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Summary

This thesis concerns the mathematical modelling of self-organising wireless com-

munication networks.

In particular the thesis considers small cell long term evolution (LTE) wire-

less communication networks, with femtocells as the devices in mind. Self-

organisation consists of optimising various aspects of the network in a dynamic

way. In this thesis we present a number of novel mathematical analyses, be-

ginning by considering the network interactions and dynamics when three of the

self-organisation objectives compete: coverage, quality and energy efficiency. The

following chapters then select two of these objectives and develop policies that

aid self-optimisation, and we benchmark the performance of these policies. A

significant contribution is to show that reinforcement learning can be used to de-

velop policies that require no direct knowledge of a node’s neighbours and which

outperform our benchmark. It is found that the ability of a node in this network

to determine the distance to its nearest neighbours in a distributed way is im-

portant for the success of the policies that do not rely on reinforcement learning.

Therefore the last part of the thesis develops heuristics that enable the estimation

of these distances. In the last chapter the thesis proposes a new and particularly

significant improvement (the ‘Two-Part Pulse Method’) to an existing patented

method which BT hope to implement.
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Chapter 1

Introduction

Since ancient times communication systems have been used for sending informa-

tion between parties. Early systems sent information over line-of-sight distances

via smoke signals, by fire and by the use of mirrors with sunlight (heliographs).

Simple messages could be conveyed using pre-determined signal combinations [69]

and, with a network of line-of-sight distances, information could be sent a long

way in a relatively short period of time. For example, built into the Great Wall

of China, as well as many miles in front and behind the wall, were beacon tow-

ers. These towers allowed for the use of fire and smoke signals to send messages

and were much faster and safer than a runner or rider [27]. It is believed that

messages could be sent nearly 500 miles in mere hours [1].

In the 1800s, major advances began with wired communications. In 1844

Samuel Morse and Alfred Vail demonstrated a telegraphic message sent between

Washington DC and Baltimore and a system for encoding messages which be-

came known as Morse code was developed [64]. This meant that messages did

not have to be pre-determined. On March 10th 1876 Alexander Graham Bell

demonstrated a telephone call to his assistant Thomas Watson where the spoken

word was transmitted [35]. Advances in radio communications then followed. In

1899 Guglielmo Marconi demonstrated long distance radio transmission between

France and the UK, and then in 1901 he demonstrated the first transatlantic

radio transmission between the UK and the USA [22].

This thesis concerns the distributed optimisation of cellular communication

networks. It was AT&T Bell Labs that came up with the cellular concept. In

December 1947, Douglas H. Ring and W. Rae Young, Bell Labs engineers, pro-

posed hexagonal cells for mobile phones in vehicles [59]. Cellular systems exploit

the fact that the power of a transmitted signal falls off over distance, allowing

spatially separate locations to interfere minimally even using the same frequency.

15



Using this premise a cellular system divides a geographical area into adjacent

non overlapping cells [52]. From 1G analogue networks in 1979 we have moved

on through digital 2G, 3G, 4G networks and are now seeing the launch of 5G

networks.

1.1 Research Context

Wireless communication is considered by many a necessity for modern life. It

is uncommon to meet someone who does not own, or rely in some way upon, a

mobile phone or similar device. When taking a journey on public transport one

will observe many passengers not just having voice conversations on their phones

but also interacting with devices such as tablets and laptops. These devices are

not just used for professional purposes but are also important for how people

entertain themselves and stay in contact with friends and family. The advances

in the technology for mobile phones has meant that streaming content has become

popular and in demand. The dramatic popularity and growth of Netflix gives an

indication of the increasing demand on wireless networks. People wish to be able

to stream content not just when they are at home but also whilst travelling or

away from home. All of these activities place increasing demands upon wireless

communications networks.

The importance of, and growing demand upon, wireless communications net-

works is recognised by governments. In its December 2017 Telecommunications

Sector Report [77], the UK government reported that there is hardly a sector in

the UK which will not rely in some shape or form on the connectivity provided by

telecommunications, the services it enables, and the activities it supports. The

failure of telecommunication systems, or the failure to invest in upgrading them

to meet increasing demand, can have a direct and negative impact on people’s

ability to do business and to interact socially. As a result, telecommunications

are considered to be part of the UK’s critical national infrastructure.

We are in a time of rapid technological change and growing demand in the

telecommunications industry and it is in this era that Self-Organising Networks

(SONs) offer many benefits. The benefits of SONs include: energy and cost

savings, improved network performance and customer experience. In 2019 we are

seeing the launch of commercial 5G networks. Associated with this rollout is the

emergence of small-cell densification [25]. Small-cells will no longer just fill gaps;

they will be essential to enabling 5G, particularly in densely populated areas [25].

It is in dense small-cell networks that SON can have significant impact and
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benefit. Global investments in SON technology are expected to grow at a com-

pound annual growth rate of approximately 11% between 2019 and 2022; by the

end of 2022, it has been estimated that SONs will account for a market worth

$5.5 billion [67].

This research looks at the behaviour of the network as SON objectives com-

pete, explores policies that aid self-optimisation and then develops heuristics to

enable those policies.

1.1.1 Research Objectives

The heuristics proposed in this thesis aim to support SON technology for dense

small-cell communication networks. We consider a set of transmitting devices

distributed over two-dimensional space. Our main application area is cellular

systems such as current 4G or future 5G networks. Each cell includes a fixed-

location transceiver called a base station, capable of wireless connection to de-

vices. Together these cells provide coverage over larger geographical areas than

could be covered by a single large transmitter, a macrocell base station (MBS).

There is a current trend for higher and higher densities of cells, and this neces-

sitates research into fundamental aspects of network behaviour, such as those

to be described here. The overall benefits of a higher density cellular network

include increased capacity and reduced power consumption for user devices, as-

suming that the network can be efficiently managed and is sufficiently resilient

and self-managing.

1.2 Thesis Layout

This thesis consists of six chapters. Chapter 1 is the introduction and has

two main parts. The first gives the context and objectives of this research.

The second part gives a more detailed problem description in engineering terms

and then summarises the mathematical methodology and modelling assumptions

adopted. Chapter 2 focuses on network interactions and behaviour when three

self-organisation objectives compete. Chapter 3 takes two of these three self-

organisation objectives, SINR and Coverage, and develops power control policies

that aid self-optimisation. Chapter 4, which has been submitted as a paper for

publication, concerns distance estimation to nodes in a wireless communication

network. The transmitters have uniform power settings. Chapter 5 is organised

into three main parts and concerns transmitters that have non-uniform power
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settings. Methods of estimating the distance and power of neighbouring trans-

mitters are explored. Chapter 6 draws together the results from the previous

chapters into a conclusion and discusses potential future work.

1.3 Engineering Background

In this subsection we give a description of the wireless communications engineer-

ing concepts and descriptions that we use. To build a mathematical model of a

real-world scenario, in this case a small-cell wireless communications network, the

first step is often to simplify it. We do this by making assumptions about the dis-

tribution of cells, the relationship between distance and signal, as well as causes

of interference present in the network. This section details the assumptions made

and describes the terms used.

We have discussed the importance of dense small-cell networks and the ben-

efits that SON technologies offer. The small-cell base stations we consider are

femtocells; we refer to them in this thesis as ‘transmitters’.

Transmitters

In our research the base stations are femtocells; these are small devices, similar

to the Wi-Fi hubs commonly found in residential homes, relatively inexpensive

and can overlay an existing cellular network. Femtocells provide 4G, and will

eventually provide 5G, coverage to user devices thus allowing for connectivity in

areas where it is currently poor or absent. They can provide improved capacity

and coverage to users [19] [79]. It is known that more than 50% of all voice

calls and more than 70% of data traffic originates indoors. Femtocells send data

through a broadband gateway over the internet and their deployment could ef-

ficiently relieve indoor traffic from expensive MBSs, allowing truly mobile users

to experience higher capacity [19] [47].

Traditionally when a single large transmitter (MBS) was to be placed, a large

amount of planning preceded its placement to ensure the location and config-

uration settings optimised the network’s performance. However, as femtocells

will be placed by end users [18], their locations will be unplanned and optimal

configuration settings will not be known. As end-users cannot be expected to

determine the optimal configuration settings for a femtocell, it is necessary that

the network be capable of self-organisation.
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Self-Organising Network

To be self-organising, the network should be self-optimising and self-diagnosing

[72]. A self-optimising network is one where the transmitters in the network

choose configuration settings which optimise the global network performance (see

Subsection 1.3.3). The ability of a transmitter to initially self-configure is some-

times referred to as plug-and-play capability. To be self-diagnosing the network

needs to have the ability to detect and adapt to change, such as the removal or

addition of a transmitter, so that network performance is still maintained and

optimised.

Receivers

These are the user devices that connect to the transmitters to receive signal,

also referred to as user equipment (UE). A receiver can only be paired to one

transmitter at a time, though a transmitter can have many paired receivers.

Typically UE would be devices such as mobile phones, tablets and laptops.

Spatial distribution

The spatial distribution of transmitters and receivers is critical in determining

the performance of the wireless network. Consider the use of femtocells in pri-

vate homes, in semi-detached properties femtocells may be positioned very close

together either side of the dividing property wall. Whereas in large detached

properties or rural areas where properties are more sparsely distributed femto-

cells will be more isolated. As inter-node distances, which vary largely and are

often not known a priori, significantly affect network performance a stochastic

model for node locations (i.e. a planar Poisson point process, Definition 1.3) is

needed. In situations where nodes are located, or move, randomly over a large

area, the analytical tractability of the homogeneous Poisson point process has

made it the most widely used model [5]. Further to this, it is the simplest ran-

dom spatial process that does not assume any spatial structure.

Therefore to represent the distribution of femtocells, also called base stations

or transmitters, we use a two-dimensional plane in which points are distributed

according to a Poisson point process with intensity λ. A description of such a

Poisson point process is given in Subsection 1.4.1.

Each femtocell in the network transmits a signal to be received by user devices.

The amount of signal received will be determined by propagation effects and the

distance and transmission strength.
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1.3.1 Pathloss

Pathloss is the term used to describe the loss in signal strength (or power density)

in an electromagnetic wave which results from its propagation along a specific

path through space. The loss in power increases with the distance travelled; the

exact relationship is determined by the medium travelled through and the length

of the path.

Signal losses are commonly described as “near-field” or “far-field”. When very

close to a transmitter (near-field) there is very little pathloss, so that the signal

received is considered to be constant. Outside the “near-field radius”, pathloss

is considered to be far-field and loss in power is assumed to be proportional to

distance raised to some exponent. From [11] we understand that in real world

scenarios pathloss is roughly as shown in Figure 1-1.

S

rTransmitter

Figure 1-1: The real world reduction in received signal strength S, with S ∝ g(r),
as the distance r from the transmitter increases.

Far-field pathloss

For analytical reasons, when modelling the problems considered in this thesis it

has been necessary to assume all pathloss is far-field. This approach is common

and is also used in [49], [68] and [87]; equations (7a) and (7b) in [68] give the

conditions that must be satisfied.

When r represents the distance from the transmitter and the exponent γ > 2

the equation for far-field pathloss is given by

g(r) = r−γ. (1.3.1)

Using equation (1.3.1) causes received signal to tend to infinity when measured

very close to a transmitter. This is shown in Figure 1-2.
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S

rTransmitter

Figure 1-2: The far-field reduction in received signal strength S, with S ∝ g(r),
as the distance r from the transmitter increases. It can be seen that S → ∞ as
r → 0.

From [10] we understand that at BT it has been observed that reasonable

agreement with field experimental data is achieved by taking γ ≈ 3.8. For sim-

plicity we use γ = 4 unless stated otherwise.

Near-field pathloss

When the unbounded nature of the received signal strength that results from

(1.3.1) needs to be avoided, we use instead the modified “near-field pathloss”

model

g(r) = (1 + r)−γ. (1.3.2)

This, in effect, shifts all measuring points away from the transmitter maintaining

the far-field approximation at large r while avoiding singularities at small r. This

is shown in Figure 1-3.

S

rTransmitter

Figure 1-3: The near-field reduction in received signal strength S, with S ∝ g(r),
as the distance r from the transmitter increases.
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1.3.2 Fading

So far pathloss has been taken as the only cause of the reduction in the strength

of signal as it travels over a distance. However, events such as obstacles being

encountered, resulting in reflection or diffraction, can also cause a reduction in

strength. We use the term propagation effects to describe the effects which, in

addition to pathloss, cause a degradation in the signal reaching the receiver. We

now consider the propagation effect known as fading. In Chapters 4 and 5 we

show how it affects our ability to estimate the distance to the nearest transmitter.

A mobile channel has multi-path reception meaning that the signal broadcast

to the receiver contains the direct “line of sight” wave as well as a large number

of reflected waves. Fading refers to the reduction in signal strength that is caused

when reflected waves interfere with the direct wave.

As an example we consider a moving mobile phone. The incoming radio signal

is reflected off nearby objects (an effect referred to as shadowing) so that there are

interference patterns and the intensity of the signal received by the phone varies

with its location. The received signal strength can easily vary by 10 decibels (dB)

as the phone’s antenna moves through a distance similar to the wavelength of a

radio signal (a few centimetres) [50].

The effect of fading is that the received signal S varies with time, the degree

to which this occurs is dependent on the type of fading present. In this thesis we

model fading as being Nakagami-m distributed, which we now discuss.

Nakagami-m Fading

Adapting the form given in [4] so that we do not condition received signal on the

average local signal, we see that when the Nakagami-m distribution [56] is used to

model the random variation of received signal due to small scale multipath fading

then the probability density function (PDF) of the received signal takes the form

of a Gamma distribution. Nakagami-m fading variables are Gamma(m, 1/m)

distributed with m ≥ 1. The larger the value of m the smaller the variance of

the fading variables and the more the fluctuations in signal strength reduce. The

special case when m = 1 is referred to as Rayleigh fading.

In a cellular system, such as the one being modelled, interference naturally

comes from multiple sources. Nakagami-m fading is appropriate for modelling

this as its distribution is that of the sum of independently and identically dis-

tributed Rayleigh fading factors.
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Rayleigh Fading

Rayleigh fading assumes that a received multi-path signal consists of a large

number of reflected waves which are identically independently distributed. It is

therefore used to describe a wireless radio network and is appropriate for the

model we consider.

As previously stated, Rayleigh fading is a special case of Nakagami-m fad-

ing recovered when m = 1. Nakagami-m fading variables are Gamma(m, 1/m)

distributed and therefore Rayleigh fading variables are distributed Exp(1). As

the fluctuations in signal strength, caused by fading variables, increase as m de-

creases, Rayleigh fading has the most extreme effect on observed signal. It is

Rayleigh fading that we use in Chapter 4 when developing a heuristic for trans-

mitter distance estimation in the presence of fading.

1.3.3 Network Performance

Network performance can be measured by the quality of the connections between

transmitters and their paired user devices; these are devices which are designated

to receive service from that one transmitter. A user device receives signal S1 from

its paired transmitter and interference I from non-paired transmitters.

Transmit Power

Regulations mean there is an upper limit for the power that a device can transmit

on. Therefore any power setting P will be contained within the bounds

0 ≤ P ≤ Pmax <∞.

Received Signal

Signal is the term we use to describe the signal strength received from a transmit-

ter. It is determined by distance r, transmit power Pt, pathloss g(r) and fading

H. The equation for finding the signal strength S at distance r away from the

transmitter is given by

S = PtHg(r). (1.3.3)

We assume that the signal S from a transmitter depends only on the distance

r and not on the angle between transmitter and receiver: signals are broadcast

in a radially symmetric fashion.
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Interference

Interference refers to the received signal at a user device that does not come from

the transmitter it is paired to. It can be thought of as unwanted signal. Let there

be k transmitters a UE is not paired to and the unwanted signal from each be

Si, computed as in (1.3.3). The interference I at that UE is given by

I =
k∑
i=1

Si. (1.3.4)

Noise

Additive white Gaussian noise (AWGN) is the noise model widely used in telecom-

munications to mimic the effect of random processes that occur in the system that

result in additional interference. In this thesis we represent noise with the symbol

σ and take it to be constant throughout the system.

SINR

SINR stands for signal to interference and noise ratio and in the absence of noise

it is simply referred to as SIR. It is an important and widely used Quality of Ser-

vice (QoS) measure of a communication network’s performance. In chapter 3 it is

a measurement taken by receivers and communicated to their paired transmitter.

Equation (1.3.3) defined how the signal from a transmitter is calculated. We

can use either equation (1.3.1) or (1.3.2) for the pathloss when calculating SINR.

The equation for SINR at a receiver i, where Si is the signal from its paired

transmitter, Ij is the unwanted signal received from transmitter Tj and σ is the

noise, is

SINR =
Si∑

j 6=i Ij + σ
, (1.3.5)

and when σ = 0 this is called the SIR ratio. Additionally when the source of

interference is mostly from other users, scaling the signal power also scales the

interference by the same amount [68]. If for a receiver the SINR is too low then it

would mean that a transmitter is unable to provide decodable signal to a receiver,

resulting in a disruption of service. The likelihood of this happening is referred

to as the outage probability.

Unless stated otherwise then the signal to interference ratio (SIR) or SINR

when noise is considered is computed as in (1.3.5). If SINR is given in decibels
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then this is computed as

SINR (dB) = 10 log10(SINR). (1.3.6)

Performance

In this thesis we use SINR to measure network performance. The higher the

value of the SINR the better the connection quality. Optimal SINR network

performance would be when each UE has the highest SINR possible for a given

network configuration. Our aim in optimising SINR is to provide a good mini-

mum standard of service rather than increase the maximum standard. Therefore

improving and maintaining the minimum SINR in the network takes priority over

achieving a high SIR for a minority.

In practice, achieving SINR optimisation is complicated by a lack of avail-

able information about the local network. The network should self-organise in

a distributed way, i.e., without direct or indirect communication (e.g., relaying

information via a central node). A transmitter will only have the SIR of its

paired user devices; it will not know whether their minimum SIR is the network

minimum and, by acting to increase their SIR, it could lower the SIR elsewhere

in the network.

To increase SIR for paired user devices, a transmitter could provide more

signal by increasing its transmit power. However this could result in increased

interference and hence lower SIR elsewhere in the network. Figure 1-4 shows a

non-optimal configuration of transmit powers. Consider the circumference of the

discs to be where S falls below a set threshold.

Understanding the impact of changes, to configuration settings, on the local

network will be critical for achieving optimal network performance. In Chapter 3

we show that a policy for setting transmit powers can be based solely on paired

UE SINR observations. Additionally, in Chapter 4 we propose heuristics for

estimating the distance to the nearest neighbour in the network, without requiring

communication. This means the effects on SIR of configuration setting changes

can be better understood, contributing to achieving desired network performance

through distributed self-organisation.
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r1

A B

C

Figure 1-4: An example of a non-optimal configuration. The devices in the
intersections A∩B and A∩C will have non-optimal SIRs due to interference from
A. Reducing the signal strength, and hence coverage, of transmitter A would
improve the SIR for those devices. The optimal signal strength for A could be
informed by r1, the distance to the nearest neighbour transmitter (B).
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1.4 Mathematical Methodology

In this section we describe the mathematical methodology, as well as definitions

and theorems, used in later chapters. Proofs of theorems, where included, are

given in the appendices.

1.4.1 Efficient Generation of Transmitter Distances

In Chapters 3, 4 and 5 we simulate wireless communications networks. In Chapter

4 in particular, the ability to generate transmitter distances in an efficient, that

is to say computationally fast, way is beneficial. This is due to the fact that it is

necessary for us to generate a large number of sets of transmitters.

From [5] we understand that transmitter locations are assumed to be Poisson

distributed for modelling purposes. Here we begin by defining a Spatial Poisson

point process before describing the technique for efficiently generating transmitter

distances from an origin.

We begin by defining a Poisson process which, as in [37], we define as follows.

Definition 1.1 (Poisson process). A Poisson process with intensity λ is a process

N = {N(t) : t ≥ 0} taking values in the state space S = {0, 1, 2, . . .} such that:

(a) N(0) = 0; if s < t then N(s) ≤ N(t),

(b) P [N(t+ h) = n+m|N(t) = n] =


λh+ o(h) if m = 1,

o(h) if m > 1,

1− λh+ o(h) if m = 0.

(c) if s < t, the number N(t)−N(s) of jumps in the interval (s, t] is independent

of the times of jumps during [0, s].

Since N(t) is Poisson distributed with parameter λt, that is

P[N(t) = j] =
(λt)j

j!
e−λt, j ∈ Z+,

it follows that E[N(t)] = λt. Let the time of the nth arrival Tn be given by

Tn = inf{t : N(t) = n}. The interarrival times are given by Xn = Tn − Tn−1.

Theorem 1.1 (Interarrival times are exponentially distributed). The random

variables X1, X2, ... representing the interarrival times are independent and are

exponentially distributed with parameter λ.
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Proof of this theorem is given in Section B.1 of Appendix B.

A Poisson point process is a random collection of points in which the number

of points in an area Λ is distributed according to the Poisson(λΛ) distribution

with the number of points in disjoint sets independent. We define a Poisson point

process as in [48].

Let (X,X ) be a measurable space. A measure ν on X is said to be s-finite if

ν is a countable sum of finite measures.

Definition 1.2 (Poisson point process). Let λ be an s-finite measure on X. A

Poisson process with intensity measure λ is a point process η on X with the two

following properties:

(i) For every B ∈ X the distribution of η(B) is Poisson with parameter λ(B),

such that P[η(B) = k] = Poisson(λ(B); k) ∀k ∈ N+.

(ii) For every m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ X the random

variables η(B1), . . . , η(Bm) are independent.

We give a definition for a spatial Poisson point process below.

Definition 1.3 (Planar Poisson point process). A planar Poisson point process

is a Poisson point process defined in the plane R2. For homogeneous Poisson

point process with intensity λ and with |Λ| the area of the region Λ ⊂ R2:

(i) the probability of n points existing in Λ is given by

P[N(Λ) = n] =
(λ|Λ|)ne−λ|Λ|

n!

(ii) for finite integer k ≥ 1, consider a collection of disjoint measurable sets

B1, . . . , Bk with the number of points in Bi written as N(Bi). The finite-

dimensional distribution is

P[N(Bi) = ni, i = 1, . . . , k] =
k∏
i=1

(λ|Bi|)ni
ni!

e−λ|Bi|.

From Theorem 5.1 in Chapter 5 of [48] we have the mapping theorem which

we use to efficiently generate correctly distributed transmitter distances for the

numerical simulations in this thesis. The theorem is as follows:

Theorem 1.2 (Mapping Theorem). Let ν be a point process on X with intensity

measure λ and let T : X → Y be measurable. Then T (ν) is a point process with
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intensity measure T (λ). If ν is a Poisson process, then T (ν) is a Poisson process

too.

The proof, as given in [48], is in Section B.2 of Appendix B.

We note that when we map from the planar point process to the real line we

go from a homogeneous Poisson point process to an inhomogeneous point process.

In practice, the Mapping theorem allows us to generate exponentially dis-

tributed random variables that we then “map” to variables that are Poisson

distributed. We do this as follows: let λ be the intensity measure of the Pois-

son point process and then generate random variables xi distributed ∼ Exp( 1
λπ

),

exponentially with mean 1
λπ

. These exponential variables are then mapped to

Poisson distributed variables by taking the square root of their cumulative sum.

The distance to the kth point yk is given by

yk =

√√√√ k∑
i=1

xi

where xi ∈ X ∼ Exp( 1
λπ

).

Algorithm 1.1 Efficient Generation of Transmitter Distances

To generate the distances of N transmitters that are Poisson(λ|Λ|) distributed:
Generate N random variables xi that are Exponential( 1

λ|Λ|) distributed.
Let yk be the distance to the kth transmitter
while k ≤ N do

yk =
√∑k

i=1 xi

end while

This is more efficient than simulating a Poisson point process when only the

distances (not the locations) are necessary. Where locations are required rather

than just distances procedures such as those in [70] are used.

1.4.2 Reinforcement Learning

A Markov Decision Process (MDP) consists of a set of states S, a set of actions A,

a set of transition probabilities P and a set of rewards R. A MDP has the Markov

property in that it is memoryless, it is a decision process in that its purpose is to

find a policy that determines which action to take (the decision) given the state.

Definition 1.4 (Markov Decision Process). A Markov decision process can be

defined as a 4-tuple (S,A, Pa, Ra) where
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• S is a set of states

• A is a set of actions

• Pa[s, s′] ≡ P [st+1 = s′|st = s, at = a] is the probability that being in state s

and taking action a at time t will result in being in state s′ at time t+ 1.

• Ra(s, s
′) is the immediate reward received when action a causes a transition

from state s to s′.

In Chapter 3 we wish to find a policy for setting transmit powers so that

an SINR based QoS metric is optimised. The problem to find a policy π(s)

that selects actions (transmit powers) relative to the state (observations of the

network) so that the total received reward (a function of SINR) is maximised. In

our problem the rewards, based on the change in SINR that results from taking

an action of changing transmit power, will not be known. A MDP where the

probabilities or rewards are unknown is a reinforcement learning problem.

In Figure 1-5 we show the structure of a reinforcement learning problem.

From [71] we understand that the learner and decision maker, in our case the

transmitters, is called the agent. What the agent interacts with is called the

environment, which will be a wireless communications network. Reinforcement

learning maps actions to situations so for any given situation an action is chosen

that achieves a set goal. This mapping is referred to as a policy. When an action

is chosen that moves the learner, also known as an agent, towards the goal this

is reinforced by a numerical reward. A learner must discover what actions to

take through a process of trial and error. The learner’s aim is to maximise the

total reward and manage the trade-off between exploitation (exploiting what has

already been learned) and exploration (trying something new) [71].

Q-Learning

Figure 1-5 shows a reinforcement learning scheme and demonstrates that the

actions chosen by the agent are determined by the policy π(s) where s is the

state. In Q-learning a look-up table, called the Q-table, is used to determine the

policy π(s). A Q-table gives the rewards associated with selecting an action a in

state s. In a Q-table the states are the rows and the actions are the columns.

The entry Q(s, a) in the Q-table for selecting action a in state s is computed

using the Q-function which we now describe.
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Agent Environment

Action 

State

Reward 

Policy

Figure 1-5: A reinforcement learning diagram showing that the policy determines
an agent’s action. This in turn can cause a change to the environment which
determines the received reward and the resulting state of the agent.

At time t let st be the state, at be the action selected and rt be the immediate

reward received. The look-up table is updated using the Q-function.

Qnew(st, at)← (1− α) ·Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning

rate

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ δ︸︷︷︸
discount

factor

·max
a
Q(st+1, a)︸ ︷︷ ︸

estimate of optimal
future value

)

(1.4.1)

The learning rate α determines to what extent new information overrides old.

When α = 1 then only the most recent information is considered and when α = 0

only prior knowledge is used. Typically when a system is stochastic small α is

used and when a system is deterministic α = 1 is used. The discount factor δ de-

termines the importance of future rewards. When δ = 0 only immediate rewards

are considered and when δ = 1 long term rewards are given equal weighting as

immediate rewards.

We work through a simple example to illustrate how this works in practice.

Consider a system of two transmitters that have two transmit power options

“high” H and “low” L and a set of receivers that pair to the highest signal and

record SINR. We set our goal as having the average SINR be above a threshold

value SINRTh.

The agent is the pair of transmitters T1 and T2; the environment is the trans-

mitters and the receivers. We wish to positively reinforce achieving an SINR
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above the threshold and negatively reinforce having it be less than or equal to it.

To do this we design the reward function as follows:

rt =

{
+1 if SINR > SINRTh,

−1 if SINR ≤ SINRTh.
(1.4.2)

Let the state of the system be the transmit powers of T1 and T2 and the SINR

at the receivers. The set of states is

S = {(H,L, SINR), (H,H, SINR), (L,H, SINR), (L,L, SINR)}.

There are four actions that the agent can take, these are to set the transmit

powers P1 and P2 of T1 and T2 respectively. The set of actions is

A = {P1 → H,P1 → L, P2 → H,P2 → L}.

We initially set all values in the Q-table to be 0 and where an action is not

possible from a given state we mark the square with —. Table 1.1 shows this

initial Q-table.

States Actions
(P1, P2, SINR) P1 → H P1 → L P2 → H P2 → L
(H,L, SINR) — 0 0 —
(H,H, SINR) — 0 — 0
(L,H, SINR) 0 — — 0
(L,L, SINR) 0 — 0 —

Table 1.1: The initial Q-table.

Before we can compute the entry for the Q-table using the Q-function we must

set the learning rate α and the discount factor δ. As our system is deterministic

we set that α = 1. We set that δ = 1 so that future rewards get the same

weighting as immediate rewards. This is to allow for transitioning through a

worse state to get to a better one. This gives the Q-function as

Q(st, at) = rt + max
a
Q(st+1, a) (1.4.3)

To begin the Q-learning we must select a state for the agent to begin in. We

set that P1 = L, P2 = L and pair the receivers according to highest received

signal. We set that noise is a constant through the system and calculate the

average SINR. We find that the value of the average SINR = E and so the state
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we begin in is (L,L,E). From this state there are two actions which can be taken:

P1 → H and P2 → H. We have equal probability of picking each and we select

the action P1 → H.

When P1 = H and P2 = L the value of the average SINR = B and B <

SINRTh; therefore the immediate reward is r = −1. In state (H,L,B) all entries

in the associated Q-table row are 0 and therefore

Q(s0 = (L,L,E), a0 = P1 → H) = −1 + max
a
Q((H,L,B), a)

= −1 + 0
(1.4.4)

We update our Q-table accordingly, which is Table 1.2. We are now in state

States Actions
(P1, P2, SINR) P1 → H P1 → L P2 → H P2 → L
(H,L,B) — 0 0 —
(H,H, SINR) — 0 — 0
(L,H, SINR) 0 — — 0
(L,L,E) -1 — 0 —

Table 1.2: The Q-table after the first update.

(H,L,B) and have two actions to choose from, P1 → L and P2 → H. We are

equally likely to select each action. We select the action P2 → H. As before we

compute the average SINR in this state and determine the immediate reward. We

find that SINR = C and the value C > SINRTh, therefore the reward r1 = +1.

We compute the entry to update the Q-table.

Q(s1 = (H,L,B), a0 = P2 → H) = +1 + max
a
Q((H,H,C), a)

= +1 + 0
(1.4.5)

Updating the Q-table gives Table 1.3.

States Actions
(P1, P2, SINR) P1 → H P1 → L P2 → H P2 → L
(H,L,B) — 0 +1 —
(H,H,C) — 0 — 0
(L,H, SINR) 0 — — 0
(L,L,E) -1 — 0 —

Table 1.3: The Q-table after the second update.

We are now in state (H,H,C). We continue to interact with the system and
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update the Q-table accordingly. In the course of interactions it is found that

when P1 = L and P2 = H the value of the average SINR = D and D < SINRTh.

After 17 iterations the Q-table is as shown in Table 1.4.

States Actions
(P1, P2, SINR) P1 → H P1 → L P2 → H P2 → L
(H,L,B) — -1 +1 —
(H,H,C) — 0 — 0
(L,H,D) +1 — — -1
(L,L,E) 0 — 0 —

Table 1.4: The Q-table after 17 updates.

The Q-table has converged to the action-values shown in Table 1.4 and further

updates will not alter them. For example start in state (H,H,C), select action

P1 → L, the immediate reward r18 = −1, the maxaQ((L,H,D), a) = +1 and so

Q((H,H,C), P1 → L) = 0 as before.

In our example the action-values are discrete and we repeatedly visit every

state and try each action. Following the description of Q-learning in [80] it is

proved in [81] that “Q-learning converges to the optimum action-values with

probability 1 so long as all actions are repeatedly sampled in all states and the

action-values are represented discretely”. In our example these requirements are

met and Q-learning converges to an optimal policy. The values in Table 1.4

are the optimum action-values and determine an optimal policy, showing which

action to choose in each state.

Figure 1-6 shows the action-value of transitioning into a given state and the

possible transitions between states. Each state is represented in the figure by

the transmit powers P1, P2 of the two transmitters. The only state in which

SINR > SINRTh is H,H. From any state the optimal action is the one with the

highest value and should be selected. Actions with the same value are equally

optimal.

A limitation of Q-learning is the requirement to store the look-up table.

Therefore for large state spaces this becomes computationally intractable and

deep Q-learning addresses this problem.

Deep Q-Learning

Deep Q-learning is an adaptation of Q-learning which uses function approxima-

tion so that it is not necessary to store and complete a look-up table using the

Q-function. The advantage of this is that it allows for large state and action
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Figure 1-6: The values of the different system states learnt through Q-Learning.
HH is the only state in which SINR > SINRTh.

spaces, that would have been too large for conventional Q-learning, to be used.

For the function approximation we use an Artificial Neural Network (ANN).

ANNs are widely used for nonlinear function approximation. An ANN is so

named as it is a network of interconnected nodes that have some of the properties

of neurons, the main components of nervous systems [71].

The nodes compute a weighted sum of their input signals. To this they apply

a nonlinear function, called the activation function, to produce the node’s output

which is referred to as its activation. For the activation function we use three

different functions g(x) = tanh(x), the rectifier nonlinearity g(x) = max(0, x)

and the sigmoid function g(x) = (1 + e−x)−1. Figure 1-7 is a diagram of a node

that shows the input function, activation function and output activation. The

nodes in the input layer are different from the others in that their activations are

the externally supplied values that are the inputs to the function the network is

approximating [71].

Input
Function

Activation
Function

Output
Function

Output
Edges

Input
Edges

Bias
 Weight

Figure 1-7: This diagram of a node in an ANN shows the input, activation
function and activation.
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An ANN is structured with multiple layers of these neuron-like nodes con-

nected by edges, which can be directed. Every ANN will have an input and an

output layer as well as at least one hidden layer. A hidden layer is simply a layer

that is neither an input or output layer. The term “deep” in deep Q-learning

indicates that an ANN with more than one hidden layer is used for the function

approximation. If only one hidden layer is present in an ANN then it is referred

to as shallow [34].

Figure 1-8 shows a generic feedforward ANN with one hidden layer. A feed-

forward ANN is one with no loops in the network so there are no paths by which

a node’s output can influence its input. If an ANN has even one loop then it is

called a recurrent ANN. We use only the simpler feedforward networks.

Hidden Layer

Input Layer
Output Layer

Outputs
Inputs

Figure 1-8: This is a generic feed-forward ANN with a single hidden layer. The
circles represent the nodes.

The ANN we have described, given a current state, will approximate the Q-

values of different actions. Let Q(s, a; θ) be the Q-function with parameters θ,

with θ the set of weights in the neural network, that approximates these values.

We aim to learn the parameters θ such that the optimal Q-function Q∗(s, a) ≈
Q(s, a; θ). For the parameters θi−1 the action value

Q(st, at; θi−1) =
∑
rt,st+1

P[rt, st+1|st, at, θi−1]
(
rt + γmax

a
Q(st+1, a; θi−1)

)
. (1.4.6)

The parameters are learnt by iteratively minimising a sequence of i functions of

the parameters Li(θi) defined as

Li(θi) =
∑
st,at

P[st, at] (Q(st, at; θi−1)−Q(st, at; θi))
2 . (1.4.7)

The function (1.4.7) is called the loss function. It gives the mean squared error
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of the action value following an update of the parameters (ANN weights).

