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Abstract

In this thesis, we model the electronic and optical properties of stacked structures

of two-dimensional materials involving graphene. In particular, we discuss how

the interplay between the type and alignment of these stacked two-dimensional

crystals affects the observed physical properties.

Tuning the misalignment between two graphene layers leads to stark modifi-

cation to the resulting electronic band structure. By employing electronic Raman

scattering, we show that it is theoretically possible to accurately determine the

twist angle in twisted bilayer graphene samples close to the magic-angle.

We propose a new parameterisation for the interlayer coupling between twisted

graphene layers, and demonstrate that twisted trilayer graphene is the simplest

system in which the coupling in aligned and misaligned graphene bilayer can be

probed. By comparison to experimental photoemission data, we demonstrate the

validity and self-consistency of our model.

We discuss the tunnelling current across two van der Waals tunnelling transis-

tors. In the first, one or both of the electrodes are made of two crystals forming

a moiré superlattice at their interface. We investigate structures containing ei-

ther aligned graphene/hexagonal boron nitride heterostructure, twisted bilayer

graphene or aligned graphene on α − In2Te2 and show negative differential re-

sistance is possible in such transistors. In the second case we propose a tun-

nelling junction in an external magnetic field perpendicular to the layers, where

the source and drain electrode are comprised of bilayer and monolayer graphene

respectively. We show that, due to the effective difference in tunnelling barrier

width for electrons on the two layers of bilayer graphene and the valley-dependent

wave function distribution between these layers, the valley polarisation of the cur-

rent can be electrically tuned. We demonstrate that strong valley polarisation

can be obtained in the clean limit, where strong-momentum conserving tunnelling

dominates, and in lower quality devices where this constraint is lifted.
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2D Two-dimensional
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sBZ Superlattice Brillouin zone
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CHAPTER 1. INTRODUCTION

The ancient Greek philosopher Democritus posited that there must exist a

smallest, indivisible building block of matter [3] which he named “the atom”,

originating from the greek “atomos” for un-cuttable. According to Democritus,

after cutting a material many times there will eventually exist a smallest entity

which cannot be cut. Following this principle, we can imagine peeling away layer

after layer from a bulk material until only the thinnest possible layer exists. This

was achieved at Manchester University in 2004 where, due to the weak interlayer

bonds, a graphite slab was peeled down layer by layer using the famous “Scotch

tape method” until eventually only single layers remained. This lead to the first

experimental isolation of graphene by K. Novoselov and A. Geim in 2004 [4]

sending shockwaves through the scientific community.

At the time, it was theorised that truly two-dimensional atomic crystals would

be thermodynamically unstable, hence theoretical research into the electronic

properties of these isolated monolayers was limited [5]. However, not only is

graphene stable at room temperature, but it also possesses remarkable electronic,

mechanical and optical properties leading to a surge in interest in this mate-

rial within the experimental and theoretical condensed matter communities. For

example, graphene has a remarkably high conductivity [6] due to its conical elec-

tronic band structure and zero band-gap. The chirality of the charge carriers

in graphene leads to unique transport phenomena such as Klein tunnelling [7]

and weak antilocalisation [8, 9]. In addition, graphene has a remarkably high

opacity for a monolayer [10] such that optical based probes are readily deployed

in order to understand the underlying physics [11]. The strong sp2-bonding in

graphene leads to its characteristic honeycomb structure and ultra-high tensile

strength, ∼ 130GPa [12]. The strength and flexibility of graphene combined with

its excellent electron mobility suggests applications in flexible electronics.

Since this first mechanical exfoliation, more scalable production techniques

have been developed in order to isolate graphene, including chemical vapour de-

position [13, 14] and molecular beam epitaxy [15]. The fabrication of higher

quality graphene flakes using cheaper and more scalable methods will, over time,

lead to more practical applications and as such a firm theoretical understanding

of these materials is crucial.

1.1 van der Waals heterostructures

In only 15 years, the family of two-dimensional atomic crystals has grown

rapidly. Despite often having similar crystallographic structures, the electronic
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CHAPTER 1. INTRODUCTION

and optical properties of these materials differ significantly. Hexagonal boron

nitride (hBN), for example, is a wide band gap insulator [16] and has uses as a

substrate for graphene devices [17] due to the flat interface formed between the

hBN and graphene layers. Transition metal dichalcogenides (TMDs) are another

species of two-dimensional atomic crystal. Depending on the choice of transition

metal and chalcogen, the electronic properties of the TMD will vary. For example,

MoSe2 is a direct bandgap semiconductor [18] while TaSe2, where molybdenum

is replaced with tantalum, is metallic [19]. These materials have been shown

to demonstrate correlated electronic properties, including charge density waves

[20, 21] and, at large carrier concentrations, superconductivity [22].

These two-dimensional (2D) materials can be stacked on top of each other.

By virtue of being two-dimensional, the “bulk” of the 2D material is in close

proximity to adjacent layers, different to three dimensional bulk materials. The

most common example of this is Bernal (AB) bilayer graphene, where the conical

band structure of monolayer graphene becomes parabolic as a result of interlayer

coupling between the two stacked graphene layers [23]. Monolayer graphene,

despite its remarkable electronic properties, was never considered a replacement

for silicon in circuit transistors. The so-called “band-gap problem” of monolayer

graphene, referring to the lack of a band gap in its low energy band-structure,

prevents an ON and OFF state from being clearly defined [24]. By applying

a perpendicular electric field to a Bernal stacked bilayer a tuneable energy gap

opens at the neutrality point [25], creating a semiconducting material, enabling

a wider array of applications.

In most cases, the interlayer interactions between these two-dimensional atomic

crystals are governed by weak van der Waals forces [26, 27]. As a result, the crys-

tallographic alignment of these multilayered devices is not fixed and instead the

relative translational and rotational offset between the two layers becomes an

additional degree of freedom in their fabrication. Recently, it has been observed

that the stark spectral transformation of the bilayer graphene band structure as

a result of this misalignment angle [28] leads to unexpected strongly-correlated

physics including superconductivity [29, 30]. The resulting material, known as

twisted bilayer graphene, is the first purely carbon superconductor when the twist

is reduced to the so-called magic-angle. The exact mechanism resulting in the on-

set of superconductivity in this material is unknown and is an area of significant

interest in the condensed matter community, not least because it could help ex-

plain the superconductivity in high-Tc superconductors. This is because, although

the superconducting transition temperature of this material is low, Tc ≈ 1 K, the

relatively low charge density suggests that the superconducting order parameter

8



CHAPTER 1. INTRODUCTION

is relatively large.

Previous experimental studies have shown that dramatic spectral modification

is observed when graphene is placed on a host of almost commensurate two-

dimensional materials [31, 32, 33, 34, 35, 36]. Furthermore, the beating of these

two similar periodicities leads to a new large scale superlattice, with a unit cell on

the scale of ∼ 10 nm. This moiré pattern has been shown to lead to Hofstadter’s

butterfly in graphene on hbN superlattices [37, 38] as well as in twisted bilayer

graphene [39]. As a result, high temperature quantum fluctuations have been

observed in such a system due to Brown-Zak oscillations, where, in a quantizing

magnetic field, charge carriers behave as if they were moving in the absence of

such a field [40].

The large number of degrees of freedom that are exploitable during the fabri-

cation of these heterostructures offers physicists a vast playground within which

to explore unique physics and novel applications.

1.2 Outline

In this thesis, we seek to describe the electronic and optical properties of var-

ious graphene-based van der Waals heterostructures. We begin by introducing

the theoretical models describing the electronic band structures of 2D materials.

Starting with monolayer graphene we derive an expression for the electronic band

structure based on the tight-binding model before an effective low-energy descrip-

tion around the Brillouin zone corners is formulated. By stacking two aligned

monolayers, we demonstrate that the resulting band structure is parabolic and

susceptible to an applied perpendicular electric field. We then derive an effective

low-energy model for the lowest energy bands in this bilayer graphene. Moreover,

we calculate the Landau level spectrum and wavefunctions for monolayer and

bilayer graphene, arising as a result of a strong magnetic field applied perpendic-

ularly to the layer plane.

We then move on to discuss the origin of moiré patterns and superlattices

in van der Waals heterostructures in Chapter 3. We introduce the continuum

model for twisted bilayer graphene as a way to describe the interlayer coupling,

even for incommensurate structures. Then, the general perturbation Hamiltonian

for graphene on an almost commensurate substrate, in this case hBN, is derived

phenomenologically. We extend this to a system with graphene on an almost

commensurate
√

3 ×
√

3 lattice. We demonstrate that under application of a

large perpendicular magnetic field, the Landau level spectrum of a closely-aligned

9



CHAPTER 1. INTRODUCTION

graphene-hBN heterostructure is strongly modified leading to a fractal spectra

known as Hofstadter’s butterfly.

In Chapter 4, we focus on twisted bilayer graphene around the magic-angle.

In particular we demonstrate that, in theory, the electronic Raman spectrum of

twisted bilayer graphene acts as a probe of the misalignment angle. We show

that individual features in the electronic Raman spectrum can be attributed to

specific electron-hole excitations and that by noting the position and spectral

profile of these peaks, the misalignment angle can be inferred. The position of

these peaks, in the context of the overall Raman spectrum, suggests that the

desired features will not have to compete with known phonon-mode peaks, and

that the electronic Raman amplitude is larger than that theorised and previously

measured in monolayer graphene.

In Chapter 5, we introduce a theoretical model for angle-resolved photoe-

mission spectroscopy (ARPES) before comparing theoretical and experimental

results for twisted trilayer graphene, a three-layer structure where a monolayer is

stacked misaligned on top of a Bernal stacked bilayer. Uniquely for such a trilayer

structure, the presence of both aligned and misaligned configurations allows us

to compare descriptions in both real and reciprocal spaces and extract informa-

tion about the interatomic coupling. We demonstrate good agreement between

the experimental ARPES data and our theoretical ARPES model and coupling

parameterisation for two twist angles. We show that our parametrisation, self-

consistently describes the coupling in both aligned and twisted bilayer graphene,

marrying the tight-binding and continuum models typically employed to describe

these systems. Furthermore, in order to compare experimental and theoretical

ARPES data, we successfully model the substrate doping effect observed in ex-

periment, resulting in different on-site energies of the graphene layers.

From Chapter 6 onwards, we shift our attention to van der Waals tunnelling

transistors. Here we discuss theoretically electron transport in a van der Waals

tunnelling transistor in which one or both of the electrodes are made of two

crystals forming a moiré superlattice at their interface. As a proof of concept,

we investigate structures containing either an aligned graphene/hexagonal boron

nitride heterostructure or twisted-bilayer graphene and show that negative dif-

ferential resistance is possible in such transistors and that this arises as a conse-

quence of the superlattice-induced changes in the electronic density of states and

without the need for momentum conserving tunnelling present in high-quality ex-

foliated devices. We extend this concept to a device with electrodes consisting of

aligned graphene on α − In2Te2 and demonstrate negative-differential-resistance

peak-to-valley ratios of approximately 10.

10



CHAPTER 1. INTRODUCTION

In Chapter 7, we study theoretically the electron current across a monolayer

graphene/hexagonal boron nitride/bilayer graphene tunnelling junction in an ex-

ternal magnetic field perpendicular to the layers. Since, in bilayer graphene, the

Landau level wave functions are not equally distributed amongst the layers, and

that this distribution is reversed between the two valleys, the change in effec-

tive tunnelling barrier width for electrons on different graphene layers leads to

valley polarisation of the tunnelling current. We estimate that valley polarisa-

tion ∼ 80% can be achieved in high quality devices at B = 1 T. Moreover, we

demonstrate that strong valley polarisation can be obtained both in the limit of

strong-momentum conserving tunnelling and in lower quality devices where this

constraint is lifted.

Finally, we summarise the results presented in this thesis in Chapter 8 before

introducing some avenues for future work.

11
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CHAPTER 2. THEORETICAL MODEL OF MONOLAYER AND BILAYER
GRAPHENE

2.1 Geometry of monolayer graphene

Monolayer graphene (MLG) is a two-dimensional isomer of carbon arranged

in a honeycomb structure [41, 42], as shown in Fig. 2.1 (a) and (b). In particular,

MLG can be described as a triangular Bravais lattice with a two atom unit cell.

These two carbon atoms, typically labelled A and B, are symmetrically non-

equivalent and are known as the sublattice basis of MLG. The typical carbon-

carbon spacing between adjacent A and B atoms is roughly a0 = 1.46 Å[41, 43, 44]

and this defines the carbon-carbon distance. The primitive Bravais lattice vectors

of graphene, shown in red in Fig. 2.1 (a), are written as

a1 = a

(
1

2
,

√
3

2

)
, a2 = a

(
−1

2
,

√
3

2

)
, (2.1)

where a =
√

3a0 = 2.46 Åis the graphene lattice constant. We note that no linear

combination of primitive lattice vectors, R = ma1 + na2, where m,n ∈ Z, will

connect the A and B sublattices. Instead it is necessary to define a new set of

vectors which connect an A atom to its three nearest B sublattice neighbours,

shown in green in Fig. 2.1 (a)

δj = R̂ 2π(j−1)
3

(0, a0) , (2.2)

R̂θ =

(
cos θ − sin θ

sin θ cos θ

)
, (2.3)

where R̂θ defines the anticlockwise rotation operator by angle θ. The recipro-

cal lattice vectors associated with the Bravais lattice vectors of graphene are

expressed as

G1 =

(
2π

a
,

2π√
3a

)
, G2 =

(
−2π

a
,

2π√
3a

)
. (2.4)

The first Brillouin zone (BZ) associated with these reciprocal lattice vectors is

hexagonal as demonstrated in Fig. 2.1 (c). Due to the hexagonal nature of the

Brillouin zone, opposite corners, indexed by ξ = ±1, Kξ =

(
ξ

4π

3a
, 0

)
cannot

be connected by reciprocal lattice vectors. These inequivalent points are known

as valleys and it is around these points where most of the low-energy physics in

graphene is described.

13



CHAPTER 2. THEORETICAL MODEL OF MONOLAYER AND BILAYER
GRAPHENE

Figure 2.1: (a) Lattice structure of monolayer graphene with sublattice labels
A and B shown in orange and blue respectively. The red lattice vectors, a1 and
a2, define the unit cell shown in pink. The green vectors δi (i = 1, 2, 3) connect
nearest neighbours on different sublattices. (b) Crystal structure in (a) extended
to include more unit cells. (c) Brillouin zone (black hexagon) with high symmetry
points labelled. The reciprocal lattice vectors G1 and G2 are shown in purple.

2.2 Tight-binding model for monolayer

graphene

In this section we introduce the commonly used tight-binding model for mono-

layer graphene, first proposed by Wallace [41], which has been shown to describe

most low-energy single-particle electronic properties. The model’s validity rests

on the assumption that the electronic wavefunctions in graphene can be entirely

described using the atomic orbitals of the constituent carbon atoms, or in other

words, the electrons are “tightly-bound” to the carbon atoms.

Carbon is a group IV element and hence provides 4 outer shell electrons

occupying the 2p and 2s orbitals [41, 44, 45, 46, 47] (plus two core electrons in

1s orbital). In other carbon allotropes such as diamond, the electrons are shared

between all 2s and p orbitals forming four sp3- hybrids. This is responsible for

the tetrahedral crystal structure in diamond. In graphene, however, the electrons

redistribute forming three sp2-hybrid orbitals [42]. In particular, the 2s, 2px and

2py form strong in-plane covalent bonds with neighbouring orbitals forming the

characteristic honeycomb structure of MLG. The remaining 2pz orbitals project

out of plane and form weak π-bonds with neighbouring 2pz orbitals and it is

14



CHAPTER 2. THEORETICAL MODEL OF MONOLAYER AND BILAYER
GRAPHENE

these which are responsible for the low-energy physics in MLG. Therefore, the

wave function of MLG can be constructed from Bloch states composed of 2pz

orbitals. For a given wave vector k and position r, the electronic wave function

of the jth energy level, Ψj(r,k), in the tight-binding model is described as a

linear superposition of n distinct Wannier functions, ψm [42, 44, 47],

|Ψj(r,k)〉 =
1√
N

n∑
m

N∑
l

eikRl,mcm,j |ψm(r −Rl,m)〉 . (2.5)

We define Rl,m = Rl + τm as the position of the mth orbital in the lth unit cell

while cm,j represent the relative magnitudes of the mth orbital in the jth wave

function in the superposition. In the case of graphene there are n = 2 orbitals

per unit cell, A and B. For a Hamiltonian, H, the transfer integral, Hj(k), and

overlap integral, Sj(k), can be expressed as

Hj(k) = 〈Ψj(r,k)|H |Ψj(r,k)〉 , Sj(k) = 〈Ψj(r,k)|Ψj(r,k)〉 . (2.6)

From these, the energy of the jth band can be derived

Ej(k) =
Hj(k)

Sj(k)
. (2.7)

Using Eq. (2.7) and minimising with respect to the coefficients of the linear

superposition we can obtain the equation

1

N

N∑
l,l′=1

∑
m,m′=A,B

cm,je
ik(Rl,m−Rl′,m′ )H l,l′

m,m′ =
Ej
N

N∑
l,l′=1

∑
m,m′=A,B

cm,je
ik(Rl,m−Rl′,m′ )Sl,l

′

m,m′ ,

(2.8)

where the matrix elements are defined as

H l,l′

m,m′(k) = 〈ψm′(r −Rl′,m′)|H |ψm(r −Rl,m)〉 ,

Sl,l
′

m,m′ = 〈ψm′(r −Rl′,m′)|ψm(r −Rl,m)〉 . (2.9)

From this eigenvalue equation it is possible to find the value of the jth band

by using the secular equation det(H − EjS) = 0. The above expression can be

expressed as a 2× 2 matrix on the AB sublattice space of monolayer graphene(
HAA HAB

HBA HBB

)(
cA,j

cB,j

)
= Ej

(
SAA SAB

SBA SBB

)(
cA,j

cB,j

)
, (2.10)
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where the summations are absorbed into the matrix elements. The termHAA(HBB)

represents electron transfer between equivalent sublattices while HAB(HBA) rep-

resents transfer between different sublattices. The coupling element HAA becomes

HAA =
1

N

N∑
l,l′=1

eik(Rl,A−Rl′,A) 〈ψA(r −Rl,A)|H |ψA(r −Rl′,A)〉 . (2.11)

The sum over N unit cells is large and introduces multiple combinations including

transfer between orbitals with large spatial separation. As such, under the tight-

binding assumption, it is possible to restrict the sum to only include terms where

l = l′ resulting in

HAA '
1

N

N∑
l=1

〈ψA(r −Rl,A)|H |ψA(r −Rl,A)〉 = E0, (2.12)

where E0 describes the on-site potential of the 2pz orbital and, due to symmetry

arguments, HBB = HAA. Following the same reasoning, the summation in HAB

can be truncated to only include the three nearest-neighbour hoppings

HAB '
1

N

3∑
l′=1

N∑
l=1

eik·δl′ 〈ψA(r −Rl,A)|H |ψA(r −Rl′,B)〉 = γ0f(k), (2.13)

f(k) =
3∑

l′=1

eik·δl′ ,

where γ0 is the nearest neighbour hopping parameter in graphene and is estimated

to be equal to γ0 = −3.1eV [41]. Different values of this parameter have been

obtained from experiment [11], density functional theory [48] and the Slonczewski-

Weiss-McClure model [45] within the range of −2.7→ −3.2 eV. By virtue of the

reversed sign of δj when hopping from B to A, HAB = H†BA thus ensuring our

Hamiltonian is Hermitian

ĤMLG =

(
E0 γ0f(k)

γ0f
∗(k) E0

)
. (2.14)

Applying the same constraints to the overlap integral matrix S, one finds

SAA = SBB = 1 (2.15)

SAB = S†BA = s0f(k),

where s0 = 0.129 [41]. In the entirety of this thesis, energy is measured relative
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Figure 2.2: (a) Electronic band structure of monolayer graphene. The Brillouin
zone is shown by a black hexagon. (b) Low-energy band structure close to the
Brillouin zone corner or valley K+ shown in (a).

to the on-site energy, E0, which is therefore set to 0 for simplicity. The energy

bands of monolayer graphene can thus be obtained using Eqs. (2.10), (2.14) and

(2.15) and are presented in Fig. 2.2 (a). As touched on in the previous section,

the low-energy physics of graphene is described in the vicinity of the Brillouin

zone corners (“valleys”). Therefore, performing a Taylor expansion of f(k) for

small p/~ around the valley Kξ we obtain, to first order,

f(k)→ f(Kξ) + p · 1

~
∇f(Kξ) + ... (2.16)

' −a
√

3

2~
(ξpx − ipy). (2.17)

The term v = −γ0a
√

3

2~
is defined as the Fermi velocity of electrons in graphene.

