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Summary

The quadratic advantage in query-complexity that Grover’s algorithm offers for the unstructured

search problem is well-known by the cryptographic community and the security estimates for

many cryptosystems are based upon quantum resource estimates for Grover’s algorithm. In

essence, Grover’s algorithm consists of the repeated application of a quantum oracle, unique to the

instance of the search problem, and some less costly circuitry. This quantum oracle is essentially a

reversible boolean circuit, implemented via quantum gates. This thesis examines the optimisation

of quantum search routines in the noise-free quantum circuit model of computation, with the goal

of negating a portion of the cost associated with the necessity to implement quantum oracles in

Grover’s algorithm. The importance of such gains is illustrated by considering the approximate

circuit-size of Grover’s algorithm for the single-target search problem, π
4 · 2

n
2 · poly(n) where

poly(n) is the cost of implementing the quantum oracle. If n = 100 and poly(n) = n3, then

the approximate quantum circuit-size is 270 compared to the lower bound implied by query-

complexity of 250 and this overhead of 220 has an associated real-world cost in terms of the

number of quantum gates which must be implemented. Reduction of this overhead can therefore

result in gains for any potential implementation. Optimisation of the reversible circuitry which

implements the quantum oracle can achieve this and this thesis demonstrates that this can also

be achieved by other methods for certain problems by using modifications of Grover’s algorithm.

As a motivating example throughout this thesis, we apply these techniques to lower quantum

resource estimates for cryptanalysis of the Multivariate Quadratic problem over F2 and later in

cryptanalysis of the Advanced Encryption Standard (AES).
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Chapter 1

Introduction

We may construct our cipher in such a way that breaking it is equivalent to (or

requires at some point in the process) the solution of some problem known to be

laborious. Thus, if we could show that solving a certain system requires at least

as much work as solving a system of simultaneous equations in a large number of

unknowns, of a complex type, then we would have a lower bound of sorts for the work

characteristic.

- Claude Shannon (1949), Communication theory of secrecy systems [Sha49]

1.1 Introductory remarks

The goal of this thesis is to provide evidence that the projected resources required to solve

important cryptographic problems via quantum search routines are lower than current projections

may indicate, at least in the logical quantum-circuit model of computation. This stems from the

fact that many quantum resource estimates for important problems are extrapolated by using

Grover’s quantum search algorithm (see Theorem 3.10). This is somewhat natural, as (because

it assumes no structure in the problem) Grover’s quantum search algorithm can be treated as

a black-box algorithm whereby we can derive the cost using a standard formula and the design

of a reversible boolean circuit that is particular to the search problem we are considering. Our

results rely upon amplitude amplification, which is a generalisation of Grover’s algorithm and

the identification of various types of structure in the problems we consider.

Cryptography is by necessity a cross-disciplinary field and it can take time for knowledge

to diffuse between different fields. The formulation of theorems in an accessible manner is an

important first step in this dissemination of knowledge and in this thesis we work towards a

level that is accessible by anyone with a computer science background as soon as possible. This

is not a thesis about quantum computing, but a thesis on how to use quantum algorithms —

specifically the important quantum subroutine of amplitude amplification (see Theorem 3.6) in

order to optimise quantum search. With this in mind, we review the contents of this thesis.
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It is first worth briefly sketching the problem we are examining, before formally defining the

terms and algorithms. Say we are looking for a single element out of 2n possible elements and

that we only have the ability to test each element and check if it is suitable. Classically, the best

we can do is test, either exhaustively or at random, each element x ∈ {0, 1}n until we have found

this element. Such an approach requires 2n tests to obtain the element we are looking for in the

worst-case and approximately 1
2 · 2

n tests on average [Ahl14].

In comparison, Grover’s quantum search algorithm allows us to embed the same circuit that

performs this test within a quantum circuit and after
⌊
π
4 · 2

n/2
⌋

serial executions of this circuit

— in addition to some other minor circuitry — allows us to obtain the element we are looking for

with near certainty. This so-called quadratic speedup is clearly an advantage, but the test has

an associated cost so that the full cost (which can be taken to be either the number of quantum

gates or the time taken) of Grover’s quantum search algorithm is in reality⌊π
4
· 2n/2

⌋
· poly(n), (1.1)

where poly(n) is the cost of implementing the test and minor circuitry as a quantum circuit. The

embedding of the classical circuit in quantum circuitry is a relatively simple procedure (though

care must be taken as the circuits must be converted to reversible boolean circuits, which destroy

no information). Quantum resource estimations for various cryptographic problems can therefore

be performed simply deriving the cost of a reversible boolean circuit which performs the required

test, adding the cost of the minor circuitry to derive poly(n) and using it in conjunction with

Equation (1.1).

Whilst there exist quantum search algorithms that exploit structure in problems to reduce the

term
⌊
π
4 · 2

n/2
⌋

in (1.1) [CGW00], known as the query-complexity term, the aim of this thesis is to

examine and exploit alternative structure, so that we can reduce the poly(n) overhead. That this

is important, both in regards to cryptographic functions and industrial uses of quantum search

is easily illustrated by the real-world cost of this overhead. If n = 100 and poly(n) = n3, then

we will have that this overhead is approximately 220. This is a substantial real-world cost, even

discounting the notion that quantum computers are expected to be magnitudes more expensive

than classical computers to both build and run.

Our results will stand in the logical quantum-circuit model of computation, which does not

factor in the effect of physical noise, the cost of quantum-error correction schemes, the cost of

building or running a quantum computer or the network topology of the connections between

quantum bits. The important metrics will be the same as for classical circuits, in that we will

wish to compute the requirements of quantum algorithms in terms of circuit-width (number of

quantum bits), circuit-size (number of quantum gates) and circuit-depth (number of timesteps

taken). We now review the chapters of this thesis.
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In Chapter 1 we define and review various definitions of search, most importantly the preimage

search problem, we define and provide the motivating examples we use throughout this thesis —

that of the multivariate quadratic (MQ) problem and the key-search problem.

In Chapter 2 we review the basic concepts of quantum computing required to understand the

algorithms in this thesis and discuss the implementation details of quantum phase oracles. Our

aim is not to provide an exhaustive knowledge of the intricacies of quantum computing, but to

draw a straight-line towards the theory of amplitude amplification. We define quantum phase

oracles (an integral component of amplitude amplification) and demonstrate several abstract

methods by which they may be implemented for the preimage search problem and a constraint-

based formulation of the search problem, paying attention to the explicit costs involved. We

conclude by demonstrating Schwabe and Westerbaan’s approach to the design of a quantum bit

oracle for the MQ problem [SW16], the quantum search oracle for the key-search problem for

AES [GLRS16] and how they fit into the abstract methods we have described.

In Chapter 3 we provide the theory and costs of quantum amplitude amplification and discuss

various applications of this quantum subroutine, including Grover’s quantum search algorithm.

We conclude with an examination of the costs involved in using Grover’s algorithm in conjunction

with the quantum bit oracles for theMQ and AES key-search problems described in Chapter 2.

In Chapter 4 we discuss the balancing of costs in Grover’s search algorithm when there exists

structure that we can exploit via an Efficient Neighbourhood Transition Strategy — a method that

can be used to evaluate a function for a reduced cost, if we have already evaluated a single point

in the domain. We apply this to theMQ problem and derive improvements for existing quantum

search methods [SW16] applied to this problem. We discuss a state-based decomposition of the

quantum phase oracle that allows us to implement the ENTS strategy described in Chapter 4 in

a generic manner and note that this can also be applied to the MQ problem.

In Chapter 5 we discuss how principles in Chapter 4 can be enhanced via preprocessing and

amplitude amplification and apply this to the MQ problem.

In Chapter 6 examine an existing method [KYYLHH15] that exploits structure in search

problems to provide lower quantum resource estimates. We examine the expected performance

of this existing solution and demonstrate that it can fail in real-world scenarios as it is dependent

upon a promise on the size of a subset defined by a function. We demonstrate how we can modify

this procedure to restore its correctness and apply our new method to achieve new quantum

resource estimates for quantum search applied to both the MQ and AES key-search problem

which are optimised towards requiring few qubits.

In Chapter 7 we summarise and give our conclusions. In particular we discuss the impact of

this work upon choosing cryptographic parameters.
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1.2 Search problems

One of the simplest and most generic search problems that one can consider is that of the

unstructured search problem. Simply put, we are searching for a length n bitstring and have only

one means of identifying this element. No other information about how we could construct a

more efficient algorithm is available. We will assume that we know the number of such bitstrings.

Definition 1.1 (The unstructured search problem).

Let χ : {0, 1}n −→ {0, 1} and Mχ = |χ−1(1)|. The unstructured search problem is to find an

x ∈ {0, 1}n such that χ(x) = 1, given only the ability to evaluate χ.

The function χ : {0, 1}n −→ {0, 1} will be referred to as the boolean indicator function for the

search problem.

It is this problem that Grover’s quantum search algorithm (see Theorem 3.10) solves and,

given the ease by which other formulations of search problem reduce to unstructured search,

gives rise to its utility in many aspects of computer science. Whilst Shor’s algorithm provides a

superpolynomial speedup for a narrow subset of problems with a periodic structure [Sho99] over

the best known classical algorithms [LLMP93], Grover’s algorithm provides only a polynomial

speedup compared to a classical brute-force or exhaustive search algorithm. However, Shor’s

algorithm can only be applied to a narrow subset of problems whilst Grover’s utility is generic

and wide-ranging as search is a key-component, subroutine and bottleneck of many classical

algorithms. We will primarily be interested in applying quantum search procedures to find the

preimage of pseudorandom functions (functions that may be assumed to be uniformly sampled

from the set of functions from length n bitstrings to length m bitstrings).

Definition 1.2 (The preimage search problem).

Let h : {0, 1}n −→ {0, 1}m, Yh ⊆ {0, 1}m and Mh = |h−1(Yh)|. The preimage search problem is

to find an x ∈ {0, 1}n such that h(x) ∈ Yh or prove that no such element exists.

The case where |Yh| = 1 will be known as the single-target preimage search problem, whereas the

case where |Yh| > 1 will be known as the multi-target preimage search problem.

We will predominantly concern ourselves with the single-target preimage search problem in

this thesis, but the topic of the costs involved with a naive implementation of multi-target search

will later come into our discussion. It is easily seen that the preimage search problem reduces to

the unstructured search problem as we can create the function χ : {0, 1}n −→ {0, 1} such that

χ(x) 7→

1 if h(x) ∈ Yh
0 otherwise.

(1.2)

The boolean indicator function χ : {0, 1}n −→ {0, 1} for the preimage search problem is therefore

simply an evaluation of h followed by a check for set membership. In the case of the single-target

preimage search problem, this is a single bitstring comparison, but more efficient methods could

be used if |Yh| is large. The total cost in terms of bit operations for performing a classical search

procedure to solve the preimage search problem is therefore the product of the number of times

χ must be evaluated, multiplied by number of bit operations that the evaluation of χ requires.
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If all we have is the ability to execute the pseudorandom function h : {0, 1}n −→ {0, 1}m,

then best we can do is to sample in some order x1, . . . , x2n ∈ {0, 1}n and test these elements

in turn by evaluating them and testing whether h(xi) ∈ Yh. If we consider the single-target

preimage search problem then if h is pseudorandom, we have that the expected number of tests

until we achieve a single success is 2n+1
Mh+1 [Ahl14]. By the above discussion, the expected number

of bit operations to perform a naive brute-force or exhaustive search for the unstructured search

problem is

2n + 1

Mχ + 1
·
(

Cost of evaluating χ(x)
)

(1.3)

which for the preimage search problem is

2n + 1

Mh + 1
·
(

Cost of evaluating h(x) + Cost of testing if h(x) ∈ Yh
)
. (1.4)

It is worth noting that the process of testing these evaluations is embarrassingly parallel, in that

if the expected time for the above procedure to result in success is T to complete on one processor

and we have P processors available, then the expected time if we use all P processors is T
P and

the number of bit operations required will remain identical.

In comparison, the cost to execute Grover’s quantum search algorithm in terms of the number

of quantum gates (as opposed to bit operations) and solve the unstructured search problem with

probability at least 1− Mχ

2n will be (see Theorem 3.10)⌊
π

4
·

√
2n/2

Mχ

⌋
·
(

Cost of evaluating O(b)
χ + Cost of the diffusion step on n qubits

)
, (1.5)

whereO(b)
χ is a quantum bit oracle (see Definition 2.11) which is a quantum circuit that essentially

performs the quantum equivalent of evaluating χ. The cost of the diffusion step on n qubits will

cost O(n) quantum gates and Cost(O
(b)
χ ) will usually be O(nd) quantum gates, where d ≥ 1.

Full details of Grover’s quantum search algorithm can be found in Section 3.2.1, but for now

we simply note that Grover’s algorithm requires a long-running serial quantum computation and

is not embarrassingly parallel. It has been proven that in relation to the unstructured search

problem, the optimal parallelism strategy to follow is to essentially partition the search space

into P subsets of equal size and execute Grover’s algorithm upon each one. Whilst the time

taken will be reduced by a factor of 1√
P

by this strategy, the number of quantum gates required

will be increased by a factor of
√
P [Zal99].

Structure in either the problem or the circuit χ can help decrease the complexity of search

both in terms of classical search algorithms and quantum search algorithms. For example, if we

know that the solutions are not distributed uniformly throughout the domain we may choose to

sample elements and evaluate them in a specific order. Alternatively, we may be able to rule out

that the solution lies in large areas of the search space by performing specific tests — a process

known as pruning the search tree.
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We give an example of structure that can be exploited by both a classical search procedure

and a quantum search procedure from [CGW00]. If χ : {0, 1}n −→ {0, 1} can be broken down

into several tests, some of which involve a smaller set of variables so that

χ(x1 . . . xkxk+1 . . . xn) 7→ χ1(x1 . . . xk) ∧ χ2(x1 . . . xkxk+1 . . . xn) (1.6)

then we can simply perform a search on the first k variables until we find a partial solution

x1 . . . xk ∈ {0, 1}k such that χ(x1 . . . xk) = 1, then fix these variables and attempt to extend this

partial solution to a full solution using a search on the remaining n− k variables until we have

located an assignment xk+1 . . . xn ∈ {0, 1}n−k such that χ2(xk+1 . . . xn) = 1, thus providing an

element x1 . . . xn ∈ {0, 1}n such that χ(x1 . . . xn) = 1. The expected complexity of this approach

is dependent upon Mχ = |χ−1(1)| and the expected number of preimages Mχ1 = |χ−1
1 (1)|.

If we sample x1 . . . xk ∈ {0, 1}k until we have a partial solution such that χ1(x1 . . . xk) = 1

and then exhaustively search the remaining n−k variables in an attempt to extend this to a full

solution, then this process will clearly terminate with a solution, if one exists. If we find that

χ1(x1 . . . xk) = 0, we need not check whether x1 . . . xk can be extended to a full solution, hence

this additional structure can be used to prune the search space.

The probability of obtaining a partial solution is
Mχ1

2k
, therefore we need on the order of 2k

Mχ1

trials to find a partial solution. The probability that this partial solution can be extended to a

full solution is simply
Mχ

Mχ1
and, using the upper-bound 2n−k for the number of evaluations we

must make for χ2, hence the number of bit operations we expect to require is

Mχ1

Mχ
·
(

2k

Mχ1

· (Cost(χ1)) + 2n−k · (Cost(χ2))

)
(1.7)

If we assume that n > k > a > 0, Cost(χ1) = k2 Cost(χ2) = n2, Mχ = 1 and Mχ1 = 2k−a then

we have that a naive exhaustive search approach would require an expected

2n + 1

2
· 2n2 = (2n + 1) · n2 (1.8)

operations to find a solution, whilst we would expect that the nested approach to require

2k−a ·
( 2k

2k−a
k2 + 2n−kn2

)
= 2kk2 + 2n−an2 (1.9)

bit operations. If k = n − a, then the naive search requires on the order of O(2n · n2) bit

operations whilst the nested search procedure requires on the order of O(2n−a ·n2) bit operations

and is efficient if a > 2. This can be extended to a nested approach, if the problem admits

such a decomposition, and the authors of [CGW00] propose a nested quantum search algorithm

based upon this approach which requires O(
√

2dn ·poly(n)) quantum gates compared to the same

classical algorithm which would require O(2dn ·poly(n)) classical bit operations, where 0 < d < 1.

We discuss this quantum algorithm in Section 5.3 and will exploit a similar decomposition in

Chapter 6, where the decomposition is instead of the form χ1, χ2 : {0, 1}n −→ {0, 1} and again

Cost(χ1) < Cost(χ2), but we have that both χ1 and χ2 involve n variables.
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We will examine several types of structure within this thesis that can be used to reduce the

overall cost of implementing Grover’s quantum search algorithm and to reduce the overhead

involved with cost of evaluation of O(b)
χ in Equation (1.5). We now proceed to describe the main

examples of the preimage search problem that we use to illustrate the gains throughout this thesis

— that of the Multivariate Quadratic problem over F2 and the key-search problem for symmetric-

key encryption systems, specifically the Advanced Encryption Standard (AES-{128, 192, 256}).

1.3 The Multivariate Quadratic (MQ) problem

The Multivariate Quadratic problem over the finite field F2 will be used to demonstrate the

computational gains of all methods in this thesis. It is a problem that exhibits a large amount

of structure and that maps naturally to both classical and quantum hardware, hence is a use-

ful research tool for both investigating and benchmarking the optimisation of quantum search

algorithms. This is not a thesis directly about the MQ problem, but in this section we survey

the problem, paying special attention to the classical search method of Fast Exhaustive Search

(FES) in Section 1.3.4.2, which will later play a role in Chapter 4.

1.3.1 Definitions and motivation

The Multivariate Quadratic (MQ) problem is the problem of solving a system of degree-two

equations over a finite field and has a role in both the construction of cryptographic schemes and

in cryptanalysis. We will be concerned with cryptanalysis via quantum search in this thesis.

Definition 1.3 (The Multivariate Quadratic (MQ or MQ(Fq, n,m)) problem).

Let Fq be a finite field of size q and f (1), . . . , f (m) ∈ Fq[x1, . . . , xn] such that each f (i) is of

total degree two. The Multivariate Quadratic problem is the problem of finding a solution vector

x̄ = (x1, . . . , xn) ∈ Fnq such that f (1)(x1, . . . , xn) = · · · = f (m)(x1, . . . , xm) = 0.

We will refer to the general problem by the shorthand MQ and specific instances of the MQ
problem via the shorthand MQ(Fq, n,m). In this thesis will be almost entirely concerned with

the case where q = 2 and most interesting in the case where n = m, which is thought to be the

hardest case. We note that each f (k)(x1, . . . , xn) which describes an instance of MQ(F2, n,m)

can be represented as

f (k)(x1, . . . , xn) =
∑

1≤i<j≤n
a

(k)
i,j xixj +

∑
1≤i≤n

b
(k)
i xi + c(k) (1.10)

where a
(k)
i,j , b

(k)
i , c(k) ∈ Fq, owing to the fact that xixj = xjxi over any field and x2

i = xi over F2.

The field of Multivariate Cryptography [DGS06] is the study of public-key cryptosystems

which rely upon the hardness of the MQ problem. These systems are often easier to solve by

Gröbner bases inspired routines (see Section 1.3.5) than random MQ(Fq, n,m) instances would

be, but this structure does not help when it comes to solving them via search techniques.

We will examine one candidate multivariate quadratic public-key cryptosystem, the Gui

digital signature scheme [PCY+15] in Section 1.3.7 and its proposed quantum-resistant parame-
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ters [PCDY17a, PCDY17b] derived from Schwabe and Westerbaan’s approach to using Grover’s

quantum search algorithm to solve instances of MQ(F2, n,m) [SW16].

Performing cryptanalysis via reduction of goals to the problem of solving systems of equations

over finite fields and specialised methods to solve these systems (which often possess structure

and are weaker than an otherwise random system would be) has come to be known as the

field of Algebraic Cryptanalysis [Bar09a]. In the field of algebraic cryptanalysis, it has been

demonstrated that it is possible to reduce the cryptanalysis of stream-ciphers, such as Triv-

ium [DC06, TWB+14] and KeyLoq [Bar09b, CBW08] and block-ciphers (such as the Advanced

Encryption Standard [Pub01, MR02]) to the problem of solving the Multivariate Quadratic prob-

lem, usually over an extension field of F2. The systems arising from these problems are often

sparse (in that each equation involves only a small subset of the total number of variables) or

contain hidden structure, making the problem of solving them very different from that of solving

random MQ instances.

Whilst we have talked about structure arising from cryptosystems, we will concern ourselves

with the hardness of solving random instances of MQ(F2, n, n), which is thought to be the

hardest case to solve, as a case-study. We discuss this further in Section 1.3.3.

1.3.2 Why quadratic?

Before reviewing techniques to solve instances of theMQ(F2, n,m) problem and the Gui digital

signature scheme, whose security relies upon the hardness of solving this problem, it is worth

noting the reason why the problem is stated in terms of quadratic equations. This stems from

both cryptanalysis and the field of multivariate cryptography.

The public-key of a multivariate cryptosystem is a system of multivariate quadratic equations

over a finite field and the problem of breaking such a cryptosystem is often simply equivalent to

an instance of theMQ problem. This will need to be both stored and processed by users, hence

size is an issue. As the number of unique monomials of a degree-d system (assuming d < q by the

identity xq ≡ x for x ∈ Fq) us that the number of bits required to represent an instance of the

MQ(Fq, n,m) problem is m ·
(
n+d
d

)
· (blog2 qc+ 1). In the case we are predominantly interested

in, that of MQ(F2, n,m) instances, we have that total number of bits required to represent the

system will be m ·
((
n+1

2

)
+ 1
)
.

In terms of cryptanalysis, there exists a simple method of reducing any degree d > 2 system

involving n equations in m variables to an instance of theMQ problem involving n′ > n variables

and m′ > m equations. This can be done via simple substitution, as (1.11) below demonstrates.

vwxyz + vwx+ xyz + xy + 1 = 0 =⇒


AB +Ax+B + xy + 1 = 0

A = vw

B = xyz

(1.11)
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1.3.3 Basic complexity results and assumptions concerning the MQ problem

It is well-known that the MQ problem is NP-complete [GJ79] (for an explicit and well-written

reduction see p.29 of [Wol05]) and in particular, random instances of MQ(Fq, n, n) are thought

not only be hard not only in the worst-case, but also believed to be impractical to solve on aver-

age [LPT+17, JV17] owing to both a lack of any algorithm to solve the general case in time less

than O(qdn) for 0 < d < 1 and the discussion below. As no quantum algorithm to solve any NP-

hard problem has been discovered, and it is thought that quantum computers cannot solve NP-

complete problems in polynomial-time, this provides the motivation behind usingMQ(Fq, n,m)

instances as a quantum-resistant public-key for multivariate quadratic public-key encryption sys-

tems. We give an explicit description of the public-key digital signature Gui [PCY+15] in Section

1.3.7, which details how one such public-key is constructed.

As mentioned in Section 1.3.1, there exist many different scenarios from where instances of

the MQ problem can arise in cryptography. These lead to a variety of different definitions and

scenarios. We will primarily be interested in the case that is most generic and believed to be the

hardest to solve — that of random, dense and determined systems of theMQ problem. We will

also assume that n ≤ m ≤ 2n, for reasons that will become apparent in the discussion below.

By random, we mean that a
(k)
i,j , b

(k)
i , c(k) ∈ Fq in (1.10) have a 1

q chance of being any given

element in Fq. By dense, we mean that each equation contains a large number of monomials and

that each equation almost certainly involves all variables — a random instance will therefore also

be dense for large n. There are three important cases for the relationship between the number

of variables n and the number of equations m in an MQ(Fq, n,m) instance.

AnMQ system is determined if n = m and this case is thought to be the hardest instance to

solve. We elaborate below by considering the cases where m < n and m > n, but intuitively it

can help to consider that in the case m < n there are fewer equations acting as constraints, hence

there are more solutions to the problem. Alternatively if m > n, then there is more information

available (in the form of equations) that can be computationally exploited by algorithms.

In the case where m < n, the system is underdetermined. As we can expect qn−m solutions

to such a system [FB09], one method has simply been to choose n−m variables and assign them

random values. The problem is then reduced to that of solving an instance of MQ(Fq,m,m),

which is expected to possess a single solution. There exists an alternative method in the form of a

reduction for underdetermined instances of theMQ(F2, n,m) problem. If we have that n = ωm

for some ω ∈ Q>1, then Thomae and Wolf [TW12] not only give us that underdetermined systems

can be solved in polynomial-time if n > m(m+1) but also a classical preprocessing step to obtain

an instance of MQ(F2,m − bωc + 1,m − bωc + 1) whose solution can be transformed into the

solution of the originalMQ(F2, n,m) instance. The complexity of this approach is O
(
m(bωcm)3

)
which, given that the cost of our methods will be O(2n/2 · poly(n)), will not impact upon the

overall complexity and is a negligible serial addition to any concrete resource estimate of the

costs involved. It is therefore possible to reduce underdetermined dense systems of equations

to determined systems of equations with a single solution. An instance of MQ(Fq, n,m) is

overdetermined if m > n. In this case Gröbner bases techniques (see Section 1.3.5) can exploit

these extra equations to achieve a polynomial-time algorithm when m > n(n+ 1)/2.
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1.3.4 Classical methods to solve the MQ problem

Classical methods to solve dense instances of the MQ(F2, n,m) problem usually rely upon two

ideas — search-based techniques and techniques related to the theory of Gröbner bases, with the

most efficient solutions being a hybrid mixture of the two techniques. In this section we give a

brief survey classical and quantum approaches to solving instances ofMQ(F2, n,m), specifically

instances ofMQ(F2, n, n). As we are studying quantum search in this thesis, we will pay special

attention to the leading method used to perform classical search — the Fast Exhaustive Search

(FES) algorithm, which we later demonstrate in Chapter 4 can be used advantageously to improve

the performance of Schwabe and Westerbaan’s quantum search oracle for the MQ(F2, n,m)

problem. We will only sketch the methods employed by the other techniques.

1.3.4.1 Naive exhaustive search

For comparison, we first state the complexity of performing a naive exhaustive search proce-

dure for instances of MQ(F2, n,m) where we treat the problem as an instance of the preimage

search problem. Under our assumption that m ≥ n and that there exists a single solution, an

MQ(F2, n,m) instance can easily be interpreted as the single-target preimage search problem

by construction of the function h : {0, 1}n −→ {0, 1}m, where

h(x1 . . . xn) 7→ f (1)(x1, . . . , xn)‖ . . . ‖f (m)(x1, . . . , xn) (1.12)

and setting Yh = {0n} and Mh = 1, so that h(x) is simply the concatenation1 of the result of

evaluating m equations. The cost of evaluating each of the m equations then allows us to compute

the total cost of a naive exhaustive single-target preimage search. Any method for evaluation

of multivariate polynomials of degree two can then be employed to compute h(x). There are

several strategies that can now be used dependent upon the resources that are available. In the

following discussion we count a single bit operation as either a multiplication or an addition.

As a basic strategy, we could simply add the constant c(k) to each equation register, followed

by the addition of the product xixj if a
(k)
i,j = 1 and add xi if b

(k)
i = 1. As each f (k)(x1, . . . , xn)

has in the worst-case n2−n
2 a

(k)
i,j terms, n b

(k)
i terms and one constant c(k), we can achieve the

evaluation of each f (k)(x1, . . . , xn) by using at most n2−n
2 multiplications and n2−n

2 + n + 1

additions. Checking if h(x)=0m requires at most m comparisons, meaning the cost of evaluating

all m equations and checking them is at most m · (n2 + 2) bit operations. We require at most

n+m+1 bits of space to compute h(x1 . . . xn) via this method, giving the single-target preimage

search procedure an asymptotic complexity of O(2nn2m) bit operations.

If instead of computing the individual xixj as needed, we first precompute these values then

we need only add these terms during the evaluation of each f (k)(x1, . . . , xn) via a lookup table.

This means that if we possess n2−n
2 bits of memory for storage of the xixj terms then we only

require n2−n
2 +m · (n2−n

2 +n+ 1) bit operations to evaluate all the equations on the same input.

1The notation a‖b where a = a1 . . . an ∈ {0, 1}n and b = b1 . . . bm ∈ {0, 1}m denotes the concatentation (or
joining) of these bitstrings, so that a‖b = a1 . . . anb1 . . . bm ∈ {0, 1}n+m.
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1.3.4.2 Fast Exhaustive Search (FES)

The Fast Exhaustive Search (FES) algorithm [BCC+10, BCC+13] is the leading method of per-

forming classical exhaustive search for a solution to an instance of MQ(F2, n, n). The FES

algorithm possesses an asymptotic complexity of O(2n+2 · log2 n) bit operations to exhaustively

enumerate all solutions to an instance ofMQ(F2, n,m), hence has the same complexity to solve

the case where there exists a single satisfying solution. An open-source implementation of this

algorithm is freely available at http://www.lifl.fr/ bouillag/fes/ and the technique has

been successfully applied to solve instances of the MQ challenge [YDH+15].

FES improves upon the naive exhaustive search approach described in Section 1.3.4.1 by

improving upon two ideas. The first is relatively simple and reduces the dependence of the

complexity upon m, the number of equations. If we have evaluated k < m equations and found

that f (1)(x1, . . . , xn) = · · · = f (k)(x1, . . . , xn) = 0, but find that f (k+1)(x1, . . . , xn) = 1, then we

have learnt that h(x) 6= 0n and need not continue. For any fixed x1 . . . xn ∈ {0, 1}n, we have

that the evaluation of any random f (k)(x1, . . . , xn) modelled as a pseudorandom function has an

equal probability of probability evaluating to either 0 or 1. For any candidate x1 . . . xn ∈ {0, 1}n,

the average number of evaluations we need before we learn that h(x) 6= 0n is then only 2 by the

expected value of the geometric distribution. This can also be applied to the naive exhaustive

search strategy discussed in Section 1.3.4.1, implying that we can reduce the cost to an expected

O(2nn2) bit operations for an instance of MQ(F2, n,m) with a single solution.

The second method by which FES improves upon naive exhaustive search is by adapting the

so-called folklore differential technique (in that the technique is already known by the community,

but without an obvious original reference), which notes that once we have evaluated a single

equation upon x1 . . . xn ∈ {0, 1}n and obtained f (k)(x1, . . . , xn) at a cost of O(n2) operations,

we can evaluate f (k)(x1, . . . , xv ⊕ 1, . . . , xn) for a cost of O(n) by exploiting the F2-derivative.

Definition 4.4 (The F2-derivative [BCC+10])

Let f ∈ F2[x1, . . . , xn]. The F2−derivative of f with respect to xv for 1 ≤ v ≤ n is defined as

df

dxv
(x1, . . . , xn) = f(x1, . . . , xv ⊕ 1, . . . , xn)⊕ f(x1, . . . , xv, . . . , xn). (1.13)

The Fast Exhaustive Search algorithm then exploits the fact that

f (k)(x1, . . . , xv ⊕ 1, xn) = f (k)(x1, . . . , xn)⊕ df (k)

dxv
(x1, . . . , xn) (1.14)

which is computationally advantageous, as if we have already evaluated and stored f(x1, . . . , xn)

then we can evaluate a point in the domain which differs by only one bit for the cost of computing

and adding df
dxv

(x1, . . . , xn). The F2−derivative of a degree-two equation f (k)(x1, . . . , xn) is

df (k)

dxv
(x1, . . . , xn) = f (k)(x1, . . . , xn)⊕ b(k)

v ⊕
n∑
i=1
i 6=v

a
(k)
i,v xi ⊕ f

(k)(x1, . . . , xn) (1.15)

which is an affine equation of degree one.
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The F2-derivative df (k)

dxv
(x1, . . . , xn) can therefore be easily precomputed by extracting these

coefficients and evaluated by using at most n − 1 additions of xi to add corresponding a
(k)
i,v

terms and a single bitflip for the b
(k)
v term. If we consider the cost of evaluating a single

equation f (k)(x1, . . . , xn) over all of the 2n possible inputs, then we can simply start with

f (k)(0, . . . , 0) = c(k) and use a Gray code (see Section 4.3.2) to enumerate and test all 2n el-

ements of the domain {0, 1}n by flipping one bit at a time (so that we update the state) and

adding the F2−derivative df (k)

dxv
on each bitflip to each equation. Used naively (and without

taking account the reduction of the dependency upon m discussed earlier), this method means

that we only requires O(mn2 + 2nmn) bit operations to enumerate all solutions to an instance

of MQ(F2, n,m). We will later exploit the folklore differential technique in order to reduce the

cost of quantum search applied to instances of MQ(F2, n,m) in Chapter 4.

The Fast Exhaustive Search algorithm uses these techniques in combination with a recursive

strategy for the evaluation of df
dxv

for the general case of degree-d polynomials over F2 to achieve

a complexity of O(d · 2n + n2d) bit operations to find the satisfying solutions for a single degree-

d equation over F2. However, this is only for the case of one equation and unfortunately the

filtering process which reduces the dependence upon m described earlier cannot be used with

their technique of enumeration via Gray codes. Their solution is to determine a subset of (F2)n

that satisfies a m′ ≤ m of the polynomials and then simply test these elements on the remaining

m−m′ polynomials to check whether these elements are satisfied, aborting the computation early

once the assignment leads to an unsatisfied polynomial. The optimal value of m′ to balance these

costs is therefore calculated to be (after optimisation) m′ = 1 + log2 n. This gives us the stated

complexity of O(2n+2 log2 n).

We will later exploit a quantum analogue of the strategy to reduce dependency upon m in

Chapter 6 and the folklore differential technique in Chapter 4.

1.3.5 Algebraic techniques

The majority of other methods to solve instances ofMQ(F2, n,m) can be traced back to variants

of algorithms which either explicitly use, or are related to methods involving Macaulay matrices.

Essentially, given an generic instance of MQ(Fq), n,m) one can build a matrix MD where each

column represents a monomial of degree ≤ D involving representing the elements of the set

MD = {x · f (k) : k = 1, . . . ,m and x is a monomial of degree ≤ D − 2}. (1.16)

for a given term ordering ≺, where each row represents an element of the set MD. In this

way, linear algebra techniques can be used to either locate elements which directly give, or can

be used to narrow the search space of solutions to the instance of MQ(Fq, n,m). As these

techniques involve manipulation of large matrices, they can be computationally intensive, even

though efficient linear algebra techniques are being exploited. The Gröbner bases techniques of

F4/F5 [Fau99, Fau02] and the XL (eXtended Linearisation) family of algorithms rely upon these

techniques [AFI+04], with the XL algorithm [CKPS00, CP03] often being used in conjunction

with sparse linear algebra techniques to manage the complexity of large matrix operations.
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These techniques will not be used in this thesis, but it is worth noting the complexity

of the leading method of solving instances MQ(F2, n, n) classically is the BooleanSolve algo-

rithm [BFSS13], which uses a strategy based upon fixing k < n of the variables and performing

an intensive computation to check if the resulting Macaulay matrix of the MQ(F2, n − k, n)

system has a solution — as it turns out that finding that a system does not admit a solution is

faster than solving it, this proves to be efficient, though the Fast Exhaustive Search algorithm

is expected to be practical for concrete parameters up until n = 200 [BCC+10]. The complex-

ity of BooleanSolve is O(20.892n) bit operations to solve an instance of MQ(F2, n, n) and this

technique has later been developed into the Crosbred algorithm [JV17] — the complexity of this

algorithm has not yet been fully analysed at the time of writing, though practical experiments

have demonstrated that it overtakes the Fast Exhaustive Search algorithm when n = 37.

1.3.6 Quantum methods to solve the MQ problem

This thesis is about the optimisation of quantum search applied to the preimage search problem

and we use the MQ(F2, n,m) problem to illustrate the computational gains we can make using

our techniques. We briefly highlight the known quantum algorithms to solve the MQ(F2, n,m)

problem here in this section. The methods in this thesis are derived from studying the initial

quantum resource estimation performed by Schwabe and Westerbaan [SW16] for the solution

of the MQ(F2, n,m) problem, which treats the MQ(F2, n,m) instance as a preimage search

problem whereby the classical circuit embedded into quantum circuitry and exploited by Grover’s

algorithm simply evaluates an element of the domain and checks if this evaluation is equal to the

target image. This approach requires a quantum circuit-size of O(2n/2 · n2m) gates. We discuss

their construction in Section 2.5.1 and provide a slightly optimised version in Section 2.5.2.

There exist alternative methods to solving an instance of the MQ(F2, n,m) problem via

exploiting Grover’s algorithm in a manner that differs from treating the problem as a preimage

search problem solved by evaluation and testing. We note that these methods were published

after the author of this thesis had devised several of the techniques in this thesis. These include

QuantumBooleanSolve [FHK+17] and QXL [BY18], which essentially embed the circuits used for

BooleanSolve and XL discussed in Section 1.3.4 within quantum circuitry and exploit Grover’s

algorithm to increase the efficiency of these algorithms. A comparison of the parameters for

instances ofMQ(F2, n,m) where one algorithm gains a concrete advantage in circuit-complexity

over another is left for future work, but for small parameters the techniques in this thesis may

outperform these superior methods as their asymptotic advantage hides constant terms.

We recall that BooleanSolve performs an exhaustive search of the first of k < n variables,

fixing these and testing whether the resulting system has a solution. QuantumBooleanSolve

replaces this exhaustive search procedure, so that the embedded classical circuit tests whether the

resulting system possesses a solution or not. With this strategy, QuantumBooleanSolve requires

O(20.462n) quantum gates to solve an instance ofMQ(F2, n, n). GroverXL also requiresO(20.462n)

quantum gates to solve an instance of the MQ(F2, n, n) problem. As GroverXL essentially uses

the same strategy as QuantumBooleanSolve of fixing variables and testing whether the resulting

system admits a solution, the identical asymptotic complexity is not suprising.
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There exists another recent algorithm in literature [CG17], which which involves the use of

the HHL [HHL09] quantum algorithm for solving linear systems but whose efficiency depends

upon the condition number of the corresponding boolean Macaulay matrix for theMQ(F2, n,m)

instance at hand. To the author’s knowledge, the study of the condition number of the corre-

sponding Macaulay matrices derived from MQ(F2, n,m) instances is an open problem and the

results simply imply that MQ(F2, n,m) instances with a small condition number may be easier

to solve. As far as the author is aware, this difficulty in determining the condition number of

matrices means that the impact of this algorithm is still unknown.

We do not go into details in this thesis concerning these algorithms apart from Schwabe

and Westerbaan’s approach in Section 2.5.1, simply noting that both the quantum versions of

BooleanSolve and the XL algorithm are asymptotically superior to the quantum search methods

employed in this thesis, but may require a larger number of qubits for smaller instances of

MQ(F2, n,m) and that all methods are based upon applying known quantum algorithms to

classical approaches to solve instances of theMQ(F2, n,m) problem. Whether our methods can

be used to improve the performance of QuantumBooleanSolve or QuantumXL, which simply

exploit Grover’s algorithm, is an open problem.
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1.3.7 A motivating example: the Gui digital signature scheme

There are many varieties of Multivariate Quadratic (MQ) cryptosystems — we highlight the

construction of the Gui MQ digital signature [PCY+15] scheme as a motivating example and

target for cryptanalysis, as the public-key of a user for the Gui signature scheme is an under-

determined system of MQ equations over F2 and forging the signature of a user corresponds to

solving several instances of MQ(F2, n, n).

1.3.7.1 Generic Multivariate Quadratic cryptosystems

The public key of a generic MQ cryptosystem consists of the map P : Fnq −→ Fmq described

by an ordered MQ system over Fq and the private key consists of a method to efficiently find

a preimage of P. The generic method to construct such a system consists of three components

which define the private key

• The affine (or linear) uniformly randomly chosen map of maximal rank S : Fmq −→ Fmq .

• The affine (or linear) uniformly randomly chosen map of maximal rank T : Fnq −→ Fnq .

• An MQ system F : Fnq −→ Fmq whose structure allows us to compute F−1 efficiently.

The public key is then the composition of these maps

P = S ◦ F ◦ T. (1.17)

As S, T and F are all efficiently invertible, to find a preimage of h ∈ (Fq)m the holder of the

private key simply computes

• x = S−1(h)

• y = F−1(x)

• z = T−1(y)

By composition, the holder the private-key therefore has an efficient method of computing (if

one exists) the preimage z ∈ Fnq such that P(z) = h.

