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Abstract 

This research thesis was conducted to design and fabricate a novel design of a lab-on-a-chip 

microfluidic device to enable blood separation and blood analyses at the nanoscale via nanopores 

integrated into microchannel. Furthermore, the same lab-on-a-chip microfluidic device could be 

used for blood examination and diagnoses by changing just one step during the fabrication. The 

development of the novel lab-on-a-chip device able to carry out a range of biomolecular analyses, 

providing reliable results, incorporates nanochannels obtained via an innovative manufacturing 

process, combining traditional micro-fabrication methods and electrochemical anodization. The lab-

on-a-chip device consists of glass substrate sealed with poly-dimethyl siloxane (PDMS) in which 

microchannels have been etched. The different metals deposited determined the use of the device. 

Physical vapor deposition was applied to deposit either aluminium or gold. The aluminium has been 

anodized inside the microchannel to obtain nanoporous alumina channels. The gold metal has been 

used for biosensing experiments. DNA aptamers were attached to the gold using thiol ligands, 

enabling the detection of ochratoxin-A and A-human thrombin. Cyclic voltammetry and 

electrochemical impedance spectrometry have been used to detect both biomolecules. The shift of 

the curve confirms the presence of the biomolecule. When sodium chloride was used to wash away 

the A-human thrombin, the curve went back to the initial measurement when only the DNA 

aptamer was present, enabling repeat use of the device.  
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1. Introduction and Thesis Structure 

As part of the broader trend towards personalized medicine and decentralized treatment, 

a key requirement is the development of simple lab-on-a-chip designs yet capable of 

conducting a wide range of laboratory analyses, with short response time and high 

reproducibility. The ability to conduct different laboratory analysis gives the opportunity to 

use it for more than one operation. Lab-on-a-chip is an abbreviation of the phrase laboratory 

on a microchip device which means the embodiment of a laboratory function or equipment 

on a miniaturized chip. The overall aim of this research was to manufacture a simple lab-on-

a-chip device with the ability to carry out different analyses and provide consistent and 

reliable results, relatively easy to make and use, cost- and analysis time- effective, and 

requiring reduced analyte quantities. The aim of this work was achieved by meeting the 

following objectives: 

1. To manufacture a lab-on-a-chip device with parallel metal oxide nanochannels for 

biomolecular separation based on molecular size, using the anodization of aluminium.  

2. To manufacture a lab-on-a-chip device for integrated biosensing applications using 

gold functionalised with immobilised DNA-aptamers.   

 For all fabricated devices, the metal was precisely placed inside the microchannel with 

metal deposition, using physical vapour deposition (PVD). By using PVD, the metal passes 

from the solid phase to vapor phase by evaporation or sublimation and then back to the solid 

phase. The final stage of solidification is where the thin metal film is formed. The device was 

composed of a glass substrate where the microchannels were implemented, and the thin metal 

film was deposited, and a sealing layer made from poly-dimethyl siloxane (PDMS) was 
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attached and stuck permanently on the glass using oxygen plasma. Oxygen plasma cleaned 

both surfaces, changing their chemical properties making them very hydrophilic, resulting in 

a permanent bond. This technique offered a hermetical and irreversible seal to the device in 

between the two surfaces.  

1.1 Thesis Structure 
Chapter two contains an extensive discussion of the history of miniaturized devices, the 

challenges faced throughout the years of development and an analysis of other academic 

work related to the subject. The literature review chapter provides an overview of current 

state-of-the-art lab-on-a-chip devices and their improvement throughout the years. This 

analysis highlighted a gap in the research, the need for inexpensive, easy to assemble devices 

which were also reusable and reliable. The research presented here has made a significant 

contribution towards achieving such a device.   

Chapter three contains a detailed description of all the materials and techniques used to 

fabricate the devices. The fabrication of each device and the optimization of each step are 

shown which lead towards the goal of offering reproducibility for all samples reported. 

Chapter four reports on all results, including each step of the lab-on-a-chip fabrication: 

microhills fabrication by wet chemical etching, microchannels fabrication using poly 

dimethyl siloxane (PDMS) elastomer, metal deposition on the wafer using physical vapour 

deposition, PDMS and wafer surface treatment using oxygen plasma and wires connection 

as the final step to close and seal the device and start the analysis. Reusable devices were 

investigated as part of the biosensing investigation.  
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The final chapter concludes the work, where a summary of all significant findings is 

presented, giving the reader an overall view of this thesis and its outcomes. Suggestions for 

future work are also included.  
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2. Literature Review 

2.1 Fundamentals of microfluidics devices 

2.1.1. Introduction 

The term microfluidics describes the research discipline that is concerned with transport 

phenomena occurring at microscopic scales (1-500 μm) including techniques and 

components used in the control and actuation of fluids. Categories such as micro total 

analysis systems (μTAS) or lab-on-a-chip use microfluidics which rests on the premise of 

fluid manipulation and analysis in microchannels. A micro total analysis system is a system 

which is capable of compressing an entire laboratory work into a chip, also known as lab-on-

a-chip. Due to its small size it helps save on space, offers time and cost of required 

technologies. The fluid flow at the microscale is performed through microchannels. These 

microchannels are microfabricated through the use of techniques borrowed from plastic and 

semiconductor industries (Pierce and Zhao, 2011), for example, photolithography, 

micromachining, injection moulding, replica moulding and embossing (Addae-Mensah, et 

al., 2010). 

Microfluidic technologies demonstrate that fluidic devices could be integrated and 

miniaturized together, therefore, generating an idea of supporting the possibility of fitting the 

whole “laboratory on a chip”. The whole “laboratory on a chip” means the incorporation of 

one or more laboratory function on a single chip. The “lab-on-a-chip” is similar to the idea 

of a microelectronic circuit which is a whole computer on a chip. Moreover, the 

miniaturization science was initially triggered by the microelectronics industry following the 

production of miniature silicon-based electronic devices (Terry et al., 1979). Silicon 
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miniaturization and fabrication techniques were then extended to mechanical device 

fabrication, also referred to as microelectromechanical systems (MEMS). MEMS technology 

later evolved allowing the fabrication of devices that could be used in the fields of medical 

and life sciences. The devices fabricated for use in the fields of medical and life sciences 

were specifically referred to us as biological microelectromechanical systems (BioMEMS). 

BioMEMS’ broad definition would include applications and devices fabricated through the 

use of modern microfluidics techniques developed in the 1990s by Manz and his colleagues 

(Harrison et al., 1993). 

Nanofluidics emerged recently following developments in the field of nanotechnology. 

Nanotechnology refers control of matter at the scales of 1-100 nm. This means that the 

difference existing between nanofluidics and microfluidics is the scale of the systems, which 

can result in a major difference in the flow behaviour of liquids at the nanoscale compared 

to that of the microscale. In the early 20th century Majumder and his colleagues  proved that 

the liquid flow behaviour at the nanoscale is four to five orders of magnitude faster than the 

predicted behaviour at the macroscale using the classical Hagen-Poiseuille fluid-flow theory 

(Majumder et al., 2005).  

 
Techniques, Scientific Aspects and Commercialization of lab-on-a-chip Technology 

The areas of microfluidics and MEMS have stretched beyond the traditional fields of 

pressure sensors and inkjet heads (Bassous et al., 1977) to fields of protein crystallization, 

drug delivery, cell culture, chemical synthesis, proteomics, drug discovery, point-of-care 

diagnostics, genomics and genetic sequencing. Microfluidics can change the techniques used 

in pharmaceutical industries for screening drugs and targets, allowing for the increase in 
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performance. The above-mentioned performance increment is a result of being able to 

conduct parallel experiments at increased speed and high-throughput, with minimal reagents 

used per chips. This level of performance cannot be achieved with benchtop techniques 

(Mohammed et al., 2015). 

The development of fluidic systems at the microscale, their advantages and the reliability 

have had a profound impact on the scientific community. Microfluidics use has become 

common amongst biologists, engineers, physicists and chemists. Microfluidics use in the 

above-mentioned fields has made it a multidisciplinary platform facilitating the advancement 

of various scientific and engineering fields. Additionally, microfluidics utilization has 

facilitated the progress of understanding the theory and the applications of fluid dynamics. 

Microfluidics technology is being used by the life scientists to investigate phenomena in a 

controlled and well-defined environment at the single-cell level. Microfluidics technology 

has enabled the biophysicists and chemists to conduct protein crystals growth and analysis, 

and DNA sequencing in a time-saving manner. The significance of microfluidics from the 

mid-1990s to the current time is evident from the large and consistent progress of 

publications in journals and conferences (Nguyen and Wereley, 2006).  

 

2.1.2. Physics and Modelling 

Microfluidics can be understood through the analysis of microscale fluid flow including 

the consideration of forces that come into play at this microscale dimension. Notably, the 

inertial forces are dominant in large dimensions. However, a reduction in dimension 

increases the dominance of the surface forces due to the increase in surface area in relation 
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to volume ratio. The surface viscous forces and body force are compared using the Reynolds 

dimensionless number (H.A. Stone et al., 2004).  

The reduction in dimensions increasingly challenges the assumption of continuity. Fluid 

modelling approaches are divided into two major classes namely molecular-level models and 

continuum models. Navier-Stokes equations are used in the generation of most continuum 

models (Peyret, 1996). The continuum models show an assumption that there is no 

discontinuity among discrete molecules. The continuum models’ assumption becomes valid 

when the system’s dimension is greater than the molecular dimension. This means that the 

assumption is not valid in a scenario where the molecular dimension and system’s dimension 

are comparable. Molecular-based models can be statistical, hybrid, or deterministic when 

considering the simulation of small dimensional systems. The Knudsen number is the 

dimensionless number that can be used in determining a more appropriate model between 

discrete molecular and continuum flow models (Kumar, 2010).  

Modelling Approaches 
Independent variables namely density, pressure, and velocity are used to define 

continuum models. The independent variables are determined for all nodes of the fluid 

element per time step. Smaller elements are more accurate when considering the simulations 

of a finite element relative to the complexity of the computational procedure. The 

conservation of momentum and mass, in this case, would be expressed as shown below: 

dρ/dt + ∇. (ρμ) = 0 the continuity equation  [1]     

Where μ is the fluid velocity, ρ is the fluid density, while p is the pressure. Navier-Stokes 

equation in viscous flow is represented by a partial differentiation equation of a second-order 

requiring two boundary conditions (Peyret, 1996). The normal component of velocity at the 
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impermeable boundaries is initially set to zero. The Navier-Stokes equation in the target area 

is solved using the extra tangential boundary conditions. The second boundary condition in 

the case of continuum flow represents the no-slip boundary condition. The assumption holds 

for a low value of Knudsen number (Kn<0.1). 

 

2.1.3. Microfluidics’ Components 

A wide variety of microfluidic components, for example, micromixers and micro-pumps 

have been produced since the implementation of microfluidic technology. The microfluidics’ 

components facilitate accurate fluids manipulation and control. The design of these 

components depends on the intended use of a microfluidic device, type and volume of fluid.  

Actuation of Fluid 
Fluids are driven through microfluidic systems using different techniques. External 

syringe pumps are normally used in driving fluids through the system of microfluidic devices 

(Seyed-Yagoobi, 2005). The design and fabrication of micropumps is based on several 

crucial parameters, for example, efficiency, dealing with back pressure, power consumption 

and ability to attain maximum flow rates. (Yobas et al., 2008, Jang and Yu, 2008, Chang et 

al., 2007, Lin et al., 2014). 

 

2.1.4. Fabrication Techniques of Microfluidic Devices 

Glass, hard plastics, elastomeric polymers, and silicon are materials commonly used in 

microfluidic device fabrication. Lithography techniques are needed in the micro fabrication 

of microfluidic devices based on the above-listed materials.  
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Lithography Method of Microfluidic Device Fabrication 
Lithography is a fundamental technique of nano- and microstructure fabrication. 

Lithography is classified based on the type of energy applied in the illumination process: ion 

beam lithography, electron beam lithography (e-beam lithography), deep UV lithography, X-

ray lithography and soft photolithography (McDonald et al., 2000). X-ray lithography and 

photolithography are the commonly used lithography techniques in microfluidic device 

fabrication. However, deep UV and e-beam lithography techniques are becoming important 

in the production of submicron fluidic structures. The photolithographic microfluidic device 

fabrication procedure is conducted using three major steps (Figure 1): 

 

Figure 1. The three main steps of the photolithography procedure. 

 

•  Positioning- This step involves the alignment of a photolithography mask with the 

substrate being coated with a photoresist material.  

•  Photoresist exposure- The substrate is exposed to UV-light.  
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•  Development Process- The development process involves the generation of a pattern 

on the photoresist material by etching. 

Silicon-Based Method of Microfluidic Device Fabrication 
This method of fabrication involves bulk micromachining or surface micromachining. 

Bulk Micromachining 
Bulk micromachining is a subtractive technique by the removal of silicon material to 

generate the desired structure. The selective removal is guided by a patterned photoresist 

material that shields other silicon from the etchant. After the etching process of the exposed 

silicon material, the photoresist material is removed to give the final microstructure. There 

are two methods of etching: wet chemical etching and dry reactive ion etching. Wet chemical 

etching removes silicon material on the basis of its crystalline structure. The anisotropic 

etching process is used in wet chemical etching depending on the orientation of silicon 

crystals to produce various channel geometries. Dry reactive ion etching is independent of 

the silicon crystal orientation. Dry reactive ion etching is done using chemical vapor at 

standard or cryogenic temperatures. (Kovacs et al., 1998) 

Surface Micromachining 
Surface micromachining is an additive process that involves materials such as single 

crystal silicon, phosphorus silicate glass (PSG) and polysilicon (Bustillo et al., 1998). The 

surface micromachining process is conducted in four steps: substrate passivation, deposition 

and patterning of a sacrificial layer, doping and stress annealing of the deposited polysilicon 

structure, and etching of the deposited sacrificial layer to release the final microstructure. 

 



 

 
 

11 

Glass-Based Method of Microfluidic Device Fabrication 
Glass is a suitable microfluidics material due to its chemical resistivity, stability at high 

temperatures, high electrical resistivity, and optical transparency. Additionally, glass as a 

microfluidic material possesses commendable biological compatibility features that make it 

suitable for clinical and medical application. Glass based methods of microfluidic device 

fabrication are similar to the silicon’s bulk micromachining technique. However, the mask 

pattern is placed on the glass material for the channel micromachining process, and then a 

metal film is evaporated, for example, gold, chromium or polysilicon (which is not a metal, 

but it can be deposited as a thin film with the evaporator). The pattern is made, and the glass 

etching is done using buffered oxide etch (BOE). BOE consists of hydrofluoric acid and 

ammonium fluoride. Etching of glass using BOE is an isotropic process. The patterned glass 

is covered using another piece of glass containing drilled access holes. The final microfluidic 

chip is formed once the etched glass piece and its cover piece are aligned and stuck together. 

However, cheaper and faster glass-based microfluidic device fabrication techniques are being 

invented, for example, substituting evaporated metal films with hardened photoresist as the 

etch mask (Bahadorimehr and Majlis, 2011). 

Polymer-Based Methods of Microfluidic Device Fabrication 
Polymers are a more cost effective alternative to silicon and glass. The techniques used 

in the fabrication of polymer-based microfluidic devices include soft lithography and thick 

polymer photoresist techniques (Haraldsson, 2005). 

Soft Lithography Techniques 
Polydimethylsiloxane (PDMS) is an elastomeric polymer and therefore the technique is 

known as soft lithography (Bratton et al., 2006). The main procedural steps of the soft 

lithography technique are: 
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•  Master moulds are produced using a thick polymer photoresist.  

•  PDMS liquid is placed into the master mould. 

•  PDMS liquid is then oven-cured to produce a thick polymer photoresist pattern. 

• The patterned PDMS is peeled off and stuck on a flat glass piece hence forming a 

microfluidic device.  

Other soft lithography techniques include micromoulding in capillaries, solvent-assisted 

micromoulding, and microtransfer moulding. Figure 2 shows a microfluidic device made by 

injection moulding, hot embossing and soft lithography. 

 

 

 

 Figure 2. State of art fabrication of microfluidic devices by Injection moulding, hot embossing and soft lithography 

(Wu and Gu, 2011) 
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Thick Polymer Photoresist Techniques 
These techniques use polymethylmethacrylate (PMMA) polymer as the microfluidic 

device material. Microfluidic structures are fabricated on the PMMA using collimated X-

rays. The mask materials used in this case include titanium and beryllium whose 

effectiveness is due to their ability to absorb X-rays. The PMMA polymer regions exposed 

to the X-ray beams are etched depending on the user specification. However, using PMMA 

requires an expensive source of collimated X-rays, as well as expensive mask materials 

including titanium and beryllium (Cash Jr, 2000). 

Cyclopentanone (SU-8) can serve as a replacement for PMMA since it is cheaper and can 

be etched using UV-I. Microfluidic device fabrication using SU-8 can be completed within 

a shorter time compared to PMMA. Figure 3 shows the PDMS stamp fabrication from a 

silicon template.  
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Figure 3. Process flow for PDMS stamp fabrication from a silicon master (Singh et al., 2007)  

 

Plastics in Microfluidic Device Fabrication 
The techniques of microfluidic device fabrication using plastics include hot embossing, 

thermoforming, injection moulding, injection compression moulding and reaction injection 

moulding. However, the commonly used methods are injection moulding and hot embossing 

(Sudarsan, 2004). Figure 4 shows the injection moulding procedure. 
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Figure 4. Demonstration of the injection moulding process (Saha et al., 2015). The principal steps are: Melting the 

material before the mold is injected with material, with both halves of the mould closed; injection, where the material 

is injected through a hopper into the injection moulding machine; cooling, where the system has to cool down; and the 

final step is Ejection, where the substrate is ejected from the machine.  

 

Submicron Techniques of Microfluidic Device Fabrication 
This is a subtractive technique where bulk material is removed to form the submicron 

fluidic channels. Examples of submicron techniques include focused ion beam (FIB) 

micromachining and the laser ablation technique. FIB micromachining is one of the 

subtractive techniques used to fabricate these submicron fluidic channels. FIB 

micromachining involves the use of a high-energy ion beam to scan, etch channels and drill 

holes on the substrate material. The FIB micromachining for example has been used in the 

fabrication of nanochannels of width 40 nm, length 50 mm and depth 60 nm intended for 

DNA molecules’ manipulation (Winkler et al., 2008).  
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The laser ablation technique is also used in the fabrication of submicron fluidic channels 

in nonsilicon-based materials. The micromachining procedure is similar to that of the focused 

ion beam technique. Laser ablation for example has been used to produce nanochannels of 

diameters below 700 nm in glass (Dittrich and Manz, 2006b). A couple of limitations when 

using the laser ablation technique can be the difficulties in removing the ablated materials 

(Malek, 2006) and the production of rough micromachined structures. 

