volute with A/R ratio of 15.5 mm should be employed with the trimmed 

commercial turbine rotor, as it delivered the highest efficiency among all 

alternative designs at the turbine design condition. Afterwards, the selected 

trimmed commercial compressor and turbine were manufactured as the 

turbomachinery of the IBC prototype. In parallel, a compressor in-house 

design and optimisation process was created to generate a high-performance 

compressor design.  At the first stage of the design and optimisation process, 

CFX VISTA CCD code was utilized to generate the preliminary rotor design 

with the boundary conditions of the desired operating point. In addition, initial 

guesses for the compressor geometry are essential in the early design stage. 

Thus, some default settings were used in VISTA CCD. Four design variables 

– rotational speed, backsweep angle, volute A/R ratio, and diffuser diameter 

were optimised to achieve the optimal preliminary compressor design. Genetic 

algorithm (GA) was applied to solve the compressor optimisation problem. As 

a result, the resulting optimal design was able to deliver total-to-static (T-S) 

efficiency of 74.47% at the design point, which was 2.24 percentage point 

higher than that of the trimmed commercial compressor. The further 

performance optimisation was carried out by varying the compressor blade 

geometry. The parameterization of the compressor blade occurred in ANSYS 

Design Modeller. Due to the limited time, only four parameters were selected 

as the design variables, referred as 1) main blade inlet angle at shroud, 2) 

splitter inlet angle at shroud, 3) backsweep angle at shroud, and 4) stack 

position for both main blade and splitter. The optimisation results show that 

the final optimal compressor design was able to deliver T-S efficiency of 

77.46%, which was 2.99 and 5.23 percentage points higher than the 

preliminary design and the trimmed commercial compressor, respectively. 

Note that the presented design and optimisation process also can be applied 

to design the turbine in-house. 
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Finally, the selected trimmed compressor and turbine were manufactured and 

assembled with the 3D printed heat exchanger provided by a project partner. 

This IBC prototype was tested in the gas stand in University of Bath. This is 

the first experiment of IBC system designed for the automotive use. The 

parametric studies of IBC shaft speed, coolant temperature, inlet temperature 

and pressure were conducted in the test. However, due to the rotordynamic 

issues, the design turbomachinery speed of 125,000 rpm cannot be reached 

in the test. Thus, the baseline test conditions were 70,000 rpm, 550°C IBC 

inlet temperature, 1 bar inlet pressure, and 10°C coolant temperature. The test 

results show that the IBC specific work of 11.37 kJ/kg was expected at the 

baseline test condition, which is 0.54 kW IBC net power. It is very important to 

note that there was a high-speed torque meter mechanically attached on the 

IBC shaft to precisely measure the shaft speed and torque. In other words, the 

measured shaft power was the IBC net power which the shaft mechanical loss 

has been subtracted. The parametric study shows that the IBC specific work 

was monotonically increasing function of the inlet pressure, inlet temperature, 

and shaft speed. While, the IBC performance benefited from the reduction of 

the coolant temperature. In the parametric study, the maximum specific work 

output of 19.78 kJ/kg, that is, net power of 0.98 kW, was expected at the test 

condition of 100.3 kPa inlet pressure, 605 K inlet temperature, 10°C coolant 

temperature, and 80,000 rpm turbomachinery speed. Then, all test data was 

utilized to correlate the IBC GT-power model. Regarding the 1D heat 

exchanger model, two regression lines were fitted to approximate the 

experimentally determined heat exchanger effectiveness and pressure drop. 

In terms of the IBC shaft friction loss, an assumption of constant friction torque 

was applied due to the lack of the detailed bearing model. The IBC net power 

predicted by the correlated IBC GT-power model had a maximum error of -

13%. However, the absolute prediction error at 86.36% of total test points (19 

out of 22) is lower than 10%. More important, the predicted turbomachinery 

pressure ratio and IBC inlet pressure had maximum error of ± 5%. In 

conclusion, the comparison with the test data provided enough confidence in 

the simulation fidelity of the correlated GT-power IBC model. Thus, the 

correlated GT-power IBC model was employed to evaluate the performance 

of IBC prototype at the design condition. The simulations results show that the 
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IBC net power of up to 1.37 kW was expected, which provided 2.72% BSFC 

improvement. The high improvement in the system performance indicates that 

the IBC system is a promising WHR technology for automotive use. 

 

7.2 Further Work 

Simulation 

1. The effect of engine back pressure on the engine performance need to 

be investigated. This research demonstrates that the increase of IBC 

inlet pressure is beneficial to the IBC power generation. However, it can 

negatively influence the engine performance. Hence, a system 

compromise is required to select the optimum IBC inlet pressure. In this 

research, since the non-predictive combustion model was employed to 

simulate the engine combination, the negative effect of the back pressure 

on the engine performance cannot be properly investigated. Thus, the 

optimisation of the IBC inlet pressure is not performed in this research. 

 

2. The control strategy for the IBC system needs to be developed. Since 

the automotive engines behave in a highly transient manner, a 

sophisticated control strategy should be developed in order to ensure 

that the employment of the IBC system do not compromise the engine 

transient behaviours. 

 

3. The IBC bypass system needs to be investigated. In this research, the 

turbomachinery matching process was conducted at the engine mini-

map point 11. However, due to the high mass flow rate at the mini-map 

point 9, the IBC inlet pressure was unable to maintain 1 bar. Thus, 

bypassing a portion of the exhaust gases is required at some operating 

conditions. Moreover, when the IBC turbomachinery efficiency descends 

below a certain value, there is no work generated by IBC and, therefore, 
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the IBC system should be bypassed. In conclusion, the bypass system 

is necessary for the IBC applications. 

 

Experiment 

1. The test facility needs to be further improved in order to overcome the 

rotordynamic issues. In this research, the shaft speed was limited up to 

80,000 rpm, due to the shaft vibration problems.  
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