Figure 1-9 shows a deep Q-learning scheme. We recognise that it is the same

as the reinforcement learning scheme shown in Figure 1-5 except that an ANN

determines the policy. We implement deep Q-learning in Chapter 3 to learn a

Agent
Environment

Action 

State

Reward 

Policy

Figure 1-9: A deep Q-learning scheme where the policy is determined by a deep
ANN.

policy for setting transmit powers so that a network QoS metric is improved. In

that chapter we also apply a further reinforcement learning method known as

Advantage Actor Critic which allows a continuous action space to be used.

1.4.3 Method of Moments

We use this method in Chapter 5 to improve the accuracy of transmitter distance

estimations. The method of moments was introduced in 1887 by the Russian

mathematician Pafnuty Chebyshev [17] [74]. It allows population parameters

θ = {θ1, . . . , θk} to be estimated by equating population sample values to popu-

lation distribution moments given in terms of θ. This uses the Law of Large Num-

bers (LLN) which states that for a sequence of independent identically distributed

random variables X1, X2, . . . , Xn with finite means µ then Xn = 1
n

∑n
i=1Xi → µ

as n → ∞. Therefore for a large sample size, a large n, the distributional mean

µ = f(θ) should be well approximated by the sample mean Xn. The approxi-

mated population parameters, the method of moment estimators, are denoted by

θ̂ = {θ̂1, . . . , θ̂k} and we write Xn = f(θ̂).
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The number of such equations, such distribution moments, is the same as the

number k of population parameters to be estimated. The steps, as presented in

[82], to obtain k method of moment estimators are as follows:

Procedure 1.1 (Method of Moments). Estimate the parameters of a distribution

by computing the sample moments.

1. For a model with k parameters compute functions for the first k moments

µ1 = f1(θ1, . . . , θk), . . . , µk = fk(θ1, . . . , θk) (1.4.8)

such that we obtain equations for the first k moments in terms of k un-

knowns.

2. Solve, if possible, these equations to obtain the k parameters in terms of the

moments

θ1 = g1(µ1, . . . , µk), . . . , θk = gk(µ1, . . . , µk) (1.4.9)

3. Take a sample X = {X1, . . . , Xn} of size n from the data and from this

compute the first k sample moments,

X =
1

n

n∑
i=1

Xi, . . . , Xk =
1

n

n∑
i=1

Xk
i , (1.4.10)

4. Replace distribution moments µi with sample moments X i,

θ̂1(X) = g1(X, . . . , Xk), . . . , θ̂k(X) = gk(X, . . . , Xk) (1.4.11)

to obtain the method of moment estimators θ̂ = {θ̂1, . . . , θ̂k}.

Step 3 uses the LLN for approximating the sample moments, therefore a larger

sample should result in greater accuracy.

Reduced Sampling

High variability is likely to be encountered for higher sample moments (moments

greater than the fourth), therefore their use is treated with suspicion [8]. Ad-

ditionally, for a large number of parameters finding a solution to the system of

equations (1.4.9) becomes less tractable and Step 2 of Procedure 1.1 may not

be possible. Reducing the sample, in such a way that we reduce the number of
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parameters to be estimated, allows for tractability and reliability to be recov-

ered. It requires that a relationship between parameters and sample values can

be assumed, so that a subsample can be taken where values relate only to chosen

parameters. This is applied in Section 5.4 of Chapter 5.

1.4.4 The Master Equation

We now describe the methods and theory used in Chapter 2. We define a Wiener

process and a stochastic differential equation (SDE) as follows.

Definition 1.5 (Wiener Process). A Wiener process {W (t) : t ∈ R+} has the

characteristic properties

1. W0 = 0 a.s.

2. W has independent increments: for every t > 0, the future increments

Wt+u −Wt, u ≥ 0, are independent of the past values Ws s < t.

3. W has Gaussian increments: Wt+u−Wt is normally distributed with mean

0 and variance u, Wt+u −Wt ∼ N (0, u).

4. W has continuous paths: with probability 1, Wt is continuous in t.

Definition 1.6 (Stochastic Differential Equation). The stochastic differential

equation for the n-variable vector x(t) can be defined as

dx(t) = f (x(t), t) dt+M (x(t), t) dW (t), t ≥ 0, (1.4.12)

where f : Rn × R+ → Rn, M : Rn × R+ → Rn×n and W (t) is a n-variable

Wiener process.

An SDE can describe the evolution of a Markov jump process, which is as

defined below:

Definition 1.7 (Markov Jump Process). A Markov Jump Process is a continuous

time, discrete space stochastic process. We consider a jump as being a system

state change. Let n and n′ be two distinct states the system can occupy. The

time evolution of the probability P[n, t+ ∆t|n′, t] is described by

lim
∆t→0

P[n, t+ ∆t|n′, t]
∆t

= T (n|n′) (1.4.13)

with T (n|n′) the rate of transition from state n′ to state n.
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A master equation can describe a continuous time Markov process such as a

Markov jump process.

Definition 1.8 (Master Equation). A master equation describes the time evolu-

tion of the probability that a system with discrete state space will be in a given

state relative to the time variable t. A common representation is as follows

d~P

dt
= A(t)~P (1.4.14)

where ~P is the vector of the different system state probabilities and A(t) is the

matrix of transition rates.

We now describe the Method of Kurtz which we use in Chapter 2 to represent

a Markov jump process as an SDE.

1.4.5 Method of Kurtz

Originally developed to model chemical reactions, but we will use it in a different

context, we present the method of Kurtz as in [88]. We begin by describing a

Markov jump process in which each event causes the vector n ∈ N3 to jump

according to a jump vector s ∈ Z3. The stochastic rate r̃(n, s) (or r(x, s) with

x := n/N) at which the jumps n → n + s take place are the jump rates. We

note that r̃(n, s) = r(x, s). The sum of the components n is the overall size N

of the system which is assumed to be constant. The finite collection of possible

jumps s is denoted by the stoichiometric matrix S and the corresponding jump

rates are summarised into a vector r(x). The kth column of S, sk, corresponds

to the kth element, rk, of the vector r(x) and r̃k of the vector r(n).

The first step in the method of Kurtz [46] is to represent the Markov jump

process as

n(t) = n(0) +
∑
sk∈S

skP(sk)

(∫ t

0

Nr̃kdτ

)
. (1.4.15)

where {P(s)(ξ) : ξ ≥ 0} is a collection of independent rate 1 Poisson processes [6]

and rk which is the kth element of r(x) describes the density dependent rate in

the Markov system. Dividing by N gives:

x(t) = x(0) +
∑
sk∈S

1

N
skP(sk)

(∫ t

0

Nrkdτ

)
. (1.4.16)
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The Poisson process here can be approximately written in the form:

P(s)(t) ≈ t+W (t), (1.4.17)

where W (t) is a Wiener process. Replacing each Poisson process P(sk)(t) with

t+W (sk)(t) in (1.4.16) gives the equation:

x(t) = x(0) +

∫ t

0

(∑
sk∈S

skrk

)
dτ +

∑
sk∈S

sk
1

N
W (sk)

(∫ t

0

Nrkdτ

)
, (1.4.18)

and so the x(t) satisfies a stochastic differential equation of the form:

dx(t) =

(∑
sk∈S

skrk

)
dt+

1√
N

∑
sk∈S

sk
√
rkdW

(sk)(t). (1.4.19)

1.4.6 Gillespie Stochastic Simulation Algorithm

The Gillespie Algorithm [33] is the classical stochastic simulation algorithm

(SSA) for the stochastic modelling of chemical reactions. In contrast to ODEs,

the Gillespie algorithm allows a discrete and stochastic simulation of a system

with few reactants because reactions are explicitly simulated.

Procedure 1.2 (Gillespie Algorithm). The algorithm consists of the following

steps:

1. Initialisation: Set t = 0, define reaction constants, and set initial population

numbers.

2. Generate random numbers to determine the next reaction to occur and the

time interval.

3. Update: increase the time by the randomly generated variable. Update pop-

ulation count based on the reaction that occured.

4. Iterate: return to step 2 unless simulation time is exceeded, number of re-

actions is exceeded or population is 0.

1.4.7 Power Spectral Density

The Power Spectral Density (PSD) describes how the power of a signal (or time

series) is distributed over frequency. Therefore computing the PSD will help to

identify whether the signal has obvious periodic or quasi-periodic components.
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This means that we can use it to investigate oscillations about equilibrium. We

look at two methods of computing the PSD, the first method takes the discrete

Fourier transform of a time series. The second method shows that for linear

constant coefficient SDEs the PSD can be computed theoretically near a stable

equilibrium point of the ODEs.

Computing the Discrete Fourier Transform

We compute the PSD of a signal by taking the discrete Fourier transform (DFT).

We begin by defining the energy of a continuous-time signal.

Definition 1.9 (Energy). The energy E of a continuous-time signal x(t) is

E =

∫ ∞
−∞
|x(t)|2dt. (1.4.20)

When the total amount of energy is finite and the signal x(t) is pulse-like (i.e.

takes place in a fixed time window) we can use Parseval’s theorem to express E

in terms of frequency, rather than in terms of time as above. This relates the

representation of energy in the time domain to that in the frequency domain.

Theorem 1.3 (Parseval’s Theorem). We have that∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|x̃(f)|2df, (1.4.21)

where x̃(f) =
∫∞
−∞ x(t)e−2πiftdt is the Fourier transform of the signal x(t).

The angular frequency ω = 2πf and from (1.4.21) we find that, where we

define the Fourier transform x̂(ω) as

x̂(ω) = x̃
( ω

2π

)
=

∫ ∞
−∞

x(t)e−iωtdt (1.4.22)

then ∫ ∞
−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞
|x̂(ω)|2dω (1.4.23)

and so we can also give the energy E from (1.4.20) in terms of angular frequency,

E =
1

2π

∫ ∞
−∞
|x̂(ω)|2dω. (1.4.24)

Definition 1.10 (Energy Spectral Density). The Energy Spectral Density (ESD)

describes how the energy E of a continuous-time signal x(t) is distributed with
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frequency f or angular frequency ω. It is defined as

E(f) = |x̃(f)|2 or E(ω) =
1

2π
|x̂(ω)|2. (1.4.25)

When we consider continuous stochastic stationary signals over all time it

is necessary for us to consider the power rather than the energy, which can be

infinite. Power is the energy per unit time and therefore a stationary signal may

have infinite energy but finite power. Using our definition of energy from (1.4.20)

we define power as follows.

Definition 1.11 (Power). The average power P of a continuous-time signal x(t)

over all time is

P = lim
T→∞

1

T

∫ T

0

|x(t)|2dt, (1.4.26)

when the limit exists.

The ESD describes how the finite energy of a signal is distributed with fre-

quency. The power spectral density (PSD) describes how the power of a signal

that may have infinite energy is distributed with frequency. The PSD aims to

represent a stochastic process not as a single realisation but averaged over mul-

tiple realisations, giving the expectation. As with ESD, to find the PSD of a

continuous-time signal x(t) we need to compute the Fourier transform x̂(ω) of

x(t). As this may not exist for some signals (those with infinite energy) we work

with the truncated Fourier transform [60], where signal is integrated over the

finite interval [0, T ]:

x̂T (ω) =

∫ T

0

x(t)e−iωtdt (1.4.27)

which is the amplitude spectral density. We then adapt Parseval’s Theorem as

given in (1.4.23) to write the power P as given in (1.4.26) as

P = lim
T→∞

1

2πT

∫ T

0

|x̂T (ω)|2dω. (1.4.28)

We use this expression of power to define the PSD in terms of angular frequency.

Definition 1.12 (Power Spectral Density). The power spectral density (PSD),

denoted by P(ω), describes the distribution of power with angular frequency ω. It

is defined as

P(ω) = lim
T→∞

1

2πT
|x̂T (ω)|2. (1.4.29)

The time variable t and frequency variable ω are continuous in the above

definition. When a time series is discrete and finite it is appropriate to use the
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discrete Fourier transform (DFT) in place of the Fourier transform. When t,

and therefore ω, are discrete such that we have N samples taken at ∆t sampling

intervals, this gives T = N∆t. Then there are N frequencies we can evaluate our

time series at, these are given by

ωk =
2πk

N∆t
for k = 0, . . . , N − 1. (1.4.30)

For the angular frequency ωk, where xm is the mth observation of the time series

and t = m∆t, the truncated Fourier transform x̂T (ωk) is replaced by

x̂T (ωk)→ y(ωk) =
N−1∑
m=0

xme
−iωkm∆t∆t.

=
N−1∑
m=0

xme
−i2πmk

N ∆t.

(1.4.31)

Therefore the corresponding discretised expression for the PSD of a discrete and

finite time series with N samples taken at ∆t sampling intervals is given by

P(ωk) = lim
T→∞

1

2πT
|y(ωk)|2, (1.4.32)

where ωk and y(ωk) are as given in (1.4.30) and (1.4.31) respectively. It is common

to write the DFT in the form

Xk =
N−1∑
m=0

xme
− 2πimk

N for k = 0, . . . , N − 1 (1.4.33)

in which case we would define

P(ωk) = lim
T→∞

∆t2

2πT
|Xk|2. (1.4.34)

Computing the Spectrum Matrix

The second method of finding the PSD of a signal we give is to describe the system

as a stochastic differential equation (SDE) and then compute the spectrum matrix

P(ω). To compute the spectrum matrix we begin by defining a multivariate

Ornstein-Uhlenbeck process in terms of an SDE as in [31]:

Definition 1.13 (Multivariate Ornstein-Uhlenbeck Process). We define this pro-

cess by the linear stochastic differential equation

dx(t) = Cx(t)dt+DdW (t), (1.4.35)
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where C and D are constant matrices and the solution to (1.4.35) is

x(t) = eCtx(0) +

∫ t

0

eC(t−t′)DdW (t′). (1.4.36)

We define the autocorrelation function as given in [73],

Definition 1.14 (Autocorrelation Function). Let x(t) be a stationary stochastic

process, then we define the autocorrelation G(τ) of the process as:

G(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t+ τ)dt. (1.4.37)

As an Ornstein-Uhlenbeck process has a stationary solution [31] its autocor-

relation function can be given in terms of its stationary covariance matrix σ and

constant matrix C as follows:

G(τ) =

{
exp(τC)σ if τ ≥ 0;

σ exp(−τCT ) if τ < 0.
(1.4.38)

Where C is the same as in (1.4.35) and Cσ+σC = DDT with D from (1.4.35).

The Wiener-Khinchin theorem relates the autocorrelation function to the

power spectral density by use of the Fourier transform. From [84] and [43] we get

Theorem 1.4 (Wiener-Khinchin Theorem). The Power Spectral Density of the

stochastic process x(t) is the Fourier Transform of its autocorrelation function

P(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ (1.4.39)

where the autocorrelation function G(τ) of x(t) is as defined in (1.4.38).

Proof of this theorem is in Section A.1 of Appendix A.

We use the formula for the autocorrelation function of an Ornstein-Uhlenbeck

process given in (1.4.38) in the Wiener-Khinchin Theorem. This gives that the

spectrum matrix of an Ornstein-Uhlenbeck process can be computed directly :

Theorem 1.5 (Spectrum Matrix in Stationary State). The spectrum matrix P(ω)

of a multivariate Ornstein-Uhlenbeck process as defined above is given by

P(ω) =
1

2π
(C− iωI)−1DDT(C− iωI)−† (1.4.40)

with −† denoting the inverse conjugate transpose.
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Proof of this theorem, as given in [31] and [88], is in Section A.2 of Appendix

A.
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Chapter 2

Three Competing

Self-Organisation Objectives

In this chapter we consider the dynamics of a wireless network that is aiming to

satisfy three potentially competing aims through self-organisation. These three

aims are: to raise the minimum SINR, to increase signal coverage and to improve

energy efficiency. We explore the system dynamics that arise whilst these three

potentially competing aims are worked on. Our major simplification is that

spatial effects are not incorporated: all transmitters interfere with all others but

can vary their transmit power levels.

To justify our mean field approach to this problem we note that SINR and

coverage will be measured by user devices that pair to the transmitter providing

the strongest signal. We make two assumptions: firstly that the transmitters

are dense and secondly that the user devices are mobile and move randomly

through the dense network of transmitters. Therefore the spatial effects can be

disregarded and the transmitters considered interchangeable. Energy efficiency is

counted across all transmitters and so all transmitters are interchangeable when

optimising this.

To do this we use methods more commonly associated with modelling species

interactions and predator-prey models.

2.1 Problem Formulation

We consider a wireless communication network consisting of N transmitters,

where we take N to be large. The dynamics are assumed independent from

the spatial configuration or distribution of transmitter locations. Each transmit-

ter has a choice of three available power settings, high H, low L and off O. Our
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competing policy aims are: (i) reduce total power consumption by the network,

(ii) provide complete coverage to the underlying region, and (iii) increase SINR as

far as possible. A higher power setting consumes more energy yet increases cover-

age. From the introduction we understand that the impact on SINR of changing

transmit power is dependent on the spatial configuration and transmit powers of

the other transmitters in the network. For simplicity, we do not consider spatial

configuration but assume that SINR will be improved if a pair of transmitters

change from having the same to different transmit powers. This assumption is

explored in Chapter 3 which looks at optimising transmit powers.

We select at random a pair of transmitters from our network and examine

their settings. It follows from the above that for any pair of transmitters there

are six states they could be in regarding their power settings: OO, OL, OH,

HH, LH and LL. Three of these states OO, OL and LL are not considered

to contribute to the three optimisation aims. From [14] we understand that the

significant investment incurred to provide additional transmitter capability means

that available resources would not go unused. Therefore HH would always be

chosen in place of LL, LH in place of OL and OH in place of OO. As a result

once the states LL, OL and OO are transitioned out of they are not returned

to; therefore, we do not consider them part of our dynamical system.

We wish to derive the ODEs that comprise the mean-field description of the

system dynamics. Our derivation begins with the stochastic process underlying

the dynamics and our notation follows [6], [23] and [53]. As previously stated,

we have a collection of N transmitters, where each transmitter is in one of three

states H, L or O. The system evolves stochastically, through a set of processes

which involve pairs of sites. Pairs of sites evolve stochastically and independently

of other pairs of sites according to the following rules:

OH
α−→ HH (2.1.1)

LH
β−→ OH (2.1.2)

HH
γ−→ LH (2.1.3)

In each transmitter pairing one transmitter has power setting H. Equation (2.1.1)

shows that the second transmitter transitions from state O to H at rate α, it

would do this aiming to improve coverage. Equation (2.1.2) shows that to reduce

energy consumption it transitions from state L to O at rate β and (2.1.3) shows

that to improve SINR it changes from H to L at rate γ. Figure 2-1 illustrates the

interaction of these three optimisation objectives on the state of a transmitter
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power pairing. It also illustrates that once the states LL, OL and OO are

transitioned out of they are not returned to and further to this they lead to the

three states we do consider.

H-L

H-H

H-O

Energy

β

γSINR α Coverage

L-OL-L

O-O

Coverage

SINR/
Coverage

Coverage

SINR

Figure 2-1: A possible interaction of the three objectives: SINR, Energy and
Coverage. One of the transmitters is set to H and the second transmitter reacts
accordingly to achieve each of the three objectives selfishly (competitive rather
than cooperative). The respective rates of change for each of the objectives are
given by α, γ, β. It also shows in grey the interaction of the three transient states
that lead to the three recurrent states.

The rate parameters α, β, γ can be thought of as per capita transition rates

such that if α stands for any one of these parameters then N4tα is a probabil-

ity. In particular, if time is rescaled by 1/N , then α−1 can be thought of as a

characteristic time for the transition to occur.

2.1.1 Markov Jump Process

We now consider the formulation of this problem as a stochastic process. We

base the formulation on [23] which follows the notation in [53] and [6]. We fix

the number of transmitters in the system as N and denote by nj the number of

transmitters with power j.

N = nH + nL + nO where nj ∈ Z+, nj ≥ 0.
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The state of the system is fully described by (nH , nL, nO) := n and the stochastic

dynamics are that of a discrete space, continuous time Markov chain.

The transition rates T (n′|n) from state n to state n′ are given by expressions

similar to equation (1) of [53]:

T1

(
(nH + 1, nL, nO − 1)|n

)
= αN

2nOnH
N(N − 1)

,

T2

(
(nH , nL − 1, nO + 1, )|n

)
= βN

2nLnH
N(N − 1)

,

T3

(
(nH − 1, nL + 1, nO)|n

)
= γN

nH(nH − 1)

N(N − 1)
.

(2.1.4)

We assume that these transitions are independent and take place at the above

constant rates.

The probability of the system being in state n at time t is defined as P[n, t].

As in Section 3 of [23] we let P[n, t|n0, t0] denote the probability that the system

is in state n at time t given that it was in state n0 at time t0, where t0 < t. The

Markov property implies the Chapman-Kolmogorov equation

P[n, t+ s|n0, 0] =
∑
n′

P[n, t+ s|n′, t]P[n′, t|n0, 0], (2.1.5)

and as the Markov process is time-homogeneous this can be simplified to

P[n, t+ s|n0, 0] =
∑
n′

P[n, s|n′, 0]P[n′, t|n0, 0]. (2.1.6)

Suppressing the conditional dependence on the initial condition n = n0 at t = 0

and taking s = 4t to be a small time increment we can write that

P [n, t+ ∆t] =
∑
n′

P[n,4t|n′, 0]P[n′, t], (2.1.7)

where, with n′ 6= n,

P[n,4t|n′, 0] = ∆tT (n|n′) +O(4t2). (2.1.8)

Equation (2.1.7) is the evolution operator that generates P[n, t+4t] from P[n, t].

Let 4t be very small such that with high probability no more than one reaction

occurs. Equation (2.1.8) gives the conditional probability of being in state n at

time 4t given that the system was in state n′ at time 0. It is expressed in terms

of transition rate to the leading order of 4t.
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From equations (2.1.7) and (2.1.8) we can write that

P [n, t+ ∆t]−P[n, t] =
∑
n′

∆tT (n|n′)P[n′, t]. (2.1.9)

As in [78] and [23], in order to write write these transitions using more compact

notation, we introduce three step operators EO, EL and EH that act to increment

the variables indicated by the respective subscripts:

EO[f(n)] := f(nO + 1, nL, nH) (2.1.10)

EL[f(n)] := f(nO, nL + 1, nH) (2.1.11)

EH [f(n)] := f(nO, nL, nH + 1) (2.1.12)

Naturally these step operators have inverses that decrement the respective ar-

guments by 1. Using these step operators it is straightforward to compute

P[n, t+ ∆t] in terms of P[n, t]:

P[n, t+ ∆t] = P[n, t] + (EOE−1
H − 1) [T (nO − 1, nL, nH + 1|n)∆tP[n, t]]

+ (E−1
O EL − 1)[T (nO + 1, nL − 1, nH |n)∆tP[n, t]]

+ (E−1
L EH − 1)[T (nO, nL + 1, nH − 1|n)∆tP[n, t]]

+O(∆t2)

(2.1.13)

Continuous formulation

We scale the variables such that, where j is the power setting, xj = nj/N and

we can define x = 1
N

(nH , nL, nO) := (xH , xL, xO). Then we define a probability

density in terms of these variables:

P[x, t, N ] := P[n, t]. (2.1.14)

The step operators (2.1.10)-(2.1.12) can be redefined as

EH [g(x)] := g(xO, xL, xH + 1/N) (2.1.15)

EL[g(x)] := g(xO, xL + 1/N, xH) (2.1.16)

EO[g(x)] := g(xO + 1/N, xL, xH) (2.1.17)

By introducing (2.1.14) and equations (2.1.4) into (2.1.13), and tidying it up
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we can write the evolution of the discrete probability density (2.1.13) in the form:

P[x, t+ ∆t, N ]−P[x, t, N ]

∆t
=(EOE−1

H − 1)

[
α

2xOxHN
2

N − 1
P[x, t, N ]

]
+ (E−1

O EL − 1)

[
β

2xLxHN
2

N − 1
P[x, t, N ]

]
+ (E−1

L EH − 1)

[
γ
xH(xH − 1/N)N2

N − 1
P[x, t, N ]

]
+O(N∆t).

(2.1.18)

Equation (2.1.18) is the master equation.

2.1.2 Representation as a Stochastic Differential Equation

Detailed in [6] are two roughly equivalent paths that take us, for large N , from

a Markov jump process to a diffusion process (SDE). One way is to follow Van

Kampen [78] who focuses on the Fokker-Planck (or“master”) equation which

describes how the probability distribution of the Markov process evolves. The

other way is to follow Kurtz [46] who focuses on the Markov process itself.

We begin with following Van Kampen, showing that the Kramers-Moyal ex-

pansion of the master equation is a Fokker-Planck equation and then representing

the Fokker-Planck equation as an SDE.

Kramers-Moyal Expansion and Fokker-Planck Equation

We expand the step operators (2.1.15) to (2.1.17) with a Taylor series expansion

of sufficiently high order (only the first two terms are needed for what follows

to O(1/N2)). The step operators have the obvious inverses and composition

properties. We use the notation exp(·) to denote a Taylor series expansion, using

this notation we can write, for example

E−1
O [g(x)] := g

(
xO −

1

N
, xL, xH

)
≡ exp

(
− 1

N

∂

∂xO

)
g(x)

and

E−1
L EH [g(x)] := g

(
xO, xL −

1

N
, xH +

1

N

)
≡ exp

(
1

N

(
∂

∂xH
− ∂

∂xL

))
g(x).

Inserting the Taylor series expansions of the step operators (2.1.17)-(2.1.15)

into the master equation (2.1.18) is referred to as the Kramers-Moyal expansion.
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An example of the Taylor series expansion of one of the terms is

(EOE−1
H − 1)

[
α

2xOxH
N − 1

P[x, t, N ]

]
=

(
∂

∂xO
− ∂

∂xH

)
[2αxOxHP]

+
1

2N

(
∂

∂xO
− ∂

∂xH

)2

[2αxOxHP]

+O

(
∆t,

1

N2

)
.

(2.1.19)

From [60] we know that the Kramers-Moyal expansion of (2.1.18) takes the

form
∂P

∂t
=
∞∑
v=1

(
− ∂

∂x

)v
D(v)(x)P. (2.1.20)

Additonally, as an approximation, we truncate this expansion such that coeffi-

cients D(v) with v ≥ 3, which are of higher order, are disregarded. This reduces

(2.1.20) to
∂P

∂t
= − ∂

∂x
[D(1)(x)P] +

∂2

∂x2
[D(2)(x)P]

which is recognisable as the Fokker-Planck equation that takes the general form:

∂

∂t
p[x, t] = − ∂

∂x
[µ(x)p[x, t]] +

∂2

∂x2
[D(x, t)p[x, t]]. (2.1.21)

We assume that P[x, t, N ] has a well-defined limit function p[x, t]

p[x, t] = lim
N→∞

P[x, t, N ]. (2.1.22)

Therefore, if we define the vector field u(x) as:

u(x) :=

xH(2αxO − γxH)

xH(γxH − 2βxL)

2xH(βxL − αxO)

 (2.1.23)

and a matrix B(x) as:

B(x) :=
1

N

xH(2αxO + γxH) −γxHxH −2αxOxH

−γxHxH xH(γxH + 2βxL) −2βxLxH

−2αxOxH −2βxLxH 2xH(αxO + βxL)

 (2.1.24)

the Kramer-Moyal expansion means that the master equation (2.1.18) can be
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represented by the Fokker-Planck equation

∂p

∂t
= − ∂

∂x
(up) +

1

2

∂

∂x

(
∂

∂x

)T
(Bp). (2.1.25)

It is clear that when N →∞ the diffusion terms go to zero. Therefore passing

to the limit N → ∞ we find that the Kramers-Moyal expansion of equation

(2.1.18) gives

P[x, t+ ∆t]−P[x, t]

∆t
=

(
∂

∂xO
− ∂

∂xH

)
[2αxOxHp]

+

(
∂

∂xL
− ∂

∂xO

)
[2βxLxHp]

+

(
∂

∂xH
− ∂

∂xL

)[
γx2

Hp
]

+O(∆t).

(2.1.26)

At leading order 1/N and in the limit ∆t→ 0 equation (2.1.26) can be simplified

to
∂p

∂t
+∇ · (u(x)p) = 0 (2.1.27)

where u(x) is the vector field defined in (2.1.23). Note that ∇ =


∂

∂xH
∂
∂xL
∂
∂xO

.

From [31], [78] and [60] we know that there is a connection between the

Fokker-Planck equation and stochastic differential equations (SDEs).

Theorem 2.1 (Connection between Fokker-Planck and Stochastic Differential

Equations). The Fokker-Planck equation describes the evolution of the transition

probability of an n variable Markov process x(t). Given that the Fokker-Planck

equation for the conditional probability density p(x, t|x0, t0) ≡ p is

∂p

∂t
= − ∂

∂x
(u(x)p) +

1

2

∂

∂x

(
∂

∂x

)T
(B(x)p) (2.1.28)

then x(t) can be modelled by a multivariable system of SDEs defined for n vari-

ables as

dx(t) = u(x, t)dt+M (x, t)dWt, (2.1.29)

where dWt is an n-variable Wiener process and M(x)M(x)T = B(x).

Therefore the master equation for our system (2.1.18) can be respresented

as the SDE (2.1.29), where u and B are as defined in (2.1.23) and (2.1.24)

respectively.

54



Method of Kurtz

We remind ourselves of the description given in Chapter 1. Each event causes the

vector n ∈ N3 to jump according to a jump vector s ∈ Z3. The stochastic rate

r̃(n, s) (or r(x, s) with x := n/N) at which the jumps n→ n + s take place are

the transition rates given in (2.1.4). As before N is the overall size of the system

as well as the sum of the components of n. The finite collection of possible jumps

s is denoted by the stoichiometric matrix S and the corresponding jump rates

are summarized into a vector r(x). For our system the stoichiometric matrix S

is

S =

 1 0 −1

0 −1 1

−1 1 0

 . (2.1.30)

and the corresponding rate vector r(x) is

r(x) =

2αxHxO

2βxHxL

γxHxH

 . (2.1.31)

The kth column of S, sk, corresponds to the kth element of the vector r(x), rk,

and x(t) satisfies an SDE of the form:

dx(t) =

(∑
sk∈S

skrk

)
dt+

1√
N

∑
sk∈S

sk
√
rkdW

(sk)(t). (2.1.32)

Where ski is the ith element of the vector sk, an alternative expression of (2.1.32)

can be achieved by defining:

u(x) := Sr(x), and Bi,j(x) :=
1

N

∑
sk∈S

rkskiskj, (2.1.33)

such that,

u(x) =

 2αxHxO − γxHxH
γxHxH − 2βxHxL

2βxHxL − 2αxHxO

 (2.1.34)
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and for B(x) = {Bi,j(x)},

B(x) =
1

N

2αxHxO + γxHxH −γxHxH −2αxHxO

−γxHxH γxHxH + 2βxHxL −2βxHxL

−2αxHxO −2βxHxL 2αxHxO + 2βxHxL


(2.1.35)

as in (2.1.23) and (2.1.24) respectively.

This gives that u(x) is the vector field of means of the first term of the right

hand side of (2.1.32) and B(x) is the covariance function of the second term.

Therefore where B(x) = M(x)MT (x) we can write the SDE given in (2.1.32)

as

dx(t) = u(x)dt+M (x)dWt, (2.1.36)

where Wt is a three-dimensional Wiener process.

In both (2.1.32) and (2.1.36) we see that as N → ∞ only the deterministic

term remains giving dx(t) = u(x)dt.

2.2 Existence and Stability of Equilibria

From u(x), the vector field defined in (2.1.23) and (2.1.33), we have the nonlinear

ODEs (2.2.1) that comprise the usual mean-field description of the dynamics.

ẋH = xH(2αxO − γxH),

ẋL = xH(γxH − 2βxL),

ẋO = 2xH(βxL − αxO).

(2.2.1)

Equations (2.2.1) show that equilibrium occurs when 2c = 2αxO = γxH = 2βxL.

As xH + xL + xO = 1 and xO = c
α
, xL = c

β
, xH = 2c

γ
we find that

c =
1

α−1 + β−1 + 2γ−1
. (2.2.2)

To study the stability of the equilbrium point (x∗H , x
∗
L, x

∗
O) = (2c

γ
, c
β
, c
α

) we

start by finding the Jacobian matrix

J(x∗H ,x
∗
L,x
∗
O) =

2αxO − 2γxH 0 2αxH

2γxH − 2βxL −2βxH 0

2βxL − 2αxO 2βxH −2αxH

 . (2.2.3)
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We find the value of the Jacobian matrix at the equilbrium point

J( 2c
γ
, c
β
, c
α

) =

−2c 0 4αc
γ

2c −4βc
γ

0

0 4βc
γ

−4αc
γ

 . (2.2.4)

The stability of the equilibrium can be analysed using the eigenvalues where

det(J( 2c
γ
, c
β
, c
α

) − λI) = 0.

det(J( 2c
γ
, c
β
, c
α

) − λI) = −λ
(
λ2 +

2c

γ
(λ (2α + 2β + γ) + 4αβ)

)
= 0 (2.2.5)

The eigenvalues are

λ1 = 0

λ2 = − c
γ

(
2α + 2β + γ +

√
γ2 + 4

(
α2 + β2 − αβγ

c

))

λ3 = − c
γ

(
2α + 2β + γ −

√
γ2 + 4

(
α2 + β2 − αβγ

c

))
.

(2.2.6)

We have that c, α, β, γ > 0. As Tr
(
J( 2c

γ
, c
β
, c
α

)

)
< 0 and Det

(
J( 2c

γ
, c
β
, c
α

)

)
= 0 we

know that we have stable fixed points.

Existence and Stability of Equilibria

For c as defined in equation (2.2.2) the system of ODEs in (2.2.1) has a unique

interior equilibrium point. We note that when xH = 0 then the system will

be unable to move from this state. Therefore for a small N the system could

be unstable to small disturbances that result in any state where xH = 0 being

reached.

Reduction to Two Dimensions

From the continuous formulation of the problem we have that x = 1
N

(nO, nL, nH)

such that xj =
nj
N

where j is the power setting. Therefore xO + xL + xH = 1 and

xO = 1− xH − xL. Using this we can reduce equation (2.2.1) to

ẋH = xH(2α(1− xH − xL)− γxH),

ẋL = xH(γxH − 2βxL).
(2.2.7)
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From which we see that at equilibrium 2α(1−xL) = xH(γ+2α) and γxH = 2βxL.

Therefore α(1 − xH) = xL(β + α). As before, to study the stability of the

equilibrium point (xH , xL) = (2c
γ
, c
β
) we find the Jacobian matrix.

J(xH ,xL) =

[
2α(1− xL)− 2xH(2α + γ) −2αxH

2γxH − 2βxL −2βxH

]
.

The value of the Jacobian matrix at this equilibrium point is

J( 2c
γ
, c
β

) =

[
−2c(γ+2α)

γ
−4αc

γ

2c −4βc
γ

]
.