The random affine (or linear) maps S and T hide the special structure of the map F , which

we know how to invert. Ideally, the resulting public key should both appear and act as a random

instance of the MQ problem and contain no special structure. Unfortunately, many of the

methods used to create the central map F lead to special structure appearing P, which has

been exploited by cryptanalysts to break the security of the system. Ultimately the security

of MQ cryptosystems relies on two problems — direct attacks and structural attacks. Direct

attacks consist of treating the public key P as a purely algebraic problem and attempting to

solve it. Direct attacks can include those described in Section 1.3.4 and 1.3.6 for instances of

MQ(F2, n,m) and in the general case for instances of (Fq, n,m) are performed using methods

based upon Gröbner basis algorithms, exhaustive search methods or a hybrid mix of the two.
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Structural attacks take into account how the central map was created, exploiting this knowl-

edge in order to break the cryptosystem by gaining knowledge of S, T and F and are beyond the

scope of this thesis. The focus of this thesis is on the optimisation of quantum search routines

and we treat the problem as purely a preimage search problem. We do not take into account

these algebraic or structural weaknesses in the public-key P. For our purposes, P may as well

be a random instance of MQ(F2, n,m), but it is worth noting that the public-key of an MQ
cryptosystem is usually easier to solve with algebraic methods such as Gröbner bases routines

than a truly random instance of MQ(Fq, n,m) [DK12, DY13, DG10].

1.3.8 Hidden Field Equation (HFE) cryptosystems

The Hidden Field Equations (HFE) construction is one potential method of realising the invert-

ible central map we described in construction of a generic MQ cryptosystem in Section 1.3.7.1.

The basic construction is defined by the affine maps of maximal rank T, S : Fnq −→ Fnq and the

MQ central map F : Fnq −→ Fnq . The efficient inversion of F for HFE cryptosystems is reliant

upon the (so-called) canonical isomorphism Φ : Fnq −→ Fqn given by

Φ(x1, . . . , xn) 7→
n∑
i=1

xiZ
i−1 (1.18)

where Fqn = Fq[Z]/(p(Z)) and p is an irreducible polynomial of degree n. The isomorphism Φ

allows the construction of an instance ofMQ(Fq, n, n) which can be efficiently inverted via first

choosing a polynomial F̄ ∈ Fqn [X] of degree D, where X =
n∑
i=1

xiZ
i−1 of the special form

F̄ =
∑
i,j∈N0

0≤qi+qj≤D

Ai,jX
qi+qj +

∑
i∈N0

0≤qi≤D

BiX
qi + C. (1.19)

As the coefficients are non-zero for only powers of Xqi+qj , Xqi and X0, this leads to an

instance of MQ(Fq, n, n) as if we consider the isomorphism Φ−1 : Fqn −→ Fnq applied to the

term Ai,jX
qi+qj for arbitrary i, j ∈ N then we have that

Φ−1(Ai,jX
qi+qj ) = Φ−1(Ai,jX

qi ·Xqj ) (1.20)

= Φ−1

( n∑
k=1

ai,j,kZ
k−1

)
·

(
n∑
k=1

xkZ
k−1

)qi
·

(
n∑
k=1

xkZ
k−1

)qj (1.21)

and as for a, b ∈ Fqn we have that (a+ b)q
i

= aq
i
+ bq

i
and for xi ∈ Fq we have that xqi = xi gives

= Φ−1

((
n∑
k=1

ai,j,kZ
k−1

)
·

(
n∑
k=1

xkZ
(k−1)·qi

)
·

(
n∑
k=1

xkZ
(k−1)·qj

))
(1.22)
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If we then multiply out the argument and compute the argument modulo P (Z), then we obtain

= Φ−1

 n∑
k=1

 ∑
1≤r,s≤n

a(k)
r,sxrxs

Zk−1

 ., (1.23)

where a
(k)
r,s is simply the collected terms after reduction by P (Z). Finally, we can apply Φ−1

directly to obtain a vector whose components are sums of quadratic terms

=

( ∑
1≤r,s≤n

a(1)
r,sxrxs

)
, . . . ,

( ∑
1≤r,s≤n

a(n)
r,s xrxs

) . (1.24)

In the same way we have that the isomorphism applied to each term Xqi results in a vector

whose components are simply linear equations in x1, . . . , xn and the isomorphism Φ−1 applied

to C results in a vector of constant terms. Using the additive property of the isomorphism, we

can compute the map Φ−1 applied to each term of the polynomial F̄(X) and add these vectors

component-wise to obtain a system of n multivariate quadratic equations in n variables over Fq.
When it comes to inverting this system of equations, we therefore simply take the element

y ∈ Fnq and apply Φ to lift it to Y ∈ Fqn [Z]/P (Z). Knowledge of the univariate polynomial

F̄(X), then allows F̄(X) then allows us to compute the root of F̄(X) − Y = 0 via any root-

finding algorithm for finite fields and the solution X ∈ Fqn can then be converted to an element

x ∈ Fnq using the isomorphism Φ−1. After optimisations, the univariate root-finding procedure

will usually be the bottleneck in this procedure and its complexity is dependent upon the degree

D of the polynomial F̄ ∈ Fqn [X] — using Berlekamp’s algorithm gives a complexity of O(D3)

operations over Fqn and hence choosing D to be small allows this process to be efficient.

h ∈ Fnq z ∈ Fnqy ∈ Fnq x ∈ Fnq

Y ∈ Fqn X ∈ Fqn

Signature Verification

Signature Generation

S−1 F−1 T−1

Φ

F̄−1

Φ−1

P = S ◦ F ◦ T

Figure 1-1: The workflow of a generic HFE cryptosystem

The hardness of solving F via algebraic attacks is dependent upon a parameter known as

the degree of regularity of an MQ system. An upper bound for the degree of regularity of HFE

systems scales with logqD, hence the degree D of F̄ must be chosen with respect to both the

efficiency for the root-finding step and the security of the system against algebraic attacks.
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1.3.9 Gui: An example of HFEv-

GUI [PCY+15] was introduced by Petzoldt et. al in 2015 and will be our leading example of an

HFE, in fact HFEv-, multivariate signature scheme. We will examine how our methods apply to

finding a preimage for theMQ system for the public key of this cryptosystem. To our knowledge,

it remains unbroken classically, but the chosen parameters for quantum security are susceptible

to our improvements to quantum search techniques for the MQ problem over F2, in Chapters

4, 5 and 6 in this thesis.

GUI [PCY+15] is an updated form of the QUARTZ HFE cryptosystem [PCG01], which

takes into account theoretical advances concerning the aforementioned degree of regularity for

HFE cryptosystems [DK12, DY13, DG10] that were not available during the design phase of

QUARTZ. It uses both vinegar variables (the substitution of random field elements) and the

minus technique (the removal of equations) in the central map and the base field of the resulting

MQ system is F2, leading to the authors naming it after a design of Chinese pottery named

Gui with three legs, representing the three design principles of HFE it implements. We will first

describe the central map, which is a special case of the QUARTZ central map, where the only

difference is that QUARTZ allows a finite field of arbitrary size to be used, instead of Gui’s

fixed choice of F2. Gui is parameterised by the tuple (n,D, a, v, k), where n is the number of

variables, D is the degree of the central HFE map, a is the number of equations we remove, v is

the number of vinegar variables in the central map and k is the number of times a preimage of

the public-key is computed.

1.3.10 The HFEV- core map

The HFEv- core map is parameterised by the tuple (Fq, n,D, a, v) and the central map of Gui

is simply an HFEv- core map with Fq fixed to be F2. We therefore describe the generic HFEv-

core map and inversion procedure.

In the context of the generic HFE construction as described in Section 1.3.7.1, the affine

components are the maps, S : Fnq −→ Fn−aq and T : Fn+v
q −→ Fn+v

q of maximal rank and the

central map F is constructed from the canonical isomorphism Φ : Fnq −→ Fqn applied to the map

F̄ : Fqn × Fvq −→ Fqn , defined by

F̄(X) =

qi+qj≤D∑
0≤i≤j

αi,j ·Xqi+qj +

qi≤D∑
i=0

βi(v1, . . . , vv) ·Xqi + γ(v1, . . . , vv), (1.25)

where βi : Fvq −→ Fqn and γ : Fvq −→ Fqn are respectively degree one and degree two affine maps

in the vinegar variables. The central map is then defined by F : Fn+v
q −→ Fnq ,

F = Φ−1 ◦ F̄ ◦ Φ (1.26)

and the public-key is the composition P : Fn+v
q −→ Fn−a given by

P = S ◦ Φ−1 ◦ F̄ ◦ Φ ◦ T. (1.27)
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In order to avoid birthday attacks due to the chosen sizes of input, the authors of Gui use

k > 1 applications of the HFEv- core map to sign and verify messages. In order to sign a

document d, an instance of Gui(n,D, a, v, k) consists of the following process:

1. A hash of the message h← H(d) we wish to sign is first computed.

2. The variable S0 := 0n−a ∈ Fn−a2 is initialised.

3. For i = 1, . . . , k :

a. The variable Di is set to be the first n− a bits of h.

b. The preimage of P−1(Di ⊕ Si) is then computed and the result interpreted as an

element Si ∈ Fn−a2 and an element Xi ∈ Fa+v
2 .

c. A hash of the original hash is then computed so that h← H(h).

4. The signature σ = (Sk‖Xk‖ . . . ‖Xk) is output.

Verification, which is unimportant for our purposes, is then handled by performing this operation

in reverse, with the signature being verified if and only if the final value of S0
?
= 0n ∈ Fn−a2 .

1.3.11 Gui as a target for cryptanalysis

As a target for cryptanalysis via search based methods, we have for an instance of Gui(n,D, a, v, k)

that the public-key is an instance of MQ(F2, n+ v, n− a) and that the most costly part of the

process of forging a signature will be the inversion of the public-key P : Fn+v
2 −→ Fn−a2 a total

of k times, which must be performed in serial. Either fixing variables or using methods to solve

underdetermined systems of equations [TW12] implies that the total effort involved will be that

required to solve k serial instances of MQ(F2, n − a, n − a). We make the assumption that

there exists a single solution, as do the authors of the Gui cryptosystem when choosing their

quantum-resistant parameters [PCDY17a, PCDY17b].

With regards to choosing parameters for a quantum-resistant for Gui, the authors in the

original design document for Gui [PCY+15] state that choosing n to be twice as large as their

parameters for resistance to classical cryptanalysis will provide protection from attacks by quan-

tum computers. This doubling of n takes into account the square-root advantage that Grover

provides over classical search (2n/2 quantum queries compared to 2n classical queries) but does

not take into account the overhead involved with implementing the quantum oracle.

After the publication of Schwabe and Westerbaan’s quantum oracle (see Definition 2.11) for

use with Grover’s algorithm to solve instances ofMQ(F2, n,m), the authors of Gui suggest new

parameters based upon this attack being optimal — it is these targets we attack in this thesis.
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Gui(n,D, a, v, k) Security level Cryptanalysis target Source

Gui(94, 17, 4, 4, 4) λ = 80 (classical) 4×MQ(F2, 90, 90) [PCY+15]

Gui(95, 9, 5, 5, 3) λ = 80 (classical) 3×MQ(F2, 90, 90) [PCY+15]

Gui(96, 5, 6, 6, 3) λ = 80 (classical) 3×MQ(F2, 90, 90) [PCY+15]

Gui(127, 9, 3, 4, 4) λ = 120 (classical) 4×MQ(F2, 124, 124) [PCY+15]

Gui(188, 17, 4, 4, 4) λ = 80 (quantum) 4×MQ(F2, 184, 184) [PCY+15]

Gui(190, 9, 5, 5, 3) λ = 80 (quantum) 3×MQ(F2, 185, 185) [PCY+15]

Gui(192, 5, 6, 6, 3) λ = 80 (quantum) 3×MQ(F2, 186, 186) [PCY+15]

Gui(254, 9, 3, 4, 4) λ = 120 (quantum) 4×MQ(F2, 251, 251) [PCY+15]

Gui(120, 9, 3, 3, 2) λ = 80 (quantum) 2×MQ(F2, 117, 117) [PCDY17b]

Gui(212, 9, 3, 4, 2) λ = 128 (quantum) 2×MQ(F2, 209, 209) [PCDY17b]

Gui(464, 9, 7, 8, 2) λ = 256 (quantum) 2×MQ(F2, 457, 457) [PCDY17b]

Table 1.1: Suggested parameters for the Gui cryptosystem [PCY+15, PCDY17a, PCDY17b].

In particular we note the case of Gui(188, 17, 4, 4, 4) and Gui(120, 9, 3, 3, 2) which are both

proposed to possess the property that forging a signature requires at least 280 quantum gates.

Both parameter sets for Gui were proposed corresponding to an attack by Grover’s algorithm

(see Theorem 3.10) being used to search for a preimage, — but Gui(188, 17, 4, 4, 4) takes into

account only the number of calls to the quantum oracle that are required, whilst Gui(120, 9, 3, 3, 2)

takes into account both the number of calls and the cost of calling the quantum oracle. It is

clear that these parameters and targets for cryptanalysis are very different and that solving

Gui(120, 9, 3, 3, 2) will be far easier. This provides a motivating case-study for our optimisations

and leads to our conclusions in Chapter 7, that it is fundamentally dangerous to extrapolate

cryptographic parameters from quantum resource estimates for quantum search algorithms —

the true costs of these algorithms, even in the logical quantum circuit-model, is not yet fully

understood.
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1.4 The key-search problem

In this section we describe the computational resources required to attack the key-search problem

for block-ciphers via search techniques, which we will examine again in Chapter 6.

Definition 1.4 (Block cipher [MKVOV96]).

A block-cipher with a message-block length of n and a key-length of k is defined by the message-

space {0, 1}n, the keyspace K ⊆ {0, 1}k, a function Gen which randomly samples a key k ∈ K
and the two functions

Enc : {0, 1}n × {0, 1}k −→ {0, 1}n (1.28)

and

Dec : {0, 1}n × {0, 1}k −→ {0, 1}n, (1.29)

which must have the property that for (P,K) ∈ {0, 1}n×K it holds that Dec(Enc(P,K),K) = P .

The usual definition of breaking a block-cipher is either the recovery of a plaintext P ∈ {0, 1}n,

given a ciphertext C ∈ {0, 1}n such that C = Enc(P,K) for a given K ∈ K or the recovery of the

key K used to encrypt P , which naturally implies obtaining P and the decryption of all other

P ′ ∈ {0, 1}n encrypted under this choice of K ∈ K. We will be interested in the latter scenario,

known as the key-search problem for block ciphers (see Definition 1.5).

The example to which we will immediately specialise to is that of the Advanced Encryption

Standard [Pub01]. The Advanced Encryption Standard (AES) is defined with a fixed block-

length of n = 128 and K = {0, 1}k for k = 128, 192, 256 and these cases will be respectively

referred to as AES-128, AES-192 and AES-256. The Advanced Encryption Standard was the

winning entry of the five year NIST2 standardisation process (or competition) to choose and

establish a standardised, publicly available and community-supported block-cipher from entries

from the cryptographic community. The Rijndael block-cipher was eventually chosen to be the

Advanced Encryption Standard and remains the standard choice of symmetric-key encryption

for the majority of web traffic today.

For our purposes the implementation details of AES will not matter, only that we will model

AES as a pseudorandom function in the key-search scenario for cryptanalysis of this primi-

tive. The costs required to solve the key-search problem via Grover’s algorithm exist in litera-

ture [GLRS16] and will be recalled explicitly in Section 2.6 to be used in Chapter 6.

Definition 1.5 (The key-search problem for block-ciphers).

Let (Gen,Enc,Dec) define a fixed block-cipher with a message block size n and a key size k.

Let K ← Gen(1k) be fixed. Let r ∈ N and P1, . . . , Pr ∈ {0, 1}n. Suppose we can obtain

~Pr = ((P1, C1) , . . . , (Pr, Cr)) where Ci = Enc(Pi,K). (1.30)

for any choice of r and P1, . . . , Pr. The key-search problem is to find the fixed key K ∈ {0, 1}k.
2National Institute of Standards and Technology (http://www.nist.gov)
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Attacking a block-cipher in this way is known as a known plaintext-ciphertext attack, where

Pi are the plaintexts and Ci are the ciphertexts. In a realistic attack scenario, whilst the fixed-

key may be hidden inside the device used for encryption, the cryptanalyst may be able to either

deduce from the context of the message (for instance, an encrypted header of a file), trick or

bribe someone to send a specific message — or in a modern context infect a device with malware

in order to get the device to send a specific message. Regardless of the method used to obtain

the plaintexts, we will wish to examine the resources required to attack this problem via search

based methods — specifically quantum search based methods in Chapter 6.

The first problem is that of plaintext unicity distance, or the number r of plaintext-ciphertext

pairs required to uniquely determine the fixed key K ∈ {0, 1}k. It will do the cryptanalyst no

good if they locate a K ∈ {0, 1}k that satisfies ~Pr, but decrypts all other plaintexts to random

messages. A good block-cipher will possess the property that if we fix a plaintext P ∈ {0, 1}n

then the function EP : {0, 1}k −→ {0, 1}n defined by

EP (x) = E(P, x) (1.31)

will act as a pseudorandom function, in that any particular input x ∈ {0, 1}k corresponding to

a key has an equal chance of mapping to any element C ∈ {0, 1}n of the co-domain. It is plain

that if k > n, then some keys must map the fixed plaintext to the same ciphertext. In order

to uniquely determine the fixed key with high probability, the cryptanalyst chooses r (in the

context of Definition 1.5) to be large enough and specifies the problem as a preimage search

problem where hr : {0, 1}k −→ {0, 1}rn, yh = C1‖ . . . ‖Cr and

hr(x) 7→ EP1(x)‖ . . . ‖EPr(x). (1.32)

In this way we have that the probability of any one key mapping r plaintexts to exactly r

ciphertexts is 2−rn. The scenario guarantees that there exists a single key (as we have captured

the corresponding plaintext-ciphertext pairs), hence the expected number of solutions to the

single-target preimage search problem as defined by hr and yh above is 1 + (2k − 1) · 2−rn. The

expected number of spurious keys is therefore approximately 2k−rn. Hence we will wish to choose

r such that this value is as close to 1 as possible, without choosing r to be too large so as to

incur additional costs.

For AES, this means that as n = 128 is fixed for each each key size k = 128, 192, 256, we can

choose r = 2 for k = 128, 192 and r = 3 for k = 256. This means that we expect 2−128 spurious

keys for AES-128, an expected 2−64 spurious keys for AES-192 and an expected 2−128 spurious

keys for AES-256. In the original paper on applying Grover’s algorithm to cryptanalysis of AES

via the preimage search problem, they describe this analysis but choose r = 3 for AES-128, r = 4

for AES-192 and r = 5 for AES-256. This may partly be because the analysis is recycled from

a previous paper by two of the authors [RS15] where r is derived based upon the probability

that pairs of keys encrypt the same plaintext to the same ciphertext, as opposed to our scenario

where one key (the key we are attempting to find) is fixed. Their choice of r is therefore not

incorrect, but is inefficient for the single-target preimage attack scenario.
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We note that classically a filtering process can be used, much as in the case of Fast Exhaustive

Search Algorithm described in Section 1.3.4.2 to reduce the dependency of the algorithm on the

number of equations. In this scenario, we simply test keys until we find one that fulfils the

condition EP1(x) = C1, then proceed to test the key to check if it satisfies the remaining r − 1

plaintext-ciphertext pairs. This is impossible in Grover’s algorithm as the nature of implementing

boolean circuits in quantum circuitry does not allow conditional execution to work in this fashion.

Our adaptation in Chapter 6 is essentially a quantum analogue of this filtering system, building

upon the work of [KYYLHH15] and using amplitude amplification to achieve this.
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Chapter 2

Quantum computing

The first thing to realise about parallel universes, the Guide says, is that they

are not parallel. It is also important to realise that they are not, strictly speaking,

universes either, but it is easiest if you try and realise that a little later, after you’ve

realised that everything you’ve realised up to that moment is not true.

- Douglas Adams, Mostly Harmless [Ada92]

In this chapter we provide the required background in quantum computing to understand

the quantum search algorithms and cost model contained in this thesis. This is not a thesis

about how quantum computers work, but rather on how to optimise and use quantum search

algorithms. We will rely upon a simple abstraction of quantum computing which requires only

that we accept some basic principles as facts and provide discussion around the subject.

In Section 2.1 we introduce the mathematical model of quantum computation, relating briefly

as to its connection to the postulates of quantum mechanics. The mathematical model of quan-

tum computing allows us to describe quantum algorithms in the language of linear algebra, with

the quantum state being represented by a unit vector in a finite-dimensional complex Hilbert

space and quantum algorithms being the space of all unitary operators acting upon this Hilbert

space. The mathematical model is a particularly useful tool in regards to the creation of quan-

tum algorithms and the proof of their correctness, as quantum algorithms may be described in

terms of unitary operators given only in terms of a high-level description.

In Section 2.2 we cover the logical quantum circuit model of computation, which concerns itself

with how the abstract unitary operators in the mathematical model of quantum computation

may be implemented via a finite set of quantum gates acting on only one or two qubits. A finite

set of quantum gates which enable any theoretical quantum algorithm to be implemented, at

least up to an arbitrarily chosen level of error, is known as a universal quantum gate set (see

Section 2.2.1) and we provide the cost of our quantum algorithms in terms of the Clifford+T

universal quantum gate set (see Section 2.2.2).

In Section 2.3 we discuss the topic of quantum phase oracles and how they can be constructed

via implementing boolean primitives in quantum circuitry. We discuss design patterns for quan-

tum oracles in Section 2.4 and conclude with explicit details of how the quantum phase oracle

for the MQ problem may be implemented in Section 2.5.
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Whilst the theory of quantum algorithms and quantum computation is progressing, the even-

tual architecture(s) that quantum computers will utilise is still an open question. This thesis

ignores concerns such as how qubits will be implemented, the internal topology of quantum

computers and full details of error-correction. These are important real-world concerns, but

ignoring them is both sensible from a technical and sociological perspective. From the technical

perspective, the cost of executing a fault-tolerant quantum circuit is extrapolated from the cost

of executing a noise-free quantum circuit, hence providing the cost of a quantum algorithm in

the noise-free quantum circuit model of computation allows us to crudely compare quantum

algorithms, without tying us into any assumptions concerning the engineering principles of any

future implementation of a quantum computer.

We will therefore ignore the issue of error-correction in this thesis, as optimisations in the

logical circuit-model of computation are both relevant in terms of cryptanalysis and will be

expected to carry over to an implementation which involves quantum error correction if the

techniques involve strict-gains for all metrics for the logical quantum circuit. The impact of

error-correction upon optimisations which involve advantageous tradeoffs relative to metrics in

the logical quantum circuit-model of computation is trickier to analyse, as the true impact will

depend upon how these metrics impact upon the particular quantum error-correction scheme.

From a sociological perspective, the cryptographic currently uses the noise-free quantum-

circuit model, sometimes refered to as the logical quantum circuit model, as a means of comparing

quantum algorithms and extrapolating security parameters. Hence, in some respect it does not

matter if the quantum algorithms can ever be implemented, or what their true execution costs will

be — only that the cryptographic community is currently making informed decisions based upon

the estimated noise-free quantum-circuit complexity of these algorithms. Such quantum resource

estimates have been performed for cryptanalysis of AES [GLRS16] with the Clifford+T universal

gate set, the Multivariate Quadratic problem over F2 using logical quantum gates [SW16], the

Elliptic Curve Discrete Logarithm problem using only Toffoli gates [RNSL17] and for solving the

SHA preimage problem with Grover’s algorithm by using a cost-model based upon the projected

classical resources required for a fault-tolerant implementation [ADMG+16]. This study of the

resources required to implement quantum algorithms (relative to any cost model) has colloquially

become known as the study of quantum resource estimation.

The use of logical quantum gates as a metric for security estimates with respect to quantum

algorithms was strengthened by the announcement of the NIST1 standardisation process for

quantum-resistant public-key cryptosystems [oST16a]. The NIST call for proposals for this

standardisation process [oST16b] required submissions to quantify the estimated “computational

resources” required to attack submitted cryptosystems with classical or quantum algorithms in

comparison with those required to attack the AES-128/192/256 symmetric key primitives and

SHA-256/384/512 hash functions. ”Computational resources” is a well-understood term with

regards to classical bit operations, but as the underlying hardware architectures of classical

and quantum computers are fundamentally different, it is currently difficult to make a straight

forward comparison — though efforts have been made [ADMG+16].

1National Institute of Standards and Technology
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The NIST call for proposals therefore suggests using the logical quantum circuit model for

security estimates. The NIST call for proposals states that various metrics may eventually be

used and that research into metrics for quantum algorithms is ongoing. For now at least, the

logical quantum circuit-model is a standard choice for quantifying the resources required to

execute a quantum algorithm and the Clifford+T gate set is useful to consider, owing to its

use in the analysis of Grover’s algorithm applied to AES [GLRS16] and proposed benefits with

regards to quantum error-correction schemes.

2.1 The mathematical model of quantum computing

We now introduce the mathematical model of quantum computation, which can in some sense

be considered as level of abstraction at which we design quantum algorithms. Our aim is not to

be exhaustive in our description of quantum computation, but to provide a model of quantum

computation that is suitable for the purpose of this thesis. Much of the following material is

adapted from several well-known resources on quantum computation and the interested reader

is directed towards these [NC10].

Data structures are at the core of computer science and in some sense quantum computing can

be considered as a method of exploiting a unique data structure, the quantum state, whose cre-

ation, manipulation and access is enabled by our understanding of quantum mechanics. As with

other data-structures, it is built of relatively simple components (qubits), which are connected

in a unique manner to create the data structure (the quantum state), has a means of extracting

data from the structure (measurement) and a means of manipulating the data structure itself

(application of unitary operators).

2.1.1 A word on dirac notation

In the following and in Chapter 3 we use Dirac notation to describe quantum states and opera-

tions, which are described by vectors over C of unit length and unitary matrices. The length of

these vectors will be implicit — when we are working with n qubits, the vector will a unit length

element of C2n . In all cases throughout this thesis vectors will be relative to the canonical basis

e0, . . . , e2n−1 where ei ∈ C2n is zero apart from the ith component, which is 1. For our purposes,

this will be known as the computational basis. With this in mind, the following may be useful:

• The ket |ψ〉 is an element of C2n whose ith component is indexed by the binary expansion

of i, padded on the left with zeroes so that the index is a length n bitstring.

• The bra 〈ψ| will represent the conjugate-transpose of |ψ〉, so that (if we treat vectors as

column matrices) 〈ψ| = |ψ〉†, where † is the notation for the conjugate-transpose.

• The inner product 〈ϕ|ψ〉 = |ϕ〉† |ψ〉 =
2n−1∑
i=0

ϕ∗iφi.

• The notation 〈ϕ|A |φ〉 will denote the inner product 〈ϕ| (A |φ〉), where A ∈ C2n×2n .

• The notation |ϕ〉 |φ〉 will be used as shorthand for the tensor product |ϕ〉 ⊗ |φ〉.
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2.1.2 Quantum states and quantum registers

Together, postulate one and postulate two mathematically describe the basic components of the

data structure upon which quantum algorithms act.

Postulate one

The space of configurations for which any isolated physical system may be in can be described

by a Hilbert space over C. At any point in time the physical system is completely described by

a state vector |ψ〉 of unit length in this state space so that 〈ψ|ψ〉 = 1.

For our purposes, the physical system will represent the internal state of the quantum computer

and the state space will always be a finite dimensional Hilbert space over C of dimension 2n,

where n is the number of quantum bits, or qubits, in our system. These qubits act as the

quantum analogue to classical bits and comprise the basic building blocks of the data structure

upon which universal quantum computers process information. In the case n = 1, the state space

of each qubit is described by the two-dimensional complex vector space C2. If the basis of this

vector space is comprised of the orthonormal unit vectors {|0〉 , |1〉}, then the qubit may be in

any superposition (see Definition 2.4) of these basis states

|ψ〉 = α0 |0〉+ α1 |1〉 , (2.1)

with α0, α1 ∈ C and with the unit vector constraint 〈ψ|ψ〉 = 1 giving us that |α0|2 + |α1|2 = 1.

Definition 2.1 (Computational basis state of a single qubit).

The basis {|0〉 , |1〉} for the Hilbert space C2 representing an individual qubit is called the com-

putational basis and an arbitrary element α0 |0〉+ α1 |1〉 is represented by the vector(
α0

α1

)
∈ C2. (2.2)

In order to consider systems comprised of more than one qubit, we require postulate two.

Postulate two

The state space of a composite physical system may be described by the tensor product of

the individual components of the system. If two separate quantum systems are in the states

|ψ1〉 ∈ H1 and |ψ2〉 ∈ H2 are treated as a single system, this composite system is in the state

|ψ1〉 ⊗ |ψ2〉 ∈ H1 ⊗H2. (2.3)

Together, the first two postulates provides us with a method of describing the state of the

quantum system as a whole.
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As we will treat the state of the quantum system as memory upon which operations are

formed, in the context of quantum algorithms we will refer to the state of the system as the

quantum register. It will be useful to consider different logical decompositions of the state space

when we analyse quantum algorithms and consider the effect of entanglement. As such, we will

refer to specific subsystems by named quantum registers. For example, in (2.3), we might refer

to the subsystems H1 and H2 as the first and second register, or the search-space and ancillae

registers. As is standard notation, we will often exclude the tensor sign ⊗, so that the state

|ψ1〉 ⊗ |ψ2〉 is simply written |ψ1〉 |ψ2〉 or even |ψ1ψ2〉.
As the basis of a tensor of vector spaces is the set of tensors of all combinations of the

basis states for the individual subsystems of the tensored vector space, this provides a canonical

description of the state of an arbitrary system via the computational basis.

Definition 2.2 (n-qubit computational basis states).

The set of computational basis states of an n-qubit quantum state is the set

{|x1 . . . xn〉 = |x1〉 ⊗ · · · ⊗ |xn〉 : x1 . . . xn ∈ {0, 1}n}. (2.4)

As is standard notation, we will write the state alternatively as |x1x2 . . . xn〉 or, when the

number of qubits is implicit, by simply the notation |x〉 = |x1 . . . xn〉. Whilst a tensor product

can be used to describe a composite system, after these components have interacted they cannot

always be described as a tensor product.

Definition 2.3 (Entanglement).

Given a tensor decomposition of a composite quantum system and state vector belonging to this

composite quantum system |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn, we say that |ψ〉 is entangled if it cannot be

written as the tensor product

|ψ1〉 ⊗ · · · ⊗ |ψn〉 ∈ H1 ⊗ · · · ⊗ Hn, with |ψi〉 ∈ Hi. (2.5)

We note that entanglement must be defined in relation to a specific tensor decomposition

of the Hilbert space representing the composite quantum system. For instance, we could define

the state |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ∈ H1 ⊗ H2 such that |ψ1〉 ∈ H1 is entangled with regards to the

decomposition H1 = C2⊗C2, but |ψ〉 is unentangled with regards to the decomposition H1⊗H2.

As a simple example of this and to illustrate the vector and ket notation for systems of more

than one qubit, we consider the two-qubit Bell state |β00〉, which can be written respectively as

|β00〉 =
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2
=
|0〉 |0〉+ |1〉 |1〉√

2
=
|00〉+ |11〉√

2
=


1√
2

0

0
1√
2

 . (2.6)

Whilst this can always be expressed relative to the computational basis {|00〉 , |01〉 , |10〉 , |11〉},
the state |β00〉 cannot be written as the tensor product |ϕ〉 |φ〉 for any choice of |ϕ〉 and |φ〉.
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Relative to the tensor decomposition C2⊗C2, the state |β00〉 is entangled as, if there existed

constants such that |β00〉 =
(
a |0〉+ b |1〉

)
⊗
(
c |0〉+ d |1〉

)
, then we would have that

ac =
1√
2

ad = 0 bc = 0 bd =
1√
2
, (2.7)

which is clearly a contradiction. This can be compared with an unentangled state

1

2

(
|00〉+ |01〉+ |10〉+ |11〉

)
=

1√
2

(
|0〉+ |1〉

)
⊗ 1√

2

(
|0〉+ |1〉

)
. (2.8)

An arbitrary n-qubit quantum system in relation to the computational basis states can therefore

be written as

|ψ〉 =
∑

x∈{0,1}n
αx |x〉 =


α0n

...

α1n

 . (2.9)

Whilst the set of states {|e0〉 , . . . , |e2n−1〉} forms an orthonormal basis (in that 〈ei|ej〉 = δi,j),

in general a quantum state may be expressed relative to any orthonormal basis. Whilst we will

only be concerned with the computational basis {|e0〉 , . . . , |e2n−1〉} in this thesis, it is important

to mention this in relation to the notion of superposition.

Definition 2.4 (Superposition and amplitude).

Given an orthonormal basis for anN -dimensional vector space associated with a quantum system,

{|ψi〉}N−1
i=0 , we say that a state vector is in a superposition with respect to these basis states if

|ψ〉 =

N−1∑
i=0

αi |ψi〉 , where ai ∈ C (2.10)

and |ψ〉 6= |ψi〉 for any i. The αi ∈ C are referred to as the amplitudes of the basis state |ψi〉.

It is worth noting that the concept of superposition and amplitude are only relevant with

regards to a given orthonormal basis, as we can always define a new basis with the Gram-

Schmidt procedure such that the state |ψ〉 as in (2.10) is defined to be the first basis vector and

the computational basis states are modified accordingly to be the remaining vectors in the basis.

Definition 2.5 (Global and relative phase).

Two quantum states are said to differ by a global phase of eiθ if there exists a θ ∈ (0, 2π) such

that |ψ′〉 = eiθ |ψ〉. Two amplitudes α and β are said to differ by a relative phase if there exists

θ ∈ (0, 2π) such that α = eiθβ. In relation to an orthonormal basis {|i〉}N−1
i=0 ,

|ψ〉 =

N−1∑
i=0

αi |i〉 and
∣∣ψ′〉 =

N−1∑
i=0

α′i |i〉 (2.11)

are said to differ by a relative phase if for each basis state |i〉 it holds that αi and α′i differ by a

relative phase and that |ψ〉 and |ψ′〉 do not differ by a global phase.
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Finally, we note that the above may be generalised via considering qudits instead of qubits,

so that each individual qudit is described by a d ≥ 2 dimensional complex Hilbert space and the

state space associated to the entire quantum system comprised of n qudits is of dimension dn.

In this case, we have that qubits are simply the special case of d = 2. As in the case of classical

complexity, qudits do not change the fundamental complexity of algorithms, though can have

significant impact upon the efficiency of implementing certain circuits and on the performance

of error-correction schemes.

2.1.3 Measurement

Whilst postulates one and two deal with how we can mathematically describe a closed quantum

system, postulate three lays the foundations of the nature of information that can be extracted

from it by observation and how such interaction affects the quantum state. Such observation is not

only required for obtaining the end result of a computation, but is also of utility in creating certain

useful subroutines [WR14]. We will only require the case of measurement of a quantum system

in relation to the computational basis (see Definition (2.4), whilst postulate three describes the

general case of projective or Von Neumann measurement, which is one formulation of quantum

measurement.

Postulate three (Projective Measurement)

For an n-qubit system whose state space H is spanned by the 2n computational basis states

{|x〉 : x ∈ {0, 1}n}, it is possible to perform a Von Neumann measurement on the system H with

respect to the computational basis. If the quantum state is described by

|ψ〉 =
∑

x∈{0,1}n
αx |x〉 , (2.12)

then measurement outputs x ∈ {0, 1}n with probability |αx|2 and leaves the system in state |x〉.

The fact that quantum states are described by unit-length vectors is now clearer, as measurement

will result in some x ∈ {0, 1}n, hence we must have that
∑

x∈{0,1}n
|αx|2 = 1.

Theorem 2.6 (Global phase is irrelevant).

The global phase of a quantum state cannot be observed by measurement and can therefore be

ignored or factored out.

Proof. This can be seen by taking two quantum states which differ by a global phase, so that

|ψ′〉 = eiθ |ψ〉. If we consider the probability of measuring an arbitrary x ∈ {0, 1}n, then we have

that the probability of measuring |ψ〉 and obtaining x ∈ {0, 1}n is |αx|2, whilst the probability

of measuring |ψ′〉 and obtaining x ∈ {0, 1}n is |eiθαx|2 = |eiθ| · |αx| = |αx|. Hence the probability

of measurement is identical.

Whilst the subject of quantum measurement can be given a more formal treatment, this is

all that we will require from quantum measurement in this thesis.
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2.1.4 Unitary evolution

The fourth postulate states how closed quantum systems evolve — that is, how quantum states

change over time when no measurement is performed. Whilst the fact that the postulate describes

closed systems may imply that we have no control over the system, it can be shown that by using

specific experimental techniques, such as a laser shone on an atom at a certain frequency, we

can alter the evolution of an otherwise closed quantum system without interferring with any

other aspect of it, or measuring the quantum state. This allows for direct manipulation of the

quantum state and, alongside measurement, allows for a complete instruction set of the possible

operations we can perform in quantum algorithms.

Postulate four

The evolution of a closed quantum system is described by a unitary transformation. In other

words the state of the system at time t is related to the state of the system at time 0 by a unitary

operator U which depends only upon the time t

|ψt〉 = U |ψ0〉 . (2.13)

Definition 2.7 (Unitary operator).

An operator U is unitary if U †U = I, where U † = (UT )∗ is the conjugate-transpose operation.

This immediately characterises all operations, excluding measurement, that we may perform on

the quantum state. It also implies that all operations must be reversible, as a unitary transfor-

mation always has an inverse. This has a direct impact upon the implementation of any classical

subroutine in quantum circuitry, as we must take care to implement these circuits in a reversible

manner, so that they implement permutations on each computational basis state. As we will see

in Section 2.3.1, there are effective methods to realise this.

Whilst there exist models of quantum computation, such as adiabatic quantum computation

which model quantum computation in continuous time, the circuit model of quantum computation

(see Section 2.2) we use relies upon discrete unitary transformations referred to as quantum gates.

This use of discrete operations is purely an abstraction that assists in the modelling and design

of quantum computers and the design of algorithms, as each operation we perform will, in reality,

be a continuous transformation of the quantum state.

Together with the principal of deferred measurement (which loosely states that for any quan-

tum algorithm that involves measurement, we can delay that measurement until the end of the

computation at the cost of using more qubits), this implies that any quantum algorithm can

theoretically be viewed as consisting of three steps:

1. An initialisation phase.

2. A series of unitary transformations upon the state space.

3. Measurement.
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This is not to say that intermediate measurement is not useful — it can result in advantageous

tradeoffs with regards to the resources used to implement quantum algorithms, in implementa-

tions of primitives [WR14] and in quantum error-correction [NC10, FMMC12], but that it is

not required for quantum algorithms to be correct. The quantum algorithms we describe in this

thesis will not use intermediate measurement and the author is not confident that it can be used

to improve any of the methods in this thesis.

It is important to note that postulate four makes no claims concerning the efficiency of

implementing unitary operations and a key aspect of the design of quantum algorithms is ensuring

that we can efficiently construct useful unitary transformations. Whilst there are an uncountable

number of unitary transformations over the state-space of a quantum system, a set of finite

unitary operators known as a universal quantum gate set (see Section 2.2.1) acting only upon

single qubits and pairs of qubits will suffice to emulate any unitary transformation up to an

arbitrary level of precision in the quantum circuit model.

2.1.5 Describing unitary transformations

An alternative way of representing unitary transformations is via their outer product represen-

tation. For any two vectors |v〉 , |w〉 ∈ H, the outer product of these two vectors is defined as the

linear operator |v〉 〈w| : H −→ H whose action is

(|v〉 〈w|) |x〉 7→ 〈w|x〉 |v〉 . (2.14)

This allows us to represent unitary operators via their outer product representation, which will

be of utility in the proof of Theorem 3.4, a component of the proof of amplitude amplification

(see Theorem 3.6).

Theorem 2.8 (Outer product representation of a unitary operator (see Theorem 2.3.2 [KLM07])).

Let B = {|bi〉} be an orthonormal basis for a vector space H. Then every linear operator U on

H can be written as

U =
∑

bi,bj∈B
Ui,j |bi〉 〈bj | (2.15)

We will give several examples of this decomposition for illustration in Section 2.1.6.

2.1.6 A collection of basic unitary transformations

We now describe a set of unitary transformations, which will be used throughout this thesis. Just

as a composite system can be described by a tensor product, it will be useful to describe a tensor

product of unitary operators acting upon the state space. Hence if we have the system H1⊗H2,

with U1 acting upon H1 and U2 acting upon H2, then we denote the parallel application of these

unitary operators upon their respective vector spaces by the tensor product of the two operators

U1⊗U2 : H1⊗H2 −→ H1⊗H2. When we wish to signify that we are applying the same unitary

U to each component of the composite system H1 ⊗ · · · ⊗ Hk, we will use the notation U⊗k.
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We now proceed to give the unitary operators for several of the important quantum gates that

we will use, to illustrate the above concepts.

2.1.6.1 The Identity operator

The identity unitary operator is the simplest unitary operator that we consider, but is technically

required if we are to write other unitary operators as a tensor product of unitary operators, if we

are in essence as acting upon parts of the composite system. It has the representation in matrix

and outer product form

I =

(
1 0

0 1

)
= |0〉〈0|+ |1〉〈1| . (2.16)

If we wish to signify that the identity is acting upon the state space C2n representing n qubits,

we will use either the notation I⊗n or In. The extension of (2.16) to these cases is trivial.