Therefore continuing from Eq. (2.10), we obtain an expression for the effective

low-energy Hamiltonian

ĤMLG = v

(
0 ξpx − ipy

ξpx + ipy 0

)
. (2.18)

The resulting low-energy linear band structure, in the vicinity of theK+ is shown

in Fig. 2.2 (b) where we find that the energy spectrum is linear and gapless, form-

ing a so-called “Dirac-cone”, whose gradient is defined by the Fermi velocity, v.
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As such, we find the resulting energy level and eigenstate in monolayer graphene

E = sv|p|, ψs =

(
1

siξeiξθ

)
, (2.19)

where θ is the polar angle of p = |p|(cos θ, sin θ) and s is the band index. The

coupled momentum direction θ and sublattice index, {A,B}, is referred to as

chirality, and this is responsible for some of the interesting transport behaviour

in graphene such as Klein tunnelling [7].

2.3 Tight-binding model for Bernal bilayer

graphene

Bilayer graphene (BLG) is composed of two vertically-stacked layers of mono-

layer graphene. There are a few different types of stacking in Bilayer graphene,

these include: AA, where A (B) sublattices are directly over each other; Bernal

(AB), where the A atoms in the top layer are directly above B atoms in the

bottom layer; and twisted bilayer, where the graphene monolayers are stacked

with arbitrary in-plane misalignment. The most commonly observed stacking in

exfoliated samples is Bernal as it is the most energetically favourable [49, 50, 51].

This thesis will focus on Bernal and twisted bilayer.

The unit cell in Bernal-stacked bilayer graphene, is the same size as in MLG

(as shown in Fig. 2.3 (a)), however it now contains 4 carbon pz orbitals. We label

these A1, B1 in the bottom layer and A2, B2 in the top layer such that B1 lies

directly below A2. Restricting the sum to nearest neighbours, the tight-binding

coupling element between B1 and A2 is

HA2,B1 '
1

N

N∑
l=1

〈ψA2(r −Rl,A)|H |ψB1(r −Rl,B1)〉 = γ1, (2.20)

where γ1 = 0.39eV [50] and describes the strongest interlayer hopping in bilayer

graphene. For completeness, it is necessary to include the skew-interlayer hop-
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Figure 2.3: (a) Crystal structure of Bernal-stacked bilayer graphene, with A
and B sublattices labelled in orange and blue respectively, while 1 and 2 refer to
the bottom and top layer respectively. The solid (dashed) hexagons belong to
the bottom (top) monolayer graphene layer. The lattice vectors are shown in red
and the unit cell is shown in pink. (b) Side-on view of the 4 atom Bernal bilayer
graphene unit cell.The coupling constants between these atoms are indicated by
adjoining lines.

pings A1↔ A2, B1↔ B2 and A1↔ B2

HA1,A2 '
1

N

3∑
l′=1

N∑
l=1

eik·δl′ 〈ψA1(r −Rl,A1)|H |ψA2(r −Rl′,A2)〉 = γ3f(k),

HB1,B2 '
1

N

3∑
l′=1

N∑
l=1

eik·δl′ 〈ψB1(r −Rl,B1)|H |ψB2(r −Rl′,B2)〉 = γ3f(k),

HA1,B2 '
1

N

3∑
l′=1

N∑
l=1

eik·δl′ 〈ψA1(r −Rl,A1)|H |ψB2(r −Rl′,B2)〉 = γ4f
∗(k),

(2.21)

where the skew interlayer coupling strengths, γ3 and γ4, vary between experiment

and theory [11, 50]. The sites connected by γ1 are referred to as “dimer” sites.

Although the separations defining γ3 and γ4 are the same, the local environment

of dimer and non-dimer atoms are different, hence γ3 and γ4 are defined sepa-

rately [45, 50]. These coupling parameters are shown schematically in Fig. 2.3

(b). Using these coupling parameters, we can extend the tight-binding model for
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monolayer graphene to a two layer case

ĤBLG =


0 γ0f(k) γ4f(k) γ3f

∗(k)

γ0f
∗(k) 0 γ1 γ4f(k)

γ4f
∗(k) γ1 0 γ0f(k)

γ3f(k) γ4f
∗(k) γ0f

∗(k) 0

 . (2.22)

Similarly to monolayer graphene, the band structure in bilayer graphene has

conduction-band-minima and valence-band-maxima at theK points, however the

low-energy dispersion is approximately parabolic. The low energy band structure

Figure 2.4: (a) Low energy electronic band structure of Bernal bilayer graphene
in the vicinity of the K+ valley. (b) An applied perpendicular electric field
leads to a non-zero band gap, u, shown in red, at the neutrality point. We set
γ3 = γ4 = 0 for simplicity.

in the vicinity of the K+ valley is shown in Fig. 2.4 (a) where there exist addi-

tional bands approximately γ1 above and below the neutrality point, as compared

to MLG. Due to the interlayer separation in BLG it is relatively easy to generate

an on-site energy difference, u, between the top and bottom layer by means of a

perpendicular electric field

ĤBLG(u) =



u

2
γ0f(k) γ4f(k) γ3f

∗(k)

γ0f
∗(k)

u

2
γ1 γ4f(k)

γ4f
∗(k) γ1 −u

2
γ0f(k)

γ3f(k) γ4f
∗(k) γ0f

∗(k) −u
2

 . (2.23)

In Bernal bilayer graphene, this leads to a band gap at the neutrality point as

shown in Fig. 2.4 (b). Analogous to MLG, the Hamiltonian can be expanded in
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terms of small p around the Kξ point

ĤBLG(u) =



u

2
vπ† v4π

† v3π

vπ
u

2
γ1 v4π

†

v4π γ1 −u
2

vπ

v3π
† v4π vπ† −u

2

 , (2.24)

where v3 = −γ3a
√

3

2~
and v4 =

γ4a
√

3

2~
are effective velocities and the terms

π = ξpx + ipy are introduced for clarity.

2.3.1 Effective two-band model in Bernal bilayer

graphene

After calculating the eigenvalues and eigenstates of the Hamiltonian in Bernal

(AB) bilayer, the wavefunctions associated with the low energy bands around the

neutrality point are almost entirely distributed on the A1 and B2 sublattices.

Therefore, it follows that the low-energy properties of Bernal bilayer graphene

(for energies below γ1) can be described using an effective Hamiltonian acting

only on the basis of the non-dimer sites A1 and B2 [25, 50].

The basis of Eq. (2.23) can be written in terms of dimer and non-dimer parts,

ψD = (ψA2, ψB1)T and ψN = (ψA1, ψB2)T , respectively such that the eigenvalue

equation becomes (
HN T

T † HD

)(
ψN

ψD

)
= E

(
ψN

ψD

)
. (2.25)

Without making any assumptions about the magnitude of the coupling strengths,

we define

HN =

(
u
2

v3π

v3π
† −u

2

)
, HD =

(
−u

2
γ1

γ1
u
2

)
, T =

(
v4π

† vπ†

vπ v4π

)
. (2.26)

The resulting set of simultaneous equations leads to the relation

[
HN + T (E −HD)−1T †

]
ψN = EψN . (2.27)

The equation can be simplified using the approximation 1
a−x ≈ −

1
x
− a

x2
, which
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holds when E < HD, true for low-energy electrons

[
HN − TH−1

D T †
]
ψN = ESψN , (2.28)

where S = 1 + TH−2
D T †. This operator acts on the state ψN and as such is not

normalised. In order to account for this we note that the dimer state can be

written in terms of the non-dimer states as ψD = (E −HD)−1T †ψN such that

ψ†DψD = ψ†NT (E −HD)−2T †ψN ≈ ψ†NTH
−2
D T †ψN . (2.29)

Using this relationship and the expression for S, it follows that the normalisation

is recovered under the transformation Φ = S1/2ψN such that

S−1/2
[
HN − TH−1

D T †
]
S−1/2Φ = EΦ. (2.30)

Therefore the effective two-band Hamiltonian can be written as

Ĥeff,BLG = S−1/2
[
HN − TH−1

D T †
]
S−1/2. (2.31)

Substituting the expressions from Eq. (2.26) allows the approximate low-energy

bands around the Kξ points in bilayer graphene to be found. Further approxima-

tions can be made by noting that |γ0|, |γ1| >> |E|, |γ3|, |γ4|, |u| hence only terms

that are linear in these smaller parameters are considered. As such, the resulting

two-band Hamiltonian is

Ĥeff,BLG = ĥ0 + ĥ3 + ĥ4 + ĥu, (2.32)

ĥ0 = − 1

2m

(
0 (π†)2

π2 0

)
,

ĥ3 = v3

(
0 π†

π 0

)
− v3a

4
√

3~

(
0 (π†)2

π2 0

)
,

ĥ4 =
2vv4

γ1

(
π†π 0

0 π†π

)
,

ĥu =
ξu

2

(
1 0

0 −1

)
+
ξuv2

γ2
1

(
π†π 0

0 π†π

)
,

acting on the basis (cA1, cB2)T . Throughout this thesis, we neglect all terms

involving γ3 and γ4 as they have much less effect on the electron properties [23, 52]

when compared to γ1 and u. Hence we take ĤLE,BLG = ĥ0 + ĥu.
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2.4 Graphene in a magnetic field

In this section we discuss the effect of a perpendicular magnetic field on the

electronic properties of monolayer and bilayer graphene. Due to the Lorentz

force, electrons in graphene (or any two-dimensional electronic system) become

confined to cyclotron orbits when a magnetic field is applied perpendicularly to

the layer plane, as demonstrated in Fig. 2.5 (a).

Figure 2.5: (a) Top image shows graphene in the absence of a magnetic field,
charge transport (red arrows) is allowed in all directions within the layer plane
(shown in grey). The bottom image shows graphene with a perpendicular mag-
netic field (with field lines shown in blue). The electrons become confined to
cyclotron orbits (red) due to the Lorentz force. (b) Landau level spectrum of
monolayer graphene as a function of applied magnetic field.

A perpendicular magnetic field, B = |B|êz, gives rise to a vector potential,

A, parallel to the layer plane by the equation

B = ∇×A, (2.33)

where ∇ is the gradient operator from vector calculus. The simplest gauge to

use is the Landau gauge defined as A = (0,−Bx, 0). For tightly-bound electrons,

an electron hopping between atomic sites, positioned Ri and Rf , in a vector

potential gains a phase factor known as the Peierls phase [53]

Φ =
e

~

∫ Rf

Ri

A · dr. (2.34)

This change in phase can be accounted for by performing the so-called Peierls
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transformation, p→ p+ eA.

2.4.1 Landau levels in monolayer graphene

In the presence of a magnetic field the low energy Hamiltonian of monolayer

graphene, Eq. (2.18), becomes

ĤMLG = v

(
0 π̂†

π̂ 0

)
, (2.35)

where π̂ = (px+eAx)+i(py+eAy), acting on the basis {A, B}T for theK+ valley

and {B, −A}T in the K− valley. The operators π̂ and π̂† become lowering and

raising operators, respectively, for functions built of quantum harmonic oscillator

states along the x-direction, φn(x), and plane waves along the y-direction

π̂φn(x)eikyy = −i 2~
λB

√
nφn−1(x)eikyy,

π̂†φn(x)eikyy = i
2~
λB

√
n+ 1φn+1(x)eikyy,

φn(x) =An exp

[
− 1

2λ2
B

(x−X)2

]
Hn

(
1

λB
(x−X)

)
,

An =
1√

2nn!
√
πλBL

, (2.36)

where λB =
√
~/eB is the magnetic length, Hm(x) is a Hermite polynomial of

order m, L is the dimension of the flake along the y-direction and X = λ2
Bky is

the position of the centre of cyclotron orbit of an electron with wave vector ky.

The resulting energy levels in MLG are

ε0 = 0,

εn,s′ = s′
(√

2v~/λB
)√

n, n ≥ 1, (2.37)

where s′ = ±1 is the conduction/valence band index in MLG, defined when n ≥ 1.

The magnetic field dependence of these Landau levels is shown in Fig. 2.5 (b).

The wave function corresponding to the n-th Landau level in MLG can be written
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as

ψ0 =

(
φ0

0

)
eikyy,

ψn,s′ =
1√
2

(
φn

−s′iφn−1

)
eiky .y, n ≥ 1. (2.38)

In MLG, all the Landau levels have an additional four-fold degeneracy due

to spin and valley. Moreover, the n = 0 Landau level is positioned at the Dirac

point and its energy does not depend on the magnetic field.

2.4.2 Landau levels in bilayer graphene

In the presence of a perpendicular magnetic field, the low-energy effective two

band model for Bernal bilayer graphene, Eq. (2.32), becomes

Ĥeff,BLG = −v
2

γ1

(
0 (π̂†)2

π̂2 0

)
+ ĥu, (2.39)

ĥu =
ξu

2

(
1 0

0 −1

)
+
ξuv2

γ2
1

(
π̂†π̂ 0

0 π̂π̂†

)
,

written in the basis {A1, B2}T in K+ and {B2, A1}T in K− [23]. The square

dependence on the raising and lowering operators in Eq. (2.39) means that the

resulting energy levels scale differently in Landau level index than in monolayer

graphene. Using Eq. (2.36), the energies of the BLG Landau levels, can be

expressed as [23]

ε0,ξ =
ξu

2
,

ε1,ξ =
ξu

2
− ξη2u, (2.40)

εm,s,ξ = −η
2ξu

2
+ s

√
(ε0
m)2 +

1

4
u2, m ≥ 2,

where η =
√

2v~/λBγ1, ε0
m = γ1η

2
√
m(m− 1) and s = ±1 is the conduc-

tion/valence band index in BLG, defined when m ≥ 2. In Fig. 2.6, we present

the Landau level spectra in Bernal bilayer graphene, where u = 0 meV (a) and

u = 100 meV (b), as a function of the applied magnetic field. The corresponding
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Figure 2.6: (a) Landau level spectrum of Bernal bilayer graphene as a function
of applied magnetic field. (b) Landau level spectrum of Bernal bilayer graphene
as a function of applied magnetic field in the presence of a perpendicular electric
field, leading to an on-site energy difference of u = 100 meV. This non-zero u
leads to the lifting of valley degeneracy with K+( K−) shown in blue (red).

wave functions are

ψ0 =

(
φ0

0

)
eikyy,

ψ1 =

(
φ1

0

)
eikyy,

ψξm,s =
1√
2C

(
C1φm

C2φm−2

)
eikyy, m ≥ 2,

C1 = ε0
m, C2 =

[
εm,s,ξ − ξ

u

2
+ ξumη2

]
, (2.41)

where C = C2
1 + C2

2 is the normalisation constant. In BLG, for u = 0, in

addition to the valley and spin degeneracies of each level, both the m = 0 and

m = 1 Landau levels sit at the neutrality point, leading to an unusual eight-

fold degenerate zero-energy state. Non-zero u lifts both the m = 0, 1 and valley

degeneracies, as shown in Fig. 2.6 (b).
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Chapter 3

Moiré patterns in

two-dimensional crystals
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3.1 Geometry of moiré superlattices

The stacking of two-dimensional crystals with the same Bravais lattice struc-

ture can lead to a new large scale periodicity [54, 55, 56]. In particular, if the

layers are misaligned or if the lattice constants differ, the periodic beating of the

two small-scale unit cells can give rise to a larger scale periodicity known as a

supercell. The resulting crystalline structure is known as a moiré superlattice. In

this chapter, we seek to derive the electronic properties of three graphene-based

moiré superlattices: twisted bilayer graphene, graphene on hBN and graphene on

α− In2Te2.

The ith lattice vector, ai and a′i, in the top and bottom layers respectively,

are related by

a′i = (1 + δ)R̂θai, (3.1)

where δ is the difference between the lattice constants in the two materials and

R̂θ is the anticlockwise rotation operator about the z-axis by misalignment angle,

θ. The size of this large scale periodicity is obvious if the two materials are

commensurate, or in other words, ∃n,m ∈ Z∗ : na′i = mai. Unfortunately,

as with many constants in nature, it is unlikely that δ and R̂θ are rational.

Therefore it is necessary to approximate most of these supercells as “almost-

commensurate” which relies on the observation that at small deviations away

from a commensurate structure, the physics should not be significantly different

[57], allowing an approximate periodicity to be defined (note that the models we

use do not actually require commensuration). In a similar way to Eq. (3.1), we

can relate the reciprocal lattice vectors,

G′i =
1

1 + δ
R̂θGi. (3.2)

The superlattice reciprocal lattice vector is smaller than the normal reciprocal

lattice vector as the real-space superlattice cell is larger. By considering the

relative beating of these periodicities, the reciprocal superlattice vectors can be

written as [57]

GMi = Gi −G′i =

(
1− 1

1 + δ
R̂θ

)
Gi, (3.3)

which define a new effective Brillouin zone, known as the superlattice Brillouin

zone (sBZ). From this, an approximate real space superlattice vector, am, is

28
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defined in the usual way, however the length |am| is not equivalent to the true

superlattice vector which describes exact translational symmetry in the crystal

(which may or may not exist, depending on whether the system is commensurate

or not).

In the rest of the chapter we do not make any assumptions as to whether

or not the modelled stucture is commensurate, as the derivation of these models

does not actually require exact commensuration1 (or the perturbation from one).

As a result, the twist angle and lattice constant mismatch become variables that

can be continuously varied without having to change any other input parameters.

3.2 Twisted bilayer graphene

Bilayer graphene, in the typical Bernal stacking, was discussed in Section 2.3.

However, through advancement in fabrication techniques, it is now possible to

stack graphene layers at arbitrary twist angles to one another, as shown in Fig.

3.1, into what is known as twisted bilayer graphene (tBLG) [28, 58, 59, 60, 61,

62, 63, 64, 65].

These tBLG structures belong to one of two families, commensurate and in-

commensurate, depending on the rotation angle. Many theoretical works discuss

the electronic properties of tBLG at commensurate angles [66, 67, 68, 69, 70], as

there is true translational invariance which allows a tight-binding model, similar

to those discussed in the previous sections, to be formulated. Unfortunately, this

subset of angles is much smaller than for incommensurate angles. Furthermore

the vastly increased size of the superlattice unit cell (Fig. 3.1 (a)) means that

the number of atoms becomes unmanageably large for real-space calculations.

Instead, this section will focus on deriving a tBLG Hamiltonian for arbitrary

incommensurate angles [71].