 

2.1.5. Biological Applications of Microfluidic Devices  

DNA Amplification 
DNA amplification is made using a range of techniques, the most common being the 

polymerase chain reaction (PCR) technique, which amplifying small segments of DNA. The 

advantages of PCR miniaturization (Kim et al., 2006) are: the reduced fabrication cost, the 

reduced DNA amplification time, the reduced reagent consumption, the increased portability, 

and the safe PCR reaction vessel disposal. 

Immunoassays 
Immunoassays are biochemical assays to detect specific proteins and they are used in analyte 

(protein) measurements (Darwish, 2006). The advantages of microfluidic devices for 

immunoassay experiments are: reduced sample consumption, reduced experimental cost, and 

reduced result processing time. 

Cell-Based Assays 
Cell-based assays are used in the assessment of chemical stimuli effects on biological 

cells. This assessment helps in the collection of data reflecting a higher level biological 

response. This assay is commonly used in the pharmaceutical industry in experiments 
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revolving around drug development (Fujii, 2002). The benefits of using microfluidics in cell-

based assays (Zhang and Austin, 2012) are: reduced experimental cost, high quality data, 

improved control over the three-dimensional cell culture environments, improved biological 

analysis using multiplexed nanolitre arrays created using microfluidic devices, generation of 

a high chemical gradient resolution, laminar flow in channels and reduced analyte dilution. 

Drug Delivery 
The combination of biological science and microfluidics offers a powerful platform for 

multiple dose drug delivery, precise drug release control, protection of labile active 

ingredients and elimination of frequent injections. The microfluidic devices offer unique 

benefits in reagent mixing, sample handling, detection, separation, mobility, and control of 

reaction rates (Dittrich and Manz, 2006a).  

Microfluidic devices fitted with microvalves and micropumps offer drug delivery 

solutions. These microfluidic devices of drug delivery promote accuracy in dosage, increase 

the stability of drugs and improve drug therapeutics.  

Diagnostics for Point of Care  
Use of microfluidic devices in point of care (POC) diagnostics is beneficial in terms of 

their small size that promotes easier handling, reduced experimental cost, reduced reagent 

consumption, and shortened analysis time. The portability and accuracy of the microfluidic 

apparatus in diagnostic tests leads to the correct diagnosis and treatment of diseases (Martinez 

et al., 2010). 
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2.1.6. Conclusion 

Miniaturization of laboratory processes into a chip has been beneficial to the field of 

science in general. The microfluidic devices have been fabricated using different materials 

and procedures making them readily available to users. Microfluidics technology has played 

a significant role in the field of clinical and medical biology including disease diagnosis and 

treatment including drug production and drug delivery. 

 

2.2 Separation in microfluidics devices 

2.2.1. Introduction 

Microfluidic devices play an important role in separation experiments. Bio-separation 

can facilitate sample purification. The microfluidic device separation technique is used in the 

fields of food and chemical processing, medical diagnostics, environmental assessment, 

chemical and biological analysis. The separated biological objects are used in analytical 

experiments where these objects are studied carefully. The food industry uses separation 

techniques to prevent the progress of harmful biological activity. Notably, separation 

experiments are coupled with the sorting of particles into different populations based on their 

distinct physical properties (Beech, 2011). Medical diagnostics technology utilizes 

separation techniques to separate normal cells from cancer cells; malaria infected cells from 

healthy cells and dead cells from the living cells. Diseases normally change cells physical 

properties hence the necessity for separation. Considering the case of separation of malarial 

cells from the healthy ones, malarial cells are identified since they are more rigid than the 

healthy ones. It is this rigidity that makes the infected cells caused by malarial parasites to 
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block blood capillaries. Additionally, healthy cells have a smaller size compared to the cancer 

cells. In general, separation of micron-sized particles, droplets, parasites, and cells relies on 

their size, intrinsic properties and presence of deformities. The performance of microfluidic 

separation devices is based on applicability, throughput, separation time, and efficiency of 

particle separation. The separation techniques are broadly categorized as passive, active and 

combined (Beech, 2011). 

2.2.2. Passive Techniques of Microfluidics Separation 

The passive techniques of microfluidics separation make use of the interaction of 

particles, flow field and microchannel structures. Passive techniques of microfluidic 

separation include pinched flow fractionation (PFF), inertia flow fractionation (two 

microfluidic techniques which use the laminar flow profile for continuous particles 

separation by size), micro vortex manipulation, deterministic lateral displacement, the 

Zweifach-Fung effect (Gossett et al., 2010), filtration, hydrodynamic filtration and micro 

hydrocyclone effects.  

Filtration 
The filtration technique facilitates size-based particle separation. Blood fractionation can 

be conducted using microfabricated filters. Different types of microfilters can be fabricated 

including weir, membrane, cross-flow and pillar filters (Crowley and Pizziconi, 2005).  

Considering plasmapheresis (which is the blood plasma removal, by withdrawing blood 

from the body, separation into plasma and cells, and transfusion of the cells back into the 

bloodstream (Nguyen et al., 2012) experiments   conducted using a membrane filter, plasma 

flux formation relies on wall shear rate, transmembrane pressure, and hematocrit. A large 

hematocrit concentration leads to a reduction in plasma flux. The increase in membrane 
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pressure increases the plasma flux until a state of equilibrium is reached due to red blood 

cells’ deposition on the filter. An increase in the shear rate leads to the modulation of red 

blood cells’ deposit through shear-enhanced diffusion. The efficiency of the filter face lowers 

with the particles accumulation. However, the filter membrane can be cleaned through a 

reverse flow process. An example of a microfiltration membrane device involved the 

fabrication of microchannels onto PDMS. The microchannels in this device were linked to 

semipermeable polycarbonate membranes that had a 3-amino propyl triethoxysilane 

(APTES) coating. This single membrane device was used for plasma separation of a blood 

sample. The separation of the white blood cells and red blood cells from other blood 

components was conducted with weir-type and pillar-type microfiltration chips. The blood 

sample was pumped into the system through an inlet while the red blood cells and white 

blood cells are collected in different outlets. The microchannel consists of three sub-

microchannels made up of two parallel filtration barriers (Di Carlo et al., 2008). 

 

2.2.3. Active Techniques of Microfluidics Separation 

The active method of particles separation involves the application of an external field 

(e.g. electric or magnet) on the particles. The separation is made possible by the fact that 

particles react differently to the external field and hence have different migration patterns.  
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Dielectrophoresis Technique 

Dielectrophoresis (DEP) is a force that a neutral particle experiences due to magnetic 

polarization. Magnetic polarization leading to DEP force on a particle can only occur in a 

nonuniform electric field. This means that the DEP force is zero for a particle placed in a 

homogenous electric field. The DEP technique is applied in fractionation, following the steps 

of particle characterization, chemical and biological analytics (Qian et al., 2014). The DEP 

force is given by the formula:   

FDEP=2πr3εmRe[ 𝜺𝒑
∗&𝜺𝒎∗

𝜺𝒑∗&𝟐𝜺𝒎∗
] E2       [ 2] 

Where FDEP is the DEP force, r is the radius of a particle; 𝜀*∗  is the complex permittivity 

of the particle, while 𝜀+∗  is the complex permittivity of the medium. ε*, in this case, depends 

on permanent dipolar, electronic, and interfacial mechanism of electrical conductivity and 

polarization, while E2 is the rms value of the electric field. 

When 𝜀*∗		is greater than 𝜀+∗ , the DEP force occurs in the same direction as the electric 

field gradient. The positive DEP force leads to the attraction of particles towards a strong 

electric field. When 𝜀*∗  is less than 𝜀+∗ , the DEP force occurs in an opposing direction to that 

of the electric field gradient. The negative DEP force leads to the attraction of particles 

towards a weaker electric field (Doh and Cho, 2005).  

The AC field makes DEP versatile. DEP can be applied in various separation activities 

of particles from a mixture. The separation of particles is based on the frequency-dependent 

behaviour of the particles’ dielectric property. Steric force prevents a particle from advancing 

past the electrode where it is trapped by the positive DEP. This behaviour of a particle in a 
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positive electric field can be used in the separation of a single suspended particle. The 

equation of DEP force evidences the proportionality of the electric field’s gradient and the 

particle’s dielectric properties including its radius. This proportionality means that the 

magnitude of the DEP force on the particle will be dependent on the intrinsic particle’s 

property and size. Two different particles in a mixture may experience different DEP forces. 

Particles that experience a negative DEP force migrate towards the region of weak field while 

the particles in the same mixture experiencing positive DEP migrate towards the strong field. 

This migration tendency of dissimilar particles is known as “differential affinity” and it 

facilitates their separation. This method has been utilized in the separation of elute cells 

(Church et al., 2010).  

However, the application of the DEP-based technique of particle separation is dependent 

on the difference in particles’ dielectrophoretic response. There are cases where the target 

and non-target particles exhibit similar DEP response characteristics, making their separation 

based on their intrinsic properties impossible. This issue is addressed through the use of 

labelling techniques using labelling beads. An example of such a device is the MT-DACS 

device for multitarget bacterial separation (Becker et al., 1995).  

Magnetic Technique 
Separation of particles, specifically blood cells, based on their intrinsic properties can 

lead to their damage from heat (electrophoresis), membrane pressure (filtration) and shear 

stress (centrifuging). The magnetic method of separation prevents additional particle damage 

while providing additional benefits including short separation times and high specificity. 

Magnetic methods of cell separation require cheaper apparatus compared to other active 
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techniques (Liu et al., 2007). Fluorescence-activated cell sorting (FACS) is an example of 

magnetic based method of particle separation (Bonner et al., 1972).  

Optical Technique 
When a particle is subjected to an incident beam of light, the light is scattered, therefore, 

causing a change in the light beam’s photons. The change in the light beam’s photons 

generates a force. Notably, a beam of light has a Gaussian intensity profile whose value is 

maximum at the centre where this value reduces away from the centre. When the ratio of a 

particles’ refractive index relative to the medium’s refractive index falls below one, the beam 

scattering generates a scattering force that attempts to attract the particle towards the centre 

of its profile. This scenario is known as ‘optical tweezers’. The ‘optical tweezer’ effect can 

be used to separate particles. The separation is facilitated by an adjustment on trap geometry, 

laser wavelength and power (Xiao and Grier, 2010).  

 

2.2.4. Combined Techniques of Microfluidics Separation 

Combined separation techniques i.e. both active and passive are used to produce highly 

efficient, cost effective and faster devices. An example includes the combination of tuneable 

electroosmotic flow (EOF) and tuneable pinched flow fractionation (PFF). Such a device can 

be used in the separation of yeast cells and E. Coli bacteria. The PFF can also be optically 

enhanced to form optically enhanced PFF (OEPFF). Additionally, dielectrophoresis and 

deterministic lateral displacement techniques can be combined to enable separation 

efficiency (Adams et al., 2009).  
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2.3 Biosensing in Microfluidics Devices 

2.3.1. Introduction 

Biosensors are powerful tools of analysis that have different uses in food safety testing, 

medical diagnostics, drug discovery, security and defence, environmental and agricultural 

monitoring (Rana et al., 2010). Biosensors are analytical devices that have the following 

components: 

• Bio-sensitive recognition element- A biomolecule which can be aptamers, nucleic 

acids, antibodies or enzymes. 

• Physicochemical transducer- Immobilizes the bio-sensitive recognition element. 

• Detector- The physicochemical transducer is connected to the detector. The detector 

is used to determine the presence of specific analytes in a sample including their 

kinetics and concentration (Liu et al., 2010a). 

An affinity for the bio-sensitive recognition element or catalytic characteristics determine 

the selectivity and specificity of a biosensor. The interaction between the bio-sensitive 

recognition element and an analyte generates a signal which is transformed into an electrical 

or optical output by a transducer. The use of biosensors has a wide range of benefits including 

cost effectiveness, reliability, and accuracy. Biosensors are also easier to use compared to 

conventional laboratory detection devices due to their selectivity, high specificity, real-time 

response and reusability characteristics (Bange et al., 2005).  

The integration of biosensor technology in microfluidics has transformed biosensing in 

the fields of environmental engineering, biological engineering, agricultural engineering, 

industrial monitoring, and point-of-care diagnostics. 
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The following Figure 5 shows the steps followed for analysis using biosensor technology.  

 

 

Figure 5. Representation of the components of a biosensor including transducers, detectors and bio-recognition 

elements (Luka et al., 2015) 

 

2.3.2. Biosensors Categorization 

Biosensors Categorization Based on Immobilization Techniques and Recognition Elements 
A bio-sensitive recognition element enables a biosensor to respond to particular target 

analytes, and in turn, lower the chance of interference from undesirable substances. The 

selection of a bio-sensitive recognition element is based on the objective of the experiments, 

for instance, enzymes are selected for catalytic reactions while aptamers and antibodies are 

selected for pathogens or bacteria detection experiments (Koyun et al., 2012). 
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Different methods of bio-sensitive recognition element immobilization exist, for 

example, membrane confinement, covalent binding, entrapment, and adsorption. The most 

commonly used immobilization method is covalent bonding since it is irreversible and stable. 

Enzyme-Based Biosensors and Antibody-Based Biosensors 
Enzymes are proteins that are able to catalyse chemical reactions. Biosensor enzymes are 

used as catalysts for redox reactions. Monitoring biosensor enzyme turnover is conducted 

using a variety of electrochemical techniques making them ideal biosensors. Enzymes are 

highly selective to specific substrates which makes the use of them as a bio-sensitive 

recognition element very advantageous, and in addition to their ability to produce measurable 

parameters including protons, electrons, ions, heat and light (Yoo and Lee, 2010). Enzymes 

also present limitations, including limited thermostability, narrow substrate scope, and low 

or wrong stereo‐and/or and/or regioselectivity (Reetz, 2016). Glucose oxidase-based 

biosensors, for instance, is an enzyme biosensor. Glucose oxidase biosensors involve 

oxidoreductase in the transfer of electrons from glucose to oxygen molecules. Immobilized 

glucose oxidase is used in the glucose biosensor to determine glucose concentration in body 

fluids (Rivet et al., 2011).  

Antibody-based biosensors present a rapid detection biosensor system by using 

antibodies as the bio-sensitive recognition element. In the antibody-based biosensor system 

the analyte of interest (immunogen) does not require purification before detection (Byrne et 

al., 2009). 
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Aptamer-Based Biosensor 
Aptamers are nucleic acid strands which have selectivity and affinity towards target 

analytes in the range of small molecules to whole cells. Aptamer isolation is conducted using 

the systematic evolution of ligands by exponential enrichment (SELEX) in-vitro selection 

method. Aptamers are isolated from large combinatorial libraries made up of close to 1015 

different sequences. Additionally, aptamers can bind to specific ligands having dissociation 

constants in micromolar to picomolar range. Aptamer selection can be used for a wide variety 

of analytes, for example, proteins, pathogens, and toxins (Song et al., 2008). The aptamers 

offer benefits over antibodies such as: they are cheaper, have long-term stability, are able to 

react freely with their substrates even when immobilized onto solid supports, can also be 

separated easily from the reaction mixture, are able to control reaction times, and minimize 

the loss of bio-sensitive recognition in the reaction mixture (Lee et al., 2008).  

Table 1 shows the advantages and limitations of each bio-sensitive recognition element: 

aptamer, antibody and enzyme (Cao et al., 2009). 
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Table 1. Examples of bio-sensitive recognition elements used in microfluidic devices (Luka et al., 2015). 

Bio-sensitive 

Recognition 

Elements 

Advantages Limitations 

Aptamers • High sensitivity 

• Ability to detect a large number 

of analytes 

• Inexpensive, Rapid synthesis 

and long-term stability 

• Flexibility of use while 

preserving efficiency 

• Usually forms weaker bonds with 

analytes   

• Excreted faster since they are small 

• More toxic than antibodies (Cao et 

al., 2009) 

Antibodies • Can be analysed rapidly using 

direct immunoassays 

• Effective for large target 

detection 

• Appropriate for bio-affinity 

interaction 

• Costly and time consuming due to 

labelling requirement for indirect 

immunoassays 

• Not suitable for small target detection 

• Not suitable for redox reactions 

Enzymes • Suitable for redox reactions 

• High level of target selectivity 

• High level of sensitivity 

• They are susceptible to activity loss 

once immobilized 

• Suitable for small analytes including 

urea, lactate and glucose 

 

Biosensors Categorization Based on the Type of Transducers 
There are different types of biosensors based on the applied type of transducer. The 

working of a transducer follows the transformation of the interaction between biomolecule 

and analyte into measurable electrical or optical signals. The type of physicochemical change 

in a reaction occurring at the generated sensing layer determines the choice of a biosensor’s 

transducer component. The most common type of transducers used in biosensors are based 
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on the quartz crystal microbalance (QCM), using a liquid medium to give a direct response 

signal, which characterizes the binding event between a sensitive layer, placed onto the 

surface transducer, and the analyte to be detected (Bizet et al. 1999). The detection limit and 

sensitivity of a transducer depend on the bio-sensitive recognition (Korotkaya, 2014).  

 

2.3.3. Microfluidics Integration with Biosensor Technology 

The integration of biosensors with lab-on-chip technology has greatly improved the 

effectiveness of biosensor technology. This integration provides a miniaturized and 

integrated alternative to traditional laboratory methods that were repetitive in nature. 

Moreover, the integration of biosensors with lab-on-chip devices significantly reduces 

energy, reagent, and sample consumption during the experiments including a reduction in the 

amount of generated waste products. The reduced energy, reagent and sample consumption 

means that the cost of experiments are lowered and at the same time levels of detection 

sensitivity and specificity are increased relative to conventional methods of detection 

(Srinivasan et al., 2003).  

The integration of a biosensor into a microfluidic device results into a microfluidic 

biosensor. A microfluidic biosensor is composed of numerous microsystems meaning that 

one biosensor is capable of performing a full analysis including treatment, sample separation, 

preconcentration and continuous sampling. Additionally, microfluidic biosensors manifest 

important characteristics including fast reaction rates, high throughput, and enhanced 

analytical performance. These characteristics make the microfluidic biosensors detection 
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adaptable to point of care uses. Microfluidic biosensors serve as powerful analytical tools 

that are also affordable (Luka et al., 2015). 