2.1.6.2 The X operator

The X operator has the representation

X =

(
0 1

1 0

)
= |1〉〈0|+ |0〉〈1| . (2.17)

2.1.6.3 The Hadamard unitary

The Hadamard operator acts upon the state space C2 corresponding to a single qubit and has

the representation

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
=

1√
2

(
1 1

1 −1

)
=

1√
2
|0〉 〈0|+ 1√

2
|1〉 〈0|+ 1√

2
|0〉 〈1| − 1√

2
|1〉 〈1| . (2.18)

2.1.6.4 The Controlled-NOT (Controlled-X, CNOT or ∧1(X) unitary

The Controlled-NOT or ∧1(X) operator acts upon two qubits, hence acts upon the space C4 and

has the representation

∧1(X) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 = |00〉 〈00|+ |01〉 〈01|+ |11〉 〈10|+ |10〉 〈11| . (2.19)

The actual unitary representation of the algorithms we use will not be important for our

purposes, other than the explicit description of the Hadamard operator given above. The outer

product representation in relation to a given orthonormal basis on the other hand, will prove

useful. We now summarise the key take-home points concerning the mathematical model of

quantum computation and move on to discuss the quantum circuit model of computation.
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2.1.7 A summary of the mathematical model of quantum computation

We briefly recap the previous section, noting the key points that we must keep in mind.

• Quantum states consisting of n-qubits may be considered to be unit-length complex vectors

dimension 2n. The set of all possible n-qubit states is the set of unit-length complex vectors

of dimension 2n. In general, a quantum state may be represented as

|ψ〉 =
N−1∑
i=0

αi |ψi〉 , (2.20)

where {|ψi〉}2
n−1
i=0 is any orthonormal basis for the vector space H = C2n that represents

the state space H of possible configurations for the quantum state and the unit-length

condition that
N−1∑
i=0
|αi|2 = 1 must hold.

Relative to the computational basis {|x〉 : x ∈ {0, 1}n}, the components of these vectors

are labelled αx, so that the ith component of this vector is the amplitude associated with

|x〉, where x is the binary interpretation of i (where i = 0, . . . , 2n − 1).

• Quantum algorithms act upon n-qubit quantum states and may be considered to be unitary

operators (see Definition 2.7). The space of all possible quantum algorithms (involving no

measurement) that act upon n-qubit states is therefore described by the set of all possible

unitary operators of dimension 2n × 2n over C, ie.
{
U ∈ C2n×2n : U †U = UU † = I2n

}
.

• Quantum measurement of the entire quantum state (all we will require in this thesis) allows

us to collapse the n-qubit state into one of 2n computational basis states, which provides us

with a method of extracting classical information from the quantum state. The probability

of measuring the state

|ψ〉 =
∑

x∈{0,1}n
αx |x〉 (2.21)

and obtaining the bitstring x is |αx|2. Measurement will only be performed at the end of

a quantum computation in this thesis.

Whilst the mathematical model of quantum computation is a useful tool for algorithm design

(see Chapter 3), the quantum circuit model of computation is a useful tool for deriving the costs

of these algorithms.
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2.2 The quantum circuit model of computation

Whilst the mathematical model of quantum computation gives us the basic data structure of the

quantum state and tells us how we can extract information via measurement from it, a quantum

algorithm is simply described as a unitary operator acting upon the state space. The quantum

circuit model of computation helps quantify the resources required to implement these unitary

operators via operations on a small number of qubits, much as classical circuits can be considered

as functions which can be implemented via logical gates which act upon a small number of bits.

For our purposes, a quantum circuit will consist of

• A finite number of quantum wires, each of which represent a qubit.

• An initialisation phase where all qubits are set to |0〉. This can be performed via measuring

any quantum state and simply applying an X (see Section 2.1.6.2) gate to qubits measured

in the state |1〉.

• The application of quantum gates to subsets of these wires.

• Measurement of the quantum state at the end of the computation.

Other features, such as intermediate measurement of the state and conditional application of

quantum gates based upon these measurements are required by the full quantum circuit model

of computation, but are not required for our purposes as we only perform measurement during

the initialisation phase and at the end of the quantum computation.

A quantum gate is loosely defined as the implementation of a unitary operator that acts upon

a small number of qubits. It is important that these gates are fixed in advance in order to quantify

the resources required by the quantum algorithm. Some authors include all possible single-qubit

gates and the Toffoli gate [AdW17], whilst others fix a finite set of quantum gates [GLRS16]

known as a universal quantum gate set (see discussion on the next page) such as the Clifford+T

gate set (see Section 2.2.2), which consists of a finite number of quantum gates that can be used

to approximate any given single-qubit unitary transformation. The question of approximating

gates will not be important for the majority of this thesis, as our algorithms can be implemented

exactly using our choice of the Clifford+T universal quantum gate set. We mention the arbitrary

approximation of single-qubit unitaries as one of the algorithms that we compare our methods

to in Chapter 6 requires this.

The quantum circuit model is similar to the classical circuit model, in that the metrics we

care about are

• Circuit-width — the number of qubits used in a quantum circuit.

• Circuit-depth — the number of time-steps we must perform before the computation ends,

where quantum gates may be executed in parallel in each time-step.

• Circuit-size — the total number of primitive quantum gates used in the quantum circuit

(though individual gates may possess different real-world costs).
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In particular, it is the quantum circuit-size of quantum search algorithms that we are interested

in, as the quantum security levels of Gui and AES are benchmarked against these metrics.

Quantum-circuit depth is considered less important in the cryptographic community when it

comes to applying brute-force search methods, but quantum circuit-width has a very real impact

upon the timeline for if or when schemes become vulnerable to attack from quantum computers.

Considering the fact that we currently have quantum computers consisting of just under one

hundred physical qubits and that quantum search algorithms will require logical qubits, each

consisting of thousands of physical qubits, circuit-width is a very real-world concern. Our results

in Chapter 6 are aimed towards this, demonstrating that we can achieve better results with

regards to circuit-depth and circuit-size than Grover’s algorithm (see Theorem 3.10) can achieve

if we use a finer-grained approach via exploiting amplitude amplification (see Theorem 3.6).

It can be useful to visualise a quantum circuit via a quantum circuit diagram, which for a

quantum circuit acting upon n qubits, consists of n parallel lines or quantum wires, representing

the qubits. The individual quantum gates or quantum algorithms can then be represented via

boxes or control-lines acting upon these wires. Figure (2-1) below illustrates a quantum circuit

that maps the state |xy〉 (where x, y ∈ {0, 1}) to the Bell state |βxy〉, which is a general circuit

which can create the Bell state |β00〉 as given in (2.6). The circuit consists of first applying a

Hadamard gate (the implementation of a Hadamard unitary) to the first qubit, then applying

the ∧1(X) gate (the implementation of the two qubit ∧1(X) or controlled-NOT gate) to both

qubits, with the first qubit being the control qubit and the second qubit being the target qubit.

The ∧1(X) gate and its generalisation ∧k(X) is further discussed in Section 2.3.1.

|x〉 H • |βxy〉
|y〉

Figure 2-1: The Bell state quantum circuit, mapping the computational basis |xy〉 to |βxy〉.

In terms of unitary operations, this should be interpreted as first applying the tensor of the

Hadamard unitary with the identity (H ⊗ I), followed by the ∧1(X) unitary. Written out

explicitly, this circuit applied to the state |00〉 gives us

(∧1(X)) (H ⊗ I) |00〉 =
1√
2
·


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ·


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 ·


1

0

0

0

 (2.22)

=
1√
2


1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0

 ·


1

0

0

0

 =


1√
2

0

0
1√
2

 (2.23)

=
1√
2
|00〉+

1√
2
|11〉 = |β00〉 . (2.24)
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2.2.1 Universal quantum gate sets

Much as a classical circuit may be implemented by a universal logic gate (or set of gates), such

as the NAND gate (or the set {¬,⊕,∧}), we will discuss the implementation costs of quantum

algorithms relative to a fixed set of finite gates. As postulate four (see Section 2.1.4) states that

the space of all possible quantum operations on a single qubit is the set of unitary operations

{U ∈ C2×2}, no finite sequence from a finite set of gates can implement these exactly.

When it comes to implementing these arbitrary single-qubit unitary transformations as single-

qubit quantum gates, it can be demonstrated by the Solovay-Kitaev Theorem [KIT96] that a

finite set of quantum gates acting upon single qubits can suffices to implement any given single-

qubit unitary transformation up to an arbitrarily chosen level of precision and that furthermore,

this is efficient in the sense that we require only O(logc2(1
ε )), where ε > 0 is the chosen level of

precision and 1 < c < 4. As it can be demonstrated that the error in implementing the unitary

Uε = Uεk · · ·Uε1 , (2.25)

where the precision error of implementing Uεi is εi, is bounded by the sum of the errors
k∑
i=1

εi,

this gives an easy method of choosing the level of precision we must implement any given unitary

to achieve a given tolerance level of error for the quantum algorithm as a whole. In order to

implement any quantum algorithm up to a level of precision ε > 0, if we are implementing m

quantum gates approximately, then we must implement each quantum gate up to a precision level

of εi ≤ ε
m [NC10]. The Solovay-Kitaev theorem implies that if our algorithm uses m single-qubit

quantum gate that we are approximating, then we expect to execute O(m logc(mε )) gates from the

universal quantum gate set. Asymptotically optimal (c = 1) algorithms exist [KBRY15, RS14],

but our results rely upon the existence, not the efficiency of arbitrary single-qubit quantum gates.

It can be demonstrated that arbitrary unitary operators acting upon any number of qubits

can be implemented via a ∧1(X) gate (which acts upon pairs of qubits) in combination with

arbitrary single-qubit unitary operators (see [NC10] Section 4.5.2). A finite set of gates which

can implement any unitary transformation on n qubits is known as a universal quantum gate set

and by the discussion above, a method to implement arbitrary single-qubit gates up to a given

level of precision combined with the ∧1(X) gate is a universal quantum gate set.

For our purposes it is the correctness of methods involving these gates, rather than the costs

involved that we are concerned with and it suffices that they can be implemented with only a small

overhead as they will only be needed in Theorem 3.11, which we reference rather than use. The

algorithms in this thesis can all be implemented precisely using the Clifford+T quantum gate set,

which is our fixed choice of universal quantum gate set. We specifically chose this gate set owing

to the fact that we are discussing concrete costs, that this gate set is a popular choice in literature

owing to its proposed utility in implementing fault-tolerant quantum computation [FMMC12]

and that it has previously been used to cost the resources required for the quantum oracle to

solve the key-search problem for the Advanced Encryption Standard [GLRS16] (see Section 2.6).

We now examine the quantum gates that we will count as primitive operations.
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2.2.2 The Clifford+T universal gate set

We count the set of gates

Clifford+T := {H,S,∧1(X)} ∪ {T} (2.26)

as the Clifford+T universal quantum gate set and additionally include the X and Z gates as

quantum gate primitives. We note that the the H,S and T gates all act upon single qubits,

whilst the ∧1(X) gate (the controlled-X/controlled-NOT/CNOT gate) acts upon two qubits. It

will not prove necessary to discuss the action of the S (phase) gate or the T gate as we do not use

them directly — these gates will only be a component of the cost of the primitives described in

Section 2.3.1, which describes how boolean functions can be implemented using the Clifford+T

quantum gate set. Nevertheless, we include their unitary transformations for completeness. We

count each of these gates as having a cost of 1, though will perform a gate count in certain areas

of this thesis in terms of both the Clifford+T quantum gates and separately for T gates.

2.2.3 Implementing the T gate in fault-tolerant quantum computation

The circuit-complexity of a quantum circuit is often separated into that required for gates from

the Clifford gate set {H,S,∧1(X)} and the circuit-size and circuit-depth for the T gate on its

own. This owes itself to the difficulty and cost of implementing T -gates in a fault-tolerant fashion.

Fault-tolerant quantum computation is a topic beyond the scope of this thesis, but we sketch

the arguments for this separation of costs. Whilst the T gate has the unitary representation

T =

(
1 0

0 eiπ/4

)
(2.27)

the fault-tolerant implementation [FMMC12, ADMG+16, NC10] of this unitary operation is

performed via state injection of the logical quantum state

|Θ〉 :=
|0〉+ eiπ/4 |1〉√

2
, (2.28)

which is consumed upon the application of each T gate by the process of state injection, which

consists of performing the application of several gates based upon the outcome of a measurement.

Constructing the state |Θ〉 to the required level of precision is a costly process, referred to as

magic state distillation which must be performed to an error tolerance that scales with the inverse

of the number of T gates in the entire quantum circuit. Each T gate therefore takes magnitudes

more effort to implement than any of the those from the Clifford gate group {H,S,∧1(X)} and

hence the costs are often given separately, with T count and depth being optimisation targets.

|Θ〉 • SX T |ψ〉

|ψ〉

Figure 2-2: State injection circuit for implementation of the T gate (see [NC10] pp.486).
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2.2.4 Our set of primitive Clifford+T quantum gates

We note that the X and Z gates are not technically part of the Clifford+T gate set, but include

them as a primitive gate as they are both relatively simple gates and we have the identities

X = HSSH and Z = S2 if we examine the unitary transformations below. Each gate below will

be considered to take a single time-step to execute.

The H (Hadamard) gate

H ≡ 1√
2

(
1 1

1 −1

)
(2.29)

The S (Phase) gate

S ≡

(
1 0

0 i

)
(2.30)

The X gate

X ≡

(
0 1

1 0

)
(2.31)

The Z gate

Z ≡

(
1 0

0 −1

)
(2.32)

The T gate

T ≡

(
1 0

0 eiπ/4

)
(2.33)

The ∧1(X) gate

• ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.34)

We will return to the H gate in Section 2.3, which deals with how quantum oracles may be

constructed and the X and ∧1(X) gates in Section 2.3.1, where they will be used to implement

boolean primitives in quantum circuitry.
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2.2.5 The phase-shift gate

In addition to these gates, it will be useful to define the phase-shift gate Rφ. The Rφ gate is

not part of the Clifford+T gate set, but is a gate which (apart from special cases) must be

synthesised using the methods discussed in Section 2.2.1.

The Rφ gate (where 0 ≤ φ < 2π)

Rφ ≡

(
1 0

0 eiφ

)
(2.35)

2.2.6 A summary of the quantum circuit-model of computation

We have discussed the logical quantum circuit-model of computation and have a primitive set

of quantum gates that will be the basis for costing the quantum algorithms designed in the

mathematical model of quantum computation. We will see these primitives used in Section

2.3.1, where we construct quantum circuits which will be used in the amplitude amplification

subroutine discussed in Chapter 3. The important points to take home are:

• Quantum gates are simply the implementation of unitary operators acting upon a small

number of qubits.

• Any given unitary operator acting upon a quantum state vector can be implemented up to

an arbitrary level of precision via a universal quantum gate set.

• Our chosen universal quantum gate set is the Clifford+T gate set.

• The important metrics are the number of logical qubits, circuit-size and circuit-depth.
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2.3 Quantum oracles and evaluations

Quantum phase oracles can be considered the quantum equivalent of a classical circuit which

computes a boolean function which decides whether x ∈ {0, 1}n possesses a particular property.

Whereas the output of a classical circuit would be a single bit which indicates whether or not the

element x satisfies some condition, the quantum phase oracle performs a conditional change in

the phase associated to each computational basis state which possesses this property. In terms

of the unstructured search problem (see Definition 1.1), this property is simply defined as being

a solution to our search problem, but it will be useful to define property testing of length n

bitstrings by considering boolean indicator functions later in this thesis.

Definition 2.9 (Boolean indicator function).

We say that the function χ : {0, 1}n −→ {0, 1} is a boolean indicator function for the set of

bitstrings x ∈ {0, 1}n in that it partitions the set into two disjoint subsets χ−1(1) and χ−1(0).

A classical circuit for χ : {0, 1}n −→ {0, 1} therefore takes as input x ∈ {0, 1}n and out-

puts χ(x) = 1 if x satisfies the property we are looking for and outputs χ(x) = 0 other-

wise. In contrast, amplitude amplification exploits quantum phase oracles, which manipulate

the phase of the amplitudes {αx : x ∈ {0, 1}n} associated with the set of computational basis

states {|x〉 : x ∈ {0, 1}n ∧ χ(x) = 1}.

Definition 2.10 (Quantum phase oracle defined by a boolean indicator function).

Let χ : {0, 1}n −→ {0, 1} and 0 ≤ φ < 2π. We define the quantum phase oracle Oχ(φ) to be the

unitary operator acting upon the n qubit computational basis state |x〉, where x ∈ {0, 1}n

Oχ(φ) |x〉 7→

eiφ |x〉 if χ(x) = 1

|x〉 if χ(x) = 0.
(2.36)

When φ = π, so that Oχ |x〉 7→ (−1)χ(x) |x〉, we will simply use the notation Oχ.

We will use the definition of the generalised quantum phase oracle within the proof of ampli-

tude amplification (see Theorem 3.6) and note that it is one of several ways that exact amplitude

amplification (see Theorem 3.11) may be implemented [BHMT02], but we will exploit the case

where φ = π for the majority of results in this thesis.

The quantum phase oracle therefore does not change the probability of measuring the state

and obtaining any particular bitstring x ∈ {0, 1}n on its own, as it only affects the relative phase

of the amplitudes of each individual computational basis states and not the magnitude. Ampli-

tude amplification (see Theorem 3.6) will later exploit this so-called phase-kickback conditioned

on a boolean function in conjunction with additional unitary operators in order to manipulate

the magnitude of the amplitudes associated to each computational basis state.

Quantum phase oracles themselves can be implemented in a variety of manners, the simplest

of which is via quantum bit oracles, which act act upon n+m qubit states and compute the value

of an arbitrary boolean vector-valued function h : {0, 1}n −→ {0, 1}m for each computational

basis state |x〉, but do not alter the phase.
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Definition 2.11 (Quantum bit oracle).

Let h : {0, 1}n −→ {0, 1}m. We define the quantum bit oracle O(b)
h to be the unitary operator

acting upon the n+m qubit state |x〉 |b〉, where x ∈ {0, 1}n and |b〉 is any m qubit state where

O(b)
h |x〉 |b〉 7→ |x〉 |b⊕ h(x)〉 . (2.37)

Lemma 2.12 (Implementation of the quantum phase oracle Oχ via quantum bit oracles [NC10]).

Let χ : {0, 1}n −→ {0, 1} and |−〉 = |0〉−|1〉√
2

. The action of the quantum phase oracle Oχ on the

n qubit state |x〉, where x ∈ {0, 1}n may be implemented by a single application of the quantum

bit oracle O(b)
χ upon the n+ 1 qubit state |x〉 |−〉, so that

(Oχ ⊗ I) |x〉 |−〉 = O(b)
χ |x〉 |−〉 . (2.38)

If a single qubit is initialised and kept in the state |−〉 = HX |0〉, then the computational

resources required to implement Oχ are then identical to those required to implement O(b)
χ .

Proof. This can be seen via direct computation as

O(b)
χ |x〉 |−〉 = |x〉 |− ⊕ χ(x)〉 = (−1)χ(x) |x〉 |−〉 = (Oχ ⊗ I) |x〉 |−〉 (2.39)

as

|− ⊕ 0〉 =
|0⊕ 0〉 − |1⊕ 0〉√

2
=
|0〉 − |1〉√

2
= |−〉 (2.40)

and

|− ⊕ 1〉 =
|0⊕ 1〉 − |1⊕ 1〉√

2
=
|1〉 − |0〉√

2
= − |−〉 . (2.41)

The quantum state |−〉 can be easily initialised at the beginning of the quantum computation

via the application of an X gate to the |0〉 state followed by a Hadamard (H) gate, so that

HX |0〉 = H |1〉 =
|0〉 − |1〉√

2
= |−〉 . (2.42)

An alternative method of implementing Oχ via O(b)
χ is to use an ancillae initialised to |0〉, two

applications of O(b)
χ and a single Z gate each time we wish to compute Oχ so that we have

O(b)†
χ

(
I⊗n ⊗ Z

)
O(b)
χ |x〉 |0〉 = O(b)†

χ

(
I⊗n ⊗ Z

)
|x〉 |χ(x)〉 = (−1)χ(x)O(b)†

χ |x〉 |χ(x)〉 = (−1)χ(x) |x〉 |0〉 . (2.43)

At first glance this appears to be almost twice as expensive as the method described in Lemma

2.12, but neither decomposition takes into account the fact that implementing quantum bit

oracles for non-trivial boolean indicactor functions usually requires ancilla qubits to implement

and quantum evaluations, which must be executed once to compute χ(x) and then run in reverse

to ensure that the ancillae qubits used form a tensor product with the rest of the quantum state.
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Definition 2.13 (Quantum evaluation).

Let h : {0, 1}n −→ {0, 1}m. We define the quantum evaluation Eh to be the unitary operator

acting upon the w +m+ n qubit state |0w〉 |0m〉 |x〉, where x ∈ {0, 1}m

Eh |0w〉 |0m〉 |x〉 7→ |g(x)〉 |h(x)〉 |x〉 (2.44)

and g(x) ∈ {0, 1}w is the end state of the working memory used to compute h(x) ∈ {0, 1}m.

Lemma 2.14 (Implementation of quantum bit oracles via quantum evaluations).

Let h : {0, 1}n −→ {0, 1}m. The action of the quantum bit oracle O(b)
h on the n+m qubit state

|x〉 |b〉, where x ∈ {0, 1}n and |b〉 is any m qubit state can be implemented by one application of

Eh, one application of E†h and m ∧1(X) gates, so that(
Iw+m ⊗O(b)

h

)
|0w〉 |0m〉 |x〉 |b〉 = |0w〉 |0m〉 |x〉 |b⊕ h(x)〉 (2.45)

is equivalent to the compute-copy-uncompute paradigm given by the sequence

|0w〉 |0m〉 |x〉 |b〉 Eh7→ |g(x)〉 |h(x)〉 |x〉 |b〉
∧k(X)⊗m7→ |g(x)〉 |h(x)〉 |x〉 |b⊕ h(x)〉 (2.46)

E†h7→ |0w〉 |0m〉 |x〉 |b⊕ h(x)〉 .

Proof. By inspection and equivalence of (2.45) and (2.46).

By lemmas 2.12 and 2.14, we can therefore implement the quantum phase oracle Oχ for any

χ : {0, 1}n −→ {0, 1} so long as we can implement the quantum evaluation Eχ.

Lemma 2.15 (Implementation of the generalised quantum phase oracle).

Let χ : {0, 1}n −→ {0, 1} and 0 ≤ φ < 2π. The generalised quantum phase oracle Oχ(φ) can be

implemented via using n+ w + 1 qubits and the sequence E†χ (I⊗n+w ⊗Rφ) Eχ.

Proof. We recall that the single-qubit phase-shift gate (see Section 2.2.5) is defined by the unitary

mapping Rφ |x〉 7→ (eiφ)x |x〉, where x ∈ {0, 1}. We therefore have that

E†χ
(
I⊗n+w ⊗Rφ

)
Eχ |0w〉 |x〉 |0〉 7→ E†χ

(
I⊗n+w ⊗Rφ

)
|g(x)〉 |x〉 |χ(x)〉 (2.47)

7→ E†χ(eiφ)χ(x) |g(x)〉 |x〉 |χ(x)〉 (2.48)

7→ (eiφ)χ(x) |0w〉 |x〉 |0〉 (2.49)

We therefore have several methods of implementing quantum phase oracles — an ancilla-based

method exploiting the state |−〉 for the case where φ = π and a method for the generalised

case.We now turn how we can concretely implement quantum evaluations via quantum circuitry.
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2.3.1 Contructing quantum evaluations for arbitrary boolean functions

We rely upon on the well-known fact that the set of boolean logic gates {∧,⊕,¬} is a univer-

sal gate set, in that they can be used to create a circuit which computes any given boolean-

vector-valued function h : {0, 1}n −→ {0, 1}m. The exact unitary operations we use are the set

{X,∧1(X),∧2(X)} — which are also known respectively as the X gate, the controlled-NOT (or

CNOT) gate and the Toffoli gate. Other gates will prove are useful, such as the ∧k(X) gate

for k > 2 (sometimes referred to as the k-fold controlled-NOT gate, k + 1 bit Toffoli gate or

k + 1-bit Multiple Control Toffoli (MCT) gate), SWAP and ∧1(SWAP ) (the Fredkin) gates,

but can be implemented directly via the set {X,∧1(X),∧2(X)}. We now list these quantum

gates and their implementation costs in the Clifford+T universal quantum gate set (see Section

2.2.2), providing their notation in the quantum circuit-model of computation. We list their costs

in the Clifford+T universal gate set in Table 2.1.

2.3.1.1 The X gate

The X gate acts upon the single qubit basis state |x〉, where x ∈ {0, 1} and can be interpreted

as flipping this bit or performing the addition x⊕ 1, so that

X |x〉 7→ |¬x〉 or equivalently X |x〉 7→ |x⊕ 1〉 . (2.50)

X has the quantum circuit representation

|x〉 X |x⊕ 1〉

Figure 2-3: The X gate.

We will treat the X gate as a primitive Clifford gate.

2.3.1.2 The ∧1(X) or controlled-NOT (CNOT) gate

The ∧1(X) gate acts upon the two qubit basis state |x1〉 |x2〉, where xi ∈ {0, 1}, and can be

interpreted as performing the reversible exclusive-or operation x2 ⊕ x1, so that

∧1(X) |x1〉 |x2〉 7→ |x1〉 |x1 ⊕ x2〉 . (2.51)

The first qubit is known as the control qubit whilst the second is known as the target qubit. ∧1(X)

has the quantum circuit representation

|x1〉 • |x1〉
|x2〉 |x2 ⊕ x1〉

Figure 2-4: The ∧1(X) gate.

The ∧1(X) is also known as the controlled-NOT or CNOT gate and is a primitive Clifford gate.
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2.3.1.3 The ∧2(X) or Toffoli gate

The ∧2(X) (or Toffoli) gate acts upon the three qubit basis state |x1x2〉 |x3〉, where xi ∈ {0, 1},
and can be interpreted as performing the reversible multiplication x1 ∧ x2 = x1 · x2, so that

∧2(X) |x1x2〉 |x3〉 7→ |x1x2〉 |x1 ⊕ (x1 ∧ x2)〉 . (2.52)

The qubits x1 and x2 are known as the control qubits whilst x3 is known as the target qubit.

∧2(X) has the quantum circuit representation

|x1〉 • |x1〉
|x2〉 • |x2〉
|x3〉 |x3 ⊕ (x1 · x2)〉

Figure 2-5: The ∧2(X) gate.

The Toffoli gate can be implemented in a number of ways, but it has been proven that it requires a

minimum of 7 T gates to implement [GKMR14]. It can be implemented efficiently with a T -depth

of 4 using no additional ancillae, or with a T -depth of 1 with four clean ancillae [AMM14]. We

will use the following quantum circuit for the Toffoli gate for our quantum resource estimations

• T † • T † T † S •
• = T • • T † •

H T • T • H

Figure 2-6: The logical Toffoli gate decomposed into Clifford+T gates [AMMR13, Sel13].

which has a Clifford count of 10, a T -count of 7, a T -depth of 3 and an overall depth of 10.

2.3.2 The ∧k(X) gate (for k ≥ 3)

The ∧k(X) (sometimes referred to as the k-fold controlled-NOT gate, the k+1-bit Toffoli gate or

the Multiple Control Toffoli (MCT) gate), acts upon the k+1 qubit basis state |x1 . . . xk〉 |xk+1〉,
where xi ∈ {0, 1}, and is a generalisation of the ∧1(X) and ∧2(X) gates so that

∧k(X) |x1 . . . xk〉 |xk+1〉 7→ |x1 . . . xk〉 |xk+1 ⊕ (x1 ∧ · · · ∧ xk)〉 . (2.53)

The qubits x1, . . . , xk are referred to as the control qubits whilst xk+1 is referred to as the target

qubit, with ∧k(X) possessing the quantum circuit- representation

|x1〉 • |x1〉
|x2〉 • |x2〉

...
...

...

|xk〉 • |xk〉
|xk+1〉 |xk+1 ⊕ (x1 ∧ · · · ∧ xk)〉

Figure 2-7: The ∧k(X) gate.
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There are a variety of methods to implementing the ∧k(X) gate, the most basic of which is via a

network of Toffoli gates [BBC+95] using one ancilla qubit which begins and ends in the state |0〉.
Other methods exploit relative phase Toffoli gates in order to make computational gains over

this method [Mas16]. Both of these methods use at least one ancilla qubit and O(k) quantum

gates and it is known that implementing the ∧k(X) gate will require O(k2) quantum gates if no

ancilla are available [BBC+95].

Theorem 2.16 (Implementation of ∧3(X) using one ancilla [Mas16]).

A ∧3(X) gate may be implemented using 1 ancilla qubit that begins and ends in the same

arbitrary state and requires a circuit count and depth of 20 Clifford gates and 16 T gates.

Theorem 2.17 (Implementation of ∧k(X) using
⌈
k−2

2

⌉
ancilla [Mas16]).

Let k ≥ 4. A ∧k(X) gate may be implemented using
⌈
k−2

2

⌉
ancilla qubits, which begin and end

in the same arbitrary state. This circuit requires a circuit count and depth of 12k − 18 Clifford

gates and a circuit count and depth of 8k − 8 T gates.

Theorem 2.18 (Implementation of ∧k(X) with one ancilla (Lemma 7.3 [BBC+95])).

Let k ≥ 3 and r ∈ {2, . . . , k − 1}. A ∧k(X) gate can be implemented with one ancilla qubit

which begins and ends in the same arbitrary state and the serial application of two ∧r(X) gates

and two ∧k−r+1(X) gates, assuming there are sufficient ancilla to implement these smaller gates.

Proof. Let ∧k(X) be defined as acting upon the basis state |x1 . . . xrxr+1 . . . xk〉 |b〉 |y〉, where |b〉
is the ancilla bit in an arbitrary state, |y〉 is the target qubit and b, y ∈ {0, 1}. If we apply one

∧r(X) gate with the controls set to be |x1 . . . xr〉 and the target set to be the ancilla bit |b〉, then

the computational basis state is now

|x1 . . . xrxr+1 . . . xk〉 |b⊕ (x1 ∧ · · · ∧ xr)〉 |y〉 . (2.54)

Applying a single ∧k−r+1(X) gate with the controls set to be |xr+1 . . . xk〉 and the ancilla qubit,
with the target qubit set to be the output qubit of the ∧k(X) gate then leaves us in the state

|x1 . . . xrxr+1 . . . xk〉 |b⊕ (x1 ∧ · · · ∧ xr)〉 |y ⊕ (b ∧ xr+1 ∧ · · · ∧ xk)⊕ (x1 ∧ · · · ∧ xr ∧ xr+1 ∧ · · · ∧ xk)〉 , (2.55)

owing to the distributive property of ⊕ and ∧. Applying another ∧r(X) gate with the controls

set to be |x1 . . . xr〉 and the target set to be the ancilla qubit then resets the ancilla, giving us

|x1 . . . xrxr+1 . . . xk〉 |b〉 |y ⊕ (b ∧ xr+1 ∧ · · · ∧ xk)⊕ (x1 ∧ · · · ∧ xr ∧ xr+1 ∧ · · · ∧ xk)〉 . (2.56)

The final ∧k−r+1(X) gate is then applied, with the controls set to be |xr+1 . . . xk〉 and the ancilla

bit, with the target being the output bit. This leaves us in the state

|x1 . . . xrxr+1 . . . xk〉 |b〉 |y ⊕ (x1 ∧ · · · ∧ xr ∧ xr+1 ∧ · · · ∧ xk)〉 , (2.57)

completing the implementation of the ∧k(X) gate as described in Theorem 2.18.
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Theorem 2.19 follows from one suggested by Dr. Dmitri Maslov in personal communication.

Theorem 2.19 (Clifford+T cost of implementing ∧k(X) using one ancilla qubit).

Let k ≥ 7. A ∧k(X) gate can be implemented using one ancilla qubit that starts and ends in the

same arbitrary state and the serial application of 24k − 48 Clifford gates and 16k − 16 T gates.

Proof. As in [BBC+95], we set m1 =
⌈
k+2

2

⌉
and m2 = k−m1 + 1. We can then use two ∧m1(X)

gates and two ∧m2(X) gates and one ancilla qubit as in Theorem 2.18 to implement the ∧k(X)

gate. As these gates are operated in serial, the ∧m1(X) gate has k −m1 + 1 qubits available at

all times that can act as ancilla qubits — as k −m1 + 1− dm1−2
2 e ≥ 0 for k ≥ 7 (see below), we

will always have enough ancilla qubits to enable the action of ∧m1(X). The ∧m2(X) gate has

k −m2 + 1 qubits available at all times and as k −m2 + 1− dm2−2
2 e ≥ 0 for k ≥ 7 (see below),

we always have enough ancilla qubits to enable the action of ∧m1(X). The result follows.

That l1(k) = k −
⌈
k+2

2

⌉
+ 1 −

⌈
d k+2

2 e−2

2

⌉
≥ 0 for k ≥ 7 can be seen by using the identity⌈⌈

x
y

⌉
n

⌉
=
⌈
x
yn

⌉
, which holds for x, y ∈ R and n ∈ N [GKPL89]. Using this identity we have that

l1(k) ≥ k

2
− 1−

⌈
k − 2

4

⌉
≥ k

2
− 2− k − 2

4
=
k + 2

4
− 2, (2.58)

which holds when k ≥ 7.

That l2(k) = k− (k−
⌈
k+2

2

⌉
+ 1) + 1−

⌈
k−d k+2

2 e+1−2

2

⌉
=
⌈
k+2

2

⌉
−
⌈
k−d k+2

2 e−1

2

⌉
≥ 0 for k ≥ 7

comes from the fact that

l2(k) ≥ k + 2

2
−
k − k+2

2 − 1

2
− 1 =

k

4
+ 1, (2.59)

which is clearly satisfied when k ≥ 7.

2.3.2.1 The SWAP gate

The SWAP gate acts upon the two qubit computational basis state |x1〉 |x2〉, where xi ∈ {0, 1}
and can be interpreted as simply swapping the values of these two bits, so that

SWAP |x1〉 |x2〉 7→ |x2〉 |x1〉 . (2.60)

The SWAP gate has the following quantum circuit representation and can be implemented by

three CNOT gates. The SWAP gate has many uses in quantum computation — in particular it

|x1〉 × |x2〉 •
|x2〉 × |x1〉 = • •

Figure 2-8: The SWAP gate.

can be used to bypass problems with the topology of connections between qubits or it can simply

be used to relabel qubits (though this may as well be done by simply relabelling the wires).
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2.3.2.2 The ∧1(SWAP ) (Fredkin) gate

The ∧1(SWAP ) (also known as the Fredkin) gate acts upon the three qubit basis state |x1〉 |x2x3〉,
where xi ∈ {0, 1}, and can be interpreted as performing a controlled-SWAP operation on the the

second two qubits if and only if x1 = 1, so that

∧1(SWAP ) |x1〉 |x2x3〉 7→

|x1〉 |x3x2〉 if x1 = 1

|x1〉 |x2x3〉 if x1 = 0.
(2.61)

We will later use the ∧1(SWAP ) gate in the implementation of a quantum counter, which was

first suggested by Schwabe and Westerbaan [SW16] and has applications to low-qubit implemen-

tations of quantum oracles, which we discuss in Section 2.4.3.

2.3.2.3 A conversion dictionary between reversible circuits and quantum circuits

We therefore have a set of quantum gates {X,∧1(X),∧2(X),∧k(X), SWAP,∧1(SWAP )}<∞k=3

which act purely upon the computational basis states and can be used to implement quantum

evaluations. The set {X,∧1(X),∧2(X)} is clearly equivalent to the universal boolean logic gate

set {¬,⊕,∧} and the other quantum gates we describe ∧k(X), SWAP and ∧1(SWAP ) are

simply tools in that they provide efficient quantum realisations of useful circuits.

By the above, it is clear that designing a basic quantum evaluation based upon a classical

circuit-design requires no more theory than that required for designing reversible classical circuits

using these components. Given a suitable framework or formula, such as Equation (3.36) which

describes the circuit-complexity of Grover’s algorithm, it is then a simple matter to compute the

cost of executing Grover’s algorithm if we have a dictionary to assign each reversible gate a cost

in terms of quantum-gates relative to a universal gate set (see Section 2.2.1) of choice. In this

thesis our fixed choice of univeral quantum gate set is the Clifford+T gate set (see Section 2.2.2)

and we provide such a dictionary in Table 2.1 below. In this thesis we follow this methodology,

designing reversible circuits and translating the costs via Table 2.1.

Clifford T Total T Total Qubits/ Notes
gates gates size depth depth ancillae

X 1 0 1 0 1 1/0 We include X ∈ Clifford
Z 1 0 1 0 1 1/0 We include Z ∈ Clifford
H 1 0 1 0 1 1/0
∧1(X) 1 0 1 0 1 2/0 CNOT gate
∧2(X) 10 7 17 3 10 3/0 Toffoli gate [Sel13]
∧3(X) 20 16 36 20 36 4/1 (ancilla in state |x〉) Theorem 2.16
∧4(X) 30 24 54 24 54 5/1 (ancilla in state |x〉) Theorem 2.17
∧5(X) 42 32 74 32 74 6/2 (ancilla in state |xx〉) Theorem 2.17
∧6(X) 54 40 94 40 94 7/2 (ancilla in state |xx〉) Theorem 2.17
∧k(X) 24k − 48 16k − 16 40k − 64 16k − 16 40k − 64 k + 1/1 k ≥ 7 (ancilla in state |x . . . x〉) Theorem 2.18
SWAP 3 0 3 0 3 2/0 —
∧1(SWAP) 10 7 17 5 10 3/0 Fredkin gate [AMMR13]

Table 2.1: Useful circuit costs in the Clifford+T universal quantum gate set.

We therefore have all the tools we need to implement and derive the cost of quantum evalua-

tions and have discussed the implementation of the quantum phase oracle Oχ by these methods.
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Ultimately it is important to understand that it is the action of the quantum phase oracle

that it important — if we can implement it via more efficient quantum algorithms or other

methods, then all the better. As we will later see, the execution cost or circuit-complexity of the

implementation of the quantum phase oracle has a very real impact upon Grover’s algorithm (see

Section 3.2.1). It is this overhead in Grover’s algorithm that stems from implementing quantum

phase oracles via quantum evaluations and the analysis of methods that can be used to overcome

these costs that motivates this thesis.

2.3.3 The implementation of −O0n(φ)

We briefly discuss the implementation of one specific unitary operator that will be required for

the theory of amplitude amplification (see Theorem 3.6), that of −O0n(φ), which is simply a

quantum phase oracle with a negative phase. The negative phase is not technically required as

it simply adds an invisible global phase, but is relatively cheap to implement.

Definition 2.20 (The boolean-function 0n : {0, 1}n −→ {0, 1}).
We define 0n : {0, 1}n −→ {0, 1}, the indicator function for the zero-bitstring, by the function

0n(x) 7→

1 if x = 0n

0 if x 6= 0n.
(2.62)

The boolean function 0n : {0, 1}n −→ {0, 1} in conjunction with a phase 0 ≤ φ < 2π naturally

defines the quantum phase oracle O0n(φ).

Theorem 2.21 (Clifford+T Implementation cost of −O0n(φ)).

Let n ≥ 8 and let 0 ≤ φ < 2π and 0n : {0, 1}n −→ {0, 1} be as in Definition 2.20. The unitary

operator −O0n(φ) can be implemented using a quantum circuit which requires one Rφ gate in

addition to at most 50n − 142 Clifford gates and 32n − 64 T gates for a total of 82n − 206

Clifford+T gates. This quantum circuit has a T gate depth of 32n− 64 and a total Clifford+T

depth of 80n− 206, in addition to the depth required by the Rφ gate. This approach requires 1

ancilla qubit in any state, for a total of n+ 1 qubits.

Proof. If we apply n − 1 X gates in parallel to the first n − 1 qubits and use a ∧n−1(X) gate

with these qubits as the controls and the final qubit as the target, then the nth bit of each

computational basis state is |1〉 if and only if the initial state was |0n〉. We need only apply a

Rφ gate to the final qubit to obtain the action of the conditional phase-kickback before restoring

the computational basis state to its original state by applying ∧n−1(X) and n−1 X gates again.

The negative phase can easily be added to this operator via applying the sequence of gates

XZXZ to a qubit that is not being operated on for at least four time-steps. It is easily checked

that this sequence maps |x〉 7→ − |x〉. The costs of this algorithm follow from Table 2.1.

We can implement the unitary operator −O0n = −O0n(π) via an approach similar to the ancilla

based oracle approach for a slightly smaller cost.
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Theorem 2.22 (Implementation cost of −O0n = −O0n(π)).