From this we find the trace and determinant. The determinant Det(J( 2c
γ
, c
β

)) =
8αβc
γ

and the trace Tr(J( 2c
γ
, c
β

)) = −2c
γ

(2(β + α) + γ). As before, we have that α,

β, γ > 0 and c > 0. Therefore the trace Tr < 0 and the determinant Det > 0

and we have either a stable focus or stable node. When Tr2 − 4Det > 0 we will

have a stable node, and when Tr2 − 4Det < 0 a stable focus. We find that

Tr2 − 4Det =
4c2

γ2

(
(γ − 2(β + α))2 − 16αβ

)
. (2.2.8)

We set that α = µγ and β = νγ, where µ, ν > 0 and from this we get that

Tr2 − 4Det = 4c2
(
1 + 4ν2 + 4µ2 − 8µν − 4µ− 4ν

)
= 16c2

(
(ν − µ)2 − (ν + µ) +

1

4

) (2.2.9)

We note that c = γµν(2µν + ν + µ)−1. Let u = ν + µ and v = ν − µ, then

Tr2 − 4Det = 16c2

(
v2 − u+

1

4

)
. (2.2.10)

As 16c2 > 0 whether we have a node or focus depends on the sign of v2 − u+ 1
4
,

which we recognise as a parabola u = v2 + 1
4
. This is shown in Figure 2-2.

Reparametrisation

In order to further study the dynamical properties of (2.2.7) we rescale time by

a factor of dt→ 1
xH
dτ . Then (2.2.7) becomes

˙̃xH = 2α(1− x̃L)− x̃H(2α + γ) (2.2.11)
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ν = β
γ

µ = α
γ

Tr2 − 4Det = 0

(
0, 1

2

)
(

1
2 , 0
)

stable focus

stable node

α = β = γ
stable node

Figure 2-2: This shows the three regions where we have will have a stable node
and the region where we will have a stable focus.

0.0 0.2 0.4 0.6 0.8 1.0
xL0.0

0.2

0.4

0.6

0.8

1.0
xH

(a) (α, β, γ) = (1, 1, 2), the equilibrium
point (x∗L, x

∗
H) = (1

3 ,
1
3)
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(b) (α, β, γ) = (1, 1, 10) the equilibrium
point (x∗L, x

∗
H) = (0.45, 0.098)

Figure 2-3: Phase portraits of the two-dimensional system in the (xL, xH) plane.
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˙̃xL = γx̃H − 2βx̃L (2.2.12)

We find the Jacobian matrix at equilibrium

J(x̃∗H ,x̃
∗
L) =

[
−2α− γ −2α

γ −2β

]
.

At equilibrium ˙̃xH = ˙̃xL = 0; this tells us that γx̃H = 2βx̃L. The value of the

Jacobian matrix at equilibrium point is

J( 2c
γ
, c
β

) =

[
−2α− γ −2α

γ −2β

]
.

The eigenvalues of Det(J − λI) are

λ =
1

2

(
−2α− 2β − γ +

√
(2α + 2β + γ)2 − 8(2αβ + βγ − αγ)

)
λ =

1

2

(
−2α− 2β − γ −

√
(2α + 2β + γ)2 − 8(2αβ + βγ − αγ)

) (2.2.13)

and Tr(J) = −2α − 2β − γ and Det(J) = −2αβγ
c

. Therefore we have either

a stable focus or a stable node. Setting Tr2 − 4Det = 0 gives that (γ + 2β −
2α)2 − 8βγ = 0. As shown in Figure 2-2.

2.3 Analysis

We use numerical simulations to analyse the behaviour of the system both ap-

proaching and at equilibrium. We use two methods of simulation, firstly we plot

the solution to the ODEs that describe the system which represents an infinite

and continuous realisation of the dynamics. Secondly, we simulate a discrete and

finite realisation of the system.

2.3.1 Simulations

ODEs

The trajectories of xH , xL, xO are described by the system ODEs we gave in

(2.2.1). In Figure 2-4a we show the system approaching and maintaining equi-

librium when xH(0) = 0.05, xL(0) = 0.9, xO(0) = 0.05 and α = 1, β = 1, γ = 4.

From Figure 2-2 we know that for these rate parameter values equilibrium will be

a stable focus. We do not observe oscillations in the trajectories as they approach

equilibrium. This is due to the imaginary part of the eigenvalues being small. In
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fact, for these parameter values it is when we see the PSD peak. For the param-

eter values used (2.2.6) gives that λ = 0, λ = −0.8− 0.4i and λ = −0.8 + 0.4i. In

Figure 2-4b we plot the absolute value of the ODE minus the equilibrium value,

for example for xH we plot |ẋH−x∗H |. Subtracting the drift terms and taking the

absolute value mean that it is possible to see the oscillations. For both plots in

Figure 2-4 all parameter values are the same.

Stochastic simulation

We wish to be able to simulate a realisation of our system with jumps. We

use the Gillespie stochastic simulation algorithm, described in Subsection 1.4.6,

to do this. In contrast to ODEs, the Gillespie algorithm allows a discrete and

stochastic simulation of a system with few reactants because every reaction is

explicitly simulated.

In Algorithm 2.1 we give the specific algorithm used for our simulations. An

implementation of Algorithm 2.1 is shown in Figure 2-5 in which the ODEs are

also plotted. We see that the GSSA closely fits the trajectories of the ODEs,

with some oscillations.
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(a) Trajectories of ODES

(b) Oscillations in ODEs

Figure 2-4: For α = 1, β = 1, γ = 4 and xH(0) = 0.05, xL(0) = 0.9, xO(0) = 0.05.
Subfigure 2-4a shows the trajectories of the ODEs for these parameter values. In
Subfigure 2-4b we plot the absolute difference from equilibrium |ẋ− x∗| for the
ODEs.
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Algorithm 2.1 Gillespie Stochastic Simulation Algorithms

1: Assign integer values to nO, nL, nH and N such that N = nO + nL + nH .
2: Set a time limit and/or an iteration limit.
3: Set values for the rates α, β, γ.
4: time = 0 . Initialise time
5: while time < time limit do
6: x = X ∼ Unif(0, 1)

7: P1 = N(2αnOnH)
N(N−1)

8: P2 = N(2βnLnH)
N(N−1)

9: P3 = N(γ(nH−1)nH)
N(N−1)

10: P0 = P1 + P2 + P3

11: if x ≤ P1/P0 then
12: nO = nO − 1
13: nH = nH + 1
14: else if x ≤ (P1 + P2)/P0 then
15: nL = nL − 1
16: nO = nO + 1
17: else
18: nH = nH − 1
19: nL = nL + 1
20: end if
21: k = K ∼ Exp(1/P0) . time interval after which the reaction occured
22: time = time + k . Update time
23: end while
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(a) For 0 ≤ t ≤ 10 we observe how the system reaches equilbrium in more detail.

(b) For 0 ≤ t ≤ 100 we see how the system reaches and then oscillates around equilib-
rium.

Figure 2-5: For Figures 2-5b and 2-5a the reaction rates are: α = 1, β = 1,
γ = 4. The total number of transmitters N = 6000, and initially nH = 4000,
nL = 1000, nO = 1000. Therefore x(0) = (0.66, 0.17, 0.17). We observe that the
ODEs reach equilibrium such that, as t→∞, x(t) = (0.2, 0.4, 0.4). However the
SSA oscillates around the equilibrium.

To better understand the behaviour of the finite system, which we simulate

using the Gillespie SSA, and its oscillations around equilbirium we consider the

power spectral density.
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2.3.2 Power Spectral Density

In Subsection 2.1.2 we used the method of Kurtz to define our system as the SDE

dx(t) = u(x, t)dt+M (x)dW (t), (2.3.1)

where u(x, t) and M(x) are defined in terms of the stoichiometric matrix S

(2.1.30) and rate vector r(x, t) (2.1.31) such that

u(x, t) =

 2αxHxO − γxHxH
γxHxH − 2βxHxL

2βxHxL − 2αxHxO

 (2.3.2)

and M(x)MT (x) = B(x) with

B(x) =
1

N

2αxHxO + γxHxH −γxHxH −2αxHxO

−γxHxH γxHxH + 2βxHxL −2βxHxL

−2αxHxO −2βxHxL 2αxHxO + 2βxHxL

 .
(2.3.3)

In equation (2.2.3) we gave the Jacobian matrix of our system J(x,t). Let

x(t) = x∗ + y(t) with y(t) = (yH , yL, yO), then it follows that

d(x∗ + y(t))

dt
= u(x∗ + y(t), t) +O(y2)

= u(x∗) + J(x∗)y(t) +O(y2)

= J(x∗)y(t) +O(y2)

(2.3.4)

as u(x∗) = 0. We define a matrix A(x∗) := J(x∗). When the system is at

equilibrium, x∗ = (2c
γ
, c
β
, c
α

), the matrices A(x∗) and M(x∗) are constant and

we define

A := A(x∗) =
2c

γ

−γ 0 2α

γ −2β 0

0 2β −2α

 , (2.3.5)

and M := M (x∗, t) with MMT = B and

B := B(x∗, t) =
4c2

Nγ

 2 −1 −1

−1 2 −1

−1 −1 2

 . (2.3.6)
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Therefore when the system is at equilibrium we can write (2.3.1) as

dy(t) = Ay(t)dt+MdW (t). (2.3.7)

From Definition 1.13 we recognise (2.3.7) as describing a multivariate Ornstein-

Uhlenbeck process and Theorem 1.5 gives that the spectrum matrix P(ω) of this

process is given by

P(ω) =
1

2π
(A− iωI)−1B(A− iωI)−†. (2.3.8)

To compute the spectrum matrix P(ω), we find (A− iωI)−1 and (A− iωI)−†,

(A− iωI)−1 =

y

(4αc+ iγω)(−4iβc+ γω) −16iαβc2 4αc(−4iβc+ γω)

2cγ(−4iαc+ γω) γ(−2ic+ ω)(4αc+ iγω) −8iαc2γ

−8iβc2γ 4βcγ(−2ic+ ω) γ(−2ic+ ω)(4βc+ iγω)


(2.3.9)

where y = (ω (−4αc (4βc+ 2γc+ iγω) + γ (−2ic+ ω) (−4iβc+ γω)))−1, and

(A− iωI)−† =

y∗

(4αc− iγω)(4iβc+ γω) 2cγ(4iαc+ γω) 8iβc2γ

16iαβc2 γ(2ic+ ω)(4αc− iγω) 4βcγ(2ic+ ω)

4αc(4iβc+ γω) 8iαc2γ γ(2ic+ ω)(4βc− iγω)


(2.3.10)

where y∗ = (ω (−4αc (4βc+ 2γc− iγω) + γ (2ic+ ω) (4iβc+ γω)))−1.

The diagonal elements of P(ω) correspond to the frequency spectrum of the

elements of x. The element P1,1(ω) describes the frequency spectrum of xH(t)

and we find that

P1,1(ω) =
4c2γ (16α2c2 + 16αβc2 + 16β2c2 + γ2ω2)

πN ((8αβγc)2 + γ2ω2 (4c2(4α2 + 4β2 + γ2) + γ2ω2))
. (2.3.11)

The element P2,2(ω) describes the frequency spectrum of xL(t) and

P2,2(ω) =
4c2γ (16α2c2 + 8αc2γ + γ2 (4c2 + ω2))

πN ((8αβγc)2 + γ2ω2 (4c2(4α2 + 4β2 + γ2) + γ2ω2))
. (2.3.12)
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Lastly, the element P3,3(ω) describes the frequency spectrum of xO(t) and

P3,3(ω) =
4c2γ (16β2c2 + 8βc2γ + γ2 (4c2 + ω2))

πN ((8αβγc)2 + γ2ω2 (4c2(4α2 + 4β2 + γ2) + γ2ω2))
. (2.3.13)

The Trace of P(ω), which describes the frequency spectrum of the sum of all

three elements of x(t), is therefore given by

Tr(P(ω)) =
4c2γ (32α2c2 + 32β2c2 + 8αβγc+ 8γ2c2 + 3γ2ω2)

πN ((8αβγc)2 + γ2ω2 (4c2(4α2 + 4β2 + γ2) + γ2ω2))
. (2.3.14)

Peak PSD

To find the angular frequency ω0 at which the PSD of xH , xL and xO peaks, we

differentiate the corresponding diagonal entry of P(ω) with respect to ω. In each

case we find that P ′(ω0) = 0 has five solutions but only two where it is possible

that ω0 ∈ R+ as we require. The first of these two solutions is ω0 = 0, the second

solution for each case is given below:

For xH , where we differentiate P1,1(ω),

ω0 =
2c
√

2

γ

√
−2α2 − 2β2 − 2αβ + (2α + 2β + γ)

√
αβ (2.3.15)

we find when α = 1, β = 1 and γ = 4 then ω0 = 0.4.

For xL, where we differentiate P2,2(ω),

ω0 =
2c

γ

√
−γ2 − 4α2 − 2αγ + (2α + 2β + γ)

√
2αγ (2.3.16)

we find when α = 1, β = 1 and γ = 1.5 then ω0 = 0.210249.

For xO, where we differentiate P3,3(ω),

ω0 =
2c

γ

√
−γ2 − 4β2 − 2βγ + (2α + 2β + γ)

√
2βγ (2.3.17)

we find when α = 1, β = 1 and γ = 1.5 then ω0 = 0.210249.

There is no set of positive real values {α, β, γ} such that there exists an

ω0 > 0 with ω0 ∈ R for each of xH , xL and xO; however for the set {1, 1, 2} then

ω0 = 0 for all three elements. This is the case for the trace of P(ω) where ω0 = 0

for the set of values {1, 1, 2} but there is no set {α, β, γ} ∈ R+ such that ω0 > 0

and ω0 ∈ R.

For each of xH , xL and xO we have presented a set of values {α, β, γ} and

the resulting angular frequency ω0 at which the peak PSD occurs. We show in
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Figures 2-6 and 2-7 that these peaks in PSD are small and, unless only ω local

to ω0 is considered, can be difficult to detect.

(a) PSD of xH for 0 ≤ ω ≤ 10. (b) PSD of xH for 0 ≤ ω ≤ 0.6.

Figure 2-6: Both 2-6a and 2-6b show the PSD of xH when α = 1, β = 1, γ = 4
and N = 500. The peak in PSD occurs at ω0 = 0.4 which is marked by a dashed
red line in both 2-6a and 2-6b. In 2-6b a smaller range of ω values are used so
that the peak is more distinct, and in both subfigures a log scale y-axis is used
to make the peak in PSD more easily observable.

When α = β then P2,2(ω) = P3,3(ω) and xL and xO will have the same PSD.

Therefore, we will represent the peak in PSD for both xH and xO in Figure 2-7,

where we show the peak in PSD.

(a) PSD of xL and xO for 0 ≤ ω ≤ 10.

xs
(b) PSD of xL and xO for 0 ≤ ω ≤ 0.2.

Figure 2-7: Both 2-7a and 2-7b show the PSD of xL when α = 1, β = 1, γ = 1.5
and N = 500. The peak in PSD occurs at ω0 = 0.210249 which is marked by a
dashed red line in both 2-7a and 2-7b. In 2-7b a smaller range of ω values are
used so that the peak is more distinct, and in both subfigures a log scale y-axis
is used to make the peak in PSD more easily observable.

We wish to analyse the sustained oscillations about equilibrium seen in Figures

2-5. We have computed P(ω). This gives the result for an infinite system. We

wish to compare this to a result for the finite system we simulate using the GSSA.
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We compare this result to what we observe from our stochastic simulation of the

system using the fast Fourier transform.

Comparing the PSD from the two methods

Two methods for computing the PSD have been described. These are taking the

DFT of the timeseries we generate through the Gillespie SSA and computing the

spectrum matrix P(ω).

Computational limits prevent the comparison of the two methods at the peak

ω values. As already stated, the peak in the PSD is very small and for it to be

noticeable the variance in the Gillespie SSA would have to be even smaller. This

requires the system size N to be suitably large. As given in equation (1.4.30)

ωk =
2πk

N∆t
for k = 0, . . . , N − 1.

For large N the value of ω ranges from 0 to approximately 2π
∆t

, and so it is ∆t that

determines the size of the range. It is necessary to scale the reaction rates α, β, γ

inversely with N to prevent the times between reactions becoming very small. If

they are not then the overall rate of reactions increases. For a plot of the peak

PSD to be informative we would require k to be reasonably large (K > 100) and,

for a large N where α, β, γ are small, this would require a large time step which

would miss the majority of interactions.

We found in Subsection 2.3.2 that when (α, β, γ) = (1, 1, 4) a peak in the

PSD of xH occurs at ω = 0.4. We also found that when (α, β, γ) = (1, 1, 1.5) a

peak in the PSD of xL and xO occurs when ω = 0.210249. For these two sets

of values of α, β, γ we compare the PSD of xH , xL and xO obtained through the

two different methods in Figures 2-8 to 2-10. The system size N = 500, the time

step ∆t = 0.05, the total time T = 500 and we average over 1000 repeats.

We note that for both sets of values of (α, β, γ) we observe an exact match of

the numerically computed PSD to the theoretically computed PSD. For example,

in Figure 2-8a we observe the peak in the PSD of xH at ω = 0.04 in the GSSA

results. We show a comparison for small values of ω as for larger values there is a

discrepancy between the theoretical and numerical results is introduced. This is

a result of the numerical results not representing a continuous infinite system but

rather a finite one of size N = 500 for discrete time steps. Increasing the system

size N and observation time T whilst also decreasing the time step ∆t reduces

the discrepancy between the two methods but is computationally expensive.
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(b) (α, β, γ) = (1, 1, 1.5)

Figure 2-8: The PSD of xH shown for 0 ≤ ω ≤ 6 for the two sets of values of
(α, β, γ).
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(b) (α, β, γ) = (1, 1, 1.5)

Figure 2-9: The PSD of xL shown for 0 ≤ ω ≤ 6 for the two sets of values of
(α, β, γ).
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Figure 2-10: The PSD of xO shown for 0 ≤ ω ≤ 6 for the two sets of values of
(α, β, γ)

Short Summary

In this chapter we considered a simple model of the interaction between three

competing system-level objectives: increase the minimum SINR, increase signal

coverage and reduce energy use. The model ignored the spatial distribution

of transmitters and formulated the problem stochastically, as a Markov jump

process, with the overall state of the system described by the total number of

transmitters in each of the three states: High (H), Low (L) and Off (O).

In the limit of a large number of transmitters, the Markov jump process could

be closely approximated by either a multivariate SDE (Subsection 2.1.2) or by

the ODEs describing the mean-field limit of the system dynamics (Section 2.2).

Analysis of the ODEs showed that a unique interior equilibrium point exists for

all combinations of the rate parameters, and that it is always stable. There do

not appear to be any deterministic periodic orbits for the mean-field ODEs, but

the stable equilibrium can be either a stable focus or a stable node, see Figure

2-2.

For a finite system size there are stochastic fluctuations around the equilibrium

point, with frequencies of the same order as the rate parameters. Comparisons

between the predicted power spectral density (PSD) and numerical simulations

using the Gillespie stochastic simulation algorithm show excellent agreement, see

Figures 2-8 to 2-10. In cases where the PSD has a peak at a positive value
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of the frequency ω, the peak is not very high, suggesting that detection of a

characteristic frequency in the stochastic dynamics would be difficult in practice.
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Chapter 3

Self-Optimising Transmit Powers

In Chapter 2 we explored the system dynamics as three self-optimisation policies

competed. Two of the three objectives were for quality of service (QoS) improve-

ment. One of these two QoS objectives was the system-wide optimisation (i.e.

increase) of SINR, the other was the system-wide optimisation (i.e. increase) of

coverage. To achieve the SINR optimisation the policy for any pair of transmit-

ters sharing the transmit power H was for one transmitter to change to the lesser

power L. In this chapter we consider spatially distributed transmitters and show

that this policy of changing from uniform transmit powers can optimise SINR.

3.1 Transmit Power Optimisation

It is shown in [36] that optimizing transmit powers allows for improved SINR and

SIR (referred to as Carrier to interference ratio (CIR) in that paper). Optimising

transmit powers is an area that has been widely studied for many decades and

various schemes for power control, centralized or distributed, based on different

transmission models and application needs have been proposed. As our interest

is in self-organisation we consider distributed algorithms.

In [61] two of the three optimisation objectives from Chapter 2 are consid-

ered. These are to increase energy efficiency (minimise power consumption) whilst

maximising the percentage of devices that achieve some minimum SINR (improve

QoS). It proposes an algorithm that is distributed and stable at equilibrium. The

algorithm is a trial and error learning algorithm. Further examples of distributed

algorithms for cellular wireless networks include those given in [20], [28] and [89]

that we briefly describe.

The distributed algorithm in [28] either succeeds or fails at having all users’

QoS reach a target value. Similarly, the distributed algorithm in [89] aims to
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meet an SINR target rather than find the best SINR achievable. The distributed

algorithm in [20] aims for the best SINR achievable but requires communication

between devices (femtocells) when SINR is low. None of these algorithms achieves

our aim whilst meeting our requirements. We wish to achieve the best SINR

possible for each transmitter rather than a target value and to do so without

communication between transmitters.

Minimum SINR

We consider the problem of maximising the minimum SINR. In a given system

let the set of M receivers be R = {Ri : i = 1, ...,M} and the set of N transmitters

be T = {Tj : j = 1, ..k, ..., N}. Let Pj be the power-setting of transmitter Tj, σi

the noise at receiver Ri and rj,i the distance between Tj and Ri with g(rj,i) the

pathloss function. Then, where Pmin and Pmax are the minimum and maximum

transmit powers, the problem of maximising the miniumum SINR subject to

transmit powers can be written as

maximise min
i,j

Pjg(rj,i)∑
k 6=j Pkg(rk,i) + σi

subject to 0 ≤ Pmin ≤ Pj ≤ Pmax.

(3.1.1)

We recognise equation (3.1.1) as being a generalised linear-fractional program

and a quasiconvex optimisation problem as described in [9]. In [9] the bisection

method is proposed as being a way of solving such quasiconvex optimisation

problems. Lieven Vandenberghe has written modules to do this in Julia, Python

and R. In [66] the author explains that they attempted solving it using these

modules but the solvers failed. They tried approaches other than the Python

tools but were unable to find a complete package designed to cope with this type

of problem. The difficulty arose from the fact that the objective function is not

smooth and the solvers (modules) use gradient methods and therefore produce

irrelevant results.

In [20] it is stated that because many QoS metrics are nonlinear functions

of SIR, which is in turn a nonlinear (and neither convex nor concave) function

of transmit powers, in general power control optimisation or feasibility problems

are difficult non-linear optimisation problems that may appear to be NP-hard

problems. It is found in [20] that when SIR is much larger than 0dB, a class

of nonlinear optimisation called Geometric Programming (GP) can be used to

efficiently compute the globally optimal power control in many of these problems

and efficiently determine the feasibility of user requirements by returning either
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a feasible (and indeed optimal) set of powers or a certificate of infeasibility.

As our priority when optimising the SINR is to increase the lowest values of

SINR, we expect to encounter values close to or less than 0dB. In addition to

this, a requirement of any distributed heuristic we propose is that it not place

computational demands on the transmitters. The distributed heuristics we have

so far discussed do not meet these requirements. Therefore rather than use one of

these described distributed heuristics as a benchmark, by which to measure the

performance of the power control policies we propose in Section 3.2, we instead

benchmark policy performance against a policy named ‘Smart’ that we received

from Keith Briggs at BT. The ‘Smart’ policy only uses the distance of the nearest

transmitter to determine power level and so does use transmitter resources.

3.1.1 Uniform Power Settings

Before proposing policies for power control in Section 3.2 we first show that, with

the exception of two transmitters and no noise, uniform powers are not optimal

for SINR. When there are two transmitters and noise is present we show this by

perturbing away from the case where powers are uniform and showing this leads

to improvement. For three transmitters with no noise we show numerically that

uniform powers are not optimal. Further cases are shown by numerical simulation

in Section 3.2.

We show that in one dimension, where transmitters are distributed randomly

along the real line, uniform power settings for the transmitters results in larger

areas of ‘low SINR’ than otherwise. First let us begin by defining ‘low SINR’.

Recall that SINR is the ratio of signal to interference plus noise, and so

Low SINR :=
Signal

Noise + Interference
≤ c, for c > 0.

We now want to answer the following question, what is the expected ’thick-

ness’ of an area of low SINR between any two transmitters along the real line?

To answer this we define the signal received from a transmitter Ti as

Si = Pig(ri)

where γ is the pathloss exponent, ri is the distance from Ti, g(ri) is a function of

this distance and Pi is the power setting of Ti. Let σ be noise; it can be considered

constant. Previously we have defined interference Ii =
∑

j 6=i Sj. However, in one

dimension the interference in the SINR between two transmitters, Ti and Tj, only
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comes from the neighbour transmitter so Ii = Sj and the noise σ represents signal

received from other transmitters on the line.

T1 T2Xv1(c) v2(c)

S1

σ + S1

S2

σ + S2

L(c)

R

Figure 3-1: The signal, interference and noise between two transmitters T1 and
T2. They have different strengths of signal, shown by S1 and S2, and the distance
between them is denoted by R. The dashed lines represent the ‘interference plus
noise’ contributed from one transmitter to the other. We have marked on the
figure significant points relating to the SINR between them. Definitions of these
points are given in the text.

On Figure 3-1, T1 and T2 mark the positions on the real line of two transmit-

ters. We wish to find the length of the interval between them where SINR is low.

We have marked with X the point where the maximum SINR is lowest, at this

point

X :
S1

σ + S2

=
S2

σ + S1

. (3.1.2)

That is, a user cannot improve their SINR by switching to pair with the other

transmitter. For a transmitter T1 we define the region of ‘low SINR’ to be the

subset of the line where

S1

σ + S2

≤ c, for c > 0. (3.1.3)

The points at which ‘low SINR’ begins for transmitters T1 and T2 are marked on

our diagram by v1(c) and v2(c) respectively. At v1(c)

S1

σ + S2

= c (3.1.4)

76



and at v2(c)
S2

σ + S1

= c. (3.1.5)

We wish to find the length L(c) of the ‘low SINR’ interval and from (3.1.4) and

(3.1.5) we see that

L(c) = |v1(c)− v2(c)|. (3.1.6)

T1 T2v1(c) v2(c)

r1(c) r̃2(c)

r2(c)r̃1(c)

Figure 3-2: Illustration of the definitions of r̃2, r̃1, r1 and r2.

We will now compute L(c). We begin by defining R as the distance between

T1 and T2, so that at any point between them r1 + r2 = R. We then define r1(c)

as the distance from v1(c) to T1, r̃2(c) as the distance from v1(c) to T2, r̃1(c) as

the distance from v2(c) to T1 and r2(c) as the distance from v2(c) to T2. The

definitions of these distances are illustrated in Figure 3-2. From our definitions

of v1(c) and v2(c), given in equations (3.1.4) and (3.1.5) respectively, it follows

that

c =
P1g(r1(c))

P2g(r̃2(c)) + σ
=

P2g(r2(c))

P1g(r̃1(c)) + σ
. (3.1.7)

For clarity we write that r1(c) = r1, r2(c) = r2, r̃1(c) = r̃1 and r̃2(c) = r̃2.

Additionally we know that r1 + r̃2 = R and r̃1 + r2 = R, therefore (3.1.7) can be

written as

c =
P1g(r1)

P2g(R− r1) + σ
=

P2g(r2)

P1g(R− r2) + σ
. (3.1.8)

We can also note that L(c) = |R − r1 − r2|. Our aim is to minimise L(c), where

the two independent variables are P1 and P2. For ease of computation we will

define g(r) = r−γ, so that we using a far-field pathloss model given by equation

(1.3.1) in Subsection 1.3.1. We will begin with the simplest case, setting σ = 0.

Two transmitters without noise, σ = 0

To remove noise effects we set σ = 0. To minimise the length of the interval

within which we have ‘low SINR’ we must minimise the distance L(c) between

v1(c) and v2(c). This is equivalent to maximising r1 + r2 over allowed power

settings. We will show that r1 + r2 is maximised when P1 = P2 and therefore

show that uniform powers are optimal for two transmitters with no noise in one
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dimension.

At v1(c)

c =
P1r

−γ
1

P2r̃
−γ
2

(3.1.9)

and at v2(c)

c =
P2r

−γ
2

P1r̃
−γ
1

. (3.1.10)

We define the ratio ω of the power P1 of transmitter T1 to the power P2 of

transmitter T2, and write

ω =
P1

P2

. (3.1.11)

We wish to isolate r1 and r2 from equations (3.1.9) and (3.1.10) respectively.

Using that r1 = R− r̃2 and r2 = R− r̃1, together with the substitution (3.1.11),

we find that at v1(c)

r1 = R

(
(ω−1c)

−1/γ

1 + (ω−1c)−1/γ

)
(3.1.12)

and at v2(c)

r2 = R

(
(ωc)−1/γ

1 + (ωc)−1/γ

)
. (3.1.13)

Simplifying we see that

r1 = R

(
1

cω−1/γ + 1

)
(3.1.14)

and

r2 = R

(
1

cω1/γ + 1

)
. (3.1.15)

Our aim is to find ω, the relationship between P1 and P2, such that r1 + r2 is

maximised. From equations (3.1.14) and (3.1.15) we know that

r1 + r2 = R

(
1

1 + cω−1/γ
+

1

1 + cω1/γ

)
. (3.1.16)

When the power settings are equal ω = 1 and

r1 + r2 =
2R

1 + c
. (3.1.17)

When power settings are not equal ω 6= 1. Equal powers are not optimal if

R

(
1

1 + ω1/γc
+

1

1 + ω−1/γc

)
> R

(
2

1 + c

)
, (3.1.18)
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with ω ∈ R+, and ω 6= 1.

We rearrange and simplify (3.1.18) as follows: first cancel the factor of R

and then expand the fractions on left hand side so that they share a common

denominator before adding them, this achieves

2 + c
(
ω−1/γ + ω1/γ

)
1 + c2 + c (ω−1/γ + ω1/γ)

>
2

1 + c
(3.1.19)

We then multiply both sides of (3.1.19) by the denominator of its left hand side

before subtracting c
(
ω−1/γ + ω1/γ

)
from both sides. This yields

2 >
2(1 + c2)

1 + c
+

2c
(
ω−1/γ + ω1/γ

)
1 + c

− c
(
ω−1/γ + ω1/γ

)
(3.1.20)

From which we obtain

2
(

1− (1+c2)
1+c

)
c
(

2
1+c
− 1
) > ω1/γ + ω−1/γ. (3.1.21)

The left hand side of (3.1.21) can be simplified. Its denominator is given by

c

(
2

1 + c
− 1

)
=
c(1− c)

1 + c

and its numerator can similarly be simplified:

2

(
1− (1 + c2)

1 + c

)
=

2c(1− c)
1 + c

.

Therefore the left hand side of (3.1.21) can be simplified to give

2c(1−c)
1+c

c(1−c)
1+c

= 2

and so (3.1.21) leads to the condition

2 > ω−1/γ + ω1/γ. (3.1.22)

Multiplying both sides of (3.1.22) by ω1/γ and then simplifying we find that we

require (
ω1/γ − 1

)2
< 0. (3.1.23)

There exists no ω, where ω ∈ R+, that satisfies (3.1.23). Therefore for two
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transmitters in one dimension equal power settings minimise the length of the

region of low SIR between them. Uniform power settings are optimal in this case.

If this is true in one dimension then it is intuitive that it would also be true

in two dimensions as the area of low SINR would be minimised by equal power

settings.

Two transmitters with noise, σ > 0

Where noise is given by σ then at vi(c) and vj(c) then

c =
P1r

−γ
1

P2r̃
−γ
2 + σ

=
P2r

−γ
2

P1r̃
−γ
1 + σ

We find that when σ > 0 uniform transmit powers does not minimise the

length of low SINR. As before we set that P1 = ωP2 and note that r̃2 = R − r1

and r̃1 = R− r2. We also set that y = σ
P2

, this gives that

c =
ωr−γ1

(R− r1)−γ + y
=

r−γ2

ω(R− r2)−γ + y
. (3.1.24)

In the case without noise we showed that the length of low SINR was min-

imised when ω = 1. We differentiate with respect to ω to understand how

perturbances in ω has on the length of low SINR from the case when ω = 1 with

noise present. We find that

dr1

dω
=

r−γ1

γ
(
c(R− r1)−γ−1 + ωr−γ−1

1

) (3.1.25)

and
dr2

dω
=

−c(R− r2)−γ

γ
(
cω(R− r2)−γ−1 + r−γ−1

2

) . (3.1.26)

We observe that when ω = 1 the denominators are equal and note thatR−r2 > r1.

As r1 < R − r2 then r−γ1 > (R − r2)−γ. Therefore from the case where transmit

powers are uniform and ω = 1 we see that

d(r1 + r2)

dω
=

r−γ1 − c(R− r2)−γ

γ
(
c(R− r2)−γ−1 + r−γ−1

2

) , with r1 = r2. (3.1.27)

Therefore when the fixed constant c ≥ 1, and there exists a solution to (3.1.24),

then
d(r1 + r2)

dω
> 0. (3.1.28)
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This shows that changes in ω, that is moving away from uniform transmit pow-

ers, further reduces the length of low SINR. We conclude that uniform transmit

powers are not optimal for two transmitters when noise is present.

Three transmitters without noise

In contrast to the two transmitter case (without noise), equal power settings are

not optimal when three transmitters are present. Here we show that when there

are three transmitters present, the total length of the intervals where SINR is

unacceptably low is minimised by taking unequal power settings for the three.

T1 T2 T3v1(c) v2(c) v3(c) v4(c)

r1 r̃2

r2r̃1

r̃3 r4

r3 r̃4

Figure 3-3: Illustration of the definitions of r̃1, r̃2, r̃3, r̃4, r1, r2, r3 and r4. We
wish to minimise the sum of red lengths (the regions of low SIR), which is the
same as maximising the sum of the blue distances (regions of acceptable SIR).

We define R to be the distance from T1 to T3, such that R = |T1 − T3|. Let

α where 0 < α < 1. Then we define the distance from transmitter T1 to T2 to

be αR such that αR = |T1 − T2|, and the distance from T2 to T3 to be (1− α)R

such that (1− α)R = |T2 − T3|.

T1 T2 T3

αR (1− α)R

R

Figure 3-4: Illustration of the definitions of the distances between T1, T2 and T3.

We define the power settings of the transmitters relative to each other so that

P1 = ωP2 and P3 = µP2.