Continuous Microfluidic-Based Biosensors 
Continuous microfluidic-based biosensors enable continuous flow analysis in a 

microfluidic-based biosensor and reduce the complexity associated with the recycling of the 

biomolecules. Biomolecules such as nucleotides or oligonucleotides are provided in excess 

amounts to favour high reaction yield. Similarly, enzymes are used as catalysts in the reaction 

and are not consumed. In both cases the biomolecules are washed away after the experiment. 

These biomolecules can be recapture and recycling, and in consequence introduced to the 

same or a different sample (Zhao, 2016). 

Enzyme-Based Continuous Microfluidic Biosensors 
Enzyme-based biosensors operate on the integration of biosensor technology with 

microfluidic platforms. An example of an enzyme-based continuous microfluidic biosensor 

is one produced through bienzyme functionalized nanocomposite integration with the 

microfluidic biosensor (Ali et al., 2013). 

Antibody-Based Continuous Microfluidic Biosensors 
An example of an antibody-based continuous microfluidic biosensor was fabricated by 

Lee et al. (Lee et al., 2007b) in an experiment for breast cancer detection. They used surface 

plasmon resonance imaging (SPRi) where they installed temperature control units as the 

method is dependent on temperature. The temperature control unit consisted of micro-

temperature sensors and heaters to maintain a constant temperature level. They immobilized 

anti-rabbit IgG on a gold surface using a regular self-assembled monolayer (SAM). The 

system of micropumps and microvalves ensured high accuracy, selectivity, and specificity in 
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the delivery of IgG solution. Additionally, the designed and fabricated microfluidic biosensor 

fabricated by Lee et al. proved to be a cost-effective method for detecting the presence of 

both protein-protein interaction and biomedical sample (Mairhofer et al., 2009).  

Aptamer-Based Continuous Microfluidic Biosensors 
Aptamers are biomolecules consisting of oligonucleotides made to bind a specific target 

molecule. Aptamers are usually created by selecting them from a large sequence of peptides. 

The comparison between aptamer and antibodies as bio-sensitive recognition elements shows 

aptamers present better qualities. This comparison shows that aptamer-based structures are 

easier to design and fabricate. Moreover, aptamer-based structures do require washing steps 

and secondary labelling for them to generate electrical or optical signals hence making their 

use in experiments to save time and money. An example of an aptamer-based continuous 

microfluidic biosensor was the one designed and fabricated by Zhou et al. (Zhou et al., 2014) 

in an experiment whose target was to detect living cells continuously. The microfluidic 

biosensor was fabricated on a glass substrate with two layers of PDMS and a gold electrode. 

The first PDMS layer had semi-circular microcups and microchannels while the second layer 

functioned as a pneumatic control unit. When cells’ secretion was taking place the microcups 

were rising to speeded up the diffusion of protein towards the sensory area. Lowering the 

microcups facilitated cells’ physical separation from the electrode’s sensory area. The 

interaction between the specific aptamer and cell-secreted protein was confirmed using 

square wave voltammetry (SWV) measurements (Luka et al., 2015). 
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Droplet Microfluidic-Based Biosensor 
The droplet microfluidic biosensors present three categories: enzymes-based, antibody-

based and aptamer-based droplet microfluidic biosensors.   

The enzyme-based droplet microfluidic biosensor was the one used, for example, by 

George Luka (Luka et al., 2015) for glucose detection using enzymes and a Platinum-black 

microelectrode. The electrochemical current variation (as a result of the β-D-glucose 

oxidation forming H2O2 as a byproduct) was measured using cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS). Notably, this microfluidic biosensor was 

observed to be cost effective and of high sensitivity.  

The antibody-based microfluidic biosensors have been used in the detection and capture 

of E. coli bacteria in drinking water quality control experiments. An example of the 

experiment that used this type of biosensor is the one conducted by Golberg (Golberg et al., 

2014). 

Digital Microfluidic-Based Biosensor 
Biosensor integration with digital microfluidics has led to an improved performance of 

various fluidic operations, including mixing, separation, splitting, and transport. Digital 

microfluidic-based biosensors are also categorized in terms of the bio-recognition element 

used (Soper et al., 2006): The most common type of digital microfluidic system is glass 

based. The substrate layer, usually glass, of the device contains a patterned array of 

individually controllable electrodes. The substrate layer is the dielectric layer of the device 

used for building up charges and electrical field. The applied voltage activates the electrodes 

and allows changes through the device’s surface in order to manipulate microdroplets (Wang 

et al., 2017). The advantages of DMF are portability, less sample consumption, shorter 
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chemical reaction time and flexibility. Nevertheless, the digital microfluidic technique 

presents an important disadvantage such us the need for piezoelectric substrate (Choi et al., 

2012b). 

Enzyme-Based Digital Microfluidic Biosensor 
Srinivasan et al. studied different types of enzyme-based digital microfluidic-based 

biosensors, conducting experiments to determine the effectiveness of enzyme-based 

microfluidic biosensors using an optical absorbance measurement integration system with 

digital microfluidics for detection of metabolites found in the body (Srinivasan et al., 2003). 

The experiment used glucose oxidase as the bio-recognition element. Srinivasan and his 

colleagues also conducted another experiment with the same enzyme-based microfluidic 

biosensor which involved colorimetric enzyme-kinetic assay application for glucose 

detection in a droplet sample (Kumar et al., 2013). 

Antibody-Based Digital Microfluidic Biosensor 
Antibody-based digital microfluidic biosensors were tested by Choi et al. (Choi et al., 

2012). Their digital microfluidic biosensor integrated the field effect transistor (FET) based 

biosensor into digital microfluidic technology where antibodies were used as the bio-

recognition element in an experiment conducted to facilitate the detection of avian influenza 

antibodies (anti-AI). The device functioned on the basis of electrical current measurement. 

The electric current was from the FET biosensor. The analyte anti-AI droplets were delivered 

to the sensory area using the electrowetting-on-dielectric technique. The experimental results 

evidenced current reduction following the binding of specific anti-AI antibodies on the target 

antigen with a high detection limit. The developed digital microfluidic FET-based biosensor 

was a significant contribution to digital microfluidic biosensor technology development since 
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the detection and transportation of biomolecules was effectively conducted without the need 

of bulky transducers, pumps or microfluidic channels (Zaytseva et al., 2005).  

Aptamer-Based Digital Microfluidic Biosensor 
Application of aptamers in digital microfluidic biosensors uses antibodies as a 

complementary bio-recognition element. The functionality of the aptamer-based digital 

microfluidic biosensor was tested in an experiment involving the interaction between a 

droplet with fluorescence label immunoglobulin E (IgE) and another unlabelled IgE in the 

presence anti-IgE coated magnetic nanoparticles (Kratz  et al., 2004). 

 

2.3.4. Conclusion 

Conventional methods of specific target detection and identification are time-consuming 

and costly. Additionally, conventional devices are not portable. Biosensor integration with 

microfluidic technology plays an important role in the replacement of bulky conventional 

devices due to their ability to combine biological and chemical components on one platform. 

Biosensors are important analytical tools in different fields of application including food 

safety assurance, security and defence, environmental and agricultural monitoring, and drug 

discovery. A biosensor selectivity and specificity depend on the bio-recognition element 

affinity. Microfluidic technology with integrated biosensor technology has increased the 

effectiveness of devices in laboratory experiments and in turn has reduced the energy 

consumption and reagent and analyte volume to reduce waste.  

  

 



 

 
 

35 

2.4 Separation using Anodized Nanomaterials 

2.4.1. Introduction 

Nanoporous materials can be engineered using electrochemical methods. The 

nanomaterials fabricated using this method includes nanoporous anodic aluminium oxide 

(AAO), titania nanotube arrays (TiNTs), and porous silicon (pSi). Nanoporous AAO, TiNTs, 

and pSi are some of the most preferred nanoporous materials utilized by researchers for 

biosensing and chemical substrates. These nanoporous materials can be integrated with 

optical techniques of particle separation such as reflective interference, Raman spectroscopy, 

optical waveguiding, plasmon resonance and surface acoustics. Nanoporous anodic alumina 

engineered through the anodization of aluminium has excellent mechanical, chemical and 

optical properties, for example, hardness, thermal stability, large specific surface area, 

chemical resistance, and biocompatibility. The high specific area to volume ratio of 

nanoporous AAO makes it suitable for use in the enhancement of optical signals in a case 

where analytes or target molecules are trapped inside the nanopores. This makes nanoporous 

AAO an outstanding platform for sophisticated applications including drug delivery, 

template synthesis, generation of energy and its storage, data storage, biological and chemical 

sensing, selective molecular separation, cell adhesion and culture, and catalysis. Nanoporous 

AAO substrates facilitate the fabrication of simple, smart, advanced and cost-effective tools 

of analysis. Nanoporous AAO geometry, surface chemistry, and pore sizes can be engineered 

hence making it a nanomaterial of high versatility due to the ability to tune its features in a 

manner facilitating the integration of sensing and separation capabilities into a single device. 

The AAO nanoporous surface chemistry, flexible structural modification, and optical 
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properties have facilitated its use in reflected interference and surface plasmon resonance-

based systems (Mátéfi-Tempfli et al., 2008).  

 

2.4.2. Nanoporous Anodic Aluminium Oxide Structure and Fabrication 

The chemical and corrosion resistance of aluminium oxide has facilitated its use since the 

1900s. The structure of nanoporous AAO is an alumina matrix with hexagonally-arranged 

and close-packed cells having a cylindrical pore at the center. After anodization is complete, 

any remaining aluminium can be selectively etched to give a free-standing nanoporous AAO 

substrate. Additionally, the capped pore aluminium oxide barrier layer can be etched to give 

a nanoporous AAO membrane. This leads to the formation of membranes with straight 

vertical nanochannels. Nanoporous AAO’s fundamental parameters include pore length (Lp), 

the thickness of the oxide barrier (Lb), and pore diameter (Dp) including the inter-pore 

distance (Dint). Anodization conditions facilitate the control of Lp, Lb, Dp and Dint at a high 

level of precision, an example is given in Figure 6. The nanoporous AAO geometrical 

features are relatively versatile and can be controlled in the range of 50-600 nm for Dint, 10-

400 nm for Dp and 30-250 nm for Lb. Other significant nanoporous AAO parameters are 

porosity (P) and pore density (δp).  
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Figure 6. a. Nanoporous AAO structural characteristics pore length (Lp), the thickness of the oxide barrier (Lb), pore 

diameter (Dp) including the inter-pore distance (Dint) b. top view of an SEM image of a nanoporous AAO, c. cross-

section view of an SEM of nanoporous AAO. (Kumeria et al., 2014) 

 

Different anodization conditions lead to different nanoporous AAO structures. These 

conditions include the type of electrolyte, electrolyte concentration, temperature, and 

anodization voltage. The commonly used electrolytes in the fabrication of nanoporous AAO 
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include oxalic acid (H2C2O4), phosphoric acid (H3PO4), and sulphuric acid (H2SO4). These 

electrolytes require different voltages to effectively generate the nanoporous AAO structure 

where the optimized voltage parameters for different electrolytes are: 40V for H2C2O4, 195 

V for H3PO4 and 25 V for H2SO4 (Schwirn et al., 2008). The process using H2C2O4, H3PO4, 

and H2SO4 electrolytes is known as “mild” anodization due to moderate temperature and 

voltage requirement. However, aluminium anodization experiments conducted in other 

aqueous solutions including tartaric, malic, malonic, sulfamic and citric acids have also 

yielded positive results (Sulka, 2008). However, these acids achieve poor self-organization 

of nanoporous AAO pores in comparison to the level of success achieved with H2C2O4, 

H3PO4, and H2SO4 acids. 

An important step was made in the field of nanoporous AAO fabrication when Masuda 

and Fukuda used a two-step anodization technique to generate a highly self-organized 

nanoporous AAO successfully in 1995. This self-organized nanoporous AAO structure had 

high aspect ratios and narrow pore size distribution. The first anodization step involved the 

production of a porous aluminium oxide layer. The second step involved the selective 

removal of the porous aluminium oxide layer to facilitate pre-structuring of the aluminium 

surface. The pre-structuring of aluminium surface led to an improvement of the pore 

structural arrangement.  

However, the mild anodization experiment conducted by Masuda and Fukuda had a 

limitation: a slow rate of pore growth (2–7 μm/h). Gösele and his colleagues solved this 

problem by introducing the ‘hard’ anodization process. The hard anodization introduced by 

Gösele and his colleagues used low temperature and high voltage conditions to achieve a 

high rate of pore growth (50–100 μm/h). The mild and hard anodization techniques of 
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nanoporous AAO fabrication were improved through integration with chemical etching. 

Moreover, techniques such as periodic anodization profiles were developed so as to fabricate 

complex pore geometries in nanoporous AAO (Lee et al., 2006). Electrochemical techniques 

to further manipulate and optimize the structure of nanoporous AAO were introduced which 

generated different pore morphologies including hierarchical and multi-structured pores and 

branched pores (Sulka, 2008). Other methods can also be applied in the fabrication of 

nanoporous AAO with complex structures including Ar plasma etching, electron-beam 

lithography, colloid sphere lithography (Yu and Zhang, 2013), direct laser writing 

lithography (Deubel et al., 2004), holographic lithography (Stankevičius et al., 2014) and 

focused-ion-beam lithography (Melngailis, 1993). These fabrication methods are selected 

based on the intended pore shape, size, and arrangement (Chu et al., 2005). 

 

2.4.3. Nanoporous Anodic Alumina Properties, Surface Functionalization and Surface 

Chemistry  

Nanoporous Anodic Alumina Properties   
Nanoporous anodic alumina possesses various optical properties including absorbance, 

photoluminescence reflectivity, and transmittance. These optical properties make it a highly 

selective and sensitive particle separation tool. Nanoporous AAO also play an important role 

in the selection of target molecules including enzymes, DNA, antigens, and proteins. 

Nanoporous AAO devices can also be modified to enhance their chemical resistance, 

hydrophobicity, reflectivity, and anti-fouling properties (Law et al., 2016). 
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Surface Chemistry of Nanoporous Anodic Aluminium Oxide  
Nanoporous AAO has layered surface chemistry characterized by a distribution of 

electrolytic impurities forming an onion-like structure. Nanoporous AAO’s chemical 

structure is composed of inner and outer layers. The outer layer is located near the central 

pore while the inner layer is located far from the pore. The inner layer is made up of pure 

aluminium oxide while the outer layer is made up of contaminated aluminium oxide where 

the acid electrolyte is the impurity (Kumeria et al., 2014). 

Nanoporous AAO is subject to chemical dissolution. The nanoporous AAO surface can 

be modified to protect it from chemical dissolution when placed in an acidic environment. 

The surface modification on nanoporous AAO includes gas-phase deposition and physical 

deposition techniques. The gas phase deposition techniques include chemical vapor 

deposition (CVD), plasma polymerization, atomic layer deposition (ALD), and thermal 

vapor deposition. Chemical modification methods include electrochemical and electroless 

deposition, sol-gel processing, layer-by-layer deposition, use of phosphoric and organic acids 

and silane self-assembly processes. The surface modification of nanoporous AAO can be 

used to attach biomolecules to nanoporous AAO pores and in the preparation of functional 

nanomaterials, for example, nanotubes, nanorods, and nanoparticles (Lee, 2010).  

The techniques of surface functionalization include plasma polymerization, thermal 

vapor deposition, pulsed laser deposition and sputtering. They are used for the deposition of 

materials inside nanoporous AAO including carbon, nitrides, metals, and other metal oxides. 

Metal coating can be carried out through sputtering, thermal vapor, and electron-beam 

deposition. Metal films deposited on nanoporous AAO using vapor deposition methods 

include nickel, palladium, silver, gold, titanium and platinum. These metal deposits are used 
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to improve nanoporous AAO substrates’ chemical stability, reflectivity, and conductivity 

(Masuda and Satoh, 1996). The coating of nanoporous AAO is based on its catalytic 

properties. The metal coating process acts as a basis for further nanoporous AAO’s chemical 

modification to facilitate biological and chemical species bonding for molecular separation 

and optical sensing operations. One main drawback associated with the use of deposition 

techniques is the limited penetration depth into the nanoporous AAO (Elam et al., 2003). 

Nanoporous AAO can be platinum coated and used in charged proteins’ separation. The 

thickness of a platinum layer can be increased to increase the efficiency of particle separation 

based size (Gong et al., 2001). The hexagonal arrangement of nanoporous AAO can be 

applied in the preparation of surface-enhanced Raman scattering (SERS) substrates (Chu et 

al., 2005). 

Plasma polymer deposition is polymerization using plasma which can be applied in the 

deposition of biocompatible and reactive polymer films. The films have a controlled chemical 

functionality with aldehyde, carboxyl, epoxy, hydroxyl and amine groups (Yasuda and 

Wang, 1985). 

Atomic layer deposition (ALD) facilitates accurate deposition of a wide range of 

materials including metal coatings, nitrides, oxides, and sulfides. The coatings generated 

depict high thermal, optical, chemical, and mechanical stability. These techniques can 

penetrate deep into nanopores enabling modification of nanoporous AAO’s inner surface. 

Titania, silica, and alumina can be deposited controllably inside the pores of nanoporous 

AAO thus improving its transport, optical and catalytic properties and reducing its 

dimensions (Lillo and Losic, 2009).   
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Chemical vapor deposition (CVD) distributes dissociated gaseous molecules by plasma, 

light and heat to establish conformal and stable films on a substrate. It is possible to deposit 

carbon inside nanoporous AAO by CVD. This process facilitates the creation of vertically 

aligned carbon nanotube (CNT) arrays whose dimensions are controlled. The growth of 

CNTs inside the pores of nanoporous AAO occurs through the pyrolysis of a carbon source 

at temperatures above 600 oC. The carbon source used in pyrolysis can be gas, liquid or solid. 

Nanoporous AAO nanopores can also be modified using organosilane monolayers, for 

example, mercapto-silane (MPTES) to facilitate separation of mercury and gold in an 

aqueous sample (Park and Sudarshan, 2001). 

Surface Modification of Nanoporous Anodic Alumina  
Molecules can be bonded to the surface of nanoporous AAO to make sure the entire 

surface area is utilized. Notably, the presence of anionic impurities in the nanoporous AAO 

structure exposes it to oxide attack leading to the production of surface hydroxyl groups (Lee 

et al., 2004). Wet chemical surface modification techniques of nanoporous AAO are 

beneficial since the phenomenon of self-assembly can be applied. The self-assembly 

phenomenon establishes a monolayer coating across the pores’ surface. Argosilanes, 

phosphonic acids, and carboxylic acids can be used for the generation of selective surface 

chemistry on the surface of nanoporous AAO and are used to form uniform monolayers on 

the surface (Michalak et al., 2010). 