The interlayer interaction between twisted graphene layers at arbitrary twist

angles can be described using the continuum model. The continuum model, al-

though derived rigorously in this chapter, can be understood in a qualitative

way. When two graphene layers are misaligned and placed on top of each other,

a rough, pseudo-periodicity can be observed. In particular, regions of close align-

ment can be seen, where over several graphene unit cells, certain sublattices are

approximately on top of each other forming areas of AB, BA and AA stacking.

1Note that, in the models for hBN and In2Te2, changing the lattice constants away from
more commensurate structures would diminish the effect of the moiré pattern as expected,
however the theory holds for a range of lattice constants and angles, irrespective how close to
a commensurate structure they are.
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Figure 3.1: (a) Crystal structure of two stacked monolayer graphene sheets
misaligned by angle θ. The resulting moiré pattern has a new large scale peri-
odicity, marked by blue arrows. (b) The corresponding relative Brillouin zone
rotation as a result of real space misalignment shown with black (reference layer)
and red (rotated layer) hexagons. The corresponding reciprocal lattice vectors
are shown with black and red arrows respectively, while the blue arrows represent
the reciprocal superlattice vectors, GM

1 and GM
2 .

Across these regions the interlayer couplings can be approximately described us-

ing those typically utilised to model AB, BA and AA bilayers. However, in the

areas between these regions, we approximate using a smooth continuous function

to indicate the smoothly varying coupling between the AB, BA and AA regions.

This assumed continuum, in the description of this coupling, gives rise to the

name continuum model.

In the notation outlined in the the previous section, the moiré reciprocal

superlattice vector in twisted bilayer graphene, shown in Fig. 3.1 (b), is

GMi = (R̂− θ
2
− R̂ θ

2
)Gi, (3.4)

where δ has been set to zero and the misalignment by angle θ is accounted for by

opposite θ
2

rotations to both layers. Although not representing true periodicity, we

can use these superlattice vectors to construct a superlattice Brillouin zone (sBZ).

The relative rotational misalignment of the graphene sheets leads to an identical

rotation in the BZs of the respective layers about the Γ-point. This rotation leads

to a non-zero offset between equivalent valleys in the layers, qξ = (R̂− θ
2
−R̂ θ

2
)Kξ.

The hexagonal sBZ is positioned such that it contains exactly one valley point
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from both layers.

Similarly to Bernal bilayer graphene, twisted bilayer can be described in terms

of intralayer and interlayer interactions

ĤtBLG(θ) =

(
ĤMLG

(−θ
2

)
T̂ (θ)

T̂ †(θ) ĤMLG

(
θ
2

)) . (3.5)

The intralayer part, ĤMLG (φ), is the typical monolayer graphene Hamiltonian,

Eq. (2.14), with the centre of coordinates reference rotated by angle φ. Although

the effective linear dispersion, ĤMLG could be utilised here, at large angles the

Dirac cones become significantly displaced such that the true band structure

becomes non-linear where important features occur. The interlayer part, T̂ (θ),

describes hopping between the graphene monolayers and therefore should con-

serve momentum in both layers. For momentum k and k on layers 1 and 2 of

tBLG respectively, this conservation can be expressed as

G+ k = G+ k, (3.6)

where G = m1G1 + m2G2 and G = m1G1 + m2G2 are the reciprocal lattice

vectors on layers 1 and 2 respectively. This expression follows from the Bloch

nature of states on the two layers. The positions of the lth and mth sublattices

in layer 1 and 2 respectively can be expressed as

Rl = n1a1 + n2a2 + τl,

Rm = n1R̂θa1 + n2R̂θa2 + τm, (3.7)

where n1, n2, n1, n2 ∈ Z and τl (τm) represents the vector from the real space

origin in the unit cell to the nearest orbital l(m) in the bottom (top) layer. The

definition of these vectors depends on the centre of coordinates, here defined as

an A atom on the top layer and a B atom on the bottom layer. This ensures that

under zero rotation between the two graphene sheets, Bernal bilayer graphene is

recovered. Hence, τl and τm can be defined as follows

τA = −δ1, τB = 0,

τA = 0, τB = δ1. (3.8)
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The interlayer interaction between layers in twisted bilayer can be written as

T =
∑
l,m

t(Rm −Rl, d0) |ψl(r −Rl)〉 〈ψm(r −Rm)|+ h.c., (3.9)

where t(R, d0) describes the interaction between two pz orbitals separated by

in-plane vector R and interlayer distance d0 while |ψj(r −Rj)〉 describes the

atomic orbital j at positionRj. Unlike in monolayer and Bernal bilayer graphene,

where such an interaction term would allow the construction of a simple tight-

binding Hamiltonian, the large number of orbitals in the twisted bilayer unit

cell encourages an alternative approach [71, 72, 73]. In particular by working in

reciprocal space (and thus the much smaller sBZ), we can write the Bloch states

of the individual layers as

|k, l〉 =
1√
N

∑
Rl

eik·Rl |ψl(r −Rl)〉 , (3.10)

|k,m〉 =
1√
N

∑
Rm

eik·Rm |ψm(r −Rm)〉 , (3.11)

where N and N are the number of unit cells of area A and A respectively such

that NA = NA = Atot is roughly the total area of the twisted bilayer region.

Although the two layers need not be commensurate, this normalises the Bloch

wavefunctions to a good approximation provided Atot is large. The interaction

between the Bloch states of any two orbitals is therefore

T̂m,l(θ) = T̂m,l(k,k) = 〈k,m|T |k, l〉

=
1√
NN

∑
Rl,Rm

t(Rm −Rl, d0) ei(k·Rl−k·Rm)

=
1√
NN

∑
Rl

ei(k−k)·Rl
∑
Rm

t(Rm −Rl, d0)e−ik·(Rm−Rl).

(3.12)

To express this interaction, t(Rl −Rm, d0), in reciprocal space, it is necessary to

take the inverse Fourier transform

t(Rm −Rl, d0) =
Atot√
NN

∫
t̃(q, d0)eiq·(Rm−Rl)dqxdqy, (3.13)

such that t̃(q, d0) is the interlayer coupling between orbitals as a function of
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q = (qx, qy). This allows the interaction element to be written as

T̂m,l(θ) =
Atot

NN

∑
Rl

ei(k−k)·Rl
∑
Rm

∫
t̃(q, d0)eiq·(Rm−Rl)dqxdqye

−ik·(Rm−Rl)

=
∑
G,G

t̃(k +G, d0)ei(G·τm−G·τl)δk+G,k+G, (3.14)

where, by taking into account the definition ofRm, the sum overRm was resolved

using ∑
Rm

ei(q−k)·Rm =
∑
n1,n2

ei(q−k)·(n1a1+n2a2) = Nδq−k,G, (3.15)

such that δi,j is the Kronecker delta. The same principle was applied to the

sum over Rl such that the dependence on q drops out. The interlayer coupling

described in Eq. (3.14) can be understood in the following way. Firstly, the

Kronecker delta term, δk+G,k+G, determines the momenta on the bottom and

top layers which couple reproducing the relationship in Eq. (3.6). This can also

be understood as coupling momenta k and k which are offset by a moiré reciprocal

lattice vector. The term ei(G·τm−G·τl) describes the phase factor associated with

the coupling of orbitals l and m as a result of translation by reciprocal lattice

vector. In the limit of θ = 0, these phases should combine to produce γ1 coupling

between A and B and 0 coupling between other orbitals. Finally, t̃(k +G, d0) is

the Fourier transform of the real-space interatomic coupling, and depends on the

length of reciprocal lattice vector from the Γ-point in layer 1.

A state close to the Dirac point in layer 1 scattered by some reciprocal lattice

vectorG in layer 1 lands in a different position in the Brillouin zone of layer 2, due

to the relative rotation. This can be mapped back onto the first Brillouin zone of

layer 2 resulting in a lattice of so-called “Dirac point replicas”, each interacting

with magnitude t̃(k+G, d0). The overall effective Hamiltonian for twisted bilayer

graphene can be found by summing over all countably infiniteG andG. However

this is both impossible and unnecessary. In fact, due to the exponential decay

of t̃(q, d0), only nearest neighbours in this lattice of Dirac point replicas interact

strongly, while the total number of replicas needed to reach convergence depends

on the size of GM [73]. Due to the decay of t̃(q, d0), of the seven smallest

reciprocal lattice vectors G, only 3 interact strongly with the Dirac point in the

first Brillouin zone. These vectors are those which connect valleys in the first

Brillouin zone of layer 1 such that the distance from the Γ point is approximately

equal |Kξ|. Therefore we perform the sum for (m1,m2) = {(0, 0), (−1, 0), (0, 1)},
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so that, for an electron with momentum k +Kξ in layer 1, the interaction with

three nearest Dirac cone replicas in layer 2, can be written as

T̂m,l(θ) = t̃(k +Kξ, d0)δk+qξ,k (3.16)

+ t̃(k −G1 +Kξ, d0)ei(−G1·τm+G1·τl)δk−GM1 +qξ,k

+ t̃(k +G2 +Kξ, d0)ei(G2·τm−G2·τl)δk+GM2 +qξ,k
,

which can be written in terms of the basis {A,B,A,B} as

T̂ (θ) = t̃(k +Kξ, d0)

(
1 1

1 1

)
δk+qξ,k

+ t̃(k +Kξ −G1, d0)

(
e

2πi
3 e

−2πi
3

1 e
2πi
3

)
δk−GM1 +qξ,k

+ t̃(k +Kξ +G2, d0)

(
e
−2πi

3 e
2πi
3

1 e
−2πi

3

)
δk+GM2 +qξ,k

. (3.17)

At low angles, the superlattice Brillouin zone is small hence most electronic

behaviour can be described in the vicinity of the Kξ point. Therefore, the in-

tralayer Hamiltonian can be described in the low-energy limit and since Kξ � k

it is reasonable to write t̃(k + Kξ, d0) = t̃(Kξ, d0) = w = 110 meV [71, 73].

Therefore, the dominant part of the interlayer component of Eq. (3.5) becomes

T̂ (θ) ≈ w

(
1 1

1 1

)
δk+qξ,k + w

(
e

2πi
3 e

−2πi
3

1 e
2πi
3

)
δk−GM1 +qξ,k

+ w

(
e
−2πi

3 e
2πi
3

1 e
−2πi

3

)
δk+GM2 +qξ,k

, (3.18)

where the θ dependence is contained in qξ. This value of w has been estimated

from experiment [28, 58]. The resulting band structure is shown in Fig. 3.2 (a)

for misalignment angle 2◦. Over the first superlattice Brillouin zone, the band

structure comprises two Dirac cones, one from each layer, separated by distance

qξ. At the point where the two cones cross, band hybridisation leads to band

splitting and repulsion, with separation determined by the size of w (or for larger

angles t̃(k+Kξ, d0)). As the angle is reduced the cones move closer together such

that at a certain angle, commonly referred to as the magic angle [70, 73], the band

becomes maximally flat, as shown in Fig. 3.2 (b). This flatness of a band with

energy E can be quantised using the effective Fermi velocity, v =
1

~
∂E

∂k
, which is a

minimum at the magic angle. The first magic angle in our model is approximately

34
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Figure 3.2: (a) Electronic band structure of twisted bilayer graphene with mis-
alignment angle 2◦. (b) Electronic band structure of twisted bilayer graphene
at misalignment angle 1.1◦, the magic angle. The superlattice Brillouin zone is
shown by a black hexagon. We show only the two lowest energy conduction and
valence bands for clarity.

1.1◦. Interestingly, as the twist angle is reduced below the magic angle, the flat

band begins to broaden again, suggesting the magic angle is particularly unique.

This flat band is associated with real-space localisation of electrons to regions of

AA type stacking [70] bounded by walls of AB and BA alignment.

An interesting question would be on the validity of the continuum model at

zero twist angle, which, in our case, should describe Bernal bilayer graphene. Of

course, experimentally, samples with twist angles very close to but not zero are

unstable and Bernal bilayer is formed which explains the lack of theoretical and

certainly experimental literature on tBLG close to this limit. However, a good

test of the continuum model is to ensure that it can reproduce the interlayer

coupling in aligned layers. At θ = 0, the sets of Dirac cones originating from

both layers lie directly on top of each other and the interaction strength becomes

a sum over all G. This will be discussed in far more detail in Chapter 5 where

we use this limit as a test of our parametrisation.

In a similar way to Bernal bilayer, the application of an electric field perpen-

dicular to the graphene layers leads to an on-site energy difference between the

graphene layers, u. However, unlike in Bernal bilayer, this on-site energy differ-

ence shifts the relative position of the Dirac cones in energy rather than inducing

a gap.

Although we briefly refer to the parametrisation of the interlayer coupling
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between twisted graphene layers in our definition of ω, the ideal functional form

of t(R) is widely debated [71, 74, 75, 76].While most works agree on the value of ω,

the hopping parameters outlined in Section 2.3 are sometimes not reproduced [71]

while the decay rate of t(R) varies between parametrisations, which could have

particular relevance to ARPES maps on twisted bilayer at a 30◦ misalignment

angle [77]. Furthermore, the rate of decay of t(R) effects the value of the interlayer

coupling in the zero angle limit. Proposing an accurate parametrisation which

describes the interlayer coupling in both aligned and twisted bilayer graphene is

the basis of Chapter 5.

3.3 Graphene-based van der Waals

heterostructures

The advancement of fabrication techniques has enabled the isolation of addi-

tional species of two-dimensional crystals other than graphene [26, 27]. Further-

more, due to the stability of these two-dimensional materials, these layers can be

stacked in arbitrary order and misalignment [78]. These layers, which interact

only through weak van der Waals forces, are known as van der Waals (vdW)

heterostructures [26, 27]. Although the van der Waals interactions are weak, the

band structures of the constituent layers can be significantly changed due to the

proximity of another layer. This property is unique to low dimensional materi-

als as in stacked bulk materials only the surface states are strongly modified by

proximity to another material. This section will focus on deriving the electronic

band structure of monolayer graphene when placed on top of a) hBN and b) α -

In2Te2, however the models derived are easily extended to other materials with a

similar crystallographic structure.

3.3.1 Graphene on hBN

Graphene and hexagonal boron nitride (hBN) have very similar crystallo-

graphic structures [17, 54, 55, 56, 57]: both form a 2D honeycomb structure

defined by a triangular lattice of two atom unit cells, with the lattice constants

of both materials differing only by δ = 1.8%. Despite this, they exhibit strikingly

different electronic properties, with hBN being a strong in-plane and out-of-plane

insulator with a band gap of ∼ 6 eV. This insulating property, and the fact that

it is atomically flat, singles hBN out as an ideal substrate for graphene materials

[17, 79]. In other bulk substrates, such as SiO2, surface roughness leads to the
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Figure 3.3: (a) Moiré pattern arising as a result of aligned graphene and hBN
heterostructure. (b) Superlattice Brillouin zone (black hexagon) and first star of
reciprocal lattice vectors GM

j (blue arrows) where j = {0, 1, ...5}. (c) Resulting
band structure of graphene on aligned (θ = 0◦) hBN. A rhombic superlattice
Brillouin zone (black rhombus) is used to best capture the secondary Dirac point.
We show only the three lowest energy conduction and valence bands for clarity.

aggregation of charge pockets, modifying the electronic and transport properties

of graphene [80]. In fact, it has been shown that graphene on hBN exhibits charge

transport properties more similar to that of suspended graphene than graphene

on other substrates such as SiO2 [17].

Large scale moiré patterns (∼ 10 nm) form when graphene is placed on top

of closely aligned hBN [54, 55, 56, 57], with the largest superlattice periodicity

occurring at perfect alignment [57] as shown in Fig. 3.3 (a). As with twisted

bilayer, the Hamiltonian can be described in terms of intralayer and interlayer

parts. However, since hBN is an insulator and this thesis focuses on low-energy

properties of graphene, it is convenient to treat the effect of hBN as a perturbation

[57]. We briefly outline a twisted bilayer type model for graphene on hBN in
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Appendix 3.A

To describe the perturbation, it is first necessary to define the eigenstate. Typ-

ically, the basis used for theK+ valley is {A,B}, while in theK− valley {B,−A},
hence in valley-sublattice space this can be written as {A+, B+, B−,−A−}. The

set of Pauli matrices on the sublattice and valley space can be written as τ̂i and

σ̂j respectively (i, j ∈ {0, x, y, z}). In valley sublattice space, these operators can

be expressed as a Kronecker product τ̂i⊗ σ̂j. In principle, the moiré perturbation

of graphene by hBN could depend on any one of these operators, however, using

symmetry arguments, this can be reduced. Firstly, in an aligned graphene-hBN

heterostructure, the reciprocal superlattice vector can be defined using Eq. (3.3)

GMj ≈
(

1− 1

1 + δ

)
Gj , (3.19)

which, for graphene on aligned hBN, is significantly smaller than the intervalley

separation in unperturbed monolayer graphene. Furthermore, it has been shown

that higher order harmonics (multiple GMj ) have less effect on the perturbation

[57]. The reason for this can be related to the discussion of the two-centre approx-

imation in twisted bilayer, namely that for overlapping pz orbitals, the Fourier

transform of interaction decays exponentially. This results in higher order har-

monics being neglected such that only the first star of reciprocal superlattice

vectors (Fig. 3.3 (b))

GMj = R̂ 2πj
3

(0, |GM |), j = {0, ..., 5}, (3.20)

needs to be considered while valley mixing due to the perturbation of hBN is

highly unlikely. The restriction to single harmonics essentially “decouples” the

valleys in graphene on hBN. The latter point can be used to immediately cut the

set of operators, τ̂i⊗σ̂j, in half, as those containing valley mixing terms, τ̂x and τ̂y,

can be neglected. The perturbation should also obey time reversal symmetry [81],

which can be thought of as valley reversal symmetry E(k+K+)→ E(−k+K−).

In particular, time reversal symmetry projects a state {A+, B+, B−,−A−} onto

{−A−,−B−,−B+, A+} such that for the symmetry operator X̂, the generator, t

is defined as

t =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 . (3.21)
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For an arbitrary symmetry operator, Û , with generator u, the symmetry is con-

served if the Hamiltonian obeys the relation [82]

ÛĤhBN(r) = uĤhBN(Û−1r)u−1 = ĤhBN(r), (3.22)

which for time reversal symmetry can be expressed as

X̂ĤhBN(r) = tĤ∗hBN(r)t−1 = ĤhBN(r). (3.23)

By neglecting each of the remaining 8 combinations of τ̂i ⊗ σ̂j which do not

obey this symmetry, the remaining terms are {τ̂0 ⊗ σ̂0, τ̂z ⊗ σ̂z, τ̂z ⊗ σ̂x, τ̂z ⊗
σ̂y}. The other symmetry present in honeycomb structures is 60◦ rotational

symmetry, characterised by the Ĉ6 symmetry group, with generator c6 = τx ⊗(
−i
√

3
2
− 1

2
σz

)
. Although the r-dependence of the perturbation is not yet known,

a set of candidate functions {fj(r)}, dependent on the simplest harmonics ofGM ,

can be considered such that

Ĉ6ĤhBN(r) = c6ĤhBN(R̂−1
π
3
r)c−1

6 =
∑
i,j

∑
l

c6τ̂i ⊗ σ̂jfl(R̂−1
π
3
r)c−1

6 = ĤhBN(r),

(3.24)

where only specific combinations of i, j, l satisfy the above relationship. The final

perturbation Hamiltonian for graphene on hBN can therefore be written as,

ĤhBN(r) =V0(τ̂0 ⊗ σ̂0)f1(r) + V3(τ̂z ⊗ σ̂z)f2(r) +
1

|GM |
V1(τ̂z ⊗∇f2(r) · σ)

+
1

|GM |
V2(τ̂z ⊗ [lz ×∇f2(r) · σ]), (3.25)

f1(r) =
5∑
j=0

eiG
M
j ·r, f2(r) = i

5∑
j=0

(−1)jeiG
M
j ·r, (3.26)

where σ = (σ̂x, σ̂y, σ̂z) is the vector of sublattice Pauli matrices, lz is the unit

vector along the z-axis and the set {V0, V1, V2, V3} = v|GM |{u0, u1, u2, u3} de-

scribes the perturbation strength of each term. Since higher order harmonics of

GM are neglected, the sum is restricted to the first star of vectors defined by

the set j = {0, ..., 5}. Experiments [83, 84], as well as other theoretical mod-

els [33, 85] predict the set of parameters to be approximately {u0, u1, u2, u3} =

{0.5,−1, 0,−
√

3

2
} where the term involving u2 can be gauged away using the

transformation ψ → ψeiτzu2f2 [57].