To minimise the region of low SIR, we wish to maximise r1 + r2 + r3 + r4. For

a fixed constant c > 0, we find using our definitions that:

at v1(c)

1 + c =
ωr−γ1

(αR− r1)−γ + µ(R− r1)−γ
(3.1.29)

at v2(c)

c =
r−γ2

ω(αR− r2)−γ + µ(R− (αR− r2))−γ
(3.1.30)
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at v3(c)

c =
r−γ3

ω(αR + r3)−γ + µ(R− (αR + r3))−γ
(3.1.31)

at v4(c)

c =
µr−γ4

(R− r4 − αR)−γ + ω(R− r4)−γ
(3.1.32)

We will show a contradiction to the statement that uniform transmit powers

are optimal for three transmitters. For a fixed SIR threshold (and therefore c)

we denote the constant (c)−1 by c. Let α, γ and R also be fixed. Rewriting the

above expressions we see that for our variables r1, r2, r3, r4 and µ, ω:

at v1(c)

ωc =

(
αR

r1

− 1

)−γ
+ µ

(
R

r1

− 1

)−γ
(3.1.33)

at v2(c)

c = ω

(
αR

r2

− 1

)−γ
+ µ

(
(1− α)R

r2

+ 1

)−γ
(3.1.34)

at v3(c)

c = ω

(
αR

r3

+ 1

)−γ
+ µ

(
(1− α)R

r3

− 1

)−γ
(3.1.35)

at v4(c)

µc =

(
(1− α)R

r4

− 1

)−γ
+ ω

(
R

r4

− 1

)−γ
(3.1.36)

We show with numerical simulation that uniform powers are not optimal by

showing an example where moving away from uniform powers improves SIR. We

set that P1 = P3 = Pmax and α = 0.5. This gives that r1 = r4 and r2 = r3.

We set that v = ω = µ and note that v ≥ 1. Therefore we can write equations

(3.1.34) and (3.1.35) as

c = v

((
0.5R

r2

− 1

)−γ
+

(
0.5R

r2

+ 1

)−γ)
, (3.1.37)

and equations (3.1.33) and (3.1.36) as

c−
(
R

r1

− 1

)−γ
=

1

v

(
0.5R

r1

− 1

)−γ
. (3.1.38)

From equation (3.1.37) we see that r2 and r3 will descrease as P2 decreases and

v increases. However, we observe in (3.1.38) that increasing v so that powers

are not uniform allows for an increase in r1 and r4. In Figure 3-5 we show that
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uniform powers actually maximise the percentage of low SIR. In this figure we

relax the requirement that a solution must always exist for equations (3.1.33) to

(3.1.36).

Let us fix a maximum power Pmax and set that P1 = Pmax. As we defined

P1 = ωP2 and P3 = µP2 then ω ≥ 1 and µ ≥ 1. We also set a minimum power

Pmin > 0 so that we do not reduce this to a two transmitter problem and no

longer satisfy equations (3.1.33) to (3.1.36).

Let α = 0.5, R = 8, Pmax = 4, γ = 4 and c = 1.5. In Figure 3-5 we show that

the lowest percentage of SIR is not achieved when all three transmitters have the

same transmit power. The percentage of receivers observing low SIR is lowest on

the plot when transmitter T3 has power p3 = 0.25 and transmitter T2 has power

p2 between 3.5 and 4. As low SINR is not minimised when all three transmitters

have power P = 4 this shows that uniform transmit powers are not optimal.

Figure 3-5: Percentage of receivers observing low SIR as a function of transmitter
powers for T2 and T3. The top right corner is where the three transmitters have
uniform transmit powers P1 = P2 = P3 = 4. The colour bar represents the
percentage of ‘low SIR’ area. The SIR is measured by 1601 transmitters uniformly
spaced along the line the transmitters were placed along. The Transmitters were
at locations (0, 0), (4, 0), (8, 0). Transmitter T1 has power P1 = 4, this is fixed as
the powers of the other transmitters are varied.

We have shown that uniform powers are optimal in the trivial case of two
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transmitters with no noise present. We have shown that when there are three

transmitters, or noise is present for two transmitters, then uniform powers are

not optimal. We will show in the next section that this holds for larger num-

bers of transmitters by implementing the policy ‘Constant’ which sets transmit

powers to be uniform. We will also show that non-uniform powers that were set

without using network considerations do not perform better than uniform powers

by implementing a policy named ‘Random’.

3.2 Self Optimising Power Control Algorithms

Power control algorithms are in effect policies that control the transmit powers of

transmitters. In this section we identify and develop policies that improve some

low quantile of the SINR and also provide good coverage. The strategies need to

work in a distributed way.

3.2.1 Transmit Power Policies

We placed Poisson distributed points in a plane and these points are considered

to be the locations of transmitters in a model cellular network. Each transmitter

is assigned an initial power setting P , and that power setting will be updated

according to a policy. To measure how a policy has performed, points on the

plane are chosen at random and the SINR at that point is recorded, in effect

taking a sample of the SINR. We set that the noise σ = 0.001. Samples are

taken until a specified accuracy criterion is met. For the results shown below,

samples were taken until every 5th quantile had a confidence interval of 95%.

To do this we adapted the sampling module in [16] so that the performance of

the policies could be compared directly to each other. The seven different power

control policies are described below.

Smart policy

For each transmitter the distance to its nearest neighbour d1 is found. Its power

setting P is set as P = min(dγ1 , Pmax) where γ is the pathloss exponent. The

result of this is that the interference I its nearest neighbour receives from it I1 is

limited to I1 ≤ 1.

This policy, that we received from Keith Briggs at BT [12] , is used to bench-

mark the performance of all other policies.
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Constant policy

All transmitters have the same power setting P , where we set P = Pmax. This

policy builds on the work of the previous section in showing the system-wide

SINR when transmit powers are uniform.

This policy shows that uniform transmit powers are not optimal.

Random policy

Each transmitter has a power setting that is a random number between 0 and

the maximum power Pmax.

This policy shows that non-uniform transmit powers that are set without

using network considerations do not improve performance.

Switch-off policy

This is similar to the smart strategy but differs in that it imposes a condition.

Let P and P1 be the power setting of the transmitter and its nearest neighbour

transmitter. Let d1 and d2 be the distance to the nearest and second nearest

transmitter respectively.

A minimum distance dmin is specified, if d1 ≥ dmin then the smart strategy is

used as above. However, if d1 < dmin and P1 > 0 then switch off. If d1 < dmin

and P1 = 0 then the distance to the second nearest neighbour d2 is found and

P = min(dγ2 , Pmax).

Algorithm 3.1 Switch-off policy

Set dmin and compute d1 and d2

if d1 ≥ dmin then
P = dγ1

else if P1 > 0 then
P = 0

else
P = min(dγ2 , Pmax).

end if

Switch-off Cluster (SOC) policy

Let P and P1 be the power setting of the transmitter and its nearest neighbour

transmitter. Let d1 be the distance to the nearest transmitter. Let dmin be a dis-

tance from the transmitter and denote the distance and power of all transmitters
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within the minimum distance by di and Pi respectively. Let dk be the smallest

transmitter distance greater than dmin.

This strategy was devised to address the circumstance where a number of

transmitters are clustered together. It uses a defined minimum distance dmin and

the distance to the nearest neighbour d1. If d1 ≥ dmin then P = min(dγ1 , Pmax).

Otherwise, when d1 < dmin find all transmitters within dmin. If any transmitters

within dmin have P > 0 then set the current transmitter to have P = 0. If

all neighbouring transmitters within dmin have P = 0 then, find the distance

dk of the nearest neighbour transmitter outside of dmin and set for the current

transmitter P = min(dγk, Pmax).

This can be thought of as placing an exclusion zone around each transmitter,

so that there is no more than one transmitter switched on within an area specified

by dmin. However, this policy requires a transmitter to determine the distance

and power of every transmitter with distance dmin.

Algorithm 3.2 Switch-off Cluster policy

Set dmin and compute d1

if d1 ≥ dmin then
P = min(dγ1 , Pmax)

else
Identify all transmitters within dmin, and return di and Pi
if ∃ Pi > 0 then

P = 0
else

P = min(dγk, Pmax)
end if

end if

3.2.2 Policy Performance

We evaluate the performance of the policies we have described by applying them

to a set of transmitters and then measuring SINR. The SINR CDF curve that

results from use of the ‘Constant policy’ demonstrates that uniform powers are

not optimal for SINR. Similarly, the SINR CDF curve that results from use of the

‘Random policy’ demonstrates that non-uniform powers set without consideration

of the network do not perform better than uniform powers.

We chose to have 500 transmitters. To generate their locations, as coordinates,

pairs of random numbers were generated between 0 and 1, these were then scaled

by
√
π500. For a given set of locations the different policies were applied and,
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once all transmitters had updated, the sampler in [16] was used to estimate the

quantiles of the SINR. The performance of the different policies is shown in Figure

3-6.

5 0 5 10 15 20 25 30 35
x (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[S

IN
R<

x]

Constant

Smart
Switch-off 
Switch-off Cluster 

Random

Figure 3-6: Probability that a randomly sampled SINR is less than a given value
x (in dB), for each of the seven policies, applied to a set of 500 fixed transmitter
locations. We set dmin = 2. The confidence interval was 95%. The policies
Constant and Random perform very similarly, they are plotted on top of one
another and are the worst performing. The policy Switch-off Cluster outperforms
all other policies.

It can be seen that ‘Switch-off Cluster’ is the best performing policy. Though

it is important to note that how well it performs is dependent on dmin being set

appropriately. In Figure 3-10 we show the results with varying values of dmin.
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Figure 3-7: Probability that a randomly sampled SINR is less than a given value
x (in dB) for each of the two switch-off policies: switch-off and switch-off cluster.

There were 500 trasmitters placed with an average density of
√

500√
π

and we set
dmin = 2. The locations of the transmitters are fixed and each strategy was run
through once. The confidence interval was 95%. Switch-off cluster is the best
performing policy and in 3-8 we show how it performs as dmin is varied.

In Figure 3-7 we compare the performance of the two switch-off policies, given

in Algorithms 3.1 and 3.2. The performance of these policies is determined by the

choice of dmin. We see that Switch-off Cluster is the best performing of the two

policies. In Figure 3-8 the effect of varying the dmin on the performance of the

SOC policy is shown. It shows that as dmin is increased from 0.5 to 2.0 the policy

performance noticeably improves, however from 2.0 to 3.0 these improvements

tail off.
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Figure 3-8: Probability that a randomly sampled SINR is less than a given value
x (in dB), for the SOC policy applied to a set of 500 fixed transmitter locations.
The value of dmin increased from 0.5 to 3.0 in step sizes of 0.5. The locations of
the transmitters were kept the same as in the previous figures and the confidence
interval was kept at 95%.

In the following section, the distribution of the SINR is shown in heatmaps,

for the examples illustrated here.

SINR spatial distribution

How is the SINR distributed over the transmitter locations? Answering this

question may provide further insight into the performances of the power control

algorithms we are exploring. We would like to visualise the SINR along with the

transmitter locations and whether a transmitter was on or off.

To create our visualisation we begin by creating a plane with periodic x and y

axes that range from 0 to 40. The periodic axes prevents the effect of transmitters

close to an axis receiving less interference. We randomly generate 500 transmitter

locations which we fix and keep constant as we vary dmin. For comparison we
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have used the same transmitter locations in Figures 3-10 and 3-8. After two

complete iterations of the SOC algorithm transmitter powers do not change and

so there is no further improvement in SINR. This is shown in Figure 3-9 where,

in addition to observing that a second complete iteration only achieves a slight

improvement in SINR, subsequent iterations do not result in improvement. The

slight variance between the CDF curves at higher values of SINR is a result of the

random sampler used and far-field pathloss. Higher values of SINR occur when

measurements are taken at small distances to the paired transmitter and small

changes in this distance have relatively large effects on SINR.

Transmitters which are off are shown in white and those that are on are shown

in red. The colourbar which relates the plotted heatmap to values of SINR in dB is

standardised across all six plots so that the plots can be directly compared. SOC

is the best performing power control algorithm. In Figure 3-8 it is shown how its

performance varies with dmin. We will now look at how the distribution of SINR

varies for those same transmitter locations and values of dmin. In Figures 3-10a

to 3-10f we show the SINR after two complete iterations of the SOC algorithm.

In Section 3.3 we use reinforcement learning methods to learn policies that do

not require knowledge of distances or power settings of other transmitters in the

network. We will show that they only require the SINR of user devices paired to

a transmitter to establish an effective power control policy.
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Figure 3-9: Probability that a randomly sampled SINR is less than a given value
x (in dB), for the SOC policy after a given number of complete iterations.
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(f) dmin = 3.0

Figure 3-10: Heatmaps showing the distribution of SINR in a periodic domain
0 ≤ x, y ≤ 40 with periodic boundary conditions. The colourbar is the same for
all figures so they can be easily compared. There are 500 transmitters. Switched-
off transmitters are shown in white and those that are on are marked in red. The
transmitter locations are the same as those used to generate Figures 3-6 to 3-8.
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3.3 Power Control Policies via Reinforcement

Learning

In Subsection 3.2.1 we proposed and compared different policies for power con-

trol. A part of the process for developing the policies was to observe the results

(the heatmaps) and identify scenarios which caused low SINR. For example, when

implementing the policy ‘Switch-off’ and observing the SINR heatmaps we no-

ticed that there were low SINR areas where multiple transmitters were clustered

together. We devised a policy to perform better in this scenario which we named

SOC. In Figure 3-7 it can be seen that the SOC policy outperforms the ‘Switch-

off’ policy, in fact it outperforms all other policies. We learnt from interacting

with the system and devised an effective policy.

From Subsection 1.4.2, where we introduced reinforcement learning, we know

that learning a policy through interacting with a system can be made a reinforce-

ment learning problem. To formulate a reinforcement learning problem there

must be a defined agent, reward, environment, set of states and set of actions.

Various scheme designs have been used when applying reinforcement learning to

communication network optimisation problems.

It was found in [32] that Q-learning, when used for learning a power control

policy, quickly becomes unusable as the state-action set grows due to the required

usage of tables to store transitional data. Additionally the required number of

data samples becomes prohibitively large. When we implemented Q-learning we

found that, even using buckets to reduce the state set as in [65], after a large

number of iterations the Q-table remained sparse. This resulted in an optimal

policy not being found. As in [32] we moved to deep Q-learning where an ANN

is chosen to represent the Q-function as described in Section 1.4.2 of Chapter 1.

3.3.1 Deep Q-learning

We wish to devise a policy that achieves the highest SINR possible for each

receiver given the network’s spatial configuration. We formulate the problem as a

multi-agent cooperative learning scheme. This means that each transmitter is an

agent and agents learn a shared policy. It is found in [62] that cooperative learning

leads to more robust reactions to network dynamics compared to independent

learning (when each agent learns a separate policy).

The use of an ANN to approximate the Q-function means that convergence

to an optimal policy is no longer guaranteed. In [30] it is shown using empirical
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evidence that the deep Q-learnt multi-agent policy for interference control in

a radio network was suboptimal. Additionally, the convergence proof used for

the single-agent case [54] cannot be extended to multi-agent settings. Proof of

convergence for the general multi-agent setting is an open problem [62].

Although the policies we propose may be suboptimal they offer significant

improvement over the benchmark policy ‘Smart’ and require minimum network

knowledge. Additionally, we propose offline policies. After sufficient initial train-

ing the policy will be fixed. The learnt policy will then be implemented, reducing

the computational demands placed on transmitters. We train our policies on a

small network of transmitters to learn a policy and then implement this learnt

policy on independent larger networks.

We now describe the design of our learning scheme before presenting the

results. We fix the pathloss exponent γ = 4, we also fix noise σ = 0.001, the

density of transmitters is π−1. For computing received signal strength S we use

the far-field pathloss model and do not include fading variables. We set the

maximum power Pmax = 25, on which the area of the disc around the transmitter

where S ≥ 1 is expected to contain 4 other transmitters.

Actions

The actions and reward function are consistent throughout the implementation of

our deep Q-learning schemes. For any transmitter let d1, d2, d3 be the distances

to its first, second and third nearest neighbour transmitters respectively. Let

Pd1 , Pd2 , Pd3 be transmit powers such that the received signal at the first, second

and third nearest neighbour transmitters respectively is 1. When a transmitter

is switched off its transmit power is written as Pd0 . The set of actions an agent

chooses from are setting the transmit power to one of four values:

A = {Pd0 , Pd1 , Pd2 , Pd3}. (3.3.1)

Reward Function

The reward function rt is based on the SINR observed by receivers paired to the

agent. We record the SINR of all receivers within radius l of the acting transmitter

(our agent). We set that l = 2 as the density of transmitters λ = π−1, we expect

a disc of radius l = 2 to contain the nearest three neighbours. From recorded

SINRs we compute the value of the 20th, 50th and 75th percentiles, we write these

as SINR20, SINR50, SINR75. The reward function is computed as follows. Let

SINRl be the SINR observed in a disk of radius l around the agent before it acts.
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We denote the ith percentile of the SINR recorded by receivers in this disc as

SINRl,i. Then,

rt =



+25 if SINR20 > SINRl,20,

−25 if SINR20 < SINRl,20,

0 if SINRi = SINRl,i for i = 20, 50, 75,

+5 if SINR20 = SINRl,20 and

SINRi > SINRl,i for i = 50 or i = 75,

−5 if SINR20 = SINRl,20 and

SINRi < SINRl,i for i = 50 and i = 75.

(3.3.2)

States

We use three different sets of observations to determine an agent’s state: S1, S2

and S3. The first set of observations we use is

S1 = {P, SINR20, SINR50, SINR70}. (3.3.3)

To show that the addition of transmitter distances does not improve on the policy

achieved with S1 we also use the set of observations

S2 = {P, d1, d2, d3, SINR20, SINR50, SINR70}, (3.3.4)

and, to show that the addition of further SINR measurements does not improve

on the policy achieved with S1, we use the observation set

S3 = {P, SINR0, SINR10, SINR20, SINR30, SINR40, SINR50,

SINR60, SINR70, SINR80, SINR90, SINR100}. (3.3.5)

We show in the results subsubsection that neither of the larger observation sets

S2 or S3 improve the policy performance achieved with S1. Supporting that

knowledge of its own transmit power and SINR observations of paired receivers

is enough for effective policy development.

Training

We trained our offline policy by placing 50 transmitters randomly onto a plane

with periodic boundary conditions and area 50π. We placed 625 receivers (mea-

surement points) spaced uniformly in a lattice configuration over the plane. After

every action receivers re-pair to pair to the transmitter they received the highest
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signal from.

We configured an ANN with two hidden layers, with each hidden layer con-

sisting of 64 nodes. For the activation function, as stated in the introduction,

we used three different functions g(x) = tanh(x), the rectifier non-linearity

g(x) = max(0, x) and the sigmoid function g(x) = (1 + e−x)−1. We used the

TensorFlow library [2] for the implementation and training of the ANNs.

We trained the agent on 200 sets of 50 randomly placed transmitters with

density λ = π−1 on a periodic plane, for 200 steps per set. We initiliaised the

ANN parameters θ, the set of all weights, using the He uniform variance scaling

initialiser (HUVSI) from the Keras library [21] which cites [40]. Let n be the

number of inputs into a node, HUVSI sets the weights for that node to be random

variables that are distributed Unif
(
−
√

6
n
,
√

6
n

)
. We update the parameters using

Adam, an optimisation algorithm introduced in [44], for first-order gradient-based

optimisation of the objective function (1.4.7) based on adaptive estimates of

lower-order moments. We used Adam for its computational efficiency as this was

one of our main constraints.

Results

We found that the rectifier non-linearity resulted in a policy that was outper-

formed by policies that used the other two activation functions, which produced

polices that performed similarly to each other. We present the results where we

used the activation function f(x) = tanh(x) in the nodes of the neural network.

Figure 3-11 shows the CDF of the SINR for the four policies from subsection

3.2.1: ‘Smart’, ‘Switch-off’ and ‘Switch-off Cluster’, as well as the policy from

deep Q-learning “DQL S1”, in which uses S1. All policies were implemented on

the same set of 500 randomly placed transmitters on a periodic plane. We see

that SOC performs best followed by the deep Q-learning policy. We used an

adaptation of the sampler in [16] to measure SINR and generate the CDF curves.

Figure 3-12 is a heatmap of the SINR when the deep Q-learning policy is

implemented, the white crosses indicate where a transmitter has been switched

off. From looking at the heatmap it is clear that improvements to coverage could

be achieved by switching some transmitters back on. This could be further work

in improving the reward function to achieve this objective alongside the objective

of SINR.

Figure 3-13 shows how the proportion of transmitters on each of the four

available power settings changed as the policy was iteratively applied to the
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Figure 3-11: Probability that a randomly sampled SINR is less than a given value
x (in dB). We show, for 500 transmitters on a periodic plane, the performance
of the deep Q-learning policy, with S1 for states, against the policy ‘Smart’ and
the two policies that outperform it.
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Figure 3-12: A heatmap showing the distribution of SINR (dB) on a plane with
periodic boundary conditions after 2500 iterations of the deep Q-learning policy
on 500 transmitters.
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transmitters. We see that after 2500 iterations transmitters were either switched

off or on the maximum available power.
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Figure 3-13: The proportion of transmitters on a given power setting changing
as the learnt policy is iterated through. There were 500 transmitters and Powers
0, 1, 2, 3 correspond to Pd0 , Pd1 , Pd2 , Pd3 as in (3.3.1). We see that ultimately
transmitters are either on maximum power or switched off.

3.3.2 Advantage Actor Critic

Q-learning and deep Q-learning are value-based reinforcement learning methods

as the policy π(a|s) is determined by the action values. Deep Q-learning is a value-

based model-free reinforcement learning method as the Q function is replaced

by a function approximator, a deep ANN. Value-based reinforcement learning

methods require that the set of actions be finite and discrete. In our work so

far, this requirement limited the actions possible for an agent to switching off or

setting its transmit power relative to one of its three nearest neighbours.

In this subsection we show that, when a continuous action set is used, a

policy can be learnt that performs similarly to the SOC algorithm, even with only

observations of SINR from paired receivers. To enable use of a continuous set of

actions we combine a policy-based reinforcement learning method together with

deep Q-learning in what is known as an actor critic architecture. In particular we

use a variant of the asynchronous advantage actor critic (A3C) method introduced
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in [55]. We don’t apply it asynchronously meaning it is termed advantage actor

critic (A2C). We use the TensorFlow library [2] for implementation and training

of the ANNs and for the A2C implementation we used [41] which is based on

[26].

n-step Q-learning

Q-learning can be slow to learn optimal action-values as it takes many updates

before reward propagates to the relevant states and actions. This is shown in

the example in Subsection 1.4.2 of Chapter 1, where convergence to optimal

action-values takes 17 updates. The Q-learning we exampled is called one-step

Q-learning in [55], as the Q-table is updated after one action or “step”. A method

of propagating rewards in the Q-table faster is by using n-step returns [58] [80].

In n-step Q-learning the Q-table entry Q(s, a) is updated with the n-step return

which we define.

Definition 3.1 (n-step return). Let γ ∈ (0, 1] be the discount factor, rt be the

reward at step t, and n the number of steps taken, then the n-step return

Rt =
n−1∑
k=0

γkrt+k. (3.3.6)

This results in a single reward directly affecting the values of n preceding

state action pairs,

Q(st:t+n−1, a)← rt + γrt+1 + . . .+ γn−1rt+n−1 + max
a
γnQ(st+n, a). (3.3.7)

This makes the process of propagating rewards to relevant state-action pairs po-

tentially much more efficient [55]. Implementing n-step Q-learning in the example

of Q-learning given in Chapter 1 with n = 2 we find that only 10 updates, rather

than 17, are required in order to converge to optimal action-values.

Policy-based methods

Policy-based methods learn a parametrised policy that can select actions without

a value function. This independence from a value function is what enables the

use of a continuous action set. Let θ ∈ Rd be the policy’s parameter vector. The

parametrised policy π(a|s,θ) = P[At = a|St = s,θt = θ], the probability that at

time t action a is taken in state s with parameter θ.
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The parameters θ are updated by performing, typically approximate, gra-

dient ascent on E[Rt] where Rt is as defined in (3.3.6). In [85] the REIN-

FORCE algorithm is introduced. This updates the parameters with the gradient

∇θ lnπ(at|st; θ)Rt, which is an unbiased estimate of ∇θE[Rt] [55]. Subtracting a

learned function of the state bt(st), known as a baseline [85], from the return Rt

it is possible to reduce the variance of this estimate while keeping it unbiased.

This gives the gradient as ∇θ ln π(at|st; θ)(Rt − bt(st)).
We note that we use the identity ∇ lnx = ∇x

x
in the expression of the gradi-

ents.

Advantage Actor Critic

Let us define the value of a state s under policy π as V π(s) = E[Rt|st = s]. We

set the baseline in the policy-based method REINFORCE with baseline to be an

estimate of the value such that bt(st) ≈ V π(st). We note that the action value

under a policy π is Qπ(s, a) = E[Rt|st = s, a], the expected return of selecting

action a in state s. Therefore the quantity Rt−bt can be thought of as an estimate

of the advantage A(at, st) of selecting action at in state st,

A(at, st) = Q(at, st)− V (st). (3.3.8)

The approach of combining this policy-based method with n-step deep Q-

learning is known as an actor-critic architecture where the policy π is the actor

and the baseline bt is the critic [71] [24]. Advantage actor critic (A2C) is when

the policy-based method uses the advantage (3.3.8) as the baseline. Figure 3-14

illustrates the way the methods are combined.

A2C maintains a policy π(at|st; θ) and an estimate of the value function

V (st; θv). A2C uses the n-step return defined in Definition 3.1 to update both

the policy and the value-function. The advantage actor critic algorithm is given

in Algorithm 3.3.

In Algorithm 3.3 the term (R−V (st; θv)) gives the estimated advantage func-

tion A(st, at; θ, θv) =
∑n−1

i=0 γ
irt+i + γnV (st+n; θv) − V (st; θv). The parameters

θ, θv of the policy and value function are shown as being separate, however in

practice some of the parameters may be shared. Indeed, it is unlikely to be cru-

cial whether the parameters are shared and in fact a single ANN can be used

rather than two separate ANNs [55]. We found that policies performed similarly

regardless of whether parameters were shared, and that a single ANN with shared

parameters offered improved computational efficiency. Therefore we use a single
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Figure 3-14: The architecture of advantage actor critic.

Algorithm 3.3 Advantage Actor Critic

The policy and value parameter vectors are θ and θv respectively
Tmax is the total number of iterations to be performed.
n is the number of iterations (steps) in an update.
while T ≤ Tmax do

Reset gradients dθ ← 0 and dθv ← 0
t = 0
Get state st
while t < n do

Perform at according to policy π(at|st; θ)
Receive reward rt and new state st+1

t← t+ 1
T ← T + 1

end while
R = V (st; θv)
for i ∈ {t− 1, . . . , 0} do

R← ri + γR
Accumulate policy gradients: dθ ← dθ +∇θ lnπ(ai|si; θ)(R− V (si; θv))
Accumulate value gradients: dθv ← dθv + ∂(R− V (si; θv))

2/∂θv
end for
Update θ and θv using dθ and dθv respectively

end while
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ANN that shares parameters.

In our implementation we use a single feed-forward ANN with one softmax

output for the policy π(at|st; θ) and one linear output for the value function

V (st; θv), all non-output layers are shared. Additionally, it was found in [55],

as originally proposed in [86], that adding the entropy H of the policy π to the

objective function improved exploration by discouraging premature convergence

to suboptimal deterministic policies. Therefore in practice we update the ANN

parameters with the gradient dθ′ of the loss L(θ′) that is a combination of the

policy entropy, value gradient and policy gradient as follows:

L(θ′) = dθ + βH(π(a|s; θ)) + Cdθv, (3.3.9)

where hyperparameter β controls the strength of the entropy regularisation term,

θ′ is all the ANN parameters and hyperparameter C is the value coefficient. The

update of the parameters θ′ by the gradient dθ′ is performed using RMSProp, an

optimisation method for ANNs introduced in [75].

Reward Function

We use the reward function (3.3.2) given in Section 3.3.1 for A2C. The reward

function determines the objective of the policy to be learnt and therefore it is

important that it is constant across methods that are being compared as otherwise

the policies will differ in terms of priority and objective.

Actions

Our motivation for implementing the advantage actor critic method is the con-

tinuous action set it allows. We allow an agent to set its transmit power to any

positive real value upto the maximum allowed power Pmax. Therefore the action

set

A = {a ∈ R|0 ≤ a ≤ Pmax}, (3.3.10)

where we set that Pmax = 25 to be consistent with previous work.

States

To determine an agent’s state we use the set of observations S1, S2 or S3 as

defined in (3.3.3), (3.3.4) and (3.3.5) respectively. We note that when the set

of actions is continuous then the states will also be continuous. Inclusion of

the states S2 and S3 shows that, with a continuous set of actions, additional
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observations of distance and SINR do improve policy performance. This can be

seen in Figure 3-16.

Training

We train on 200 sets of 50 randomly placed transmitters with density λ = π−1

on a periodic plane. As with deep Q-learning we train for 200 steps per set.

We configure the ANN with two hidden layers, each with 64 nodes, and the

hyperbolic tangent activation function. We initialise the ANN parameters θ,

the set of all node input weights, using the orthogonal initialiser introduced in

[63] which sets the weights as follows. For each layer of the ANN, let n be the

number of inputs into each node and m be the number of nodes. An n × m

matrix of random numbers, that are distributed N (0, 1), is generated. From the

thin singular value decomposition of this matrix we obtain an orthogonal n×m
matrix, the elements of which are the initial weights for each node in that layer.

For updating the parameters we accumulate updates with a step size of n = 5.

We set the hyperparameter values γ = 0.99, β = 0.01 and C = 0.25. Figure 3-15

shows the total reward received in each episode for the three different state sets.

Figure 3-15: The reward received in each of the 40000 steps during training. The
x-axis gives the step and the y-axis gives the reward. We smooth the reward
for each scenario to make it clearer. The plot is generated in TensorFlow using
TensorBoard. The grey line depicts the use of S3, the dark blue line S1 and the
light blue line S2.

We observe in Figure 3-15 that the use of S3 allows much higher rewards to

be received then either S1 or S2. This indicates that, with a continuous set of

actions, additional input regarding SINR results in an improved policy but input
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regarding distances does not. This is shown in the results.

Results

We compare the performance of the policies when the three different state sets

are used. We find that additional input regarding SINR results in an improved

policy when the action set is continuous. This is shown in Figure 3-16 where the

line “A2C S3”, which shows the results on the SINR of using advantage actor

critic with S3, is further right than the lines showing the results when S1 or S2

are used.

Figure 3-16: Probability that a randomly sampled SINR is less than a given value
x (in dB). We show, for 500 transmitters on a periodic plane, the performance
of the advantage actor critic policies with S1, S2 and S3. These are depicted by
the lines labelled ‘A2C S1’, ‘A2C S2’ and ‘A2C S3’ respectively. It shows that
the use of S3 results in an improved policy.

In Figure 3-17 we show that when using A2C with a continuous action set

and set of observations S3, the learnt policy’s performance comes close to that

of Switch-off Cluster. We also show that it outperforms deep Q-learning with S3

and the benchmark policy ‘Smart’.

Figure 3-18 is a heatmap of the SINR at the receiver locations across the

periodic plane. We can identify transmitters in this figure that could have better

transmit power settings and therefore believe that further training, adjustments
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Figure 3-17: Probability that a randomly sampled SINR is less than a given value
x (in dB). We show, for 500 transmitters on a plane with periodic boundary
conditions, the performance of the advantage actor critic policy using S3 against
the policy ‘Smart’, the deep Q-learning policy using S3 and SOC.
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to the reward function or even allowing the policy to be updated during imple-

mentation should be explored.

Figure 3-18: Heatmap showing SINR for 500 transmitters on a plane with periodic
boundary conditions. Transmit powers were set by the A2C policy that used S3

to determine states. The CDF of this policy performance is shown in Figure 3-17.

3.4 Short Summary

We began this chapter by showing that, with the exception of the case where there

are only two transmitters and no noise, uniform transmit powers are not always

optimal for SINR. We went on to show that non-uniform powers set without

consideration of the network do not perform better than uniform powers.

We have developed a new power control algorithm, Switch-Off Cluster (SOC),

that outperforms BT’s benchmark policy ‘Smart’. The SOC algorithm does,

however, require knowledge of the distances and powers of the transmitters within

a minimum distance dmin; in Chapters 4 and 5 we propose heuristics for estimating
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these distances and powers. SOC is the ‘Smart’ algorithm when dmin = 0 and

as we increase dmin it takes into account clusters of transmitters which leads

to improved performance. The SOC algorithm only requires a few complete

iterations (every transmitter in the network updating once) to have reached its

optimal configuration.

It has been shown that reinforcement learning methods, of deep Q-learning

and methods of actor-critic, can be used to develop effective transmit power

policies. In this chapter, we have shown that using Advantage Actor Critic (A2C)

and training on a network a tenth of the size of the large one that the policy is

deployed on and using only partial information (a transmitter’s power and the

SINR at paired devices) it performs similarly to SOC. A2C allows for SINR to be

optimised in a truly distributed way as each transmitter need only know its own

power and the SINR of its paired devices. With minimal training both methods

can produce a power control policy that does not require neighbour transmitter

distances to be known and matches the performance of SOC. Further work, such

as improving the reward structure and training for these methods is discussed in

Section 6.2 of Chapter 6.
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Chapter 4

Uniform Power Distance

Estimation

We showed in Chapter 3 that it is not optimal for all transmitters to be on the

same power setting. As described in Subsection 1.3.3, the network should self-

organise without requiring transmitters to communicate with each other. Given

that transmitters are on a uniform power setting, the policies we proposed in

Chapter 3 showed that knowledge of the distance to their nearest neighbour would

be a significant help in making power level adjustments that improve performance.

In this chapter and the next, we consider this challenge: given only the total signal

received from all other transmitters, and their distribution in the plane, estimate

the distance to the nearest transmitter. In this chapter we assume transmit

powers are uniform. In Chapter 5 we remove this assumption.

This chapter is organised in two main parts. In the first part we find an asymp-

totic heuristic to estimate the distance to the nearest transmitter in a wireless

network in the absence of fading. In the second part we find the probability

density function of the distance to the nearest transmitter in a wireless network

with Rayleigh fading in effect. In both instances we use numerical simulations to

evaluate the performance of the proposed heuristics.

4.1 Asymptotic Heuristic

The total signal is S and if there is only a single transmitter, the relation when

transmit power P = 1 and pathloss is far-field, S = R−γ implies that the distance

R to that transmitter can be computed directly: R = S−1/γ with γ the pathloss

exponent. This heuristic should also be reasonable in the case of more than one

transmitter, if one transmitter is much closer to the origin than the others. In
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the case of multiple transmitters contributing to the total received signal S, our

aim is to improve on the natural heuristic R1 = S−1/γ where R1 is defined to be

the distance to the nearest transmitter. It is assumed that the only interference

present in the network is from other transmitters. After establishing the pre-

liminaries and stating the main result, we begin by presenting a specific case in

Subsection 4.1.1 before deriving a form for general γ > 2 and any number k ≥ 2

of transmitters in Subsection 4.1.2.

Preliminaries

In this chapter we use ∼ to indicate asymptotic equivalence and ≈ to indicate

approximate equivalence. Let 0 < R1 < R2 < . . . denote the distances of the

Poisson points from the origin taken in increasing order. Then S =
∑

i≥1R
−γ
i

(this sum converges with probability 1, if γ > 2). We condition on a measured

signal S = s. Then R1 ≥ s−1/γ always, and heuristically, s−1/γ should be a good

approximation of R1, at least if s is not small [83]. We are interested in the

expected error of this heuristic E
[
R1 − s−1/γ

∣∣S = s
]
, as s→∞.