The self-assembled monolayers (SAMs) are assembled using organic molecules. These 

organic molecules are generated when molecules are attached and arranged spontaneously. 

SAMs can be assembled using different methods. 
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The nanoporous AAO organosilanization helps to control adsorption and wettability 

characteristics. There is a wide range of commercial organosilanes. These organosilanes can 

be bound covalently to the surface of nanoporous AAO through the incubation of the 

hydroxylated nanoporous AAO substrate. Hydrophobic terminal groups, for example, 

perfluoroalkyl-silanes and alkyl-trichloro-silanes can be used in SAMs selective production. 

The selective production of SAMs can be used to demonstrate how the wettability of 

nanoporous AAO surface can be tuned. Alkyl-trichlorosilanes having chain lengths C1-C8 

can be used to make nanoporous AAO hydrophobic. The hydrophilicity of nanoporous AAO 

can also be increased using silanes having active functional groups, for example, epoxy-

terminated silanes, amine-terminated silanes, and PEG-silanes (Brevnov et al., 2004).  

Functionalization using Phosphoric and Organic Acids 
Organic acids such as 2,3,4,5,6-pentafluorobenzoic acid, trifluoroacetic acid, 

octadecanoic acid and perfluoropentanoic acid induce hydrophobicity to the surface of 

nanoporous AAO. However, the monolayers formed by the organic acids on the surface of 

nanoporous AAO depict instability when subjected to aqueous environments. On the other 

hand, the monolayers generated on the surface of nanoporous AAO using phosphoric acids 

are stable in aqueous environments.  

 

2.4.4. Separation 

Nanoporous structures, most importantly, nanoporous AAO has been applied in many 

separation experiments. The suitability of nanoporous AAO for use in separation experiments 

is because the pores are uniform and narrow. Additionally, the membrane of nanoporous 

AAO has high flux rate and selectivity. Nanoporous AAO has mostly played a significant 
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role in biomolecule separation. Nanoporous AAO membranes are straight, aligned, uniform, 

mechanically stable and biologically stable hence facilitating the separation of biomolecules. 

This process of separation is applied in biofiltration experiments. The applicability of 

biofiltration techniques is based on chemical affiliation and size limitation (Osmanbeyoglu 

et al., 2009). 

The biofiltration mechanism works through size limitation. This mechanism facilitates 

the separation of different sizes of biomolecules. Notably, the AAO nanopores allow 

biomolecules of a smaller size to pass through them and prevent those with a bigger size from 

passing through.  

Chemical Mechanism of Biofiltration 
The chemical mechanism of biofiltration operates based on the nanoporous AAO 

membranes tendency to bond with biomolecules selectively. The selective bonding of 

biomolecules with the surface of nanoporous AAO makes the molecules that are more 

attracted to the nanoporous AAO travel at a lower velocity in relation to those that are not 

attracted to the surface.  

Lee et al. conducted an experiment to investigate water, nitrogen and ovalbumin 

molecules transportation on nanoporous AAO. The first step in this experiment involved the 

physical attachment of polyethyleneimine (PEI) on the surface of nanoporous AAO. The 

second step involved grafting a polyethyleneglycol (PEG) chain using the polyethyleneimine 

nanoporous anodic alumina (PEI-NAA) sample. Use of PEG to modify the PEI-NAA sample 

resulted in a reduction in the rate of molecule transportation as a result of reduced 

permeability of the membrane. PEG possesses a hydrophilic and neutral chemical structure 
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which coupled with its brush-like chains lead to the repulsion of selected molecules, for 

example, proteins (Lee et al., 2005). 

Another experiment conducted to investigate the separation and transport properties of 

biomolecules in nanoporous AAO was the protein adsorption test (FITC-BSA). This 

experiment capitalized on the fact that nanoporous AAO samples modified with PEG had a 

lower protein adsorption compared to the unmodified ones. This modification ensured that 

the protein adsorption purely depended on the protein-AAO nanoporous surface interaction 

and not by trapping proteins inside the AAO pores (Chen et al., 2008).  

The above experiments indicate that the AAO pores have the ability to change the fluid 

transportation rate, for example, water and nitrogen. Additionally, AAO pore size can be 

minimized to molecular dimensions through different methods. The reduction facilitates the 

selective separation of biomolecules based on their difference in size.  

 

2.4.5. Conclusion  

The properties of nanoporous AAO have been utilized for various applications in the 

fields of electrochemistry, nanotechnology, medicine, cell biology, and optics. Different 

methods of nanoporous AAO structure fabrication have facilitated the control over porosity, 

pore diameter, pore organization, and length. Notably, the nanoporous AAO structure can be 

modified further for various uses. The modification of the nanoporous AAO surface has 

played an important role in particle separation. This is due to the ability to adjust the size of 

nanopores and/or change the chemical characteristics of the nanoporous AAO surface. The 
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ability to modify nanoporous AAO has enabled and led to high specificity, efficiency, and 

selectivity levels. 
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3. Materials and Methods 

3.1 Lab-on-a-chip device fabrication 
 

3.1.1. Fabrication of microhills by wet chemical etching  

Microhills were fabricated in order to create the imprint pattern needed to fabricate the 

microchannels. Etching was used to fabricate the microhills on the wafer. Etching is the 

method used in micro/nanofabrication to chemically remove layers from a wafer surface. A 

glass microscopy slide was utilized as the wafer in this work. Silicate glass is commonly used 

due to their unique properties. Silicate glass is able to resist harsh environmental conditions 

and they are also optically transparent. Silica glass can also be engineered into a specific 

shape with relative ease as a result of their unique temperature-viscosity relationship 

(Steingoetter and Fouckhardt, 2005). Silicate glass also has strong resistance to most liquids 

and gases. Silicate glass is soluble in hydrofluoric acid (HF) or other aqueous solutions 

containing HF. HF־ based etchants, under a controlled environment, can be used to remove 

materials from glass surfaces for various purposes and uses. 

In the etching procedure, part of the wafer was protected from the etchant with a mask. 

This mask was deposited and patterned on the wafer in a prior fabrication step using 

lithography. This method was used to make the desired design on the wafer. The protection 

mask is a photoresist material, which after development, exposes the desired area of the wafer 

to be etched. To make the desired design on the glass a chrome mask is placed on top of the 

wafer, which is covered with the photoresist and placed under ultraviolet (UV) light. The 

chrome metal, which forms the protection mask under UV-light, was chosen due to its ability 
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to absorb UV light, which minimizes the reflection of specific wavelengths. The photomask 

(chrome protection mask) is a flat piece of quartz with a layer of chrome on one side, 

containing a nano, micro or macro image suitable for nano/micro device imprinting. The use 

of a photomask under UV light to imprint a desired design is known as photolithography. 

The development step removes the photoresist from the glass areas that have been exposed 

to the etchant. The photolithographic procedure, which is explained in detail subsequently, 

is shown schematically in Figure 7. 

 

Figure 7. The fabrication procedure to make microhills on a glass surface. In this case the depth of the microhill 

was 4 μm and width 1 mm. PR is the acronym of photoresist.   
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When the photolithographic procedure is complete, the exposed wafer is attacked by a 

liquid etchant. The etchant removes layers from the wafer either by isotropic etching which 

means layers are etched uniformly in all directions or by anisotropic etching, whereby the 

surface is etched preferentially in one direction (Figure 8). In order to choose the appropriate 

etching method, a suitable chemical substance must be selected for use.  

 

 

Figure 8. Different etched geometries after isotropic and anisotropic etching. (Kӧhler and Fritzsche, 2007) 

 

The etching method used in this work is known as anisotropic wet chemical etching. The 

etchant used was a mix of silicon dioxide etchant 20:1, 20 mL (which contains hydrofluoric 

acid and ammonium chloride) and concentrated hydrochloric acid (HCl), 1 mL. Wet 

chemical etching is a hazardous chemical procedure due to the use of HF which is a highly 

corrosive acid which can dissolve many materials and can cause permanent damage to human 
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tissue, resulting in tissue death. For this reason, wet chemical etching was only used once in 

this work in order to fabricate the microhill pattern on the glass slide surface. This sample 

was then used for subsequent imprinting to make microchannels. Dissolving HF in water 

forms a weak acid containing F־, HF2־, H+ ions including HF molecules that have not yet 

undergone dissociation. The concentration (K1 and K2) of the dissolved HF can be defined 

using two equations including: 

K1 = [HF] [F־]/[HF2־]   [3] 

K2 = [H+] [F־]/[HF]   [4] 

where K1 and K2 are the concentrations of the dissolved hydrofluoric acid, [HF] the 

concentration of the hydrofluoric acid, [F=] the concentration of the fluorine and [H+] is the 

concertation of hydrogen.  

The presence of F־, HF2־, H+ ions governs the rate at which a HF aqueous solution attacks 

the glass. The etching process of glass by the HF aqueous solution is kinetically controlled. 

The reactive species chemisorption, adsorption, and the effect of these processes on siloxane 

bonds at the surface of glass is what controls the process of dissolution. The adsorption 

processes of F־, HF2־, H+ ions; HF molecules determine the etching rate of glass. The H+ ions 

catalyse the etching process through the destruction of siloxane bonds (Menapace et al., 

2002).  

The microhills fabrication procedure consists of the following steps. Firstly, a photoresist 

S1813 (company TM G2) is applied to the surface of a glass microscope slide (fisher brand) 

by spin coating, to give a homogeneous photoresist layer, followed by a two minute post 

exposure soft bake on a hot plate at 115 °C. Spin coating enables the photoresist solution to 
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be deposited uniformly onto the glass surface. The wafer is held on a spinner chuck by 

vacuum and the resist solution coats the glass to uniform thickness by centrifugal spinning 

(the spin coater was: Headway Research INC, model PWM 32, and the resist spinner was 

controlled by the controller Headway Research INC, model 1-PWN 101- CB 15). The spin 

coating parameters for the photoresist S1813 were 3000 rpm for 12 seconds. 

Each photoresist gives a certain thickness after being applied onto the sample surface. 

The thickness of the photoresist can be identified from the name of the photoresist, i.e. S1813 

is 1.3 μm, the last two digits of the number states the thickness to be obtained. Thickness is 

also calculated using an empirical equation (Geschke et al., 2004):           

                                              𝑡./01234 ≈
67
√9

      [5]  

where tcoating is the thickness of the coating, K is a proportionality spinner constant, 

typically 80-100, ν is the kinematic viscosity (mm2 s-1) and ω is the number of revolutions 

per minute, followed by a two-minute post-exposure soft bake on a hot plate at 115 °C. 

Heating the photoresist makes it hard and durable for UV exposure step. The whole 

nanofabrication procedure took place in a cleanroom (see more details in Appendix 8.2.). 

There are two different types of photoresist: positive and negative. The positive 

photoresist breaks chemical bonds in the material when exposed to UV-light, so that the 

exposed region dissolves in the developer and the unexposed (protected by Cr-mask) region 

remains. The negative photoresist strengthens the chemical bonds in the material when 

exposed to UV-light and the exposed regions remain intact and the unexposed regions 

dissolve in the developer. It should be noted that positive photoresists are more common and 
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have better precision, because they are able to imprint structures down to nanometer 

resolution. The S1813 photoresist used in this work was a positive photoresist.  

A chrome metal mask was placed on top of the photoresist layer and fixed in position. 

Both were then placed into the contact mask aligner (KMS Karl Suss mask aligner, model 

MJB3) and exposed to UV-light for 30 seconds. The closer the mask is placed to the 

photoresist layers, the better result. For this reason, the chrome metal layer is placed on the 

photoresist in order to attach to each other. Figure 9 (a) shows the chrome layer touching the 

photoresist. In this conformation, the error (pathway of UV light) is much lower than in 

Figure 9 (b) where the supporting chrome glass is attached to the photoresist layer. The UV 

mask aligner is a high precision microscope with a light source which releases a wavelength 

capable to transfer the image of the photomask to the wafer.  

 

 

Figure 9. a) UV rays attack the photoresist layer giving a minimum error of a couple of nanometres, instead in b) 

the beam of rays attacks a much wider surface area.  
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The area exposed to UV-light changes the chemical properties of the photoresist and 

allows it to be removed from the developer. The chrome mask was designed with AutoCAD 

and made by Compugraphics Photomask Solutions Company with standard dimensions and 

using a standardized pattern of the effective exposure area where the UV light can attack the 

photoresist (see Figure 10).   

 

 

Figure 10. Standard dimensions of the photomask and exposure area that can be effectively uncovered and 

attacked by UV light.   

 

After pre-baking and UV exposure, the sample was immediately immersed in a developer 

(Microposit 351 developer, Shilpley Company) for 30 seconds, a solution which also 

contains sodium hydroxide (NaOH). The UV treated photoresist was removed by the 

developer and the imprinted pattern was now visible. The sample was immersed in the 

developer for 5 minutes leaving the glass surface exposed to be treated with the etchant. The 

etchant attacks the non-protected and clean glass surface, while the sections, which were not 
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exposed to UV light, are still covered by the photoresist and protected from the etchant. A 

hard bake was carried out at this stage for 10 min at 150 °C on a hot plate in order to solidify 

the remaining photoresist and make the protective layer more durable for the next wet 

chemical etching step. After this process the sample is ready for wet chemical anisotropic 

etching.   

The time spent immersed in the etchant bath determines the depth of the resulting etch. 

The etching time is calculated from the equation (Kӧhler and Fritzsche, 2007):   

𝒓𝒆𝒕𝒄𝒉 = 𝒅𝒆𝒕𝒄𝒉/𝒕𝒆𝒕𝒄𝒉             [6 ]     

where retch is the rate of etching, detch is the removed thickness and tetch is the total 

immersion time. The mass of the material removed metch (Kӧhler and Fritzsche, 2007) can be 

calculated, using  equation [6], from the layer to be etched depends on the etched area, A and 

the density, r of the material:   

𝒎𝒆𝒕𝒄𝒉 = 𝒎𝒆𝒕𝒄𝒉 · 𝒕𝒆𝒕𝒄𝒉 · 𝑨 · 𝝆            [7]         

The etching rate depends on a number of factors including the concentration and 

composition of the etchant, the material to be etched and accuracy and temperature 

conditions. Due to the inconsistent nature of etching, the rate is often determined 

experimentally and optimized prior to the etching process. In this case the sample was 

immersed in the etchant bath using a plastic Azlon beaker suitable for hydrofluoric acid, for 

10 min under very slow agitation, using a magnetic stir plate (IKA-VIBRAX_VXR), to avoid 

any spillage and under a special fume hood for HF work. All the work was carried out using 
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special gloves for HF (Marigold Industrial Feather Weight PLUS G31H), an apron covering 

the body and a face mask covering the face.  

Once the etching process was complete, the sample was removed from the chemical bath 

and washed thoroughly with water. The photoresist removal step then followed. It was easily 

removed with acetone and the sample was ready for further analysis and characterization.   

 

3.1.2. Surface profile measurement of the microhill 

The sample quality was first observed under an optical microscope to confirm that the 

pattern was successful and ready for further characterization. Then, the geometric dimensions 

of the microhill (width, height, and roughness) were characterized using a stylus profilometer 

(Dektak 6M, Figure 11a). The profilometer consists of a sensitive stylus, which can scroll 

linearly on the sample surface and measure the profile’s width, height and roughness. A pre-

inserted weight is applied to the stylus. A setting of 2 mg was applied to the stylus in order 

to carry out the measurement. 
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Figure 11. a) Stylus profilometer. b) The graph of the microhill profile with dimensions of the microhill; 1 mm width 

and 4 μm height 

 

Figure 11b presents the height and width profiles of the microhill, which are 4 μm and 1 

mm respectively. The roughness of the walls which are completely straight is also presented. 

The top of the hill is also straight with a small tilting of 1 nm in the middle. On the right and 

left-hand side of the microhill, the walls (shown by the surface line) appear not perfectly 

aligned. In fact, this is an artefact due to a calibration error of the profilometer. At this stage 

the negative imprint is ready to be used to produce the positive of the proposed design.   

 

3.1.3. Fabrication of microchannels using poly-dimethyl-siloxane 

An elastic polymeric material was used to make the microchannels, which after curing 

can be peeled off from the pattern giving an exact positive image of the microhill pattern. 

This material is an organosilicone compound, known as poly-dimethyl-siloxane (PDMS). 

PDMS in an elastomeric silicon based organic polymer with particular rheological properties. 

It is able to imprint all types of structures in great detail, down to the nanoscale. PDMS 
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consists of two liquid components: A curing agent and a base. Before mixing, the substances 

are both in the liquid phase; once mixed they become a flexible solid elastomer after a few 

hours, baked or not. If the PDMS is baked the final resulting material is more rigid and less 

sticky; on the other hand, if the mixture is left to solidify at room temperature the material 

will still become solid but will be more elastic and sticky. The PDMS used in this work was 

Sylgard 184 (Dow Corning Company). The mixing ratio of the curing agent and base was 

1:10 respectively. The procedure to make the microchannels with PDMS follows. 

As part of the preparation of PDMS, disposable plastic cups, gloves, and a plastic knife 

were used. The cup was placed on an electronic scale and 1:10 of the curing agent and base 

monomers, respectively, were weighed. Subsequently, the mixture was stirred with the knife 

for 3 minutes, which formed numerous air bubbles (Figure 12a). The mixture was therefore 

degassed in a desiccator under vacuum for approximately 1 hour (Figure 12b). 

 

 

Figure 12. Working with PDMS: a) the liquid mixture after stirring in air with visible air bubbles; b) after one hour 

under vacuum air bubbles are removed and the mixture became transparent. 
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Once the PDMS became a transparent liquid it was poured onto the glass slide surface 

(with the microhills) and cured at 80 °C for 15 minutes (or 90 °C for 10 minutes). After 15 

minutes the PDMS exhibits elastic solid behaviour and can be peeled off from the pattern.  

At this stage the PDMS is ready to use as a sample substrate and ready to be sealed in a 

subsequent step. Metal deposition is the intermediate step before sealing the device. This step 

is critical because it determines the use of the device.  

 

3.1.4. Physical vapor metal deposition on the wafer 

Physical vapour metal deposition is the method for depositing thin films with controlled 

thicknesses by evaporation of a metal to a solid surface under vacuum. The metal deposition 

takes place under vacuum and allows vapor particles to travel directly to a target substrate 

where they condense back to a solid state. For the metal evaporation, Edwards Thermal 

Evaporator FL 400 and Edwards Electron Beam Evaporator Auto 306 (as acronym is used e-

beam, it can be seen in Figure 13) were used depending on the desired metal deposited 

thickness.  