As a result of this perturbation, the conical dispersion close to the Kξ point
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is folded into the superlattice Brillouin zone, forming so-called “minibands”, with

the valence band undergoing starker spectral changes as presented in Fig. 3.3 (c).

In particular, a secondary Dirac point (region of linear dispersion) forms between

the first and second valence band which is shifted away from the Kξ point.

Furthermore, a region of constant energy forms close to the bottom of the first

valence band such that the corresponding density of states shows a sharp peak,

known as a Van Hove singularity (VHS). The formation and manipulation of Van

Hove singularities by careful construction of moiré superlattice heterostructures

is significant in Chapter 6. Finally, it is important to note the utility of this

model, which, although currently used to describe graphene on hBN, can be

easily extended to graphene on any other almost commensurate 2D hexagonal

crystal by tuning δ and parameters {u0, u1, u3}.

3.3.2 Graphene on α− In2Te2

In this section, the perturbation on the electronic spectrum of graphene due to

stacking on α−In2Te2 is derived. Similar to hBN, α−In2Te2 has a 2D honeycomb

structure and is a wide band gap insulator [86, 87], however the lattice constant

is approximately
√

3 times larger. As such, α − In2Te2 is classed as an almost-

commensurate
√

3×
√

3 substrate as compared to graphene. The corresponding

moiré pattern is shown in Fig. 3.4 (a).

The lattice constant of an almost-commensurate
√

3×
√

3 crystal, is written as

a√3 =
√

3(1+δ)a where |δ| � 1 [34, 35]. As such, the corresponding superlattice,

analogous to Eq. (3.3) has reciprocal lattice vectors of the form

GMj = R̂ 2πj
3

[
1− 1

1 + δ
R̂θ

]
(0, |G|), (3.27)

where much like the hBN case, only the lowest order harmonics are considered

and the perturbation Hamiltonian derived for hBN can be utilised, albeit with

different perturbation parameters. The corresponding reciprocal superlattice vec-

tors are shown in Fig. 3.4 (b). However, in a graphene -
√

3 ×
√

3 superlattice,

there exists another set of shorter reciprocal lattice vectors corresponding to a

longer real space periodicity, shown as a blue arrow in Fig. 3.4. Rather than

comparing to the true graphene lattice, the α − In2Te2 can be compared to the

so-called “Kekule” lattice of graphene [88], shown in red in Fig. 3.4 (a) with

lattice constant aK =
√

3a. This leads to reciprocal superlattice vectors between
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Figure 3.4: (a) Moiré pattern arising as a result of aligned graphene (grey)
and α− In2Te2 (orange) heterostructure, with moiré periodicity indicated by the
black arrow. The Kekulé lattice of graphene is shown in red with the resulting
longer moiré periodicity indicated by the blue arrow. (b) Superlattice Brillouin
zone (black hexagon) and first star of reciprocal lattice vectors GM

j (blue arrows)
where j = {0, 1, ...5} corresponding to the shorter periodicity (black arrow) in
(a). Also shown is the superlattice Brillouin zone (orange hexagon) and first
star of shorter reciprocal lattice vectors βj (blue arrows) where j = {0, 1, ...5}
corresponding to the longer periodicity (blue arrow) in (a). (c) Resulting band
structure of graphene on aligned (θ = 0) α−In2Te2. We show only the two lowest
energy conduction and valence bands for clarity.

α− In2Te2 and the Kekulé lattice of graphene

βj =
1√
3
R̂−π

2
GMj , (3.28)

as shown in Fig. 3.4 (b). Because of this shorter periodicity, the model derived

in the previous section cannot accurately describe the electronic spectrum of a

heterostructure composed of these two materials. Despite this, when deriving the
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perturbation Hamiltonian, similar symmetry arguments can be used, albeit with

certain caveats. Firstly, the reciprocal lattice vector of an almost commensurate√
3 ×
√

3 lattice is shorter than that of hBN such that the set {βi} connect

different valleys. Following the convention of the previous section, this results

in the valley-sublattice operators which do not mix valley being neglected (those

containing τ̂0 and τ̂z). Secondly, the perturbation parameters associated with

the set {βj} are likely to be different to those originating from the larger period

{GMj }. In fact, it has been shown [34] that the dominant effect comes from the

shorter periodicity, intervalley terms. Repeating a similar procedure to that in

the graphene-on-hBN case, we arrive at the result

Ĥ(r) =Ṽ0F̂ (r)⊗ σ̂z +
1

|β|
Ṽ1 [σ × lz]�∇F̂ (r) +

1

|β|
Ṽ2σ �∇F̂ (r),

F̂ (r) =τ̂xf1(r) + τ̂yf2(r),

f1(r) =
5∑
j=0

eiβj ·r, f2(r) = i
5∑
j=0

(−1)jeiβj ·r, (3.29)

where the operator � is the dot product where the typical multiplication of

elements is replaced by the Kronecker product.

Analogous to graphene on hBN, the strength of each perturbation is defined

by a constant {Ṽ0, Ṽ1, Ṽ2} = v|βj|{UE′ , VG, VG′} with labelling convention as used

in [34, 35]. The strength of these perturbation parameters depends on the choice

of substrate, and in the case of graphene on aligned α − In2Te2 (θ = 0◦) where

δ ≈ −0.7%, we chose {UE′ , UG, UG′} = {0.1,−0.2, 0} such that the energy of the

perturbation strength is comparable to hBN. The perturbation parameter VG′

vanishes in the absence of misalignment angle [86, 87]. The intervalley scattering

arising as a result of this perturbation leads to the modulation of Fermi velocity,

leading to flatter bands as shown in Fig. 3.4 (c). Furthermore significant band

gaps open in the linear spectrum leading to the formation of isolated superlattice

minibands.

3.4 Hofstadter’s butterfly in graphene/hBN

heterostructures

At sufficiently large perpendicular magnetic fields, the Landau level structure

of a material undergoes stark spectral modification. The competition between

two characteristic length scales, the magnetic length and the lattice constant of

a material, gives rise to a peculiar phenomenon known as Hofstadter’s butterfly
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[37, 40, 53, 89]. Fractal in nature, this butterfly pattern originates from the

splitting of base Landau level energies into many minibands. However, for most

materials (including graphene) the lattice constant is significantly smaller than

the magnetic length resulting from any man-made magnetic field, and hence

this fractal spectrum is not observed. Importantly, however, the much larger

periodicities observed in the moiré superlattices discussed so far in this chapter

suggest that observing Hofstadter’s butterfly experimentally ought to be possible.

3.4.1 Moiré perturbation of Landau levels

In Chapter 2, we discussed the effect of an applied magnetic field on the

tightly-bound electrons in graphene. In particular, we described how the hop-

ping parameter between neighbouring carbon atoms becomes modified with the

addition of the Peierls phase. In monolayer graphene, we therefore modify the

hopping between atoms in the A and B sublattices accordingly

HAB → HAB exp[iΦ] = HAB exp

[
i
e

~

∫ RB

RA

A · dr
]
, (3.30)

where again we take the Landau gauge A = (0, Bx, 0) and this leads to the

formation of Landau levels. Following [90], in order to simplify the calculation

we introduce a new non-orthogonal hexagonal coordinate system (see Appendix

3.B) such that we rewrite the Landau gauge as

A =
Bx1√

3
(−x̂1 + 2x̂2). (3.31)

The resulting Landau level spectra is the same, however the associated wavefunc-

tions become

φn(z) =An exp

[
−z

2

2
− iz2

2
√

3

]
Hn (z) ,

z =

√
3x1

2λB
− k2λB, An =

1√
2nn!
√
πλBL

,

ψ0 =

(
φ0

0

)
eik2x2 ,

ψn,s′ =
1√
2

(
φn

−e−2πi/3siφn−1

)
eik2.x2 , n ≥ 1, (3.32)

derived in a similar manner to in Chapter 2. By placing this graphene monolayer

on top of a hBN substrate the resulting superlattice and interlayer interaction

43
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perturbs these Landau level states. Using Eq. (3.32), the matrix element between

initial and final Landau levels, n and l, under the perturbation of the hBN layer,

ĤhBN(r), can be written as

Mn,l,s,s′

k2,k′2
=

∫
ψ†l,s′ĤhBN(r)ψn,sd

2r. (3.33)

3.4.2 Hofstadter’s butterfly on a graphene/hbN

superlattice

In general, the onset of the butterfly depends on the ratio between the mag-

netic flux in a unit cell φ = BA and the flux quantum φ0 = h/e [53]. Therefore,

taking this into account, the matrix element arising from the moiré perturbation

of Landau levels depends on the phase factor2

Mn,l,s,s′

k2,k′2
∝ e

4iπ
k2

|GM |
√
3

q
p , (3.34)

where p
q

= φ
φ0

and {p, q ∈ Z : gcd(p, q) = 1}. It is clear that this phase factor

remains unchanged as we make the translation

k2 → k2 + p

√
3

2
|GM |. (3.35)

As a result of this periodicity, we can define discrete regions of k2 (which we

previously assumed to run through [−∞,∞]), suggesting that the theoretical

properties can be described on the interval k2 ∈ [−
√

3
4
|GM |p,

√
3

4
|GM |p]. Practi-

cally, this leads to a reciprocal space Bloch-like description such that the overall

Hamiltonian, Ĥ = ĤMLG + ĤhBN, and eigenstates, φrn, can be decomposed into

N blocks, labelled r ∈ [−N/2, ..., N/2], where N is the number of physically

equivalent intervals along k2. Therefore, for a given block in our Hamiltonian

corresponding to the Landau level index n, we have

Hnnϕn =



. . .
...

...
...

...

· · · Hr−1,r−1
nn Hr−1,r

nn Hr−1,r+1
nn · · ·

· · · Hr,r−1
nn Hr,r

nn Hr,r+1
nn · · ·

· · · Hr+1,r−1
nn Hr+1,r

nn Hr+1,r+1
nn · · ·

...
...

...
...

. . .





...

φr−1
n

φrn

φr+1
n
...


. (3.36)

2In fact, this phase factor contains the only k2 dependence in the matrix element.
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The perturbation Hamiltonian of hBN on graphene, ĤhBN, depends on only the

simplest moiré harmonics, hence all blocks with non-adjacent r can be set to zero,

leaving a 3× 3 Hamiltonian satisfying the equation

Hnnϕn =

H
r−1,r−1
nn Hr−1,r

nn 0

Hr,r−1
nn Hr,r

nn Hr,r+1
nn

0 Hr+1,r
nn Hr+1,r+1

nn


φ

r−1
n

φrn

φr+1
n

 . (3.37)

Therefore, for the rth region of reciprocal space, the Hamiltonian at the nth

Landau level is reduced to solutions of the eigenproblem

Hr,r−1
nn φr−1

n +Hr,r
nnφ

r
n +Hr,r+1

nn φr+1
n = Enφ

r
n. (3.38)

A change in r corresponds to a change in wavevector k2, hence, analogous to real

space tight-binding, we assume the eigenstates acquire a phase, which for the

moment is unknown. However this allows the eigenproblem to be expressed as

Hr,r−1
nn φrne

−iθ +Hr,r
nnφ

r
n +Hr,r+1

nn φrne
iθ = Enφ

r
n,(

Hr,r−1
nn e−iθ +Hr,r

nn +Hr,r+1
nn eiθ

)
φrn = Enφ

r
n,

Heffφ
r
n = Enφ

r
n. (3.39)

It is this Heff that we seek to diagonalise, to obtain the energy spectrum. When

translating k2 by p times b
√

3
2

this corresponds to the transformation

ψn(x1, x2, k2)→ ψn(x1, x2, k2 + p|GM |
√

3/2) = ψn(x1 + p|GM |λ2
B, x2, k2).

(3.40)

This suggests that, after this transformation in k2, the effect is the same as a

translation on x1 by p|GM |λ2
B. The magnetic translation operator ΘR, of an

eigenstate, by some vector R = (R1, R2), generates a phase shift [53, 90]

ΘRψn(x1, x2, k2) = eikR·Rψn(x1, x2, k2) = ψn(x1 +R1, x2 +R2, k2). (3.41)

Therefore, we can express the transformation of k2, defined in Eq. (3.40), in

terms of a magnetic translation operator by vector (βpbλ2
B, 0, 0), leading to

eik1pbλ
2
Bψn(x1, x2, k2) = ψn(x1 + p|GM |λ2

B, x2, k2)

= ψn(x1, x2, k2 + p|GM |
√

3/2), (3.42)
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where the second line follows from (3.40). We note that this translation in k2

is equivalent to going from φrn to φr+1
n in (3.38). As a result, the corresponding

phase shift, eiθ, is equal to the phase shift of the magnetic translation

eiθ = eik1p|G
M |λ2B ,

θ = k1p|GM |λ2
B = 2π

2

|GM |
√

3
qk1. (3.43)

This suggests a periodicity in k1 allowing the entire line to be expressed in sections

of k1 ∈
[
−
√

3|GM |
4q

,
√

3|GM |
4q

]
. Due to the hexagonal nature of the reciprocal lattice,

it is hard to quantify what the shape of this new reciprocal space region, which

we call the magnetic Brillouin zone (mBZ), is, given it is restricted q-times in the

k1 direction but not in the k2 direction. However, by applying the same scaling to

k2 simultaneously, we obtain a hexagonal magnetic Brillouin zone with area 1/q2

as large. This immediately adds a q-fold degeneracy to the system, which must

be taken into account. We therefore parametrise k2 using these smaller magnetic

Brillouin zones

k2 → k2 +

√
3|GM |

2

[
p

q
t+ pr

]
, (3.44)

where t ∈ [0, ..., q − 1] is a quantum number representing the q-fold degeneracy

of the system. One immediate problem with this parametrisation is that there

exist points on the entire k2 line which cannot be expressed using the mBZ and

integers t and s. Therefore yet another parameter, j, is introduced so that the

entire k2 axis is spanned by this parametrisation

k2 → k2 +

√
3|GM |

2

[
p

q
t+ pr + j

]
, (3.45)

where j ∈ [0, ..., p− 1] manifests itself in a phase shift and ultimately leads to

the splitting of the unperturbed Landau energy spectrum. This partitioning of

the k2 line is demonstrated in Fig. 3.5, where it is clear that all three indices,

r, t and j are required to define the entire k2 line. The different colours of these

mBZs correspond to different values of j and hence different values of Mn,l,s,s′

k2,k′2
.

The resulting Wannier function can be written as

|Φj,t
n,k〉 =

1√
N

∑
r

eiθrψn

(
x1, x2, k2 +

√
3

2
|GM |

[
p

q
t+ pr + j

])
, (3.46)
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Figure 3.5: Parametrisation of the k2 axis at magnetic field p
q

= 2
3
. The orig-

inal superlattice Brillouin zone is represented by the dashed hexagon, while the
coloured hexagons represent the new “magnetic Brillouin zones”. The blue and
magenta hexagons correspond to different values of j. We include a few examples
of how indices r, t and j parameterise these “magnetic Brillouin zones”.

such that the calculation of the perturbation element becomes

〈Φj,t
n,k| ĤhBN |Φj′,t′

n′,k′〉 =
∑
r,r′

e−iθ(r−r
′)

× ψ∗n

(
x1, x2, k2 +

√
3

2
|GM |

[
p

q
t+ pr + j

])

× ĤhBNψn

(
x1, x2, k2 +

√
3

2
|GM |

[
p

q
t′ + pr′ + j′

])
, (3.47)

where the sum over r, r′ follows from the form of Eq. (3.39). We note that varying

j for a given p will lead to inequivalent phase factors when substituted into Eq.

(3.34). As such, the value of j will determine the number of levels into which an

individual Landau level splits.

We plot the resulting Landau level spectrum of graphene on hBN in Fig. 3.6

(b) as a function of the magnetic field. The fine structure of the resulting fractal

pattern appears as the original Landau levels (indicated by the red lines) split into

multiple bands, dependent on p and q, and as a result of the moiré perturbation.
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Figure 3.6: (a) Electronic band structure of graphene on hBN (equivalent to
Fig. 3.3 (c)). (b) Fractal Hofstadter’s butterfly spectrum of graphene on hBN as
a function of the applied rational magnetic field, BA

φ0
= p

q
. The results presented

here are calculated following [90]. We do not calculate the spectrum in the low
flux limit and instead approximate with unperturbed Landau levels (shown in
red).

The second set of Landau levels, emanating from significantly below the neutrality

point, arises as a consequence of the strong spectral modification in the graphene

on hBN valence bands. In particular, this new set of Landau levels emanates

from the secondary Dirac point in the valence band, as shown in Fig. 3.6 (a).

The fractal nature of the spectrum can be related to the self-similarity of the set

of rational numbers.

3.A Continuum model on graphene/hBN

heterostructures

In this chapter we derived an expression for the perturbation of the graphene

due to a vertically stacked adjacent hBN layer using symmetry arguments. How-

ever, it is possible to extend the continuum model description of twisted bilayer

graphene to model graphene on hBN [57, 91]. As a result of this, we no longer

consider hBN as a perturbation and instead consider the electronic properties of

the system as a whole. In a similar way to Bernal bilayer graphene and twisted

bilayer graphene, the Hamiltonian can be expressed in terms of interlayer and
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intralayer parts

ĤGr-hBN(θ) =

(
ĤMLG

(−θ
2

)
T̂hBN-G(θ)

T̂ †hBN-G(θ) ĤhBN

(
θ
2

)) , (3.48)

where ĤMLG describes the intralayer coupling in monolayer graphene, Eq. (2.14).

The intralayer part describing hBN we express as

ĤhBN =

(
EB

0 0

0 EN
0

)
, (3.49)

where EB
0 (EN

0 ) is the onsite energy of boron (nitrogen). These on-site energies

are large such that the low-energy eigenstates favour the low-energy states of the

graphene monolayer, hence hBN can be effectively considered an insulator. The

interlayer coupling, T̂hBN-G, where, assuming Bernal-type stacking in between the

graphene and hBN and small twist angle between the graphene and hBN layer

T̂hBN-G(k,k) =

(
tB tN

tB tN

)
δk,k +

(
tBe

2πi
3 tNe

−2πi
3

tB tNe
2πi
3

)
δk−GM1 ,k

+

(
tBe

−2πi
3 tNe

2πi
3

tB tNe
−2πi

3

)
δk+GM2 ,k. (3.50)

Here, analogous to the case of twisted bilayer, the dominant electronic properties

are determined by the three shortest reciprocal lattice vectors. By comparison

to more thorough numerical methods, such as DFT, this model for graphene on

hBN allows the perturbation parameters {V0, V1, V2, V3} to be estimated.