Let n ≥ 8 and 0n : {0, 1}n −→ {0, 1} be as in Definition 2.20. The unitary operator −O0n can be

implemented using a quantum circuit which requires at most 26n−66 Clifford gates and 16n−32

T gates. This quantum circuit has a T gate depth of 16n − 32 and a total depth of 40n − 102

Clifford+T gates. This approach requires 1 ancilla qubit in any state, for a total of n+ 1 qubits.

Proof. If we apply an X gate followed by a Hadamard gate to the nth qubit, then we have that

this qubit will be in the state |−〉 = |0〉−|1〉√
2

if it was initially |0〉 and in the state |+〉 = |0〉+|1〉√
2

if it was initially |1〉. If an X gate is applied to each of the first n − 1 qubits and a ∧n−1(X)

gate uses these qubits as controls with the nth qubit as a target, then it is plain that as the

state |+〉 is invariant with regards to the X gate and that the phase will only be altered if the

initial state was |0n〉. The H gate and n X gates can then be applied once more to restore each

computational basis state to their original values. Using this construction in conjunction with

the implementation of ∧n−1(X) as given in Theorem 2.19 gives the stated costs.

As in the proof of Theorem 2.21, the negative phase can easily be added to this operator via

applying the sequence of gates XZXZ to a qubit that is not being operated on for at least four

time-steps. The costs of this algorithm follow from Table 2.1.

It will be useful to introduce some notation to describe the cost of quantum oracles and

algorithms. We describe the cost of quantum algorithms relative to the execution of subroutines

that must be executed in serial. In this way we can derive a cost equation for a quantum

algorithm and later substitute the cost-metric we are interested in, which may be the circuit-size

or circuit-depth relative to either the total number of quantum gates or a specific quantum gate.

Definition 2.23 (Cost notation).

We use the following execution cost notation for amplitude amplification to represent the cost

(where cost can be circuit-size or circuit-depth) of a quantum circuit

• EA represents the cost of executing an arbitrary quantum algorithm or gate A.

• En̄ represents the cost of executing −O0n .

• EOχ represents the cost of executing the quantum phase oracle Oχ.

• EO(b)
χ

represents the cost of executing the quantum bit oracle O(b)
χ .

• EEh represents the cost of executing the quantum evaluation Eh or E†h.

2.4 Quantum oracle designs for the preimage search problem

In this section we discuss several basic quantum bit oracle design patterns that can be applied to

the single-target preimage search problem (see Definition 1.2) defined by h : {0, 1}n −→ {0, 1}m,

Yh = {yh} ⊆ {0, 1}m and Mh = h−1(yh). The first design relies upon no structure in the function

h : {0, 1}n −→ {0, 1}m and is very simple, whilst the second design focuses upon exploiting

structure in the function h : {0, 1}n −→ {0, 1} in order to lower the number of qubits required

at the expense of the circuit-complexity of the quantum bit oracle.
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2.4.1 A direct approach

Given a quantum evaluation Eh which requires w ancilla bits for working memory, a quantum bit

oracle for the single-target preimage search problem can be implemented by the serial application

of Eh, at most m X gates executed in parallel, one ∧m(X) gate, at most m X gates executed

in parallel and one application of E†h. This approach requires n + w + m + 1 qubits and has an

execution cost of at most 2EEh + 2EX⊗m +∧m(X). This is easily seen as executing Eh computes

|x〉 |0w〉 |0m〉 |0〉 7→ |x〉 |g(x)〉 |h(x)〉 |0〉 (2.63)

and we can then use at most m X gates to compute

|x〉 |g(x)〉 |h(x)⊕ yh ⊕ 1m〉 |0〉 (2.64)

before applying one ∧m(X) gate to compute the output bit, so that we obtain

|x〉 |g(x)〉 |h(x)⊕ yh ⊕ 1m〉 |h(x)
?
= yh〉 . (2.65)

Applying at most m X gates and executing E†h again then clearly returns us to the state

|x〉 |0w〉 |0m〉 |h(x)
?
= yh〉 , (2.66)

which gives us the action of the quantum bit oracle for the single-target preimage search problem.

2.4.2 A low-memory approach

An alternative approach is possible if the problem admits a constraint-based decomposition. This

approach is a generalisation of the method introduced by Schwabe and Westerbaan [SW16] for

an approach to designing a quantum bit oracle for the MQ problem over F2 which requires

n + dlog2 (m+ 1)e + 2 qubits for a quantum oracle using this design pattern compared to the

n+m+2 qubits that the depth optimal approach described in Section 2.4.1. We generalise their

approach in this section, then give concrete oracle costs in Sections 2.5 and 2.6.

Definition 2.24 (Constraint based decomposition of χ).

Let χ : {0, 1}n −→ {0, 1} and k ≥ 2. If we know the existence of χ1, . . . , χk : {0, 1}n −→ {0, 1}
such that each χi 6= χj for i 6= j, no χi is constant and

χ(x) = χ1(x) ∧ · · · ∧ χk(x), (2.67)

then we say that χ admits a constraint based decomposition.

The constraint based decomposition is simply a special-case of those traditionally exploited

in Constraint Satisfaction Problems (CSP), as each χi may involve all variables whereas CSP

constraints often involve only a subset of variables. Each χi has both an associated implemen-

tation cost for the corresponding quantum bit oracle O(b)
χi and evaluation Eχi , which are both

assumed to require wi ancilla bits to compute and a set of Mχi = |χ−1
i (1)| preimages.
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It may hold that EO(b)
χi

≈ EO(b)
χj

(also EEχi ≈ EEχj ) and Mχi ≈ Mχj for i 6= j or that these

values will be very different. In the cases we examine, that of the MQ problem over F2 and

cryptanalysis of the Advanced Encryption Standard, it will hold that the execution costs will be

nearly identical and whilst Mχi 6= Mχj , they will follow the same probability distribution.

Given an instance of a search problem exhibiting a constraint-based decomposition, we could

simply treat the decomposition as an instance of the single-target preimage search problem where

h : {0, 1}n −→ {0, 1}k is defined by h(x) 7→ χ(x) and Yh = {1k}. If we use the quantum evalu-

ations Eχ1 , . . . , Eχk , each of which require wi ancilla qubits to compute, then such an approach

requires n+
k∑
i=1

wi + k + 1 qubits and has a cost of 2
k∑
i=1

EEχi + E∧k(X) as we compute

|x〉 |0w1〉 . . . |0wk〉 |0k〉 |0〉 7→ |x〉 |g1(x)〉 . . . |gk(x)〉 |χ1(x) . . . χk(x)〉 |0〉 (2.68)

and then use a single ∧k(X) gate to compute the output bit

|x〉 |g1(x)〉 . . . |gk(x)〉 |χ1(x) . . . χk(x)〉 |χ1(x) ∧ · · · ∧ χk(x)〉 (2.69)

before applying E†χ1 , . . . , E
†
χk to leave us in the state

|x〉 |0w1〉 . . . |0wk〉 |0k〉 |χ1(x) ∧ · · · ∧ χk(x)〉 . (2.70)

We next examine how we can reduce the number of ancilla qubits at the cost of the circuit-

complexity via using quantum bit oracles instead of quantum evaluations.

Setting w̄ = max{wi}ki=1, we can execute O(b)
χ1 , . . . ,O

(b)
χk−1 , Eχk in serial, giving us the state

|x〉 |0w̄〉 |0k〉 |0〉 7→ |x〉 |gk(x)〉 |χ1(x) . . . χk(x)〉 |0〉 (2.71)

as the w̄ ancilla qubits are enough to compute any one of these unitary operators. A single

∧k(X) gate is then enough to compute the output bit of the quantum oracle O(b)
χ , giving us

|x〉 |gk(x)〉 |χ1(x) . . . χk(x)〉 |χ1(x) ∧ · · · ∧ χk(x)〉 . (2.72)

Finally, we need only execute E†χk ,O
(b)
χk−1 , . . . ,O

(b)
χ1 in serial to obtain the state

|x〉 |0w̄〉 |0k〉 |χ1(x) ∧ · · · ∧ χk(x)〉 , (2.73)

giving us the action of the quantum oracle O(b)
χ . This approach requires n+ max{wi}ki=1 + k+ 1

qubits to implement, but has a total cost of

2

k−1∑
i=1

EO(b)
χi

+ 2EEχk + E∧k(X). (2.74)

This method is inherently serial and, as EO(b)
χi

≈ 2EEχi for the problems we examine, this approach

approximately doubles the quantum circuit-size of the quantum bit oracle over the direct method.
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2.4.3 A counter-based approach

Schwabe and Westerbaan’s counter-based oracle uses this approach to reduce the number of

ancilla bits used for memory and additionally reduces the dependence on requiring k qubits to

store |χ1(x) . . . χk(x)〉, requiring only n + max{wi}ki=1 + dlog2(k + 1)e + 1 qubits. The counter-

based approach consists of using a counter register consisting of c qubits, which records only

how many of χ1(x), . . . , χk(x) have been satisfied — not which ones. Assuming that |z1 . . . zc〉
represents the counter register, we have that the procedure consists of the following:

– For i = 1, . . . , k

• Execute Eχi to compute |x〉 |gi(x)〉 |χi(x)〉 |z1 . . . zc〉.

• Perform an increment of the counter controlled upon |χi(x)〉.

• Execute E†χi to restore the state to |x〉 |0w̄〉 |0〉 |z′1 . . . z′c〉.

– Via applying at most c X gates, a single ∧c(X) gate and at most another c X gates, we

output |1〉 if and only if the counter has been incremented k times.

– For i = k, . . . , 1

• Execute Eχi to compute |x〉 |gi(x)〉 |χi(x)〉 |z1 . . . zc〉.

• Perform a decrement of the counter controlled upon |χi(x)〉.

• Execute E†χi to restore the state to |x〉 |0w̄〉 |0〉 |z′1 . . . z′c〉.

The counter-register itself can be implemented using only c = dlog2(k + 1)e qubits to represent

a maximum of k possible increments. The counter-register encodes a number from 0 to k by

allowing the c bits of each computational basis state to represent a non-zero element of the ring

F2[Z]/ (p(Z)), where p(Z) is a primitive polynomial of degree c. In this way we have that

|z1 . . . zc〉 ↔ z1Z
0 + z2Z

1 + · · ·+ zcZ
c−1 (2.75)

By standard properties of this ring, the action of multiplication by Z on a non-zero element

of F2[Z]/ (p(Z)) induces a permutation of the 2c − 1 non-zero elements of this ring. Hence if we

start the counter register in the state |z1 . . . zc〉 6= |0c〉 and perform a controlled multiplication by

Z for increments or Z−1 for decrements, then the counter can be easily implemented. The exact

element that corresponds to the counter register being incremented k times is easily precomputed

by classically computing the value of the counter-register which corresponds to the F2[Z]/ (p(Z))

interpretation Zk ·
(
z1Z

0 + z2Z
1 + · · ·+ zcZ

c−1
)
.

We first discuss how an increment of the counter can be performed, noting that if we wish to

decrement, then we simply need run this procedure in reverse. An increment is simply multipli-

cation of a ring element by Z and is done in two stages. First, a multiplication by Z is performed

in the ring F2[Z]/ (Zc + 1), which corresponds to mapping

|z1z2 . . . zc−1zc〉 7→ |zcz1 . . . zc−2zc−1〉 . (2.76)
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This can be performed via the serial application of c − 1 SWAP gates. An addition of the

element p(Z)− (Zc + 1) is then performed, controlled on the value of zc. This can be performed

via at most c − 1 ∧1(X) gates. As a controlled SWAP gate is a ∧1(SWAP ) or Fredkin gate

and a controlled ∧1(X) gate is simply a ∧2(X) or Toffoli gate, a single controlled increment or

decrement therefore costs (c− 1) · (E∧1(SWAP ) + E∧2(X)).

As we need not uncompute or compute the working memory |gk(x)〉 for the correctness

to be preserved and we can leave the most expensive quantum evaluation til last, we can

save one execution of E†χk and Eχk . A counter-based quantum-bit oracle therefore requires

n+ max{wi}ki=1 + dlog2(k + 1)e+ 1 qubits and has an execution cost of at most

4

k−1∑
i=1

EEχi + 2EEχk + 2k(dlog2(k + 1)e − 1) ·
(
E∧1(SWAP ) + E∧2(X)

)
+ 2EX⊗dlog2(k+1)e + E∧dlog2(k+1)e(X). (2.77)

The counter-based approach therefore requires approximately double the circuit-size of the direct

approach, but is advantageous in terms of the number of qubits required as it both allows us to

reuse the ancilla qubits used to compute and record the fulfillment of the constraints χ1, . . . , χk.

2.5 Quantum evaluations and bit oracles for the MQ problem

We now examine how the above frameworks impact upon the design of a quantum bit oracle

for the MQ problem over F2. We first discuss the design principles used by Schwabe and

Westerbaan, relating how they fit into the above framework.

2.5.1 Previous work by Schwabe and Westerbaan

Schwabe and Westerbaan describe an instance of the MQ(F2, n,m) in terms of a cube of coef-

ficients
(
λ

(k)
i,j

)
, where 1 ≤ i, j ≤ n and 1 ≤ k ≤ m and a vector v = (v1, . . . , vm) ∈ Fm2 . These

describe a system of degree-two equations over F2 whose solution is the vector (x1, . . . , xn) ∈ Fn2
such that for k = 1, . . . ,m it holds that∑

1≤i,j≤n
λ

(k)
i,j xixj = 0. (2.78)

A transformation is then applied in a classical preprocessing phase to convert this cube into form

they refer to as a convenient transformation. Their core results are in the design of the quantum

bit oracle and we present these results using a standard and more intuitive representation of a

quadratic equation over F2. It is clear that any degree-two equation f (i) ∈ F2[x1, . . . , xn] has the

representation

f (k)(x1, . . . , xn) =
∑

1≤i<j≤n
a

(k)
i,j xixj +

∑
1≤i≤n

b
(k)
i xi + c(k), (2.79)

owing to the fact that xjxi = xixj and xixi = xi. We will present their method in relation to

this representation, which does not change the essential nature of their results.
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Their convenient transformation essentially reduces the cube representation to that of (2.79),

ensuring that the commutative property xixj = xjxi and the identity x2
i = xi is taken into

account and has the consequence that instead of evaluating and checking whether

f (1)(x1, . . . , xn) = · · · = f (m)(x1, . . . , xn) = 0, (2.80)

the equivalent condition of evaluating and checking whether

f̃ (1)(x1, . . . , xn) = · · · = f̃ (m)(x1, . . . , xn) = 1 (2.81)

is satisfied is performed, where

f̃ (k)(x1, . . . , xn) = f (k)(x1, . . . , xn) + c(k) + 1. (2.82)

It is easily seen that the computational resources required to evaluate f (k)(x1, . . . , xn) and

f̃ (k)(x1, . . . , xn) are essentially identical. The quantum bit oracle designs are then those given in

Sections 2.4.2 and 2.4.3, with k = m and each constraint defined by χi(x1 . . . xn) = f̃ (k)(x1, . . . , xn).

We have simply generalised their methods in these sections. All that remains is to examine their

method of implementing the quantum bit oracles Of (i) and quantum evaluations Ef (i) . We will

then easily derive the total cost of their quantum bit oracles O(b)
χ for the MQ problem over F2.

A naive approach for creating these primitives would be evaluating f (k)(x1, . . . , xn) via the

addition of each term of f (k)(x1, . . . , xn) to an equation register (consisting of a single qubit)

which holds the result of the evaluation. This would require at most 1 X gate for the addition of

c(k), at most n ∧1(X) gates for the addition of the b
(k)
i xi terms and at most n2−n

2 ∧2(X) gates.

Whilst this can be done using no ancilla bits, this proves to be a large number of ∧2(X) gates,

which as we recall (see Section 2.3.1.3) require 10 Clifford gates and 7 T gates to implement.

Schwabe and Westerbaan instead suggest an alternative approach which requires only n ∧2(X)

gates per equation, with the majority of the work being done via ∧1(X) gates. The basic

strategy that Schwabe and Westerbaan employ for evaluating a single equation f (k)(x1, . . . , xn)

is to observe the decomposition

f (k)(x1, . . . , xn) = c(k) +

n∑
i=1

xiy
(k)
i where y

(k)
i = b

(k)
i +

n∑
j=i+1

a
(k)
i,j xj , (2.83)

using a single ancilla qubit to act as a temporary storage register to compute each |y(k)
i 〉, which

starts and ends in the state |0〉. The procedure consists of the following.

Add c(k) to the output register. Then for i = 1, . . . , n:

• Compute |y(k)
i 〉 using the ancilla qubit using at most 1 X gate and n− i ∧1(X) gates.

• Add xiy
(k)
i to the register which will store |f (k)(x1, . . . , xn)〉 via a single ∧2(X) gate.

• Uncompute |y(k)
i 〉 using the ancilla qubit using at most 1 X gate and n− i ∧1(X) gates.

The above procedure clearly implements the quantum bit oracle O(b)

f (k) and requires n+ 2 qubits.
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In terms of the total number of gates, the procedure therefore requires at most n ∧2(X) gates, n2−
n ∧1(X) gates and 2n+ 1 X gates. There construction therefore has the following requirements

#Clifford #T #Total T Total #Qubits
gates gates gates depth depth

O(b)

f̃ (k)
n2 + 11n+ 1 7n n2 + 18n+ 1 3n n2 + 10n+ 1 n+ 2

Table 2.2: Clifford+T gate costs for Schwabe and Westerbaan’s quantum bit oracle O(b)

f̃ (k)
.

This primitive can then be used in conjunction with the constraint-based quantum bit oracle

designs given in Sections 2.4.2 and 2.4.3. We note that Schwabe and Westerbaan describe their

circuit in terms of only the quantum bit oracles O(b)

f̃ (i)
, hence their versions of the cost Equations

(2.74) and (2.77) are respectively

2

m∑
i=1

EO(b)

f̃(i)

+ E∧m(X) (2.84)

and at most

4

m∑
i=1

EO(b)

f̃(i)

+ 2m(dlog2(m+ 1)e − 1) ·
(
E∧1(SWAP ) + E∧2(X)

)
+ 2EX⊗dlog2(m+1)e + E∧dlog2(m+1)e(X). (2.85)

The difference will be minor in the case of theMQ problem and Grover’s algorithm, as we assume

that m ≥ n and that the implementation of the quantum evaluation Ef (k) will be identical to

the quantum bit oracle O(b)

f̃ (k)
, save simply not uncomputing the register |y(k)

n 〉. The difference in

cost between a quantum evaluation and quantum bit oracle is therefore negligible in this case,

but will later be important in Chapter 6, where k will be relatively small and we are dealing

with the key-search problem instead. The two constructions therefore have the cost

Method used Section 2.4.2 Section 2.4.3

#Clifford gates 2mn2 + 22mn+ 26m− 48 4mn2 + 44mn+ (40dlog2(m+ 1)e − 36)m+ 26dlog2(m+ 1)e − 48

#T gates 14mn+ 16m− 16 28mn+ (28dlog2(m+ 1)e − 14)m+ 16dlog2(m+ 1)e − 16

#Total gates 2mn2 + 36mn+ 42m− 64 4mn2 + 72mn+ (68dlog2(m+ 1)e − 64)m+ 42dlog2(m+ 1)e − 64

T depth 6mn+ 16m− 16 12mn+ 16(dlog2(m+ 1)e − 1)m+ 16dlog2(m+ 1)e − 16

Total depth 2mn2 + 22mn+ 40m− 64 4mn2 + 44mn+ (40dlog2(m+ 1)e − 40)m+ 40dlog2(m+ 1)e − 62

#Qubits n+m+ 2 n+ dlog2(m+ 1)e+ 2

Table 2.3: Clifford+T cost of quantum bit oracles from [SW16] for instances of MQ(F2, n,m).

We will return to these costs and the full cost of quantum search using Grover’s algorithm

in conjunction with Schwabe and Westerbaan’s quantum bit oracles once we have discussed

Grover’s algorithm in Section 3.2.1. For now we now turn to the slightly optimised versions of

quantum evaluations and quantum bit oracles that we will use throughout this thesis.
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2.5.2 Our standard quantum evaluation Ef̃ (i) and quantum bit oracle Of̃ (i)

We make several changes to Schwabe and Westerbaan’s representation, which do not impact

upon the cost and will later be of benefit when it comes to quantum oracle design. The first

change is simply in the representation of the individual equations. Instead of the representation

f (k)(x1, . . . , xn) = c(k) +
n∑
i=1

xiy
(k)
i where y

(k)
i = b

(k)
i +

n∑
j=i+1

a
(k)
i,j xj , (2.83)

we simply change definition of y
(k)
i so that we have the representation

f (k)(x1, . . . , xn) = c(k) +
n∑
i=1

xiy
(k)
i where y

(k)
i = b

(k)
i +

i−1∑
j=1

a
(k)
j,i xj . (2.86)

With this representation, the partial sum c(k)+
n′∑
i=1

xiy
(k)
i where n′ ≤ n, involves only the variables

x1, . . . , xn′ . This will later be exploited in Chapter 4. We additionally make a minor change to

save one Toffoli gate, noting that

x1y
(k)
1 = b

(k)
1 x1 and x2y

(k)
2 = b

(k)
2 x2 + a1,2x1x2. (2.87)

This means that we can add x1y
(k)
1 + x2y

(k)
2 to the register holding the evaluated equation with

two ∧1(X) gates and a single ∧2(X) gate, without modifying the temporary storage register. In

comparison, Schwabe and Westerbaan’s method requires that we start and end with the tempo-

rary storage register in the state |0〉, giving us a cost to add xn−1y
(k)
n−1 + xny

(k)
n to the equation

register of 4 X gates 4 ∧1(X) gates and 2 ∧2(X) gates. This is only a minor optimisation,

but worth noting. The quantum evaluation Ef̃ (k) corresponding to f (k)(x1, . . . , xn) for n ≥ 2 is

therefore given by the following procedure.

• Add c(k) +b
(k)
1 xi+b

(k)
2 x2 +a

(k)
1,2x1x2 to the output register via 1 X, 2 ∧1(X) and 1 ∧2(X) gates.

• For i = 3, . . . , n− 1:

• Compute |y(k)
i 〉 using the ancilla qubit using at most 1 X gate and i− 1 ∧1(X) gates.

• Add xiy
(k)
i to the register which will store |f (k)(x1, . . . , xn)〉 via a single ∧2(X) gate.

• Uncompute |y(k)
i 〉 using the ancilla qubit using at most 1 X gate and i− 1 ∧1(X) gates.

• Compute |y(k)
n 〉 using the ancilla qubit using at most 1 X gate and n− 1 ∧1(X) gates.

• Add xny
(k)
n to the register which will store |f (k)(x1, . . . , xn)〉 via a single ∧2(X) gate.

This procedure performs the required mapping

Ef̃ (k) |x1 . . . xn〉 |0〉 |0〉 7→ |x1 . . . xn〉 |y(k)
n 〉 |f̃ (k)(x1, . . . , xn)〉 . (2.88)

The quantum evaluation Ef̃ (k) therefore requires n + 2 qubits and at most n − 1 ∧2(X) gates,

n2 − 2n+ 1 ∧1(X) gates and 2n− 4 X gates.
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The quantum bit oracle Of̃ (k) is simply the same procedure, but with the register holding

|y(k)
n 〉 uncomputed at the end, which gives us the mapping

O(b)

f̃ (k)
|x1 . . . xn〉 |0〉 |0〉 7→ |x1 . . . xn〉 |0〉 |f̃ (k)(x1, . . . , xn)〉 . (2.89)

The qubit requirement for the quantum bit oracle Of̃ (k) is therefore still n + 2 qubits and the

cost is at most n− 1 ∧2(X) gates, n2 − n ∧1(X) gates and 2n− 3 X gates.

These optimisations are minor and make only a constant difference in the cost, but the main

point of this section was to provide discussion around the construction of quantum oracles and

provide a standard worst-case formula for computing the cost of the quantum evaluation Ef̃ (k) ,

which fits into the quantum oracle design framework. With these in hand we can easily compute

the cost of our optimisations. These primitives have the costs

#Clifford #T #Total T Total #Qubits
gates gates gates depth depth

Ef̃ (k) n2 + 10n− 13 7n− 7 n2 + 17n− 20 3n− 3 n2 + 10n− 16 n+ 2

O(b)

f̃ (k)
n2 + 11n− 13 7n− 7 n2 + 18n− 20 3n− 3 n2 + 11n− 16 n+ 2

Table 2.4: Clifford+T gate costs for the quantum evaluation and bit oracle O(b)

f̃ (k)
.

This in turn gives us the worst-case cost of the quantum evaluations and quantum bit oracles

we will use for instances of MQ(F2, n,m). We will use these costs for computations later on.

Type/Method used O(b)
χ : Section 2.4.2 O(b)

χ : Section 2.4.3

#Clifford gates 2mn2 + 22mn− 2n− 2m− 48 4(m− 1)(n2 + 10n− 12) + 2(n2 + 10n− 12) + 2m(dlog2(m+ 1)e − 1)20 + 2dlog2(m+ 1)e+ 24dlog2(m+ 1)e − 48

#T gates 14mn+ 2m− 16 4(m− 1)(7n− 7) + 2(7n− 7) + 2m(dlog2(m+ 1)e − 1)14 + 16dlog2(m+ 1)e − 16

#Total gates 2mn2 + 36mn− 2n+ 26m− 88 4(m− 1)(n2 + 17n− 19) + 2(n2 + 17n− 19) + 2m(dlog2(m+ 1)e − 1)34 + 2dlog2(m+ 1)e+ 40dlog2(m+ 1)e − 64

T depth 6mn+ 10m− 16 4(m− 1)(3n− 3) + 2(3n− 3) + 2m(dlog2(m+ 1)e − 1)8 + 16dlog2(m+ 1)e − 16

Total depth 2mn2 + 22mn+ 12m− 2n− 64 4(m− 1)(n2 + 10n− 14) + 2(n2 + 10n− 14) + 2m(dlog2(m+ 1)e − 1)20 + 2 + 40dlog2(m+ 1)e − 64

#Qubits n+m+ 2 n+ dlog2(m+ 1)e+ 2

Table 2.5: Clifford+T cost of quantum bit oracles for instances of MQ(F2, n,m).

2.5.3 A note on using more qubits for temporary memory

We will be predominantly interested in strategies which use few qubits in this thesis, but it is

worth noting that if we allow more qubits then the cost of quantum evaluations compared to

quantum bit oracles becomes clearer. If we allow n − 2 temporary storage registers for the for

the computation of |y(k)
3 〉 . . . |y

(k)
n 〉, then we need not uncompute |y(k)

i 〉 before computing |y(k)
i+1〉.

This leads to the costs for the quantum evaluation and quantum bit oracle as given in Table 2.6.

#Clifford #T #Total T Total #Qubits
gates gates gates depth depth

Ef̃ (k)
n2+21n−20

2 7n− 7 n2+35n−34
2 3n− 3 11n− 10 2n− 1

O(b)

f̃ (k)
n2 + 11n+ 10 7n− 7 n2 + 18n− 20 3n− 3 12n− 10 2n− 1

Table 2.6: Clifford+T gate costs for the high-qubit quantum evaluation Ef̃ (k) and bit oracle O(b)

f̃ (k)
.
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2.6 Quantum evaluations and bit oracles for AES-{128, 192, 256}

The quantum evaluation and quantum bit oracles for the key-search problem for the Advanced

Encryption Standard or AES-{128, 192, 256} (see Definition 1.5) is available in literature [GLRS16]

and we will simply use their gate metrics. We denote the AES-k block-cipher encryption function

via AES(k) : {0, 1}128 × {0, 1}k −→ {0, 1}128 and the function AES
(k)
Pi

: {0, 1}k −→ {0, 1}128 for

Pi ∈ {0, 1}128 where Pi 6= Pj if i 6= j, which maps

AES
(k)
Pi

(x) 7→ AES(k)(Pi, x). (2.90)

We recall from discussion in Section 1.4 that uniquely specifying a users key requires a set

of r known plaintext-ciphertext pairs ((P1, C1), . . . , (Pr, CR)) such that we have the promise

AES(Pi,K) = Ci for i = 1, . . . , r for a single user’s keyK ∈ {0, 1}k. With respect to cryptanalysis

of a single user’s key, we expect AES-128 and AES-192 we expect to use r = 2 plaintext-ciphertext

pairs to uniquely specify a user’s key with overwhelming probability, whilst for AES-256 we will

wish to use r = 3 plaintext-ciphertexts. The authors of the original study of the implementation

cost of Grover applied to AES define their quantum oracle for the AES key-search problem via

the preimage search problem defined by the function hk,r : {0, 1}k −→ {0, 1}128r and the image

yh = C1‖ . . . ‖Cr ∈ {0, 1}128r, where

hk,r(x) 7→ AESP1(x)‖ . . . ‖AESPr(x). (2.91)

The quantum evaluation Ehk,r is itself defined by first making r − 1 copies of the search-

register |x1 . . . xk〉 using k(r− 1) ∧1(X) gates with a depth of dlog2 re. In this way the execution

of each EAESPi
has access to the key we are testing and we do not need to worry about conflicting

access privileges to these qubits. The parallel execution of the circuits E
AES

(k)
P1

, . . . , E
AES

(k)
Pr

is

then possible, hence we have that if a single E
AES

(k)
Pi

circuit requires k + wk + 128 ancilla qubits

to implement, we have that Ehk,r requires r(k + wk + 128) qubits to implement. The quantum

bit oracle O(b)
χ for the AES-k key-search problem using the direct-method from Section 2.4.1

therefore requires r(k+wk + 128) + 1 qubits, 2k(r− 1) ∧1(X) gates, 2r applications of E
AES

(k)
Pi

,

at most 256r X gates and a single ∧128r(X) gate. The costs of the quantum evaluations are

given in Table 2.7 below.

#Clifford #T #Total T Total #Qubits
gates gates gates depth depth

E
AES

(128)
Pi

1, 380, 420 1, 060, 864 2, 441, 284 50, 688 110, 799 984

E
AES

(192)
Pi

1, 567, 296 1, 204, 224 2, 771, 520 44, 352 96, 956 1, 112

E
AES

(256)
Pi

1, 956, 099 1, 505, 280 3, 461, 379 59, 904 130, 929 1, 336

Table 2.7: Clifford+T gate costs for the quantum evaluation E
AES

(k)
Pi

[GLRS16].
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It is clear that the key-search problem admits a constraint-based decomposition, so that

χi : {0, 1}k −→ {0, 1} is defined for i = 1, . . . , r by

χi(x) 7→

1 if AES
(k)
Pi

(x)
?
= Ci

0 otherwise.
(2.92)

The quantum evaluation E(b)
χi for therefore requires k + wk + 1 qubits (where wk is the number

of ancilla qubits required to implement the AES circuit in quantum hardware) and consists of

one quantum evaluation EAESPi
, at most 128 X gates and one ∧128(X) gate.

We can therefore use it with the methods in Sections 2.4.2 and 2.4.3. As r is small, we could

use either the low-qubit approach given in Section 2.4.2, which requires k+wk + r+ 1 qubits or

the counter-based approach, which requires k + wk + dlog2(r + 1)e + 1 qubits. We will use the

counter-based approach, as it is easier to work with quantum evaluations and will demonstrate

the benefits of the approach we present in Chapter 6. The cost of the quantum bit oracles using

this method can therefore easily be computing using the formula (2.77) from Section 2.4.2 and

are given in the table below for several values of r, which again we will later use in Chapter 6.

The cost of the quantum bit oracles using these two approaches are given in Table

O(b)
χ for AES(k)/r #Clifford gates #T gates #Total gates T depth Overall depth #Qubits Method

AES(128)/2 5, 527, 776 4, 247, 536 9, 775, 312 105, 456 272, 034 1, 969 Direct evaluation [GLRS16]

AES(192)/2 6, 273, 264 6, 273, 264 12, 548, 544 92, 784 204, 088 2, 225 Direct evaluation [GLRS16]

AES(256)/3 11, 745, 762 9, 037, 808 20, 783, 570 125, 936 277, 154 4, 009 Direct evaluation [GLRS16]

AES(128)/2 8, 301, 596 6, 274, 176 14, 675, 772 313, 120 695, 314 988 Counter-based (Section 2.4.3)

AES(192)/2 9, 422, 852 7, 234, 336 16, 657, 188 256, 104 612, 256 1116 Counter-based (Section 2.4.3)

AES(256)/3 19, 592, 754 15, 069, 976 34, 662, 730 616, 216 1, 360, 118 1, 340 Counter-based (Section 2.4.3)

Table 2.8: Cost of quantum bit oracles for AES-128 key-search with r plaintext-ciphertexts.

The trade-offs for a concrete problem are now clear. Chapter 6 will focus upon how to remove

many of the negative aspects of this trade-off, so that we can use the same number of qubits as

the counter-based method, but get a better quantum circuit-size than direct evaluation. We will

later require the case r = 1, which can be performed via direct evaluation.

O(b)
χ for AES(k)/r #Clifford gates #T gates #Total gates T depth Overall depth #Qubits Method

AES(128)/1 2, 764, 120 2, 123, 760 4, 887, 880 103, 408 266, 915 985 Direct evaluation [GLRS16]

AES(192)/1 3, 137, 744 3, 136, 624 6, 274, 368 90, 736 198, 969 1, 113 Direct evaluation [GLRS16]

AES(256)/1 3, 915, 350 3, 012, 592 6, 927, 942 121, 840 266, 915 1, 337 Direct evaluation [GLRS16]

Table 2.9: Cost of quantum bit oracles for AES-128 key-search with r plaintext-ciphertexts.

With the construction methods of quantum oracles explained via the quantum bit oracles

for instances of theMQ(F2, n,m) problem and the costs for the key-search problem for the Ad-

vanced Encryption Standard, we will proceed to discuss the topic and applications of amplitude

amplification. We refer to these costs throughout this thesis, but from now on use only the

metrics of circuit-width (#qubits), circuit-size (#total gates) and circuit-depth (overall depth).

Given the cost framework, it is plain that the that the other metrics can also be extracted via

our cost formula if required. As we are interested in the impact upon the quantum security

parameter for cryptosystems, this will be sufficient for our purposes.
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Chapter 3

Amplitude amplification

”These go to eleven.”

- Nigel Tufnel[Rei84], (concerning amplification)

In this chapter we review the well-known theory of quantum amplitude amplification [BHMT02],

of which quantum search is one particular application. In Section 2.3 we introduced the concept

of quantum phase oracles and now discuss their use in conjunction with the theory of quantum

amplitude amplification in Section 3.1. We conclude by examining the application of amplitude

amplification to quantum search in Section 3.2, in the form of Grover’s algorithm and the asso-

ciated costs for solving instances of MQ(F2, n,m) (see Section 1.3) and the key-search problem

for AES (see Section 1.4) using the respective quantum oracles in Sections 2.5.2 and 2.6.

3.1 Amplitude amplification

Amplitude amplification [BHMT02] can be considered a generalisation of Grover’s quantum

search algorithm [Gro96] that utilises two components — an arbitrary quantum algorithm A
that uses no measurements and a quantum phase oracle Oχ. Whilst we can treat amplitude

amplification as a quantum algorithm in of itself, in that we can execute and measure the

quantum state, quantum amplitude amplification is better understood as a quantum sub-routine

which can be used to design quantum algorithms.

In this section we first discuss and prove the generalised amplitude amplification theorem,

then give Grover’s algorithm as a special case in Theorem 3.10. We will later move to a level of

abstraction that requires only a basic knowledge of quantum computing, but will first prove the

generalised amplitude amplification theorem in this section before discussing applications, includ-

ing Grover’s algorithm, in Section 3.2. The following simple definition is key to understanding

the theorems and results in this thesis.

Definition 3.1 (Success probability of a quantum algorithm [BHMT02]).

Let A be a measurement-free quantum algorithm acting upon n qubits and χ : {0, 1}n −→ {0, 1}.
We say that the success probability of A relative to χ is the probability that measuring the state

A |0n〉 in the computational basis results in a bitstring x ∈ {0, 1}n such that χ(x) = 1.
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In order to discuss the computational advantages that amplitude amplification offers and

provide discussion on the costs involved, we first examine a classical method discussed in the

original amplitude amplification paper [Høy00] that uses A to obtain a bitstring x ∈ {0, 1}n such

that χ(x) = 1 with high probability.

3.1.1 A classical procedure to achieve success

Suppose we possess the ability to execute an arbitrary measurement-free quantum algorithm A
which possesses a success probability of a > 0 relative to χ : {0, 1}n −→ {0, 1}. By repeatedly

creating the quantum state A |0n〉, measuring it and testing the resulting bitstring x ∈ {0, 1n}
with a classical evaluation of χ, we will eventually obtain a bitstring such that χ(x) = 1. This

can either be done in serial or parallel — we examine the serial case, but note that the procedure

is embarrassingly parallel.

The natural question is how many times must we perform the procedure described above to

achieve our objective with high probability? As the procedure can be modelled as performing

independent Bernoulli trials, the problem can be modelled as finding the expected value of a

geometric distribution. As the probability of success upon the kth attempt is

Pr[X = k] = (1− a)k−1a (3.1)

we have that the expected number of trials before the success is modelled by the expectation of

the geometric distribution

E[X] =
∞∑
k=1

(1− a)k−1a · k (3.2)

= a ·
∞∑
k=1

(1− a)k−1 · k (3.3)

= a · d
dp

( ∞∑
k=1

pk

)
where p = 1− a (3.4)

= a · d
dp

(
p
∞∑
k=0

pk

)
(3.5)

= a · d
dp

(
p

1− p

)
(3.6)

= a · 1 · (1− p)− (−1) · p
(1− p)2

(3.7)

= a · a+ 1− a
a2

(3.8)

=
1

a
. (3.9)

We will therefore require O( 1
a) executions of A and the same number of measurements of the

quantum state A |0n〉 and classical evaluations of χ : {0, 1} −→ {0, 1}. We will return to these

costs after we have proven the amplitude amplification theorem (see Theorem 3.6).
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We note for now that we have placed special emphasis on the number of executions of A,

as opposed to the number of evaluations of χ : {0, 1}n −→ {0, 1}. We will return to this after

amplitude amplification and in the discussion concerning Grover’s algorithm (Theorem 3.10).

3.1.2 The amplitude amplification theorem

In this section we state and prove the theory behind quantum amplitude amplification. The

proof of quantum amplitude amplification will require will require an understanding of quantum

computing up the level provided in Chapter 2. After the quantum amplitude amplitude theorem

is proven (see Theorem 3.6) we will move to a higher level of abstraction that simplifies the

process of designing quantum search algorithms in this thesis.

The amplitude amplification subroutine can be executed with any quantum phase oracle Oχ
which is defined by (or defines) a boolean function χ : {0, 1}n −→ {0, 1} and any quantum

algorithm A that uses no measurements. Whilst it has been proven that if A implements a

uniformly randomly chosen unitary operator U ∈ C2n×2n , almost any transformation will work

for quantum search [Gro98], we will wish to make specific choices for A. Whilst eventually both

the quantum phase oracle and chosen quantum algorithm have to be implemented and each have

an associated cost, we will ignore the costs in this section and deal only with the mathematical

model of quantum computation so that each quantum algorithm acting on n qubits (plus any

number of ancillae qubits required for implementing their action efficiently) may be treated as a

unitary operator acting upon the complex Hilbert space C2n .

We will prove the general case of amplitude amplification, which can exploit quantum phase

oracles defined by an arbitrary phase angle 0 ≤ φ < 2π, as we lose nothing by this approach and

the results required by this thesis are easily obtained by simple substitution of φ = π. We first

require some basic definitions and terms

Definition 3.2 (Boolean projection operators).

Let χ : {0, 1}n −→ {0, 1} be any boolean function and H be the complex Hilbert space of

dimension 2n with the computational basis {|x〉 : x ∈ {0, 1}n}. We define the pair of boolean

projection operators associated to χ to be

P (0)
χ =

∑
x∈{0,1}n
χ(x)=0

|x〉〈x| and P (1)
χ =

∑
x∈{0,1}n
χ(x)=0

|x〉〈x| . (3.10)

This gives us a way method of representing any n qubit quantum state |ψ〉 in relation to a

boolean function χ : {0, 1}n −→ {0, 1}.

Lemma 3.3 (Boolean partition of Hilbert spaces).

Let H be the complex Hilbert space of dimension 2n. All boolean functions χ : {0, 1}n −→ {0, 1}
partition H into the direct sum of two subspaces, so that H = H0 ⊕H1, where

Hi = SpanC

({
|x〉 ∈ {0, 1}n : χ(x) = i

})
. (3.11)
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Proof. Any quantum state |ψ〉 ∈ H can be expressed in the form

|ψ〉 = P (0)
χ |ψ〉+ P (1)

χ |ψ〉 , (3.12)

where P
(i)
χ |ψ〉 ∈ Hi, giving us the decomposition of H into the direct sum H = H0 ⊕H1.

Lemma 3.3 gives us that any quantum state |ψ〉 ∈ H has a projection onto two subspaces

defined by the boolean function χ : {0, 1}n −→ {0, 1}. In the case where χ is a constant function

then such a decomposition is clearly trivial, in that either H0 or H1 is the trivial Hilbert space.