The deposited metal was placed in a tungsten boat. The tungsten boat was connected with 

two electrodes and current was applied across the boat. A suitable current for each metal was 

passed through the boat to melt and evaporate the metal. A slow deposition rate is used in 

order to deposit a smooth metal layer. Current and deposition rate values are positively 

correlated so if a high current is applied across the boat, the deposition rate for the metal 

deposition increases. A high current may cause bursts and sparks giving a rough 

indeterminate metal layer. In addition, if the substrate used is not resistant to heat, such as 
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PDMS, it can be degraded. The vacuum plays an important role for the smoothness of the 

deposited surface.  

 

Figure 13. The electron beam evaporator on the right-hand side and its power supply on the left hand side.  

 

The vacuum in the deposition chamber should be at least 10-6 mbar, in order to leave a 

free path for the evaporated particles to travel directly to the target without colliding with the 

background gas. The same applies for the e-beam evaporator to allow the free path of 

electrons from the electron gun to the metal in the crucible and from the crucible to the wafer 

substrate. In both cases the deposition chamber was evacuated under pressure of at least 3.6 

x 10-6 mbar.  

If the vacuum is lower than 10-6, evaporated metal particles collide with vapor atoms in 

the chamber and react with them, which may change their chemical composition. These 

atoms reach the substrate and make it non-uniform. The reason the aluminium has the oval 
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porous appearance (Figure 14) is because the atoms of aluminium collide with vapor atoms 

inside the chamber and the resulting deposited layer is alumina instead of aluminium. In 

addition, it is easy for this to happen when aluminium is in use, because when aluminium 

starts melting with any equipment, thermal or e-beam evaporator, it outgases and disturbs the 

high vacuum in the chamber. Figure 14 shows the aluminium layer after aluminium metal 

deposition in an insufficient vacuum, 10-5 mbar. An alumina layer is clearly observed instead 

of aluminium. The aluminium metal collides with the vapor atoms and becomes oxidized 

which results in an alumina layer. 

 

 

Figure 14. Oval shaped nanopores, due to insufficient vacuum in the chamber during metal deposition.  

 

The e-beam evaporator was used to make a thick Al layer, up to 1 μm, as opposed to the 

thermal evaporation which can achieve a thickness up to 300 nm. In addition, the choice of 

the suitable evaporator, e-beam or thermal, depends on the metal. E-beam evaporators use 



 

 
 

61 

crucibles which need at least 1 g of metal in order to give up to 1 μm thickness. On the other 

hand, thermal evaporators use tungsten boats and need a few milligrams of the metal to give 

the suitable thickness. If the metal is expensive, like gold, platinum or silver, the e-beam 

evaporator is not suitable as the amount of material necessary would not be cost effective. 

Therefore, the thermal evaporation method is far more cost effective.  

The metal deposition was carried out on two different surfaces. Initially the metal was 

deposited on PDMS inside the microchannel (Figure 15) and the second approach deposited 

the metal directly onto a thoroughly clean glass slide (Figure 16). In the first case, PDMS 

was appropriately cleaned with sellotape, which is an effective method for removing any dust 

attached onto the PDMS surface. Any glue in contact with PDMS loses its stickiness 

properties (except glues containing silicon) and they remain liquid for long time (i.e. the glue 

does not set). However, metal deposition onto PDMS did not yield consistent results. 

Consequently, the method was changed to depositing the metal onto a glass surface and using 

the PDMS etched channel to seal the glass. 

 



 

 
 

62 

  

 Figure 15. Metal deposition inside the glass microchannel using a copper mask in order to protect the sample and 

leave exposed only the part where the metal should be deposited.   

 

A copper shadow mask was made with exactly the same width of the microchannel. To 

deposit the metal in the correct position on a glass surface the same copper shadow mask as 

the PDMS was used, as it already possesses the correct dimensions of the microchannel. The 

copper shadow mask was aligned on top of the PDMS microchannel under a Leica stereo 

microscope (MZ6 with photonic controller CL5 100 x). Kapton tape was used to stabilize the 

mask on top of the glass to keep them together as it is resistant to the high temperatures 

occurring inside the evaporator chamber and does not leave traces after peeling it off.  

Prior to metal deposition the glass was thoroughly washed as follows: First piranha 

solution, consisting of 98% sulphuric acid (H2SO4) and 30% hydrogen peroxide (H2O2) in 
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ratio (2-4) : (1) respectively (the H2SO4 can be used in quantities 2 to 4 depending on the 

effectiveness needed). Once the two solutions H2SO4 and H2O2 are mixed together the 

temperature of the mixture rises to 80 °C. The solution should always be fresh as after an 

hour the H2O2 evaporates and the temperature decreases to room temperature. The piranha 

solution does not affect the metal layer, so it could also be used for cleaning the substrate 

after metal deposition. 

 

 

Figure 16. The metal deposition method on a glass surface using a copper shadow mask in order to obtain the 

deposition in the determined area of the sample with predetermined design.    

 

After thorough cleaning of the glass substrate, the mask must be cleaned. This was carried 

out in a water bath under sonication for 2 minutes. All glass slides and masks, after thorough 

cleaning, were placed in the oven at 90 °C to dry out (for at least 5 minutes). Resulting in a 

smooth layer of metal on the glass surface with no cracks or gaps. The metals or chemical 
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compounds deposited on the glass surface using these techniques were aluminium (Al), gold 

(Au), titanium (Ti), chromium (Cr), zinc (Zn) and silicon dioxide (SiO2). Each metal 

deposited was used for a different application.  

 

3.1.5. PDMS and glass surface exposure to oxygen plasma 

The metal layer was deposited on a clean glass slide and the PDMS was prepared with 

the microchannels. The device was now ready to be sealed by sticking the two parts together 

to make a permanent bond. Different methods were attempted but only one gave a strong and 

consistent bond. Glue was used for the first method; this failed as the glue on the PDMS 

surface lost its stickiness (the glue does not set), making the bond with the glass impossible. 

A second way, which also did not work, was to seal the two parts by making them both 

hydrophilic using a primer or other substances to improve surface hydrophilicity. The third 

method was to expose both surfaces to ozone (O3) under UV light, which enriched both 

surfaces with more oxygen atoms, but again it did not give a permanent bond to the whole 

surface area – there was only partial bonding. The ozone and UV-light affected the two 

surfaces, but the result was partially successful with sporadic bonding of the two surfaces. 

They were not enriched homogeneously enough with oxygen. Different oxygen plasma 

generators, including an ICP, a RF plasma barrel etcher (PT 7300) were tested but all 

produced only partial bonding between the two surfaces due to different reasons. 

Finally, a Zepto Oxygen Plasma machine, (Figure 17), consisting of a metal cylindrical 

sealed chamber in which two metal electrodes at a fixed distance are placed in a reactor, was 

successful. One electrode was connected to a power supply and the other one is grounded. 
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This system makes a capacitive coupled plasma by applying a single radio-frequency (RF) 

power.  

 

 

 

 

 

Figure 17. Zepto plasma equipment.  

 

 

Figure 18. Schematics to show the oxygen plasma bonding process with a) the metal deposited on the glass surface 

and b) on PDMS.   
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To ensure that oxygen was flowing in the plasma chamber a colour characterization 

method was used (Table 2). With this method it is also possible to know whether the oxygen 

has been contaminated with air or other substances possibly existing within the chamber.  

 

Table 2. Colour characterization of plasma purity and oxygen flow purity inside the oxygen plasma equipment., 

depending of the vacuum and time of the flow.    

Parameters  Plasma colour Oxygen flowing  

Vacuum 

(mbar) 

High (10-6) light sky blue  Grey (highly pure) 

Medium 

(10-4) 

blue Purple (pure, but 

nitrogen contaminated)  

Low (10-2) dark blue Pink (air 

contaminated) 

Flow time (sec) A darkening of the 

plasma is observed 

when the plasma 

chamber is not left to 

pump down to a low 

pressure.  

When the oxygen starts 

flowing each characteristic 

colour gives the feedback 

of the purity of the 

chamber. This is based on 

the different wavelength of 

light that each gas emits. 

The combination of two 

gases can explain the 

colour in the chamber.  
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Once both surfaces, PDMS and glass, were thoroughly cleaned using the method 

explained above, they were both exposed to oxygen plasma by placing them in a chamber 

with a plasma power 25 W, oxygen flow 25 sccm for 25-30 seconds. The chemical behaviour 

of the PDMS surface after oxygen plasma treatment can be seen in Figure 19.  

 

 

Figure 19. The poly-dimethyl siloxane (PDMS) chemical formula in which the outer methyl groups changes to 

hydroxyl groups after oxygen plasma exposure known as surface oxidization.   

 

The outer methyl groups were changed to hydroxyl groups after exposure to oxygen 

plasma and the superhydrophobic behaviour of the PDMS surface changed to 

superhyrdophilic. This result is stable for a couple of hours; after this time, contact with air 

returns the PDMS to its initial superhydrophobic chemical behaviour. To prolong the 

hydrophilic state, the PDMS sample has to be immersed in water (Ma et al., 2011). Once 

both substrates were removed from the plasma chamber they were brought into immediate 

contact. The sample was now complete and placed in the oven for 10 minutes at 70-80 °C to 

harden the bond and make it permanent. The chemical formula of the permanent bond 

between PDMS and glass surfaces under heating treatment can be seen in Figure 20.   
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Figure 20. Permanent bond occurs between PDMS and glass surfaces after oxygen plasma treatment and heating.  

 

The PDMS and glass bond is now irreversible. Traces of PDMS on the glass slide can be 

seen when there is an attempt to peel the PDMS off from the glass surface (Figure 21). The 

bonded materials can no longer be restored to their original state.  
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Figure 21. Traces of PDMS on glass surface after peeling is an indication of the irreversible bond and permanent 

adhesion. The thickness of the PDMS in this picture is 1.6 mm. (Sofla and Martin, 2010)  

 

The two surfaces should be perfectly aligned in order to place the metal part inside the 

microchannel. The alignment of the PDMS microchannel with the metal was carried out 

under a stereo microscope. A droplet of water was flowed inside the microchannel in order 

to observe whether or not the microchannel was open. Due to the difficulty to visually capture 

the water flow inside the microchannel, a fluorescent dye was added to the droplet. It was 

then possible to clearly see whether the microchannel was open or not and to see whether the 

fluid was only in the microchannel in front of the metal and not on top of the metal (Figure 

22).  
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Figure 22. Fluorescent dye dissolved in DI water and flowed inside the microchannel to capture the filling of the 

microchannel with water.  

 

The change in surface chemistry of the PDMS and glass before and after oxygen plasma 

treatment was demonstrated with contact angle measurements. When a drop of liquid comes 

into contact with a solid flat surface, a contact angle can be defined using Young’s equation 

(Bekou and Mattia, 2011):     

γLV cosθ = γSV – γSL        [ 8] 

 

where θ is the contact angle, γLV is the liquid-vapor surface tension, γSV is the solid-vapor 

surface tension and γSL solid-liquid surface tension, see the triple line in Figure 23.  
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Figure 23. Contact angle measurement on a solid flat surface.  

 

The tendency of a solid surface to be liquid-wet is the wettability. For example, when the 

water drop tends to spread out on the surface and cover it. A small contact angle, θ < 90º, 

demonstrates a hydrophilic surface, i.e. strong wettability. A large contact angle, θ > 90º, 

demonstrates a hydrophobic surface, i.e. weak wettability. 

Figure 24 shows the wettability of the PDMS surface before and after plasma treatment. 

The top left hand side image shows the PDMS surface before the oxygen plasma treatment 

with a drop of water on top; the hydrophobic behaviour is clear (Ahmed, 2001). In 

comparison, the bottom left hand side image where the glass surface has a drop of water on 

top shows a contact angle of 30°, which is clearly more hydrophilic than the PDMS. On the 

right-hand side image, both surfaces present superhydrophilic behaviour as the water drop 

spreads all over the surface and it is difficult to calculate the contact angle from the image. 

At this stage, if the two surfaces come into contact they make a permanent bond with 

irreversible chemical conditions as described in Figure 21 previously.  
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Figure 24. Contact angle measurements: on the left hand side of the figure show a water drop on top of the PDMS 

surface with an angle of 91-97 ° and on top of the glass surface with an angle of 29-30 °. On the right hand side the same 

measurements on the same surfaces after oxygen plasma treatment and the contact angle was quasi zero.  

 

3.1.6. Wire connections and holes punched to reach the microchannels 

Once the metal deposition is complete and before the oxygen plasma treatment, holes 

were punched, and wires were connected to the device. The wires are necessary to connect 

the device to a power supply, acting as the electrodes of the device. The holes are necessary 

in order to leave the microchannels open so solvents can flow freely in the channels. The 

holes were created using a hole-punch (Neilsen hole punch set) (Figure 25). 
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Figure 25. Lab-on-a-chip with aluminium layer deposited in the middle of the cross, connected 

with electrodes and tubing fitted across the other microchannel.  

 

Three types of electrode assemblies were tested (Figure 26): The first one was used to 

deposit a metal, i.e. Ti, in one microchannel containing the determining (i.e. aluminium or 

gold) metal layer and leaving the other crossing microchannel free. The titanium metal-wires 

deposition took place straight after the metal in determination deposition using physical 

vapor deposition method, as explained int 3.1.4. section. The second one was used to deposit 

Ti metal on the side containing the determining metal layer and on the other side make a 

small incision on the PDMS surface and stabilize the wires inside the polymer. The third one 

was used to make two small incisions in the PDMS surface and place a wire in each one, thus 

contacting the metal layer. 
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Figure 26. Three methods to introduce wires into the device: a. A titanium layer was deposited inside the 

microchannel; b. in one part a titanium layer was deposited inside the microchannel and a titanium wire was placed in 

the microchannel on the other part; and c. a titanium wire and a copper wire were placed inside the microchannel.  

  

The first method (Figure 26a) caused problems and was very difficult to handle. When 

the deposited layer was on the glass surface, the banana-clip connectors would scratch the 
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metal layer off. On the other hand, when the layer was on the PDMS surface there were small, 

up to nanometre, gaps in between the metal molecules, resulting in no current. The third 

assembly worked best: A thin wire, 25-75 μm in diameter, was placed on the PDMS substrate 

and stabilized, i.e. left in place, inside the small incision which made it easier to handle. The 

oxygen plasma sealing follows once the wires have been placed on the device. 

 

3.2 Lab-on-a-chip for aluminium anodization 
The device was connected to an external syringe pump in order to carry out aluminium 

anodization. The tubing was stabilized in place with silicon glue, to avoid ejection during the 

pressure build up when using the syringe pump. Prior to applying the silicon glue the PDMS 

surface was coated with a primer to improve adhesion. The silicon glue was the only glue 

capable of retaining the flexibility of the tubing for easier handling. The first experiment was 

to carry out aluminium anodization. 

3.2.1. Aluminium anodization 

The aim of anodizing the deposited aluminium inside the microchannel was to obtain 

long alumina nanopores, namely nanochannels, integrated within the microchannel and 

parallel to the substrate. A thickness of 1 μm was necessary, achieved only with an e-beam 

evaporator could this be achieved.  

The lab-on-a-chip was connected to a syringe pump (Figure 27) to pump the electrolyte 

solution into the microchannel and the wires were connected to a power supply. 
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Figure 27.  A syringe pump connected to the lab-on-a-chip, to pump acid inside the microchannel in order to carry 

out aluminium anodization.  

 

The aluminium anodization process involves the formation of an aluminium oxide 

(Al2O3) layer through an electrochemical process resulting in a porous structure. The main 

objective of this experiment was to create nanopores that were parallel to the microchannel. 

This was achieved through a number of steps: First the aluminium deposited sample was 

removed from the e-beam hence exposing aluminium to air which made an aluminium oxide 

layer. While the acid was flowing through the channel, it came into contact with the oxide 

and reacted with it. This exposed the aluminium metal underneath the oxide leading to the 

anodization of the top surface instead of the very thin edges. This reaction is energetically 

favourable.  

An experiment was also carried out to prove that titanium metal can protect aluminium 

metal from atmospheric oxygen. This experiment was repeated with zinc metal and silicon 

dioxide. 
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3.3 Lab-on-a-chip with gold for biosensing  
For the biosensing experiments the device contained a gold layer. The gold deposition 

was carried out with the thermal evaporator for a thickness of 100 nm. It is also useful to note 

that the e-beam evaporator can be used for smaller thicknesses, from 1-100 nm, but with an 

important disadvantage. The quantity of the material necessary to carry out a deposition is at 

least 1 g of metal, which makes it inconvenient to use with metals as expensive as gold. It is 

important to note that the gold with the glass has poor adhesion (Khoury and Atoui, 2010). 

For this reason, the gold cannot be deposited directly on to glass surface. An intermediate 

metal, such as chrome or titanium has to be used to link them together.  

Once the device had been sealed with oxygen plasma, and the wires connected, it was 

ready for use. It was processed for biosensing use without any intermediate step of washing 

the gold layer. Once the sample had been exposed to the oxygen plasma - in order to bind the 

glass with the PDMS - the gold layer had been cleaned and was ready for the following DNA 

immobilization step. 
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Figure 28. The device containing a gold layer and electrodes across the gold with deposited titanium.  

 

The first sample was made as a two-electrode cell (Figure 28) connected to a potentiostat 

for cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

measurements. Cyclic voltammetry is an electrochemical technique applied in an electrolytic 

cell to measure the quantity of the developed electric charge under conditions (Isaacs et al., 

2006). Electrochemical impedance of an electrochemical system determines the amplitude 

of the current to an applied potential. Electrochemical impedance spectroscopy (EIS) is a 

characterization method of an electrochemical process, namely: characterization of the 

changes at a surface under specific system parameters and tailored system parameters in order 

to obtain a desirable effect on a surface.  

Table 3 describes the electrical elements, resistance and capacitance depending on 

current, voltage and impedance and their equations. The impedance of a resistor is 

independent of frequency and has no imaginary component. With only a real impedance 

component, the current through a resistor stays in phase with the voltage across the resistor. 
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The impedance of an inductor increases as frequency increases. Inductors only have an 

imaginary impedance component. As a result, the current through an inductor is given with 

respect to the voltage. The impedance versus frequency behaviour of a capacitor is opposite 

to that of an inductor. A capacitor's impedance decreases as the frequency is increased. 

Capacitors also only have an imaginary impedance component. The current through a 

capacitor is given with respect to the voltage (further calculations and relation to each other 

can be seen in Appendix 2 section 8.2.2.). 