3.B Hexagonal coordinates: useful expressions

In this subsection, we include basic details on the hexagonal coordinate system

which we utilise in our calculation of the butterfly spectra. The Cartesian and

hexagonal coordinate systems are related by the following set of expressions

x̂1 =
1

2
x̂+

√
3

2
ŷ,

x̂2 = −1

2
x̂+

√
3

2
ŷ, (3.51)
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where x̂1 and x̂2 are unit vectors in the hexagonal coordinate system. Note that

they are not orthogonal since

x̂1 · x̂2 =
1

2
. (3.52)

In the case when r = xx̂+yŷ = x1x̂1+x2x̂2, we must have the following relations

x1 = x+
1√
3
y,

x2 = −x+
1√
3
y. (3.53)
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Chapter 4

Electronic Raman scattering in

twisted bilayer graphene around

magic-angle twists
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The work presented in this chapter was done in collaboration with A. Garcia-

Ruiz. My contribution was the formulation of the model for twisted bilayer graphene,

independent calculation of the electronic Raman scattering amplitude, analysis of

the results and debugging of the relevant code. The contribution of A. Garcia-Ruiz

consisted of independent calculation of the Raman amplitude as well as the imple-

mentation of the twisted bilayer graphene Hamiltonian and numerical integration

in to MATLAB in order to calculate the Raman intensity.

4.1 Introduction

The observation of superconductivity in twisted bilayer graphene [29, 30] has

revitalised theoretical and experimental interest in graphene materials. Not only

is tBLG the first pure carbon superconductor, but it has a phase diagram akin to

those of common non-BCS mediated high-TC superconductors. However, unlike

these materials, the carrier concentration required to induce superconductivity

can be achieved using gating, meaning that sweeping through voltages and tem-

perature allows the whole phase space to be mapped (this is in contrast to high-TC

superconductors where new samples have to be fabricated [92]).

One key caveat is that the misalignment angle in tBLG has to be close to

a specific value. This angle, known as the magic angle (see Chapter 1) lies at

approximately 1.1◦. Engineering such a system poses a significant challenge,

where encapsulation of the device with hBN is required to prevent the graphene

layers from deforming into a structure more similar to aligned bilayer graphene.

In previous experiments [29, 30], mechanical exfoliation was used to create

two flakes, which were then misaligned to the desired angle by reference to their

crystallographic axis. While this technique should allow excellent control over the

crystallographic alignment, strain and distortion during fabrication could effect

this angle. Furthermore alternative fabrication techniques such as CVD, do not

allow control over the twist angle. Therefore, there needs to be a non-invasive way

to measure the twist angle in a previously fabricated sample. Around the magic

angle, measuring the misalignment is particularly difficult, with ARPES unlikely

to provide sufficient resolution, especially if encapsulated by hBN. Furthermore,

previous Raman experiments looking at phonon modes [93, 94] attempted to

establish a relationship between the twist angle and the behaviour of certain

peaks, however the highly sensitive and non-monotonic behaviour suggest such

methods would be inappropriate to resolve small differences in the twist angle.

Instead, we propose that electronic Raman scattering, which effectively probes
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the electronic density of states, can be used to determine the twist angle of the

sample.

4.2 Theoretical description of electronic

Raman scattering

Typically, Raman measurements rely on phonon modes in order to extract

information about the system. Graphene, in particular, has characteristic phonon

modes, the G and D-peaks [95, 96], which provide information about the quality

of the graphene sheet. We focus on electronic Raman scattering, an off-resonant

process which probes only the electronic band structure of the target material.

An electronic Raman scattering process involves the successive absorption and

emission of a photon, in either order [97, 98, 99, 100], with the frequency difference

between the photons characterising the energy of the resulting electron-hole pair.

In order to describe a Raman scattering process, we must derive an expression

for the interaction between an electron and a photon [97, 98, 99, 100, 101]. Such

an interaction can be described by introducing the canonical momentum

P = k − e

c

(
A(r, t) + Ã(r, t)

)
, (4.1)

with the vector potentials of the incoming and outgoing photons written asA and

Ã respectively. The spatial and temporal properties of these vector potentials

are expressed as [98, 99]

A(r, t) =
~c√
2Ω

(
lei(p·r−Ωt)/~b̂p,l,+h.c

)
, (4.2)

Ã(r, t) =
~c√
2Ω̃

(
l̃ei(p̃·r−Ω̃t)/~b̂p̃,l̃ + h.c

)
, (4.3)

where b̂p,l describes the annihilation of a photon with momentum p and polari-

sation l. Ω (Ω̃) represents the frequency of the interacting photon.

The interaction term between the photon and electron can be described using

the current operator, ĵ,

ĤLight-Matter(r, t) = ĵ ·
(
A(r, t) + Ã(r, t)

)
+ h.o., (4.4)

ĵ =

(
∂Ĥ

∂kx
,
∂Ĥ

∂ky

)
, (4.5)
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where Ĥ is the electronic Hamiltonian of the target 2D material (in our case

tBLG) such that the higher order terms (h.o) are neglected. Since all one-step

processes involving both absorption and emission of a photon are higher order,

the dominant contribution to Raman comes from two-step processes where an

electron in an initial state |i〉, at time t, emits/absorbs a photon, transforming

into a virtual state |v〉, before absorbing/emitting a photon at time t′ becoming

a final state |f〉. The difference in energy between the absorbed and emitted

photon Ω− Ω̃ = ω, is the Raman shift. We represent these two processes in Fig.

4.1.

Ω
|i〉

|f〉Ω̃

Ω
|i〉

|f〉Ω̃

|v〉 |v〉

Figure 4.1: Feynman diagrams representing the possible two-step processes
consisting of absorption of a photon of frequency Ω, followed by emission of a
photon, frequency Ω̃ (Left) and emission followed by absorption (Right).

The light matter interaction can be written as the sum of an absorption and

emission part

ĤLight-Matter(r, t) = Ĥabs
ξ (r, t) + Ĥems

ξ (r, t), (4.6)

where we introduce quantum numbers relevant to the electronic Hamiltonian, in

this case the valley index ξ.

4.2.1 Numerical model of twisted bilayer graphene

In this section we utilise the small-twist angle Hamiltonian for tBLG. As

discussed in Chapter 3, the number of Dirac cone replicas, separated by vectors qξ

(Section 3.2), required to reach convergence, depends strongly on the twist angle.

Previous numerical estimates for this relationship suggest an angular dependence

of ∼ 10 θ−2 on the size of the Hamiltonian to reach convergence [73]. Therefore,

around the magic angle, we need at least 10 Dirac cone replicas. In fact, in order

to preserve the symmetry of the band structure we consider 72 Dirac cone replicas
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leading to a Hamiltonian of size 144.

For an individual Dirac cone replica, with momentum k, layer index β and

valley ξ we write the basis ĉk,ξ = (ĉAk,β,ξ, ĉ
B
k,β,ξ)

T such that the basis of the overall

Hamiltonian can be written as Ĉk,ξ =
⊕N

α=0 ĉk+qα,ξ. We can relate the set

of basis Ĉk,ξ to the set of eigenvectors, χ̂n,k, where n labels the corresponding

energy levels for a given momenta, n ∈ [1, dim(Ĥξ
tBLG)]. In particular there exists

a unitary matrix, M̂k,β,ξ, which relates the eigenvectors and basis

Ĉk,ξ = M̂k,β,ξχ̂n,k. (4.7)

4.2.2 Current vertex calculation

The vertices of the Feynman diagrams presented in Fig. 4.1, correspond to an

interaction between an electron and a photon. Quantitatively we express these

vertices as a probability amplitude

V̂abs(t) =
∑
α

Ĉ†k+qα,ξ
Ĥabs

ξ (r, t)Ĉk+qα,ξ, (4.8)

where we drop the layer index as it is redundant. In order to discuss the for-

mation of an electron-hole pair, it is necessary to frame the discussion in terms

of transitions between energy bands. Using the relationship between basis states

and the eigenstates, Eq. (4.7) we can express this in terms of the energy bands

V̂ i→ν
abs (t) =

∑
ξ,σ

∑
α,i,v

∑
j,j′

[M̂ j′v
k+qα,ξ

χ̂v,k+qα ]†Ĥabs
ξ (r, t)M̂ j,i

k+qα,ξ
χ̂i,k+qα , (4.9)

V̂ i→ν
ems (t) =

∑
ξ,σ

∑
α,i,v

∑
j,j′

[M̂ j′v
k+qα,ξ

χ̂v,k+qα ]†
(
Ĥems

ξ (r, t)
)∗
M̂ j,i
k+qα,ξ

χ̂i,k+qα , (4.10)

where superscripts in M̂ a,b
k,ξ are the row and column index.

4.2.3 The two-step process

We now wish to calculate the Raman amplitude and probability of two-step

processes where, for a resulting electron-hole pair, we consider all intermediate

states. For fermionic creation (annihilation) operators in energy band n and

momentum k, previously defined as χ̂†n,k(χ̂n,k), we define an excited final state
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as

|Exc〉 = χ̂†n′,kχ̂n,k |GS〉 . (4.11)

Therefore the Raman amplitude between an initial, i, and final, f , state is

Rf←i =
−1

~2

∫ ∞
−∞

dt′
∫ t′

−∞
dt
[
V̂abs(t

′)V̂ems(t) + V̂ems(t
′)V̂abs(t)

]
=
∑
v

Pabs-ems
v Iabs-ems

v +
∑
v

Pems-abs
v Iems-abs

v , (4.12)

where we have performed time ordering and then separated the contributions into

those of the time-resolved integral Iv and polarisation Pv over all virtual states

v. We first calculate the time integral

Iabs-ems
v =

−1

~2

∫ ∞
−∞

dt′
∫ t′

−∞
dtei(Ef−Ev+Ω̃)tei(Ev−Ei−Ω−iδ+)t′

= 2πi
δ(Ei − Ef + Ω− Ω̃)

Ei − Ev − Ω− iδ+

, (4.13)

Iems-abs
v =

−1

~2

∫ ∞
−∞

dt′
∫ t′

−∞
dtfei(Ef−Ev+Ω)tei(Ev−Ei−Ω̃−iδ+)t′

= 2πi
δ(Ei − Ef + Ω− Ω̃)

Ei − Ev + Ω̃− iδ+

, (4.14)

where we introduce the small quantity δ+ to ensure that the integral is well-

defined. Noting that Ω− Ω̃ = ω allows us to write

Iabs-ems
v = 2πi

1

Ei − Ev − Ω
, (4.15)

Iems-abs
v = 2πi

1

Ei − Ev + Ω− ω
. (4.16)

The polarisation factor Pv is just the remaining terms following the calculation

of the time resolved part and concerns the light polarisation and momentum of
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the participating electronic states

Pabs-em
v =

∑
ξ′,σ′

∑
α′,v,f

∑
j̃,j̃′

[M̂ j̃′f
k+qα′ ,ξ

′χ̂f,k+qα′
]†
(
Ĥems

ξ (r, 0)
)∗
M̂ j̃,v
k+qα′ ,ξ

′χ̂v,k+qα′

×
∑
ξ,σ

∑
α,i,v

∑
j,j′

[M̂ j′v
k+qα,ξ

χ̂n,k+qα ]†Ĥabs
ξ (r, 0)M̂ j,i

k+qα,ξ
χ̂i,k+qα ,

Pem-abs
v =

∑
ξ′,σ′

∑
α′,v,f

∑
j̃,j̃′

[M̂ j̃′f
k+qα′ ,ξ

′χ̂f,k+qα′
]†Ĥabs

ξ (r, 0)M̂ j̃,v
k+qα′ ,ξ

′χ̂v,k+qα′

×
∑
ξ,σ

∑
α,i,v

∑
j,j′

[M̂ j′v
k+qα,ξ

χ̂n,k+qα ]†
(
Ĥems

ξ (r, 0)
)∗
M̂ j,i
k+qα,ξ

χ̂i,k+qα .

Although this suggests contributions for all combinations of i, f and v we note

that depending on the position of the chemical potential, certain transitions are

forbidden where, as fermions, the creation of identical electrons and holes is

prohibited by Pauli exclusion. In order to calculate the Raman probability, we

integrate over all momenta and act on the Fermi sea, |GS〉 (assuming the chemical

potential sits at the neutrality point). We thus obtain an expression for the

intensity at Raman shift ω

W (ω) =
∑
ξ,σ

∫
dk

(2π~)3
| 〈Exc|Rf←i |GS〉 |2. (4.17)

4.3 Results

We now present the Raman intensity as a function of Raman shift for a range

of twist angles close to the magic angle. In Fig. 4.2, we show the Raman in-

tensity at a range of angles around the magic angle. Similar to the case of

monolayer [98, 102] and superconducting monolayer graphene [100], the Raman

amplitude depends predominantly on the electronic band structure, such that

the final electron-hole pairs roughly correspond to the density of states of the

conduction (CB) and valence bands (VB). In (a) we show the electronic Raman

spectrum (ERS) for twisted bilayer with 2◦ misalignment angle. The peak seen in

the electronic Raman spectrum at about 100 meV originates from final electron-

hole states between the first valence and first conduction band, as indicated by

the blue peak in the central column of Fig. 4.2 (a). One might assume, there-

fore, that the peak in the Raman intensity corresponds to electron-hole states

between the two Van Hove singularities in the 1st conduction and valence bands.

However, due to the electron-hole asymmetry in the tBLG band structure and
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Figure 4.2: Left column shows the total calculated electronic Raman spectra
of twisted bilayer graphene at misalignment angle (a) 2◦ (b) 1.3◦ (c) 1.1◦ (the
magic angle in our model) and (d) 1◦. The middle column shows the individual
contributions to the total spectra in the left column for each pair of conduction
(CB) and valence bands (VB): VB1-CB1 (blue), VB1-CB2 (red), VB2-CB1 (yel-
low) and VB2-CB2 (purple). In the right column we show the density of states
of twisted bilayer graphene at the given angle and indicate the energy separation
between Van Hove singularities corresponding to the same peaks in the middle
column.
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because the incident and outgoing photons impart no lateral momentum on the

electron-hole pair, no such states exist. Instead, the peak in intensity corresponds

to the regions of almost parallel conduction and valence bands between the Van

Hove singularities1. This can also be seen from the right column of Fig. 4.2 (a)

where the separation between VHS is smaller than energy of the Raman peak

in the left and middle columns. In Fig. 4.2 (b) we present the same results for

a smaller twist angle, 1.3◦ (just above the magic angle). Note that as the twist

angle is lowered, the Van Hove singularities move closer together as observed in

Fig. 4.2 (b). Furthermore, higher energy conduction and valence bands start to

move closer together. As a result, the electronic Raman spectrum at 1.3◦ pre-

sented in the left column of Fig. 4.2 (b) has two clear peaks corresponding to

different electron-hole excitations, as indicated in the middle column.

At the magic angle, the 1st conduction and valence bands are flat, with a

minimum in the Fermi velocity and sharp peak in the density of states. In Fig.

4.2 (c) we plot the Raman intensity at the magic angle, with the first peak lying

at Raman shift ω = 0 2.

Furthermore, we observe the onset of two small second peaks corresponding

to the transitions between the first valence and second conduction band, and due

to symmetry, the second valence and first conduction band. In addition to this,

a larger peak is seen at a slightly larger Raman shift, corresponding to a second

conduction to second valence band transition. In this case the peak corresponds

precisely to excited states between the Van Hove singularities, as, the flattest

region of both bands lie at the same momentum. The profile of these peaks gives

insight into their origin and when combined with the Raman shift at which these

peaks are observed, gives a robust way to determine the twist angle of the twisted

bilayer sample.

As the twist angle is lowered below the magic angle, the flat bands observed

at the magic angle partially “unflatten”, as seen in the density of states plot in

the right column of Fig. 4.2 (d). As a result, the corresponding Raman peak

shifts away from the origin as seen in the left and central columns of Fig. 4.2 (d),

however the Raman peaks corresponding to higher transitions continue to shift

towards the origin.

In Fig. 4.3, we show more clearly the variation in position of the 1st-1st

1This however still acts a good probe of the twist angle as the peak shifts towards the
frequency origin as the twist angle is reduced towards the magic angle.

2As the first conduction and valence bands are not completely flat, the Raman peak is slightly
above the ω = 0 point, however this wouldn’t be resolved. Around ω = 0, the frequency of the
incident and outgoing photons are almost the same suggesting the energy separation between
the two bands is close to zero.
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Figure 4.3: Electronic Raman intensity corresponding to the 1st valence to
1st conduction excited state plotted for a range of angles from 2◦ to the magic
angle, 1.1◦. The dashed black line shows the Raman intensity corresponding to
monolayer graphene.

valence-conduction electronic Raman peak as a function of angle. As a compar-

ison we also indicated the ERS for monolayer graphene in Fig. 4.3. The peaks

observed in tBLG are significantly larger than in MLG. This suggests that, based

on previous experiments [101, 102], the electronic Raman spectrum we obtain

should be observable experimentally.

In Fig. 4.4, we present the evolution of the electronic Raman spectrum for

decreasing angle below the magic angle. Below the magic angle, although the

signal from the 1st-1st valence-conduction transition begins to fade (as seen in

the inset in Fig. 4.4), the peak corresponding to the 2nd-2nd valence-conduction

transition remains prominent. Similarly to Fig. 4.3, as the angle is decreased,

this peak shifts towards the origin suggesting that it could also be used as a

probe. Furthermore, the spectral profile of this peak remains relatively constant

for changing angle allowing for easier identification.

In practice, the electronic Raman spectra will have to compete with the much

larger peaks in the Raman measurement corresponding to phonon modes. How-

ever, in general, these occur at much higher frequencies than discussed here

[93, 94, 95, 96, 101, 103], suggesting that electronic Raman features should only

compete with experimental noise, as observed in monolayer graphene [102]. In
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Figure 4.4: Total electronic Raman intensity plotted for a range of angles from
1.1◦, the magic angle to 0.95◦. The inset shows the magnification of the Ra-
man spectra at low energies. The dashed black line shows the Raman intensity
corresponding to monolayer graphene.

Fig. 4.5 we plot the position of the two strongest peaks corresponding to the 1st

conduction to 1st valence and 2nd conduction to 2nd valence, as a function of twist

angle, with solid lines. We compare this peak position to the separation between

the VHS of the these bands, shown with dashed lines in Fig. 4.5. The separation

between the solid and dashed lines for the1st conduction and valence bands (blue

and cyan in Fig. 4.5) highlights the fact that electron-hole pairs between the

Van Hove singularities are not responisble for the associated Raman peak. By

cross-referencing the positions of the experimentally observed ERS peaks with

Fig. 4.5, the twist angle can be read off immediately. Unfortunately, we believe

that this technique is inappropriate for large twist angle twisted bilayer as the

observed peaks occur at Raman shifts comparable to the much larger phonon

modes.

4.4 Summary

We have modelled the electronic Raman spectrum of low-angle twisted bilayer.

We have demonstrated that as the twist angle is reduced towards the magic angle,

the peak in the Raman spectrum corresponding to electron-hole pairs in the first
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Figure 4.5: Position of the 1st Valence to 1st conduction band (blue) and 2nd

valence to 2nd conduction band (red) Raman peaks as a function of twist angle.
The green vertical line indicates the position of the magic angle. The dashed
lines correspond to the separation between the Van Hove singularities of the 1st

valence to 1st conduction bands (cyan) and 2nd valence to 2nd conduction bands
(magenta).

conduction and valence band moves towards the origin as the bands begin to

flatten. Below the magic angle, this peak begins to fade and move away from

the origin however peaks corresponding to excited states involving other pairs of

bands begin to appear in the low energy Raman shift region. We demonstrate

that by examining the spectral profile it is possible to infer the origin of the

Raman peaks, which, when compared with the angle-dependence of the peak

position allows accurate estimation of the twist angle in bilayer graphene. The

observed Raman peaks are more pronounced than in monolayer graphene, which

has been observed experimentally, and occur at Raman frequencies away from

those of prominent Raman modes in twisted bilayer graphene.
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The work presented in this chapter was done in collaboration with experimental

physicists at the Chen group in Oxford, who provided all experimental data. My

contribution was all the theoretical modelling and experimental fits.