The following proof relies upon the outer-product representation (see Theorem 2.8) of the two-

dimensional vector space spanned by these boolean projections.
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Theorem 3.4 (Action of the Amplitude Amplification iterator [BHMT02, Høy00]).

Let χ : {0, 1}n −→ {0, 1} be any boolean function and 0 ≤ φ, ϕ < 2π. Let H be the complex

Hilbert space with computational basis
{
|x〉 : x ∈ {0, 1}n

}
and A be any quantum algorithm

acting upon H which uses no measurements. We define the quantum state |Ψ〉 = A |0n〉 and

denote the projections |Ψi〉 = P
(i)
χ |Ψ〉 for i = 0, 1 so that |Ψ〉 = |Ψ0〉+ |Ψ1〉.

Let Oχ(ψ) and O0n(φ) be quantum phase oracles defined by the functions χ : {0, 1}n −→ {0, 1}
and 0n : {0, 1}n −→ {0, 1} (see Definition 2.20) and define the generalised amplification operator

Q(A, χ, φ, ϕ) = −AO0n(φ)A−1Oχ(ϕ). (3.13)

Let a = 〈Ψ1|Ψ1〉 = sin2 θa and 0 < a < 1 so that θa ∈ (0, π2 ), then we have that the action of

the amplitude iteration operator Q(A, χ, φ, ϕ) on the two-dimensional subspace spanned by the

ordered orthonormal basis
(

1√
1−a |Ψ0〉 , 1√

a
|Ψ1〉

)
is given by the matrix

M(A, χ, φ, ϕ) =

[
−{(1− eiφ)a+ eiφ} eiϕ{(1− eiφ)

√
a
√

1− a}
(1− eiφ)

√
a
√

1− a eiϕ{(1− eiφ)a− 1}

]
(3.14)

Proof. It will first be useful to express the operator Q(A, χ, φ, ϕ) in terms of projection operators

relative to the ordered orthonormal basis
(

1√
1−a |Ψ0〉 , 1√

a
|Ψ1〉

)
. It is clear that

Oχ(ϕ) = In − (1− eiϕ)
1

a
|Ψ1〉〈Ψ1| (3.15)

and

−AO0n(φ)A−1 = −A
(
In − (1− eiφ) |0n〉〈0n|

)
A−1 (3.16)

= −
(
AInA−1 − (1− eiφ)A |0n〉〈0n| A−1

)
= −

(
In − (1− eiφ) |Ψ〉〈Ψ|

)
= (1− eiφ) |Ψ〉〈Ψ| − In.

From the representation of Q(A, χ, φ, ϕ) by the projection operators given by (3.15) and (3.16),

the action of Q(A, χ, φ, ϕ) on the ordered orthonormal basis
(

1√
1−a |Ψ0〉 , 1√

a
|Ψ1〉

)
is

1√
1− a

|Ψ0〉 7→
{

(1− eiφ)a+ eiφ
} 1√

1− a
|Ψ0〉 + (1− eiφ)

√
a
√

1− a 1√
a
|Ψ1〉 , (3.17)

1√
a
|Ψ1〉 7→ eiϕ(1− eiφ)

√
a
√

1− a 1√
1− a

|Ψ0〉 + eiϕ
{

(1− eiφ)a− 1
} 1√

a
|Ψ1〉 . (3.18)

From Equations (3.17) and (3.18) it is clear that the two-dimensional subspace spanned by the

ordered orthonormal basis
(

1√
1−a |Ψ0〉 , 1√

a
|Ψ1〉

)
is invariant under the action of Q(A, χ, φ, ϕ).

The matrix M(A, χ, φ, ϕ) as given in Equation (3.14) is therefore sufficient to represent the action

of Q(A, χ, φ, ϕ) upon this subspace and is easily derived from Equations (3.17) and (3.18).
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Theorem 3.5 (Repeated application of Q(A, χ, π, π) [BHT98, BHMT02]).

Let χ : {0, 1}n −→ {0, 1} be any boolean function and 0 ≤ φ, ϕ < 2π. Let H be the complex

Hilbert space with computational basis
{
|x〉 : x ∈ {0, 1}n

}
and A be any quantum algorithm

acting upon H which uses no measurements. We define the quantum state |Ψ〉 = A |0n〉 and

denote the projections |Ψi〉 = P
(i)
χ |Ψ〉 for i = 0, 1 so that |Ψ〉 = |Ψ0〉+ |Ψ1〉.

Let a = |〈Ψ1|Ψ1〉| = sin2 θa and 0 < a < 1, such that θa ∈ (0, π2 ). Then for k ∈ N0, it holds that

Qk(A, χ, π, π)A |0n〉 = cos
(

(2k + 1)θa

) 1√
1− a

|Ψ0〉+ sin
(

(2k + 1)θa

) 1√
a
|Ψ1〉 . (3.19)

In the case |〈Ψ1|Ψ1〉| = a = sin2 θa ∈ {0, 1}, it holds that Qk(A, χ, π, π)A |0n〉 = (Oχ)kA |0n〉.

Proof. Theorem (3.4) gives us that in relation to the orthnormal basis
(

1√
1−a |Ψ0〉 , 1√

a
|Ψ1〉

)
,

Qk(A, χ, π, π)A |0n〉 = Mk(A, χ, π, π)

[√
1− a
√
a

]
. (3.20)

Substitution of φ = ϕ = π,
√
a = sin

(
θa
)

and
√

1− a = cos
(
θa
)

into (3.20) gives us that

Mk(A, χ, π, π)

[√
1− a
√
a

]
=

[
cos(2θa) − sin(2θa)

sin(2θa) cos(2θa)

]k [
cos
(
θa
)

sin
(
θa
)] . (3.21)

We claim that [
cos(2θa) − sin(2θa)

sin(2θa) cos(2θa)

]k [
cos
(
θa
)

sin
(
θa
)] =

[
cos
(
(2k + 1)θa

)
sin
(
(2k + 1)θa

)] . (3.22)

and proceed via induction. The base case for k = 0 clearly holds by examination of Equation

(3.22), hence we assume Equation (3.22) as our inductive hypothesis and the claim follows as[
cos(2θa) − sin(2θa)

sin(2θa) cos(2θa)

]k+1 [
cos
(
θa
)

sin
(
θa
)] =

[
cos(2θa) − sin(2θa)

sin(2θa) cos(2θa)

][
cos
(
(2k + 1)θa

)
sin
(
(2k + 1)θa

)]

=

[
cos
(
2θa
)

cos
(
(2k + 1)θa

)
− sin

(
2θa
)

sin
(
(2k + 1)θa

)
sin
(
2θa
)

cos
(
(2k + 1)θa

)
+ cos

(
2θa
)

sin
(
(2k + 1)θa

)]

=

[
cos
(
(2(k + 1) + 1)θa

)
sin
(
(2(k + 1) + 1)θa

)] . (3.23)

Equation (3.19) follows trivially from Equations (3.20), (3.21) and (3.22).

That Qk(A, χ, π, π)A |0n〉 is identical to the state (Oχ)kA |0n〉 when |〈Ψ1|Ψ1〉| = a ∈ {0, 1}
follows from the fact that in this case we have that |Ψ〉 = |Ψa〉 and so

Q(A, χ, π, π)A |0n〉 = −
(
In − 2 |Ψa〉〈Ψa|n

)
Oχ |Ψa〉 = Oχ(π) |Ψa〉 (3.24)

as Oχ only alters the amplitude of the state |Ψa〉, whilst −
(
In − 2 |Ψa〉〈Ψa|

)
|Ψa〉 = |Ψa〉.
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Theorems 3.4 and 3.5 give us that we can construct a specific quantum state defined by

the quantum algorithm A, boolean function χ and number of times k ∈ N0 that we run the

amplitude amplification iterator. Whilst it is possible to work with these theorems directly, we

will eventually want to measure the quantum state and so it is easier to state them as Theorem

3.6, a statement close to the original formulation of the theorem [BHMT02].

Theorem 3.6 (Amplitude amplification).

Let χ : {0, 1}n −→ {0, 1} be any boolean function and A be a measurement-free quantum

algorithm with a success probability of a > 0 relative to χ. Let k ∈ N0.

Then there exists a quantum algorithm B(k) with a success probability relative to χ of

sin2
(

(2k + 1) · arcsin
√
a
)

(3.25)

and which possesses an execution cost (using the notation in Definition 2.23) of

EA + k · (Eχ + En̄ + 2EA) . (3.26)

Proof. This is simply a convenient restatement of the previous two theorems in relation to Def-

initions 3.1 and 2.23. The success probability is directly obtained from Theorem 3.6 and the

computational costs are derived from Theorem 3.6 in combination with the cost of the amplitude

amplification operator from Theorem 3.5 using the cost notation from Definition 2.23.

This notation and methodology make the design and costing of quantum algorithms relatively

simple. It is now clear that we can easily assign a cost to any quantum algorithms which solely

exploit amplitude amplification and quantum evaluations/quantum bit oracles. We need simply

design the quantum algorithm, derive the cost in terms of unitary operators using Equation

(3.26) and assign each unitary operator an implementation cost using the results in Section 2.3.
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Theorem 3.7 (Quadratic speedup [BBHT96, Gro96, BHMT02]).

Let 0 < a ≤ 1 and k =
⌊

π
4·arcsin

√
a

⌋
. Then we have that

sin2
(
(2k + 1) · arcsin

√
a
)
≥ max {a, 1− a} . (3.27)

Proof. The optimal k̂ ∈ R to ensure sin2
(
(2k̂ + 1) · arcsin

√
a
)

= 1 is k̂ = π
4 arcsin

√
a
− 1

2 as

(
2 ·
(

π

4 · arcsin
√
a
− 1

2

)
+ 1

)
· arcsin

√
a =

π

2
. (3.28)

However, in amplitude amplification an integer k ∈ N0 must be chosen as it represents the

integer number of times we repeatedly apply the amplitude amplification operator. If we choose

k =
⌈

π
4·arcsin

√
a
− 1

2

⌋
=
⌊

π
4·arcsin

√
a

⌋
, then we obtain that

|k̂ − k| ≤ 1

2
=⇒

∣∣∣(2k̂ + 1) · arcsin
√
a− (2k + 1) · arcsin

√
a
∣∣∣ ≤ arcsin

√
a. (3.29)

Substitution of (3.28) then gives us

=⇒
∣∣∣π
2
− (2k + 1) · arcsin

√
a
∣∣∣ ≤ arcsin

√
a (3.30)

and via the fact that |sin(|x|)| = | sin(x)| and sin
(
π
2 − x

)
= cos(x), we have that

=⇒
∣∣cos

(
(2k + 1) · arcsin

√
a
)∣∣ ≤ ∣∣sin (arcsin

√
a
)∣∣ =

√
a, (3.31)

which, by squaring both sides and using the fact that sin2(x) = 1− cos2(x), provides the bound

=⇒ sin2
(
(2k + 1) · arcsin

√
a
)
≥ 1− a. (3.32)

To obtain (3.25), we simply note that if k =
⌊

π
4·arcsin

√
a

⌋
= 0, then sin2 (arcsin

√
a) = a.

Theorem 3.7 gives us k, the optimal number of times to apply the amplitude amplification

operator Q(A, χ, π, π) with regards to Theorem 3.6 with the objective of creating a quantum

algorithm which succeeds with a probability of at least 1−a relative to χ : {0, 1}n −→ {0, 1}. This

gives us both a bound on the probability of success and allows us to quantify the computational

resources required to achieve this success probability.

We recall from Section 3.1.1 which describes a classical method to exploit a quantum algo-

rithm A with a success probability of a > 0 relative to χ : {0, 1}n −→ {0, 1}, that the number of

executions of A, measurements of the state and classical evaluations of χ was O( 1
a). If we assume

that 0 < a � 1 then Theorem 3.7 gives us a value of k =
⌊

π
4·arcsin

√
a

⌋
≈ π

4 ·
1√
a

in conjunction

with Theorem 3.6 to succeed with probability close to 1. This is equivalent to 2k+1 applications

of A, k applications of the quantum phase oracles Oχ, k applications of the quantum phase

oracle O0̄n and one measurement. Asymptotically, this is O( 1√
a
) applications of the quantum

algorithm A, which is clearly an advantage. A direct comparison of costs is not straight forward

and we briefly discuss this before describing applications of amplitude amplification.
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Whilst an asymptotically amazing result that we need only apply O( 1√
a
) executions of A

and quantum queries to Oχ compared to O( 1
a) executions of A and classical queries to χ, there

are some crucial real-world costs in consider. In the classical procedure we perform multiple

independent executions of the quantum algorithm A and must only protect the quantum state

from noise for a relatively short period. Verification that measurement of the quantum state

A |0n〉 has produced a bitstring x ∈ {0, 1}n such that χ(x) = 1 is also performed on a classical

computer, which will be relatively cheap compared to any such execution on a quantum com-

puter. In comparison, amplitude amplification requires that the quantum state be protected

from decoherence for a long-running serial computation and that Oχ (often a costly procedure),

be executed on the quantum computer.

In this thesis we optimise in the logical quantum circuit model of computation and ignore

the requirement for error-correction, but note it for completeness. Our results should be viewed

as advantages with respect to existing quantum search procedures and their impact upon cryp-

tographic parameters— whether these optimisation help in any real-world execution of quantum

search will depend upon many engineering parameters including the error-correction scheme,

hardware tolerance and topology of connections between qubits. These costs may imply that once

we factor in real-world costs, quantum search procedures based upon amplitude amplification,

including Grover’s algorithm and the results in this thesis, may not even begin to offer an advan-

tage over classical search procedures until the search-space is large (n ≈ 55) [ADMG+16, Ghe17],

even with quantum phase oracles which are relatively inexpensive to implement and optimistic

assumptions with regards to our ability to perform error-correction.

3.2 Applications of amplitude amplification to quantum search

We now turn to examine applications of amplitude amplification. Grover’s quantum search al-

gorithm [Gro96], which we cover in Section 3.2.1 can be seen as a relatively simple application of

amplitude amplification [BHMT02] with a fixed choice of quantum algorithm A = H⊗n — the

Hadamard transform on n qubits (see Definition 3.8). The understanding of the computational

benefits it provides is often framed solely in terms of the asymptotic number of queries to the

quantum phase oracle Oχ compared to the number of classical queries of χ required by the classi-

cal search procedure described in Section 3.1.1. This is natural and helpful in understanding the

basic costs involved, as the cost of implementing Oχ for Grover’s algorithm will often dominate

the cost of A, but can be misleading if we think of amplitude amplification in these terms.

Our goal in this thesis is to examine modifications of quantum search procedures involving

amplitude amplification that can reduce the overall cost of the quantum search procedure when

the quantum phase oracle Oχ is expensive to implement. Grover’s quantum search algorithm

will be our benchmark for all comparisons. It will be essential to keep in mind that amplitude

amplification offers a quadratic reduction in both the number of quantum queries of Oχ versus

classical queries of χ and the quantum algorithm A. As we proceed to examine applications of

amplitude amplification, the first of which is Grover’s quantum search algorithm (see Theorem

3.10), we ask the reader to keep this in mind.
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In addition to Grover’s quantum search algorithm, we will describe an implementation of

exact amplitude amplification in Section 3.2.3, which has various applications — one of which is

the derandomisation of quantum search so that (at least in the logical circuit model of quantum

computation), if we know the cardinality of Mχ = |χ−1(1)|, then we can use the components of

amplitude amplification to create a quantum algorithm with a success probability of 1 relative

to χ, instead of at least max{a, 1− a}.
The nesting of quantum amplitude amplification is a common approach to the design of

quantum search algorithms [CGW00], but to the author’s knowledge has only been loosely studied

as a method to reduce the overall cost of quantum search in the logical quantum circuit model

of computation by Kimmel et al. in relation to the Search with Two Oracles (STO) problem,

which we cover and extend to real-world scenarios in Chapter 6. One notable exception is the

metaoptimisation of Grover’s quantum search algorithm by Arunachalam and de Wolf [AdW17],

which examines how a nuanced usage of amplitude amplification can reduce the number of gates

other than those used in the application of the quantum search oracle. Our methods in Section

5.2 will bear some similarity to their methods.

We first define a basic quantum algorithm, which will be used throughout this thesis.

Definition 3.8 (The Hadamard transform on n qubits).

The Hadamard transform on n qubits is the parallel application of n H (Hadamard) gates upon

n different qubits. When the qubits are contiguous, we will denote this by H⊗n.

Theorem 3.9 (The uniform superposition).

When applied to the n-qubit state |0n〉, the action of the Hadamard transform on n qubits is

H⊗n |0n〉 7→ 1

2n/2

∑
x∈{0,1}n

|x〉 . (3.33)

H⊗n |0n〉 will be referred to as the uniform superposition of n qubits or the uniform superposition.

Proof. This can be seen by induction. The case n = 1 is simply the Hadamard transform applied

to one qubit, which produces the quantum state

H |0〉 7→ |0〉+ |1〉√
2

=
1

21/2
(|0〉+ |1〉) (3.34)

by definition of the Hadamard gate (see Section 2.1.6.3), satisfying the case n = 1.

Assuming the inductive hypothesis (3.33), we have that

H⊗n+1
∣∣0n+1

〉
7→ 1

21/2
(|0〉+ |1〉) 1

2n/2

∑
x∈{0,1}n

|x〉 =
1

2(n+1)/2

∑
x′∈{0,1}n+1

∣∣x′〉 . (3.35)

The uniform superposition H⊗n |0n〉 has the property that as the amplitude of each com-

putational basis state |x〉 is αx = 1
2n/2

, we have that |αx|n = 1
2n . Measurement of the uniform

superposition therefore gives an equal probability of obtaining any x ∈ {0, 1}n. Knowledge of

73



Mχ = |χ−1(1)| then allows us to compute the success probability of H⊗n, which is simply
Mχ

2n .

The success probability of H⊗n is therefore easy to estimate, as it only relies upon knowledge of

Mχ. Any other algorithm would require not only knowledge of Mχ, but partial knowledge about

the location of the solutions.
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3.2.1 Grover’s algorithm

Theorem 3.10 (Grover’s quantum search algorithm [Gro96, BBHT96]).

Let χ : {0, 1}n −→ {0, 1} and Mχ = |χ−1(1)| be known. There exists a quantum algorithm with

a success probability relative to χ of at least max
{
Mχ

2n , 1−
Mχ

2n

}
and which costs

EH⊗n +

 π

4 · arcsin
√

Mχ

2n

 · (Eχ + En̄ + 2EH⊗n) . (3.36)

Proof. If we apply amplitude amplification (see Theorem 3.6) with the quantum algorithm set to

be the Hadamard transform on n qubits so that A = H⊗n, then as H⊗n has a success probability

relative to χ of a =
Mχ

2n , we can use Theorem 3.7 to give us our choice of k and new success

probability.

If we assume that n is large and Mχ � 2n, then via the small angle approximation arcsinx ≈ x,

we obtain the well-known query complexity of Grover’s algorithm of

⌊
π

4 arcsin

√
Mχ
2n

⌋
≈
⌊
π
4 ·
√

2n

Mχ

⌋
,

which gives us that asymptotically we require O(
√

2n

Mχ
) queries toOχ. Zalka proved that Grover’s

algorithm is optimal [Zal99] in terms of the number of calls to the quantum phase oracle Oχ we

must make to maximise the success probability for the case Mχ = 1. This was later extended by

Fluher to the case where Mχ ≥ 1 [Flu17]. Both results are based upon the assumption that the

quantum phase oracle is treated as a black-box and that the distribution of elements x ∈ {0, 1}n

that satisfy χ(x) = 1 in the domain {0, 1}n is uniform. We will later see that if the quantum

phase oracle admits specific decompositions, then we can obtain computational gains by using

a finer-grained approach to quantum algorithms by using nested applications of amplitude am-

plification — but that the results of Zalka and Fluher still hold as we will in fact make more

queries than Grover’s algorithm requires, but to cheaper quantum oracles.

In many cases it will hold that Eχ will scale with the size of the search domain. The

approximate quantum circuit-size of Grover’s algorithm for the case Mχ = 1 will therefore be

≈ π

4
· 2n/2 · poly(n) (3.37)

and if n = 100 and poly(n) ∈ O(n3), then we have that Grover’s algorithm will require approxi-

mately 269.5 quantum gates compared to the 250 compared to the lower bound of 250 quantum

gates. The aim of this thesis is to examine how structure can be used to reduce this poly(n)

overhead imposed by the requirement to implement the quantum phase oracle Oχ.

Chapter 4 involves only Grover’s algorithm whilst Chapters 5 and 6 also involve amplitude

amplification. We first briefly consider the concrete cost of solving an instance ofMQ(F2, n,m)

and the key-search problem for the Advanced Encryption Standard using the oracles given re-

spectively in Tables 2.5 and 2.8.
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3.2.1.1 Applying Grover’s algorithm to instances of MQ(F2, n,m)

Using the quantum bit oracle designs in Table 2.5 and formula (3.36) we obtain the following

costs for Grover’s algorithm applied to instances of MQ(F2, n,m). We give the costs relative

to the parameters required to forge a Gui signature, as discussed in Section 1.3.7, recalling that

to break a security level of λ = 80, 128, 256 we must respectively solve two serial instances of

MQ(F2, 117, 117), MQ(F2, 209, 209) and MQ(F2, 457, 457).

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success Oracle type
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 280.88 2 · 276.76 2 · 280.96 2 · 275.57 2 · 280.88 126 ≈ 100.00 Counter-based [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 Low-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2129.34 2 · 2124.42 2 · 2129.39 2 · 2123.21 2 · 2129.34 219 ≈ 100.00 Counter-based [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2256.69 2 · 2250.65 2 · 2256.71 2 · 2249.44 2 · 2256.69 468 ≈ 100.00 Counter-based [SW16]

Table 3.1: Quantum resource estimates for solving instances of MQ(F2, n,m) using Grover.

As it plain from the above table, these security levels are safe (in terms of total number of

quantum gates) from a quantum attack via Grover’s algorithm using the quantum oracle design

principles of Schwabe and Westerbaan discussed in Section 2.5.1. This is unsuprisingly, as the

parameters were chosen [PCDY17a, PCDY17b] specifically in relation to an attack Grover’s

algorithm with Schwabe and Westerbaan’s quantum bit oracle.

3.2.2 Applying Grover’s algorithm to the key-search problem for AES

We again apply Grover’s algorithm to solving the single-target case of the key-search problem

for AES-{128, 192, 256} as discussed in Section 1.4 and with the quantum bit oracle designs

from Table 2.8. We provide quantum resource estimates for both the direct evaluation approach

used in the original paper (with a small choice of r as previously discussed in Section 1.4) and

the counter-based oracle method from Schwabe and Westerbaan’s paper [SW16] introduced in

Section 2.4.3.

AES-k/r #Clifford #T #Total T Total #Qubits Success Quantum algorithm/oracle type
gates gates gates depth depth %

128/2 286.05 285.67 286.87 280.37 281.73 1969 ≈ 100.00 Grover/direct-evaluation [GLRS16]
128/2 286.64 286.23 287.45 281.92 283.07 988 ≈ 100.00 Grover/counter-based [GLRS16]

192/2 2118.23 2118.23 2119.23 2112.2 2113.34 2225 ≈ 100.00 Grover/direct-evaluation [GLRS16]
192/2 2118.82 2118.44 2119.64 2113.63 2114.89 1340 ≈ 100.00 Grover/counter-based [GLRS16]

256/3 2151.14 2150.76 2151.96 2144.64 2145.78 4009 ≈ 100.00 Grover/direct-evaluation [GLRS16]
256/3 2151.88 2151.5 2152.7 2146.89 2148.04 1340 ≈ 100.00 Grover/counter-based [GLRS16]

Table 3.2: Quantum resource estimates for the AES key-search problem via Grover [GLRS16].
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3.2.3 Exact amplitude amplification

In this section we describe a variant of exact amplitude amplification that will later be referenced.

Theorem 3.11 (Exact amplitude amplification I [BHMT02]).

Let χ : {0, 1}n −→ {0, 1} be any boolean function and A be any measurement-free quantum

algorithm with a success probability of a > 0 relative to χ. Suppose we guess that a = ag. Then

there exists a quantum algorithm C with a success probability relative to χ of

sin2

(2k̂g + 1
)
· arcsin

√√√√ a

ag
· sin2

(
π

4k̂g + 2

) · (ag − a · ag
ag − a · âg

)
+
a · ag − a · âg
ag − a · âg

, (3.38)

where âg = sin2
(

π
4k̂g+2

)
and k̂g =

⌈
π

4 arcsin
√
ag

⌉
. The success probability of C relative to χ is 1

when ag = a and C has a cost of

EB + k̂g ·
(
Eχ̂ + En+1 + 2EB

)
(3.39)

where B = A⊗Zâg/ag , we have that Zâg/a is an arbitrary single-qubit unitary transformation and

χ̂ : {0, 1}n+1 −→ {0, 1} is defined by χ̂(x1 . . . xnxn+1) 7→ 1 if and only if χ(x1 . . . xn) = xn+1 = 1.

Proof. We first describe one of several methods [BHMT02] of implementing exact amplitude

amplification when we have correctly guessed that ag = a. We then derive (3.38) and (3.39).

Guessing correctly. In this case, we have that ag = a. Our goal is to construct a quantum

algorithm with a success probability of 1 relative to χ. If k = π
4 arcsin

√
a
− 1

2 is an integer, then

we are already done as Theorem 3.6 implies that the success probability after k iterations is

sin2

((
2 · ( π

4 arcsin
√
a
− 1

2
) + 1

)
· arcsin

√
a

)
= sin2

(π
2

)
= 1. (3.40)

If k /∈ N0, then we define k̂ =
⌈

π
4 arcsin

√
a

⌉
and will construct a quantum algorithm B acting upon

n+1 qubits with success probability â = sin2
(

π
4k̂+2

)
< a relative to χ̂ : {0, 1}n −→ {0, 1}, where

χ̂(x1 . . . xnxn+1) 7→

1 if χ(x1 . . . xn) = 1 and xn+1 = 1

0 otherwise.
(3.41)

Theorem 3.6 then implies a quantum algorithm C with success probability 1 relative to χ̂ as

sin2
(

(2k̂ + 1) · arcsin
√
â
)

= sin2

(
(2k̂ + 1) · π

4k̂ + 2

)
= sin2

(π
2

)
= 1. (3.42)

We now demonstrate how B can be constructed. We can define the single-qubit unitary operator

Zâ/a =

√1− â
a

√
â
a√

â
a

−
√

1− â
a

 which maps Zâ/a |0〉 7→
√

1− â

a
|0〉+

√
â

a
|1〉 . (3.43)

The quantum algorithm B = A⊗Zâ/a has a success probability relative to χ̂ of â = a · âa . If we

consider C acting upon the n-qubit state |0n〉, then C has a success probability of 1 relative to χ.
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Guessing incorrectly. If we perform the algorithm as described on the previous page, but

have that ag 6= a then the definition of χ̂ remains the same, but k̂g =
⌈

π
4 arcsin

√
ag

⌉
, which defines

âg and Zâg/ag , is derived from ag instead of a. We therefore have that the quantum algorithm

B = A⊗Zâg/ag has a success probability of b = a
ag
·sin2

(
π

4k̂g+2

)
relative to χ̂ whilst the quantum

algorithm C has a success probability relative to χ̂ of

c = sin2

(2k̂g + 1
)
· arcsin

√√√√ a

ag
· sin2

(
π

4k̂g + 2

) . (3.44)

If again we consider C as acting upon the n-qubit state |0n〉 and treating the additional qubit

as an ancilla, then we have that the probability of success of C relative to χ is the sum of the

probabilities that we measure the n + 1 quantum state and the first n bits of the measurement

result in a bitstring x ∈ {0, 1}n such that χ(x) = 1. We must therefore consider the probabilities

of the two cases where we measure x‖0 ∈ {0, 1}n+1 or x‖1 ∈ {0, 1}n+1 such that χ(x) = 1. The

case of measuring x‖1 ∈ {0, 1}n+1 such that χ(x) = 1 is simply the success probability of C
relative to χ̂ and is therefore c as given by (3.44).

The case where we measure x‖0 ∈ {0, 1}n+1 such that χ(x) = 1 can be broken down into

the product of the probability that we measure a bitstring x1 . . . xnxn+1 ∈ {0, 1}n+1 such

that χ̂(x1 . . . xnxn+1) = 0 and the conditional probability that χ(x1 . . . xn) = 1 given that

χ̂(x1 . . . xnxn+1) = 0. The probability that χ̂(x1 . . . xnxn+1) = 0 is clearly 1 − c. The prob-

ability that χ(x1 . . . xn) = 1 conditioned on χ̂(x1 . . . xnxn+1) = 0 can be derived by considering

the effect of applying the quantum algorithm B = A⊗Zâg/ag upon the state
∣∣0n+1

〉
.

In this case, the probability that we measure x1 . . . xn‖0 ∈ {0, 1}n+1 such that χ(x1 . . . xn) = 1

is a·
(

1− âg
ag

)
, whilst the probability that χ(x1 . . . xn) = 0 is 1−a = (1−a)·

(
1− âg

ag

)
+(1−a)· âgag .

The conditional probability that we measure x1 . . . xnxn+1 ∈ {0, 1}n+1 such that χ(x1 . . . xn) = 1

given that χ̂(x1 . . . xnxn+1) = 0 is therefore

a ·
(

1− âg
ag

)
a ·
(

1− âg
ag

)
+ (1− a)

=
a · ag − a · âg
ag − a · âg

. (3.45)

The success probability of C relative to χ is then c+ (1− c) ·
(
a·ag−a·âg
ag−a·âg

)
, which can be rewritten

sin2

(2k̂g + 1
)
· arcsin

√√√√ a

ag
· sin2

(
π

4k̂g + 2

) · (ag − a · ag
ag − a · âg

)
+
a · ag − a · âg
ag − a · âg

, (3.46)

giving us the success probability (3.38) as stated in Theorem 3.11. It is easily verified that when

ag = a, we have that (3.46) is equal to 1. The cost of exact amplitude amplification is therefore

EB + k̂g ·
(
Eχ̂ + En+1 + 2EB

)
where B = A⊗Zâg/ag and k̂g =

⌈
π

4 arcsin
√
ag

⌉
. (3.47)
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Exact amplitude amplification can therefore be used to derandomise Grover’s quantum search

algorithm, as if we precisely know ag = a, then we have a quantum algorithm that terminates with

a success probability of 1 with respect to χ. This holds in the mathematical model of quantum

computation, where we assume that arbitrary unitary operators can be synthesised, but in the

logical quantum circuit model of computation when we have a fixed universal quantum gate set,

we have that the correctness is dependent upon the precision to which we can implement the

single-qubit quantum gates Zâ/a. By the Solovay-Kitaev Theorem [KIT96, NC10] single-qubit

unitary operators can be efficiently using O(logc(1
ε ) single-qubit gates up to an arbitrary ε > 0

level of precision, but we note that in general this implies that in any real-world scenario where

we have a fixed universal quantum gate set it will hold that this method will still possess some

probability of failure, no matter our choice of ε. However, this can be made arbitrarily small.

It is easily seen that the costs of exact amplitude amplification are slightly higher than that

required for amplitude amplification as we must perform one more iteration of a slightly more

costly amplitude amplification iterator, which requires one more qubit. The costs are therefore

comparable, but the advantages dependent upon precise knowledge (or at least an extremely

good approximation) of a, the success probability of A relative to χ, the method by which

single-qubit gates are approximated (which determines the constant c) and the use-case. If we

can only make an imprecise guess ag of a, then there is little point in using exact amplitude

amplification over amplitude amplification. We will take this approach when we later examine

the Search with Two Oracles (STO) problem [KYYLHH15] in Chapter 6 with respect to real-

world problems, where we only know the probability distribution of a. Our main objective in

introducing this formulation of exact amplitude amplification will be to demonstrate how the

solution to the STO problem as put forth by Kimmel et al. [KYYLHH15], which exploits exact

amplitude amplification, may fail when we consider real-world scenarios.
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Chapter 4

Efficient Neighbourhood Transition

Strategies (ENTS)

I do not think that all who choose wrong roads perish; but their rescue consists in

being put back on the right road. A wrong sum can be put right: but only by going

back till you find the error and working it afresh from that point, never by simply

going on.

- C.S. Lewis, The Great Divorce [LW45]

In this chapter we examine how the advantages of multi-target preimage search can be gen-

eralised and exploited to reduce the quantum resources required to execute Grover’s algorithm.

This chapter introduces the basic principles that we exploit, in some way or another, throughout

this thesis. In this section we examine how an Efficient Neighbour Transition Strategy (ENTS)

can be exploited to lower the quantum resources required to execute Grover’s algorithm.

4.1 Parallel approaches and the advantages of multiple-targets

Whilst it is well-known that quantum search cannot be parallelised better than by partitioning

the search domain and performing parallel searches of these partitions upon different quantum

computers [Zal99], this assumes a unit cost for the quantum oracle. We first define some termi-

nology before discussing this further.

Definition 4.1 (Bitmask set of size K).

We say that Z ⊆ {0, 1}n is a bitmask set of size 1 ≤ K ≤ 2n if |Z| = K and 0n ∈ Z.

Definition 4.2 (Bitmask neighbourhood).

Let Z ⊆ {0, 1}n be a bitmask set of size K and x ∈ {0, 1}n. We say that the set

Zx = {x⊕ z : z ∈ Z} (4.1)

is the bitmask neighbourhood of x of size K.

In this way, it is plain that as 0n ∈ Z, we have that for all x ∈ {0, 1}n we have that x ∈ Zx.
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4.1.1 The cost of a basic approach to parallel quantum search

If we consider the case of an unstructured search problem defined by χ : {0, 1}n −→ {0, 1} and

Mχ = |χ−1(1)| = 1, then if we possess the quantum phase oracle Oχ, we can define the new

quantum phase oracle OχZ

OχZ |x〉 7→

− |x〉 if ∃z ∈ Z : χ(x⊕ z) = 1

|x〉 otherwise.
(4.2)

Using the quantum phase oracle OχZ in conjunction with Grover’s algorithm (see Theorem

3.2.1), therefore does not give us the exact answer we are searching for and we must perform a

subsequent search procedure afterwards. The initial quantum search with OχZ as above in (4.2)

results in a bitstring x′ ∈ {0, 1}n with the property that x′ = x⊕ z for some z ∈ Z — or in other

words, x = x′ ⊕ z for some z ∈ Z. As we precisely know the K bitstrings in Z, we need simply

exhaustively evaluate χ(x′ ⊕ z) for z ∈ Z until we find the element that satisfies the original

search problem. If the set Z possesses no structure, this may be difficult via quantum search —

but if chosen according to some ordering (say z = 0n−ky ∈ {0, 1}n for |Zk| = 2k), the secondary

search can be easily performed via a subsequent quantum search.

Assuming that the quantum phase oracle Oχ requires w ancilla qubits to implement, the

quantum phase oracle OχZ requiring K(n+ w) qubits can easily be seen to be accomplished in

a depth-optimal parallel fashion by using a dlog2Ke+ 1 depth circuit involving n(K − 1) ∧1(X)

gates and at most n(K − 1) X gates to first compute (for each computational basis state)

|x⊕ z1〉 |0w〉 . . . |x⊕ zK〉 |0w〉
∣∣0K〉 where z1, . . . , zK ∈ Zx. (4.3)

K copies of the quantum phase oracle Oχ can then be executed in parallel and the copies of the

search space uncomputed. This will implement the quantum phase oracle

Oχ′Z |x〉 7→ (−1)k |x〉 where k = |{z ∈ Zx : χ(x⊕ z) = 1}|. (4.4)

When Mχ = |χ−1(x)| = 1, we have that the action of Oχ′Z as given by (4.4) is identical to that

of Oχ as given by Oχ |x〉 7→ (−1)χ(x) |x〉. In the case where we have that for some x ∈ {0, 1}n we

have chosen Z with the property such that |{z ∈ Z : χ(x ⊕ z) = 1}| = 2k for some k, then the

approximate quantum phase oracle Oχ′Z maps

|x〉 7→ (−1)2k |x〉 = 1k |x〉 = |x〉 , (4.5)

thereby having the same effect as leaving the amplitude unchanged. In this case the quantum

phase oracle Oχ′Z fails to approximate the quantum phase oracle OχZ . In general, so long as

1 ≤ Mχ � 2n, it is reasonable to assume that this approximation will hold — but we can only

guarantee this in the case where Mχ = 1. We assume that Mχ = 1 in the scenarios in this thesis.
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This approach requires K(n+w+1) qubits and has an execution cost of EOχ′
Z

= K ·EOχ plus

the cost of computing and uncomputing the K−1 copies of the register |x〉 and the bitmasks. By

the above discussion this cost has a circuit-depth of 2dlog2Ke+ 2 and a circuit-size of 4n(K−1)

Clifford gates. If we assume EOχ′
Z

dominates all other costs, then we have that whilst the

circuit-depth purely benefits from this approach, being (if we assume K = 2k)

≈π
4
· 2n/2

2k/2
· EO(b)

χ
=
π

4
· 2(n−k)/2 · E(b)

Oχ (4.6)

we have that the circuit-size is

≈π
4
· 2n/2

2k/2
· 2kEO(b)

χ
=
π

4
· 2(n+k)/2 · E(b)

Oχ . (4.7)

This form of parallelism is therefore useful in terms of reducing the quantum circuit-depth,

but will actually increase the total circuit-size of the quantum computation. As Zalka has

proved [Zal99], there is essentially no benefit to running Grover’s algorithm in parallel on one

quantum computer compared to running multiple smaller instances on many separate quantum

computers. This was proved relative to the number of calls to the quantum phase oracle Oχ, but

when real-world factors such as the additional circuitry, the difficulty of maintaining protecting

the state from noise in larger quantum systems and difficulties in performing massive parallelism

is factored in, then running many quantum search routines in parallel with the quantum phase

oracle Oχ is preferable to executing Grover’s algorithm with the quantum phase oracle O′χZ .

However, this is all relative to the quantum bit oracle or quantum phase oracle being treated

as a black-box. If we assume some mild structure then we can obtain mild gains in both circuit-

depth and circuit-size without increasing the number of qubits or even running parallel instances.

4.2 Efficient Neighbourhood Transition Strategies (ENTS)

Definition 4.3 (Efficient Neighbourhood Transition Strategy (ENTS)).

Let Z = {z(1), . . . , z(K)} ⊆ {0, 1}n be a bitmask set of size 1 < K ≤ 2n where z(1) = 0n.

We say that h : {0, 1}n −→ {0, 1}m admits an Efficient Neighbourhood Transition Strategy if

there exists a deterministic circuit such that for all x ∈ {0, 1}n and i = 1, . . . ,K−1 it holds that

evaluating h(x⊕ z(i+1)) is cheaper to evaluate if we have already evaluated h(x⊕ z(i)).