 

Table 3. Common Electrical elements 

Component Current versus Voltage Impedance 

Resistance (Ω) 𝐸 = 𝐼	𝑅	 𝑍 = 𝑅 

Capacitance (F) 𝐼 = 𝐶	
𝑑𝐸
𝑑𝑡

 𝑍 = 	
1
𝑖𝜔𝐶

 

 

The device was used for two experiments involving DNA. The DNA strand can be 

strongly linked onto the gold layer using a thiol linker (Yan et al., 2005). In both experiments 

a thiol linker with different DNA chains was used. The DNA strand was an aptamer which 

was able to recognize and capture a biological molecule. The biological molecules in 

examination were ochratoxin A (OTA) (see Figure 29) and α-human thrombin (see Figure 

30).  
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Figure 29. Chemical structure of ochratoxin A; structurally consists of a para-chlorophenolic group containing a 

dihydroisocoumarin moiety that is amide-linked to L-phenylalanine (Khoury and Atoui, 2010).  

 

 

Figure 30. Structure of complex involving α-human thrombin in blue (Maryanoff, 1993) . 

 

3.3.1. Recognition and capture of ochratoxin A 

The first experiment was DNA immobilization on the gold surface for recognition and 

capture of ochratoxin A. The potentiostat can maintain a constant potential on the working 

electrode, with respect to the reference electrode by adjusting the current at the counter 

electrode. The physical setup for a two-electrode cell presents the current and sense leads 

connected together, i.e. Reference (R) and Counter (C) inputs in the potentiostat are 

connected together. In Figure 31, the two-electrode cell set is shown; on the left hand side is 
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the two electrode cell set up and on the right hand side is the representative circuit consisting 

of a counter/reference electrode and a working electrode.   

 

 

Figure 31. Two electrode cell set up using a sample with wires as electrodes. 

 

The DNA molecules are negatively charged hence they migrate towards the positive gold 

electrode where they are immobilized. The electrochemical process was able to quantify the 

amount of immobilized DNA as the increase in DNA molecules deposited on the gold 

electrode surface led to an increase in the electric current (Demeke and Jenkins, 2010). The 

entire gold electrode surface area was fully covered with DNA molecules, as shown by the 

measurement of a constant current. The DNA immobilization on the gold surface facilitated 

the recognition and capture of ochratoxin A. Figure 32 shows schematically the procedure of 

DNA immobilization on the gold surface and the capture of ochratoxin A.  
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Figure 32. Schematic to represent a) the immobilization procedure b) for immobilizing DNA on the gold surface and 

c) capturing of ochratoxin A.   

 

3.3.2. Recognition and capture of α-human thrombin 

Recognition and capture of a-human thrombin was the next biosensing experiment to be 

conducted using the same size microchannel width as the first experiment (100 µm). 

However, the phosphate buffer step was not included to prevent salt from sticking on the 
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gold electrode’s surface. The process was started by filling the microchannel with DNA-

immobilization buffer and left overnight in humid conditions. 

α-human thrombin (Sigma Aldrich) is obtained from zymogen prothrombin proteolytic 

activation. α-human thrombin exists in the form of a two-chain serine protease of mass 37 

kDa. The active part of α-human thrombin is located within the massive chain. It has high 

specificity for a particular arginine bond present in the protein substrates. The primary 

substrate refers to the fibrinogen through which the conversion of thrombin to fibrin through 

a cleavage process of 4-arginyl-glycyl peptide bonds is facilitated. α-human thrombin plays 

a significant role in the activation of platelets, protein C, TAFI (Plasma procarboxypeptidase 

B) and factor C (Berscheid et al., 1992).  

Thrombin detection in blood plays a significant role in the clinical analysis process. The 

interaction between thrombin and fibrinogen leads to the clotting of blood. Additionally, 

thrombin also functions as a hormone during platelet activation and thrombosis. The 

thrombin concentration in the blood varies - it is absent in normal conditions of the blood but 

coagulation processes may see it reach low-micro-molar concentrations (Butenas et al., 

1999).  

Aptamers are recognized bioanalytical tools for sensitive and rapid detection of protein 

and development of protein arrays. One well-known thrombin inhibitor is the thrombin 

aptamer (a single-stranded DNA oligonucleotide 5’-GGTTGGTGTGGTTGG-3’). The 

interaction mechanism includes aptamer binding to the exosite anion, acting as a platelet 

thrombin receptor and thrombin inhibitor. The particular thrombin/aptamer binding 

interaction has been used to develop biosensors similar to the one used in the research 
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presented here. Electrochemical impedance spectroscopy has created a very sensitive 

thrombin biosensor whose effectiveness stretches below the picomolar range (Mir et al., 

2006). 

In the experiment, the α-human thrombin was added to the microchannel. The first step 

involved the removal of magnesium from the microchannel through the addition of a 10 mM 

EDTA solution dissolved in phosphate buffer. After the DNA-strands had been deposited on 

the gold surface, various solutions were added including ferro-/ferri-cyanide solution (5 mM) 

comprising of 10 mM potassium hexacyanoferrate II (C6FeK4N6.3H2O II) and 10 mM 

potassium ferrocyanide III (K3Fe(CN)6 III), and α-human thrombin solution (500 nM) 

containing 426 μL ferro-/ferri-cyanide solution and 1 μL thrombin. To determine if the bond 

had been formed between the DNA-aptamer and thrombin, the microchannel was rinsed with 

a solution of ferro-/ferri-cyanide and EIS measurements was conducted (Wang et al., 2011). 

The selective detection of thrombin using the gold membrane, upon binding the aptamer 

folds onto its secondary structure, increasing the DNA charge density close to the electrode 

and hence increasing the electrostatic repulsion to the negatively charged redox marker. In 

this case, the [Fe(CN)6]4 ͞as a result of the formed thrombin/aptamer complex. This blockade 

is evidenced by a reduced voltammetric oxidation signal of [Fe(CN)6]3͞ from [Fe(CN)6]4,͞ 

therefore allowing thrombin detection and quantification. Notably, the reduced voltammetric 

signal after aptamer/thrombin complex formation can be linked to dual effect founded on 

charge repulsion and the steric blockade effect (Huang and Zhu, 2009). The individual 

aptamer leads to a reduced signal strength in comparison to bare membrane signals (Hu et 

al., 2009). 
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Since the aptamer carries a negative charge, it repels the [Fe (CN) 6]4- which is also 

negatively charged. This leads to a reduction in ionic diffusion at the gold electrode and later 

a reduction in voltammetric re-oxidation. This signifies a successful formation of the 

thrombin/aptamer complex, a reaction that facilitates recognition and quantification of 

thrombin. 1 mM K3[Fe(CN)6] / 0.1 M NaNO3 acts as a redox indicator at pH 7.5 which 

enables thrombin to exist with a negative charge (Liu et al., 2010b). It is the combination of 

the negative charge of thrombin and the charge density change of the DNA aptamer that 

enables it to repel [Fe(CN) 6]4- resulting in reduced voltammetric signals. The average size 

of thrombin is 4 nm, and it is this size that makes it create a higher steric blockade of the 

nanochannel than that of a free aptamer. Use of a gold positive electrode amplifies the entire 

process of thrombin detection and quantification. 

 

3.4 Conclusions  
Throughout this chapter the techniques used for the fabrication of lab-on-a-chip devices 

have been discussed in detail. It is possible to use the devices for different applications by 

changing only one step in the fabrication procedure. i.e. the metal deposition procedure. The 

metals of interest for the lab-on-a-chip applications were namely aluminium and gold. The 

aluminium was used for aluminium anodization and the gold for biosensing. Furthermore, an 

optimization procedure was discussed to improve the devices and achieve the desired and 

planned results. 
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4. Results 

 

4.1 Lab-on-a-chip devices 

4.1.1. Lab-On-A-Chip Device Fabrication 

The fabrication process involved various processes namely wet chemical etching for 

microhill fabrication and poly-dimethyl-siloxane (PDMS) for microchannel fabrication. The 

wet chemical etching done was an anisotropic process. 1 mL hydrochloric acid (HCl) and 10 

mL of silicon dioxide etchant mix (comprising of ammonium chloride and hydrofluoric acid) 

(20:1) were used as etchants. These chemicals were used due to their corrosive nature. This 

etching process facilitated the creation of microhills on a glass substrate. The depth of the 

microhills were 4 μm with a width of 1 mm and were observed using a profilometer with the 

results shown in Figure 33. 

 

 

Figure 33. Profilometer measurement shows the microhill with depth 4 μm and width 1 mm. 
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4.1.2. Fabrication of microhills by wet chemical etching 

Silicate glass wet chemical etching in aqueous HF solution has been explored for a long 

period. The etching process of silicate glass involves dissolving a part of the surface in an 

HF aqueous solution. The reaction involved in the etching of silicate glass is represented 

using the chemical formula: 

SiO2 + 6HF → H2SiF6 + 2H2O 

The above equation represents the reaction that is involved in the heterogeneous 

dissolution of SiO2. The crystalline or vitreous SiO2 is made up of tetragonal units that are 

linked at all four corners with SiO4 covalent units. This system forms a three-dimensional 

structure that is covalently interconnected. The aqueous HF, therefore, has to overcome the 

strength of the four siloxane bonds so as to dislodge silicon from the glass (Hnatovsky et al., 

2006). 

The etching of silicate glass in the experiment relied on the activation energy of 

ultraviolet (UV) light. Notably, the surfaces of the glass wafer that were to be protected from 

the effect of the HF acid and the UV light activation energy were protected using an etchant 

mask. In the experiment, the depositing and patterning of the mask on the wafer were done 

using lithography techniques. The chrome metal, in this case, acted as the etchant protection 

mask due to its ability to absorb UV light and reduce reflection of a particular wavelength. 

The chrome protection mask in this experiment acted as a photomask and because the 

photomask was under UV light to produce a specific imprint, the entire process is known as 

photolithography. The etching rate also depends on etchant composition and its 

concentration, temperature levels during the etching process, the accuracy of etching and 
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material to be etched. The etch rate is inconsistent. Due to this inconsistency, the rate of 

etching was determined in advance before the etching process was started. After the etching 

process was complete, the sample was withdrawn from the chemical bath then washed 

thoroughly with water as pointed out in the methodology section. The photoresist material 

now protectively covered the formed microhills. The formed microhills were exposed 

through the removal of the photoresist using acetone where they were then further analysed 

and characterized. As pointed out in the methodology section, the microhills were 

characterized using an optical microscope (Zeiss microscope) at 10x magnification. The 

observed microhills had straight lines and rounded corners (Figure 34). The characterization 

of the microhill width, height and roughness were performed using a stylus profiler (Dektak 

6M) profilometer. The microhill formed was 1 mm wide and 4 μm high.  

 

Figure 34. Picture taken under Zeiss microscope using 10x lens. The glass substrate was anisotropically etched, 

showing microhills on the surface.  
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4.1.3. Microchannel Fabrication using poly-dimethyl-siloxane (PDMS) 

The microfluidic chips are defined by their microchannel features and size. Sizes below 

100 μm are beneficial to the field of science since they transport substances for short 

distances through special flow characteristic (Tang et al., 2006). Various microfluidic 

fabrication techniques have been developed leading to the emergence of various micro-flow 

technologies. Microchannel fabrication methods are commonly based on photolithography. 

Microchannels are routinely being fabricated using conventional soft lithographical 

techniques. However, the photolithography technique is hard-to-command and expensive, 

and therefore not worthwhile using in the fabrication and prototyping of some special 

microstructural patterns. PDMS is a cheaper material compared to traditional 

microfabrication materials including glass and silicon. PDMS also has good optical 

properties (transparent from a wavelength of 230-700 nm within 190-700 nm range). In these 

experiments, PDMS was transparent after it was poured onto the surface of the etched glass 

slide.  

 

4.1.4. Physical Vapour Deposition of Metal on the Wafer 
The physical metal deposition is done either by evaporation or sputtering. This method is 

applied in the deposition of thin films onto substrates layer by layer. The method utilizes both 

thermodynamic and mechanical means in order to produce thin films, and it depends on a 

low-pressure environment for the process of vaporization to occur successfully. The 

experiment used the physical vapour metal deposition method to deposit a controlled 

thickness of evaporated metal films to a solid surface under vacuum.  
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The metal deposition was completed in a vacuum to allow the wolfram coil to generate 

an electron beam which, upon bombarding the metal vapour, makes these particles to travel 

to the target substrate directly without colliding with the air molecules. The vacuum was 

maintained at 3.6×106־ mbar so as to provide ample space for evaporation and travel of the 

metal particles. The vacuum created a free space to prevent a scenario where the deposited 

material was a metal compound arising from the reaction between the free metal particles 

and gas molecules. In one of the experiments, the deposited material had oval pores implying 

that it was not pure. The oval porous aspect of the deposited material from this unsuccessful 

experiment was due to the deposition of alumina instead of the intended aluminium metal. 

The use of the Edwards Electron Beam Evaporator Auto 306 (e-beam) and the Thermal 

Evaporator FL 400 depended on the desired thickness of the metal deposit and the quantity 

of the metal in use. 

The desired metal was placed in in a tungsten boat. Tungsten metal was selected for this 

procedure due to its high melting and boiling point. After placing the metal on the tungsten 

boat, the boat was connected across to two electrodes and a suitable current was passed 

through the boat to melt and vaporize the metal. A slow rate of deposition was used to ensure 

that a smooth metal layer was deposited. The e-beam was used to form a layer approximately 

1 μm thick, unlike thermal evaporation that can achieve a 300 nm thickness. Table 4 shows 

the current, boat, crucible and deposition rate parameters to perform metal deposition using 

e-beam and thermal evaporators.   
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Table 4. The crucible type and the amount of current used for each different metal, using thermal and e-beam 

evaporators. The crucible type differs for each different metal in order to remain inert during the evaporation process.  

metal 

Thermal  
evaporator 

Aluminium 

(Al) 

Titanium 

(Ti) 

Chromium 

(Cr) 

Gold (Au) 

Current (Amp) 25-35 30-45 30-35 25-30 

Boat Tungsten 

(Tg) 

Tg Tg Tg 

Deposition Rate (nm/s) 0.05 0.19 0.3-0.4 0.1-0.3 

metal  
e-beam  
evaporator 

Al Ti Zinc (Zn) Silicon 

Dioxide (SiO2) 

Current (mAmp) 90-110 80-100 10-15 18-24 

Crucible Boron 

nitride (BN) 

Titanium 

carbide (TiC) 

Aluminium 

oxide (Al2O3) 

Al2O3 

 

The metal was deposited two different surfaces. The first surface was PDMS and the 

metal was deposited directly into the microchannels. The second surface was the direct 

deposition onto a clean glass slide. The PDMS surface was cleaned to remove any sticky 

substances that would attract dust particles. However, the metal deposition lead to 

inconsistent results (Figure 35). 
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Figure 35. The metal deposition on the PDMS surface initially gave inconsistent results, with both (a) a uniform 

layer and (b) a broken, flaky one, which also damaged the PDMS.   

 

The method was substituted by metal deposition onto a glass surface. The result of metal 

deposition on the glass surface was observed under an optical microscope and can be seen in 

Figure 36. The surface of the metal is smooth with no cracks or gaps. The surface smoothness 

was also confirmed using a field emission scanning electron microscope (FESEM). Figure 

37 shows an image of the surface taken with an FESEM.  
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Figure 36. The picture is taken under Zeiss optical microscope, using 20x lens, and show of the layer of metal 

deposited on a glass surface. 

 

 

Figure 37. Representation of the aluminium surface before anodization using FESEM.  
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4.1.5. Oxygen Plasma exposure of PDMS and Glass Surface 

Oxygen plasma cleaning systems are frequently used in the fabrication of MEMS to 

promote adhesion of incompatible materials. The treatment of surfaces with oxygen plasma, 

also known as surface activation, leads to surface alteration, hence creating a strong bond 

between the materials that would otherwise have weaker or no bonds (Eddings et al., 2008). 

PDMS’ Oxygen plasma treatment refers to a normal technique that facilitates bonding to 

glass, silicon, PDMS and other materials so as to seal microfluidic devices.  

A Zepto Oxygen Plasma system was used. This system was able to generate capacitively 

coupled plasma through the application of a single radio-frequency (RF) power. The surfaces 

of PDMS and glass were cleaned thoroughly and treated with oxygen plasma, aligned and 

placed in a chamber with plasma power plasma 25 W with an oxygen flow of 25 sccm for 

25-30 seconds. The oxygen ions in the plasma react with the superhydrophobic PDMS 

surface, making the material superhydrophilic. Similarly, the glass surface was hydrophilized 

by the formation of hydroxyl groups on its surface after exposure to the oxygen plasma. A 

permanent bond could be established between the plasma-treated glass and PDMS, which 

also ensured that the metal part was aligned perfectly with the interior of the microchannel. 

The resulting microchannels proved to be water-tight and without any internal blockage. 

 

4.1.6. Wires connection and holes punched to reach the microchannels 

The oxygen plasma treatment process was accompanied by punching holes and 

connecting wires to the device. These wires were used to link the microchannel device to the 

power supply. Three types of electrodes were tested including depositing Ti in one 
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microchannel with either a gold or aluminium metal layer. The second method involved 

depositing Ti metal on the side containing gold or aluminium where an incision was made 

on the opposite end to provide stability to the wires located on the inside of the plasma. The 

third process involved making two incisions on the surface of PDMS and placing a wire in 

each side to provide a contact with the metal layer. Notably, the first and second methods did 

not give consistent results. The third method which involved placing a 25-75 μm diameter 

wire inside the PDMS substrate and stabilizing it later gave the best performance. Figure 38 

shows the three different device types.  
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Figure 38. Three different electrode assemblies were used: a) shows the Ti deposited metal layer throughout the 

channel with the determining metal layer; b) shows the part with the determining metal layer connected with a Ti 

deposited layer and the other part with a Ti wire fitted; and c) shows Cu and Ti wires connected to the device.   
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The final lab-on-a-chip device can be seen in Figure 39; the holes were fitted with tubing 

and sealed with silicon glue. The tubing was used to flow the solvents into the channel safely.  

 

 

Figure 39. The holes connecting the fabricated channels to the external environment where fitted with tubing and 

sealed with silicon glue.  

 

4.1.7. Lab-on-a-chip for Aluminium anodization 

Anodizing the aluminium deposited in the microchannel was conducted to generate long 

alumina nanopores referred to as nanochannels. The experimental set-up consisted of a 

syringe that was used in the pumping of the electrolyte through the microchannel. The wires 

were linked to the power supply. 