It will make computations easier to split S into a sum of two terms as follows.

Fix a constant radius 0 < ρ < ∞, and let N be the number of transmitters

(Poisson points) inside the disk of radius ρ centred at the origin. Note that N is

distributed Poisson(λπρ2). We write S = S ′ + S̄, where S ′ =
∑N

i=1R
−γ
i is the

contribution of transmitters within radius ρ, and S̄ is the contribution of all other

transmitters. We first argue that S̄ can be neglected. This is because S̄ = O(1),

with an exponentially fast decaying probability tail, which can be seen from the

fact that its Laplace transform is finite in a neighbourhood of 0. Therefore, for

large s, it is asymptotically equivalent to consider S ′ instead of S̄. This argument

is further supported by the fact that we find Theorem 4.1 is independent of the

chosen value of ρ (that is, only the error of the asymptotics depends on ρ).

Theorem 4.1 (Asymptotic Heuristic). Where R1 is the distance to the nearest

transmitter, λ is the density of the transmitters, γ is the pathloss exponent and s

is the observed signal then for γ > 2

E
[
R1 − s−1/γ

∣∣∣S ′ = s
]
∼ 2λπ

γ
a(γ) s−3/γ, as s→∞, (4.1.1)

with

a(γ) = γ 2(2−γ)/γ

[
2F1

(
γ + 2

γ
, −2

γ
;
γ − 2

γ
;

1

2

)
− 2F1

(
γ + 3

γ
, −2

γ
;
γ − 2

γ
;

1

2

)]
.

(4.1.2)
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We recall that the hypergeometric series is given by

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(4.1.3)

with (q)n = q(q + 1)...(q + n− 1).

To explain this in more detail, for a fixed ρ we obtain the result:

E
[
R1 − s−1/γ

∣∣∣S ′ = s, N = k
]
∼ 2 (k − 1) ρ−2

γ
a(γ) s−3/γ (4.1.4)

as s→∞, for k ≥ 1, 0 < ρ <∞.

Then, following the derivation of the general result in section 4.1, we argue

that the conditional distribution of N given S ′ = s satisfies

P[N = k |S ′ = s] ∼ e−λπρ
2 (λπρ2)k−1

(k − 1)!
, as s→∞, for k ≥ 1, 0 < ρ <∞.

(4.1.5)

So removing the conditioning on k by multiplying (4.1.4) by (4.1.5) and summing

over k = 1, 2, . . . yields the expression in the right hand side of (4.1.1). The

details of this part of the calculation are shown in Subection 4.1.2.

4.1.1 Example: Computations when N = k = 3, γ = 4

Here, as an example, we give the computations when there are exactly three

transmitters in the disk of radius 1 around the origin, and the pathloss exponent

is γ = 4. We choose the case k = 3 for our example as it demonstrates all

the methods used for cases where k is higher, which k = 2 does not, and is the

shortest computation to do so. Observe that when N = k = 1 and S ′ = s, then

R1 = s−1/γ, so (4.1.4) holds trivially. Also observe that N = k = 0 is impossible

when S ′ = s > 0.

Given that the points are Poisson distributed, the probability density of hav-

ing three points in a disk of radius ρ = 1 at radii r1, r2, r3 is

fR1,R2,R3,N=3(r1, r2, r3) = (2λπ)3e−λπr1r2r3 0 < r1 < r2 < r3 < 1.

As we have assumed that γ = 4 and there are no propagation effects, it follows

that ri = s
−1/4
i and so |dri/dsi| = (1/4)s

−5/4
i . Substituting these expressions

gives the probability function in terms of signal rather than distance:

fS1,S2,S3,N=3(s1, s2, s3) = e−λπ(2λπ)3(1/4)3s
−3/2
1 s

−3/2
2 s

−3/2
3 1 < s3 < s2 < s1 <∞.
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Conditioning on N = 3 and S ′ = S1+S2+S3 = s, and expressing S1 = s−S2−S3

gives

fS2,S3 |N=3,S′=s(s2, s3 | s) =
1

Z3,s

(s− s2 − s3)−3/2s
−3/2
2 s

−3/2
3 ,

with s1 := s− s2 − s3 > s2 > s3 > 1, and where the normalizing constant is

Z3,s =

∫ s/3

1

ds3

∫ (s−s3)/2

s3

ds2 (s− s2 − s3)−3/2s
−3/2
2 s

−3/2
3 .

The limits on the integrands come from the restriction that s1 > s2 > s3 > 1 and

s1 + s2 + s3 = s.

The expected error of the heuristic, in the case where k = 3, can be written

as

E
[
R1 − s−1/4

∣∣∣N = 3, S1 + S2 + S3 = s
]

=

1

Z3,s

∫ s/3

1

∫ (s−s3)/2

s3

(s− s2 − s3)−1/4 − s−1/4

(s− s2 − s3)3/2s
3/2
2 s

3/2
3

ds2ds3. (4.1.6)

By two further substitutions this integral becomes simpler to approximate. Firstly,

we scale out the dependence on s by setting si = sxi. This gives the expression

1

Z3,s

s−11/4

∫ 1/3

1/s

∫ (1−x3)/2

x3

(1− x2 − x3)−1/4 − 1

(1− x2 − x3)3/2x
3/2
2 x

3/2
3

dx2dx3. (4.1.7)

We write

(1− x3 − x2)−1/4 − 1 =
[
(1− x3 − x2)−1/4 − (1− x2)−1/4

]
+
[
(1− x2)−1/4 − 1

]
,

and we make a further substitution which changes the upper limit of the inner

integral to a constant, and ‘factorises’ the integrand into parts that depend on the

variables separately. Namely, set x2 = (1−x3)y2 and x3 = y3, so dx2 = (1−x3)dy2,

dx3 = dy3. This results in (1 − x2 − x3) = (1 − y3)(1 − y2). Therefore we can
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write the double integral in (4.1.7) as

∫ 1
3

1
s

1

(1− y3)
9
4y

3
2
3

∫ 1
2

y3
(1−y3)

(1− y2)−
1
4 − 1

(1− y2)
3
2y

3
2
2

dy2dy3︸ ︷︷ ︸
I1

+

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
3
2
3

∫ 1
2

y3
(1−y3)

1

(1− y2)
3
2y

3
2
2

dy2dy3︸ ︷︷ ︸
I2

(4.1.8)

We start by analysing the leading order term I1, noticing that the main con-

tribution comes from small y3, y2. The inner integral
∫ 1

2
y3

(1−y3)

(1−y2)
−1
4 −1

(1−y2)
3
2 ỹ2

3
2
dy2 ap-

proaches a finite value as y3 → 0, and can therefore be treated as a constant.

The exact value of the limit is given by

a(γ = 4) :=

∫ 1
2

0

(1− y2)
−1
4 − 1

(1− y2)
3
2y

3
2
2

dy2

= 2
√

2

[
2F1

(
3

2
, −1

2
;

1

2
;

1

2

)
− 2F1

(
7

4
, −1

2
;

1

2
;

1

2

)]
≈ 0.59202228363...

The error of replacing y3

1−y3
by 0 is

−
∫ y3

1−y3

0

(1− y2)−1/4 − 1

(1− y2)
3
2 y

3
2
2

dy2 = −
∫ y3

0

1

4

1

y
1
2
2

dy2 +O(y
3/2
3 ) = −1

2
y

1/2
3 +O(y

3/2
3 )

for small y3.

Now we evaluate the outer integral of I1,

∫ 1
3

1
s

a− 1
2
y

1/2
3 +O(y

3/2
3 )

(1− y3)
9
4y

3
2
3

dy3 = a 2
√
s− 1

2
log s+O(1).

Therefore, I1 = 2a
√
s− 1

2
log(s) +O(1), as s→∞.

Now we evaluate I2 from equation (4.1.8). We begin by finding that∫ 1
2
y3

(1−y3)

1

(1−y2)
3
2 y

3
2
2

dy2 diverges as 2y
−1/2
3 + O(1) as y3 → 0. We substitute this
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into the outer integral and find that as y3 → 0

I2 =

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
3
2
3

[
2

y
1/2
3

+O(1)

]
dy3 = 2

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
4
2
3

dy3 +O(1)

=

∫ 1
3

1
s

1
4
y3 +O(y2

3)

(1− y3)2y2
3

dy3 +O(1)

=
1

2
log s+O(1).

Combining I1 and I2, it is seen that equation (4.1.8) is∫ 1/3

1/s

∫ (1−x3)/2

x3

(1− x2 − x3)−1/4 − 1

(1− x2 − x3)3/2x
3/2
2 x

3/2
3

dx2dx3 = 2a
√
s− 1

2
log s+

1

2
log s+O(1)

= 2a
√
s+O(1).

(4.1.9)

Referring to equation (4.1.7), it is necessary to factor in s−
11
4

Z3,s
. The normalising

constant Z3,s is found, using similar subsitutions as before, to be

Z3,s =

∫ s
3

1

∫ (s−s3)
2

s3

1

(s− s2 − s3)
3
2 s

3
2
2 s

3
2
3

ds2ds3 = 2s−
3
2 +O(s−2).

Therefore s−
11
4

Z3,s
= 2s−

5
4 +O(s−

7
4 ) and

E
[
R1 − s−1/4

∣∣∣N = 3, S1 + S2 + S3 = s
]

= a s−
3
4 +O(s−

5
4 ), as s→∞.

The expected error of the asymptotic heuristic in the case k = 3, γ = 4 has been

found.

4.1.2 Computations for k ≥ 2 and γ > 2

In a disk of radius ρ, where 0 < ρ <∞ and with points distributed Poisson(λπρ2)

the probability of there being k points in the disk is given by

fR1,...,Rk(r1...rk) = (2λπ)kr1...rke
−λπρ2

= (2λπ)ke−λπρ
2

k∏
i=1

ri (4.1.10)

We can write (4.1.10) in terms of signal contributions, we define s1 > s2 > s3 >

. . . to be the received signal strengths from the ordered transmitters. We know
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that ri = s
− 1
γ

i and therefore

fS1,...,Sk(s1...sk) = (2λπ)ke−λπρ
2

k∏
i=1

1

γ
s
− γ+2

γ

i . (4.1.11)

The variable s1 can be expressed as s1 = s − s2 − s3 − ... − sk, so that (4.1.11)

can be written as

fS2,...,Sk(s2...sk) =

(
2λπ

γ

)k
e−λπρ

2

(s− s2 − ..− sk)−
γ+2
γ

k∏
i=2

s
− γ+2

γ

i (4.1.12)

Therefore the expected error of R1 = S−1/γ, when all observed signal is attributed

R1, can be written as

E

[
R1 − S−

1
γ |

k∑
i=1

Si = s,N = k

]
=
Wk,s

Zk,s
=

1

Zk,s

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk (4.1.13)

where

Wk,s =

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk (4.1.14)

and

Zk,s =

∫ s
k

ρ−γ
...

∫ s−s3
2

s3

(s− s2 − ...− sk)−
γ+2
γ s
− γ+2

γ

2 ...s
− γ+2

γ

k ds2...dsk. (4.1.15)

Our aim is to find an expression for E
[
R1 − s−1/γ

∣∣N = k, S ′ = s
]

in terms of

γ and k. To do this we must evaluate equations (4.1.14) and (4.1.15).

Equation (4.1.15): evaluating Zk,s

To evaluate (4.1.15) we use methods which are illustrated in Subsection 4.1.1.

Firstly, as initially used for equation (4.1.7), we scale out the dependence on s

by setting si = sxi. This gives that

1 =
k∑
i=1

xi, and x1 > . . . xi−1 > xi . . . > xk.
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We then make a further change of variables, defined as follows.

Definition 4.1. We define the variable yi. For 1 ≤ i ≤ k,

yi := xi

(
i∑

m=1

xm

)−1

. (4.1.16)

From the above definition we find the following lemma.

Lemma 4.1. For xi and yi, where 1 ≤ i ≤ k − 1,(
1−

k∑
m=i+1

xm

)
=

k∏
m=i+1

(1− ym) . (4.1.17)

To derive Lemma 4.1 we begin by using Definition 4.1 to write

xi = yi

(
1−

k∑
m=i+1

xm

)
. (4.1.18)

From this, where m ≤ k we see that(
1−

k∑
m=i+1

xm

)
=

(
1− yi+1

(
1−

k∑
m=i+2

xm

)
−

k∑
m=i+2

xm

)

= (1− yi+1)

(
1−

k∑
m=i+2

xm

)

= (1− yi+1) (1− yi+2)

(
1−

k∑
m=i+3

xm

)

=
k∏

m=i+1

(1− ym) .

(4.1.19)

In terms of the y variables we find that the multiple integrals simplify: the

integrands are functions of a single yi variable and the integration limits are

expressed in terms of yi+1. Therefore equation (4.1.15) can be written as

Zk,S =

S−
(2k+γ)
γ

∫ 1
k

1
Sργ

y
− (γ+2)

γ

k (1− yk)
(2−2k−γ)

γ dyk

∫ 1
k−1

yk
1−yk

y
− (γ+2)

γ

k−1 (1− yk−1)
(2−2(k−1)−γ)

γ dyk−1

. . .

∫ 1
3

y4
1−y4

y
− (γ+2)

γ

3 (1− y3)
(−4−γ)

γ dy3

∫ 1
2

y3
1−y3

y
− (γ+2)

γ

2 (1− y2)
(−2−γ)

γ dy2. (4.1.20)
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By defining an iterative sequence Jk we can express (4.1.20) more concisely. We

define Jk as follows.

Definition 4.2 (Iterative sequence Jk). For all 3 ≤ l ≤ k:

J2 := 1

Jl :=

∫ 1
l−1

yl
1−yl

y
− (γ+2)

γ

l−1 (1− yl−1)
(2−2(l−1)−γ)

γ dyl−1Jl−1.
(4.1.21)

Note that Jl is a function of yl. Therefore,

Zk,S = S−
(2k+γ)
γ

∫ 1
k

1
Sργ

y
− (γ+2)

γ

k (1− yk)
(2−2k−γ)

γ dykJk (4.1.22)

By evaluating (4.1.20) we find that the leading order terms give

Zk,S ≈
(γ

2

)(k−1)
(

1

(k − 1)!
ρ2(k−1)S−

(γ+2)
γ − 2

2
γ

1

(k − 2)!
ρ2(k−2)S−

(γ+4)
γ

+ O
(
S−

(γ+6)
γ

))
(4.1.23)

and therefore we find for k ≥ 3, γ > 2 and 0 < ρ <∞ that

Zk,s = Zγ,ρ
k,s ∼

(γ
2

)k−1 1

(k − 1)!
ρ2(k−1) s−

(γ+2)
γ , as s→∞. (4.1.24)

Equation (4.1.14): evaluating the integral

Our aim is to evaluate equation (4.1.13). As we have evaluated (4.1.15) and found

the result stated in (4.1.24), what remains is for us to evaluate

Wk,S =

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk. (4.1.25)

To do this we begin as previously by using the substitution si = sxi and the

change of variabled defined in Definition 4.1. This allows us to then use the

substitution given in (4.1.17). From this we find that the numerator of the

integrand in (4.1.25) is given by

(s− s2 − ...− sk)−
1
γ − s−

1
γ = s−

1
γ

k∑
j=2

([
(1− yj)−

1
γ − 1

] k∏
i=j+1

(1− yi)−
1
γ

)
.

(4.1.26)
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By noting that the denominator of the integrand in (4.1.25) is the same as in

the normalising constant defined by (4.1.15) we know that, following the above

substitutions, it can be expressed in the same form as before, i.e. equation

(4.1.20).

We now define an iterative sequence Q
(j)
k , where j is the variable summed over

in (4.1.26).

Definition 4.3 (The iterative sequence Q
(j)
k ). Fix k ≥ 3, then define the quan-

tities Q
(j)
l , for 1 ≤ l ≤ k and 2 ≤ j ≤ k, as follows:

1. For all 2 ≤ j ≤ k:

Q
(j)
1 := 1

2. For 2 ≤ l ≤ j − 1, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
2−2l−γ

γ Q
(j)
l−1dyl

3. For 2 ≤ l = j ≤ k, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
2−2l−γ

γ

[
(1− yl)−

1
γ − 1

]
Q

(j)
l−1dyl

4. For j + 1 ≤ l ≤ k, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
1−2l−γ

γ Q
(j)
l−1dyl.

Note that we define the lower limit of the outermost integral in Q
(j)
k separately,

setting yk+1

1−yk+1
:= 1

Sρ−γ
.

Using the iterative sequence Q
(j)
k , we can express expression (4.1.25) concisely

as

Wk,s = s−
(2k+γ+1)

γ

k∑
j=2

Q
(j)
k (4.1.27)

and therefore equation (4.1.13) can be expressed as

E

[
R1 − s−1/γ

∣∣∣∣∣
k∑
i=1

Si = s,N = k

]
=

1

Zk,s

(
s−

(2k+γ+1)
γ

k∑
j=2

Q
(j)
k

)
. (4.1.28)
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What remains is for us to find the evaluated form of
∑k

j=2Q
(j)
k , in terms of γ

and k. The details of this are given in Subsection 4.1.3, in which we show the

following theorem.

Theorem 4.2 (Summation of Q
(j)
k ). For Q

(j)
k as in Definition 4.3 then ∀γ > 2

k∑
j=2

Q
(j)
k = a(γ)

γ(k−2)

2(k−2)(k − 2)!
y
−2(k−2)

γ

k+1 +O

(
y
γ−2(k−1)

γ

k+1

)
. (4.1.29)

By combining this with (4.1.28) and substituting yk+1 = 1
Sργ

we find that

E

[
R1 − S−

1
γ |

k∑
i=1

si = S,N = k

]
=

1

Zk,S

(
a(γ)S−

(γ+5)
γ

(γ
2

)(k−2) 1

(k − 2)!
ρ2(k−2)

+O
(
S
−2γ−3
γ ρ2k−2−γ

))
.

(4.1.30)

Therefore when considering highest order terms,

E

[
R1 − s−1/γ

∣∣∣∣∣N = k, S ′ = s

]
∼ 1

Zγ,ρ
k,s

a(γ)
(γ

2

)k−2 1

(k − 2)!
ρ2(k−2) s−1−5/γ

∼ a(γ) 2 (k − 1)

γ
ρ−2 s−3/γ, as s→∞.

If we wished to consider the order of the error of this expectation we can

consider some of the lower order terms.

Summing over values of k ≥ 1

Finally, we want to sum these estimates over k ≥ 1. To do this rigorously, we

would need to take into account the k-dependence in the constants in our error

terms. However, we are going to neglect the k-dependence in our error terms, and

check the result of our computation against numerical simulation. Intuitively, we

anticipate that these constants contribute decreasing amounts to the error terms

as k increases and should decay sufficiently rapidly to produce a convergent error

term which could be bounded uniformly if required.
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We first need

fS′(s) =
∞∑
k=1

e−λπ ρ
2

(
2λπ

γ

)k
Zγ,ρ
k,s

∼ e−λπ ρ
2
∞∑
k=1

[(
2λπ

γ

)k (γ
2

)k−1 1

(k − 1)!
ρ2(k−1) s−1−2/γ

]

=
2λπ

γ
s−1−2/γ e−λπ ρ

2
∞∑
k=1

(λπ ρ2)k−1

(k − 1)!

=
2λπ

γ
s−1−2/γ, as s→∞.

With this estimate at hand, we can compute

P[N = k |S ′ = s] =
1

fS′(s)
e−λπ ρ

2

(
2λπ

γ

)k
Zγ,ρ
k,s

∼ γ

2λπ s−1−2/γ

(
2λπ

γ
e−λπ ρ

2 (λπ ρ2)k−1

(k − 1)!
s−1−2/γ

)
= e−λπ ρ

2 (λπ ρ2)k−1

(k − 1)!
, as s→∞, for k = 1, 2, . . . .

That is, conditionally on a large signal, the number of extra transmitters (in

addition to the nearest one), is asymptotically Poisson(λπ ρ2). This yields

E
[
R1 − s−1/γ

∣∣∣S ′ = s
]
∼

∞∑
k=1

e−λπ ρ
2 (λπ ρ2)k−1

(k − 1)!

2(k − 1) a(γ) ρ−2

γ
s−3/γ

∼ 2λπ

γ
a(γ) s−3/γ,

(4.1.31)

as s→∞, independent of the value of ρ. Therefore we find that

E
[
R1

∣∣∣S ′ = s
]
∼ s−1/γ +

2λπ

γ
a(γ)s−3/γ. (4.1.32)

4.1.3 Evaluating
∑k

j=2Q
(j)
k (Proof of Theorem 4.2)

We give the details of the computations for the general case of the asymptotic

heuristic (4.1.32). We wish to evaluate

Wk,s =

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk. (4.1.33)
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In Subection 4.1.2 we found that expression (4.1.33) can be expressed concisely

as

Wk,s = s−
(2k+γ+1)

γ

k∑
j=2

Q
(j)
k . (4.1.34)

By recalling from Subsection 4.1.2 the definition of the iterative sequence Q
(j)
k ,

Definition 4.3, we find the evaluated form of
∑k

j=2 Q
(j)
k in terms of γ and k. This

is done in three steps:

(1). We find Q
(2)
k

(a) in the case when 2 < γ < 4

(b) in the case when γ = 4

(c) in the case when γ > 4

(2). We find Q
(j)
j+m where j > 2 and 0 ≤ m ≤ k − j

(a) in the case when γ is not an even integer.

(b) in the case when γ is an even integer.

(3). Finally we show that the evaluated form of
∑k

j=2Q
(j)
k is unchanged for all

γ > 2.

Step 1:

We will begin by evaluating Q
(j)
k in the special case where j = 2. Due to Q

(2)
k

beginning from part 3 of Definition 4.3, rather than part 2, Q
(2)
k always produces

the leading order term. For this reason we start with Q
(2)
2 .

Q
(2)
2 =

∫ 1
2

y3
1−y3

y
− (γ+2)

γ

2 (1− y2)
−2−γ
γ

[
(1− y2)−

1
γ − 1

]
Q

(2)
1 dy2

=

∫ 1
2

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2 −
∫ y3

1−y3

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2

= a(γ)−
∫ y3

1−y3

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2

= a(γ)− 1

γ − 2
y
γ−2
γ

3 +O

(
y

2γ−2
γ

3

)
(4.1.35)

Therefore, from part 4 of Definition 4.3, we find that

Q
(2)
3 =

∫ 1
3

y4
1−y4

[
a(γ)y

−γ−2
γ

3 − 1

(γ − 2)
y
−4
γ

3 +O

(
y
γ−4
γ

3

)]
dy3. (4.1.36)
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From (4.1.36) we can see that there are three cases, relating to the value of γ,

in which Q
(2)
3 will evaluate differently. These are: 2 < γ < 4, γ = 4 and γ > 4.

Using the iterative sequence defined in Definition 4.3, we find the evaluated form

of Q
(2)
k in each of these three cases.

1(a):

For 2 < γ < 4.

Q
(2)
3 = a(γ)

γ

2
y
− 2
γ

4 +O

(
y
γ−4
γ

4

)
and from integrating this iteratively, using part 2 of Definition 4.3, we find that

Q
(2)
k = a(γ)

(γ
2

)(k−2) 1

(k − 2)!
y
− 2(k−2)

γ

k+1 +O

(
y
γ−2(k−1)

γ

4

)
, (4.1.37)

1(b):

For γ = 4,

Q
(2)
3 = a(4)2y

− 1
2

4 +
1

2
log(y4) +O(1)

and from integrating this iteratively, using part 2 of Definition 4.3, we find that

Q
(2)
k = a(4)

2(k−2)

(k − 2)!
y

2−k
2

k+1 −
2(k−4)

(k − 3)!
log(yk+1)y

3−k
2

k+1 +O
(
y

3−k
2

k+1

)
, (4.1.38)

1(c):

For γ > 4

Q
(2)
3 = a(γ)

γ

2
y
− 2
γ

4 +O(1)

and from integrating this iteratively, using part 2 of Definition 4.3, we find that

Q
(2)
k = a(γ)

(γ
2

)(k−2) 1

(k − 2)!
y
− 2(k−2)

γ

k+1 +O

(
y

6−2k
γ

k+1

)
. (4.1.39)

In (4.1.38) we see that when γ = 4 a log term is introduced. However, in

(4.1.9) we saw this term cancels with the leading order term from Q
(3)
k . We will

now find the evaluated form of Q
(j)
k for j ≥ 3 and show that log terms either

cancel or are of a lower order than existing terms and so can be disregarded.

Step 2:

For 2 ≤ l < j we evaluate part 2 of Definition 4.3. As yl is small we use that

(1− yl) ≈ 1 and yl+1

(1−yl+1)
≈ yl+1 to find that

Q
(j)
l =

γl−1

2(l−1)(l − 1)!
y

2(1−l)/γ
l+1 −

(γ
2

)(l−1) 1

(l − 2)!

(
1

2

)− 2
γ

y
− 2(l−2)

γ

l+1 +O
(
y

2(3−l)/γ
l+1

)
,

(4.1.40)
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where the third order term will only exist for l ≥ 3.

To evaluate Q
(j)
j , part 3 of Definition 4.3, we use the Taylor approximation to

find that
[
(1− yl)−

1
γ − 1

]
= 1

γ
yl +O (y2

l ) and so

Q
(j)
j =

∫ 1
j

yj+1
1−yj+1

(
1

γ
y
− 2
γ

j +O

(
y
γ−2
γ

j

))
Q

(j)
j−1dyj. (4.1.41)

By setting l = (j − 1) in (4.1.40) and using this result in (4.1.41) we find that

Q
(j)
j =

∫ 1
j

yj+1
1−yj+1

γj−3

2(j−2)(j − 2)!
y
−2(j−1)

γ

j − γj−3

2(j−2− 2
γ

)(j − 3)!
y
−2(j−2)

γ

j +O

(
y
− 2(j−3)

γ

j

)
dyj

(4.1.42)

If we now define an integer m such that 0 ≤ m ≤ k − j, then we can write

Q
(j)
j+m =

∫ 1
j+m

yj+m+1
1−yj+m+1

γj+m−3

2(j−2)(j − 2)!
(2(j − 2)− γ)

(
j+m−2∏
n=j−2

1

2n− γ

)
y

2−2(j+m)
γ

j+m

− γj+m−3

2(j−2− 2
γ

)(j − 3)!
(2(j−3)−γ)

(
j+m−3∏
n=j−3

1

2n− γ

)
y

4−2(j+m)
γ

j+m +O

(
y

6−2(j+m)
γ

j+m

)
dyj+m

(4.1.43)

It can be seen from (4.1.43) that a log term will occur if γ = 2(j + m) − 2x

and x ∈ {1, 2, 3}. Therefore there are two cases, relating to the value of γ, in

which Q
(j)
j+m will evaluate differently.

2(a):

The first is the case where γ is not an even integer, in this case we find that

Q
(j)
j+m =

γj+m−2

2(j−2)(j − 2)!

(
j+m−1∏
n=j−1

1

2n− γ

)
y
−2(j+m−1)+γ

γ

j+m+1

− γj+m−2

2(j−2− 2
γ

)(j − 3)!

(
j+m−2∏
n=j−2

1

2n− γ

)
y
−2(j+m−2)+γ

γ

j+m+1 +O

(
y
−2(j+m−3)+γ

γ

j+m+1

)
(4.1.44)

and can retrieve Q
(j)
k by substituting j +m = k.

Q
(j)
k =

γk−2

2(j−2)(j − 2)!

(
k−1∏
n=j−1

1

2n− γ

)
y
−2(k−1)+γ

γ

k+1 +O

(
y
−2(k−2)+γ

γ

k+1

)
(4.1.45)

2(b):
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We start with the second case being where, in (4.1.43), γ is an even integer

satisfying γ = 2(j +m)− 2x for x ∈ {1, 2, 3}. However, as ∀ε > 0, log(y)� y−ε

as y ↓ 0, we observe that for ε < 2
γ

O
(

log(y)y
γ+2(x+1)−2k

γ

)
< O

(
y−εy

γ+2(x+1)−2k
γ

)
= O

(
y

2
γ y−εy

γ+2x−2k
γ

)
< O

(
y
γ+2x−2k

γ

)
.

Therefore we only need to consider x = 1 as log terms from larger values of x

would not be leading order. So the second case is γ = 2(j + m)− 2 and we find

that,

Q
(j)
k =

γk−3

2(k+j− γ
2
−3)(j − 2)!

(2j − 4− γ)

(k − γ
2
− 1)!

 γ−2
2∏

n=j−2

1

2n− γ

 log(yk+1)y
γ−2(k−1)

γ

k+1

+O

(
y
γ−2(k−1)

γ

k+1

)
. (4.1.46)

Otherwise, the form of Q
(j)
k is as given in (4.1.45).

Step 3:

We will now show that ∀γ > 2

k∑
j=2

Q
(j)
k = a(γ)

γ(k−2)

2(k−2)(k − 2)!
y
−2(k−2)

γ

k+1 +O

(
y
γ−2(k−1)

γ

k+1

)
. (4.1.47)

We will show that any log terms introduced by (4.1.46) either cancel or are of a

lower order than existing terms.

For 2 < γ < 4, in step 1(a), we showed that Q
(2)
k is given by (4.1.37). As in

this case γ is not an even integer, we know from step 2(a) that Q
(j)
k is given by

(4.1.45). Therefore for 2 < γ < 4 we have found Q
(j)
k for 2 ≤ j ≤ k. Summing

over j gives (4.1.47).

For γ = 4, in step 1(b), we showed that Q
(2)
k is given by (4.1.38). As in

this case γ is an even integer, we look to step 2(b) to find the form of Q
(j)
k .

In step 2(b) it was found that a leading order log term would only occur when

γ = 2(j +m)− 2, when γ = 4 this is when j = 3. When γ = 4 and j = 3 we use

(4.1.46) and recover that

Q
(3)
k =

2(k−4)

(k − 3)!
log(yk+1)y

3−k
2

k+1 +O
(
y

3−k
2

k+1

)
(4.1.48)

which cancels the log term in (4.1.38). For 3 < j ≤ k, Q
(j)
k is given by (4.1.45).

Therefore for γ = 4 we have found Q
(j)
k for 2 ≤ j ≤ k. Summing over j gives
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(4.1.47).

For γ > 4, in step 1(c), we showed that Q
(2)
k is given by (4.1.39). As for j > 2,

γ may satisfy γ = 2(j +m)− 2 we consider 2(b). We find that ∀ε < γ−4
4

,

O
(

log(y)y
γ−2(k−1)

γ

)
< O

(
y−εy

γ−2(k−1)
γ

)
< O

(
y

6−2k
γ

)
(4.1.49)

and therefore any log terms are of lower order and can be disregarded.

Therefore, we find that ∀γ > 2

k∑
j=2

Q
(j)
k = a(γ)

γ(k−2)

2(k−2)(k − 2)!
y
−2(k−2)

γ

k+1 +O

(
y
γ−2(k−1)

γ

k+1

)
. (4.1.50)

4.1.4 Comparison with Numerical Simulations

We use numerical simulations to assess and compare the performance of the

asymptotic approximation (4.1.32) with the heuristic R1 = s−1/γ. To do this

we begin by simulating the distribution of R1 for a given value of S. As R1

is conditioned on s, it is important that there is small variance in the values

of s accepted for a simulation. For a simulation with a chosen value S = s∗

we accepted all samples where s ∈ [0.98s∗, 1.02s∗]. For the simulations with

γ = 4 and γ = 6, we collected 2 × 106 samples. For the simulation with γ = 3,

we collected 5 × 106 samples. The choices regarding accuracy and sample size

provide an acceptable trade-off between simplicity of simulation and accuracy.

The simulations produce values close to our theoretical values. The distribution

of R1 where γ = 4 for S = 50 and S = 1000 can be seen in Figures 4-1 and 4-2

respectively.

As previously stated, transmitter locations are taken to be distributed accord-

ing to a Poisson point process. We consider them Poisson points distributed in

a disk, with the origin at the centre. As we are only interested in the distances

of these transmitters to the origin, not their location, the Mapping theorem can

be used to efficiently generate correctly distributed distances. To ensure inde-

pendence a new set of transmitter distances were generated for each sample.

Efficiency is required as, due to randomness, achieving an acceptable value of S

can require a large number of samples to be generated. We gave the method for

efficiently generating transmitter distances in Subsection 1.4.1.

Figure 4-3 compares the accuracy of the two heuristics for different values of

pathloss, γ = 3, 4, 6, over a range of values of S. The values for pathloss were

chosen to be close to observed real world values and demonstrate the differences
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Figure 4-1: Observed signal S = 50 and pathloss γ = 4. R1 is the distance to the
nearest transmitter. This value for S is considered small. Observe the interesting
shape of the simulation distribution; this is described in [42]. The mean of the
asymptotic approximations, applied to each of the 2 × 106 sample values of S,
is close to the simulation mean of R1. This supports that (4.1.32) offers an
accurate estimation of R1. Further to that it offers a significant improvement
over the heuristic R1 = s−1/4.

0.18 0.19 0.20 0.21 0.22 0.23
R1

0

50

100

150

200

250

De
ns

ity

Simulation mean
R1 = S 1/  mean
Asymptotic approximation mean
Simulation distribution

Figure 4-2: Observed signal S = 1000 and pathloss γ = 4. R1 is the distance
to the nearest transmitter. The mean value of R1 from the simulation aligns
with the mean asymptotic approximation, verifying that it is highly accurate.
Although the heuristic R1 = S−1/4 has improved in accuracy compared to Figure
4-1 it remains significantly less accurate. Figure 4-3 shows how the accuracy of
asymptotic heuristic and R1 = S−1/γ increases with signal.
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for values of γ higher and lower than γ = 4.

The accuracy of the asymptotic heuristic for low values of S can be seen in

Figure 4-3 to increase as γ decreases. This is due to the order of the error being

O(S
γ+1
γ ) as shown in Section 4.1. However, the heuristic R1 = S−

1
γ has error of

order O(S−
3
γ ) and therefore accuracy increases with γ. This behaviour can also

be seen in Figure 4-3.
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R1 = S 1/4
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Figure 4-3: This graph shows on log-log axes the error of the approximations
decreasing as signal increases, for different values of γ. The gradients of the lines
support the heuristics. This is shown in figure 4.1. The absolute error of approxi-
mations is the absolute value of the difference between the estimate and the actual
value, given a percentage of the actual value, (e.g., error = 100(estimate-actual)

actual
). It

is shown that the asymptotic approximation is more accurate than the heuristic
R1 = S1/γ, even for low values of S.

The numerical simulations show that even for moderate values of S our asymp-

totic heuristic appears to give a good estimate of the expected error.
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Heuristic Expected Slope Observed Slope
Asymptotic Approximation, γ = 3 -5/3 (-1.67) -1.581
Asymptotic Approximation, γ = 4 -5/4 (-1.25) -1.214
Asymptotic Approximation, γ = 6 -5/6 (-0.83) -0.786

R1 = S−1/3 -3/3 (-1.00) -1.015

R1 = S−1/4 -3/4 (-0.75) -0.730

R1 = S−1/6 -3/6 (-0.50) -0.468

Table 4.1: The numerically estimated slopes of the lines plotted in Figure 4-3,
given under the heading Observed Slope, can be compared with the expected
slope derived from the theory. It is found that the expected slopes closely match.
Showing that the the simulations support the theoretical results.