The folklore differential technique mentioned in Section 1.3.4.2 used in the Fast Exhaustive

Search algorithm [BCC+10, BCC+13] for instances of MQ(F2, n,m) is an example of an ENTS

as once we have evaluated m equations for the cost of O(mn2) we can evaluate these equations at

another point in the domain that differs by one bitflip for the cost of O(mn). The deterministic

circuit is therefore the addition of the bits corresponding to the precomputed F2-derivatives

and the bitmask set is the entire domain {0, 1}n as we can enumerate this set via a Gray

code, changing only one bit at a time (see Definition 4.8). We give an explicit treatment of its

application to quantum search in Section 4.3.3 and provide a method of implementing a Generic

ENTS (GENTS) in Section 4.4.2 with application to instances of MQ(F2, n,m) in Section 4.5.
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Employing an ENTS strategy with the single-target preimage search problem as defined by

h : {0, 1}n −→ {0, 1}m, yh ∈ {0, 1}m and Mχ = |h−1(yh)| can therefore be accomplished via the

following quantum circuit acting upon n + m + w qubits, where w is enough ancilla qubits to

enable computation of both the quantum evaluation Eh and the unitary operator Di which for

i = 1, . . . ,K − 1 implements the state transition

Di |x⊕ z(i)〉 |g(x⊕ z(i))〉 |h(x⊕ z(i))〉 7→ |x⊕ z(i+1)〉 |g(x⊕ z(i+1))〉 |h(x⊕ z(i+1))〉 . (4.8)

Starting from the computational basis state |x1 . . . xn〉 |0w〉 |0m〉 |0〉

1. Execute the quantum evaluation Eh to obtain the state

|x⊕ z(1)〉 |g(x⊕ z(1))〉 |h(x⊕ z(1))〉 |0〉 . (4.9)

2. We then use at most m X gates on the evaluation register to set it to |1m〉 if it is equal to

yh, a single ∧m(X) gate with the evaluation register as the controls and the last qubit as

the target, then at most m X gates again on the equation register to compute

|x⊕ z(1)〉 |g(x⊕ z(1))〉 |h(x⊕ z(1))〉 |h(x⊕ z(1))
?
= yh〉 . (4.10)

3. For i = 1, . . . ,K − 1:

(a) Execute the neighbour transition unitary Di to compute

|x⊕ z(i+1)〉 |g(x⊕ z(i+1))〉 |h(x⊕ z(i+1))〉 |
i⊕

j=1

(h(x⊕ z(j))
?
= yh)〉 . (4.11)

(b) Apply step 2) using 2m X gates and a single ∧m(X) gate to compute

|x⊕ z(i+1)〉 |g(x⊕ z(i+1))〉 |h(x⊕ z(i+1))〉 |
i+1⊕
j=1

(h(x⊕ z(j))
?
= yh)〉 . (4.12)

4. Uncompute the quantum evaluation via executing E†h to obtain the state

|x⊕ z(i+1)〉 |0w〉 |0m〉 |
K⊕
j=1

(h(x⊕ z(j))
?
= yh)〉 . (4.13)

5. Use at most n X gates to reset the first register to its original state, leaving the state

|x〉 |0w〉 |0m〉 |
K⊕
j=1

(h(x⊕ z(j))
?
= yh)〉 . (4.14)

If Mh = |h−1(yh)| = 1, then this will be correct and if 1 ≤Mh � 2n it will be correct with high

probability. A description of this circuit for theMQ(F2, n,m) problem is given in Section 4.3.3.
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4.2.1 Balancing costs with ENTS

We can therefore derive a cost equation for Grover’s algorithm if we use this approach, which
can be parameterised by K, as we assume that n and m are fixed for the problem

EG(K) = EH⊗n +

⌊
π

4
· 2n/2√

K

⌋
·

(
2EEh +

K−1∑
i=1

EDi +K(E∧m(X) + 2EX⊗m) + En̄ + 2EH⊗n

)
. (4.15)

We note that when K = 1, this is simply the special case of using Grover’s algorithm with the

original quantum bit oracle (constructed using a direct approach as in Section 2.4.1) that we are

extending with the ENTS approach. This formula can be minimised towards our chosen cost

metric either by numerical simulation (we simply increase K until the costs metric reaches a

minimal point) or by relaxing the floor operator and computing the solution to

dEG(K,n,m)

dK
= 0, (4.16)

in order to find the value of K̂ ∈ R at which C(K,n,m) reaches its minimal point – rounding to

the nearest integer to obtain K = bK̂e will then give us our optimal value of K.

The actual gains using this method will naturally be problem specific and dependent upon

the relative cost of EEh and EDi . We give a specific example of this approach and the cost

formula applied to using the ENTS strategy to augment Schwabe and Westerbaan’s approach to

solving instances ofMQ(F2, n,m) in Section 4.3.3. Using this and Table 2.1 for the other costs,

we can rewrite the cost formula (excluding the floor function and assuming D1 = · · · = DK−1)

EG(K,n,m) = n+
π

4
· 2n/2 ·K−1/2 ·

(
2EEh + En̄ + 2EH⊗n −Di

)
+
π

4
· 2n/2 ·K1/2 ·

(
EDi + E∧m(X) + 2EX⊗m

)
(4.17)

which gives us that

dEG(K,n,m)

dK
= −π

8
· 2n/2 ·K−3/2 ·

(
2EEh + En̄ + 2EH⊗n −Di

)
+
π

8
· 2n/2 ·K−1/2 ·

(
EDi + E∧m(X) + 2EX⊗m

)
. (4.18)

The optimal value of K can then be derived by solving for K

as
dEG(K,n,m)

dK
= 0 ⇐⇒ K =

⌈
2EEh + En̄ + 2EH⊗n −Di
EDi + E∧m(X) + 2EX⊗m

⌋
. (4.19)

Asymptotically, we will therefore have that K is on the order of O(
EEh
Di

) and that the new

asymptotic complexity can be obtained via substitution of K into the cost equation. This gives

us an algorithm with an asymptotic complexity of (letting D = D1 = · · · = DK−1)

O
(

2n/2
√
D · EEh

)
(4.20)

compared with Grover’s algorithm used naively with the original oracle, which possesses an

asymptotic complexity of O
(
2n/2EEh

)
. It is plain that if there is a separation of complexity

between EEh and D (say EEh ∈ O(n3) and D ∈ O(n)) then we have an asymptotic advantage.
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4.3 An example of a problem specific ENTS: The MQ problem

In this section we demonstrate an example of a problem that admits an Efficient Neighbour

Transition Strategy, theMQ problem over GF(2), provide details of how this can be implemented

and analyse the gains. This section may be thought of as a proof of concept for a specific problem

that already possesses an efficient neighbour transition strategy.

We recall the classical Fast Exhaustive Search (FES) algorithm [BCC+10, BCC+13] for solving

instances of MQ(F2, n,m) that we surveyed in Section 1.3.4.2. Whilst the task of enumerating

the solutions of an MQ system over GF(2) in n variables and m equations requires

O
(
2n · n2m

)
(4.21)

operations using a naive exhaustive search (see Section 1.3.4.1), the FES algorithm requires

O
(
2n · 4 log2 n

)
(4.22)

operations to perform the same task. The key-features it relies upon are that of the F2-derivative

and the Gray code — in this section we exploit those features to demonstrate how an ENTS

strategy can improve the performance of quantum search procedures.

4.3.1 The F2-derivative

We recall the discussion in Section 1.3.4.2 that the F2-derivative of a degree d polynomial

f (k)(x1, . . . , xn) ∈ F2[x1, . . . , xn] with respective to the variable xv is of degree d− 1.

Definition 4.4 (The F2-derivative [BCC+10]).

Let f ∈ F2[x1, . . . , xn]. The F2−derivative of f with respect to xv for 1 ≤ v ≤ n is defined as

df

dxv
(x1, . . . , xn) = f(x1, . . . , xv ⊕ 1, . . . , xn)⊕ f(x1, . . . , xv, . . . , xn). (4.23)

Theorem 4.5 (Degree of the F2-derivative.).

The degree of an F2-derivative of a degree d polynomial f ∈ F2[x1, . . . , xn] is of degree d− 1.

Proof. This can be seen as the degree d parts cancel each other out. Explicitly, we have that
as any polynomial f ∈ F2[x1, . . . , xn] can be written as the sum and product of xv and two
polynomials h, g ∈ F2[x1, . . . , xn] which do not involve xv, so that

f(x1, . . . , xv, . . . , xn) = h(x1, . . . , xn)⊕ xv · g(x1, . . . , xn) (4.24)

where g is of degree d and h is of degree d− 1, we have that

df

dxv
(x1, . . . , xn) = f(x1, . . . , xv ⊕ 1, . . . , xn)⊕ f(x1, . . . , xv, . . . , xn) (4.25)

= h(x1, . . . , xn)⊕ (xv ⊕ 1) · g(x1, . . . , xn)⊕ h(x1, . . . , xn)⊕ xv · g(x1, . . . , xn) (4.26)

= g(x1, . . . , xn). (4.27)
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For our case, where we are interested in the F2-derivative of degree-two equations, we therefore

have that the F2-derivative is easily computed.

Theorem 4.6 (The F2-derivative of quadratic equation).

Let f ∈ F2[x1, . . . , xn] be a degree 2 equation of the form

f(x1, . . . , xn) =
∑

1≤i<j≤n
ai,jxixj +

n∑
i=1

bixi + c. (4.28)

Then the F2-derivative of f with respect to the variable xv is

df

dxv
(x1, . . . , xn) = bv +

v−1∑
i=1

ai,vxi +
n∑

i=v+1

av,ixi. (4.29)

Proof. By inspection.

The F2-derivatives of an instance of MQ(F2, n,m) are therefore easily classically computed.

Each one requires n bits to store the coefficients and the full set of F2-derivatives for the instance

of MQF requires mn2 bits of storage for the coefficients.

Theorem 4.7 (The F2-derivative allows an Efficient Neighbourhood Transition strategy).

Let f ∈ F2[x1, . . . , xn] and x1 . . . xn ∈ {0, 1}n be fixed and suppose we possess the evaluation of

f(x1, . . . , xv, . . . , xn). Then if we possess the F2-derivative df
dxv

(x1, . . . , xn), then we can evaluate

f(x1, . . . , xv ⊕ 1, . . . , xn) for the cost of at most n− 1 additions and 1 bitflip.

Proof. This is simply the folklore-derivative technique discussed in Section 1.3.4.2 and the original

Fast Exhaustive Search paper [BCC+10]. Rewriting Equation (4.23) as

f(x1, . . . , xv ⊕ 1, . . . , xn) =
df

dxv
(x1, . . . , xv, . . . , xn)⊕ f(x1, . . . , xv, . . . , xn) (4.30)

it is easily seen that as we possess the evaluation f(x1, . . . , xn), we need only evaluate and add
df
dxv

(x1, . . . , xv, . . . , xn) to obtain f(x1, . . . , xv⊕1, xn). The addition of df
dxv

(x1, . . . , xv, . . . , xn) can

be performed directly onto the stored value f(x1, . . . , xv, . . . , xn), using no additional memory.

Suppose we possess a method of enumerating {0, 1}n via a function Gn : {0, . . . , 2n−1} 7→ {0, 1}n

for which the Hamming distance between Gn(i) and Gn(i + 1) is 1 and that this function has

the property that

|{Gn(i) : i = 0, . . . , 2n − 1}| = 2n (4.31)

so thatGn is a bijection, then we can implement a search procedure on an instance ofMQ(F2, n,m)

via the following procedure.
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Assume we have n + m bits of memory. The first n bits will store the state of the point in

the domain we are currently examining and the last m bits of memory is the equation register

and will store the evaluation of the m equations. After initialisation of memory:

1. Set the starting point x1 . . . xn ← Gn(0) and store these n bits in the state register.

2. Evaluate each equation on this point, by any method and store these m bits in the equation

storage register, so that the register holds
(
f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn)

)
3. For i = 1, . . . , 2n−1:

(a) Update the state register to x′1 . . . x
′
n ← Gn(i). Denote the flipped bit as xv.

(b) Update the equation register via adding df (k)

dxv
(x1, . . . , xn) to each stored evaluation of

f (k)(x1, . . . , xn) for k = 1, . . . ,m.

(c) Store the current state as a solution to the instance of MQ(F2, n,m) if the equation

register is in the state 0m.

The cost of this method of enumerating the solutions to the instance ofMQ(F2, n,m) is therefore

O(mn2) bit operations to make the initial evaluation of the equations in step 2), whilst the state

update function in 3(a) can be performed via 1 bitflip and the update of the equation register

can be performed using n− 1 additions and 1 bitflip. The checking of the equation register will

require at most m bit operations (though will only require 2 bit comparisons on average by the

discussion in Section 1.3.4.2), hence the entire process requires O(mn2 + 2nmn) bit operations.

4.3.2 Gray codes

Gray codes [Fra53] fulfil the condition of a successor function Gn : {0, . . . , 2n − 1} −→ {0, 1n}
as stated in Section 4.3.1 and allow the enumeration of the domain {0, 1}n of length n binary

bitstrings via only 2n − 1 bitflips, if we assume that we start from the bitstring 0n. We use the

Gray code as given by the authors of the original Fast Exhaustive Search paper [BCC+10]

Definition 4.8 (Gray code [BCC+10]).

Let Gn : {0, . . . , 2n − 1} −→ {0, 1}n be the Gray code mapping

Gn(i) 7→ in ⊕ (in � 1), (4.32)

where in represents i interpreted as a length n bitstring.

in G(in) in G(in) in G(in) in G(in)

0000 0000 0100 0110 1000 1100 1100 1010

0001 0001 0101 0111 1001 1101 1101 1011

0010 0011 0110 0101 1010 1111 1110 1001

0011 0010 0111 0100 1011 1110 1111 1000

Table 4.1: Example of the Gray Code upon bitstrings of length 4.

We now proceed to briefly prove that this Gray code has the basic properties that we require.
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Theorem 4.9 (Gn is a bijection).

The function Gn : {0, . . . , 2n − 1} as defined in Definition 4.8 is a bijection.

Proof. If we assume that i 6= j and Gn(i) = Gn(j) then denoting the binary intepretations

in = in,1 . . . in,n and jn = jn,1 . . . jn,n, (4.33)

we have that

in,1 . . . in,n ⊕ 0in,1 . . . in,n−1 = Gn(i) = Gn(j) = jn,1 . . . jn,n ⊕ 0jn,1 . . . jn,n−1. (4.34)

This implies that in,1 = jn,1 as in,1 ⊕ jn,1 ⊕ 0⊕ 0 = 0. As in,i = jn,i implies that in,i+1 = jn,i+1,

the result follows from induction.

Theorem 4.10 (Gn(i) and Gn(i+ 1) differ by one bit flip.).

For i = 0, . . . , 2n − 2, the Hamming distance distance between Gn(i) and Gn(i+ 1) is exactly 1.

Proof. If we consider the sum Gn(i)⊕Gn(i+ 1), then (denoting j = i+ 1), we have that

Gn(i)⊕Gn(i+ 1) = in,1 . . . in,n ⊕ (0in,1 . . . in,n−1)⊕ jn,1 . . . jn,n ⊕ (0jn,1 . . . jn,n−1). (4.35)

Either Gn(i) will have the property that in,n = 1 or Gn(i+1) will have the property that jn,n = 1.

If in,n = 1 then we have that in,1 . . . in,n = in,1 . . . in,n−k−101k for some 1 ≤ k < n. This implies

that jn = in,1 . . . in,n−k10k, giving us that

in ⊕ jn = in,1 . . . in,n−k−101k ⊕ in,1 . . . in,n−k−110k = 0n−k−11k+1. (4.36)

The other component of the sum Gn(i)⊕Gn(i+ 1) is then seen to be

(in � 1)⊕ (jn � 1) = 0in,1 . . . in−k−101k−1 ⊕ 0in,1 . . . in−k−110k−1 = 0n−k1k. (4.37)

This gives us the sum

Gn(i)⊕Gn(i+ 1) = 0n−k−11k+1 ⊕ 0n−k1k = 0n−k−110k, (4.38)

hence only one bit differs. The proof for in,n = 0 is similar.

This is all we need to apply our method towards improving Grover’s algorithm for instances of

MQ(F2, n,m) by an ENTS strategy. The actual computation of which bits to flip to enumerate

the neighbourhood can be directly computed by a classical control system — as we assume that

the bottlenecks in costs will be the quantum resources, not the classical resources, and that the

neighbourhood explored by the Gray code will be far smaller than 2n/2 we can ignore these costs.

We note for interest that Lemma 1 of [BCC+10] admits a quicker approach to computing the

bit we must flip to obtain Gn(i+ 1) from Gn(i).
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4.3.3 Applying ENTS to quantum search for instances of MQ(F2, n,m)

With the F2-derivative from Definition 4.4 and the Gray code from Definition 4.8, we can now

define our ENTS strategy for instances of MQ(F2, n,m) using Grover’s algorithm. We require

any quantum circuit that performs the mapping of computational basis states

|x1 . . . xn〉 |0〉m |0w〉 7→ |x1 . . . xn〉 |f (1)(x1, . . . , xn)〉 . . . |f (m)(x1, . . . , xn)〉 |0〉 |0〉 . (4.39)

Schwabe and Westerbaan’s techniques can perform this action, with the cost of the quantum bit

oracles O(b)

f (k) being O(n2) from Table 2.4.

The full quantum circuit for the ENTS approach using the F2-derivative therefore consists of the

following circuit, acting upon each computational basis state |x1 . . . xn〉 |0m〉 |0〉 |0〉.

1. Execute the m quantum bit oracles O(b)

f̃ (1)
, . . . ,O(b)

f̃ (m)
. The computational basis state is now

|x1 . . . xn〉 |f̃ (1)(x1, . . . , xn)〉 . . . |f̃ (m)(x1, . . . , xn)〉 |0〉 |0〉 . (4.40)

2. Use a ∧m(X) gate with the equation register as controls and the last qubit as a target.

3. Let v(i) be the index of the non-zero bit of Gn(i− 1)⊕Gn(i). For i = 1, . . . ,K − 1:

(a) We apply an X gate to the v(i)th qubit of the computational basis state.

(b) Add the F2-derivatives df̃ (1)

dxv(i)
(x′1, . . . , x

′
n), . . . , df̃ (m)

dxv(i)
(x′1, . . . , x

′
n) to their respective po-

sitions on the equation register using m X gates and m(n− 1) ∧1(X) gates.

(c) Use a ∧m(X) gate with the equation register as controls and the last qubit as a target.

4. The equation register is now in the state

|x′1 . . . x′n〉 |f̃ (1)(x′1, . . . , x
′
n)〉 . . . |f̃ (m)(x′1, . . . , x

′
n)〉 |0〉 |ZK(x1, . . . , xn)〉 , (4.41)

where ZK(x1, . . . , xn) = 1 if and only if x1 . . . xn⊕Gn(i) satisfies the m equations for some

i = 0, . . . ,K − 1 (recall that Gn(0) = 0n).

We apply the quantum bit oracles O(b)

f̃ (1)
, . . . ,O(b)

f̃ (m)
to obtain the computational basis state

|x′1 . . . x′n〉 |0m〉 |0〉 |ZK(x1, . . . , xn)〉 . (4.42)

5. At most n X gates can then be used on the first n qubits to restore the quantum to

|x1 . . . xn〉 |0m〉 |0〉 |ZK(x1, . . . , xn)〉 , (4.43)

with the precise positions we must flip being indicated by the non-zero bits of Gn(K).

For each computational basis state (assuming a single solution to the instance ofMQ(F2, n,m)),

we therefore have that ZK(x1, . . . , xn) inverts the phase of |x〉 if and only if x ⊕ Gn(i) for

i = 0, . . . ,K − 1 is interpreted as a solution to the MQ(F2, n,m) instance.
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The cost of the above quantum bit oracle is therefore higher, but crucially we have introduced

new targets into the search-space — this allows us to benefit from a drop in query-complexity. If

we denote the unitary Di as the cost of executing steps 3a) and 3b) for the index i = 1, . . . ,K−1

from the quantum bit oracle described on the previous page, then we have that the cost function

for Grover’s algorithm with this approach is therefore

EH⊗n +

⌊
π

4
· 2n/2√

K

⌋
·

(
2

m∑
i=1

EO
f̃(i)

+

K−1∑
i=1

EDi +K(E∧m(X) + 2EX⊗m) + EX⊗n + En̄ + 2 · EH⊗n

)
. (4.44)

Explicitly, we have the cost of these individual components are given by Table 4.2 below, which

have respectively been computed using the commentary for the costs in the description of the

quantum bit oracle and from Tables 2.1 and 2.4.

#Clifford #T #Total T Total #Qubits
gates gates gates depth depth

EO(b)

f̃(k)

n2 + 11n− 13 7n− 7 n2 + 18n− 20 3n− 3 n2 + 11n− 16 n+ 2

EDi mn+ 1 0 mn+ 1 0 m n+m

E∧k(X) 24k − 48 16k − 16 40k − 64 16k − 16 40k − 64 k + 2

EX⊗n/EH⊗n n 0 n 0 1 n

En̄ 26n− 44 16n− 16 42n− 60 16n− 16 40n− 62 n+ 2

Table 4.2: Clifford+T gate costs for the components used for theMQ(F2, n,m) ENTS strategy.

If we then wish to optimise toward the total circuit-size, we obtain the cost equation param-
eterised by n,m and K

C(n,m,K) = n+

⌊
π

4
· 2n/2√

K

⌋
·
(
2m(n2 + 18n− 20) + 45n−mn− 61 +K(mn+ 42m− 63)

)
, (4.45)

where we have that the inital cost of evaluating a single point costs O(mn2), whereas we can

test additional points in the search domain for a cost of O(mn) operations each. Assuming

n and m are fixed, we can therefore find the minimal quantum circuit-size for this approach

either by numerical simulation and varying K or by simply ignoring the floor function and using

basic calculus to derive the minimal point, as discussed in Section 4.2.1. Again, it is clear that

whilst we are increasing the cost of the Grover iteration, we are reducing the contribution of the

query-complexity term to the total cost.

We will optimise towards minimising Equation (4.45), so that we minimise the total quantum

circuit-size — the metric we are interested in with regards to the security parameters of the

Gui cryptosystem (see Table 1.1). We present our new quantum resource estimates for these

parameters in relation to Schwabe and Westerbaan’s low-memory quantum bit oracle design and

counter-based oracle designs. We note that we cannot use this method with the counter-based-

oracle, as the counter-register does not admit (to our knowledge) an efficient transition strategy

as only the value of whether an equation is satisfied is recorded, not their values.
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By relaxing the floor operator and computing

dC(n,m,K)

dK
= −π

8
· 2n/2K−3/2 ·

(
2m(n2 + 18n− 20) + 45n−mn− 61

)
(4.46)

+
π

8
· 2n/2K−1/2 ·

(
mn+ 42m− 63

)
(4.47)

and solving for

dC(n,m,K)

dK
= 0 (4.48)

we obtain that K optimises the total circuit-size when

K =

⌊
2mn2 + 35mn− 40m+ 45n− 61

mn+ 42m− 63

⌉
. (4.49)

We therefore have that K is on the order of O(n), hence the secondary search will be negligible

compared to the main quantum search procedure. Substitution of K into the Equation (4.45)

gives us that the asymptotic complexity of the search is O
(
2n/2mn3/2

)
. This improvement of

O(n1/2) provides a modest, but concrete impact upon costs and, as Table 4.3 below demonstrates,

is enough to break the proposed parameters for the Gui cryptosystem (see Table 1.1). Table 4.3

was derived through numerical simulation to find the optimal value for K by simply computing

the cost function for a range of K, which in all cases agrees with Equation (4.49).

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success K Oracle type
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 277.03 2 · 273.43 2 · 277.14 2 · 273.12 2 · 276.43 236 ≈ 100.00 199 ≈ 27.64 Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 N/A Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 280.88 2 · 276.76 2 · 280.96 2 · 275.57 2 · 280.88 126 ≈ 100.00 N/A Counter-based [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2125.04 2 · 2120.70 2 · 2125.11 2 · 2120.41 2 · 2124.29 420 ≈ 100.00 378 ≈ 28.56 Low-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 N/A Low-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2129.34 2 · 2124.42 2 · 2129.39 2 · 2123.21 2 · 2129.34 219 ≈ 100.00 N/A Counter-based [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2251.79 2 · 2246.41 2 · 2251.83 2 · 2246.13 2 · 2250.92 916 ≈ 100.00 869 ≈ 29.76 Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 N/A Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2256.69 2 · 2250.65 2 · 2256.71 2 · 2249.44 2 · 2256.69 468 ≈ 100.00 N/A Counter-based [SW16]

Table 4.3: Quantum resource estimates for solving MQ(F2, n,m) using Grover with ENTS.

From the results in Table 4.3, it is clear that there is no downside (at least with regards to

these particular metrics) in using the ENTS method over naively using a quantum bit oracle with

Grover’s algorithm. We must perform a subsequent search of the space of size K — but as K is

on the order of O(n) by the above discussion, this will be a negligible cost and can be assumed

to be performed on a classical computer. We can therefore ignore the cost of this subsequent

search. We alternatively optimise towards Clifford+T depth, the T gate count or T gate depth.

With this ENTS strategy for instances of MQ(F2, n,m) described and the costs to solve

instances of MQ(F2, n,m) provided, it is clear that we have a proof of concept application

that the ENTS approach can be used to reduce the costs involved with quantum search for at

least one problem. We have additionally broken the quantum-resistant parameters for the Gui

cryptosystem by simply optimising the existing approach of Schwabe and Westerbaan by creating

a hybrid-quantum classical search algorithm for instances of MQ(F2, n,m).
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4.4 Generic Efficient Neighbourhood Transition Strategy (GENTS)

In this section we describe a generic approach to creating an Efficient Neighbourhood Transition

Strategy (ENTS) that is based upon how we can structure quantum oracles for better use with

Grover’s quantum search algorithm (see Theorem 3.10). The process is relatively simple and

uses many of the concepts we have already discussed/are well-known in literature. Again, we

will wish to balance the query-complexity with the cost of the quantum oracle at the cost of

obtaining only partial information concerning the solution. This technique should be viewed

through the lens of methods to improve Grover’s algorithm via modification of the quantum bit

oracle and was developed before the author was familiar with how to structure quantum search

via amplitude amplification (see Theorem 3.6). The methods in Chapter 5 extend the basic

structure we provide here, demonstrating how we can exploit it separately via both preprocessing

and amplitude amplification.

The Generic Efficient Neighbourhood Transition Strategy (GENTS) is based upon the fact

that we can view any computation as that of a tree, whereby we gradually introduce variables

into the computation. This leads to a basic decomposition of a quantum phase oracle.

Definition 4.11 (Tree decomposition of a quantum bit oracle).

Let O(b)
χ be a quantum bit oracle defined by the boolean indicator function χ : {0, 1}n −→ {0, 1}

acting upon n+ 1 qubits. We define the decomposed quantum bit oracle to be the n+ 1 unitaries

Uχ∗ , Uχn , . . . , Uχ1 (4.50)

acting upon n+ w + 1 qubits, such that for any x1 . . . xn ∈ {0, 1}n and b ∈ {0, 1} we have that(
I⊗n ⊗O(b)

χ

)
|0w〉 |x1 . . . xn〉 |b〉 = U†χ1

· · ·U†χnUχ∗Uχn · · ·Uχ1 |0
w〉 |x1 . . . xn〉 |b⊕ χ(x1 . . . xn)〉 (4.51)

where we have Uχi = U ′χi ⊗ I
⊗n−i+1, so that U ′χi acts upon w + i qubits, with

U ′χi |g(x1, . . . , xi−1)〉 |x1 . . . xi〉 7→ |g(x1, . . . , xi)〉 |x1 . . . xi〉 (4.52)

where g(x1, . . . , xi) ∈ {0, 1}w is derived only from x1, . . . , xi, g() := 0w and

Uχ∗ |g(x1, . . . , xn)〉 |x1 . . . xn〉 |b〉 7→ |g(x1, . . . , xn)〉 |x1 . . . xn〉 |b⊕ χ(x1 . . . xn)〉 . (4.53)

Each Uχi should be interpreted as a quantum circuit which takes as input a memory state which

has been computed using the variables x1, . . . , xi−1 and the variable xi. Each Uχi should be

chosen or designed so that it computes as much as is possible of the quantum bit oracle U
(b)
χ

using only the i bits x1 . . . xi. The result of this computation is then stored in the working

memory register consisting of w qubits. In this way the composed unitary operator

Ui := Uχi · · ·Uχ1 (4.54)

interacts only with the first i qubits of the search space and so the working memory of the output

is only entangled with these qubits.
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That this decomposition is always possible can be easily demonstrated as we can simply define

the trivial decomposition

U ′χi = I⊗w+i+1 (4.55)

for i = 1, . . . , n so that Un = I⊗w+n+1 and

Uχ∗ = O(b)
χ . (4.56)

Whether we can exploit this decomposition to achieve computational gains will be dependent

upon the individual cost metrics for EUχ∗ , EUχn , . . . , EUχ1
. Decompositions of this sort are quite

naturally common in all areas of computer science and in quantum algorithms. Whilst techniques

such as nested quantum search [CGW00] and the quantum backtracking algorithm [Mon15], these

are dependent upon information being revealed at various levels of the tree. Our techniques

provide far smaller computational gains than these methods, but make their gains via improving

the memory management and balancing the costs of the quantum computation — crucially the

only predicate that we use is the unitary Uχ∗ , which gives us whether the computational basis

state |x1 . . . xn〉 is the answer we are looking for. We first briefly consider the advantages of this

decomposition in classical computation.

4.4.1 Exploiting a decomposed classical function

Suppose that we possess the classical analogue of the above decomposition, so that we have

a boolean indicator function χ : {0, 1}n −→ {0, 1} that defines a search problem and that we

possess the decomposition

χ(x1 . . . xn) = χ∗(χn(χn−1(χn−2 · · · (χ2(χ1(x1), x2), . . . , )xn)) (4.57)

where

χ1 : {0, 1} −→ {0, 1}w+1 (4.58)

χi : {0, 1}w+i−1 × {0, 1} −→ {0, 1}w+i (for i = 1, . . . , n) (4.59)

χ∗ : {0, 1}w+n −→ {0, 1}. (4.60)

If the cost metrics (classical circuit-size or circuit-depth) Eχ∗ , . . . , Eχn , . . . , Eχ1 are defined for

χ∗, χn, . . . , χ1, then a simple strategy involves simply computing the intermediate memory state

g(x1, . . . , xi) = χi(χi−1(· · ·χ2(χ1(x1), x2), · · · , )xi−1), xi) (4.61)

involving a fixed assignment of k variables corresponding to the bitstring x1 . . . xk and storing

this state. We can then perform a simple depth-first search of the implicitly defined search-tree

by testing assignments of the remaining n− k variables. Once χ(x1 . . . xk‖xk+1 . . . xn) has been

evaluated, we can restart the search process from the stored memory state.
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This approach can naturally be used in an entirely recursive manner, whereby we store

the state g(x1, . . . , xi)‖x1 . . . xi ∈ {0, 1}w+i each time after introducing the bit xi. Using a

depth-first search approach whereby we evaluate the 2n leaves of the implicitly defined perfect

binary tree with this technique requires only the storage of at most n intermediate memory

states (which including the memory state we are processing). A completely recursive approach

therefore requires nw + n2+n)
2 + 1 bit of memory and the cost is

2n · Eχ∗ +

n∑
i=1

2i · Eχi . (4.62)

This can be compared to performing a search of the 2n assignments x1 . . . xn ∈ {0, 1}n without

exploiting this decomposition, the cost of which is clearly

2n ·

(
n∑
i=1

Eχi + Eχ∗

)
, (4.63)

but only requires that we use n + w + 1 bit of memory. If we consider a simple problem where

Eχ∗ = Eχi = C for i = 1, . . . , n then the cost ratio between these two techniques is given by

2n · (n+ 1) · C
(2n + 2n+1 − 2) · C

≈ n

3
(4.64)

For a problem of size n = 80 and assuming a single search target, we therefore have that the

reduction in costs will be on the order of ≈ 27 = 24.74 and that the advantage will be more

extreme if the it holds that the cost of Eχi decreases as i increases. This is a very simple

cost model and ignores many real-world factors, but illustrates the gains that we can make via

memory management for evaluating decomposed functions.

The trade-off between memory and circuit-complexity is therefore clear in the case of classical

computation. In the case of Grover’s algorithm, the implementation of O(b)
χ is performed by a

reversible circuit, hence if we have the tree decomposition of this unitary operator we must

execute both Uχi to compute the successive memory state and U †χi to uncompute this memory

state. If we have this tree decomposition of a quantum bit oracle, then postulate four (see Section

2.1.4) ensures we implicitly keep track of the intermediate memory states at all times anyway.

As we are computing these intermediate memory states anyway, we may as well exploit them —

or restructure the quantum oracle so that we can exploit them.

This is the reasoning behind the restructuring of Schwabe and Westerbaan’s quantum bit

oracle for instances of MQ(F2, n,m) that we provide in Section 2.5.2 Equation (2.86) — there

are no computational benefits to (2.86) over (2.83) if using a naive evaluation approach, but we

can exploit (2.86) using the above technique as the variables xi are introduced one by one. We

explicitly examine how GENTS can exploit this decomposition in Section 4.5.

This will later be adapted into a preprocessing technique to improve the efficiency of attacking

instances ofMQ(F2, n,m) in Section 5.1 and a quantum version of this technique in Section 5.2.
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4.4.2 The GENTS approach

Given a tree decomposition Uχ∗ , Uχn , . . . , Uχ1 of the quantum bit oracle O(b)
χ (see Definition 4.11)

defined by the boolean indicator function χ : {0, 1}n −→ {0, 1}, the GENTS approach consists

of the following design for the modified quantum bit oracle which acts upon the computational

basis state |0w〉 |x1 . . . xn〉 |b〉, where b ∈ {0, 1}.
Choose K ∈ N to be the size of the bitmask set Z = {Gn(i) : i = 0, . . . ,K − 1} as defined by

the Gray code in Definition 4.8.

1. Execute the composed quantum bit oracle Uχ∗Uχn · · ·Uχ1 , resulting in

Uχ∗Uχn · · ·Uχ1 |0w〉 |x1 . . . xn〉 |b〉 7→ |g(x1, . . . , xn)〉 |x1 . . . xn〉 |b⊕ χ(x1 . . . xn)〉 . (4.65)

2. Let v(i) be the index of the non-zero value Gn(i) ⊕ Gn(i − 1) according to the ordering

x1 . . . xn (ie. if n = 5, then G5(6)⊕G5(5) = 00101⊕ 00111, so v(6) = 4).

For i = 1, . . . ,K − 1:

(a) Execute U †χv(i)
· · ·U †χn (uncomputes the state to the variable we wish to change).

(b) Apply an X gate to the variable xv(i) (updates the state of the search space).

(c) Execute Uχ∗Uχn · · ·Uχv(i)
(implements the action of O(b)

χ using the updated search

register for a cheaper cost than a simple parallel approach).

3. Execute the unitary operation U †χ1U
†
χn to restore the state to

|0w〉
∣∣x′1 . . . x′n〉 |bK−1⊕

i=0

χ(x1 . . . xn ⊕Gn(i))〉 (4.66)

4. Use at most blog2(K−1)c+ 1 X gates to apply the bitmask Gn(K−1) to the search space

to obtain the state

|0w〉 |x1 . . . xn〉 |b
K−1⊕
i=0

χ(x1 . . . xn ⊕Gn(i))〉 . (4.67)

This allows us to implement a generic approach to the ENTS strategy and we need only design

the quantum bit oracles according to the heuristic that as much computation as is possible with

the variable xi must be performed via the circuit for Uχi before introducing the next variable

and doing the same with the variable xi+1 and the circuit Uχi+1 .

The fact that we have n+1 unitaries in our decomposition as opposed to merely n lends itself

to a nice interpretation with the preimage search problem defined by h : {0, 1}n −→ {0, 1}m and

Yh ⊆ {0, 1}m. In this scenario the decomposition Uχn · · ·Uχ1 corresponds to a decomposition of

the quantum evaluation Eh, where g(x1, . . . , xn) = g′(x1, . . . , xn)‖h(x). The unitary Uχ∗ then

corresponds to a comparison circuit which simply tests whether h(x) ∈ Yh. In the case of the

single-target preimage search problem that we are interested in, this has previously been shown

to be accomplished by a single ∧m(X) gate between two layers of at most m X gates.
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4.4.3 On structuring the tree decomposition

In many cases it will prove impossible to create a decomposition that we can easily exploit as

all variables must be used immediately in the computation, then a large amount of subsequent

computation is performed meaning that EUχn dominates the cost and so we suffer from the same

circuit-size increase as from the parallel approach discussed in Section 4.1.

One example of this from cryptography is that of the Advanced Encryption Standard [Pub01]

discussed in Section 1.4, which owing to how this function is implemented by the repeated

iteration of a particular circuit means that as all variables are introduced in the first round of

iteration we cannot create a useful decomposition. Potentially interesting sources for making

gains using the GENTS approach (and the quantum version, in Section 5.2, which relies upon

the same structure) arise from examining the preimage problem applied to cryptographic hash

functions, in the context of the Merkle-Damg̊ard extension.

In this scenario, we possess a cryptographic compression function h : {0, 1}n+c −→ {0, 1}n,

where c > 0 that is difficult to invert. The Merkle-Damg̊aard construction allows us to extend

this construction to create a cryptographic hash function H : {0, 1}∗ −→ {0, 1}n that takes

arbitrary size inputs by iteratively hashing the result of a portion of the input with the previous

hash, so that if we are hashing the message m = m1‖ . . . ‖md, where mi ∈ {0, 1}c, then we can

define zi = h(zi−1‖mi,d), where z0 := 0n. This allows us to define H(m) = zd. In this way,

finding a preimage of H has the same structure we wish to exploit — we introduce variables

in sets of size c, produce an output memory state, then introduce another set of c variables.

Analysis of whether this scenario can be of any practical use is left for future work.

4.5 Applying GENTS to instances of MQ(F2, n,m)

We recall that the definition of a single equation as given by Schwabe and Westerbaan (see

Section 2.5.1) was originally

f (l)(x1, . . . , xn) = c(l) +

n∑
i=1

xiy
(l)
i where y

(l)
i = b

(l)
i +

n∑
j=i+1

a
(l)
i,jxj , (2.83)

and that we have changed it in Section 2.86 to the representation

f (l)(x1, . . . , xn) = c(l) +

n∑
i=1

xiy
(l)
i where y

(l)
i = b

(l)
i +

i−1∑
j=1

a
(l)
j,ixj (2.86)

which requires identical resources to evaluate. If we are considering the evaluation of (2.83) using

the GENTS approach, then it is clear that in adding x1y
(l)
1 to the equation register involves

introducing all n variables immediately, whilst adding xny
(l)
n to the register involves only the

variable xn. Rewriting this equation as (2.86) simply rewrites the index to take note of this fact.

We cannot apply the approach to the counter-based oracle approach (see Section 2.4.3), as

no state information with regards to the equations is kept and using more memory to store these

values would negate the purpose of using a counter-based oracle to obtain a low qubit count.
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The quantum bit oracle for instances ofMQ(F2, n,m) using this approach therefore consists

of defining the quantum circuits Uχ1 , . . . , Uχn by (where b ∈ {0, 1})

Uχi |f̃ (1)(x1, . . . , xi−1)〉 |f̃ (m)(x1, . . . , xi−1)〉 |0〉 |x1 . . . xn〉 |b〉 (4.68)

7→ |f̃ (1)(x1, . . . , xi)〉 |f̃ (m)(x1, . . . , xi)〉 |0〉 |x1 . . . xn〉 |b〉 (4.69)

where we define the partial sum

f̃ (l)(x1, . . . , xi) =
i∑

j=1

xiy
(l)
i (4.70)

and Uχ∗ is a single ∧m(X) gate with the equation registers as the controls and |b〉 as the target.

Setting K = 2k for 0 ≤ k ≤ n, the cost formula for the total circuit-size is the cost to evaluate

m polynomials over F2 of degree two involving n − k variables, plus the cost of exploring the

2k leaf nodes from this point and the cost of the diffusion step. Using the cost of the quantum

evaluations from Table 2.4 and the cost of the other components from Table 2.1, this gives us the

following cost formula for using Grover’s algorithm to solve an instance of MQ(F2, n,m) with

n+m+ 2 qubits using GENTS to augment Schwabe and Westerbaan’s approach

n+
⌊π

4
· 2(n−k)/2

⌋
·
(

2m((n− k)2 + 18(n− k)− 20) + 44n− 60

+ 2k(40n− 64) + 2m

k∑
i=1

2i(17 + 2(n− k + i))
)
. (4.71)

If instead we use a hybrid of this approach and the quantum oracle using n+m(n−1)+1 qubits

from Section 2.5.3, then another approach presents itself. In terms of quantum circuit-size, there

is little advantage in using this quantum bit oracle, but the quantum evaluation saves roughly

a factor of two owing to the fact that we do not have to uncompute y
(l)
i before computing y

(l)
i+1.

It offers a further advantage in that by using m(n − 2) registers to store the y
(l)
i , we need not

uncompute them and can add these bits to these registers as and when they become available.

In this way, we have a quantum oracle parameterised by K = 2k, where 0 ≤ k ≤ n and using

n+ (k + 1)m+ 1 qubits:

Let Uχn−k · · ·Uχ1 consist of the following procedure:

• Compute the partial sums |f (1)(x1, . . . , xn−k)〉 . . . |f (m)(x1, . . . , xn−k)〉 on the equation reg-

isters using bit oracles to leave the mk temporary storage registers in the state
∣∣0mk〉.

• Inmk registers, compute and store the components of y
(1)
n−k+1, . . . , y

(1)
n , . . . , y

(m)
n−k+1, . . . , y

(m)
n

involving only x1, . . . , xn−k for a total cost of mk(n− k− 1) ∧1(X) gates and mk X gates.

Then define Ui for i = n− k + 1, . . . , n as the following procedure:

• Add (if required) xi to the m(n− i+ 1) stored values y
(l)
i , . . . , y

(l)
n and add the m values of

xiy
(l)
i to the partial sums. This requires m ∧2(X) gates and m(n− i+ 1) ∧1(X) gates.

Uχ∗ is a ∧m(X) gate, the controls being the equation registers and the output bit as the target.
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This gives us a structuring of the Uχi whereby Eχi decreases with i, instead of increasing.