The aluminium anodization process formed a layer of aluminium oxide (Al2O3) via an 

electrochemical process. Anodizing the aluminium layer in certain acidic electrolytes by 

applying a certain voltage can produce a thick oxide coating, containing a high density of 
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nanopores. The first approach of aluminium anodization by applying a constant voltage was 

performed by Keller et al. (Keller, 1953). Different acidic electrolytes gave different pore 

diameters by applying a defined voltage. Firstly, sulphuric acid can be used to give pore sizes 

between 10-30 nm in diameter by applying 10-25 V. Sulphuric acid has been used in this 

work. The second acid is oxalic acid which gives pore sizes in the range of 30-80 nm in 

diameter by applying 35-100 V, which has also been investigated in this work. The third acid 

commonly used is phosphoric acid giving larger diameters of more than 100 nm by applying 

a voltage over 100 V, this method is normally used for the fabrication of the commercial 

alumina discs (anodiscs made by Whatman). 

Since both barrier and porous oxide layers are grown on aluminium, the barrier layer was 

be removed using phosphoric acid (H3PO4) to open the formed pores (Fig. 40). The remaining 

aluminium was removed using copper chloride (CuCl2) (Figure 40). This resulted in the 

formation of porous alumina nanochannels parallel to the substrate for molecular separation 

through the nanopores. Once the barrier layer was removed, the aluminium oxide layer 

presented an open porous layer ready for fluid flow investigations.  

 

Figure 40. Aluminium anodization procedure.  
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In the anodization procedure the aluminium piece is the anode by connecting it to a 

positive terminal of an AC or DC power supply. The cathode is connected to the negative 

terminal of the power supply. The cathode can be any electronic conductor that is inert in the 

anodization bath, here stainless steel. Once the circuit is closed, the electrons are drawn away 

from the metal at the positive terminal, allowing the ions at the metal surface to react with 

water to form an oxide layer on the metal. The electrons return to the bath at the cathode 

where they react with hydrogen ions to make hydrogen gas.  

Post- anodization, nanopores were observed using a FESEM perpendicular to the 

substrate rather than parallel to the substrate as hypothesized. The alumina nanopores are 

shown in Figures 42 and 43. As shown in Figure 42 the nanopores are very disordered with 

different sizes, this might be because the aluminium layer was not annealed before 

anodization. Annealing relieves the internal stress of the metal and makes the structure 

homogeneous and ductile. Furthermore, the porous cross section and the nanodomes of the 

barrier oxide layer were observed as shown in Figure 43. The experiment was carried out in 

sulfuric acid at 20V. Figure 41 show the anodization current with time.  
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Figure 41. The graph shows the current versus time for aluminium anodization in 0.5M Sulphuric acid at 20 V for 1 

hour. The experiment was performed at room temperature. 

 

 

Figure 42. The SEM micrograph shows the transition between metallic aluminium (Al) on the left and anodized 

aluminium (Al2O3) on the right, with visible nanopore formation. 
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Figure 43. The SEM micrograph shows a cross-section of the anodized alumina, with pores up to 1 μm long and the 

nanodomes on top which constitute the barrier layer.  

 

A possible explanation for obtaining the nanopores perpendicular to the substrate might 

be as follows; when the sample was pulled out from the e-beam chamber after aluminium 

anodization, the aluminium metal immediately came into contact with air and a thin layer of 

aluminium oxide formed on the surface. When acid flowed into the nanochannel to carry out 

the anodization it came into contact with the oxide layer and removed it. This removal left a 

much larger surface area exposed to the acid and thus presented a more favourable reaction 

pathway in anodizing the top surface rather than the very thin edges.   

An experiment was also carried out to prove that titanium metal can protect the 

aluminium metal from atmospheric oxygen. This experiment was repeated with zinc metal 

and silicon dioxide. 
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4.1.8. Aluminium and titanium metals  

At this stage, another metal was deposited immediately after aluminium deposition to 

seal the aluminium layer to prevent contact with air, i.e. seal the aluminium inside the 

chamber of the e-beam immediately after deposition. This was achieved by depositing a 

second metal layer on top of the aluminium layer; a metal which does not react with the acid 

was used.  

Thus, a layer of titanium was deposited, at a thickness of 50 nm, immediately after the 

aluminium layer inside the PDMS-made microchannel. The anodization was then carried out 

as previously described. Figure 44 shows the aluminium anodization graph, current against 

time. The result still produced nanopores parallel to the substrate. This time the acid reached 

the metal surface between the aluminium and PDMS. Figure 45 shows alumina nanodomes 

which were observed with the titanium flaky layer on top of them. As Figure 45 infers, there 

isn’t good adhesion between the titanium and aluminium, because the titanium layer is 

completely detached from the aluminium.  

 

Figure 44. The graph shows the aluminium anodization in 0.5M Sulphuric acid by applying 20V current for 1 hour, 

performed at room temperature. 
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Figure 45. SEM micrograph of alumina nanodomes (Al2O3) and a flaky layer of titanium (Ti) on top.   

 

This theory of poor adhesion between the titanium and aluminium layers was completely 

rejected following the results of the same experiment (Figure 46), where the titanium has 

taken the same shape of the alumina nanodomes covering the surface after aluminium 

anodization. In this experiment, the aluminium and titanium deposition were carried out on 

a glass surface. The fact that the deposition was carried out on a different substrate can affect 

the adhesion between the metals. It might be caused by heating by the electron beam 

bombarding the PDMS surface which makes waves throughout the whole deposition time 

giving unstable results and thus the two metals detach from one another.  
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Figure 46. SEM micrograph of Ti nanodomes covering the alumina anodized structured. The bright edges are 

alumina nanochannels and the opaque surface is porous alumina.   

 

The method of depositing titanium on top of aluminium was repeated several times, with 

metal deposition on the glass surface as well as using sulphuric acid (0.5 M, in 20 V) and 

oxalic acid (0.3 M, in 30 V) to carry out the aluminium anodization. Perpendicular pores to 

the substrate were always observed. At this stage, another metal should be used having better 

adhesion with aluminium.  

 

4.1.9. Aluminium and zinc metals 

The next step was to seal the aluminium layer before coming into contact with air and 

use another metal (not Ti), due to poor adhesion between titanium and aluminium. The metal 
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used this time was zinc. The zinc was deposited immediately after the aluminium following 

the same procedure as described above. The thickness of zinc was again 50 nm.  

Figure 47 shows the aluminium-zinc layer under the optical microscope, the layer is 

smooth without cracks or gaps. The adhesion between the two metals aluminium and zinc 

was much better than aluminium and titanium (Washburn, 1926 - 1930; 2003).  

 

 

 

Figure 47. Aluminium-Zinc layer under optical microscope, an n-Plan lens was used.   

 

The aluminium anodization was carried out in sulphuric acid (H2SO4) and oxalic acid 

(C2H2O4):     2Al + 3O2- à Al2O3 + 6e- 
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The two acids produced different result. In both cases the zinc reacted with the acids and 

gave different structures. The first approach carried out the anodization with sulphuric acid, 

(see in Figure 48 the anodization graph). The zinc reacted with the acid and gave zinc oxide 

on top and alumina nanopores on the bottom which were always perpendicular to the 

substrate. The zinc anodized to zinc oxide (ZnO) together with aluminium giving different 

structures (see Figure 49) on top of the aluminium. An SEM image is presented below where 

the ZnO presents two different ZnO structures in the same sample layer, one following the 

other (Figure 50). In addition, the aluminium on bottom also anodized perpendicular to the 

substrate, giving porous alumina underneath the ZnO.  

 

 

Figure 48. The graph shows the current versus time for the aluminium anodization, performed in sulphuric acid, at 

20V for 20 min.   
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Figure 49. The SEM micrograph shows a zinc oxide petal structure on top and the nanoporous alumina underneath 

it. The top left inset is the sample at higher magnification where the porous structure can be observed underneath; and 

the top right inset is a higher magnification micrograph of the same sample showing the nanochannels at the edge of 

the sample.  

 

This structure has been further analysed in order to demonstrate that it was indeed ZnO 

all over the sample surface presenting two different structures. The further analysis was a 

line scan elemental analysis carried out with SEM. The results can be seen in Figure 50 where 

it is indeed ZnO covering alumina all over the surface. The percentage of aluminium is much 

bigger than zinc because of the thickness of each metal (see Figure 51b).  
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Figure 50. The SEM micrograph shows two types of ZnO structure one following the other in the same sample 

surface. On the left-hand side is the ZnO petal structure and on the right porous ZnO.  

 

 

Figure 51. Elemental line analysis on the sample; a) shows the line in analysis and the element curves, b) shows 

the percentage of each element and the abundance of each in the line in analysis. The Al percentage is much higher 

than the Zn because of the layer thickness.  
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The second approach was to carry out the anodization with oxalic acid (30 V for 30min). 

The zinc again reacted with the acid giving zinc oxalate (C2O4Zn) on top of the alumina 

nanopores (Figure 52). Figure 52 shows the SEM image of the alumina layer with zinc 

oxalate stone-like structures on top.  

 

 

Figure 52. Alumina layer with zinc oxalate stone-like structure on top. The inset at the top right of the picture 

shows a closer view of the alumina, which is shiny, and the zinc oxalate.  

 

In conclusion, the result of sealing the aluminium layer with zinc again produced 

perpendicular alumina nanopores to the substrate. Nevertheless, an interesting aspect of 

making ZnO nanostructures on the top of the alumina nanopores with the same anodization 

conditions such as the aluminium one when sulphuric acid was observed.  
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4.1.10. Aluminium with silicon dioxide  

One more method was applied in an attempt to achieve the desired result of alumina pores 

parallel to the substrate. That was to make the surface of the sample rough in order to make 

the adhesion between the metals stronger. In order to make part of the sample rough where 

the metal would be deposited, a drop of HF acid was poured on the area for a couple of 

minutes.  

Figure 53 shows the procedure used to make the glass surface rough on a specified area. 

The method is the same as the one explained in the materials and methods section for making 

microhills on the glass surface. A photoresist has been applied onto the surface followed by 

UV-alignment by placing a copper mask this time. This was developed, to leave the desired 

area exposed for HF treatment. A drop of HF was poured on the exposed area and left for a 

couple of minutes. After that the sample was thoroughly washed under flowing water for a 

few minutes and the photoresist was removed with acetone.  
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Figure 53. The procedure to roughen the glass surface in a specific area.  

 

The resulting roughened surface can be seen in Figure 54.  
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Figure 54. Glass surface after 2 minutes HF treatment, following the procedure shown in Figure 53.  

 

After making the rough surface the usual procedure of making the device was followed 

as discussed in detail above. The results were not positive.   

The anodization (in 0.5 M Sulphuric acid in 20 V for 1 hour) was also perpendicular to 

the substrate and the sample surface was cracked in many parts. Figure 59 shows the SEM 

image after the anodization. 
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Figure 55.  Alumina layers after anodization. The opaque grey with pores is porous alumina, the shiny part with 

dark on the bottom are SiO2, and the Ti-dark layer. 

 

4.2 Biomolecular diagnosis  

These experiments were carried out by using the same lab-on-a-chip device structure 

where gold was deposited in place of the aluminium. The lab-on-a-chip with a deposited gold 

layer was used for biosensing experiments.  

4.2.1. Recognition and capture of ochratoxin A 

The use of gold in biosensing facilitated the process due to its inert properties during the 

experiment, giving good interaction and stabilization of the DNA on the gold surface and 

standing as an electrode in the electrochemical process. In this experiment, the variables used 

include the voltage, flow rate and the size of the channel between the electrodes. The gold 
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metal was contained in the lab-on-a-chip. In the methodology section, the method of 

depositing a 100 nm thick gold layer using a thermal evaporator was fully detailed. 

Before using the DNA-aptamer molecule, a primary step was completed, which was to 

pump a buffer solution inside the microchannel and take CV (Figure 61 blue colour CV1) 

and EIS (Figure 62 blue colour PB) measurements with the potentiostat as reference. The 

buffer solution was 0.8 M phosphate buffer (PB) which was prepared by mixing suitable 

volumes of dipotassium phosphate (K2HPO4), potassium phosphate (KH2PO4) and sodium 

chloride (NaCl). 

The immobilization of the DNA-aptamer on the gold surface followed, using a DNA 

chain suitable for recognition and capture of Ochratoxin A, which is: 5’-AAG-ATC-GGG-

TGT-GGG-TGG-CGT-AAA-GGG-AGC-ATC-GGA-CA. A syringe was used to pump the 

solution into the channel (Figure 56).  

 

 

Figure 56. A syringe was used to pump the solution continuously through the microchannel and out to a collection 

vial. 



 

 
 

115 

 

Once the microchannel of the lab-on-a-chip was filled with DNA, the immobilization 

buffer was left over night in humid conditions inside the fridge, to give enough time to bind 

to the gold surface. The following day, the lab-on-a-chip was removed from the fridge and 

the procedure known as “washing” was carried out by using a decreasing concentration 

method in order to determine the sensitivity of the biosensor (Yan et al., 2005). All the next 

steps were carried out at room temperature. The microchannel was rinsed with 1 mM PB in 

order to remove excess DNA and MCH. This step was repeated using 100 mM PB. In order 

to remove any excess MgCl2, the microchannel was rinsed with a mix of 10 mM PB and 10 

mM EDTA. Finally, to remove any remaining EDTA the microchannel was rinsed with 10 

mM PB. After the washing step, 1 mM MCH was pumped inside the microchannel and left 

for one hour at room temperature under humid conditions in order to fill any remaining spaces 

between the DNA chains.  

After one hour, the microchannel was rinsed with 10 mM PB to wash out any excess 

MCH. At this stage, the DNA immobilization was complete, and the sample was ready for 

the first measurements of CV and EIS (Figures 57 red colour CV2 and 58 red colour DNA, 

respectively). These measurements were compared with the initial run using PB only to 

observe any changes between the control (without DNA) and with DNA in the microchannel 

(Figures 57 blue colour CV1 and 58 blue colour PB, respectively). Once the CV and EIS 

measurements were carried out in the microchannels, ochratoxin A was added, 1 μg per mL 

was diluted in 200 mL, and left for 30 minutes at room temperature in humid conditions in 

order to encourage binding. After 30 minutes, the CV and EIS measurements were repeated 

to compare whether the toxin was captured by the DNA-aptamer or not by giving a different 
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signal to the first run (Figures 58 green colour CV3 and 63 green colour OTA). Figure 57 

shows the cyclic voltammetry graph, where there appears to be no change between the steps 

CV2 and CV3, i.e. adding DNA-chain and adding ochratoxin A respectively. For this reason, 

more analyses were completed.  

 

 

Figure 57. Cyclic voltammetry measurement for the Ochratoxin A: This is the representation of the quantity of the 

developed electric charge in the electrochemical cell when: (i) only phosphate buffer was in the microchannel across 

the electrodes, CV1; (ii) the DNA-aptamer was added in the microchannel, CV2; and (iii) when the ochratoxin A was in 

the microchannel, CV3. 
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Figure 58. Electrochemical impedance spectroscopy measurements. The blue diamond shape is for phosphate 

buffer, the red circle shape is for DNA chain and the green triangle is for ochratoxin A.   

 

Figure 58 shows the electrochemical impedance plot, where a shift of the curve between 

DNA and OTA was observed, when adding a DNA-chain and adding ochratoxin A, 

respectively.  

In addition, other measurements were carried out in order to verify the results; whether 

or not the DNA-aptamer captured the ochratoxin A. These measurements were the 

capacitance (Figure 59) and the resistance (Figure 60) both against frequency. Wherein, the 

different starting position of the curve can be observed by adding each different substances.   
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Figure 59. The graph shows the decrease of the capacitance over the range of frequencies tested. The blue diamond 

data points are  for phosphate buffer, the red circles for DNA chain and the green triangles for ochratoxin A.  The starting 

position of the graph changes each time a new substance is inserted.  

 

 

Figure 60. The resistance between the electrodes increases as the frequency increases: The blue diamondsi are 

data points for phosphate buffer, the red circles for DNA chain and the green triangles for ochratoxin A.    
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The last two measurements were much more encouraging. The different starting position 

of the graph can be clearly observed by adding each different substance.   

 

4.2.2. Recognition and capture of α-human thrombin 

The next biosensing experiment was carried out to find whether the molecule α-human 

thrombin could be recognized and captured or not, in the same type of device. The method 

was similar to the one described above. This time the phosphate buffer step was excluded to 

avoid any salt sticking on the gold surface. The microchannel was immediately filled with 

DNA-immobilization buffer and left-over night in humid conditions in the fridge. The DNA-

immobilization buffer was composed of: 10 μL DNA-aptamer (100 μM), the sequence used 

was 5’-T-GG-TGT-GGT-TGG-3’; 987 μL immobilization buffer with magnesium, made in 

pH 7.3, by 40 mL NaCl (5 M), 20 mL 1 M KH2PO4, 140 mL 1 M K2HPO4, 100 mL MgSO4 

(1 M) and 400 μL EDTA (0.5 M); and 3 μL MCH (1 mM). EDTA 0.5 M and MCH 1 mM 

were dissolved in phosphate buffer. Phosphate buffer or EIS-buffer for this experiment, in 

pH 7, was composed of 3.45 mL monobasic KH2PO4 (1 M), 6.54 mL dibasic K2HPO4 (1 M), 

40 mL K2SO4 solution (500 mM) and 150.1 mL DI water. 

The washing procedure of the microchannel followed, concluding with addition of the α-

human thrombin and then starting analyses. The first approach was to fill the microchannel 

with EDTA 10 mM solution dissolved in the phosphate buffer and leave it for 10 minutes in 

order to remove the magnesium. After that, the microchannel was rinsed with EIS-buffer to 

remove any excess EDTA. The back-fill step follows after washing, which was to flow MCH 

in the microchannel and leave it for precisely one hour in order to fill any remaining unfilled 
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spaces between DNA-chains. After one hour, the stabilization step follows, which was to 

flow EIS-buffer in the microchannel and leave it for one hour to remove any MCH chains in 

excess. At the end of this hour the DNA-chains were linked on to the gold surface and the 

device was ready to carry out analyses. The first solution added was ferro-/ferri-cyanide 

solution (5 mM); which was composed of potassium ferrocyonide III (K3Fe(CN)6 III) 10 

mM, and potassium hexacyonoferrate II (C6FeK4N6.3H2O II) 10 mM, both prepared in EIS 

buffer, and the EIS measurement was carried out (see Figure 61 BT 1 and 2, circles dark blue 

and red). Then α-human thrombin solution (500 nM) was added, which contained 1μL 

thrombin, 426 μL ferro-/ferri-cyanide solution, and the EIS measurement was carried out (see 

Figure 61 WT1 and 2, triangles blue and pink). Finally, the microchannel was rinsed with 

ferro-/ferri-cyanide solution and the EIS measurement was carried out to observe whether or 

not thrombin was bonded with the DNA-aptamer (Figure 61 AT 1 and 2, squares light blue 

and green).  
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Figure 61. EIS measurements showring the change of the surface properties of the electrode where: BT is before 

the addition of α-human thrombin in the microchannel, WT is when α-human thrombin has been added in solution in 

the microchannel and AT is after rinsing off the α-human thrombin.  