4.2 Rayleigh Fading

In a cellular system, such as the one being modelled, interference comes from

multiple sources. We wish to be able to estimate the distance to the nearest

transmitter in a wireless network. In Section 4.1 we considered the signal without

fading.

We now ask the question of whether the distance to the nearest transmitter

can also be accurately estimated when the effect of fading is applied to the ob-

served signal. To answer this we begin in Subection 4.2.1 by finding a scaling

factor that can be used to scale the faded signal to the values it would have

taken been had fading not been in effect. The recovered signal can then be used

in conjunction with a distance heuristic to estimate the distance to the nearest

transmitter. The scaling factor can be used for different values of m in Nakagami-

m fading, though we use the Rayleigh fading case where m = 1 as an example.

In Subection 4.2.2 we develop a heuristic for finding the expected distance to the

nearest transmitter based on observed faded signal at the origin. Both methods

are then checked and compared against numerical simulations in Subection 4.2.3.

4.2.1 Scaling Factors

We recollect some scaling properties of the total signal, with and without fading,

from [39, Section 5.1]. First recall that the total signal without fading is

S(λ) =
∞∑
i=1

Ri(λ)−γ,
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where we write the argument λ to emphasize that the distribution of S depends

on λ. When fading is present, we have instead a total signal

T (λ) =
∞∑
i=1

HiRi(λ)−γ,

where H1, H2, . . . are independent random variables. (Note that in [39] observed

total signal is referred to as interference and denoted by I(λ), where λ is the

density of the Poisson distributed transmitters.) By calculating Laplace tran-

forms, it is shown in [39, Section 5.1.7] that T (λ) has the same distribution as

S(E[H2/γ]λ). It is also shown in [39, Corollary 5.4] that for any a > 0 S(aλ) has

the same distribution as aγ/2S(λ). It follows from these two facts that

T (λ)
d
= E[H2/γ]γ/2S(λ),

where
d
= means equal in distribution. We now compute the scaling factor in front

of S(λ), for Nakagami-m fading.

As stated before, Nakagami-m fading is distributed Gamma(m, 1/m). The

probability density function of the Gamma(α, θ) distribution with shape α > 0

and scale θ > 0 is

f(x;α, θ) =
1

Γ(α)θα
xα−1e−

x
θ for 0 < x <∞,

and therefore

E[H2/γ] =
1

Γ(m)(1/m)m

∫ ∞
0

h
2
γ

+m−1e−mh dh.

As
∫∞

0
h

2
γ

+m−1e−mh dh = (1/m)
2
γ

+mΓ( 2
γ

+m), it is found that

E[H2/γ] =
Γ( 2

γ
+m)(1/m)

2
γ

Γ(m)
,

and hence we define

c(γ,m) := E
[
H2/γ

]γ/2
=

(
Γ( 2

γ
+m)

Γ(m)

)γ/2
1

m
. (4.2.1)

Based on this scaling, a simple heuristic is:

R1(λ) ≈ S(λ)−1/γ d
= c(γ,m)1/γ T (λ)−1/γ. (4.2.2)
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We refer to this heuristic as ‘R1 = T−1/γ with scaling’. The asymptotic heuristic

(4.1.32) combined with the scaling factor gives

E
[
R1

∣∣∣T = t
]
≈ t−1/γc(γ,m)1/γ +

2λπ

γ
a(γ)t−3/γc(γ,m)3/γ. (4.2.3)

We refer to this heuristic as ‘Asymptotic heuristic with scaling’. We improve on

these in the next section, in the case of Rayleigh fading, where the effect is the

strongest.

4.2.2 Distance Estimation with Rayleigh Fading

The effect of Rayleigh fading is described by the random variable H1 ∼ Exp(1),

with probability density function

fH1(h1) = e−h1 where h1 > 0.

In order to simplify computations, we are going to assume that there is a single

transmitter in the disc of radius ρ = 1/
√
λπ (this choice of the radius makes the

average number of transmitters in this disc equal to 1). Let S̃1 be the signal

contributed by this sole transmitter, so that by setting k = 1 in (4.1.11) we get

fS̃1
(s1) = 2λπe−λπρ

2 1

γ
s
− γ+2

γ

1 =
2

γ ρ2
e−1 s

− γ+2
γ

1 , ρ−γ < s1 <∞. (4.2.4)

As an approximation, we replace T by the random variable

T̃1 = H1 S̃1.

The joint probability density function of S̃1 and H1, as they are assumed inde-

pendent, is given by

fS̃1,H1
(s1, h1) =

2

γρ2
s
− γ+2

γ

1 e−h1e−1.

Then the joint probability density function of T̃1 and H1 is found to be

fT̃1,H1
(t1, h1) =

2

γρ2
h

2
γ

1 t
− (γ+2)

γ

1 e−h1e−1, 0 < t1 <∞, 0 < h1 < ργt1.

Since ∫ ργt1

0

h
2/γ
1 e−h1dh1 = G

(
γ + 2

γ
, ργt1

)
,
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where G denotes the lower incomplete Gamma-function. Therefore, the marginal

density of T̃1 is given by

fT̃1
(t1) =

2

γρ2
t
− (γ+2)

γ

1 e−1G

(
γ + 2

γ
, ργt1

)
, 0 < t1 <∞.

We can use this to find

fH1|T̃1=t1
(h1) =

fT̃1,H1
(t1, h1)

fT̃1
(t1)

1

G
(
γ+2
γ
, ργt1

)h 2
γ

1 e
−h1 , 0 < h1 < ργt1.

Since we made the approximation that T is attributed entirely to the nearest

transmitter, we have t1 = S̃1H1 = R−γ1 H1 and therefore H1 = t1R
γ
1 . From this

we find

fR1|T̃1=t1
(r1|t1) = fH1|T̃1=t1

(h1|t1)
dh1

dr1

= fH1|T̃1=t1
(h1|t1)t1γr

γ−1
1

and therefore we find the following theorem.

Theorem 4.3 (Fading Approximation). When Rayleigh fading is in effect, t1

is the observed signal and γ is the pathloss exponent then the distribution of the

distance R1 to the nearest transmitter, conditional on t1, is given by

fR1|T̃1=t1
(r1) =

 γt
γ+2
γ

1

G
(
γ+2
γ
, ργt1

)
 rγ+1

1 e−t1r
γ
1 , 0 < r1 < ρ. (4.2.5)

This shows the effect that the radius of the disk has on the probability density

function. We note that when t1 is large the value of G does not depend as strongly

on ρ as it does when t1 is small. This can be attributed to the asymptotic

behaviour of the lower incomplete gamma function G(s, x)→ Γ(s) as x→∞.

From this we are able to find that the expected distance to the nearest trans-

mitter, conditional on observed faded signal at the origin, is given by

E[R1|T̃1 = t1] =
Γ
(
γ+3
γ

)
t

1
γ

1 G
(
γ+2
γ
, ργt1

) (4.2.6)

To summarise, we have shown that when Rayleigh fading is in effect if the

observed total signal T takes the value t then a very simple heuristic would be to

use (cT )−1/γ where c is a scaling factor which makes cT have the same expected

value as S (the total signal in the absence of fading). We propose an improvement
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on this which is an approximate probability distribution of R1 depending on the

measured value of T = t. We show that this is a considerable improvement

and, being a distribution, provides additional information. The approximate

probability density of R1 conditioned on the measured total signal T taking the

value t is given by

fR1 |T (r1 | t) ≈
1

Z(t, γ, λ)
rγ+1

1 e−t r
γ
1 , 0 < r1 < (λπ)−1/2,

where the normalization Z(t, γ, λ) can be expressed in terms of the lower incom-

plete Gamma function.

The performance of (4.2.5) and (4.2.6) against numerical simulations is shown

in Figures 4-4 and 4-5.

4.2.3 Numerical Simulations

To check the accuracy of the Rayleigh fading distance estimate, derived in Section

4.2.2, we simulate Poisson distributed points contributing Rayleigh faded signal to

an origin, at which the total signal T is recorded. As the expected distance to the

nearest transmitter R1 depends on T , simulation results were stored depending

on the value of T observed. Five values of T were chosen that ranged from low

to high: 50, 100, 200, 500 and 1000. Any simulation where T was within 2% of

one of the five values was stored. We generated 1 × 106 samples for each of the

five values of T .

The stored numerical simulations for the five values of T allow the accuracy

of the Rayleigh fading distance estimate to be evaluated. The approximated

distribution and expected mean of R1, given in equations (4.2.5) and (4.2.6)

respectively, are compared to the numerical results obtained through the simu-

lations. Figures 4-4 and 4-5 show the distribution of the distance to the nearest

neighbour for a low and a high value of T respectively. They confirm that the

theoretical results perform well across a range of values for T . The agreement is

better for the large value of T in accordance with the observation made above

that G is sensitive to ρ.

We also wish to assess the accuracy of the fading approximation (4.2.6) against

the heuristics (4.1.32) and R = S−1/γ when they are combined with the scaling

factor (4.2.1). We note that in the scaling factor ρ = 1 as the density of the points

simulated was λ = 1/π. The scaling factor used together with the simple heuristic

R = S−1/γ gives (4.2.2) and is referred to as ‘R1 = T−1/γ with scaling’. The

scaling factor used together with the asymptotic heuristic (4.1.32) gives (4.2.3)
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Figure 4-4: The distribution of R1 for the low value T = 50 when γ = 4. The
histogram shows the distribution of R1 obtained through numerical simulations.
Equation (4.2.5), referred to as ‘Approximated distribution’, has the correct shape
but has a slight shift to the left. The expected mean R1 from equation (4.2.6)
is close to the mean obtained through numerical simulations but, as with the
distribution, has a shift to the left.

which is referred to as ‘Asymptotic heuristic with scaling’. The performance of

(4.2.3) and (4.2.2), compared to the fading approximation (4.2.6), when γ = 4,

is shown in Figure 4-6. In Figure 4-6 we note that the ‘Asymptotic heuristic

with scaling’ (4.2.3) outperforms ‘R1 = T−1/4 with scaling’ (4.2.2). As a result,

in Figure 4-7 we then compare the ‘Asymptotic heuristic with scaling’ against

the ‘Fading approximation’ for γ = 3, 4, 6. In Figure 4-7 we observe that, of the

three heuristics tried, the fading approximation is the most accurate method of

estimating the distance R1 in the case with Rayleigh fading. We then wish to

know, when it is known whether Rayleigh fading is in effect and so the appropriate

heuristic can be used, how does the accuracy of the fading approximation compare

to the accuracy of the asymptotic heuristic? Figure 4-8 compares the accuracy of

these two heuristics, when used appropriately, for a range of values of observed

signal.

In Figure 4-6, where γ = 4 and observed signal ranges from 50 to 1000, it

can be seen that ‘R1 = T−1/4 with scaling’ does not perform as well as the

‘Fading approximation’ or the ‘Asymptotic heuristic with scaling’. The curve
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Figure 4-5: The distribution of R1 for high value T = 1000 when γ = 4. The
histogram shows the distribution of R1 obtained through numerical simulations.
In this case equation (4.2.5), referred to as ‘Approximated distribution’, matches
the distribution obtained from numerical simulations. The mean R1 obtained
from equation (4.2.6) moves to the right, closer to the mean obtained through
numerical simulations.

for ‘Asymptotic heuristic with scaling’ passes through zero, however Figure 4-7

shows that this will not always be the case for different values of γ. Although,

for values of observed signal below 400 the ‘Asymptotic heuristic with scaling’

is more accurate than the ‘Fading approximation’ we see that as the value of

signal increases the fading approximation becomes the more accurate method.

As a result, we conclude that when γ = 4 the fading approximation is the more

accurate and reliable method.

In Figure 4-7 we compare the fading approximation with the best performing

of the scaling heuristics, the ‘Asymptotic heuristic with scaling’, when γ = 3, 4

and 6. This figure shows that the ‘Asymptotic heuristic with scaling’ will not

always pass through zero. In fact we see that its performance is very dependent

upon the value of γ and this lack of consistency means that it is not a reliable

heuristic. The ‘Fading approximation’ shows consistency for signal ≥ 500 where

the error is around 1%−2% of the actual distance R1. Therefore, from the numer-

ical simulations we conclude that the fading approximation is the best method for

approximating R1 when Rayleigh fading is in effect. The ‘Asymptotic heuristic
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Figure 4-6: Comparison of the accuracy of the ‘Fading approximation’ (4.2.6)
against ‘Asymptotic heuristic with scaling’ (4.2.3) and ‘R1 = T−1/4 with scaling’
(4.2.2). We note that the ‘Fading approximation’ is the most accurate of the
three methods, followed by the ‘Asymptotic heuristic with scaling’ which passed
through 0. As signal increases the percentage error of the ‘Fading approximation’
decreases. γ = 4 in all cases.
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Figure 4-7: Comparison of the fading approximation (4.2.6) against the asymp-
totic heuristic with scaling when γ = 3, 4, 6. The accuracy of the asymptotic
heuristic with scaling (4.2.3), for large signal observations, varies with γ but the
fading approximation is much more consistent. It can be seen that the accuracy
of the fading approximation increases as γ increases.
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with scaling’ had comparable accuracy in the case γ = 6 but was outperformed

in all other cases.

When it is known whether Rayleigh fading is in effect, we can choose to use

either the fading approximation or the asymptotic heuristic accordingly. The

accuracy of the two methods, when used accordingly, are compared in Figure

4-8. In Figure 4-8 the asymptotic approximation has the smallest errors, though

both methods perform well. The plots show that for an observed signal, when

pathloss and the presence of Rayleigh fading is known, we can accurately estimate

the distance to the nearest transmitter using the appropriate heuristic.

�

Figure 4-8: Approximation errors as a function of signal strength. For pathloss
exponent γ = 3, 4 and 6, this figure compares the relative performance of the
non-fading asymptotic heuristic (4.1.32) with that of the fading approximation
(4.2.6). The asymptotic heuristic (4.1.32) was used with signal S where no fading
was in effect. However, the fading approximation (4.2.6) was used with signal
T where Rayleigh fading was applied. The plot has a log-log scale and for both
methods shows how accuracy varies with signal and pathloss.
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4.3 Short Summary

In this chapter we have proposed two heuristics for accurately estimating the dis-

tance to the nearest neighbour transmitter. We began by proposing an asymp-

totic heuristic which, with an estimation of pathloss γ and an observation of

signal S = s accurately estimates the distance to the nearest transmitter. In Sec-

tion 4.1 we began with the heuristic that the distance to the nearest transmitter

R1 was a function of observed signal S and pathloss, such that R1 = S−1/γ. To

improve on this we approximated the error of this heuristic and proposed (4.1.32)

which we refer to as the asymptotic approximation. In Section 4.1.4 the accu-

racy of this heuristic is demonstrated with numerical simulations, it results in an

improvement in accuracy when estimating neighbour distance based on observed

signal and works well for small values of observed signal S.

In Section 4.2 we present the second heuristic, which offers an improved ap-

proximation for the distance to the nearest transmitter when Rayleigh fading is

in effect. We began in Subsection 4.2.1 by presenting a scaling factor that can

be used to scale the effect of Nakagami-m fading. We considered the most ex-

treme case of Nakagami-m fading which is when m = 1, a special case known as

Rayleigh fading. In Subsection 4.2.2 we proposed a distribution of the distances

to the nearest transmitter R1 conditional on observed Rayleigh faded signal T .

From this distribution we found the expected value of R1 conditional on T , this

expected value (4.2.6) is referred to as the fading approximation. In Subsec-

tion 4.2.3 we showed how the scaling factor and fading approximation perform.

The simulations showed that the fading approximation is the most accurate way

of estimating the distance to the nearest transmitter in the case with Rayleigh

fading.
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Chapter 5

Non-Uniform Power Distance

Estimation

In Chapter 4 we derived two expressions, (4.1.32) and (4.2.5), that accurately

estimate the distance from the origin to the nearest transmitter based on a single

observation of total signal at the origin. Both expressions require only minimal

knowledge of the environment, such as the pathloss exponent γ and whether

fading, in particular Rayleigh fading, is present. However, both expressions were

derived with the assumption that all transmitters share the same power setting.

In this chapter we relax this assumption and examine cases in which transmitters

do not all have equal power settings. Although changes in power levels complicate

interpretations of received signal strength, it also offers new opportunities for self-

organisation since changes in power levels allow the system to gather additional

information about transmitter distances.

Our main research questions in this chapter are as follows. Given that trans-

mitters do not share a common power setting, how accurately can the distance

to the nearest transmitter be estimated? Further to this, can we better estimate

the power setting of the nearest transmitter? In this chapter we answer these

two questions, showing that both can be achieved.

This chapter is organised into four sections, one for each of the methods of

estimation that we explore. Where appropriate we consider the effectiveness

of the methods with and without fading effects. The first section looks at the

ability of the two heuristics (4.1.32) and (4.2.5) from Chapter 4 to estimate the

distance to the nearest transmitter when powers are not uniform, first without

and then with fading, respectively. The second section explores the way the ‘Pulse

Method’ patented by BT [15] can be applied for distance and power estimation.

We test the accuracy of this method over a range of scenarios. The third and
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fourth sections build on the ‘Pulse Method’ by proposing a new ‘Two-Part Pulse

Method’ (TPPM) that allows us to gain more information. In the fourth section

we employ the Method of Moments (MoM) to adapt the TPPM to be applicable

when fading is present. In all sections numerical simulations are used to assess

the accuracy of the methods and to support the theory.

5.1 Uniform Power Heuristics

The communications regulator Ofcom has set a maximum allowed power pmax

that limits the power transmitters can use. Previously, in Chapter 4, we assumed

that all transmitters used the full amount of power. In this chapter we consider

that transmitters use only a fraction of the available power. This is informed

by the results in Chapter 3 on power optimisation. Let X1, ..., Xk be a set of

i.i.d random variables Xi ∼ Unif[0, 1], that represent the proportion of available

power used by a given transmitter. Then transmitter Ti has power Pi ∼ pmaxXi.

As before, we consider transmitters distributed on a disk according to a Pois-

son point process with intensity λ. The numerical simulations use Algorithm 1.1

to efficiently generate correctly distributed transmitter distances. We assess the

accuracy of the uniform power heuristics (4.1.32) and (4.2.5) in Subsections 5.1.1

and 5.1.2, respectively. A summary of their performance is given in Subsection

5.1.3.

5.1.1 Asymptotic Heuristic for Non-uniform Powers

We recall that in Chapter 4, equation (4.1.32) gave the asymptotic heuristic for

estimating the expected distance to the nearest transmitter R1 as

E
[
R1

∣∣∣S ′ = s
]
≈ s−1/γ +

2λπ

γ
a(γ)s−3/γ,

where a(γ) is as defined in (4.1.2). This asymptotic heuristic assumes that all

transmitters have an equal power, p = 1. We now wish to assess the performance

of the asymptotic heuristic when transmitters do not have a uniform power set-

ting. Instead the transmitters have power settings as described in the introduction

to this section, such that transmitter Ti has power Pi ∼ Unif(0, pmax). In this

scenario, given that there are k transmitters in the plane, the observed signal S

at the origin O is given by

S =
k∑
i=1

Pir
−γ
i . (5.1.1)
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From (5.1.1) we observe that S is scaled by Pi. We could apply (4.1.32) and

ignore this scaling effect. Figures 5-1a and 5-1b show the relative error against

pmax when this scaling is ignored. We consider a rough scaling of S, since the

expectation E[Pi] = pmax

2
, the simplest way to account for the power level Pi is

to define a scaled signal value S∗ by

S∗ =
2S

pmax

. (5.1.2)

Then we can estimate, roughly, the distance to the nearest transmitter as

E
[
R1

∣∣∣S∗ = s∗, pmax

]
≈ s∗−1/γ +

2λπ

γ
a(γ)s∗−3/γ. (5.1.3)

As before, we use simulations to assess the accuracy of the asymptotic heuris-

tic. The methodology for these simulations is as described in Chapter 4. We

generate transmitter distances using Algorithm 1.1 with the density λ = π−1 and

assign powers that are uniformly distributed ∼ Unif(0, pmax). We then use the

value of S achieved by equation (5.1.1) in equations (4.1.32) and (5.1.3), i.e. we

use S∗ as computed in (5.1.2) and estimate R1 using (5.1.3). Figure 5-1 shows

the accuracy of the asymptotic heuristic for S = 50 and S = 1000 for when S is

scaled by the expected power. The average error of the estimated distance is much

larger when the asymptotic heuristic is used on non-uniform powers. However

scaling the observed signal offers significant improvement in this scenario.

In Figures (5-1a) and (5-1b) we observe, for S = 50 and S = 1000 respectively,

how as pmax increases the scaling of the asymptotic heuristic significantly increases

the accuracy of the estimated distance to the nearest transmitter. As expected,

the accuracy is better for the larger value of S, in this case the scaled asymptotic

heuristic results in a more consistent estimation with an average error of 2%. The

error increased as pmax increased. The simulations were conducted with 50000

samples and the signal observed was within 2% of the target value.

5.1.2 Fading Distance Estimation

In Chapter 4 we found the conditional probability density function for the dis-

tance to the nearest transmitter conditioned on the observed signal T in the

presence of Rayleigh fading. We then used this in equation (4.2.6) to compute

the expected distance to the nearest transmitter r1, conditioned on the observed

signal T :
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(a) S = 50, γ = 4

1 2 3 4 5
Pmax

0

5

10

15

20

25

30

35

40

45

M
ea

n 
Re

la
tiv

e 
Er

ro
r (

%
)

not scaled
scaled

(b) S = 1000, γ = 4

Figure 5-1: The mean relative error of the heuristic (5.1.3) as a function of pmax

when S is scaled by the expected power (5.1.2), is shown by the orange line
labelled ‘scaled’. For comparison we show when S is not scaled by the expected
power and instead we used S∗ = S

pmax
to take into account the dependence of S

on pmax, this is shown by the blue line labelled ‘not scaled’. In (a) we consider a
low value S = 50; in (b) we consider a higher value S = 1000. In both cases we
set γ = 4.

E[R1|T̃1 = t1] =
Γ
(
γ+3
γ

)
t

1
γ

1 G
(
γ+2
γ
, ργt1

) ,
where G(s, x) =

∫ x
0
ys−1e−ydy is the lower incomplete Gamma function.

We consider the most extreme case of fading, Rayleigh fading, in which the

fading variables Hi ∼ Exp(1). In this case we denote signal observed at the origin

O as T , where

T =
k∑
i=1

Hipir
−γ
i .

and as E[pi] = pmax

2
we can scale the observed signal so that

T ∗ =
2T

pmax
. (5.1.4)

This gives that

E[R1|T̃ ∗1 = t∗1] =
Γ
(
γ+3
γ

)
t∗1

1
γG
(
γ+2
γ
, ργt∗1

) . (5.1.5)

As before, we use simulations to assess the accuracy of this scaled heuristic.
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The methodology of the numerical simulations is as described in Subsection 4.2.3.

The simulations used 100 transmitters, it was found in simulations that the con-

tribution from the furthest transmitters was negligible and that using a larger

number would impact computational efficiency whilst not noticeably improving

accuracy. This is further supported by the preliminary work in Chapter 4, which

presents the argument that contributions from transmitters furthest away can

be neglected. Two target values of T were used for assessment and comparison,

they were T = 50 and T = 1000. Only simulations in which the value of T

fell within 2% of one of the target values were used. Simulations were run until

100000 samples for each of the two target values of T were collected. In Figure

5-2 it is shown that scaling the observed signal increases accuracy. The unscaled

distribution has the correct variance but the mean is shifted to the right. The

scaling results in the variance being too small but the mean is more accurate.

5.1.3 Short Summary

The asymptotic heuristic with the rescaling (5.1.3) can provide an accurate es-

timation of R1 when transmitters do not share a common power setting, pary-

icularly for high values of observed signal. Intuitively, the lower the proportion

of power P1 that the nearest transmitter T1 uses, the larger the error. This is

to be expected as this method is most accurate when the nearest transmitter T1

provides the majority of the signal observed at the origin; this is less true when

P1 is small.

We see that scaling the fading heuristic provides an improvement in the accu-

racy of the relative error of the estimation. A limitation of both heuristics is that

they only provide information regarding distance, and then only for the nearest

transmitter, and do not estimate tranmitter powers. We now consider methods

that can provide further information, such as the power settings of transmit-

ters and can be used to estimate the distance for more than just the nearest

transmitter.

142



(a) When T = 50

(b) When T = 1000

Figure 5-2: Frequency distribution of values of R1 for which (a) T = 50 and
(b) T = 1000, compared to analysis approximations of the full distribution and
estimates of the expected value of R1. In both cases γ = 4, pmax = 1 and
transmitter powers are uniformly distributed between 0 and pmax.
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5.2 The Pulse Method

The ‘Pulse Method’ is a system procedure for a short step up and down in a

transmitter’s power setting that was patented by BT [15]. A transmitter briefly

uses a higher power setting for a short period of time, resulting in a pulse of

increased signal strength. Figure 5-3 illustrates the dynamics of power changes

for an individual transmitter.

time, t

Power, P

p

p∗

Figure 5-3: Illustration of the Pulse Method; the power setting of a transmitter
briefly increases to p∗ before returning to p.

The Pulse Method is described in Algorithm 5.1.

Algorithm 5.1 Pulse Procedure

Transmitter power is P
Pulse power and non pulse power are p∗ and p respectively
P = p
t = 0
Pulse duration is tpulse

Time between pulses is tstart

T is time limit
while t ≤ T do

t← t+ tstart

P ← p∗

t← t+ tpulse

P ← p
end while

5.2.1 Distance and Power Estimation

We will show that the Pulse Method can be used to estimate both the distance

and power of transmitters in a network. However, we begin by considering uni-

form transmit powers and show that in this scenario the method can be used
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to accurately estimate all transmitter distances. This is the simplest example of

how the pulse method can be used. We then consider the scenario when trans-

mitters have non-uniform transmit powers and propose an iterative procedure for

estimating power and distance.

Uniform Powers

When transmitters are on equal power settings the Pulse Method allows for trans-

mitter distances to be found exactly. Let there be a set of N transmitters with

transmit power P and pulse power P ∗. Implementing the Pulse method, as de-

scribed in Algorithm 5.1, we will observe N different sized increases, or pulses, in

the total signal at the origin over a suitably large period of time T . A realisation

of this is shown in Figure 5-4a which shows total signal at the origin varying with

time.

To estimate the distances we identify increases in the observed signal at the

origin. We record the positive increases in signal and remove all duplicates, this

will result in N recorded signal increases. We organise these signal increases into

descending order and denote each increase (or jump) as Ji with i = 0, . . . , N .

The distance to the ith nearest transmitter is given by

ri =

(
P ∗ − P
Ji

)1/γ

. (5.2.1)

Figure 5-4b shows the estimated distances of transmitters using this method

and the actual distances. As γ = 4 the signal contribution from the furthest

transmitters will be very slight. Where two transmitters are very close together

the number of significant figures held by the computer could result in two distinct

pulses being treated as one. This would account for the shift of the last 50

transmitters that is seen. Only 199 distinct pulse sizes were identified, rather

than 200.

Non-Uniform Powers: An Iterative Procedure

We have shown that the pulse method can be used to find transmitter distances

when transmitters have uniform transmit powers. We now propose an iterative

procedure that can be implemented to estimate both distance and transmit power

when transmitters have non-uniform powers.

Let there be N transmitters with pulse power p∗ and pathloss exponent γ.

Let there be a known finite discrete set of transmit powers P and P1, ..., PN be
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(b) A comparison of the estimated distance to each transmitter and the actual
distance.

Figure 5-4: Subfigure 5-4a shows the observed signal at the origin as 200 trans-
mitters, with uniform power setting P = 1, pulse at random times. Subfigure
5-4b shows the accuracy with which the Pulse Method allows the distance to all
200 transmitters to be estimated. The pathloss exponent γ = 4.
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the random variables from P describing the power settings of the transmitters

T1, . . . , TN when they are not ‘pulsing’. Although P is known the values of

P1, ..., PN are not.

Implementing the pulse procedure given in Algorithm 5.1 on this set of trans-

mitters will result in ‘pulses’ in the total signal at the origin such as those shown

in Figure 5-5. We use these pulses, or increases in signal, to estimate the distances

to near transmitters. We do this as follows: the lowest observation of signal will

be when no transmitters are ‘pulsed’, and we can measure the signal increases

when pulses occur. We assume the larger the pulse, the closer the transmitter.

Let S be the total observed signal when no pulses are occuring and S∗i be the

total signal when transmitter i is pulsed. Therefore

S = p1r
−γ
1 + ...+ pir

−γ
i + ...+ pNr

−γ
N (5.2.2)

S∗i = p1r
−γ
1 + ...+ p∗r−γi + ...+ pNr

−γ
N (5.2.3)

Our intuition is that, if we observe the system for long enough then we should

observe N different size jumps in signal strength. The observed jumps are sorted

into descending order so that J1 ≤ J2 ≤ ... ≤ JN are the sizes of jump attributed

to each transmitter, ordered from nearest to furthest.

Then to estimate the distance to the nearest transmitter we add the largest

jump J1 to the total unpulsed signal S; this gives the total signal when the nearest

transmitter is pulsed, which by definition is S∗1 . We do not simply use the largest

recorded signal strength as it is possible that pulses from two transmitters have

overlapped in time.

Since J1 = (P∗ − P1)r−γ1 we have S∗1 = S + J1, hence

(S∗1)−1/γ =

(
p∗r−γ1 + p∗

p2

p∗
r−γ2 + ...+ p∗

pN
p∗
r−γN

)−1/γ

(5.2.4)

and so(
S∗1
p∗

)−1/γ

= r1

(
1 +

p2

p∗︸︷︷︸
<1

(
r2

r1

)−γ
︸ ︷︷ ︸

<1

+...+
pN
p∗︸︷︷︸
<1

(
rN
r1

)−γ
︸ ︷︷ ︸

<1

)−1/γ

. (5.2.5)

By assuming that transmitters are well spaced and that typical power levels are

much less than p∗, we can make an initial estimate for the value of r1 by taking
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just the first term on the right hand side in the equation alone, which yields,

r1,est =

(
S∗1
p∗

)−1/γ

. (5.2.6)

This initial estimate of r1 can then be used to estimate the power setting of

transmitter 1:

p1,est = p∗ − J1r
γ
1,est. (5.2.7)

We can then map p1,est to one of the known possible discrete power values, i.e. we

replace p1,est by a known possible power level p̂1. We now use the newly estimated

p1 to refine our estimate for r1,

r̂1 =

(
J1

p∗ − p̂1

)−1/γ

. (5.2.8)

To estimate the distances to the remaining transmitters we use the estimated

power and distance settings and subtract from S their contribution,

Supdated = S − p̂1r̂
−γ
1 . (5.2.9)

We summarise this in the following algorithm.

Procedure 5.1 (Iterative Distance Estimation Algorithm). The algorithm con-

sists of the following steps:

(1). Observation: record total signal at the origin S for a suitable period of time

t determined by the number of transmitters N and the pulse rate, until N

different-sized jumps in observed signal have been detected.

(2). Sorting: Sort the signal jumps into descending size order such that J1 ≥
J2 ≥ ... ≥ JN . Compute the signal strength S that is received when no

pulses are taking place.

(3). Initial Distance Estimation: This is the value of the largest observed pulse,

which is divided by the known pulse power and put to the power of −1
γ

where

γ is the pathloss. This is shown in equation (5.2.6).

(4). Power Estimation: This is done in two parts, an initial power is estimated

using the initial distance, as shown in (5.2.7). As powers are discrete and

known this is mapped onto the closest power.
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(5). Update Distance Estimate: The power estimate is then used together with

the known pulse power and observed signal increase to update the distance

estimate. This is shown in equation (5.2.8)

(6). Update: remove jump Ji from J and update unpulsed signal to not include

contribution from this transmitter.

(7). Iterate: return to step 3 unless J = {∅} or S = 0.

We provide an example of implementing this procedure and evaluate its ac-

curacy using numerical simulations.

5.2.2 Numerical Simulations

We show an example of how we use the Pulse procedure in Algorithm 5.1 together

with the iterative pulse method given in Procedure 5.1 to estimate transmitter

distances and powers. We generate 10 transmitter distances using Algorithm 1.1.

We then implement the iterative pulse procedure with the set of available non-

pulse powers P = {1, 2, 3} and the pulse power p∗ = 4. Implementing the pulse

procedure produces the time series shown in Figure 5-5, in which we can identify

distinct pulses.
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Figure 5-5: Observed signal (y-axis) at the origin as a function of time (x-axis).
This is for a system of 10 transmitters with P = {1, 2, 3} and P ∗ = 4.

We then apply the iterative pulse procedure to estimate transmitter powers

and distances. The results are shown in Table 5.1. We note that for the first two
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transmitters power and distance estimations are exact. For the third transmitter

the power has been estimated too high which resulted with the distance estima-

tion being too small, this error has impacted on the estimations for all further

transmitters. However, the errors in the distance estimations remain small and

the estimated power is never incorrect by more than one setting.

Transmitter Actual Estimated Initial Estimate
distance power distance power distance power

1 0.41885362 3 0.41885362 3 0.40336746 3.13988931
2 0.60948059 2 0.60948059 2 0.57883943 2.37286761
3 1.02541605 1 0.92656799 2 0.8086106 2.83994511
4 1.12023376 3 1.07159195 3 0.96111205 3.3528897
5 1.27399354 3 1.3017485 2 1.14212342 2.81484866
6 1.28692805 3 1.33218996 2 1.25886318 2.40529815
7 1.34512372 2 1.48862411 1 1.43868292 1.38277286
8 1.41029432 1 1.56121887 1 1.59111447 0.76352847
9 1.4107205 2 1.67666979 1 1.8653125 -0.5955501
10 1.44062152 1 1.69369257 1 2.14530876 -3.72221965

Table 5.1: Performance of the iterative method, Procedure 5.1, on a typical task
estimating the power and distance of 10 transmitters. The initial estimates for
power were rounded down if greater than 1.

Average Relative Error of the Iterative Method

The accuracy of this iterative method does largely depend on the accuracy of the

estimation of the distance and power of the nearest transmitter. We now show

the average relative error and its standard deviation for this method.

The iterative method does not always manage to estimate distances for larger

numbers of transmitters. Therefore the sample size for higher numbered trans-

mitters will be smaller. We expect the accuracy to decrease as the transmitter

number increases and this is shown to generally be the case though the first and

last transmitter do not fit this expectation. It is interesting that the standard

deviation decreases in the middle of the plot before increasing again.
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Figure 5-6: The mean and standard deviation of the relative error of the distance
estimation when Procedure 5.1 is used. The red dots show the mean relative
error of the distance estimation for each transmitter, ordered by distance where
transmitter 1 is closest to the origin. The blue error bars show one standard
deviation above and one standard deviation below each mean. The sample for
this plot was 1000 instances of estimating the distances for 15 transmitters.

5.3 Two-Part Pulse Method (TPPM) Without

Fading

The TPPM is an adaptation of the pulse method in which rather than pulses

we have two-part pulses that consist of two parts: a ‘pre-pulse’ and a ‘pulse’.