Taken all together we have the total circuit-size of Grover’s algorithm used in conjunction with

this oracle is given by the formula

n+
⌊π

4
· 2(n−k)/2

⌋
·
(

2m((n− k)2 + 18(n− k)− 20) + 44n− 60 + 2mk(n− k)

+ 2k(40m− 64) + 2m

k∑
i=1

2i(17 + k + 1− i)
)

(4.72)

4.5.1 Asymptotic and concrete results

If we take the derivative of the higher order terms of Equations (4.71) and (4.72) with respect

to k, then we can again find the optimal value of k. This turns out to be on the order of

O (log2(n)) for the low-qubit approach (Equation (4.71)) and O
(
log2(n2)

)
for the high-qubit

approach (Equation (4.72)). After substitution, we find that the asymptotic complexity of the

GENTS approach with the low-qubit approach is O
(
2n/2mn3/2

)
and O

(
2n/2mn

)
for the high-

memory approach — by using additional qubits we have further improved the quantum circuit-

size. To find the exact optimal value of k, we again use the approach of simply using the cost

formula given by Equation (4.72) and increasing k until we find the minimal point. Using this

approach we achieve the results in Table 4.4 below.

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success k Oracle type
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 278.35 2 · 274.05 2 · 278.43 2 · 273.12 2 · 277.23 236 ≈ 100.00 5 Low-memory [SW16]/GENTS
80 2 · MQ(F2, 117, 117) 2 · 275.79 2 · 275.07 2 · 276.48 2 · 274.38 2 · 276.05 1288 ≈ 100.00 9 High-memory [SW16]/GENTS
80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 N/A Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 280.88 2 · 276.76 2 · 280.96 2 · 275.57 2 · 280.88 126 ≈ 100.00 N/A Counter-based [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2126.44 2 · 2121.32 2 · 2126.47 2 · 2120.41 2 · 2125.27 420 ≈ 100.00 6 Low-memory [SW16]/GENTS
128 2 · MQ(F2, 209, 209) 2 · 2123.63 2 · 2122.4 2 · 2124.14 2 · 2121.72 2 · 2123.39 2509 ≈ 100.00 10 High-memory [SW16]/GENTS
128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 N/A High-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2123.39 2 · 2122.40 2 · 2124.14 2 · 2121.72 2 · 2123.38 2509 ≈ 100.00 N/A Counter-based [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2253.25 2 · 2247.03 2 · 2253.26 2 · 2246.10 2 · 2252.26 916 ≈ 100.00 7 Low-memory [SW16]/GENTS
256 2 · MQ(F2, 457, 457) 2 · 2249.71 2 · 2248.97 2 · 2250.39 2 · 2248.31 2 · 2249.92 6856 ≈ 100.00 13 Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 N/A Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2256.69 2 · 2250.65 2 · 2256.71 2 · 2249.44 2 · 2256.69 468 ≈ 100.00 N/A Counter-based [SW16]

Table 4.4: Quantum resource estimates for employing GENTS to solve MQ(F2, n,m).

The GENTS approach, like the ENTS approach can be used to break the parameters for

the Gui cryptosystem. The low-memory version is not as efficient, but the high-memory version

is superior — at least in terms of total gate count. Unfortunately by the nature of GENTS

being a generic approach, we must employ the ∧2(X) gate when we wish to repeatedly add the

values of |y(l)
i 〉 to the equation registers — the ENTS approach bypasses this as we only require

the addition of a linear equation and can therefore use ∧1(X) gates. The GENTS approach

would therefore seem to be useful, but we stress is only a starting point for the improvements

in Chapter 5, where we examine how preprocessing can be applied to the GENTS approach

to derive a method that is superior to the ENTS strategy for instances of MQ(F2, n,m) and

examine how amplitude amplification can be used, as opposed to Grover’s algorithm.
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Chapter 5

PARENTS and quantum nesting

“Said the mother Tern to her baby Tern

”Would you like a brother?”

Said the baby Tern to the mother Tern

”Yes. One good Tern deserves another.”

- Spike Milligan, [MG03]

In this chapter we examine several different approaches to exploiting the GENTS approach.

In Section 5.1 we meet the PARENTS approach, demonstrating how we can use classical pre-

processing to implement the action of the GENTS quantum circuit for a smaller cost than in

Section 5.1 when applying the method to instances of MQ(F2, n,m). In Section 5.2 we exam-

ine the nested application of amplitude amplification in order to improve the efficiency of the

search upon the last set of variables. In both sections we apply the procedures to instances of

MQ(F2, n,m) to examine their concrete effect upon parameter choices for Gui.

5.1 Applying preprocessing to the GENTS approach

The following is adapted from work published and presented at the International Workshop on

the Arithmetic of Finite Fields (Bergen) in 2018 and set in the context of the GENTS approach

discussed in Chapter 4. A natural question is how we can reduce the cost of Grover’s algorithm

in conjunction with the GENTS approach by using classical preprocessing to reduce the cost of

implementing the tree-decomposition of the quantum bit oracle. In this section we introduce an

improvement to the GENTS approach based on the idea that we can perform preprocessing on

the search-tree in order to obtain computational gains with respect to the GENTS approach.
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5.1.1 Preprocessing and intermediate memory states

We have defined the tree decomposition of the quantum bit oracle (see Definition 4.11) O(b)
χ

defined by the boolean function χ : {0, 1}n −→ {0, 1} so that Uχ1 , . . . , Uχn , Uχ∗ are n+ 1 unitary

operators representing quantum circuits acting upon w+n+1 qubits, where Uχi = U ′χi⊗I
⊗n−i+1

is defined by

U ′χi
∣∣g(x1, . . . , xxi−1)

〉
|x1 . . . xi〉 7→ |g(x1, . . . , xxi)〉 |x1 . . . xi〉 (5.1)

so that U ′χi acts upon w + i qubits and Uχ∗ is defined as

Uχ∗ |g(x1, . . . , xn)〉 |x1 . . . xn〉 |b〉 7→ |g(x1, . . . , xn)〉 |x1 . . . xn〉 |b⊕ χ(x1 . . . xn)〉 . (5.2)

We recall that the bitstring g(x1, . . . , xi) ∈ {0, 1}w represents the state of the memory after

introducing the bit xi into the computation. It will hold that for some 0 < k < n that the final

memory state can further be expressed by the decomposition

g(x1, . . . , xn) = g1(x1, . . . , xn−k)⊕ g2(x1, . . . , xn−k, xn−k+1, . . . , xn). (5.3)

where again g1(x1, . . . , xn−k) depends only upon the bits x1, . . . , xn−k whilst the intermediate

memory state g2(x1, . . . , xn−k, xn−k+1, . . . , xn) is dependent upon all the variables. In the case

where k = 0 or k = n, this is clearly a trivial decomposition where either g1() = 0w or we can

set g2(x1, . . . , xn) = 0w, but will have an interpretation with respect to our approach. We will

wish 0 < k < n for our approach to be useful and to express g2(x1, . . . , xn−k, xn−k+1, . . . , xn)

algebraically, so that each bit is a polynomial over F2[x1, . . . , xn−k, xn−k+1, . . . , xn] of any degree.

We can then perform a preprocessing step on a classical computer, exhaustively computing the

list of w polynomials over F2[x1, . . . , xn−k] obtained by substituting the variables xn−k+1, . . . , xn

in g2(x1, . . . , xn−k, xn−k+1, . . . , xn) for the 2k bits zn−k+1 . . . zn ∈ {0, 1}k, giving us the list

Sk =
[
g2(x1, . . . , xn−k, zn−k+1, . . . , zn) : zn−k+1, . . . , zn ∈ {0, 1}

]
, (5.4)

which we index from i = 0, . . . , 2k − 1 and use the notation Sk[i] for the ith element of this list.

We can then use the Preprocessed Algebraic Replacement Efficient Neighbourhood Transition

Strategy (PARENTS) to compute the action of the quantum bit oracle, where as with ENTS

and GENTS, the technique will be correct if the search problem defined by χ : {0, 1}n −→ {0, 1}
has the property that Mχ = |χ−1(1)| = 1. In the case where Mχ > 1, our technique will still be

correct if there do not exist x, y ∈ χ−1(1) whose first n− k bits are identical.
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After creating the preprocessed list of equations Sk, we define U
(i)
g2 for i = 0, . . . , 2k by their

actions (where d ∈ {0, 1}w and b ∈ {0, 1})

U (0)
g2 |d〉 |x1 . . . xn−k〉 |b〉 7→ |d⊕ Sk[0]〉 |x1 . . . xn−k〉 |b〉 (5.5)

U (i)
g2 |d〉 |x1 . . . xn−k〉 |b〉 7→ |d⊕ Sk[i− 1]⊕ S[i]〉 |x1 . . . xn−k〉 |b〉 for i = 1, . . . 2k − 1 (5.6)

U (2k)
g2 |d〉 |x1 . . . xn−k〉 |b〉 7→ |d⊕ Sk[2k − 1]〉 |x1 . . . xn−k〉 |b〉 . (5.7)

The sum Sk[i−1]⊕Sk[i] can also be classically preprocessed. In this way, we have that applying

Uχn−k · · ·Uχ1 followed by U
(0)
g2 results in the memory storage register holding the memory state

|g1(x1, . . . , xn−k)⊕ g2(x1, . . . , xn−k, zn−k+1, . . . , zn)〉 = |g(x1, . . . , xn−k, zn−k+1, . . . , zn)〉 (5.8)

for the zn−k+1 . . . zn used to create Sk[0]. The successive action of U
(i)
g2 for i = 1, . . . , 2k−1 will

add the difference Sk[i−1]⊕Sk[i] to the storage register, resulting in the memory storage register

holding (5.8) for the zn−k+1 . . . zn used to create Sk[i]. The unitary U
(2k)
g2 resets the state to

|g1(x1, . . . , xn−k)〉 . (5.9)

As we have cycled through the intermediate memory states described by (5.8) for a fixed

x1 . . . xn−k ∈ {0, 1}n−k and the 2k possible values for zn−k+1 . . . zn ∈ {0, 1}k, we have that

the action of Uχ∗ after applying U
(i)
g2 for i = 0, . . . , 2k−1 will be as described in (4.60). Finally,

the intermediate memory state (5.9) can be uncomputed by the action of U †χ1 · · ·U
†
χn−k . Formally,

the quantum bit oracle acts upon w+ n− k + 1 qubit state |0w〉 |x1 . . . xn−k〉 |b〉 and consists of:

1. Apply the unitary operators Uχn−k · · ·Uχ1 to obtain |g1(x1, . . . , xn−k)〉 |x1 . . . xn−k〉 |b〉.

2. For i = 0, . . . , 2k − 1

(a) Apply U
(i)
g2 to obtain

|g(x1, . . . , xn−k, zn−k+1, . . . , zn)〉 |x1 . . . xn−k〉 |b
i−1⊕
j=0

χ(x1 . . . xn−kzn−k+1 . . . zn)〉 . (5.10)

(b) Apply Uχ∗ to obtain

|g(x1, . . . , xn−k, zn−k+1, . . . , zn)〉 |x1 . . . xn−k〉 |b
i⊕

j=0

χ(x1 . . . xn−kzn−k+1 . . . zn)〉 . (5.11)

3. Apply the unitary operator U
(2k)
g2 to obtain

|g1(x1, . . . , xn−k)〉 |x1 . . . xn−k〉 |b
i⊕

j=0

χ(x1 . . . xn−kzn−k+1 . . . zn)〉 . (5.12)

4. Apply the sequence of unitary operators U †χ1 · · ·U
†
χn−k to obtain

|0w〉 |x1 . . . xn−k〉 |b
2k−1⊕
j=0

χ(x1 . . . xn−kzn−k+1 . . . zn)〉 . (5.13)
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We give an explicit example of how we can adapt this method to improve Schwabe and West-

erbaan’s quantum bit oracle [SW16] (see Section 2.5.1), which was the original work pub-

lished [Pri18] at WAIFI 2018 by the author.

5.1.2 Introducing the PARENTS to your instance of MQ(F2, n,m)

In the context of instances ofMQ(F2, n,m), the PARENTS approach has the following interpre-

tation. We use PARENTS in conjunction with the low-memory quantum oracle design for the

MQ problem (see Section 2.4.2) and the cost for the quantum bit oracles Of̃ (k) for individual

equation given by Table 2.5. As before, we cannot use this approach with the counter-based

quantum oracle design (see Section 2.4.3). The memory register uses w = m + 1 qubits, where

1 qubit is used for temporary storage for computation and m qubits act as an equation register

which will store the evaluated equations

|f̃ (1)(x1, . . . , xn)〉 . . . |f̃ (m)(x1, . . . , xn)〉 , (5.14)

which we recall will be in the state |1n〉 if and only if the original m equations in n variables

f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn) are satisfied by the assignment x1 . . . xn ∈ {0, 1}n.

We can express any degree two equation f (l)(x1, . . . , xn) ∈ F2[x1, . . . , xn] where

f (l)(x1, . . . , xn) = c(l) +

n∑
i=1

xiy
(l)
i and y

(l)
i = b

(l)
i +

i−1∑
j=1

a
(l)
j,ixj (5.15)

as

f (l)(x1, . . . , xn) = f
(l)
1 (x1, . . . , xn−k) + f

(l)
2 (x1, . . . , xn−k, xn−k+1, . . . , xn) (5.16)

where

f
(l)
1 (x1, . . . , xn−k) = c(l) +

n−k∑
i=1

xiy
(l)
i and f

(l)
2 (x1, . . . , xn−k, xn−k+1, . . . , xn) =

n∑
i=n−k+1

xiy
(l)
i . (5.17)

We therefore have that

g2(x1, . . . , xn) = f
(1)
2 (x1, . . . , xn−k, xn−k+1, . . . , xn)‖ . . . ‖f (m)

2 (x1, . . . , xn−k, xn−k+1, . . . , xn)‖0, (5.18)

where the last bit is the single bit used for computation of the y
(l)
i . If we apply the preprocessing

step of PARENTS for a chosen 0 ≤ k ≤ n, then it is clear that g1(x1, . . . , xn−k) remains

unchanged, whilst for zn−k+1 . . . zn ∈ {0, 1}k we have that

f
(l)
2 (x1, . . . , xn−k, zn−k+1, . . . , zn) =

n∑
i=n−k+1

ziy
(l)
i =

n∑
i=n−k+1

zi ·

b(l)i +

n−k∑
j=1

a
(l)
j,ixj +

i−1∑
j=n−k+1

a
(l)
j,izj

 . (5.19)

As zn−k+1 . . . zn ∈ {0, 1}k, we therefore have that f
(l)
2 (x1, . . . , xn−k, zn−k+1, . . . , zn) is simply a

linear equation in n− k variables, involving up to n− k variables and 1 constant term.
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We therefore have that Uχn−k · · ·Uχ1 can be accomplished by m quantum bit oracles for m

equations in n−k variables, whilst the 2k + 1 unitaries U
(0)
g2 , U

(1)
g2 , . . . , U

(2k)
g2 are each m additions

of linear equations involving n − k variables and 1 constant. Uχ∗ remains as a ∧m(X) gate

with the m qubit equation register as the controls and the output of the quantum register as the

target. Putting all this together we obtain the cost formula for Grover’s algorithm in conjunction

with the PARENTS approach by using the cost of the quantum bit oracle Of̃ (l) from Table 2.4

and the other costs from Table 2.1 using the quantum bit oracles from for a total Clifford+T

circuit size of

n+
⌊π

4
· 2(n−k)/2

⌋
·
(

2m((n− k)2 + 18(n− k)− 20) + 40(n− k)− 60 + 4n

+ (2k + 1)m(n− k + 1) + 2k(40m− 64)
)
. (5.20)

5.1.3 Asymptotic and concrete results

As before, we can find the asymptotic complexity of this approach via simply taking the derivative

of Equation (5.20) with respect to k. Once this derivative is set equal to 0 and solved for k, we

obtain that the optimal value of k is on the order of O (log2(n)). After substitution, we obtain

that the asymptotic complexity of the PARENTS approach applied to instances ofMQ(F2, n,m)

is O
(
2n/2mn3/2

)
. This does not improve upon the asymptotic complexity of the GENTS low-

memory approach but does offer concrete advantages, as can be seen in Table 5.1. By numerical

simulation and using the cost metric of total quantum circuit-size as an optimisation target, we

obtain the following results by relying on our PARENTS to solve an instance ofMQ(F2, n,m).

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success k Oracle type
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 276.9 2 · 273.46 2 · 277.03 2 · 273.23 2 · 276.19 228 ≈ 100.00 8 Low-memory [SW16]/PARENTS
80 2 · MQ(F2, 117, 117) 2 · 278.35 2 · 274.05 2 · 278.43 2 · 273.12 2 · 277.23 236 ≈ 100.00 5 Low-memory [SW16]/GENTS
80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 N/A Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 280.88 2 · 276.76 2 · 280.96 2 · 275.57 2 · 280.88 126 ≈ 100.00 N/A Counter-based [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2124.96 2 · 2120.78 2 · 2125.04 2 · 2120.55 2 · 2124.04 411 ≈ 100.00 9 Low-memory [SW16]/PARENTS
128 2 · MQ(F2, 209, 209) 2 · 2126.44 2 · 2121.32 2 · 2126.47 2 · 2120.41 2 · 2125.27 420 ≈ 100.00 6 Low-memory [SW16]/GENTS
128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 N/A Low-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2129.34 2 · 2124.42 2 · 2129.39 2 · 2123.21 2 · 2129.34 219 ≈ 100.00 N/A Counter-based [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2251.75 2 · 2246.45 2 · 2251.79 2 · 2246.20 2 · 2250.77 906 ≈ 100.00 10 Low-memory [SW16]/PARENTS
256 2 · MQ(F2, 457, 457) 2 · 2253.25 2 · 2247.03 2 · 2253.26 2 · 2246.10 2 · 2252.26 916 ≈ 100.00 7 Low-memory [SW16]/GENTS
256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 N/A Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2256.69 2 · 2250.65 2 · 2256.71 2 · 2249.44 2 · 2256.69 468 ≈ 100.00 N/A Counter-based [SW16]

Table 5.1: Quantum resource estimates for solving MQ(F2, n,m) using Grover and PARENTS.

As is becoming a theme, we break the proposed parameters for the Gui cryptosystem. There are

several advantages to employing PARENTS, compared to GENTS. The first is that we strictly

use fewer ∧2(X) gates as we do not need to uncompute and recompute additions to the equation

registers using these gates. This leads to a slightly smaller gate count and crucially, a lower T

gate count. If we are optimising towards the T gate metric, then PARENTS has the edge over

the ENTS and GENTS approaches in this metric. PARENTS also requires slightly fewer qubits.
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5.2 Nested-quantum-search-and-memory

The concept of nesting of quantum search is well-known [CGW00], but this is usually exploited

to make asymptotic gains with regards to the query complexity of algorithms — a quantum

search algorithm that essentially works in an analogue of pruning a search tree. If the search

problem is defined by the boolean indicator function is defined by χ : {0, 1}n −→ {0, 1} and

furthermore we have the decomposition

χ(x1 . . . xn) 7→ χ1(x1 . . . xk) ∧ χ2(x1 . . . xn) (5.21)

where

χ1 : {0, 1}k −→ {0, 1} and χ2 : {0, 1}n −→ {0, 1} (5.22)

then amplitude amplification (see Theorem 3.6) can be used to create a quantum algorithm that

exploits this structure. We sketch this approach, which will be used later. We have used Grover’s

algorithm up til now and the reader unfamiliar with amplitude amplification is advised to revisit

Definition 3.1 of the success probability of a boolean function relative to a quantum algorithm,

our formulation of amplitude amplification in Theorem 3.6 as well as Definition 3.8 which gives

the Hadamard transformation on n qubits and Theorem 3.7 (Quadratic Speedup).

5.3 A basic nested quantum search algorithm

Let the quantum phase oracles Oχ and Oχ1 be defined by the boolean indicator functions given

above and assume that Mχ = |χ−1(1)| = 1 and Mχ1 = |χ−1
1 (1)|, which is known. We define

the initial quantum algorithm A1 = H⊗k ⊗ I⊗n−k, which has a success probability of a ≥ Mχ1

2k

relative to χ1 : {0, 1}k −→ {0, 1} if we consider only the first k qubits. By using amplitude

amplification with Theorem 3.7, we can create a quantum algorithm B that succeeds with a

success probability of b ≥ 1 − Mχ1

2k
relative to χ1 and which requires O(

√
2k

Mχ1
) applications of

the quantum phase oracle Oχ1 and quantum algorithm A1. We will know b as we know Mχ1 .

We can then define A2 = I⊗k ⊗ H⊗n−k, and in turn define the new quantum algorithm C,
which involves first executing B to create a superposition of elements in the first k bit register

which has a probability b of satisfying χ1(x1 . . . xk) = 1 and then using amplitude amplification

on the second n − k qubit register with the quantum algorithm A2 and quantum oracle Oχ.

The quantum algorithm C therefore creates the state |ϕ〉 |ψ〉, where |ϕ〉 has a probability of b of

measuring x1 . . . xk ∈ {0, 1}k such that χ1(x1 . . . xk) = 1. If we have measured such an element

and then measure the second register |ψ〉 then we have a probability of c′ ≥ 1− 1
2n−k

of obtaining

bitstring xk+1 . . . xn ∈ {0, 1}n−k such that χ(x1 . . . xkxk+1 . . . xn) = 1. C costs 1 application of B
and
√

2n−k applications of A2 and has a success probability of bc′

Mχ1
≈ 1

Mχ1
relative to χ.

We can therefore use amplitude amplification one final time in conjunction with C and Oχ
to create a new quantum algorithm D that costs O

(√
2k +

√
Mχ1

√
2n−k

)
calls to the quantum

oracles Oχ1 and Oχ and has an asymptotic success probability of 1.
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If we compare this with Grover’s algorithm, the best we could do would be to use the quantum

phase oracle Oχ for a cost of O(
√

2n) or repeatedly search and sample using Grover’s algorithm

with the quantum phase oracle Oχ1 , then test the remaining n−k variables using a Grover search

with the quantum oracle Oχ. This sampling approach would therefore require on the order of

O(Mχ1) such trials for an asymptotic cost of O
(√

Mχ1

√
2k +Mχ1

√
2n−k

)
oracle queries —

hence nesting quantum search procedures allows us to exploit information gained at levels of the

search tree implicitly defined by the introduction of variables into computation.

5.3.1 Better memory management through nesting amplitude amplification

We use the nesting of quantum search procedures in a fundamentally different way, as no ex-

ploitable information concerning whether an assignment of any subset of variables is potentially

part of a solution will be revealed for any subset of variables. Whilst our method bears similarity

to that used by Arunachalamref and de Wolf [AdW17] in their technique to optimise Grover’s

algorithm in relation to the total number of quantum gates for other than those used in the quan-

tum phase oracle — they treat the quantum phase oracle as a black-box. We require structure

to make gains, using our tree decomposition of the quantum bit oracle (see Definition 4.11) and

demonstrate that we can obtain computational gains above the ENTS, GENTS or PARENTS

approaches in certain metrics via this method.

The GENTS and PARENTS approaches share a simple concept — we compute the quantum

bit oracle up to a certain level using the sequence of unitary operators Uχk · · ·Uχ1 , then perform

a secondary search from this level so that we can exploit the computational effort we have

invested in executing Uχk · · ·Uχ1 . We can perform this same trick with amplitude amplification.

The method can be treated more formally and given a completely recursive treatment, but

unfortunately time pressures on the author did not permit including these proofs and results in

the thesis. We present the method as a simple two-stage search procedure, which will capture the

majority of the gains (through computational experiments, the number of levels never exceeded

3 and the gains were minor past 2 levels). We leave a full analysis of this for future work.
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Theorem 5.1 (Making better use of memory via nested quantum search).

Let χ : {0, 1}n −→ {0, 1} andMχ = |χ−1(1)| = 1 define a search problem and let Uχ1 , . . . , Uχn , Uχ∗

be a tree-decomposition (see Definition 4.11) of the quantum bit oracle O(b)
χ , which uses w qubits

for memory, n qubits for the search space and 1 qubit for the output.

Then there exists a quantum algorithm B1 which succeeds with probability

b1 ≥ 1− b2
2n−k

≥ 1− 1

2n−k
(5.23)

relative to χ and which costs

EB1 = EH⊗n−k +

n−k∑
i=1

EUχi + EB2 + k1 ·

(
2 ·

n∑
i=n−k+1

EUχi + EUχ∗ + En̄ + 2 · (EH⊗n−k +

n−k∑
i=1

EUχi + EB2)

)
(5.24)

where

EB2 = EH⊗k + k2

(
Eχ∗ + 2 ·

n∑
i=n−k+1

Eχi + Ek̄ + 2EH⊗k

)
(5.25)

and we have that

k1 =

 π

4 · arcsin
√

b2
2n−k

 and k2 =

 π

4 · arcsin
√

1
2k

 , (5.26)

and

b2 = sin2

(
(2k2 + 1) · arcsin

√
1

2k

)
. (5.27)
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Proof. We consider the application of a quantum algorithm

A1 = Iw ⊗H⊗n−k ⊗ Ik+1 (5.28)

to the computational basis state (where d ∈ {0, 1})

|0w〉 |0n〉 |d〉 . (5.29)

This clearly results in the quantum state

1

2(n−k)/2

∑
x∈{0,1}n−k

|0w〉 |x〉 |0k〉 |d〉 . (5.30)

As Mχ = |χ−1(1)| = 1, for any 0 < k < n there exists a single x′ ∈ {0, 1}n−k and y′ ∈ {0, 1}k

such that χ(x′‖y′) = 1. If we examine the effect of a secondary algorithm

A2 = Iw+n−k ⊗H⊗k ⊗ I (5.31)

upon the computational basis state

|0w〉 |x′〉 |0k〉 |d〉 , (5.32)

then this results in the state

k∑
y∈{0,1}

|0w〉 |x′〉 |y〉 |d〉 . (5.33)

If we define the boolean function χx′‖ : {0, 1}k −→ {0, 1} by the action χx′‖(y) 7→ χ(x′‖y), then

A2 has a success probability of 1
2k

relative to χx′‖ for this computational basis state. We can

therefore use amplitude amplification with Oχx′‖ and the quantum algorithm A2 to produce a

quantum algorithm B2 that succeeds with success probability b2 ≥ 1− 1
2k

relative to χx′‖ on this

computational basis state. As Oχ = Oχx′‖ , we can write this quantum algorithm as

B2 =
(
A2RkA†2Oχ

)k2

A2, where k2 =

 π

4 · arcsin
√

1
2k

 , (5.34)

where Rk = I⊗w+n−k ⊗ −O0k ⊗ I. If we apply B2A1 to the state (5.29), then we achieve a

quantum algorithm with a success probability of b2
2n−k

relative to χ, as we have a 1
2n−k

chance of

measuring the first n− k qubits as x′ and a chance of b2 to measure y′ if we have measured x′.

We can then create the quantum algorithm B1 with success probability b1 ≥ 1− b2
2n−k

≥ 1− 1
2n−k

B1 =
(
B2A1RnA†1B

†
2Oχ

)k1

B2A1 where k1 =

 π

4 · arcsin
√

b2
2n−k

 . (5.35)
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If we write this quantum algorithm out explicitly, then we get

B1 =

((
A2RkA†2Oχ

)k2

A2A1RnA†1A
†
2

(
OχA2RkA†2

)k2

Oχ
)k1 (

A2RkA†2Oχ
)k2

A2A1 (5.36)

From here, we note that we can replace the quantum phase oracle with the tree-decomposition

of quantum bit oracle. If we examine the effect of this upon the quantum algorithm B2, then we

get that

(
A2RkA†2Oχ

)k2
A2 =

(
A2RkA†2U

†
χ1
· · ·U†χn−kU

†
χn−k+1

· · ·U†χnUχ∗Uχn · · ·Uχn−k+1Uχn−k · · ·Uχ1

)k2
A2 (5.37)

= U†χ1
· · ·U†χn−k

(
A2RkA†2U

†
χn−k+1

· · ·U†χnUχ∗Uχn · · ·Uχn−k+1

)k2
A2Uχn−k · · ·Uχ1 (5.38)

as A2 introduces the last k variables, whereas Uχn−k · · ·Uχ1 involves only the first n−k variables.

Because of this, we can rewrite B1 as

B1 =
(
B̄2Ā1RnĀ†1B̄

†
2U
†
χn−k+1

· · ·U†χnUχ∗Uχn · · ·Uχn−k+1

)k1
B̄2Ā1 where Ā1 = Uχn−k · · ·Uχ1A1 (5.39)

and

B̄2 =
(
A2RkA†2U

†
χn−k+1

· · ·U†χnUχ∗Uχn · · ·Uχn−k+1

)k2
A2 (5.40)

In this way, we have pushed a portion of the cost to an earlier part of the quantum ora-

cle computation which has a smaller query complexity — just as in the ENTS, GENTS and

PARENTS approach. If we tally the costs, we therefore get that this approach has a cost of

EB1 = EH⊗n−k +

n−k∑
i=1

EUχi + EB̄2 + k1 ·

(
2 ·

n∑
i=n−k+1

EUχi + EUχ∗ + En̄ + 2 · (EH⊗n−k +

n−k∑
i=1

EUχi + EB̄2)

)
(5.41)

where

EB̄2 = EH⊗k + k2

(
EUχ∗ + 2 ·

n∑
i=n−k+1

EUχi + Ek̄ + 2EH⊗k

)
(5.42)

and we have that

k1 =

 π

4 · arcsin
√

b2
2n−k

 and k2 =

 π

4 · arcsin
√

1
2k

 (5.43)

where

b2 = sin2

(
(2k2 + 1) · arcsin

√
1

2k

)
. (5.44)

108



5.3.2 Asymptotic and concrete results

If we consider the higher-order terms for the low-memory approach and the high-memory ap-

proach as discussed with regards to the GENTS approach in Section 4.5 then we can derive their

corresponding asymptotic complexities.

The complexity of the low-memory approach is on the order of O
(
2(n−k)/2mn2 + 2n/2mnk

)
,

hence taking the derivative with respect to k and solving the subsequent equation set equal to 0

for k gives us that the optimal value of k is on the order of O (2 log2 n). Substitution of this value

of k gives us that the low-memory approach has an asymptotic complexity of O
(
2n/2mn log2 n

)
.

The complexity of the high-memory approach is on the order of O
(
2(n−k)/2mn2 + 2n/2mk2

)
.

We can use the same method as described above to derive that the optimal value of k is in

the order of O (4 log2 n). Substitution into the original cost equation therefore gives us that the

high-memory approach has an asymptotic complexity of O
(
2n/2m(log2 n)2

)
.

Table 5.2 below gives the concrete results with regards to the low-memory strategy and the

high memory strategy, as discussed above.

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success k Oracle type
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 277.86 2 · 276.21 2 · 278.26 2 · 274.99 2 · 277.86 236 ≈ 100.00 7 Low-memory [SW16]/Theorem 5.1
80 2 · MQ(F2, 117, 117) 2 · 275.03 2 · 273.39 2 · 275.43 2 · 272.32 2 · 272.39 1756 ≈ 100.00 13 High-memory [SW16]/Theorem 5.1
80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 N/A Low-memory [SW16]
80 2 · MQ(F2, 117, 117) 2 · 280.88 2 · 276.76 2 · 280.96 2 · 275.57 2 · 280.88 126 ≈ 100.00 N/A Counter-based [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2125.76 2 · 2123.9 2 · 2126.12 2 · 2123.95 2 · 2125.77 420 ≈ 100.00 9 Low-memory [SW16]/Theorem 5.1
128 2 · MQ(F2, 209, 209) 2 · 2122.19 2 · 2120.46 2 · 2122.58 2 · 2119.37 2 · 2119.15 3763 ≈ 100.00 16 High-memory [SW16]/Theorem 5.1
128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 N/A Low-memory [SW16]
128 2 · MQ(F2, 209, 209) 2 · 2129.34 2 · 2124.42 2 · 2129.39 2 · 2123.21 2 · 2129.34 219 ≈ 100.00 N/A Counter-based [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2252.29 2 · 2250.29 2 · 2252.60 2 · 2249.20 2 · 2252.29 916 ≈ 100.00 11 Low-memory [SW16]/Theorem 5.1
256 2 · MQ(F2, 457, 457) 2 · 2247.73 2 · 2244.75 2 · 2248.08 2 · 2244.75 2 · 2244.18 10055 ≈ 100.00 20 High-memory [SW16]/Theorem 5.1
256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 N/A Low-memory [SW16]
256 2 · MQ(F2, 457, 457) 2 · 2256.69 2 · 2250.65 2 · 2256.71 2 · 2249.44 2 · 2256.69 468 ≈ 100.00 N/A Counter-based [SW16]

Table 5.2: Quantum resource estimates for solving MQ(F2, n,m) using Theorem 5.1.
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Chapter 6

Improvements to the

Search with Two Oracles approach

If a man will begin with certainties, he shall end in doubts; but if he will be content

to begin with doubts he shall end in certainties.

- Francis Bacon, The Advancement of Learning [Bac05]

In this chapter we examine how the quantum search algorithm put forth by Kimmel et

al. [KYYLHH15], designed to lower the quantum resources required when we have multiple

quantum search oracles at our disposal, can be adapted to real-world problems, such as quantum

cryptanalysis of the Advanced Encryption Standard and the Multivariate Quadratic hardness

assumption. Their technique, posed as a solution to a problem entitled Search with Two Oracles

(STO), is designed to reduce the total cost of quantum search when there exists one quantum

search oracle which is expensive but marks the single target we are searching for, whilst the other

quantum search oracle is relatively cheap and marks a subset of the search-space which includes

this target, and we know the size of this larger subset precisely.

The main contribution of this chapter is demonstrating how their technique can be adapted

to lower quantum resource estimates for quantum search applied to these problems when there is

uncertainty in the number of additional targets that the cheaper oracle marks. In particular we

note that in this scenario we can obtain the cost benefits of their approach, without increasing the

number of qubits required, by artifically ensuring that the cheaper oracle marks a large number

of bitstrings which we know are not solutions to the problem instance. By introducing these

false targets into the search space we ensure that the ratio between the true number of targets

marked by this oracle and the guessed number of targets marked by this oracle is close to 1 as

the number of false targets increases. In concrete terms, this allows us to lower the quantum

resource estimates for applying quantum search to instances of the key-search problem for the

Advanced Encryption Standard (AES) and in solving instances of MQ(F2, n,m), particularly

with regards to low-qubit implementations of quantum search for these problems.
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These gains are modest, but significant, in that they outperform Grover’s algorithm naively

applied to these problems [GLRS16, SW16] and the quantum resources required to perform

cryptanalysis of AES are relevant to the ongoing NIST standardisation process for quantum-

resistant public-key cryptosystems [oST16b, oST16a]. That the low-qubit MQ oracle requires

only n+ dlog2me+ 1 qubits to implement means that this oracle may be one of the first appli-

cations of quantum search that is possible to implement, even if asymptotically more efficient

designs are possible when greater number of qubits are available [BY18, FHK+17].

In Section 6.1 we discuss the Search with Two Oracles (STO) problem [KYYLHH15] and the

complications in applying their method to several problems in cryptanalysis, that of applying

STO to real-world problems. In Section 6.2 we discuss how, given these problems, we can adapt

their method and in Section 6.3 we conclude with new resource estimates for the single-target

quantum cryptanalysis of the Advanced Encryption Standard (AES) and low-qubit quantum

cryptanalysis of the Multivariate Quadratic problem over F2.

6.1 Reviewing Oracles with Costs

We now review the Search with Two Oracles (STO) problem and its cost-effective solution as

proposed by Kimmel et al. [KYYLHH15]. We make a minor modification to their results, in

that we include additional costs other than the quantum oracle. These changes preserve their

results and capture the use-case of our extension to the solution to the STO problem. Our

results will follow naturally from this formulation. In all cases, cost may be taken to mean either

circuit-depth or circuit-size.

6.1.1 The STO problem and a solution

Definition 6.1 (Search with Two Oracles (STO) [KYYLHH15]).

Let f∗, fS : {0, 1}n −→ {0, 1} be two boolean functions with the property that

f−1
∗ (1) ⊆ f−1

S (1) where M∗ = |f−1
∗ (1)| ∈ {0, 1} and MS = |f−1

S (1)| (6.1)

and which respectively define the quantum bit oracles O(b)
f∗

and O(b)
fS

.

The Search with Two Oracles (STO) problem is to locate an element x ∈ {0, 1}n such that

f∗(x) = 1 or prove that no such element exists. It is given that EO∗ ≥ EOS .

Kimmel et al. [KYYLHH15] provide us with the promise that we know the exact value of

MS . This is not a realistic scenario for most problems and so in this section we examine both

their solution and its behaviour when we guess that MS = M ′S .
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6.1.2 A classical solution to the STO problem

A classical solution to the STO problem is to simply perform an exhaustive search on the domain

{0, 1}n with fS and when we have obtained an element such that fS(x) = 1, we test it to check

whether f∗(x) = 1. This is akin to a filtering process and both the STO solution suggested by

Kimmel et al. and our own adaptation use this basic idea — though our adaptation is somewhat

harder to draw a classical analogy for.

The complexity of the above approach can be computed — we can expect to sample 2n+1
2

elements until we have located the single element x ∈ {0, 1}n that satisfies f∗(x) = 1, just as in

the case of naive exhaustive search. Of these elements, we can expect that MS
2n satisfy fS(x) = 1.

The total expected cost of the above approach will therefore be

2n + 1

2
·
(

Cost(fS) +
MS

2n
· Cost(f∗)

)
(6.2)

whilst the expected cost of using a naive exhaustive search with f∗ would be 2n+1
2 · Cost(f∗).

This approach forms the basis of the solution of Kimmel et al. to the STO problem. We note

that if Cost(fS) = Cost(f∗) then the above approach offers no advantage.

6.1.3 Previous quantum solutions to the STO problem

Kimmel et al. offer three algorithms to solve STO. If E∗ = ES , then we simply use Grover’s

algorithm with the quantum oracle O∗ and ignore the quantum oracle OS , whilst if E∗ > ES we

use the quantum algorithm we describe below. The third algorithm interpolates between these

two quantum algorithms, but is not relevant to the adaptation we present in this chapter.

We now describe their solution and give its approximate costs, then examine its correctness

under potential real-world use cases where we can only guess that MS = M ′S . It will be easily

seen that the cost of our modification is both strictly less than the solution of Kimmel et al. and

is easier to describe in closed form, as it can precisely be described in terms of the Clifford+T

gate set without having to rely upon the approximation of the arbitrary single-qubit unitary

transformations that exact amplitude amplification requires.
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Theorem 6.2 (Solution to the STO problem using exact amplitude amplification [KYYLHH15]).

Let fs, f∗ : {0, 1}n −→ {0, 1} and M∗,MS define an instance of the STO problem.

There exists a quantum algorithm with a success probability of 1 relative to f∗ and which has

an asymptotic cost in terms of the oracles O(b)
fS

and O(b)
f∗

of O(2n/2EfS +
√
MSEf∗).

Proof. In the following, we allow Z1 and Z2 to be arbitrary single-qubit unitary transformations

used to enable exact amplitude amplification. The functions f̂S and f̂∗ are defined as in the

proof of Theorem 3.11 and we make the assumption that the quantum bit oracles O(b)

f̂S
and O(b)

f̂∗

cost approximately the same as the quantum bit oracles O(b)
fS

and O(b)
f∗

. This is easily seen to be

true in the case of the single-target preimage search problem defined by h : {0, 1}n −→ {0, 1}m

and yh ∈ {0, 1}m, as if |h(x)
?
= yh〉 is written via a ∧m(X) gate then we simply use a ∧m+1(X)

gate instead to write |
(
h(x)

?
= yh

)
∧
(
xn+1

?
= 1
)
〉.

We first define the quantum algorithm A = H⊗n (the Walsh-Hadamard transform) and use exact

amplitude amplification (see Theorem 3.11) to create a quantum algorithm B with a success

probability of 1 relative to the function fS . By Theorem 3.11, B has a cost of

EB = EH⊗n⊗Z1
+

 π

4 arcsin
√

MS
2n

 ·
(
Ef̂S + En+1 + 2EH⊗n⊗Z1

)
(6.3)

We can then define a second quantum algorithm, C, by using exact amplitude amplification

with the quantum algorithm set to be B, which has a success probability relative to f∗ of 1
MS

.

By Theorem 3.6, we can create a quantum algorithm C with a success probability of 1 relative

to f∗. By Theorem 3.11, C has a cost of

EC = EB⊗Z2 +

 π

4 arcsin
√

1
MS

 ·
(
Ef̂∗ + En+1 + 2EB⊗Z2

)
. (6.4)

Using the fact that arcsinx ≈ x and that Ef̂ ≈ Ef therefore gives us that the approximate cost

of this algorithm in terms of queries to the quantum bit oracles O(b)
fS

and O(b)
f∗

is

π

4

√
MS · Ef∗ +

π2

8

√
2n · EfS . (6.5)

In essence, the query complexity remains identical to Grover as we are making O
(√

2n
)

queries, but relative to a less expensive oracle. However, this asymptotic notation hides the

constant in front of EfS , which is an important real-world factor and hinders (but does not rule

out) a recursive strategy from being efficient if we possess fSi : {0, 1}n −→ {0, 1} such that

f−1
∗ (1) ⊆ f−1

S1
(1) and f−1

Si
(1) ⊆ f−1

Si+1
(1). We will later provide an exact cost for a modified

version of this algorithm exploiting only exact amplitude amplification in Section 6.2. Now that

the costs have been discussed, we turn to the correctness of this algorithm under real-world

conditions, where we do not precisely know the value of MS but can only guess that MS = M ′S .
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6.1.4 On the probability of success of the solution to the STO problem

Theorem 3.11 describes the behaviour of one implementation of exact amplitude amplification

when we make the wrong guess for the success probability of the quantum algorithm A relative

to the boolean function χ. We can therefore use this to obtain an expression which gives us the

success probability of the solution to the STO problem described in Theorem 6.2 when we make

make the guess that MS = M ′S . We will retain the promise that M∗ = 1.