5.1 Introduction

In order to properly understand the electronic properties of stacks of twisted

two-dimensional materials, it is crucial to accurately model the interlayer cou-

pling. The interlayer coupling between two-dimensional materials dictates the

value of the magic-angle, at which, twisted graphene demonstrates superconduc-

tivity and strongly correlated behaviour [29, 30]. However, current models for the

interlayer coupling in twisted graphene layers fail to accurately describe bilayer

graphene in the limit of zero misalignment angle. In this chapter, we propose

that twisted trilayer graphene (tTLG) is the simplest material within which to

compare the interlayer coupling between aligned and misaligned graphene layers.

As such, we propose a self-consistent parameter set which describes both these

couplings in the context of the continuum model, which we verify by comparison

to angle-resolved photoemission spectroscopy measurements.

Experimentally, angle resolved photoemission spectroscopy (ARPES) is a

powerful tool used to determine the electronic structure of a material [104, 105,

106]. Based on the photoelectric effect [107], photons incident on the surface of a

material excite electrons causing them to be ejected. By measuring the character-

istics of the ejected electrons, in particular the electronic momenta perpendicular

to the surface, the energy and wave vector of the electron can be used to construct

the electronic band structure of the target material.

ARPES has been extensively used to characterise graphene-based materi-

als. This includes simple graphene monolayers and bilayers [108, 109, 110], to

graphene on almost commensurate substrates [111] and twisted graphene layers

[112, 113]. We demonstrate excellent agreement between experimental ARPES

spectra and the theoretical band structure calculated using our proposed self-

consistent parameter set. We also discuss the effect of substrate doping on the

experimental ARPES spectra, which we take into account in our model.

5.2 Theoretical model of ARPES

The term “angle-resolved” originates from the method by which the lateral

electronic momenta is probed. The ejected electrons are captured by a hemi-
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spherical detector, such that the polar and azimuthal angles of detection, φ and

ϑ, respectively, can be used to determine the momenta [114]

px =
√

2meε sinφ cosϑ,

py =
√

2meε sinφ sinϑ,

p⊥ =
√

2meε cosφ, (5.1)

where me is the mass of the emitted electron and ε is the energy. In Fig. 5.1

Figure 5.1: Diagram of a typical ARPES scattering process, where a photon of
frequency ω (magneta), incident on a graphene surface (black hexagons), leads
to the emission of an electron (blue). The electronic momenta (black axes) and
the scattering angles, φ (green) and ϑ (red) are also included for clarity.

we present a diagram of a typical ARPES process with the electronic momenta

and the scattering angles labelled. In bulk materials, extracting the relationship

between the momenta and electron energy is difficult due to non-zero out-of-plane

momentum [115], however in few-layer materials such as simple van der Waals

heterostructures, this is relatively easy as the measured ARPES spectra directly

probes a single constant-energy contour. Therefore, a single photon frequency

probes the band structure at one energy, meaning that, energy slice by energy

slice, the entire electronic dispersion can be constructed. In particular, by utilising

the conservation of energy and by assuming that the incident photon does not

impart lateral momentum on the electron, Eq. (5.1) can be used to extract

information about the band structure. In bulk materials, additional constraints
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need to be considered due to photons of a certain energy exciting electrons at a

range of perpendicular momenta, p⊥, [115]. The conservation of energy can be

described in the following way: for a photon with energy ω greater than the work

function of the material, W , the detected energy, ε, and initial energy, εp, can be

related as

W + ε = ω + εp. (5.2)

The momentum constraint arises as a result of the Bloch states of the layered

material, as demonstrated for graphene in Chapter 2. For a measured momentum,

pD = (px, py, p⊥) (see Eq. (5.1)), the lateral component, p, is simply

|p| =
√
|pD|2 − p2

⊥. (5.3)

For a given energy, the ejected electron, can either have momentum ~k, where k

is the initial momentum state of the electron, or momentum ~(k +G), where

G = c1G1 + c2G2, c1, c2 ∈ Z, (5.4)

and we define G1,G2 as the reciprocal lattice vectors of the target material. In

the case of graphene these reciprocal lattice vectors are defined in Eq. (2.4).

The interaction between the incident photon and ejected electron can be de-

scribed perturbatively using the light-matter interaction [116, 117]

ĤLM = − e

me

Â · p̂, (5.5)

where Â is the vector potential of the incident photon and p̂ is the momentum

operator. The ejected electron is considered a free particle and can therefore be

modelled using a plane wave

|ϕ(r,k′)〉 ∝ eik
′·r. (5.6)

The initial state, an electron in band j, is described using a Bloch function of

pz orbitals, |Ψj(r,k)〉, as defined in Eq. (2.5). Therefore the matrix element

associated with the ejection of an electron in the j-th band in the crystal into the

vacuum by a photon is

Mj ∝ −
e

me

〈ϕ(r,k′)| Â · p̂ |Ψj(r,k)〉 . (5.7)
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The treatment of the light-matter interaction will vary depending on the required

accuracy [116, 117, 118]. We note initially that all information encoding the band

structure of the target structure (monolayer, twisted bilayer, etc) originates from

the constants cm,j, derived from band structure calculations, and that the remain-

der is likely to encode relative intensities. In this thesis, we focus predominantly

on the shape (rather than intensities) of the ARPES spectra. Therefore, setting

Â · p̂ as an arbitrary constant and continuing from Eq. (5.7), we can write the

matrix element as

Mj ∝ −
e

me

1√
N

n∑
m

N∑
l

cm,je
i(k−k′)·Rl,m 〈eik′·(r−Rl,m)|ψm(r −Rl,m)〉 . (5.8)

The sum over l is reduced trivially to a delta function prescribing in-plane mo-

mentum conservation, k−k′ = G. Furthermore, the inner product can be written

as

〈eik′·(r−Rl,m)|ψm(r −Rl,m)〉 =

∫
e−ik

′·(r−Rl,m)ψm(r −Rl,m)dV = ψ̃m(k′), (5.9)

where ψ̃m(k′) is the Fourier transform of the pz-orbital, which we approximate

as a constant. Again, we note that proper treatment of this Fourier transform is

likely to only affect intensities rather than change the shape of measured ARPES

spectra 1. Previous attempts to treat these prefactors more thoroughly have

had mixed success [116, 117, 118, 119] offering marginal gains in accuracy when

compared to measured intensities. The matrix element associated with the pho-

toemission of an electron is

Mj ∝
n∑
m

cm,je
iG·Rm . (5.10)

Using Fermi’s golden rule [120], the ARPES intensity of the j-th band can there-

fore be expressed as

Ij ∼

∣∣∣∣∣
n∑
m

cm,je
iG·Rm

∣∣∣∣∣
2

δ(W + ε− ω − εj,p), (5.11)

where the Dirac delta function is introduced to take into account the energy

conservation. In theory, experimental ARPES spectra are broadened [104], dif-

1It is also worth pointing out that, in graphene, close to the Brillouin zone corner it can
be argued that Â · p̂ and ψ̃m(k′) are roughly constant [52], which should hold for small twist
angles in twisted bilayer graphene.
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ferently in energy and momentum. This is dependent on the resolutions of the

particular setup, however, for simplicity we model the energy broadening as a

Lorentzian

δ(W + ε− ω − εj,p)→ 1

π

γ

(W + ε− ω − εj,p)2 − γ2
. (5.12)

We extract the half-width-half-maximum, γ, by comparing to experimental data.

The expressions above were derived while neglecting most of the complexities

of an APRES process. These include dynamical effects [121, 122], interactions

between graphene and the substrate [108] and polarisation of the incident light

[119], to name just a few. However, as previously discussed, these should either

only alter intensities, or lead to minor deviations in the ARPES spectra, some

of which are resolvable in the experiment described here. Moreover, we use an

exponential decay, e−αn, where α is the decay constant and n is the layer number,

in order to roughly estimate the intensity difference between electrons originating

from different layers. Electrons on the layer furthest from the detector travel

further and risk being scattered by closer layers while the total number of photons

incident on the layer further away is also smaller.

5.3 Twisted trilayer graphene

In this section we derive a theoretical model for twisted trilayer graphene.

We focus on (θ − 0 − 0) trilayers where the top layer is misaligned compared

to the other two layers, which are arranged in the typical Bernal stacking. In a

similar way to twisted bilayer, we can define the intralayer and interlayer coupling

separately. We treat the intralayer part using the typical monolayer graphene

Hamiltonian, Eq. (2.14), modified for the relative twist-angle. We model the

interlayer interaction with relative rotation θ using T̂ (θ) as defined in Eq. (3.5).

On the basis (A1, B1, A2, B2, A3, B3), we express the Hamiltonian for (θ1−θ2−θ3)

twisted trilayer with arbitrary twist angles as

ĤtTLG(θ1, θ2, θ3) =

ĤMLG (θ1, u1) T̂ (θ1 − θ2) V̂ (θ1 − θ3)

T̂ †(θ1 − θ2) ĤMLG (θ2, u2) T̂ (θ2 − θ3)

V̂ †(θ1 − θ3) T̂ †(θ2 − θ3) ĤMLG (θ3, u3)

 , (5.13)

where V̂ (θ) describes the interlayer coupling between layer 1 and layer 3 of the

trilayer while {u1, u2, u3} are the on-site energies of the three layers. As in

ABA/ABC trilayer graphene [123, 124], the coupling between the outer layers
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Figure 5.2: (a) Twisted trilayer graphene, (θ − 0− 0), with the aligned Bernal
bilayer shown in black and twisted monolayer in blue with twist angle, θ. Also
indicated is the dominant coupling between Bernal bilayers, γ1, shown in red,
and the coupling between twisted bilayers T̂ (θ), shown in pink. (b) Top-down,
long-range crystallographic structure of (θ − 0 − 0) twisted trilayer graphene.
The Bernal-stacked layers, shown in black and grey, lie beneath the rotated blue
monolayer.

is much weaker than between adjacent layers. Hence, we neglect V̂ (θ) as it will

only induce minor changes in the ARPES spectra, which are most likely unde-

tectable at the resolutions seen in experiment. As we are focusing on twisted

(θ − 0 − 0) trilayers, we set the twist angle between layer 2 and layer 3 as zero.

Hence, as θ2, θ3 → 0, we should obtain the coupling in Bernal bilayer

T̂ (0) =

(
0 0

γ1 0

)
, (5.14)

such that Eq. (5.13) becomes

ĤtTLG(θ1, 0, 0) =

ĤMLG (θ1, u1) T̂ (θ1) 0

T̂ †(θ1) ĤMLG (0, u2) T̂ (0)

0 T̂ †(0) ĤMLG (0, u3)

 . (5.15)

The interlayer coupling between the twisted layers in tTLG is described using

the continuum model as outlined in Eq. (3.14). The resulting band structure

consists of two neutrality points: one Dirac cone from the monolayer part, and

one Bernal bilayer dispersion offest from the monolayer cone in reciprocal space
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by the vector qξ = (1̂ − R̂θ1)Kξ (as defined in Section 3.2). In a similar way

to twisted bilayer, where these bands cross, hybridisation occurs resulting in the

formation of Van Hove singularities. The additional bands present as a result of

the high-energy bands in the Bernal bilayer part mean that there are a total of

four band crossings in the simplest electronic dispersion. The application of an

on-site energy difference between the Bernal bilayer and misaligned monolayer

parts acts in a similar way to that of twisted bilayer moving the neutrality points

up and down in energy. In contrast, non-zero u between the two layers of the

Bernal bilayer opens a gap in the quadratic dispersion at the neutrality point.

Similarly to twisted bilayer, reducing the twist angle causes the separation

between neutrality points qξ to shrink. As a result, the energy at which band

hybridisation is observed is lowered until at about 1.1◦ where the dispersion be-

comes completely flat, suggesting that a magic angle exists for twisted trilayer.

It is still unclear whether any of the recently discovered many-body phenomenon

in tBLG [29, 30] are observable in trilayer samples.

Twisted trilayer graphene is the thinnest single sample which allows the di-

rect comparison of the interlayer coupling between graphene layers at zero and

non-zero misalignment. When comparing separate bilayers, one twisted and one

Bernal stacked for example, variations in synthesis, quality and detection methods

could affect the observed ARPES spectra, changing the parametrisation between

samples. This makes twisted trilayer graphene a far more convenient sample to

use (in the case of separate bilayer layers, more care needs to be taken). Further-

more the additional band crossing in twisted trilayer provides another reference

point which can be used to extra information about the interlayer coupling be-

tween twisted layers.

In order to describe the real-space coupling between twisted graphene layers,

multiple proposals have been put forward to model the coupling strength between

carbon pz orbitals [71, 74, 75, 76]. Although more complex techniques which

take into account all orbitals and the local environment, such as DFT, should

theoretically give more accurate results, this is computationally expensive and

often does not match experimental observations quantitatively. The simplest

description is to take a two-centre approximation [71, 76], where two pz-orbitals,

separated by a vector r = (r||, d0) , interact only with each other, such that r|| is

the in-plane component

t(r) = Vppπ(r)

(
1− (r · ez)2

|r|2

)
+ Vppσ(r)

(
r · ez
|r|

)2

, (5.16)

where Vppσ and Vppπ represent σ and π bonding respectively, with prefactors
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taking into account the relative orientation of these orbitals [71, 125]. The ideal

functional form of Vppσ(r) and Vppπ(r) should reproduce γ0 and γ1 when r = δ

and r = d0ez respectively, hence

Vppσ(r) = γ1e
−
|r| − d0

rσa ,

Vppπ(r) = γ0e
−
|r| − |δ|
rπa , (5.17)

where rσ and rπ are constants corresponding to the decay of σ and π bonding re-

spectively. Crucially, taking this functional form reproduces the nearest interlayer

coupling in aligned bilayer, γ1.

In the continuum model, the interlayer coupling is expressed as the sum of an

infinite number of terms, which can be truncated to the three dominant terms.

However, we should include all terms in order to be precise, such that, the cou-

pling between each pair of sublattices becomes a convergent sum. Furthermore,

following our discussion in Section 3.2, in the limit of zero angle, this sum pro-

duces a non-zero term only in the position {B,A} (equivalent to (A2,B1) in

Bernal bilayer) such that expansion of Eq. (3.14) over all G,G, for zero angle,

produces

T̂ (0) = 3
[
t̃(Kξ, d0) + t̃(2Kξ, d0) + 2t̃(

√
7Kξ, d0) + ...

](0 0

1 0

)
≈

(
0 0

γ1 0

)
.

(5.18)

This relationship adds another restriction on the model for t(r) as t̃(q, d0) should

decay such that the sum converges to γ1. Therefore, ideal parameters for the

decay constants are rσ = 0.06 and rπ = 0.12 such that t̃(Kξ, d0) = 110 meV,

t̃(2Kξ, d0) = 14 meV and t̃(
√

7Kξ, d0) = 2.5 meV.

In Fig. 5.3 (a), we plot the interlayer coupling set in real space as a function of

interatomic distance, R, for the above parameter set which, as expected, decays

exponentially. The value of this curve at R = 0 indicates the value of γ1. The

Fourier transform, t̃(q, d0), utilised in the continuum model, which represents the

interlayer coupling in reciprocal space, is presented Fig. 5.3 (b). We indicate

important values such as t̃(Kξ, d0) and t̃(2Kξ, d0) with dashed lines. We note

that the exponential decay of this parameter set suggests that, in the infinite

expansion appearing in the interlayer coupling, the sum reaches convergence, as

shown in Eq. (5.18). Importantly, this parameter set does not depend on the

misalignment angle and as such should describe the interlayer coupling between
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Figure 5.3: (a) The real-space interlayer interatomic coupling as a function
of the in-plane interatomic distance, R for the parameter set: γ0 = −2.95 eV,
γ1 = 0.39 eV, d0 = 3.3 Å, rσ = 0.06 and rπ = 0.12. (b) The Fourier transform
of (a) into reciprocal space. We indicate two important values of t̃(q, d0) with
dashed lines.

twisted graphene layers with any orientation.

By parametrising the interatomic coupling between twisted graphene layers in

this way we have produced a self-consistency loop between the real space coupling

and continuum model regimes. First, the interlayer coupling between twisted

layers depends on the Fourier transform of the real space coupling, and second,

the continuum model describing the interlayer coupling between twisted layers

reproduces the real space coupling in the limit of zero-angle. This self-consistency

demonstrates the strength of our model and in particular our parametrisation of

the interatomic coupling, and we compare to experimental ARPES data in the

next section.

5.4 Comparison to experiment

In this section, we compare our calculated ARPES spectra for twisted trilayer

graphene, with experimental data obtained by collaborators. The samples were

grown on copper foil via chemical vapour deposition. Chemical vapour depo-

sition (CVD) is a fabrication technique used to create crystalline samples and

previous ARPES measurements on CVD grown graphene crystals have shown

good agreement with the theorized electronic band structure [14, 112, 113]. CVD

is also preferred over exfoliated graphene as it allows the synthesis of large area
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sheets of graphene, necessary to get high reciprocal space resolution in ARPES

measurements.

The APRES measurements (microARPES) presented in this chapter were per-

formed at the spectromicroscopy beamline at the Elletra synchrotron in Trieste.

Since the samples were grown using chemical vapour deposition they form tri-

layer graphene with arbitrary twist angles2. Despite the range in rotation angles,

a few trilayer samples with the required (θ − 0 − 0) stacking were observed (as

seen from ARPES), their formation helped by the fact that Bernal bilayer is an

energetically favourable configuration.

In order to perform fits we need to first ascertain the on-site potential dif-

ference and misalignment angle from the experimental ARPES spectra. Due to

differences in the work functions between graphene and copper substrates, as

well as chemical bonds forming between the graphene and copper surface [126],

the graphene becomes doped. This can be modelled as follows: let us assume

that the work functions of graphene and the copper substrate differ, such that

the difference between their neutrality points can be written as ∆ρ, therefore

for chemical potentials of µCu and µGr we can use Gauss’s law to construct the

following electrostatic equation.

µGr − µCu + ∆ρ = ed|E| (5.19)

where E is the perpendicular electric field between the graphene and copper, and

d is the spatial separation between them. We note that ∆ρ is dependent on the

initial work functions but also on the interaction between copper and graphene.

Furthermore, due to the size and thus electron density of the copper substrate, as

compared to graphene, it is unlikely that the chemical potential will vary much

away from the neutrality point. The electric field between the graphene and

copper layers is proportional to the charge density difference between them, ∆n

|E| = ed

ε0
|∆n| = ed

ε0

∫ |µGr−µCu|

0

DGr(ε)dε, (5.20)

where ε0 is the permittivity of free space, and DGr(ε) is the density of states of

graphene at energy ε. At low energies, DGr(ε) is approximately linear in ε such

that Eq. (5.19) becomes a quadratic equation that can be solved exactly with fits

obtained from experiment. This method can be extended to any number of layers

2Both misalignment angles presented in this chapter are around 9 degrees while previous
twisted bilayer samples performed by the same group have shown samples ranging from 5◦ to
23◦ [113]
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by reformulating Eq. (5.19) at each interface. The twist angle can be obtained

from the ARPES data by measuring the distance in reciprocal space between

the neutrality points and extracting the angle from the expression for qξ. We

compare two samples with relevant data shown in Table (5.1).