By having two parts to a pulse we no longer require an iterative procedure to

determine the distances and powers of transmitters further than the very closest

one. An advantage of the method not being iterative is that early errors do not

compound and thus we can expect improved accuracy for transmitters at greater

distances.

Both parts of the two-part pulse involve a transmitter setting its power to a

known fixed value. We denote the pre-pulse power by p0 and the pulse power

by p∗. Each transmitter will have a power setting p with p < p∗ which we refer

to as its regular or non-pulse power. In this thesis we set that p0 < p but this

is not required for the method to work, p0 simply needs to be known. Figure

5-7 illustrates the changes in a transmitter’s power setting occuring over time as

a result of two-part pulses. The blue line in this figure is the change in power

that will be known due to p∗ and p0 being fixed and known. It is knowing the

change in power that allows distances to be estimated based on observations of
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total signal at the origin.

time, t

Power, P

p

p∗

p0

Figure 5-7: Illustration of the Two Part Pulse Method. During a two-part pulse,
for a transmitter with power p, the power setting first drops to power p0 and then
increases to p∗ before returning to p. This cycle is repeated at randomly-spaced
time intervals. The increase in power which causes the pulse is shown in blue. It
is not necessary that p0 < p.

Total Signal at the Origin

Figure 5-7 shows the changes in power occuring over time for a single transmitter

as a result of two-part pulses. We now consider the effect on the total signal at

the origin S over time as a system of N transmitters change their power settings

as a result of two-part pulses. Figure 5-8 shows the total signal at the origin

changing with time as transmitters pulse and two-part pulse in Subfigures 5-8a

and 5-8b respectively.

Let there be N transmitters T1, ..., TN , with the corresponding non-pulse pow-

ers p1, ..., pN and distances from the origin r1, ..., rN . Let S denote the total signal

observed at the origin when all transmitters are on their non-pulse powers and

let S0
k and S∗k denote observed total signal when transmitter Tk has power p0 and

p∗ respectively. Then we can give the signal at the origin in terms of sum of the

contribution from each of the transmitters in the system,

S = p1r
−γ
1 + ...+ pkr

−γ
k + ...+ pNr

−γ
N (5.3.1)

S0
k = p1r

−γ
1 + ...+ p0r−γk + ...+ pNr

−γ
N (5.3.2)

S∗k = p1r
−γ
1 + ...+ p∗r−γk + ...+ pNr

−γ
N (5.3.3)

The size of S∗k will be relative to rk the distance of transmitter Tk. The largest
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(a) The total signal at the origin varying as pulses occur.
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(b) The total signal at the origin varying as two-part pulses occur.

Figure 5-8: The total signal at the origin S (y-axis) as a function of time (x-axis)
as a set of 30 transmitters pulse 450 times. The pulse power p∗ = 4, the pre-pulse
power p0 = 0 and the regular powers are selected uniformly at random from the
set of powers P = {1, 2, 3}.
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pulse will be due to the closest transmitter, the kth largest pulse from the kth

nearest transmitter. We note that we do not include an expression for the total

signal at the origin when more than one transmitter is pulsing at a given time.

The two pulse identification procedures given in Subsection 5.3.1 would not record

such an event as a pulse. Further to this we set that pulses have a known

fixed duration but random time intervals between pulses. This means that for a

given set of transmitters pulses from particular transmitters should not overlap

consistently.

Power and Distance Estimation

In equations (5.3.1) to (5.3.3) we gave the signal at the origin as the sum of the

contribution from each transmitter in the system. We find that by subtracting

equation (5.3.2) from (5.3.3) and rearranging we can find the distance of the

transmitter pulsing as

rk =

(
S∗k − S0

k

p∗ − p0

)−1/γ

. (5.3.4)

We previously stated that the size of increase in the total signal at the origin

will correspond to the distance of the transmitter pulsing. As a result it is possible

to find the distance to each of the k transmitters in the system independently

of finding any others. To find the distance rk and power pk to the kth nearest

transmitter, we simply identify the kth largest pulse. Once we have found the

distance rk using equation (5.3.4) then there are two expressions that give the

power pk of the kth nearest transmitter. We use equation (5.3.1) together with

either (5.3.2) or (5.3.3), to find respectively that

pk = p∗ − rγk(S∗k − S)

pk = p0 + rγk(S − S0
k).

(5.3.5)

The distance and power estimations found using the TPPM are exact. This

is shown in Figure 5-9, where we also show the performance of the Pulse Method

described in Section 5.2 where the iterative procedure given in Procedure 5.1 is

used to estimate transmitter powers and distances.

The Two-Part Pulse Method

The procedure that we follow to implement the TPPM is given in Procedure 5.2.

Step (4) of Procedure 5.2 is to identify the pulses in total signal at the origin. In

Subsection 5.3.1 we propose two algorithms to identify pulses.
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Procedure 5.2 (Two-Part Pulse Method). This can be described in the following

steps:

(1). Assign regular powers p1, . . . , pN to N transmitters.

(2). Each transmitter acts independently, after a time interval which will be

random it will begin a two-part pulse, going first to power p0 then to p∗ for

a fixed period of time before returning to its non-pulse power.

(3). Event based system, changes in powers count as events. Record time and

Signal at origin of each event.

(4). Identify pulses.

(5). Use observed pulses to estimate transmitter distances, as in equation (5.3.4).

(6). Use transmitter distances to estimate transmitter powers, as in equation

(5.3.5).

Consider a set of transmitters ordered by their distance to the origin. The kth

largest increase S∗k −S0
k will result from the kth nearest transmitter to the origin

Tk. This allows us to order the transmitters by the size of the signal increase

resulting from the change from p0 to p∗. We note that the size of the signal

increase S∗k−S resulting from the change of power from p to p∗, seen in the pulse

method, cannot be relied upon to identify a transmitter’s relative distance from

the origin. For example, consider two transmitters close together Tk−1 and Tk

with signal contributions pk−1r
−γ
k−1 and pkr

−γ
k respectively. Where pk−1 > pk it is

possible that
(
p∗r−γk − pkr

−γ
k

)
>
(
p∗r−γk−1 − pk−1r

−γ
k−1

)
which would result in the

swapping of Tk−1 with Tk. Using S∗k − S to order transmitters can lead to incor-

rect assignment and hence incorrect ordering. Therefore the guaranteed correct

assignment of pulses to transmitters in the TPPM is an additional advantage it

offers over the Pulse Method.

5.3.1 Identifying Pulses

How do we identify when a pulse has taken place? When there is no fading

present we can identify a pulse beginning and ending by noticing a change in the

observed total signal at the origin. If it is the case that the durations of pulses are

known then we can identify pulses by observing a change in total signal lasting

for that time. We present two methods for identifying pulses, the first method

identifies pulses by signal change, and the second that identifies pulses by their

duration.
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Pulse Identification by Signal Change

We begin with a simple method of identifying pulses. We assume that observa-

tions have a very short duration but happen with a frequency such that they will

observe both the pre-pulse and pulse for any transmitter. For a given time se-

ries to identify pulses, when we discard sequential identical observations of signal

S, we make three sequential observations S1, S2, S3 and a pulse is identified as

S3 − S2 for all cases where S2 < S1 < S3. This is described in Algorithm 5.2.

Algorithm 5.2 Pulse Identification by Signal change

Observations are of an event based system.
We have N observations O1, . . . , ON .
Each observation records the time t and the signal at the origin S, such that
Oi = (ti, Si).
A pulse is denoted by S̃.
for i ≤ N − 2 do

if Si+2 > Si and Si > Si+1 then
S̃ ← Si+2 − Si+1

end if
end for

Pulse Identification by Duration

We now describe a procedure, for an event based system, for identifying when

a pulse has occured by noting the duration of time the signal change lasted for.

The procedure is given in Algorithm 5.3 and unlike Algorithm 5.2 it can identify

pulses that result in a decrease rather than increase in observed signal. However,

it will not identify pulses that overlap with others. Also we only observe the

system when an event takes place. This could be thought of as only recording

the observed signal if it differs from the previous observation.

5.3.2 Numerical Simulations

We use Algorithm 5.2 to identify pulses through observed signal change. We

use numerical simulations to show the relative error (%) of distance estimations

provided for all transmitters in the system.

We generate 30 transmitters locations using Algorithm 1.1 with λ = π−1. In

addition to the pulse power p∗ = 4 and pre-pulse power p0 = 0 there are three

power settings P = {1, 2, 3} one of which will be assigned uniformly at random

to each transmitter at the beginning of the simulation and will remain unchanged
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Algorithm 5.3 Pulse Identification by Duration

Let dpre, dpulse be the length of time a transmitter has power p0 and p∗ respec-
tively.
Let ti, Si be the time and total signal at the origin respectively of the ith
observation of the system.
Let the number of observations be N .
Pulses S̃ are identified as follows:
for i ≤ N − 2 do

if ti+2 − ti = dpre + dpulse then
S̃ ← Si+1 − Si

end if
end for

as the non-pulse power throughout. We will observe the system for 450 pulses.

Pulses occur according to a Poisson process with density λ = 1
3
, such that the

expected time between pulses is 3 time units. Each pre-pulse will last for 0.15

time units and each pulse will last for 0.3 time units. As usual, we set the pathloss

exponent to be γ = 4.

For the set of transmitters used to generate the time series shown in 5-8

we compare the power and distance estimations from both methods against the

actual values in Figure 5-9. They show that the TPPM finds powers and distances

exactly. Subfigure 5-9a Shows how the iterative procedure of the pulse method is

only able to estimate the powers of the nearest nine transmitters. Subfigure 5-9b

shows the power estimation for each transmitter differs from the actual value.

The iterative method ‘estimate’ is only able to correctly estimate the powers of

the nearest three transmitters

Pathloss Exponent Uncertainty

We consider the effect of uncertainty in the pathloss exponent. To show the

effect of not knowing the exact value used in numerical simulations we use a

different value in the TPPM to estimate transmitter distances. Table 5.2 shows

the sensitivity of the TPPM to the value of the pathloss exponent. We see that

for the nearest transmitter (transmitter 1) the error in the distance estimation is

approximately equal to the error in the pathloss exponent. For the second near-

est transmitter this error approximately halves and it further decreases for the

third nearest transmitter. For the fourth transmitter onwards the error gradually

increases. As it is the distances to the nearest transmitters which are most im-

portant the fact that the error in distance estimation is approximately bounded

by the error in the pathloss exponent shows that this method is robust.
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(b) The estimated and actual transmitter powers.

Figure 5-9: A comparison of the TPPM and the pulse method coupled with the
iterative procedure. The legend ‘Actual’ refers to the known power or distance
of a transmitter. The legend ‘estimate’ is the estimated transmitter power or
distance found using the pulse method together with the iterative procedure.
The legend ‘pre-pulse estimate’ is the transmitter distance or power found using
the TPPM.
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Transmitter Pathloss exponent (Relative error)
2.2 (-0.45) 3 (-0.25) 3.2 (-0.2) 3.6 (-0.1) 3.8 (-0.05)

1 -0.5088 -0.2516 -0.1796 -0.0774 -0.0425
2 -0.2475 -0.1195 -0.0871 -0.0328 -0.016
3 -0.0575 -0.0416 -0.0344 -0.0039 -0.0035
4 0.0972 0.0103 0.0003 0.0108 0.0042
5 0.1836 0.0467 0.033 0.0243 0.0112
6 0.2682 0.0863 0.0597 0.0346 0.0159
7 0.3655 0.1237 0.0834 0.043 0.0201
8 0.4531 0.1499 0.1031 0.0494 0.0232
9 0.5270 0.1739 0.1215 0.0576 0.0265
10 0.5888 0.1942 0.1406 0.0650 0.0294

Table 5.2: The average relative error of the TPPM distance estimation when an
incorrect pathloss exponent value is used, the actual value is γ = 4. We use
a percentage of the pathloss exponent used in the numerical simulations in the
TPPM, as indicated above the columns.

5.4 Two-Part Pulse Method with Fading

When fading is in effect we use the Method of Moments together with the TPPM

to estimate the distances of the nearest transmitters. When fading is in effect

it is more complicated to use the pre-pulse method to estimate the distance of

the nearest transmitter. For at every observation a new fading variable will be

scaling the contribution from each of the transmitters. This results in it being

more challenging both to identify and correctly attribute the pulses in the time

series. As previously we use an event based system, we only observe when an

event takes place. This provides an advantage in identifying pulses which we

relate to the potential ability of transmitters to indicate that they are pulsing in

a real world system.

The total signal F observed when no transmitters are pulsing is given by

the sum of the contribution from each transmitter individually multiplied by a

random fading variable Hi. Therefore, where there are N transmitters we have

that

F =
N∑
i=1

Hipir
−γ
i .

When transmitter i performs a two-part pulse it temporarily uses power settings

p0 and then p∗ before returning to pi. The observed signal for the two parts of
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the pulse is

F 0
i = H ′1p1r

−γ
1 + ...+H ′ip

0r−γi + ...H ′NpNr
−γ
N

F ∗i = H1p1r
−γ
1 + ...+Hip

∗r−γi + ...HNpNr
−γ
N

A pulse from transmitter i is denoted by F̃i and is given by

F̃i = F ∗i − F 0
i

= (H1 −H ′1)p1r
−γ
1 + ...+ (Hip

∗ −H ′ip0)r−γi + ...+ (HN −H ′N)pNr
−γ
N

(5.4.1)

As fading is rapidly changing, at every observation the fading variables will

have changed. The duration of the pulses is fixed and therefore it is possible

to identify when a pulse is taking place and whether it is a pre-pulse or not

by recording the duration of the pulse. In Subsection 5.3.1 we proposed two

algorithms for identifying pulses. We note that Algorithm 5.2 could miss pulses,

particularly those from transmitters that are further away. This is because the

contribution from those transmitters is much smaller, even when on high pulse

power, than the contributions from transmitters that are close. Therefore an

increase in the fading variables for a closer transmitter could mask a decrease

in power setting for a far transmitter. This would result in a pulse not being

detected. However, Algorithm 5.3 would not miss these pulses. Therefore with

fading effects we identify pulses by their duration.

5.4.1 Pulse Sample Reduction

The description of the Method of Moments in Subsection 1.4.3 details that for

a system of N transmitters, estimating the distance of each would require com-

puting N moments of a sample of pulses. However, solving such a system of

equations may not be possible and, even when it is, higher moments may not

be reliable. If a relationship between parameters and sample values can be as-

sumed, then selectively reducing the sample reduces the number of parameters

correspondingly.

We assume that the closer a transmitter is, the more extreme the observed

pulse (when p0 6= 0 observed pulses can be negative). If the pulse rates are known,

then for a given observation period we know the expected number of pulses per

transmitter. We denote the expected number of pulses per transmitter by n. The

n most extreme pulses will be assumed to be from the closest transmitter (making

n from negative and positive pulse sets according to their relative sizes), the most

extreme 2n pulses will be assumed to be from the two closest transmitters and

so on.
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From [13] we understand that for BT the ability to estimate the distance

to the nearest one or two transmitters is adequate. Therefore we reduce our

pulse sample to include only pulses assumed to be from the nearest one or two

transmitters and then compute the first and/or second moment.

Distance to Two Nearest Transmitters

We observe total signal F for a system of N transmitters using the TPPM. We

observe a number K of pulses F̃ and, where all transmitters share the same pulse

rate, the expected number of pulses per transmitter is given by n = K
N

. Where

both positive and negative pulse values are recorded, the expected number of

positive and negative pulses per transmitter can be found and denoted by n+ and

n− respectively such that n = n+ + n−. The 2n most extreme (2n+ positive and

2n− negative) pulses are assumed to have come from the nearest two transmitters.

We take these as our subsample that we will use to estimate the distances r1 and

r2 to the two closest transmitters. We do this by computing the first µ1 and

second µ2 moment of our subsample as follows:

The first moment:

µ1 = E
[
F̃
]

≈
∑2n

i=1 (F ∗i − F 0
i )

2n

≈ 1

2n

[
n∑
i=1

(
p∗Hir

−γ
1 − p0H ′ir

−γ
1

)
+

n∑
i=1

(
p∗Hir

−γ
2 − p0H ′ir

−γ
2

)]
= (r−γ1 + r−γ2 )

1

2

(
p∗E [Hi]− p0E [H ′i]

)
.

(5.4.2)

The second moment:

µ2 = E
[
F̃ 2
]

≈
∑2n

i=1 (F ∗i − F 0
i )

2

2n

≈ 1

2n

[
n∑
i=1

(
p∗Hir

−γ
1 − p0H ′ir

−γ
1

)2
+

n∑
i=1

(
p∗Hir

−γ
2 − p0H ′ir

−γ
2

)2

]
= (r−2γ

1 + r−2γ
2 )

1

2

(
p∗

2

E
[
H2
i

]
+ p02

E
[
H ′2i
]
− 2p∗p0E [HiH

′
i]
)
.

(5.4.3)

Therefore we have that

r−γ1 + r−γ2 ≈ 2µ1

p∗E[Hi]− p0E[H ′i]
(5.4.4)
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and

r−2γ
1 + r−2γ

2 ≈ 2µ2

p∗2E [H2
i ] + p02E [H ′2i ]− 2p∗p0E [HiH ′i]

. (5.4.5)

From these two equations we can find the expected distance to r1 and r2. We

set that v1 = r−γ1 + r−γ2 and v2 = r−2γ
1 + r−2γ

2 with the values of v1 and v2 found

from equations (5.4.4) and (5.4.5) respectively. Then

r1 =

(
v1 +

√
2v2 − v2

1

2

)−1/γ

and r2 =

(
v1 −

√
2v2 − v2

1

2

)−1/γ

.

(5.4.6)

Distance to Nearest Transmitter

As described above, we assume that the n most extreme pulses are caused by the

closest transmitter. The more extreme the pulse the more likely this assumption

is to be correct. Therefore by further reducing our sample of n pulses to exclude

potentially incorrectly attributed pulses, we expect to improve the distance esti-

mation accuracy. Let G be the fraction of the n pulses of the nearest transmitter

kept for this further reduced sample, the most extreme are the ones kept. As n is

the expected number of pulses from each transmitter and 0 < j ≤ n, with j ∈ Z
then

G =
j

n
(5.4.7)

By keeping only the most extreme j pulses we are in effect conditioning on the

expected value of the fading variables and therefore the pulses. To find the con-

ditional expected value of a pulse, we must find the probability density function

(PDF) and cumulative distribution function (CDF) of the pulses. The CDF will

allow us to find x such that:

P(p∗H − p0H ′ > x) = G. (5.4.8)

This will allow us to use the PDF to find the expected value of a pulse conditional

on it being in the most extreme G of pulses,

E[p∗H − p0H ′|p∗H − p0H ′ > x] (5.4.9)
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Then, for the j most extreme pulses F̃ , we have that

r1 ≈


1
j

j∑
i=1

F̃i

E
[
F̃ |F̃ > x

]

−1
γ

,

r1 ≈


1
j

j∑
i=1

F̃i

E[p∗H − p0H ′|p∗H − p0H ′ > x]


−1
γ

. (5.4.10)

5.4.2 Rayleigh Fading

Rayleigh fading is the most extreme of the fading effects and therefore the most

challenging. We ask the following question, is it possible to accurately estimate

the distance and power of transmitters when Rayleigh fading is in effect? In

Section 5.3 we saw that the TPPM accurately estimates the distances to neigh-

bouring transmitters when they are on different power settings. We wish to

understand how effective this method is when Rayleigh fading is in effect.

Rayleigh fading is fast varying, therefore at every observation time the fading

variable affecting the contribution from each transmitter will be new. As the

effect of fading will not be consistent across the pre-pulse and the pulse it will

be challenging to identify the pulses themselves. A Rayleigh fading variable is

applied to the signal from each transmitter at each observation. We use the two

part pulse method and observe a large number of pulses.

Distance to Two Nearest Transmitters

When Rayleigh fading is in effect we know that the fading variables H ∼ Exp(1)

and so E[Hi] = E[H ′i] = 1, E[H2
i ] = E[H ′2i ] = 2 and that E[HiH

′
i] = 1. Putting

these values into equations (5.4.4) and (5.4.5) we recover that

v1 = r−γ1 + r−γ2 ≈ 2µ1

p∗ − p0

v2 = r−2γ
1 + r−2γ

2 ≈ µ2

p∗2 + p02 − p∗p0

(5.4.11)

and substituting these values of v1 and v2 into equation (5.4.6) we find estimates

for r1 and r2.

The accuracy of this method can be seen in Figure 5-10. We notice that there
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are three distinct spikes in the likelihood of certain errors. These correspond

to the three power settings P = 1, 2, 3. In Figure 5-13 we use transmit powers

P ∼ Unif(1, 3) and note that we do not see these spikes. Additionally in Figure

5-11, which used the same set of pulses as those used for estimating r1 in Figure

5-13 we see the distribution of the relative error of the r2 estimate. The relative

error of the r2 is larger than for r1.

In Figure 5-12 we show that the relative error of the estimation of r1 is im-

pacted by r2. When r1 and r2 are close then we underestimate the distance r1.

Distance to Nearest Transmitter

As stated, we reduce the sample with the aim of excluding values not from the

closest transmitter. We reduce the sample by keeping only the most extreme

fraction G = j
n

= 1
a

where the expected number of pulses per transmitter is

n. In the case of Rayleigh fading we know that H ∼ Exp(1) and therefore

P(H > x) = e−x.

Let F̃1, . . . , F̃j be the j most extreme observed pulses, then

µ1 =
1

j

j∑
i=1

F̃i (5.4.12)

and

r1 ≈
(

aµ1

(1 + log(a))(p∗ − p0)

)−1/γ

(5.4.13)

We set that G = 1
a

and then look at the distribution of the relative error as we

increase a = 1, 2, ...10. When we use the duration method of identifying pulses

given in Algorithm 5.3 we find that the relative errors for each a are as follows

in Table 5.3:

For Table 5.3 we generated 10 transmitters with discrete power settings P =

1, 2, 3 and with p∗ = 4 and p0 = 0. The relative error given is the average relative

error over 100 simulations. For each simulation a set of transmitters were created

the Rayleigh fading TPPM and the system was observed until 10000 pulses had

taken place. Pulses were identified using the duration algorithm. For each of

the 100 sets of pulses the error in the estimate of r1 was computed. The table

gives the mean and standard deviation of the relative error. We note that as the

fraction decreases so does the expected error in the estimate of r1. This supports

our intuitive expectation that more stringent sampling improves accuracy.
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Figure 5-10: Histogram showing the frequency (y-axis) of the relative error (x-
axis) of the TPPM. We generated 10 transmitters with distances generated with
Algorithm 1.1 with λ = π−1. In Subfigure 5-10a there are 3 transmit powers
P = {1, 2, 3}, in Subfigure 5-10b transmit powers are continuous. For both
figures the pre-pulse power was 0 and the pulse power was 4. To collect the data
for these plots observed signal at the origin was recorded until 10000 pulses had
taken place and repeated this was repeated 5000 times. The relative error =
(actual dist - estimated dist)/(actual dist).
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Figure 5-11: The distribution of the relative error of the r2 estimation. 10 trans-
mitters pulsing a combined 10000 times was repeated 5000 times to obtain the
relative error. Transmit powers were continuously distributed ∼ Unif(1, 3).

Figure 5-12: The relative error of the distance estimation for the nearest trans-
mitter when Rayleigh fading is in effect, using the Method of Moments. We show
how this relates to both the actual distance of the nearest transmitter r1 and the
second nearest transmitter r2 relative to r1.
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Relative Error
a mean standard deviation

1 -0.11621187 0.05751156
2 -0.05813994 0.05140302
3 -0.03991012 0.04648342
4 -0.03103664 0.04291901
5 -0.02551089 0.04026556
6 -0.02104074 0.03820865
7 -0.01791739 0.03657861
8 -0.01686244 0.03528335
9 -0.01497062 0.0341989
10 -0.0137509 0.03329065

Table 5.3: Accuracy of the Method of Moments for Rayleigh fading as fraction
of pulse samples decreases. 1000 pulses were recorded and 1000 iterations were
done for each fraction size. No parameters were changed other than the size of a.
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Figure 5-13: The relative error of the distance estimation as a function of the
fraction of pulses used. We show the mean and standard deviation for 10 trans-
mitters with a low power of 1 and a high power of 3, with the powers continuously
uniformly distributed between these. The pulse power and pre-pulse power were
4 and 0 respectively. The pathloss exponent γ = 4. We used 500 samples of 10000
pulses and averaged the relative error of the distance estimation over these. We
see that as the fraction decreases the average relative error decreases.
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5.4.3 Nakagami-m Fading

When Nakagami-m fading is in effect we do not use the TPPM to estimate

the transmit power of the nearest transmitter but show that by approximating

the Gamma(m, 1
m

) distribution by a normal distribution we can fairly accurately

estimate the distance to the nearest transmitter.

Distance to Two Nearest Transmitters

With Nakagami-m fading, the fading variables h ∼ Gamma(m, 1
m

). From equa-

tions (5.4.4) and (5.4.5), we know that we need to find E[Hi] = E[H ′i], E[H2
i ] =

E[H ′2i ] and E[HiH
′
i].

For X, Y ∼ Gamma(m, 1
m

), where X, Y are independent: E[X] = 1, E[X2] =
m+1
m

and E[XY ] = E[X]E[Y ] = 1.

Therefore if we set that X = Hi and Y = H ′i then we find

v1 = r−γ1 + r−γ2 ≈ 2µ1

p∗ − p0

v2 = r−2γ
1 + r−2γ

2 ≈ 2µ2

m+1
m

(p∗2 + p02)− 2p∗p0

(5.4.14)

Equation (5.4.6) can then be used to estimate the distance to the nearest two

transmitters.

Accuracy

We use numerical simulations to assess the accuracy of the estimations or r1 and

r2. In Figure 5-14 we see that the relative error of the estimation of r2 decreases as

m increases. The relative error is negative as we estimate the second transmitter

as being closer than it is. This is likely due to incorrectly attributing pulses to

the second transmitter. The relative error of the estimated r1 is within 2% of the

actual distance for all values of m tested. It is estimated as being closer than it is

only for the case m = 2. In the following subsubsection we assess whether using

a reduced sample of pulses attributed to T1 improves the accuracy. Before that

we examine the relationship between the relative distance and power of T1 and

T2 and the accuracy of the r1 estimation. We do this for the case where m = 20.

We now consider the impact of the distance of the second nearest transmitter

on the accuracy of the distance estimation of the first. Subfigure 5-15a shows

how the relative error of the distance estimation for the nearest transmitter is
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(a) The relative error of the r1 estimate.

Figure 5-14: The error in our estimates for r1 and r2. Ten transmitters pulsed
500 times. From the initial sample of 500 pulses the most extreme 100 were
attributed to being from the two closest transmitters and the method of moments
applied to estimate distances. For each value of m the relative error averaged
from 500 instances is given. For r2 where an imaginary value was found these
estimations were excluded from the averaging. Subfigure 5-14a shows the relative
of r1. Transmit powers were continuously uniformly distributed between 1 and
3, p∗ = 4 and p0 = 0.
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affected by the distance of the nearest transmitter and the relative distance of the

second transmitter. Subfigure 5-15b shows the relative distances of the closest

two transmitters has a strong impact on the accuracy of the distance estimation

of the first. Considering their relative power settings does not play a large part.

Therefore relative distance seems most impactful regarding accuracy of estima-

tion. We observe that where r1 and r2 are very similar the relative error of the r1

estimation is negative. Where the relative distances are not similar it is positive.

As m increases we anticipate that the accuracy of our estimates will improve as

a result of the Normal approximation of the Gamma distribution being better.

Distance to Nearest Transmitter

To estimate the distance to the nearest transmitter when Nakagami-m fading is

in effect using the TPPM and MoM we reduce our sample of pulses such that

it only includes pulses believed to be from the nearest transmitter. We show

that further reducing this sample improves accuracy. As fading is present we use

Algorithm 5.3 to identify pulses as we have shown it is more accurate in this case

than Algorithm 5.2.

From the description of estimating the distance to the nearest transmitter

given in Subsection 5.4.1 we understand that we must find the PDF and CDF of

the observed pulses to allow us to find the expected value of the pulses conditional

on them being the most extreme fraction.

We begin by finding the PDF of the difference of two Gamma distributed

random variables. Nakagami-m fading means that H ∼ Gamma(m, 1
m

), and with

scaling pH ∼ Gamma(m, p
m

). Therefore we know that H,H ′ ∼ Gamma
(
m, 1

m

)
,

and that p∗H ∼ Gamma
(
m, p

∗

m

)
and p0H ′ ∼ Gamma

(
m, p

0

m

)
. Setting X = p∗H

and Y = p0H ′ allows us to represent p∗H − p0H ′ as Z = X − Y . Hence the

probability density function of Z is given by the convolution of X and −Y ,

fZ(z) = fX ∗ f−Y (z) =

{ ∫∞
0
fX(z + y)fY (y)dy. for z ≥ 0;∫∞

0
fY (x− z)fX(x)dx for z ≤ 0.

(5.4.15)

This gives that

fZ(z) =

 m2m

Γ(m)2(p∗p0)m
e
−mz
p∗
∫∞

0
(z + y)m−1ym−1e

−my
(

1
p0

+ 1
p∗

)
dy for z ≥ 0;

m2m

Γ(m)2(p∗p0)m
e
mz
p0
∫∞

0
(x− z)m−1xm−1e

−mx
(

1
p0

+ 1
p∗

)
dx for z ≤ 0.

(5.4.16)
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(a) The relative error of the distance estimation for the nearest transmitter
when Nakagami-m fading is in effect, using the Method of Moments. We show
how this relates to both the actual distance of the nearest transmitter r1 and
the second nearest transmitter r2 relative to r1.

(b) The relative error of the distance estimation for the nearest transmitter
when Rayleigh fading is in effect, using the Method of Moments. We show how
this relates to both the actual distance of the nearest transmitter r1 and the
second nearest transmitters power p2 and distance r2 relative to the nearest
transmitters power p1 and distance r1.

Figure 5-15: Nakagami-m fading with m = 20, 500 pulses observed, 10 transmit-
ters, 1000 repeats. Yellow indicates distances (in 5-15a) or signal contribution
(in 5-15b) of the two nearest transmitters are very close, dark blue represents a
large difference.
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and applying Theorem 2.1 of [51] we find that this can be expressed as

fZ(z) =


mm

Γ(m)(p∗+p0)m
zm−1e

−z
2

(
m
p∗−

m
p0

)
W0, 1

2
−m

(
z
(
m
p∗

+ m
p0

))
for z ≥ 0;

mm

Γ(m)(p∗+p0)m
(−z)m−1e

z
2

(
m
p0
− m
p∗

)
W0, 1

2
−m

(
−z
(
m
p∗

+ m
p0

))
for z ≤ 0.

,

(5.4.17)

where W denotes a Whittaker function. The Whittaker W function is related to

the confluent hypergeometric function by

Wk,m(z) = e−z/2zm+1/2U(m− k +
1

2
, 1 + 2m, z).

The confluent hypergeometric function U(a, b, z) was introducted by Francesco

Tricomi in 1947 [76] and is defined as

U(a, b, z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b, z) +

Γ(b− 1)

Γ(a)
z1−bM(a+ 1− b, 2− b, z).

This expression is undefined for integer b but can be extended to any integer b

by continuity. The generalized hypergeometric series M is known as Kummer’s

function and was introduced by Kummer in 1837 [45] and is given by

M(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!
= 1F1(a; b; z)

where a(n) is the rising factorial with a(0) = 1 and a(n) = a(a+1)(a+2)...(a+n−1).

Alternatively equation (5.4.17) can be expressed as

fZ(z) =

√
πm2m csc(πm)

(
− z(

1
p0

+ 1
p∗

)
m

)m− 1
2

e
mz
2

(
1
p0
− 1
p∗

)
Km− 1

2

(
−mz

2

(
1
p0 + 1

p∗

))
(p∗p0)mΓ(1−m)Γ(m)2

(5.4.18)

where Kα(x) is the modified Bessel function of the second kind given by

Kα(x) =
π

2

I−α(x)− Iα(x)

sinαπ

with the right of this equation being replaced by its limiting value if α is an

integer or zero [3] and where Iα(x) =
∑∞

n=0
1

n!Γ(n+α+1)

(
x
2

)2n+α
.

To employ the MoM with reduced sampling to estimate the distance r1 we

require the cumulative distribution function FZ(x) =
∫ x
−∞ fZ(z)dz. This allows

us to find x such that FZ(x) = 1−G and compute E[Z|Z > x]. We have found

two forms for the probability density function (PDF) of the difference of two
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Gamma distributed variables, given in (5.4.17) and (5.4.18). However, neither of

these expressions allow a general form for the cumulative distribution function

to be found. Therefore we consider separately the case p0 = 0 and the case when

p0 ≥ 0.

When p0 = 0 we can use the Gamma distribution directly, and use its CDF

to find x and then E[p∗H|p∗H > x], the results of this are shown in Table 5.4

and Figure 5-16.

We have that p∗H ∼ Gamma(m, p
∗

m
) and therefore from this we find that

P (p∗H > x) =
Γ
(
m, mx

p∗

)
Γ(m)

(5.4.19)

and therefore

E[p∗H|p ∗H > x] =
Γ(m)

Γ
(
m, mx

p∗

) ∫ ∞
x

1

Γ(m)
(
p∗

m

)m (p∗H)me
− p∗H

( p
∗
m )dp∗H

=
1

Γ
(
m, mx

p∗

) ∫ ∞
x

(
p∗H(
p∗

m

))m

e
− p∗H

( p
∗
m )dp∗H

=

(
p∗

m

) Γ
(
m+ 1, mx

p∗

)
Γ
(
m, mx

p∗

) .

(5.4.20)

We use this in numerical simulations to test its accuracy. The exact fraction

of pulses used was taken to be G for each sample, when these were averaged they

gave the fractions given in the fraction column of Table 5.4.

When p0 ≥ 0, as stated, we cannot obtain a general form of the CDF of Z.

However, when p0 > 0 we can compute the CDF for specific values of m. We

give examples of the cases when m = 2 and m = 5. Alternatively we can obtain

a general form using the Normal approximation to the Gamma distribution. The

Normal approximation to the Gamma distribution increases in accuracy as m

increases, as the Gamma distribution becomes more symmetric.
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Relative Error of Method of Moments
m

Fraction 2 5 10 15 20
1 -0.093675 -0.038167 -0.018317 -0.013364 -0.009127

1/2 -0.047365 -0.017117 -0.009101 -0.008032 -0.006103
1/3 -0.035342 -0.013662 -0.008062 -0.007539 -0.005936
1/4 -0.029479 -0.012123 -0.007625 -0.007358 -0.005903
1/5 -0.025917 -0.011223 -0.007367 -0.007263 -0.005898
1/6 -0.023477 -0.010616 -0.007192 -0.007195 -0.005903
1/7 -0.021681 -0.010172 -0.007062 -0.007145 -0.005913
1/8 -0.020297 -0.009830 -0.006963 -0.007100 -0.005920
1/9 -0.019193 -0.009557 -0.006881 -0.007060 -0.005922
1/10 -0.018283 -0.009322 -0.006811 -0.007023 -0.005925

Table 5.4: The relative error of the distance estimate when Nakagami-m fading
is in effect and fractions of pulses are used in the Method of Moments. We used
10 transmitters with powers continuously uniformly distributed between 1 and 3.
The pulse power was 4 and the pre-pulse power was 0. We took 1000 samples of
20000 pulses.