Theorem 6.3 (Success probability of the STO solution under the assumption MS = M ′s).

Let fs, f∗ : {0, 1}n −→ {0, 1} and M∗,MS define an instance of the STO problem.

Suppose we guess MS = M ′S . The algorithm in Theorem 6.2 has a success probability of

c = sin2

((
2k̂2 + 1

)
· arcsin

√
z ·

M ′S
MS
· sin2

(
π

4k̂2 + 2

))
·

(
bg − b · bg
bg − b · b̂g

)
+
b · bg − b · b̂g
bg − b · b̂g

(6.6)

where bg = 1
M ′S

, k̂2 =

⌈
π

4 arcsin
√
bg

⌉
, b̂g = sin2

(
π

4k̂2+2

)
, b = z

MS
and where

z = sin2

((
2k̂1 + 1

)
· arcsin

√
MS

M ′S
· sin2

(
π

4k̂1 + 2

))
·
(
ag − a · ag
ag − a · âg

)
+
a · ag − a · âg
ag − a · âg

(6.7)

where ag =
M ′S
2n , k̂1 =

⌈
π

4 arcsin
√
ag

⌉
, âg = sin2

(
π

4k̂1+2

)
and a = MS

2n .

Proof. Under the assumption that MS = M ′S , then we have guessed that the quantum algorithm

A = H⊗n has a success probability of ag =
M ′S
2n , when in reality it is a = MS

2n . By Theorem 3.11,

the algorithm B as described in the proof of Theorem 6.2 has a success probability of z relative

to the boolean function fS and a success probability of b = z
MS

relative to f∗. Our guess for the

success probability of B relative to fS is 1 and our guess for the success probability of B relative

to f∗ is therefore bg = 1
M ′S

.

By using Theorem 3.11 again, we have that algorithm C as described in Theorem 6.2 has a

probability of success of c relative to f∗.

We now have a computational method of examining the projected success probability of

algorithm C under the potentially erroneous assumption that MS = M ′S . We note that if we

have guessed correctly, then it is easily seen by substitution that z = 1 and c = 1 as in Theorem

6.2. We demonstrate the how the success probability of C changes relative to various values of

MS and M ′S in Figure 6-1 on the next page.
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Figure 6-1: Success of C with n = 128, M∗ = 1 and varied MS .

As can be seen from Figure 6-1, the solution of Kimmel et al. can fail if we have guessed

wrongly that MS = M ′S . The success probability is not reliant upon the absolute value of the

difference |MS −M ′S |, but is instead reliant upon the ratio MS : M ′S . This is easily observed

by examining equations (6.6) and (6.7) above, as the quantity MS
M ′S

affects the probability z and

both the quantities z and
M ′S
MS

impact upon c, the success probability of C relative to f∗.

Quantum counting [BHT98, BHMT02] in conjunction with the oracle OfS can determine

MS to the required precision. Whilst obtaining the correct value of MS obviously ensures that

algorithm C succeeds with probability 1 relative to f∗, this approach may wipe out the com-

putational gains and the quantum counting must be performed before we execute C. We could

alternatively simply run the computation multiple times, but this again increases the cost. We

suggest a modification in Section 6.2 which recovers the correctness and computational gains.

In the modification we present in Section 6.2, we exploit the fact that it is the ratio MS : M ′S
that affects the success probability of C relative to f∗ and artificially modify this ratio to restore

the correctness of this approach to solving the STO problem whilst retaining the computational

advantages offered by this algorithm.
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6.2 A modified solution to the STO problem

We now turn to our modified STO algorithm. The algorithm is essentially the solution of Kimmel

et al. with two modifications that take into account the fact that we are only guessing at MS and

may only know the discrete probability distribution Pr [MS = X] rather than the exact value of

MS . The first modification is minor — as the point of using exact amplitude amplification is to

achieve a deterministic quantum algororithm with a success probability of 1 relative to f∗ and

the probability that we have guessed the correct value of MS may be small, we will simply use

amplitude amplification (see Theorem 3.6) instead of exact amplitude amplification (see Theorem

3.11). This simplifies the analysis and the modified algorithm can be implemented exactly by

any universal quantum gate set that can implement Grover’s algorithm exactly.

The second modification is the core result and allows us to increase the success probability

of the algorithm by changing the ratio MS : M ′S . This is done by noting that fact that the ratio

2t + Ms : 2t + M ′S approaches 1 when 2t > MS and as t → 2n. Thus, if we can instead modify

the cheaper quantum oracle to work with this ratio instead of MS : M ′S , then we can tame the

success probability when only the discrete probability distribution Pr [MS = X] is known.

Theorem 6.4 (A modified solution to the STO problem).

Let fS , f∗ : {0, 1}n −→ {0, 1}, M∗ ∈ {0, 1} and MS = |f−1
S (1)| define an instance of the STO

problem, where MS is unknown. Let M ′S ∈ N and ε ∈ [0, 1] be such that Pr[MS ≥M ′S ] ≤ ε and

let t ∈ N such that 0 ≤ t ≤ n. Then there exists a quantum algorithm that terminates with a

success probability relative to f∗ greater than

(1− ε) · sin2

 π

2 arcsin
√

1
2t

− 2

 ·√ b′

M ′S + 2t

 (6.8)

where

b′ = sin2

 π

2 arcsin

√
M ′S+2t

2n

− 2

 ·√ 2t

2n

 . (6.9)

The algorithm has a total execution cost of

k2

(
EOf∗ + En̄

)
+ (2k1 + 1)(2k2 + 1)EH⊗n (6.10)

+ (2k2 + 1)k1(2EEfS + E∧n−t(X) + E∧n−t+1(X) + E∧1(X) + En̄)

where

k1 =

 π

4 arcsin

√
M ′S+2t

2n

− 1

2

 and k2 =

 π

4 arcsin
√

1
2t

− 1

2

 . (6.11)
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Proof. Let S = f
−1(1)
S and Zt =

{
1n−t‖x′ : x′ ∈ {0, 1}t

}
be the set of 2t bitstrings of length n

whose first n− t values are 1. We now define the function fS∪Zt : {0, 1}n −→ {0, 1} by

fS∪Zt(x) 7→

1 (fS(x) = 1) ∨ (x ∈ Zt)

0 otherwise
(6.12)

and use the notation MS∪Zt = |f−1
S∪Zt(1)|. This naturally defines the quantum phase oracle

OfS∪Zt , which will replace the role of the quantum phase oracle OfS . We will detail how OfS∪Zt
may be constructed from the quantum evaluation EfS and prove the computational resources

required for our modification after first proving a computational lower bound on the success

probability of our modification.

Our first step is to define the quantum algorithm B by using amplitude amplification (see

Theorem 3.6) with the quantum algorithm A = H⊗n, the quantum phase oracle OfS∪Zt and

setting k1 =

 π

4 arcsin

√
M′
S

+2t

2n

− 1
2

 to create a quantum algorithm B with success probability

b = sin2

2

 π

4 arcsin

√
M ′S+2t

2n

− 1

2

+ 1

 · arcsin

√
MS∪Zt

2n

 (6.13)

> sin2

 π

2 arcsin

√
M ′S+2t

2n

− 2

 ·√ 2t

2n

 = b′ (6.14)

by using the fact that x ≤ arcsinx, x − 1 < bxc and that the argument of sine in (6.13) is less

than π
2 , hence we can exploit the fact that sine is an increasing function on the domain [0, π2 ].

We therefore have a computational lower bound b′ on the success probability of B relative to

fS∪Zt . The success probability of B relative to f∗ is therefore b
MS∪Zt

and our lower bound on the

success probability of B relative to f∗ is b′

M ′S+2t
.

Amplitude amplification with the quantum algorithm B, quantum phase oracle Of∗ and with

k2 =

⌊
π

4 arcsin
√

1
2t

− 1
2

⌋
then gives us a quantum algorithm C with a success probability

c = sin2

2

 π

4 arcsin
√

1
2t

− 1

2

+ 1

 · arcsin

√
b

MS∪Zt

 (6.15)

> sin2

 π

2 arcsin
√

1
2t

− 2

 ·√ b′

M ′S + 2t

 = c′ (6.16)

relative to f∗ using the same strategy and arguments used to derive that b > b′ in conjunction

with the fact that b′

M ′S+2t
≤ b

MS∪Zt
≤ 1

2t . We therefore have a computational lower-bound on the

success probability of C assuming that MS < M ′S . The probability of this occurring is at least

1− ε by assumption, hence the success probability of C relative to f∗ is greater than (1− ε) · c′.
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Implementing OfS∪Zt . We assume that we possess a circuit to compute the quantum evaluation

EfS , though the following can be adapted to create the quantum bit oracle O(b)
fS∪Zt

from the

quantum bit oracle O(b)
fS

. The identity A ∨ B ≡ A ⊕ B ⊕ (A ∧B) implies we can implement

fS∪Zt : {0, 1}n −→ {0, 1} via computing

fS∪Zt(x) = fS(x)⊕ (x ∈ Zt)⊕ (fS(x) ∧ (x ∈ Zt)) . (6.17)

We can compute O(b)
fS∪Zt

with a single ancilla qubit. We first compute and store |fS(x)〉 in this

ancilla qubit via one quantum evaluation EfS and write it to the output qubit using a single

∧1(X) gate. We can then write |(x
?
∈ Zt)〉 to the output qubit via a single ∧n−t(X) gate with

the controls set to be the first n− t qubits of |x〉. The addition of fS(X)∧ (x ∈ Zt) is performed

via a single ∧n−t+1(X) gate with the controls set to be the first n− t qubits of |x〉 as before and

the additional control being the qubit holding |fS(x)〉. The output register then holds

|x〉 |g(x)〉 |fS(x)〉 |fS(x)⊕ (x ∈ Zt)⊕ (fS(x) ∧ (x ∈ Zt))〉 (6.18)

and we need only execute E†fS (the quantum evaluation EfS in reverse) to clear up the working

memory used to compute |fS(x)〉. Assuming that we have a single qubit kept in the state |−〉,
the quantum phase oracle OfS∪Zt therefore has an execution cost of

EOfS∪Zt
= 2EEfS + E∧n−t(X) + E∧n−t+1(X) + E∧1(X) (6.19)

and as a ∧k(X) gate can be implemented with O(k) gates, it is easily seen that EOfS∪Zt
≈ EOfS

if we are working with quantum evaluations as we can implement a quantum bit oracle via two

quantum evaluations and one ∧1(X) gate.

The cost of B. Letting k1 =

 π

4 arcsin

√
M′
S

+2t

2n

− 1
2

, we have that

EB = EH⊗n + k1 ·
(

2EEfS + ∧1(X) + E∧n−t(X) + E∧n−t+1(X) + En̄ + 2EH⊗n
)
. (6.20)

The cost of C. Letting k2 =

⌊
π

4 arcsin
√

1
2t

− 1
2

⌋
, we have that

EC = EB + k2

(
EOf∗ + En̄ + 2EB

)
(6.21)

= k2

(
EOf∗ + En̄

)
(6.22)

+ (2k1 + 1)(2k2 + 1)EH⊗n (6.23)

+ (2k2 + 1)k1

(
2EEfS + E∧n−t(X) + E∧n−t+1(X) + E∧1(X) + En̄

)
. (6.24)

Putting these execution costs together, we have the total cost as given in Theorem 6.4.
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Using a first order approximation arcsinx ≈ x, if M ′S � 2t � 2n, it is evident that

k1 ≈
π

4
· 2(n−t)/2, k2 ≈

π

4
· 2t/2 and (2k2 + 1)k1 ≈

π2

8
· 2n/2. (6.25)

Under the assumption that 2EEfS∪Zt
≈ EOfS∪Zt

(as it is for the single-target preimage search

problem) and that EH⊗n � EOfS � EOf∗ , we have that the term π2

8 · 2
n/2 ·EOfS will dominate

the execution cost, as in the original solution to the STO problem given in Theorem 6.3.

6.2.1 Advantages and disadvantages of the STO approach

Our main concern is the circuit-size of the quantum circuit, but circuit-depth is also an important

metric. We briefly discuss the impact of our approach upon quantum circuit-depth. If EOf∗ and

EOfS represent the respective quantum circuit-depths of the quantum oracles Of∗ and OfS , then

if we are using a fully parallel approach to implementing these oracles then it may hold that

EOf∗ ≈ EOfS — this can easily be seen to occur in the case where f∗ and fS are derived from a

constraint-based decomposition (see Definition 2.24) and we evaluate each constraint in parallel.

If we are considering circuit-depth as the sole metric in this scenario, then the STO technique

will negatively impact upon circuit depth.

One potential countermeasure for this is trading off some of the advantage in circuit-size/circuit-

width for circuit-depth via a fixing strategy and running instances in parallel. In this scenario,

we have multiple quantum computers and run parallel quantum search procedures upon the

problem, with k out of n bits fixed. This leads to a scenario where we are running 2k algorithms

in parallel on separate quantum computers, but each at a much smaller cost. Unfortunately it is

well-known [Zal99] that Grover’s algorithm at least is not embarassingly parallel procedure, in

that this fixing strategy would result in a speedup of approximately 2k/2 but also increase the

total number of quantum gates that we must execute by approximately 2k/n. This can easily be

seen as if the circuit-size of the quantum oracle is fixed at C and the circuit-depth is fixed at D,

then the total number of gates we must execute will be

2k · 2
n−k

2 · C = 2
k
2 · 2

n
2 · C (6.26)

whilst the individual circuit-depth will be

2
n−k

2 ·D. (6.27)

We note that this fixing strategy may negate the need to use the STO approach, as if the number

of solutions MS = |f−1
S (1)| is small then fixing bits of the search-space may reduce the problem to

that of a single-target search problem where we simply use the cheaper quantum oracle OfS with

Grover’s algorithm and avoid the constant increase in costs associated with using the quantum

oracle Ofs with STO approach.
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6.3 Applications of STO to quantum resource estimation

We now proceed to examine applications of our approach to obtain new quantum resource es-

timations for solving both instances of MQ(F2, n,m) (see Section 1.3) and the AES key-search

problem (see Section 1.4). The quantum oracles and evaluations for these problems were previ-

ously discussed respectively in Sections 2.5.2 and 2.6. In this section we examine several applica-

tions of the modified STO approach given in Theorem 6.4 to existing quantum resource estimates

in cryptanalysis, specifically cryptanalysis via direct quantum search of the MQ problem over

F2 (see Section 1.3) and the key-search problem applied to the AES (see Section 1.4).

Both are instances of the single-target preimage search problem (see Definition 1.2) defined by

h : {0, 1}n −→ {0, 1}m, Yh = {yh} ⊆ {0, 1}m and the assumption that Mh = |h−1(yh)| = 1, which

in turn defines the boolean indicator χ : {0, 1}n −→ {0, 1} for the unstructured search problem,

where Mχ = |χ−1(1)|. Both problems additionally exhibit a constraint-based decomposition so

that there exist k non-trivial boolean functions χ1, . . . , χk : {0, 1}n −→ {0, 1} with the property

χ(x) 7→ χ1(x) ∧ · · · ∧ χk(x). (6.28)

In relationship to the STO problem (see Definition 6.1) and Theorem 6.4, we will wish to define

the functions fS , f∗ : {0, 1}n −→ {0, 1} in relationship to this decomposition. If we induce the

subscript 0 < r ≤ k to the function fS , then we can define the function fSr : {0, 1}n −→ {0, 1}

fSr(x) 7→ χi1(x) ∧ · · · ∧ χir(x), (6.29)

where i1, . . . , ir ∈ {1, . . . , k} and are unique. In this case, we have that f∗ = fSk and fS = fSr

for some chosen value of r. In the general case it will hold that Eχi may be very different when

i 6= j, but in both the cryptanalysis of theMQ problem over F2 and the key-search problem for

AES-{128, 192, 256} it will hold that Eχi ≈ Eχj .
Given the cost framework we have introduced in Chapters 2 and 3 it will prove a relatively

simple task to compute the circuit-complexity and logical qubit requirements for these scenarios.

The reason why we require our modification to the STO algorithm given in Theorem 6.4 as

opposed to simply using the solution by Kimmel et al given in Theorem 6.2 is because we cannot

exactly know MSr = |f−1
Sr

(1)|.

6.3.1 On the probability distributions of pseudorandom functions

We will use Markov’s inequality for purposes of computing M ′S such that Pr[MS < M ′S ] ≥ 1− ε.

Theorem 6.5 (Markov’s inequality [GS01]).

If X is any positive valued random variable such that E[X] <∞ and a > 0, then

Pr[X ≥ a] ≤ E[X]

a
. (6.30)
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Corollary 6.6 (Tail bound via Markov’s inequality).

If X is any positive valued random variable such that E[X] <∞ and a > 0, then

Pr[X ≥ E[X]

a
] ≤ a. (6.31)

Proof. Substitution of a = E[X]
a in Markov’s inequality.

To ensure that the condition Pr[MS ≥ M ′S ] ≤ ε holds for a chosen value of ε, we therefore

simply need to take M ′S = E[X]
ε . With M ′S and ε fixed, the only parameter left to consider in

Theorem 6.4 is therefore 0 ≤ t ≤ n and by numerical simulation we can compute the success

probability and costs involved for various choices of t by the given formulae.

6.3.1.1 The MQ problem

For an instance of MQ(F2, n,m), the respective cost of the quantum oracles Of∗ and OfS are

therefore simply the cost of quantum oracles for an instance of MQ(F2, n,m) and a quantum

oracle for an instance of MQ(F2, n, r) for 0 < r < m. Explicitly, f∗ = fSm and fS = fSr , where

fSr(x1 . . . xn) 7→
(
f (1)(x1, . . . , xn)

?
= 0
)
∧ · · · ∧

(
f (r)(x1, . . . , xn)

?
= 0
)
. (6.32)

For a random instance MQ(F2, n,m) of the MQ problem over F2 we expect each equation to

act as a pseudorandom function, in that for a uniformly chosen x1 . . . xn ∈ {0, 1}n, we expect

f (k)(x1, . . . , xn) to evaluate to 0 or 1 with equal probability. The probability of whether r

equations are satisfied by a given x1 . . . xn ∈ {0, 1}n is then the product of r independent Bernoulli

trials, giving a probability of 2−r that f (1)(x1, . . . , xn) = · · · = f (r)(x1, . . . , xn) = 0. The number

of elements x1 . . . xn ∈ {0, 1}n that are expected to satisfy r ≤ m equations is therefore the

expectation of the binomial distribution with 2n trials, each of which have a success probability

of 2−r. This gives us that the expected number of elements that satisfy r equations is 2n−r.

The cost for theMQ(F2, n,m) quantum bit oracle using both the low-memory and counter-

based approaches described in Section 2.4 are given in Table 2.5. We will examine three scenarios

1. where OfSm and OfSr are both implemented via the low-qubit oracles, so that we use

n+m+ 2 qubits.

2. where OfSm and OfSr are both implemented via the counter-based method, so that we use

n+ dlog2(m+ 1)e+ 2 qubits.

3. where OfSm is implemented via the counter-based method and OfSr is implemented via

the low-qubit approach, where we use an intermediate number of qubits.

We choose ε = 2−15, which gives us that Pr[MS < M ′S ] ≥ 1− 2−15 > 0.9999, which will give us

our upper-bound for the minimal success probability of our approach.
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We obtain the results in Table 6.1 below by numerical simulation to find an appropriate value

of 0 < t < n by simply increasing t until the probability of success begins to decrease. The code

used to generate these results may be found in the code attached to this thesis. As is standard

in this thesis, we provide the resources required in relation to the initially proposed parameters

for the Gui cryptosystem [PCY+15, PCDY17a, PCDY17b] (see Section 1.3.7). We denote the

cost by 2 · 2x to emphasise that two serial searches are required to forge a signature for Gui.

λ MQ(F2, n,m) #Clifford #T #Total T Total #Qubits Success ε r t Notes
gates gates gates depth depth %

80 2 · MQ(F2, 117, 117) 2 · 278.69 2 · 274.55 2 · 278.77 2 · 273.40 2 · 278.69 236 99.996 2−15 29 111 Low-memory
80 2 · MQ(F2, 117, 117) 2 · 279.68 2 · 275.56 2 · 279.76 2 · 274.39 2 · 279.68 126 99.996 2−15 29 112 Counter-based
80 2 · MQ(F2, 117, 117) 2 · 278.84 2 · 274.70 2 · 278.92 2 · 273.56 2 · 278.84 153 99.996 2−15 34 106 Hybrid approach
80 2 · MQ(F2, 117, 117) 2 · 279.89 2 · 274.53 2 · 279.97 2 · 274.53 2 · 279.89 236 ≈ 100.00 N/A N/A N/A Grover [SW16]

128 2 · MQ(F2, 209, 209) 2 · 2126.45 2 · 2121.52 2 · 2126.49 2 · 2120.37 2 · 2126.45 420 99.996 2−15 33 199 Low-memory
128 2 · MQ(F2, 209, 209) 2 · 2127.42 2 · 2122.49 2 · 2127.46 2 · 2121.32 2 · 2127.42 219 99.996 2−15 34 198 Counter-based
128 2 · MQ(F2, 209, 209) 2 · 2126.55 2 · 2121.63 2 · 2126.59 2 · 2120.47 2 · 2126.55 246 99.996 2−15 35 197 Hybrid approach
128 2 · MQ(F2, 209, 209) 2 · 2128.35 2 · 2123.38 2 · 2128.34 2 · 2122.18 2 · 2128.35 420 ≈ 100.00 N/A N/A N/A Grover [SW16]

256 2 · MQ(F2, 457, 457) 2 · 2252.78 2 · 2246.76 2 · 2252.81 2 · 2245.60 2 · 2252.78 916 99.996 2−15 36 444 Low-memory
256 2 · MQ(F2, 457, 457) 2 · 2253.76 2 · 2247.74 2 · 2253.78 2 · 2246.55 2 · 2253.76 468 99.996 2−15 36 444 Counter-based
256 2 · MQ(F2, 457, 457) 2 · 2252.83 2 · 2246.81 2 · 2252.85 2 · 2245.65 2 · 2252.83 497 99.996 2−15 38 441 Hybrid approach
256 2 · MQ(F2, 457, 457) 2 · 2255.69 2 · 2249.63 2 · 2255.72 2 · 2248.42 2 · 2255.69 916 ≈ 100.00 N/A N/A N/A Grover [SW16]

Table 6.1: Quantum resource estimates for instances ofMQ(F2, n,m) using our STO approach.

As we can see from Table 6.1, the low-memory approach to oracle design can be improved

upon enough to break the proposed parameters for Gui, though the counter-based oracle for

λ = 80 and λ = 128 cannot. When we replace the cheaper oracle with the low-memory design

and exploit the counter-based oracle only in the more expensive oracle, we can achieve a quantum

search algorithm that break all of Gui’s proposed quantum resistant parameters and only uses

slightly more qubits than the counter-based approach. The algorithm as it stands is superior in

all metrics to Grover, with the exception of the success probability — the author believes that

with finer-grained analysis and reformulation of the algorithm that this can be improved upon.

6.3.1.2 The Advanced Encryption Standard

In the case of the key-search scenario (see Section 1.4), we are given that there exists at least one

solution to this search problem, which corresponds to the users key. However, as the function

hr : {0, 1}k −→ {0, 1}rn defined by the fixed set of r different plaintexts P1, . . . , Pr ∈ {0, 1}n and

hr(x) 7→ Enc(x, P1)‖ . . . ‖Enc(x, Pr) (6.33)

is expected to act as a pseudorandom function, the probability that the element x ∈ {0, 1}k has

the property that hr(x) = C1‖ . . . ‖Cr ∈ {0, 1}rn for a given r is 2−rn. Given that we are promised

one solution, the expected number of solutions is therefore 1 + (2n− 1) · 2−rn = 1 + 2n−rn− 2−rn

by the binomial distribution, giving us our value of E[X].

As before, this problem admits a constraint-based decomposition indexed by r and the re-

spective costs for the quantum bit oracles for the AES are given in Table 2.8 for the expensive

oracle Of∗ (where r = 2 for AES-128/192 and r = 3 for AES-256) and in Table 2.9 for the

cheaper oracle OfS (where r = 1 for AES-128/192/256).

Using these quantum oracles, we can therefore derive the following quantum resource estimates.
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AES-k/ #Clifford #T #Total T Total #Qubits Success ε t Quantum algorithm/oracle type
gates gates gates depth depth %

128 285.71 285.32 286.53 281.02 282.39 1969 ≈ 100.00 2−30 50 STO (Theorem 6.4)/direct-evaluation
128 285.71 285.32 286.53 281.02 282.39 988 ≈ 100.00 2−30 50 STO (Theorem 6.4)/counter-based
128 286.05 285.67 286.87 280.37 281.73 1969 ≈ 100.00 N/A N/A Grover/direct-evaluation [GLRS16]
128 286.64 286.23 287.45 281.92 283.07 988 ≈ 100.00 N/A N/A Grover/counter-based [GLRS16]

192 2117.89 2117.89 2118.89 2112.85 2114.0 2225 ≈ 100.00 2−30 120 STO (Theorem 6.4)/direct-evaluation
192 2117.89 2117.89 2118.89 2112.85 2114.0 1340 ≈ 100.00 2−30 120 STO (Theorem 6.4)/counter-based
192 2118.23 2118.23 2119.23 2112.2 2113.34 2225 ≈ 100.00 N/A N/A Grover/direct-evaluation [GLRS16]
192 2118.82 2118.44 2119.64 2113.63 2114.89 1340 ≈ 100.00 N/A N/A Grover/counter-based [GLRS16]

256 2150.21 2149.83 2151.03 2145.28 2146.42 4009 ≈ 100.00 2−30 172 STO (Theorem 6.4)/direct-evaluation
256 2150.21 2149.83 2151.03 2145.28 2146.42 1340 ≈ 100.00 2−30 172 STO (Theorem 6.4)/counter-based
256 2151.14 2150.76 2151.96 2144.64 2145.78 4009 ≈ 100.00 N/A N/A Grover/direct-evaluation [GLRS16]
256 2151.88 2151.5 2152.7 2146.89 2148.04 1340 ≈ 100.00 N/A N/A Grover/counter-based [GLRS16]

Table 6.2: Quantum resource estimates for the AES key-search problem via the STO approach.

As we can see from Table 6.2 above, we have that we can achieve a near 100% success

probability, using fewer qubits. The only metric that suffers is the quantum circuit-depth. As

is plain, there is no benefit in using the direct-evaluation strategy for the secondary quantum

oracle over the counter-based approach — the negligible increase in depth is absorbed by the

depth contributed by the first less expensive quantum oracle OfS consisting of one AES-k circuit

being evaluated and tested against a single ciphertext.

There is marked notice on quantum circuit-depth when comparing Grover with a direct

parallel evaluation as used in [GLRS16] against the STO approach, we can recover some of this

circuit-depth by the discussion in Section 6.2.1, using a fixing strategy and parallel evaluation

to trade circuit-size for circuit-depth whilst keeping the number of qubits fixed.

6.4 Summary and future work

We have begun work on an approach to lower the projected costs of executing quantum algo-

rithms by modifying the original solution to the STO problem [KYYLHH15] to take into account

real-world factors, such as lack of knowledge concerning the exact value of the number of ele-

ments marked by the cheaper oracle and minor advantages of relaxing the conditions so that the

algorithm uses amplification amplification instead of exact amplitude amplification.

There is the possibility to extend this work in several directions. In terms of the algorithm

in general, whilst the approach is valid it may prove slightly advantageous — either in terms

of performance or analysis — to reformulate this algorithm or (in the context of Theorem 6.4)

choose slightly different values of k1 and k2. In particular, the author believes that Theorem 6.4

might be reformulated to provide a worst-case guarantee on its success probability that takes into

account the case when MS ≥M ′S . A thorough treatment of exactly when Theorem 6.4 provides

an average-case advantage over the original STO algorithm is also missing. It is clear that for

AES−128 the unmodified ratio MS : M ′S may be relatively large, but for AES−192/256 the

original STO algorithm (relaxed to use amplitude amplification) using an expectation derived

from the binomial distribtion should suffice in the average-case.
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A tighter analysis of the discrete probability distribution for Pr[MS = X] for either the

problems we have examined or in general is also in order. In particular, the Markov inequality is

a very weak bound and as the probability distribution we study for both cryptographic problems

we study is known to be the binomial distribution, this work would benefit by examination how

the Chernoff inequality applies. We note again that if other probability distributions are known

for alternate problems, then there may be more efficient quantum search methods [Mon10] that

can be used. An examination of the performance of this algorithm used both in comparison to,

and in conjunction with, a fixing strategy is also an open problem.

We have only examined two simple problems in cryptanalysis. The author believes that many

problems will benefit from the adapted STO approach and it would be particularly interesting

to apply this problem to the case where the cost of the quantum evaluation for each constraint

EEχi and the expected size of the preimages Mχi = |χ−1
i (1)| are very different when i 6= j.
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Chapter 7

Conclusions

The first principle is that you must not fool yourself and you are the easiest person

to fool. So you have to be very careful about that. After you’ve not fooled yourself,

its easy not to fool other scientists. You just have to be honest in a conventional way

after that.

- Richard Feynman, 1974 Caltech Graduation address [Fey74]

In this final chapter we briefly reflect on the results of this thesis, lessons learnt, the author’s

personal thoughts on the impact of this work and future extensions. The field of cryptographic

research is by nature one that crosses many disciplines and this thesis has examined the gap in

knowledge between those cryptographic and quantum algorithm design communities.

At the time of writing, the cryptographic community is currently designing new crypto-

graphic primitives that will be (hopefully) resistant against attacks by quantum computers.

Part of this process is the important topic of choosing parameters for these cryptosystems,

which has a crucial impact upon the efficiency and long-term security of these schemes. As

we have seen, quantum resistant parameters were previously derived for the Gui cryptosys-

tem [PCY+15, PCDY17a, PCDY17b] based upon the impact of Grover’s algorithm based upon

using the best known quantum attack on instances of MQ(F2, n,m) to the cryptographic com-

munity, that being Schwabe and Westerbaan’s quantum bit oracle in conjunction with Grover’s

algorithm. The focus of this thesis was to develop a body of evidence that the current practice

of extrapolating cryptographic parameters from existing, unoptimised quantum algorithms is

dangerous in terms of long-term security.

The ENTS approach was the starting work for this thesis, providing the general theme of

what we can do to balance the costs involved with Grover’s algorithm when there exists structure

we can exploit to artificially introduce new solutions into the search domain. This was then

generalised into the GENTS framework, with an examination of how preprocessing could be

applied to GENTS and how, moving away from Grover’s algorithm, amplitude amplification can

be used to further improve these results. Finally, we examined the Search with Two Oracles

method [KYYLHH15] and how it could be applied to both quantum bit oracles for the MQ
problem and the key-search problem for AES, using both large and small numbers of qubits.
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Whilst ENTS, GENTS and the work on preprocessing and secondary quantum search dealt

mainly with optimisation of the low-memory quantum oracle design approach, the STO modifi-

cation focused upon how quantum search could be optimised when we have only a small number

of logical qubits at our disposal, demonstrating that low-qubit quantum search is not as detri-

mental to total quantum circuit-size as once thought if there exists structure we can exploit with

the STO approach.

7.1 Impact

All our methods clearly break the parameters for the Gui signature scheme [PCY+15] proposed

to resist attacks by quantum computers. These parameters [PCDY17a, PCDY17b] were chosen

relative to a quantum attack on instances ofMQ(F2, n,m) by Schwabe and Westerbaan [SW16].

The choice of these parameters is particularly interesting — Gui was initially proposed and anal-

ysed with respect to analysis with classical computers[PCY+15], mentioning Grover’s algorithm

as an afterthought. The method proposed to counter the impact of Grover’s algorithm was simply

to double the number of bits — in effect discounting the cost of the implementing the quantum

oracle. After Schwabe and Westerbaan’s quantum bit oracle was published [SW16] new parame-

ters were proposed which took into account the entire cost of this attack [PCDY17a, PCDY17b].

In relation to the current NIST competition [oST16a], other schemes (see MQDSS [CHR+17])

as well as Gui are also having their parameters chosen relative to the projected costs of quantum

search algorithms including the overhead of the quantum oracle. On the other hand, others are

being more cautious and choosing lower bounds corresponding only to the query-complexity of

these attacks (see GeMSS [CFMR+17]). We emphasis that our optimisations do not break the

suggested parameters for the Gui submission in the NIST competition, owing to the inclusion

of the MAXDEPTH parameter, which places a constraint upon the maximum depth of any

quantum circuit used in the cryptanalysis of these schemes.

The author believes that for long-term security choosing parameters relative to current im-

plementations of quantum search using Grover’s algorithm is a risky business. As we have seen

in Chapter 3, Grover’s algorithm [Gro96] (see Theorem 3.10) can be viewed as simply a special

case of amplitude amplification [BHMT02] (see Theorem 3.6), hence naively using a special case

of an algorithm can be seen as being somewhat dangerous. Whilst Grover’s algorithm is well-

understood by the cryptographic community, the nuances of amplitude amplification seems to be

less-well known. and the basic method of taking a classical circuit, converting this to a quantum

circuit and using Grover’s algorithm to determine the cost of quantum search, the cryptographic

community is less familiar with the nuances of amplitude amplification, alternative quantum

search algorithms and optimisation methods.

The safe choice would appear to be choosing the query-complexity of Grover’s algorithm as

a lower-bound, effectively giving the cost of implementing the quantum oracle and diffusion step

as a unit cost, so that

Eχ + En̄ + 2EH⊗n = 1. (7.1)
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This clearly protects against any minor optimisations that can be made and would mean that

the optimisations in this thesis have no impact on parameter sizes. A halfway measure might be

instead to choose to simply allow Eχ = 1, so that the overhead is simply

1 + En̄ + EH⊗n , (7.2)

as the diffusion step must be implemented for Grover’s algorithm to succeed. However, optimi-

sations such as [AdW17] impact upon this approach. This approach also ignores the fact that

we can effectively hide computational work within the quantum bit oracle if we assign it a unit

cost — for instance we could define the quantum bit oracle so that it performs a classical search

on K = 2n/2 elements of the search domain {0, 1}n, implying that we have a two stage search

procedure where the first quantum search procedure has an execution cost of

≈
√

2n

2n/2
= 2n/4 (7.3)

whilst the subsequent search of the K = 2n/2 elements has a cost of

≈
√

2n/2 = 2n/4, (7.4)

implying the cost of quantum search is ≈ 2 · 2n/4. One safe countermeasure for this approach

might be to allow the cost of the quantum oracle to be a unit cost if it only recognises a single

target in the search domain. The discussion is clearly nuanced and the benefits and long-term

security risks is something that must be decided by the community.

Finally, our results on the cryptanalysis of the AES key-search problem via STO impact

upon the NIST competition directly, as the call for proposals [oST16b] explicitly states that for

submissions

”Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for key search on a block

cipher with a 128/192/256-bit key (eg.AES-128/192/256).”

Our work on cryptanalysis with small numbers of qubits via STO may also mean that the threat

that quantum computers pose may be closer than previously thought, as whilst the number of

qubits available on a quantum computer increase each year, logical qubits will most likely always

be a scarce resource.

7.2 Caveats

None of the techniques in this thesis even approach removing the overhead of the quantum phase

oracles with Grover’s algorithm. We make modest gains, but ones that are enough to shave a

few bits off the security parameters. The author believes that there is future work to be done

in finding interesting optimisations to existing quantum search routines for specific problems, as

many proofs and assumptions are based upon treating the quantum phase oracle as a black box.
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Choosing cryptographic parameters with regards to purely the query complexity of Grover’s

algorithm (as was commonly done before quantum resource estimation became relatively com-

mon) is clearly the safe way to go for the single-target search case. We cannot ensure that

new and improved quantum or classical algorithms are not invented, but we can protect against

optimisations in this way.

Finally, we stress that the work in this thesis is relative to a specific security model involving

quantum computing that the cryptographic community uses. The real cost of running any

quantum search routine is expected to be vastly more expensive [ADMG+16], as it will involve

quantum error-correction schemes, which imply an additional polynomial overhead over the

quantum resource estimates contain in this thesis.

7.3 Future work

In terms of future work, the ENTS and GENTS framework in Chapter 4 and examples demon-

strate that the balancing of costs is an important real-world (at least in this model) factor for

designing quantum search algorithms — we hope that this message is absorbed by the community

and that this becomes a general heuristic towards the design of quantum algorithms. It would be

interesting if there were application specific ENTS that were not similar to their implementation

in the GENTS framework. An example of ENTS which could be implemented where GENTS

could not be or an example where ENTS provides some advantage over a nested approach to

quantum search would also be interesting to find.

The quantum extension of GENTS in Chapter 5 could additionally benefit from a refined

examination of both the extension to a recursive application of this quantum algorithm and

optimisation. As with ENTS and GENTS, examining more applications — particularly hash

functions via the Merkle-Damg̊ard construction technique is of interest to see if there are gains.

The STO algorithm as given in Chapter 6 requires refinement, in terms of potentially refor-

mulating the algorithm to allow clearer analysis and in obtaining better lower bounds for the

probability of success. There is also the question of extending this to multi-target preimage

search, which should yield advantageous results.

The application of these techniques to problems that impact upon industry is an open question

that the author would like to investigate. Finally, whether these optimisations transfer favourably

to model of quantum computing that takes into account quantum error-correction would be of

immense interest to the author.
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[AFI+04] Gwénolé Ars, Jean-Charles Faugere, Hideki Imai, Mitsuru Kawazoe, and Makoto

Sugita. Comparison between xl and gröbner basis algorithms. Advances in
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[BFSS13] Magali Bardet, Jean-Charles Faugére, Bruno Salvy, and Pierre-Jean Spaenlehauer.

On the complexity of solving quadratic boolean systems. Journal of Complexity,

29(1):53–75, 2013.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum ampli-

tude amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 820–831.

Springer, 1998.

[BY18] Daniel J Bernstein and Bo-Yin Yang. Asymptotically faster quantum algorithms

to solve multivariate quadratic equations. In International Conference on Post-

Quantum Cryptography, pages 487–506. Springer, 2018.

[CBW08] Nicolas T Courtois, Gregory V Bard, and David Wagner. Algebraic and slide

attacks on keeloq. In International Workshop on Fast Software Encryption, pages

97–115. Springer, 2008.

[CFMR+17] A. Casanova, J.-C. Faugère, G. Macario-Rat, L. Patarin, J. Perret, and J. Ryck-

eghem. GeMSS–submission to the NIST post-quantum cryptography project.,

2017.

[CG17] Yu-Ao Chen and Xiao-Shan Gao. Quantum algorithms for boolean equa-

tion solving and quantum algebraic attack on cryptosystems. arXiv preprint

arXiv:1712.06239, 2017.

[CGW00] Nicolas J Cerf, Lov K Grover, and Colin P Williams. Nested quantum search and

structured problems. Physical Review A, 61(3):032303, 2000.

[CHR+17] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and

Peter Schwabe. MQDSS—submission to the NIST post-quantum cryptography

project., 2017.

130



[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient

algorithms for solving overdefined systems of multivariate polynomial equations.

In International Conference on the Theory and Applications of Cryptographic

Techniques, pages 392–407. Springer, 2000.

[CP03] Nicolas T Courtois and Jacques Patarin. About the XL algorithm over GF (2).

In Proc. of the 2003 RSA Cryptographers’ track, pages 141–157. Springer-Verlag,

2003.

[DC06] C Trivium De Canniere. A stream cipher construction inspired by block cipher

design principles. Information Security, pages 171–186, 2006.

[DG10] Vivien Dubois and Nicolas Gama. The degree of regularity of hfe systems. In

International Conference on the Theory and Application of Cryptology and Infor-

mation Security, pages 557–576. Springer, 2010.

[DGS06] Jintai Ding, Jason E Gower, and Dieter S Schmidt. Multivariate public key cryp-

tosystems, volume 25. Springer Science & Business Media, 2006.

[DK12] Jintai Ding and Thorsten Kleinjung. Degree of regularity for hfe minus (hfe-).

JMI: journal of math-for-industry, 4:97–104, 2012.

[DY13] Jintai Ding and Bo-Yin Yang. Degree of regularity for hfev and hfev-. In Inter-

national Workshop on Post-Quantum Cryptography, pages 52–66. Springer, 2013.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
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