Table 5.1: Measured twist angle and on-site energies u1, u2 and u3 for samples
1 and 2

Trilayer Samples
Sample Twist Angle, θ1 (◦) u1 (meV) u2(meV) u3 (meV)
1 9.6 0 -90 -310
2 9.06 0 40 ≈ 40

In Fig. 5.4, we show experimental ARPES maps for sample 1 at a range of

energy values in the left column and these are compared with theoretical ARPES

maps in the middle column, calculated using the parameters in Table (5.1). Con-

tours of the theoretical band structure are shown in the right hand column. The

small differences in theoretical and experimental plots are likely due to dynamical

effects not incorporated into our model and give rise to variations in intensity.

Part (i) in Fig 5.4 shows the ARPES map and energy contour at photon energy

corresponding to the Dirac point originating from the twisted monolayer. At this

energy, the contour corresponding to the monolayer part of the spectrum van-

ishes leaving only a bilayer part, visible due to the non-zero energy offset between

the top and middle layers. The ARPES spectra becomes point-like however does

not vanish at the Dirac point due to broadening. We note that, although Dirac-

cone replicas are observed in the contour plots, these are strongly suppressed in

ARPES experiments, hence the additional circles at the top and bottom right of

the contour plot in part (ii) are not observed. The next energy slice, displayed

in part (ii), occurs at ε− ε0 = −0.4 eV. The ARPES maps and contours at this

energy expand displaying the expected dispersion in both the monolayer and bi-

layer parts. Notably, both components display a degree of trigonal warping. At

the third energy slice, part (iii), we observe the appearance of the bilayer higher

energy band in the experimental ARPES spectrum. This is presented by the blue

circle in the contour plot. The energy at which this peak appears is determined

by the value of γ1 hence this allows direct comparison to our theoretical model.

In part (iv), at energy just below the first Van Hove singularity, ε − ε0 = −0.7

eV, we observe that the contours corresponding to the monolayer and bilayer

parts become connected. This can be seen in the ARPES spectra where the two

curved intensity regions cross. Furthermore, at this energy, the higher energy
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Figure 5.4: (Colour Online) The left column shows the experimental ARPES
spectra at constant energies for sample 1: (i) ε − ε0 = 0 eV, (ii) ε − ε0 = −0.4
eV, (iii) ε − ε0 = −0.6 eV, (iv) ε − ε0 = −0.7 eV and (v) ε − ε0 = −1 eV.
The intensities are normalised in each row. The middle column shows the cor-
responding normalised theoretical ARPES spectrum calculated using parameters
discussed in Table (5.1), broadening of γ = 0.17 eV and decay of α = 0.17. The
right column displays the corresponding constant energy contours obtained from
the band structure using the same parameters. Counting downwards, the first,
second and third valence bands are shown in red, blue and black respectively.
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band originating from the Bernal bilayer part has expanded, as seen in both the

ARPES measurements and calculated band structure. Finally, part (v) shows

the ARPES spectra for an energy of ε − ε0 = −1 eV, positioned just below the

third Van Hove singularity, which arises as a result of hybridisation between the

higher energy bilayer band and monolayer band.

Figure 5.5: (Colour Online) (a) Normalised ARPES spectra for sample 1, mea-
sured along the vector connecting Dirac points. The red dashed lines, labelled (i)
- (v), correspond to the constant energy cuts shown in Fig. (5.4). (b) Calculated
band structure along the same vector, using fitting parameters shown in Table
(5.1). The dashed lines (shown in green for clarity) correspond to those in (a).

For added clarity we plot ARPES spectra for a range of energies along the

vector connecting the two Dirac points, in Fig. 5.5 (a) and compare to the

calculated band structure between the same points in (b). In general, excellent

agreement is shown between the ARPES spectra and calculated band structure

suggesting that firstly, our estimation of the experimental twist angle and on-site

energy differences u1 and u2 is sound and secondly, our model of the interlayer

coupling element discussed in Section 5.3 reproduces both γ1 and t̃(q, d0).

Shifting attention now to sample 2, we compare experimental and theoretical

ARPES spectra in Fig. 5.6. One notable difference between sample 1 and 2 is

that the on-site energy difference is of the opposite sign. This suggests that the

copper substrate now acts as a hole-donor [113] which is predicted to arise if

the interlayer separation between the graphene and copper substrate is increased

[126]. This effect could be due to defects in the growth process of the graphene

or alternatively, surface roughness of the copper substrate. This arrangement

of bands makes it more difficult to determine the size of the gap as the Dirac

point corresponding to the bilayer graphene lies above the chemical potential

prohibiting it being probed via ARPES. Despite this we are able to estimate the
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Figure 5.6: (Colour Online) The left column shows the experimental ARPES
spectra at constant energies for sample 2: (i) ε − ε0 = 0 eV, (ii) ε − ε0 = −0.4
eV, (iii) ε − ε0 = −0.6 eV, (iv) ε − ε0 = −0.7 eV and (v) ε − ε0 = −1eV.
The intensities are normalised in each row. The middle column shows the cor-
responding normalised theoretical ARPES spectrum calculated using parameters
discussed in table 1, broadening of γ = 0.17 eV and decay of α = 0.2. The
right column displays the corresponding constant energy contours obtained from
the band structure using the same parameters. Counting downwards, the first,
second and third valence bands are shown in red, blue and black respectively.
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band gap through examination of the low energy features of the parabolic bilayer

band.

In Fig 5.6, we plot, with respect to the monolayer neutrality point, the same

energy contours as in Fig. 5.4. In part (i), we observe two point-like regions in

the ARPES map corresponding to the monolayer Dirac point and slightly below

the bilayer neutrality point. Again, the monolayer feature is visible because of

broadening in the ARPES spectra, indicated by the fact that the energy contour

at the corresponding region of intensity is point-like and thus not visible. In

part (ii), at energy ε − ε0 = −0.4 eV, we observe the higher energy band in the

Bernal-bilayer part indicating that we are probing below −γ1. This follows since

we assume that γ1 = 0.39 eV and that the neutrality point of bilayer lies above

ε0. The intensity at this point is observed in the theoretical model and this is

further emphasised by the contour plot. Moreover, we show the energy bands

at −0.6 eV and −0.7 eV in part (iii) and (iv) respectively, with both contours

positioned between the split bands as a result of the interlayer coupling. In part

(v), we see the emergence of the third valence band (black line in contour plot)

seen as a faint ring-like shape between the two Dirac points, which arises as a

result of the hybridisation between the graphene Dirac cone and the high energy

band in Bernal bilayer.

Figure 5.7: (Colour Online) (a) Normalised ARPES spectra for sample 2, mea-
sured along the vector connecting Dirac points. The red dashed lines, labelled (i)
- (v), correspond to the constant energy cuts shown in Fig 5.6. (b) Calculated
band structure along the same vector, using fitting parameters shown in Table
(5.1). The dashed lines (shown in green for clarity) correspond to those in (a).

Fig. 5.7 (a) shows the ARPES spectrum and band structure along the vector

connecting the two Dirac points in sample 2 at a range of energies. The calcu-

lated band structure at these points is compared in Fig. 5.7 (b). Similarly to

sample 1, good agreement is shown with our model by reproducing both γ1 and
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t̃(q, d0). However, due to the anomalous doping, one should bear in mind that

the estimation of u1, u2 and u3 is more difficult and the band structure could

potentially be different. Despite this, the uncertainty is likely smaller than is

resolvable via ARPES hence our fit serves as a good approximation.

5.5 Summary

In conclusion, we have demonstrated that the theoretical model used to de-

scribe interlayer coupling can reproduce experimental ARPES spectra. The po-

sitioning of the high energy bands originating from bilayer as well as the split

bands due to hybridisation suggests our estimations for γ1 and t(R) are accu-

rate in both samples of trilayer, and that the resulting parameter set t̃(q, d0) is

applicable for a range of angles. We explained how the self-consistency of this

parameter set links the real=space tight-binding and reciprocal space continuum

model We discussed the possible reasons for differences between the intensities in

the experimental and theoretical ARPES energy maps, and that this was likely

due to some dynamical effect. Interestingly, the substrate-doping effect in trilayer

appears reversed between the two samples, suggesting that defects present in the

growth or surface roughness of the copper substrate plays a role.

5.A ARPES in twisted bilayer

In this section, we apply the equations derived in the previous section to

model ARPES in twisted bilayer and compare to experimental data provided by

collaborators. From Eq. (3.5) we calculate the wavefunction distribution on the

sublattice basis (A1, B1, A2, B2) and use these coefficients to calculate the matrix

element associated with ARPES. We plot energy slices of the ARPES spectra at

19.1◦ for a range of photon energies in Fig. 5.8. The ARPES spectra in Fig. 5.8

(a) demonstrates the two points of characteristic linear dispersion close to the

Dirac points. The separation in momentum space between these two cones gives

information about the twist angle, however at lower energies, further from the

neutrality point, band hybridisation as a result of the interlayer coupling leads to

modification of these bands. One should also note that the Dirac cones become

“trigonally-warped” [47]. This arises as a result of the second order terms in

the expansion of f(k) in Eq. (2.14) and would not be present if we took the

low-energy approximation of the graphene band structure.
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Experimental data obtained by collaborators is shown in the left column of

Fig. 5.8 and compared to our theoretical model in the right column of Fig. 5.8.

Good agreement is shown in terms of the shape particularly at lower energies. At

large energies deviation is observed, this could be due to terms not included in

our model for monolayer graphene, such as next-nearest neighbour hopping. We

note that non-zero u needs to be included in our theoretical model in order to

match the experimental data.
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Figure 5.8: (Colour Online) The left column shows the experimental ARPES
spectra at constant energies for twisted bilayer graphene at twist angle 19.1◦: (i)
ε − ε0 = 0 eV, (ii) ε − ε0 = −0.5 eV, (iii) ε − ε0 = −1 eV, (iv) ε − ε0 = −1.5
eV. The intensities are normalised in each row. The right column shows the
corresponding normalised theoretical ARPES spectrum where γ = 0.17 eV and
decay of α = 0.2. The difference between the on-site energies of the two layers
was estimated to be 0.2 eV.
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Chapter 6

Negative differential resistance in

van der Waals heterostructures
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Parts of this chapter were published in our articles :

• Negative Differential Resistance in van der Waals Heterostructures Due to

Moiré-Induced Spectral Reconstruction, D.J Leech, J.J.P.Thompson, M.Mucha-

Kruczyński, Phys. Rev. Appl. 10, 034014 (2018) [1].

• Valley-polarized tunnelling currents in bilayer graphene tunnelling transis-

tors, J.J.P.Thompson, D.J. Leech, M.Mucha-Kruczyński, Phys. Rev. B 99,

085420 (2019) [2].

Some of the work presented in this chapter was done in collaboration with D.J.

Leech who was responsible for the implementation of the MATLAB code in the

case of hBN (Section 6.4) and twisted bilayer (Section 6.5). Therefore, some

results presented in this chapter (in particular Section 6.4 and 6.5) have already

been submitted for examination for the award of Doctor of Philosophy by D. J.

Leech, awarded in 2018. My contribution involved derivation of the electrostatic

and tunnelling models, code debugging, the calculation and implementation of the

α − In2Te2 tunnelling current (Section 6.6) as well as the general interpretation

of results.

6.1 Introduction

The phenomenon of negative differential resistance (NDR) is a striking exam-

ple of nonlinearities in physics — within a certain region of the current/voltage

characteristic of a device, increase of applied voltage leads to decrease of the

output current. In the first solid state device displaying NDR, the Esaki diode

[127], this effect arises because increasing bias voltage modifies alignment of the

occupied and empty electronic states in the source and drain electrodes separated

by a tunnelling barrier. At zero and large bias, either due to the lack of occupied

states at the source or empty states at the drain, this alignment prohibits flow

of current. In contrast, within a certain bias window in between these two cases,

the positioning of energy levels allows electrons to tunnel through the barrier.

We present a plot of the current-voltage characteristics of the Esaki diode in

Fig. 6.1, where it is clear that after increasing the bias voltage, Vb, above some

critical voltage, VC , the current begins to decrease. We present schematics of the

Esaki diode at different voltage in panels (i)-(iii) of Fig. 6.1. The Esaki diode

consists of an n-type and p-type semiconductor separated by some tunnelling bar-

rier. At zero bias, Fig. 6.1 (i), the two Fermi levels, µn and µp, are aligned such

that no electrons can tunnel. As the bias voltage increases, a capacitance shifts
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Figure 6.1: (Top) Typical current voltage statistics for an Esaki diode. For the
points (i) to (iii), labelled on the curve, we plot a schematic of the energy bands
in the p-n tunnel junction. The band edges of the p-type (n-type) semiconductors
are shown with solid blue (orange) lines while the dashed lines in blue (orange)
represent the Fermi energy in the respective electrode. Black dots indicate filled
electronic states. As the bias voltage is increased from (i) to (ii), electrons can
tunnel across the barrier, shown with the pink arrow. At (iii), the absence of
states to tunnel into is expressed with the red cross.

the n-type band structure up in energy relative to the p-type semiconductor,

misaligning their Fermi levels such that occupied states in the n-type electrode

can tunnel across the barrier into empty states in the p-type electrode, leading

to positive current. This is presented in Fig. 6.1 (ii). However, increasing the

bias voltage further shifts these bands so much that the filled states in the n-type

semiconductor are at the same energy as the band gap in the p-type semiconduc-

tor, as shown in Fig 6.1(iii) . This lack of available unoccupied states leads to a

decrease in the tunnelling current, despite an increased bias voltage.

Negative differential resistance has many practical applications within circuits.

In particular, NDR enables the conversion of DC power into an amplification in

AC signals suggesting uses in both amplifiers and oscillators [127, 128, 129]. This

naturally follows from the expression for power loss, PLoss, for an AC current
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tuned to the negative differential resistance region

PLoss = ∆V∆I = ∆R|∆I|2 < 0 (6.1)

The negative sign of PLoss suggests that for a small voltage increase, ∆V , the

decrease in resistance, ∆R, leads to a small power gain within this region of the

circuit and hence an amplification of the output AC circuit (this power comes

from the rest of the circuit).

More recently, negative differential resistance was observed in van der Waals

heterostructures of two-dimensional atomic crystals as a result of momentum-

conserving electron tunnelling through an atomically thin barrier [78, 130, 131,

132, 133, 134]. Due to the high quality of the crystals produced by mechanical

exfoliation and the atomically sharp interfaces in the assembled VdW-coupled

stack [135], the requirement to match both energy and momentum of the initial

and final states leads to a peak in the tunnelling current as applied voltages

tune the source and drain to a particular band alignment. However, exfoliation,

while providing state-of-the-art materials and devices, is not a scalable fabrication

method. At the same time, materials produced by other methods such as chemical

vapour deposition do not achieve the quality necessary to observe momentum-

conserving tunnelling and seemingly NDR [136, 137].

Here, we show theoretically that NDR can be achieved in VdW heterostruc-

tures without momentum-conserving tunnelling. Instead, we exploit modifica-

tions of the electronic band structure of such heterostructures due to the interplay

between lattice constants as well as misalignment of the crystallographic axes of

two neighbouring layers, which lead to the formation of a superlattice at the inter-

face. This superlattice is commonly referred to as the moiré pattern and is unique

to VdW heterostructures in which, due to the van der Waals coupling between

different materials, lattice matching is not necessary for the whole structure to be

stable. Crucially, formation of the moiré superlattice is often accompanied by the

modification of the electronic band structure as the moiré periodicity folds the

dispersion into minibands. This results in opening of mini gaps at the boundary

of the superlattice Brillouin zone and appearance of Van Hove singularities in the

electronic density of states [28, 32, 54, 58, 60, 63, 64, 84, 89, 138, 139, 140]. We

simulate the tunnelling current in two common VdW heterostructures in which

the source electrode is either (1) monolayer graphene highly aligned with under-

lying hexagonal boron nitride (hBN) or (2) twisted bilayer graphene and show

that moiré-induced spectral changes can result in negative differential resistance.

We then study a more complex device with both the source and drain electrodes
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made of a moiré-forming stack. We show that in the case of graphene/α− In2Te2

electrodes, NDR an order of magnitude larger than for the two previous archi-

tectures is possible, suggesting that design of new van der Waals interfaces can

provide a way to engineer current characteristics of tunnelling junctions, including

NDR.

6.2 Vertical tunnelling in two-dimensional

heterostructures

Electron tunnelling through a potential barrier is one of the most widely

known physical consequences of quantum mechanics, responsible for effects as

varied as nuclear fusion in stars, radioactive decay or spontaneous DNA mutation

[141]. In particular, the probability of successful tunnelling decays exponentially

with the width of the barrier, an effect best visualized in scanning transmission mi-

croscopy where moving the conducting tip away from the sample leads to rapidly

decaying tunnelling currents, hence allowing for imaging of the corrugation of the

sample surface [142]. In order to find the tunnelling current through a van der

Waals heterostructure, we use Bardeen’s formalism [143, 144, 145, 146, 147, 148],

which utilises the wave functions of the source and drain electrodes to model the

tunnelling probability. The matrix element, M(ε), associated with the probabil-

ity of an electron with energy ε tunnelling through the barrier (which we take to

lie in the xy-plane), is calculated (up to some constant prefactor with dimension

of energy × distance) as

M∝
∫ [

Ψs(r, ε)
∂Ψ∗d(r, ε)

∂z
−Ψd(r, ε)

∂Ψ∗s (r, ε)

∂z

]
dV, (6.2)

where Ψs (Ψd) describes the wave function on the source (drain) electrode and

the integration is over the volume of the tunnelling junction.

We model the transverse component of the wave functions, φs(z, ε), as expo-

nentially decaying,

φs(z, ε) ∝ e−c(ε)(|z−zs|), (6.3)

where c(ε) is the decay constant associated with pz orbital decay through the

tunnelling medium and zs is the z-position of the source electrode1. We do not

1Although the normalisation of this wavefunction is not explicitly stated, it varies as
√
c(ε),

much more slowly than the exponent e−c(ε)(|z−zs|).
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seek to model the exact magnitudes of tunnelling currents, but rather relative

magnitudes. A schematic of the tunnelling setup is presented in Fig. 6.2 with

the transverse component of the source and drain electrodes shown in blue and

orange respectively.

Figure 6.2: Tunnelling wave functions for the source (blue) and drain (orange)
electrodes on a three-dimensional energy landscape, magnitude U , with the axis
shown in the top left. The source and drain wave functions decay exponentially
along the z-axis and are centred on zs and zd respectively. The electrodes are
separated by distance d, the length of the tunnel barrier. r|| is a one-dimensional
representation of the xy-plane.

The density of states (DOS) of a material determines the number of electronic

states per unit energy, with flat energy bands generating strong peaks in the den-

sity of states forming Van Hove singularities (as alluded to in previous sections).

The current I across the tunnel barrier is sensitive to the source and drain density

of states [149], ρs and ρd, respectively,

I=
2gπe

~

∫
M(ε)ρs(ε)ρd(ε−∆)

× [f(ε−µs)−f(ε−∆−µd)]dε,
(6.4)

where the energy ε is measured from the source charge neutrality point, µs and

µd determine the energy distance between the chemical potential and the charge

neutrality points in the source and drain electrode, respectively, ∆ is the shift

between the source and drain neutrality points so that µs and µd + ∆ are the

chemical potentials in the corresponding electrodes, M is the matrix element, f(ε)

is the Fermi-Dirac distribution (here, we take the low-temperature limit) and g
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takes into account additional degeneracies of the electronic states (here, spin and

valley). In this chapter, we ignore the in plane contribution of the wavefunc-

tions to the matrix element M(ε) due to the absence of momentum-conserving

tunnelling - this might be the case for devices of insufficient quality or large mis-

alignments between the crystallographic directions of the electrodes. Note that, if

the momentum-conserving tunnelling processes become important, their contri-

bution cannot be larger than the currents discussed here, because ultimately the

number of tunnelling electrons is set by the corresponding DOS whereas momen-

tum conservation adds an additional constraint that is only sometimes fulfilled.