 

Regarding the results shown in Figure 61 the most important are the before α-human 

thrombin measurements and after α-human thrombin, so BT1,2 and AT1,2 respectively. The 

intermediate step which is with α-human thrombin cannot be taken into consideration 

because the microchannel is full of the thrombin which can be attached everywhere and can 

shift to the semi-circle. Thus, after rinsing the excess α-human thrombin it was possible to 

observe whether or not the thrombin stayed linked to the DNA-aptamer by observing a shift 

in the curve (Figure 62).  
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Figure 62. EIS measurement showing the interaction of the analyte with the molecules immobilized on the 

electrodes surface: BT (before the addition of α-human thrombin in the microchannel) and AT (after rinsing off the 

excess α-human thrombin). There is a shift of the curve before and after the introduction α-human thrombin, which 

represents the change of the surface properties of the electrode.  

 

There is a clear curve shift before and after the addition of α-human thrombin in the chip. 

These results using a two-electrode system look very promising but not as expected. The 

expected curve based on literature is the curve showing the DNA-chain bonded with the α-

human thrombin higher than the curve showing the DNA-chain only (Keighley et al., 2008). 

At this point, an interesting step forward was to improve the device and repeat the 

experiment. As the experiment gives a clear curve shift it was very reasonable to try again in 

order to achieve results comparable with the literature that could be characterized as more 

reliable. The optimization of the device involved transforming it into a three-electrode cell 



 

 
 

123 

set-up instead of the two-electrode cell. The new design of the device is demonstrated in 

Figure 63.  

 

Figure 63. Three electrode cell set-up of the device, consists of a working gold electrode, a counter and a reference 

platinum electrode.  

 

Figure 63 shows the device with one more electrode on the side of the inlet, which is the 

reference electrode. The working electrode is the gold layer and the counter electrode is the 

platinum opposite the gold. Furthermore, Figure 64a shows the device connected to the outlet 

of the potentiostat and tubes connected to a Cole-Palmer peristaltic pump. Figure 64b shows 

the distribution of the three-electrode system and shows where the current and the voltage 

were measured.    
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Figure 64. The three-electrode cell set-up is presented; a) as it is used in the laboratory, connected to a peristaltic 

pump which pumped the solvents in the microchannel and b) the set-up system showing how the voltage and current 

were measured. 

 

The whole procedure to immobilize the DNA-chain on the gold surface and the α-human 

thrombin flow was kept exactly the same as for the two-electrode cell set up. However, one 

further step was added at the end, the removal of the thrombin with NaCl: A solution of 2 M 

NaCl was injected inside the microchannel after rinsing the α-human thrombin off and kept 

for about 10 minutes. Then EIS-buffer was added and left for 1 hour. After an hour time, the 

ferro-/ferri-cyanide solution was flowed inside the microchannel and EIS measurements were 

carried out. This step should shift the curve back to the starting point i.e. before the α-human 

thrombin one.  
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Figure 65. EIS measurements: the measurement starts with the buffer solution, bt. Then, the a-human thrombin is 

in the microchannel; and the change of the surface properties of the electrode change resulting in a shift of the curve, 

wt. Rinsing off a-human thrombin, the change of the surface properties of the electrode change. The next step was to 

add NaCl and remove the thrombin. The graph's curve goes back the initial stage, bt.  

 

Indeed, as it can be seen in the graph in Figure 65, the purple diamond, bt, and the light 

blue square, aft NaCl, are in the same place, which represent the measurement before adding 

the α-human thrombin and after the removal of the α-human thrombin. The remaining curves 

wt, blue circle, and rot, light blue cross, are in the same place and present the step when the 

α-human thrombin was added to the channel and the step when the channel was rinsed off 

with ferro-/ferri-cyanide solution.  

At this stage the result shows clearly that the device works as planned. The curves fall 

exactly at the expected place in Figure 65, but with one only unexpected parameter which 
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was the different initial values. The initial value is the resistance of the solution and this has 

changed from curve to curve in the same experiment, which means the applied force in 

between the electrodes was high. Considering this, one more improvement had to be made 

in order to show for certain that this method works. Based on literature, this was to change 

the material of the electrodes, which means keeping the counter electrode as platinum, the 

working electrode as gold and the reference was changed to silver (Estrela et al., 2005).  

 

 

Figure 66. Three-electrode cell set up with electrodes: gold (Au) as working, platinum (Pt) as counter and silver (Ag) 

as reference.   

 

This new design shown in Figure 66 gave more reliable results, as it can be seen from the 

EIS measurements in Figure 67. Figure 67 shows the EIS measurements before thrombin, bt, 

(Figure 67 green diamond), with thrombin, wt, (Figure 67 red circle), rinsing off the 

thrombin, rot, (Figure 67 purple square) and when the thrombin is removed with NaCl, aft 

NaCl, (Figure 67 yellow triangle). The measurement bt and aft NaCl are in the same place, 

which means that thrombin was attached to the DNA chain and when it was removed the 
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signal of the curve went back to the starting point (i.e. before thrombin). At this stage the 

device was fully optimized and the results reliable.  

 

 

Figure 67. EIS measurements of α-human thrombin in a three-electrode cell set-up with electrodes gold (Au) as 

working, platinum (Pt) as counter and silver (Ag) as reference (see Figure 71), and where: bt is the measurement before 

to add the thrombin, wt is when thrombin is added in the microchannel, rot is when the thrombin was rinsed off and 

aft NaCl is when the thrombin was removed by using NaCl.   

 

Even though the results were exactly as expected, further analyses were carried out to 

prove the full reliability of the results. Figure 68 shows the capacitance measurements before 

thrombin, bt, (Figure 68 red line 3rd measurement), with thrombin, wt, (Figure 68 green line 

3rd measurement), rinsing off the thrombin, rot, (Figure 68 orange line 3rd measurement). The 

measurement wt and rof are in the same place, which means that the thrombin was attached 
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to the DNA chain and was not removed after rinsing off the channel. The signal of the curve 

stayed in exactly the same place. 

 

Figure 68. Capacitance measurements of α-human thrombin in a 3-electrode cell set-up with electrodes gold (Au) 

as working, platinum (Pt) as counter and silver (Ag) as reference, and where: bt is the measurement before to add the 

thrombin, wt is when thrombin is added in the microchannel, rot is when the thrombin was rinsed off and aft NaCl is 

when the thrombin was removed by using NaCl. Each measurement was repeated 3 times in order to make sure that 

the signal does not change over the time.   

 

In conclusion, the biosensing devise through a number of optimization steps has now 

been thoroughly optimized and gave the desired and expected results.  
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4.2.3. Discussion 

The entire experiment revolved around the interaction of ions in the electrolysis process. 

In this case, the buffer acted as the electrolyte. The completion of a circuit created a potential 

difference between the negative electrode and the positive electrode. 

The DNA strands are negatively charged. DNA strands were repelled by the negatively 

charged polyelectrolyte multilayer (PEM) surface and attracted towards the positively 

charged gold electrode. The DNA strands bind via thiol bond to the positive electrode thus 

increasing the amount of current in the circuit. The DNA strands were deposited on the 

surface of the gold electrode where the continued deposition increased the amount of electric 

current in the circuit. However, the process ended when the entire surface of the gold 

electrode was fully covered meaning that no more surface was left for the contact between 

the gold electrode and immobilization buffer. 

The buffer solution containing DNA molecules was conducted in two phases. Phase one 

involved running the buffer in the absence of the DNA molecules. The graphs show that the 

buffer alone did not alter the magnitude of the current flowing through the circuit. However, 

when the DNA molecules were pumped into the immobilization buffer, the Ammeter 

deflection increased continuously until a point where the deflection stopped. 

 

4.3 Oxygen Plasma Equipment Fabrication  
While the oxygen plasma experiments were performing, oxygen plasma equipment was 

attempted to be fabricated. The way to change the hydrophobic behaviour of both surfaces, 

glass and PDMS, is to enrich them with oxygen but with lower plasma power. An oxygen 
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plasma equipment fabrication was engineered. A fully sealed chamber to produce inductively 

coupled plasma using a coil rounded to a tube. With the help of Master student Long Ding, 

supervised by Dr. Pedro Estrela, an inductively coupled plasma chamber was engineered. It 

was a type of plasma source in which the energy was applied with electric current which was 

produced by electromagnetic induction. This equipment is similar to (but simplified) the ICP 

equipment mentioned before, but in this equipment the electromagnetic field is uniformly 

made around the chamber. By varying the time the magnetic field becomes stronger. Figure 

69 shows the engineered plasma chamber.  

 

 

Figure 69. The sample chamber fabricated in the lab can be seen here. It is connected to a vacuum pump, a solvent 

trap, a vacuum gauge and a power generator. Once the vacuum is under 10-2 mbar a radio frequency (RF) power is 

applied and immediately plasma produced around the rounded coil; after 5 minutes, the plasma is extended to the 

entire chamber.   

 

Figure 69 shows that after applying the RF power, plasma was generated initially only 

around the coil, but after 5 minutes the plasma spread everywhere in the chamber. The quality 
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of the plasma, which is essential to have a uniform surface functionalisation of the substrates 

was assessed via it colour, with an initial blueish tinge transforming in a deep blue one, which 

shows a very clean and fully vacuumed chamber. 

  

5. Conclusions 

The aim of this research work was to design a common device architecture that could be 

used to carry out different experiments in nature. The device was firstly designed and 

fabricated through a series of different optimization steps. A crucial step, namely the type of 

metal deposited, determined the device experimental type: A lab-on-a-chip microfluidic 

device or a biosensor microfluidic device. The main metals used in this work were aluminium 

and gold, respectively.  

The aluminium metal was deposited inside the microchannel and then anodized to form 

alumina. Aluminium anodization can give controllable shape, size and charge of alumina 

pores based on the electrochemical anodization parameters applied such as acid type and 

concentration and applied voltage. Based on the initial knowledge of the anodization process, 

the alumina nanochannels were supposed to form parallel to the microchannel, to be used for 

biomolecule separation based on shape, diameter and charge of the pores. This plan was not 

achieved fully: Although the aluminium anodization was performed successfully inside the 

microchannel, the formed alumina nanochannels were perpendicular to the microchannel, 

rather than parallel. This can be explained in terms of energy minimisation, with the 

perpendicular orientation opposing less resistance to the electrochemical process than the 
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parallel one. Even though the results were not the expected ones they were still considered 

useful for the formation of lab-on-a-chip devices and further attempts at optimizing the 

structure were done: A second metal was deposited on top of the metal to prevent the top 

aluminium surface from oxidizing when it came into contact with the atmospheric air. This 

experiment was repeated with different metals such as titanium and zinc and gave interesting 

results which could be the base for future research and analysis in future work.  

Gold was deposited inside the lab-on-a-chip device and biosensing experiments were 

performed. This device can be used for test analysis on samples to prove whether the analyte 

contains a specific biomolecule. As a model experiment, a DNA aptamer was immobilized 

on the gold surface. The gold metal was carefully chosen to be used in these experiments due 

to the properties; its ability to attract the DNA aptamer and act as an electrode during the 

electrochemical experiment and being inert throughout the experiment. Two different 

biosensing experiments were performed with successful results, both experiments involving 

the recognition and capture of the “target biomolecule”. The two biomolecules were a toxin 

and a thrombin, namely ochratoxin A and α-human thrombin. The experiments in both cases 

consisted of three standard steps, namely buffer flow in the channel, followed by DNA 

aptamer addition and finally the addition of the target molecule. Each step was investigated 

via impedimetric and voltammetric measurements. Curve shifts demonstrated the different 

state of the solution. When the ochratoxin A was the target the whole plot shifted further and 

the presence of the toxin in the analyte was observed. The second target was α-human 

thrombin. The very first experimental attempt using the device gave positive results. 

However, the impedimetric and voltammetric measurements returned as lower reference 

curve compared to the literature. This was attributed to the fact that the present device had a 
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two-electrode cell compared with three-electrode cells used in the literature. The device has 

gone through a series of optimization steps due to promising results and each time the results 

were improved. These optimization steps were conducted to give a strong, more reliable and 

repeatable result. A biosensor device was successfully fabricated for the recognition and 

capture of α-human thrombin. In addition, it can be reusable, as it was possible to fully wash 

away the α-human thrombin as the curves went back to their initial point. Therefore, the gold-

based biosensor device can be cost effective.  

6. Future work   

Based on the results presented in this thesis, the future work could include the 

development of a multiple channel DNA-template device for multiple analysis in parallel. 

The device could be kept in a humid environment to allow the DNA-template to be fresh and 

ready for use. Preservatives are not necessary due to the strong interaction between the DNA 

strands and gold metal. In addition, after the completion of these investigations the device 

can be reused by washing off all the analyte.   

The device could also be used as a PCR microfluidic device. The polymerase chain 

reaction (PCR) refers to a repeatable temperature cycles that plays a significant role in the 

amplification of nucleic acid. The PCR array-on-chip replicates small nucleic acid samples 

into huge quantities. The PCR process consists of three thermal cycle steps that promote the 

replication process; namely heating of samples to temperatures between 90 and 95 °C 

(denaturation), cooling of samples to temperatures of 50 °C (annealing) and warming the 

samples slightly to temperatures between 60 and 70 °C (elongation) (Zhang et al., 2006). 
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Although PCR include the three-time zones, the progress of the cycle on a chip would not 

depend on the normal PCR cycle time. This is due to the small size of the PCR microfluidic 

chip allowing them to handle small volumes of liquids.  
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Appendices  

 

Appendix 1 
 

Publication 

 

Sofia Bekou and Davide Mattia, Wetting of Nanotubes, Current Opinion in Colloid and 

Interface Science, Vol. 16, Issue 4, August 2011, Pages 259-265 

 

Conferences & Workshops  

 

22-24/03/2010, Principal and Applications of Micro- and Nanofluidics at the Center of Smart 

Interfaces, TU Darmstadt, Short Course in Technische Universität Darmstadt, Germany 

06/08/2012, International Mini Symposium on Sensing and Drug Delivery Systems (SDDS12), 

University of Bath 

22-25/11/2012, Essentials in Microscopy, Olympus KeyMed, Southend-on-Sea, Certificate of 

attendance and knowledge taken  

09/11/2013, Microscopy and Analysis Conference 2013, University of Bath, First poster price 

awarded 
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Appendix 2  
 

Cleanroom definition  

The whole photolithographic procedure took place in a room without windows and under 

yellow light which completely blocked all radiation with wavelength less than 500 nm, 

because the photoresist is photosensitive and can degrade in white light; usually this room is 

called cleanroom. The cleanroom is a special and appropriate laboratory in which all the 

nanofabrication techniques take place. The cleanroom is given its name because it has a low 

level of environmental pollutants such as dust, which is a critical condition for making 

nanodevices. 

 

Appendix 3 
 

Calculations for Nernst equation 

Nernst equation under non-standard conditions: 

𝑬 = 𝑬°	𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 −	𝑬°𝒐𝒙𝒊𝒅𝒊𝒛𝒂𝒕𝒊𝒐𝒏   [ 9 ] 

Where, E is the electrode potential and Eº in the standard electrode potential.  

When, Eº in positive the reaction is spontaneous. 

Eº is negative the reaction is not spontaneous.  

The Gibbs free energy (ΔG) involves the electrode potential and the spontaneity of the reaction:  



 

 
 

137 

𝛥𝐺 = 	−𝑛𝐹𝐸   [ 10 ] 

Where, n is the number of the electrons transferred in the reaction and F is the Faraday constant 

96485 C/mol. Under standard conditions this equation becomes:  

𝛥𝐺/ = 	−𝑛𝐹𝐸/   [ 11 ] 

Since,                                             𝛥𝐺 = 𝛥𝐺/	– 𝑅𝑇𝑙𝑛𝑄   [ 12 ] 

Where Q in reaction quotient:     𝑸 =	 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏	𝒐𝒇	𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒔
𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏	𝒐𝒇	𝒓𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔

     [13 ] 

Substituting Eq. 7 and 8 to Eq. 9:        −𝑛𝐹𝐸 = −𝑛𝐹𝐸/	– 𝑅𝑇𝑙𝑛𝑄	   [ 14 ] 

Divided both sides of the equation with – nF:        𝑬 = 𝑬𝒐 +	𝑹𝑻
𝒏𝑭
	𝒍𝒏𝑸				[ 15 ]   

 

Calculation for electrochemical impedance spectroscopy and cyclic voltammetry  

Impedance can be calculated as:     𝐳 = 	 𝐳𝐫𝐞𝐚𝐥 + 	𝐢𝐳𝐢𝐦𝐚𝐠𝐢𝐧𝐚𝐫𝐲		[ 16 ] 

Where is	  𝒛 = 	 𝟏
𝒊𝒘𝑪

+ 𝑹			[ 17 ]  

But,					𝒊 = 	√−𝟏	,  so 𝟏
𝒊
   found in eq. 14 can be:   	𝟏

𝒊
	× 	 𝒊

𝒊
= 	 𝒊

𝒊𝟐
= 	 𝒊

&𝟏
= 	−𝒊					[ 18 ] 

Substituting eq. 15 to 14:  𝒛 = 	𝑹 − 	𝒊	 𝟏
𝒘𝑪

     [ 19 ] 

Where C is the capacitance, which can be calculated as:  𝑪 =	 &𝟏
𝝎𝒛"

     [ 20 ]  

and where ω is the angular frequency, which can be calculated as:  	𝝎 = 𝟐𝝅𝒇  [ 21 ] 

Taking in consideration C, R and |z| as: 

𝑪 =	 &𝒛
𝝎|𝒛|𝟐

= 	− 𝒛"
𝝎(𝒛|𝟐}𝒛||𝟐)

     [ 22 ] 
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𝑹 =	 |𝒛|
𝟐

𝒛|
= 	 𝒛

|𝟐}𝒛||𝟐

𝒛|
       [ 23 ] 

|𝒛| = 	�𝒛�𝟐 + 𝒛��𝟐      [ 24 ] 

Substituting eqs. 20 and 21 to 19, the capacitance become: 𝑪 =	 &𝒛||

𝟐𝝅𝒇(𝒛|𝟐}𝒛||𝟐)
     [ 25 ] 
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