Figure 5-16: Relative error of the distance estimation when Nakagami-m fading
is in effect as a function of the fraction of pulses used in the Method of Moments,
for five values of m. We observe how reducing the sample size affects the relative
error of the distance estimation. We observe 1000 samples of 20000 pulses.
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Here we give the cases when m = 2 and m = 5:

P (Z ≤ x) =
e

2x
p0 p0(p0(3p∗ + p0)− 2x(p∗ + p0))

(p∗ + p0)3
for m = 2, and

P (Z ≤ x) =
p0e

5x
p0

(
300p02

x2(p∗ + p0)2
(

21p∗2 + 7p∗p0 + p02
))

24(p∗ + p0)9

−
p0e

5x
p0

(
120p03

x(p∗ + p0)
(

56p∗3 + 28p∗2p0 + 8p∗p02
+ p03

))
24(p∗ + p0)9

+
p0e

5x
p0

(
24p04

(
126p∗4 + 84p∗3p0 + 36p∗2p02

+ 9p∗p03
+ p04

))
24(p∗ + p0)9

+
p0e

5x
p0 (625x4(p∗ + p0)4 − 500p0x3(p∗ + p0)3(6p∗ + p0))

24(p∗ + p0)9
for m = 5.

(5.4.21)

In both cases m = 2 and m = 5 it is clear that when p0 = 0 the CDF is

indeterminate and cannot be solved to find z such that FZ(z) = P[Z ≤ z] = 1−G.

When p0 > 0 we can find the expected values and assess the accuracy as we

decrease the fraction. For larger m the expression of the CDF gets more complex.

The normal approximation provides a general form.

When m = 2 then, with P (Z > x) = G and the Lambert W function defined

as W (xex) = x,

x =

p0

(
3p∗ + p0 + (p∗ + p0)W

(
e
−3p∗+p0
p∗+p0 (G−1)(p∗+p0)2

p02

))
2(p∗ + p0)

. (5.4.22)

Therefore

E[Z|Z > x] =
1

G

∫ ∞
x

zfZ(z)dz. (5.4.23)

In the case when m = 5 we cannot find x.

For general m > 0 we use the normal approximation of the gamma distri-

bution. We can approximate the distribution Gamma(k, θ) as N (kθ, kθ2). This

approximation allows us to take that H,H ′ ∼ N (1, 1
m

). As shown in [57], where

there is a linear function of two independent random variables Y,X such that

Y = aX + b then fY (y) = 1
|a|fX

(
y−b
a

)
. Therefore

p∗H ∼ N
(
p∗,

p∗2

m

)
and p0H ′ ∼ N

(
p0,

p02

m

)
. (5.4.24)
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As before, we represent p∗H − p0H ′ as Z = X − Y , by setting X = p∗H and

Y = p0H ′. We find the probability density function of Z using results on the

characteristic functions of random variables in [29]. Let ϕX(t) = E
[
eitX

]
, ϕY (t) =

E
[
eitY
]

be the characteristic functions of the two independent random variables

X and Y , respectively. The characteristic function of their sum is ϕX+Y (t) =

ϕX(t)ϕY (t). For arbitrary real numbers a and b then ϕaY+b(t) = eitbϕY (at)

and so ϕ−Y (t) = ϕY (−t). The characteristic function of the random variable

X ∼ N (µX , σ
2
X) is ϕX(t) = exp(itµX−σ2

Xt
2/2). It follows that the characteristic

function of the difference of independent normal random variables X and Y is

ϕX−Y (t) = ϕX(t)ϕY (−t) = exp
(
it(µX − µY )− (σ2

X + σ2
Y )t2/2

)
. (5.4.25)

So for Z = X − Y with X ∼ N (µX , σ
2
X), and Y ∼ N (µY , σ

2
Y ) then Z ∼ N (µX −

µY , σ
2
X + σ2

Y ). Therefore

Z ∼ N

(
p∗ − p0,

p∗2 + p02

m

)
. (5.4.26)

From this we wish to identify x where P(Z > x) = G.

P(Z ≤ x) = 1−G = Φ(z̃) where x = µZ + σZ z̃ (5.4.27)

and Φ(z̃) = 1√
2π

∫ z̃
−∞ e

− t
2

2 dt. Therefore as z̃ = Φ−1(1−G),

x = p∗ − p0 +

√(
p∗2 + p02

m

)
Φ−1(1−G). (5.4.28)

As we can obtain for a given value of G the corresponding value of x, we can

estimate the distance r using (5.4.10). The error function Erf(x) = 2√
π

∫ x
0
e−t

2
dt.

Further to that we define Erf(x0, x1) = Erf(x1) − Erf(x0) = 2√
π

∫ x1

x0
e−t

2
dt. Then

for Z ∼ N (µZ , σ
2
Z),

fZ(z) =
1√

2πσ2
Z

e
− (z−µZ )2

2σ2
Z (5.4.29)

and

E[Z|Z > z] =
1

P(Z > x)

∫ ∞
x

zfZ(z)dz

=
1

G

∫ ∞
x

zfZ(z)dz.

(5.4.30)
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Therefore for our case where Z ∼ N
(
p∗ − p0, p

∗2+p02

m

)
we find that, for x as

defined in equation (5.4.28),

E[Z|Z > x] = p∗ − p0 +

√
(p∗2+p02)

2mπ

(
e
−(Φ−1(1−G))

2

2

)
G

(5.4.31)

The accuracy, shown in terms of the averaged relative error of the distance

estimation as G and m varies is shown in Table 5.5.

Relative Error of Method of Moments: Normal Approximation
m

Fraction 2 5 10 15 20
1 -0.093184 -0.038772 -0.018379 -0.010820 -0.009113

1/2 -0.040895 -0.015085 -0.008589 -0.005996 -0.006113
1/3 -0.038183 -0.015969 -0.010148 -0.007417 -0.007301
1/4 -0.039079 -0.017683 -0.011656 -0.008644 -0.008311
1/5 -0.040731 -0.019300 -0.012912 -0.009635 -0.009155
1/6 -0.042528 -0.020837 -0.014047 -0.010484 -0.009884
1/7 -0.044112 -0.022057 -0.014939 -0.011159 -0.010439
1/8 -0.045711 -0.023263 -0.015898 -0.011813 -0.011003
1/9 -0.046891 -0.024132 -0.016525 -0.012240 -0.011348
1/10 -0.047951 -0.024930 -0.017050 -0.012594 -0.011638

Table 5.5: The relative error of the distance estimate when Nakagami-m fading
is in effect and a fraction of pulses is used in the Method of Moments. The
Normal approximation of the Gamma distribution is used. The 10 transmitters
had powers continuously uniformly distributed between 1 and 3. The pulse power
was 4 and the pre-pulse power was 0. We took 1000 samples of 20000 pulses.
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Figure 5-17: Relative error of the distance estimation for the fraction of pulses
used in the Method of Moments when taking the Normal approximation to the
Gamma distribution is taken. Nakagami-m fading is in effect and the error is
shown for five values of m, we observe how reducing the sample size affects the
relative error of the distance estimation. We observe 1000 samples of 20000
pulses.

5.5 Short Summary

We began this chapter by assessing the accuracy of the uniform-transmit-power

heuristics, that we developed in Chapter 4, when transmit powers are not uniform.

Following this, in Section 5.2 we introduced BT’s patented Pulse Method [15].

We developed Procedure 5.1, to be used in conjunction with the Pulse Method,

to predict transmitter distances and powers. We showed that these estimates are

close to the actual values, particularly for the closest transmitters.

In Section 5.3 we developed a new method, the Two-Part Pulse Method

(TPPM), for estimating transmitter powers and distances. When fading is not in

effect, we showed that the TPPM finds transmitter powers and distances exactly.

In Figure 5-8 we compared the performance of the Pulse Method to the TPPM.

In Section 5.4 we used the TPPM when fading was in effect to estimate the dis-

tance of the nearest one or two transmitters. We used the Method of Moments

to sample pulses from the time series of observed signal. Numerical simulations

were used to demonstrate the error of these estimates.
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Chapter 6

Discussion and Conclusion

This thesis has explored the mathematics of SON and what can be achieved

when performing distributed optimisation with incomplete information. We have

presented novel methods for enabling this optimisation that outperform existing

techniques. In this chapter we discuss the new methods we have developed and

their significance. We summarise what has been shown, state conclusions and

propose further work. This chapter is organised into four sections with each

section corresponding to a previous chapter. We begin by discussing Chapter 2.

6.1 Three Competing Self-Organisation Objec-

tives

In Chapter 2 we studied the dynamics of a wireless communication network as it

aimed to satisfy three competing self-organisation objectives. We simplified the

network by not incorporating its spatial configuration or effects, such that any

two transmitters in the network could be considered neighbours. We allowed that

a transmitter could be in one of three states determined its power setting, these

were off O, low L and high H.

To assess the dynamics of this network we began by formulating the problem

as a Markov jump process in Subsection 2.1.1. Then in Subsection 2.1.2 we gave

two routes (Theorem 2.1 and Kurtz’s method) that allowed us to represent the

evolution as an SDE. The drift term of this SDE gave the nonlinear ODEs that

comprised the usual mean-field description of the dynamics in the limit in which

N the number of transmitters (i.e., the system size) becomes infinite.

Following the reduction of this system of ODEs from three to two dimensions

(since the total number N is constant) we show that there exists a unique interior
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equilibrium point, and that is stable. We then analysed the behaviour of the sys-

tem whilst approaching, and once it reached equilibrium, in Section 2.3. We used

two methods to provide numerical simulations. The first was to plot solutions

to the ODEs, giving a continuous representation of the dynamics in Figure 2-4

and the vector field in Figure 2-3. The second was to simulate the dynamics for

a fixed, finite, number of transmitters using the Gillespie stochastic simulation

algorithm (GSSA) described in Algorithm 2.1.

Figure 2-5 confirms that the GSSA followed the trajectories of the ODEs for

largeN , with oscillations around the equilibrium state. To analyse the oscillations

about equilibrium we computed the power spectral density, both theoretically and

numerically. To compute the PSD theoretically we used Theorem 1.5; numerically

we took the fast Fourier transform of our time series of observations from the

GSSA. We showed that power peaked at low frequencies, this is shown for the

theoretical derivation in Figures 2-6 and 2-7. In these figures we observe that the

peak is small and can be hard to detect.

Simulating an infinite continuous system is not possible, however when using

the GSSA to enable numerical computation of the PSD the finite discretisation

resulted in discrepancies between the theoretical and numerical results for higher

frequencies. Increasing the system size, reducing the time step and increasing

the total simulation time all help to reduce the error between the theoretical

and numerical results. However, all these measures increase the computational

demands of the simulation. Therefore we showed in Figures 2-8 to 2-10 the

alignment of the theoretical and numerical results focussing mainly on lower

frequencies. This enabled us to identify the peak in the PSD of xH , as seen in

Figure 2-8a.

In conclusion, we have developed a framework for analysing the stability of

the system when it approaches, and when it is very near to, equilibrium. The

analysis of this chapter was constrained by considering only pairwise interactions

between transmitters. Future work could build on this by including interactions

between three or more transmitters, as well as including analysis of the dynamics

resulting from implementing the power control policies developed elsewhere in

this thesis and used together with the new distance estimation methods.

6.2 Self-Optimising Power Configurations

In Chapter 3 we showed that, with the exception of the case in which there are

only two transmitters and no noise, uniform transmit powers are usually not op-
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timal for SINR. However, non-uniform powers, that are set without consideration

of the network structure, do not typically perform better than uniform power set-

tings. Given this, our aim in this chapter was to propose a power control policy

that adjusted transmit powers based on network observations.

We proposed a new power control algorithm which we termed ‘Switch-Off

Cluster’ (SOC) which appeared to outperform BT’s benchmark policy ‘Smart’.

We showed this by comparing the CDF curves of SINR when the two policies

were applied on the same transmitter network. The SOC algorithm requires

a few complete iterations (every transmitter in the network updating once) to

reach its optimal configuration, whereas the Smart policy only requires a single

complete iteration to reach its optimal configuration. However, as seen in Figure

3-6, even after a single complete iteration SOC significantly outperforms Smart.

Additionally, as shown in Figure 3-9, the improvement from an additional one or

two complete iterations following the first is minimal. Therefore an advantage

of SOC over Smart is that after a single complete iteration it achieves improved

SINR.

A potential disadvantage in implementing SOC for distributed power control

is that it requires knowledge of the distances and powers of all transmitters within

a minimum distance. We addressed this requirement in Chapters 4 and 5 where

we developed heuristics for estimating these distances and powers. However, we

found that accurate estimation of power and distance for multiple transmitters

was only achievable with non-uniform powers in the absence of fading. Therefore

in Section 3.3 we moved to using reinforcement learning methods to propose

policies that did not require such network knowledge but performed similarly.

It should be noted that, although distributed implementation of SOC may be

limited by network knowledge requirements, it is a robust benchmark for power

control policy performance.

We found Q-learning to be impractical for learning a distributed power control

policy due to its limitations with the sizes of action and state spaces. Therefore

we instead implemented deep Q-learning. In a departure from the usual approach

taken in the literature we trained the neural network on a small set of transmitters

to learn a policy and then implemented this policy on an independent and much

larger network of 500 transmitters. A limitation in the application of deep Q-

learning for finding an optimal power control policy is that the algorithm requires

a finite and discrete action space. This immediately limits, with the selected

actions, the transmit powers that can be used in discovering such a policy and it

may be that the discretisation excludes an optimal policy.
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In an extensive, though not exhaustive, search of the literature we found lim-

ited applications of reinforcement learning for power control optimisation where

the action space was continuous. We therefore turned our attention to a variant

of the ‘asynchronous advantage actor critic’ (A3C) algorithm proposed in [55],

known as advantage actor critic (A2C). The A2C algorithm allows a continuous

set of transmit powers to be used when learning an optimal policy. We found

that with a continuous action space, policy performance depended on the state

space that we used used, whereas with deep Q-learning (a discrete action space)

it had not. With a continuous action space, additional information could be acted

upon, leading to improved policy performance. This supports the importance of

using a continuous action space when learning an optimal policy.

This chapter has therefore shown that the reinforcement learning methods of

deep Q-learning and Advantage Actor Critic (A2C) can be used to develop effec-

tive transmit power policies. With minimal training, on an appropriate model,

both methods can produce a power control policy that can be applied offline and

that does not require knowledge of transmitter distances only SINR at paired

receivers. The performance of the policy learnt with A2C closely matched that

of SOC. We believe that with further work it could learn policies that outper-

form our best proposed algorithm. Further work in this direction should include

improving the reward structure and better training for these methods, as we now

discuss.

The reward function that we used prioritises increasing the value of the 20th

percentile of observed SINR, with less importance placed on the 50th and 70th

percentile and no other values taken into consideration. We designed the function

in this way to ensure that increasing the lower values of SINR was prioritised over

increasing higher values. This is in line with the real-world network priorities of

BT. The performance of the policies was assessed by comparing the CDF curves

generated by an adaptation of the sampling algorithm in [16]. Further work could

explore considering more SINR measurements and adjusting the weightings given

to different percentiles. Additionally, another objective could be addressed in the

reward function, such as coverage, by introducing a reward based on observed

signal rather than SINR.

We trained our policy on a set of transmitters a tenth of the size of the

network that the policy was to be deployed on. We trained on multiple sets of

transmitters as there is some dependence on the training set sharing similarities

with the larger set that it is eventually implemented on for a policy to perform

well. Further considerations include diversifying the training further by using
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more and larger training sets; also longer training on each set could be tried.

Each of the training sets began with uniform powers, we could bootstrap our

training by applying SOC (or any optimisation policy) before beginning training.

Additionally, allowing the policy to be updated once it has been deployed, so

that a transmitter can update an individual policy for itself, could be considered.

Reinforcement learning methods have the advantage of adaptability: as long as

a suitable training set and reward function is provided an optimal policy can

be learnt. Additionally, adaptations to the reward function allow for different

objectives to be achieved without altering the neural network architecture or

learning design.

In conclusion, for optimising SINR we have contributed a new benchmarking

algorithm SOC that significantly improves on the one we received from BT. We

have also developed a problem formulation for use with reinforcement learning

methods. Through this we learnt power control policies that only required ob-

servations of the SINR of paired devices in order to optimise transmit powers on

large networks of transmitters. Further to this we were able to use continuous

transmit powers in our learning algorithms, which contributes to the literature

on distributed power control policies.

6.3 Uniform Power Distance Estimation

From Chapter 3 we learnt that knowledge of the distance to its nearest neighbour

allows a transmitter to optimise the SIR of paired receivers whilst protecting the

SIR of receivers paired to neighbours. Therefore the ability of transmitters to

estimate, based solely on observations, the distance to the nearest transmitter is of

significant help in enabling distributed self-optimisation as described in Chapter

1. Given this, in Chapter 4 we theoretically derived two heuristics that offer

improved accuracy over those commonly used in the literature.

First, in the absence of fading we considered a simple heuristic that assumes

the nearest transmitter contributes all observed signal. We found the expected

error of this heuristic conditioned on the observed signal and there being a fixed

number of neighbours within a given distance. We then found the expected

error of the heuristic conditioned only on the observed signal. We proposed

an asymptotic heuristic that adjusts the simple heuristic by the expected error.

Comparisons with numerical simulations showed that particularly for small val-

ues of observed signal the asymptotic heuristic we proposed offers significantly

improved accuracy.
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The second heuristic we proposed is for use when received signal power is ef-

fected by Rayleigh fading. We began by considering the scaling factor proposed in

[38] and combined this with the asymptotic heuristic we proposed; however, this

did not achieve suitable accuracy. We then pursued an alternative approach and

derived the approximate probability distribution of the distance to the nearest

neighbour conditioned on the observed signal. From this probability distribution

the expected distance was found and is given as equation (4.2.6). Numerical

simulations show that the approximated distribution closely matches the numer-

ical distribution with accuracy improving as the value of total observed signal

increases.

In conclusion, in this chapter we proposed improvements to heuristics that

can be used by a transmitter to estimate the distance to its nearest neighbour,

based only on observed signal. This ability allows a transmitter to configure its

power settings accordingly to optimise network performance in a truly distributed

way. Our new heuristics offer significant improvement, yet remain tractable and

fast to compute.

The improved heuristics are given explicitly in terms of observed signal and

pathloss and numerical simulations support the theoretically derived results.

There are limitations in that they assume transmitters are Poisson distributed

and that all transmitters are on uniform powers. However, our general approach

of working in the limit of large total signal strength S is likely to be an approach

that applies when these other modelling constraints are relaxed. The robust-

ness of working asymptotically for large S allows for generally applicable better

heuristics to be derived.

Future work would include a more careful investigation of the error terms,

i.e., the next-order terms in the large S expansion and their dependence on the

number of transmitters k. Also, we could consider employing these heuristics

together with the strategies and behavioural policies developed in the earlier

chapters.

6.4 Non-Uniform Power Distance Estimation

We began Chapter 5 by considering the application of the uniform-power distance

estimation heuristics (4.1.32) and (4.2.5) in networks where transmit powers are

not uniform. We showed that scaling the observed signal by the expected power

of transmitters gives a heuristic with accuracy dependent on the maximum power

as well as the observed signal. Figure 5-1 showed that for low values of signal,
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such as S = 50, the error was more sensitive to the maximum power than for

higher values of observed signal such as S = 1000, for which the scaled heuristic

has a small average relative error. In the case of Rayleigh fading the distribution

of the distance to the nearest transmitter can still be approximated as shown in

Figure 5-2. Therefore in Section 5.1 we can conclude that, with a simple scaling

of the observed signal, the heuristics for distance estimation presented in Chapter

4 can offer accurate estimations of the distance to the nearest transmitter when

powers are not uniform.

In Section 5.2 we introduced the pulse method, which BT have patented

[?]. We showed that this method allows the distance to all transmitters in the

network to be found exactly, if they share a uniform power. In the case when

the transmitters have non-uniform powers, given that the powers are discrete

and known, we propose Procedure 5.1 to estimate both distances and powers

of transmitters. The accuracy of the estimations obtained using Procedure 5.1

were shown to be relative to the distance of the nearest transmitter. Due to the

iterative nature a lack of initial accuracy carries through to the estimations for

all further transmitters. Figure 5-6 shows that the average relative error of the

distance estimation generally increasing as the number of iterations increases.

For a more robust method of distance and power estimation we proposed the

‘Two-Part Pulse Method’ (TPPM).

In Section 5.3 we presented the use of the TPPM when no fading is present.

We introduced the idea of a pulse involving two distinct powers in Procedure 5.2.

We also presented two methods for identifying the two-part pulses. We found

that the TPPM allowed for both powers and distances to be found exactly. In

Figure 5-8 we compared the accuracy of pulse method to the TPPM. In Section

5.4 we showed that, when fading was present, we used the TPPM together with

the method of moments, described in Chapter 1, and showed that this accurately

estimated transmitter distances. We identified pulses using Procedure 5.3 and

then reduced the sample of pulses to include only pulses that were assumed to

be from the nearest one or two transmitters. Therefore the TPPM allows for

the distance of the nearest one or two transmitters to be estimated. It does not

require that the power settings be discrete or known, with the exception of the

two pulse powers.

Future work would look at estimating the distances to further transmitters as

well as using these power and distance estimators together with a self-optimising

power configuration strategy and assessing how well it performs. Additionally

we could examine the behaviour of the relative error, shown in Figure 5-14a for

185



values of 2 ≤ m ≤ 3 where it changes from being negative to positive.

To conclude, this thesis contributes to the field through novel methods for

power estimation, distance estimation and self-optimising power control strate-

gies. More generally, it provides insight into optimal strategies for controlling

interference in SON, and sets out new directions in which mathematical mod-

elling can contribute to the management of wireless communications networks.
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Appendix A

Power Spectral Density

In this appendix we give the proofs to two theorems used for computing the power

spectral density.

A.1 Wiener-Khinchin Theorem

Here we provide the proof of Theorem 1.4, the Wiener-Khinchin theorem. The

Wiener-Khinchin theorem relates the power spectral density of a stochastic pro-

cess to the Fourier transform of its autocorrelation function. We begin by recalling

the definition of power spectral density.

From [60] we understand that the truncated Fourier transform x̂T (ω) of a

continuous-time signal x(t) is where signal is integrated over the finite time in-

terval [0, T ] such that

x̂T (ω) =

∫ T

0

x(t)e−iωtdt. (A.1.1)

We now give the definition of power spectral density.

Definition A.1 (Power Spectral Density). The power spectral density (PSD),

denoted by P(ω), describes the distribution of power with angular frequency ω. It

is defined as

P(ω) = lim
T→∞

1

2πT
|x̂T (ω)|2 . (A.1.2)

We recall the definition of an autocorrelation function.

Definition A.2 (Autocorrelation Function). Let x(t) be a stationary stochastic

process, then we define the autocorrelation G(τ) of the process as:

G(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t+ τ)dt (A.1.3)
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We now prove the Wiener-Kinchin theorem as in [88].

Theorem A.1 (Wiener-Khinchin Theorem). The Power Spectral Density of the

stochastic process x(t) is the Fourier Transform of its autocorrelation function

P(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ (A.1.4)

where the autocorrelation function G(τ) of x(t) is as defined in (A.2).

Proof. We begin by proving that the autocorrelation function G(τ) is an even

function such that G(τ) = G(−τ). Let us define t′ = t− τ , then

G(−τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t− τ)dt

= lim
T→∞

1

T

∫ T−τ

−τ
x(t′ + τ)x(t′)dt′

= lim
T→∞

1

T

[∫ 0

−τ
x(t′ + τ)x(t′)dt′ +

∫ T

0

x(t′ + τ)x(t′)dt′

−
∫ T

T−τ
x(t′ + τ)x(t′)dt′

]
=G(τ).

(A.1.5)

The last equality holds in the limit T →∞.

From Definition A.1, where x̂(ω) denotes the complex conjugate of x̂(ω), we

can write the power spectral density as

P(ω) = lim
T→∞

1

2πT
x̂T (ω)x̂T (ω). (A.1.6)

In this thesis as x(t) is a real-valued process x(t) = x(t). We change the integra-

tion domain from (t, t′) to (t′, τ), this is shown in Figure A-1. By doing so we

can write

P(ω) = lim
T→∞

1

2πT

∫ T

0

x(t)e−iωtdt

∫ T

0

x(t′)eiωt
′
dt′. (A.1.7)
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Figure A-1: The transformation of the integration domain.

as

P(ω) = lim
T→∞

1

2πT

∫ T

0

e−iωτ
∫ T−τ

0

x(t′)x(t′ + τ)dt′dτ

+ lim
T→∞

1

2πT

∫ 0

−T
e−iωτ

∫ T

−τ
x(t′)x(t′ + τ)dt′dτ

= lim
T→∞

1

2πT

∫ T

0

e−iωτ
∫ T−τ

0

x(t′)x(t′ + τ)dt′dτ

+ lim
T→∞

1

2πT

∫ 0

−T
e−iωτ

∫ T+τ

0

x(t′ + τ)x(t′)dt′dτ

= lim
T→∞

1

2πT

∫ T

0

(e−iωτ + eiωτ )

∫ T−τ

0

x(t′)x(t′ + τ)dt′dτ

= lim
T→∞

[
1

π

∫ T

0

cos(ωτ)
1

T

∫ T−τ

0

x(t)x(t+ τ)dtdτ

]

(A.1.8)

and taking the limit T →∞, (A.1.8) is

P(ω) =
1

π

∫ ∞
0

cos(ωτ)G(τ)dτ. (A.1.9)

As we have shown in Equation (A.1.5) that the autocorrelation is an even func-

tion, we can obtain that ∫ ∞
−∞

sin(ωτ)G(τ)dτ = 0 (A.1.10)

and ∫ 0

−∞
cos(ωτ)G(τ)dτ =

∫ ∞
0

cos(ωτ)G(τ)dτ. (A.1.11)
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Therefore from equations (A.1.9), (A.1.10) and (A.1.11) we achieve that

P(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ. (A.1.12)

A.2 Power Spectrum Matrix

We now provide the proof of Theorem 1.5, we follow [31] (Section 4.5.6). First

we restate the definition of a Multivariate Ornstein-Uhlenbeck process and the

theorem itself.

Definition A.3 (Multivariate Ornstein-Uhlenbeck Process). We define this pro-

cess by the linear stochastic differential equation

dx(t) = Cx(t)dt+DdW (t), (A.2.1)

where C and D are constant matrices and the solution to (A.2.1) is

x(t) = eCtx(0) +

∫ t

0

eC(t−t′)DdW (t′). (A.2.2)

Theorem A.2 (Spectrum Matrix in Stationary State). The spectrum matrix

P(ω) of a multivariate Ornstein-Uhlenbeck process as defined above is given by

P(ω) =
1

2π
(C− iωI)−1DDT(C− iωI)−† (A.2.3)

with −† denoting the inverse conjugate transpose.

Proof. A Multivariate Ornstein-Uhlenbeck process is a stationary stochastic pro-

cess x(t). A stochastic process x(t) is stationary if the correlation function

〈x(s),x(t)〉 = 〈x(s)x(t)〉 − 〈x(s)〉〈x(t)〉 (A.2.4)

does not change when shifted in time and depends only upon |t − s|. It follows

that the mean 〈x(t)〉 and variance will be constant. From Definition A.3 we see

that the mean

〈x(t)〉 = exp(Ct)〈x(0)〉, (A.2.5)
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and the correlation function

〈x(t),xT(s)〉 ≡〈[x(t)− 〈x(t)〉][x(s)− 〈x(s)〉]T〉,

= exp(Ct)〈x(0),xT(0)〉 exp(Cs)

+

∫ min(t,s)

0

exp[C(t− t′)]DDT exp[CT(s− t′)]dt.

(A.2.6)

If the eigenvalues of C have only negative real parts then there exists a stationary

solution

xs(t) =

∫ t

−∞
exp[C(t− t′)]DdW (t′). (A.2.7)

The stationary mean 〈xs(t)〉 = 0 and the correlation function

〈xTs (t),xs(t)〉 =

∫ min(t,s)

−∞
exp[C(t− t′)]DDT exp[CT(s− t′)]dt. (A.2.8)

Let us define the stationary covariance matrix σ by

σ = 〈xTs (t),xs(t)〉. (A.2.9)

We then compute that

Cσ + σCT =

∫ t

−∞
C exp[C(t− t′)]DDT exp[CT(t− t′)]dt′

+

∫ t

−∞
exp[C(t− t′)]DDT exp[CT(t− t′)]CTdt′,

=

∫ t

−∞

d

dt′
{exp[C(t− t′)]DDT exp[CT(t− t′)]}dt′.

(A.2.10)

Computing the integral, we find that the lower limit vanishes by the assumed

negativity of the eigenvalues of C and hence only the upper limit remains giving,

Cσ + σCT = DDT. (A.2.11)

This is an important relation we will use later. We recall the correlation function

〈xTs (t),xs(t)〉 given in (A.2.8) and note that if t > s,

〈xTs (t),xs(t)〉 = exp[C(t− s)]
∫ s

−∞
exp[C(t− t′)]DDT exp[CT(s− t′)]dt

= exp[C(t− s)]σ.
(A.2.12)
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and similarly if t < s then

〈xTs (t),xs(t)〉 = σ[CT(s− t)]. (A.2.13)

As expected of a stationary solution the correlation function depends only on

s− t. By defining

Gs(t− s) = 〈xs(t),xT
s (t)〉 (A.2.14)

we see (remembering σ = σT) that

Gs(t− s) = [Gs(s− t)]T (A.2.15)

In Section A.1 we stated and proved the Wiener-Khinchin Theorem which gives

that the power spectral density

P(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ. (A.2.16)

We now have that

P(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ,

=
1

2π
{
∫ ∞

0

e−(iω−C)τσdτ +

∫ 0

−∞
σe−(iω+CT)τdτ},

=
1

2π
[(C− iω)−1σ + σ(−CT − iω)−1].

(A.2.17)

Hence,

(C− iω)P(ω)(CT + iω) =
1

2π
(σCT + Cσ), (A.2.18)

and recalling from (A.2.11) that Cσ + σCT = DDT we get that

P(ω) =
1

2π
(C− iωI)−1DDT(C− iωI)−†.
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Appendix B

Inter-Transmitter Distances

B.1 Exponentially Distributed Interarrival Times

Definition B.1 (Poisson process). A Poisson process with intensity λ is a process

N = {N(t) : t ≥ 0} taking values in the state space S = {0, 1, 2, . . .} such that:

(a) N(0) = 0; if s < t then N(s) ≤ N(t),

(b) P [N(t+ h) = n+m|N(t) = n] =


λh+ o(h) if m = 1,

o(h) if m > 1,

1− λh+ o(h) if m = 0.

(c) if s < t, the number N(t) − N(s) of arrivals in the interval (s, t] is inde-

pendent of the times of arrivals during [0, s].

Where N(t) is Poisson distributed with parameter λt such that

P[N(t) = j)] =
(λt)j

j!
e−λt, j ∈ Z+

it follows that E[N(t)] = λt. Let the time of the nth arrival Tn be given by

Tn = inf{t : N(t) = n}. The interarrival times are given by Xn = Tn − Tn−1.

Theorem B.1 (Interarrival times exponentially distributed). The random vari-

ables X1, X2, ... representing the interarrival times are independent and are expo-

nentially distributed with mean λ−1.

Proof. By Definition B.1 where,

P [X1 > t] = P [N(t) = 0] =
e−λt(λt)0

0!
= e−λt,
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then
P [X2 > t|X1 = s] = P [X2 > s+ t|X1 = s]

= P [X2 > s+ t]

= e−λt.

(B.1.1)

This can be continued for allXi and therefore we have shown that ∀i Xi ∼ Exp( 1
λ
).

Therefore interarrival times are exponentially distributed.

B.2 Mapping Theorem

We begin by defining a measurable space and a measure, we define these as in

[7] starting with the definition of an algebra. For all definitions below let Ω be a

set.

Definition B.2 (An Algebra). A collection A0 of subsets of Ω is called an algebra

on Ω if:

(i) Ω ∈ A0,

(ii) A ∈ A0 ⇒ Ac = Ω\A ∈ A0

(iii) A,B ∈ A0 ⇒ A ∪B ∈ A0.

We now define a σ-algebra.

Definition B.3 (σ-algebra). An algebra A of subsets of Ω is called a σ-algebra

on Ω if for any sequence An ∈ A, (n ∈ N) we have

∞⋃
n=1

An ∈ A.

Now that we have defined a σ-algebra we can define a measurable space.

Definition B.4 (Measurable Space). A pair (Ω,A) is called a measurable space

where A is a σ-algebra on the set Ω.

Now that we have defined a measurable space we can define a measure on

that space. We begin by defining what it is for a map to be countable additive

and then use this to define a measure.

Definition B.5 (Countably Additive). Let Ω be a set, A an algebra on Ω and

T a non-negative set function T : A → [0,∞] such that T (∅) = 0. T is called:

(i) additive, if A,B ∈ A, A ∩B = ∅ ⇒ T (A ∪B) = T (A) + T (B)
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(ii) countably additive, if whenever (An)n∈N is a sequence of disjoint sets in A
with

⋃
An ∈ A then

T

(
∞⋃
n=0

An

)
=
∞∑
n=1

T (An).

Definition B.6 (A Measure). Let (Ω,A) be a measurable space. A countably

additive map

T : A → [0,∞]

is called a measure on (Ω,A).

We now recall the definition of a Poisson point process and then state and

prove the mapping theorem. Let (X,X ) be a measurable space. A measure ν on

X is said to be s-finite if ν is a countable sum of finite measures.

Definition B.7 (Poisson point process). Let λ be an s-finite measure on X. A

Poisson process with intensity measure λ is a point process η on X with the two

following properties:

(i) For every B ∈ X the distribution of η(B) is Poisson with parameter λ(B),

such that P[η(B) = k] = Poisson(λ(B); k) ∀k ∈ N+.

(ii) For every m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ X the random

variables η(B1), . . . , η(Bm) are independent.

Theorem B.2 (Mapping Theorem). Consider two measurable spaces (X,X ) and

(Y,Y). Let η be a point process on X with intensity measure λ and let T : X → Y

be measurable. Then T (η) is a point process with intensity measure T (λ). If η is

a Poisson process, then T (η) is a Poisson process too.

Proof. We first note that T (µ) ∈ N for any µ ∈ N. Indeed, if µ =
∑∞

j=1 µj then

T (µ) =
∑∞

j=1 T (µj). Moreover, if the µj are N+ valued, so are the T (µj). For

any C ∈ Y , T (η)(C) is a random variable and with intensity measure T (λ) and

therefore its expectation is

E[T (η)(C)] = E[η(T−1C)] = λ(T−1C) = T (λ)(C).

If η is a Poisson process, then from Definition B.7: T (η) is completely independent

by property (ii) and T (η)(C) has a Poisson distribution with parameter T (λ)(C)

by property (i).
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