In Chapter 7 we shall discuss another application of van der Waals tunnelling

transistors where strong momentum conservation is crucial.

6.2.1 hBN as a tunnel barrier

A typical van der Waals tunnel barrier will consist of a few layers of hBN

[131, 133, 143, 144, 150]. Although this layered structure implies some periodic

barrier height, previous work has shown [143] that a layered structure can be

modelled as if it were a continuous tunnelling barrier and we thus treat it as

an isotropic potential step with barrier height Φ0 = −1.5 eV, corresponding

to experimental measurements of the valence band maximum (VBM) of hBN

[143, 151]. The hBN energy dispersion around the VBM is roughly parabolic in

kz and this allows us to write [146]

c(ε) = Im

√
2m∗Φ(ε)

~
= Im

√
2m∗(Φ0 − ε)

~
, (6.5)

where m∗ ≈ 0.5m0 is the effective mass [16, 143, 151]. Notably, this relation

predicts weak electron-hole asymmetry in tunnelling current as observed in ex-

periment [143, 152]. For hBN, experimental works [134, 136, 137, 143, 144, 150]

suggest a value of the decay constant c(0) ≈ 5 nm−1. Throughout this thesis, we

assume that the hBN comprising the tunnel barrier is sufficiently misaligned from

the two-dimensional electrodes, such that the moiré effects, discussed in Chapter

3, are negligible. In general, the variation in the electronic energy is small relative

to the band gap in hBN such that the decay constant remains roughly constant

in our calculations. However, in this chapter we shall include such variations in

the decay constant for completeness.
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6.3 Electrostatic model for van der Waals

tunnelling transistors

In this section, we derive a general electrostatic model describing the rela-

tionship between the tuneable voltages in a typical device and the macroscopic

parameters of the constituent electrodes, in particular the chemical potentials

and offset between the neutrality points. The device modelled in this chapter is

shown in Fig. 6.3 and is similar to previous experimental devices [131, 143, 144].

Figure 6.3: Schematic of the tunnelling device with a source made of an aligned
graphene/hBN heterostructure. Also shown is the barrier width, d and width of
the substrates, dhBN and dSiO2 as well as contacts for the voltages Vb and Vg. This
figure was published in Physical Review Applied [1].

Electrodes, labelled the source and drain, sit either side of a three-layer hBN

tunnel barrier, with a bias voltage, Vb applied between them. The source electrode

consists of two layers with layer 1 (the layer furthest from the barrier) generating

a long-wavelength periodic potential for electrons in layer 2. In this section, we

assume that layer 2 will always be a graphene monolayer while the choice of

material for layer 1 discussed in this chapter are primarily those discussed in

Chapter 3: twisted graphene, aligned hBN and aligned α − In2Te2. The hBN in

the tunnel barrier is sufficiently misaligned so as to avoid additional superlattice
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effects between it and the source/drain electrodes. The drain electrode consists

of a single graphene layer. A thick hBN layer of length dhBN = 30 nm lies

underneath the drain electrode to ensure the electronic quality of graphene [17].

A silicon back gate, separated by a SiO2 substrate of thickness dSiO2 = 150

nm, is placed beneath the thick hBN layer. A gate voltage, Vg applied between

the back gate and the drain electrode, enables the tuning of the total charge

density on the device. The bias voltage Vb and gate voltage Vg control the local

Fermi levels, µS and µD, in the source and drain respectively, as well as the shift

between the neutrality points, ∆. In the case of a tBLG electrode, the applied

voltages induce an interlayer asymmetry, u. The Fermi levels and vertical shift

of the energy bands would be controlled via a bias Vb and gate voltage Vg in an

experimental setup. We use a four-plate capacitor model to express the electric

fields between the gates and consecutive graphene layers (we treat hBN and SiO2

as homogeneous insulators with dielectric constants εhBN and εSiO2 , respectively).

The charge densities per graphene layer on the source (j = s) or MLG drain (j =

d) electrodes can be expressed as

nj(µj) =

∫
Dj(ε)f(ε, µj, T )dε, (6.6)

where f(ε, µj, T ) is the Fermi-Dirac distribution at temperature T. At low tem-

perature the Fermi-Dirac distribution can be approximated as a step, meaning

the bounds for integration become

nj(µj) =

∫ µj

0

Dj(ε)dε, T → 0 K. (6.7)

Through charge conservation, for each combination of µs, µd and u, we obtain

corresponding bias and back gate potentials. Furthermore, the charge build up

on the bilayer sheet acts as a capacitance leading to a difference in neutrality

points of the two spectra

∆ = εs
0 − εd

0. (6.8)

For simplicity we set εs
0 = 0 and therefore, using Gauss’s law, the position of the

charge neutrality point in monolayer is related to the number of excess charge

carriers in the bilayer graphene by relation

Ed
0 = ∆ =

e2d

ε0εhBN

(nd(µd) + nSi) , (6.9)

where e is the electronic charge, ε0 is the permitivitty of free space, εhBN = 3.9 is
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the relative permitivitty of hBN and nSi is the carrier density on the silicon back

gate. The voltages of the system can therefore be expressed as

Vb =
1

e
(µs − µd −∆) ,

Vg = −e(nd(µd)+ns(µs, u))(dSiO2εhBN+dhBNεSiO2)

εhBNεSiO2ε0
, (6.10)

where εSiO2 is the relative permitivitty of SiO2. In the case of a bilayer graphene

source electrode, the induced gap leads to the modulation of the density of states

and thus the charge density. We calculate the gap self-consistently, using the

following expression

u =
e2d0

ε0

(
n(µd) +

1

2
n(µs, u) + nSi

)
, (6.11)

where d0 is the interlayer distance in bilayer graphene. We assume that the

distribution on the two layers is roughly equal at the voltages given2.

6.4 Graphene on hBN

We first investigate the possibility of superlattice-induced NDR for a source

electrode composed of hBN (layer 1) and monolayer graphene (layer 2). As

the perturbing effect of hBN on graphene electrons decreases with increasing

misalignment between the two crystals [33, 54], we assume their crystalline axes

are highly aligned. In such a case, the conical dispersion of graphene in the

vicinity of the Brillouin zone (BZ) corner (valley) is folded into minibands with

the valence band undergoing a more significant spectral modification than the

conduction band [57], including the appearance of a Van Hove singularity (VHS)

in the DOS [32, 57, 153]. Using the perturbation Hamiltonian, Eq. (3.25), the

change in density of states is presented in Fig. 6.4 where we show that under the

effect of a moiré perturbation, the flat band forming leads to the generation of a

peak in the density of states. The sharp peak in the DOS arising as a result of

this perturbation is highlighted in red in Fig. 6.4 over a small window in Vb.

In Fig. 6.5, we present our simulation of the tunnelling current between the

graphene/hBN source and graphene drain as a function of the voltages Vb and Vg

for the device setup presented in Fig. 6.3. The appearance of NDR can be seen in

the top right quarter of Fig. 6.5 (a) where the tunnelling current decreases with

2We will show in the next chapter that, in the presence of a magnetic field, non-zero u leads
to strong symmetry breaking in the density of states of the two layers, meaning a more thorough
calculation is required.
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Figure 6.4: The conical bands and density of states of unperturbed monolayer
graphene (top) and corresponding graphene minibands and density of states of an
aligned graphene/hBN heterostructure (bottom). In the miniband spectrum, the
black lines indicate the boundaries of a rhombic superlattice Brillouin zone. The
perturbation is modelled using the Hamiltonian and parameter set outlined in
Chapter 3. The Van Hove singularity in the density of states of the heterostruc-
ture is highlighted in red. This figure was published in Physical Review Applied
[1].

increasing bias voltage. We show selected cuts through that region for various

constant values of Vg in Fig. 6.5 (b).

For Vb = Vg = 0 V, the chemical potentials in the source and drain are

located at the respective neutrality points which are aligned with each other, as

in diagram (I) in Fig. 6.5 (c), hence leading to an absence of tunnelling current.

Applying the bias voltage introduces a relative shift between the source and drain

chemical potentials µs and µd + ∆, respectively. As a result, an increase in Vb

for Vg = 0 V (corresponding to following the orange dashed line in Fig. 6.5 (a)

and 6.5 (b)) leads to an increasing current as electrons from the valence band in

the source can tunnel into the empty conduction band states of the drain. For

Vb slightly above 0.2 V, µd + ∆ moves past the moiré-induced VHS in the source
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Figure 6.5: (a) Calculated tunnelling current for a device from Fig. 6.3 as a
function of voltages Vg and Vb. (b) Tunnelling current as a function of Vb for
constant Vg from 0 V (orange) to 60 V (black) in steps of 10 V, with labels above.
The cuts in (Vg, Vb) space corresponding to current curves in (b) are shown with
dashed lines in (a). (c) Diagrams showing alignment of source and drain density
of states as well as the positions of chemical potentials µs and µd+∆ for points in
(Vg, Vb) space corresponding to tunnelling currents marked in (I), (II), (III) and
(IV) in (b). This figure was published in Physical Review Applied [1].

valence band which leads to a shoulder-like feature in the orange curve in Fig.

6.5 (b).

In contrast, applying the gate voltage Vg at constant Vb dopes source and drain

without affecting the energy difference between the chemical potentials, µs and

µd + ∆. As shown in diagram (II) in Fig. 6.5 (c), for Vg = 40 V and Vb = 0 V no

current flows through the structure because the chemical potentials are aligned, as

in (I). Again, the current increases with increasing bias (as demonstrated by the
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green curve in Fig. 6.5 (b)) until it reaches a peak when the occupied states in the

moiré-induced VHS are aligned with empty states in the drain valence band, as in

diagram (III). Because the VHS in the source DOS is followed by a dip, increasing

Vb further does not lead to more occupied electronic states contributing to the

tunnelling. However, because changing Vb affects the energy shift ∆ between the

Dirac points of the source and drain through Eq. (6.10), the number of empty

states aligned with the VHS actually decreases with increasing Vb, as seen by

comparing diagrams (III) and (IV). This results in a decrease of the current and

NDR. Increasing Vb further leads to an even larger tunnelling energy window such

that, eventually, the current begins to increase again.

6.5 Twisted bilayer graphene

To demonstrate the generality of our idea, we now discuss the existence of

NDR in a twisted bilayer graphene/hBN/monolayer graphene van der Waals tun-

nelling transistor.

For our modelling of the tunnelling between tBLG and graphene across a hBN

multilayer, we choose the misalignment angle 2◦, corresponding to the low-energy

band structure in the vicinity of a single valley and density of states as shown in

Fig. 6.6 (a). All the other geometrical parameters of the device are as used in the

case of the graphene/hBN source electrode. The calculated current as a function

of the bias and gate voltages Vb and Vg is shown in Fig. 6.6 (b) and selected

cuts for constant Vg are presented in Fig. 6.6 (c). Similarly to the case of the

graphene/hBN electrode, superlattice-induced changes in the energy spectrum,

in particular the presence of sharp VHSs followed by a dip, leads to NDR for a

range of gate voltages.

Because the VHS is a robust feature in the density of states of tBLG for a

large range of misalignment angles [58], the behaviour of the tunnelling current

should also be similar for different θ (although note that greater misalignment

angle requires higher Vg to dope the source past the singularity). Since the

density of states of tBLG is electron-hole symmetric, in contrast to the aligned

graphene/hBN heterostructure, the graph in Fig. 6.6 (b) is inversion-symmetric

with respect to the point Vb = Vg = 0 V.
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Figure 6.6: (a) Low-energy band structure and density of states for twisted
bilayer graphene with a misalignment angle of 2◦. Note that both the position and
height of the VHS change with misalignment angle. The black line indicates the
superlattice Brillouin zone edge. (b) Tunnelling current from tBLG to graphene
across a hBN barrier as a function of gate and bias voltages Vg and Vb. (c)
Tunnelling current as a function of Vb for constant Vg from 0 V (orange) to 40 V
(green) in steps of 10 V. The cuts in (Vb, Vg) space corresponding to the current
curves in (c) are shown with dashed lines in (b). This figure was published in
Physical Review Applied [1].

6.6 Graphene on α− In2Te2

While the architectures discussed in Section 6.4 and 6.5 demonstrate the prin-

ciple of moiré-induced NDR and are feasible experimentally, the calculated NDR

peak-to-valley ratio is only of order 1. It can be increased by choosing a different

VdW heterostructure as an electrode, in particular, one with a moiré recon-

structed density of states in which a bandgap between minigaps is close to a Van

Hove singularity. Moreover, designing superlattices to modulate the densities of
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states of both the electrodes as opposed to using monolayer graphene with its

linear DOS as a drain like in the two examples earlier, will also increase NDR.

Hence, in this section, we investigate current characteristics of a VdW tun-

nelling transistor with both electrodes made of graphene on α − In2Te2. Since

α − In2Te2 is an insulator and monolayer, the addition of this extra layer has

negligible effect on the electrostatic calculation, other than altering the DOS.

The corresponding DOS is shown in Fig. 6.7 (b), containing Van Hove singu-

larities next to a window of zero density of states, features attractive for an

increased NDR. In Fig. 6.7 (c), we present the current calculated as a function

of the gate and bias voltages for a VdW tunnelling transistor incorporating the

graphene/α− In2Te2 heterostructures as both source and drain (all other param-

eters of the device are kept the same as in Section 6.4 and 6.5). Current curves

for selected constant gate voltages and changing bias are shown in Fig. 6.7 (d)

(region of positive Vg and Vb) and Fig. 6.7 (e) (region of negative Vg and Vb). For

easier comparison with other figures in this paper, we have reversed the current

and bias voltage axes in Fig. 6.7 (e). Moreover the current scale in Fig. 6.7 (d)

has been scaled by a factor of 3 as compared to Fig. 6.7 (e).

All of the I-V characteristics in Fig. 6.7 (d) and 6.7 (e) show NDR peak-to-

valley ratios ranging from 2 to 10, depending on the choice of gate voltage. The

largest NDR of around 10 is that for Vg = 0 V (orange curve) in Fig. 6.7 (d).

This peak-to-valley ratio is competitive when compared to commonly used NDR

devices, typically in the range of 3-35 [154, 155]. In our device, this NDR results

from the presence of two Van Hove singularities in the DOS around zero energy

(see Fig. 6.7 (b)) and their movement on the energy scale in the source/drain

electrodes as a function of Vb.

6.7 Summary

In summary, we demonstrated theoretically for three different architectures

that the modifications of the electronic density of states due to the formation

of moiré superlattices of van der Waals crystals can lead to negative differen-

tial resistance when the moiré heterostructure is employed as an electrode in

a vertical tunnelling transistor. This is achieved without the requirement of

momentum-conserving tunnelling, which has only been observed in the highest

quality, closely-aligned, devices, made of mechanically exfoliated crystals. For

this reason, our idea might be useful for materials produced by other methods

like chemical vapour deposition, where clear moiré-induced spectral modification
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Figure 6.7: (a) Low-energy band structure of graphene on aligned α − In2Te2.
The outline of the superlattice Brillouin zone is shown in red for clarity. (b)
Corresponding density of states. (c) Tunnelling current between two graphene
on aligned α − In2Te2 electrodes across a hBN barrier as a function of gate and
bias voltages Vg and Vb. (d) Absolute tunnelling current as a function of Vb for
constant Vg from 0 V (orange) to 15 V (green) in steps of 5 V. The cuts in (Vb, Vg)
space corresponding to the current curves in (d) are shown with dashed lines in
(c). The current lines in (d) are scaled to highlight NDR features. (e) Same as (d)
except for negative gate and bias voltages with steps of -5 V from 0 V (orange)
to -15 V (yellow). This figure was published in Physical Review Applied [1].

has been observed [28, 156] but no momentum-conserving tunnelling has been

reported. While the moiré superlattices used in the first two examples, graphene

on hBN and twisted bilayer graphene, have been realised experimentally, the last

one, graphene on α − In2Te2, has not. However, superlattice effects have been

observed or predicted for a variety of different heterostructures and interfaces
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[35, 157, 158, 159], so that significant NDR peak-to-valley ratio might indeed

be possible for certain architectures, as suggested in Section 6.6. Importantly,

in contrast to artificial superlattices, our idea avoids the need to process any of

the two-dimensional crystals after they are grown, as the superlattice is provided

by an interface between neighbouring layers. This, in turn, limits disorder and

degradation of the components, especially important if the starting materials were

not obtained by mechanical exfoliation. In contrast to many other NDR setups,

our idea is, by design, easy to integrate in more complicated devices based on

two-dimensional crystals and VdW interfaces. It can also be coupled with artifi-

cial patterning of dielectric substrates underneath 2D materials on length scales

comparable to moiré wavelengths [160].
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Parts of this chapter were published in our articles :

• Valley-polarized tunnelling currents in bilayer graphene tunnelling transis-

tors, J.J.P.Thompson, D.J. Leech, M.Mucha-Kruczyński, Phys. Rev. B 99,

085420 (2019) [2].

Some of the work presented in this chapter was done in collaboration with D.J.

Leech who was responsible for implementation of MATLAB code, in particular the

procedure for obtaining the chemical potentials from the applied voltages. There-

fore, some results presented in this chapter, in particular Section 7.3, have already

been submitted for examination for the award of Doctor of Philosophy by D. J.

Leech. My contribution involved derivation of the electrostatic and tunnelling

models, the derivation of the Landau levels wavefunctions and the resulting tun-

nelling matrix element, MATLAB debugging, implementation of the results pre-

sented in Section 7.4 and data analysis.

7.1 Introduction

Exploiting alternative degrees of freedom of an electron, rather than just the

electronic charge, allows novel methods of storing, transferring and manipulating

information. Spintronics [161, 162] is one example of this, where the up and down

spins encode binary information. Another, more recent example of encoding in-

formation is known as “valleytronics” [163], where information is defined based

on the discrete region near band extrema in reciprocal space (valley) from where

the electron hails. As introduced in Chapter 2, graphene has two distinct sets of

valley points, labelled K+ and K−, which are occupied by low energy electrons,

such that the relative population of both these valleys could be used to encode

information. In this chapter, we show that by placing a van der Waals tunnelling

transistor, similar to that discussed previously, in a perpendicular magnetic field,

significant valley polarisation can be generated. Van der Waals tunnelling transis-

tors with ultra-high quality interfaces display momentum-conserving tunnelling

leading to negative differential resistance [130, 131, 132, 133, 144, 164] and val-

ley polarization due to an in-plane magnetic field [134]. It was also shown that

electron tunnelling in vdW heterostructures can be accompanied by excitation

of various quasiparticles, for example, phonons [165] or magnons [166] and influ-

enced by defects in the tunnel barrier [167, 168].

Here, we study theoretically the tunnelling current flowing between bilayer

graphene (BLG) and monolayer graphene (MLG) electrodes through a hBN bar-

rier, in the presence of a magnetic field perpendicular to the atomic layers. The
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impact of the applied magnetic field is two-fold: firstly, the electronic density

of states is modified due to Landau quantisation and second, layer polarisation

of the low-energy Landau levels in BLG [23] leads to the efficient generation of

valley polarisation [163, 169]. We show here that valley polarisation of order

unity is possible, in magnetic fields as low as ∼ 1 T, and that choice of the valley

quantum number of the tunnelling current can be made electronically without

reversing or changing the magnitude of the magnetic field. While the largest

valley polarisation can be achieved in high quality devices in which tunnelling

electrons conserve both energy and momentum, our results suggest that even in

the absence of momentum conservation, polarisation ∼ 80% can be achieved at

B = 1 T.

7.2 Device description and tunnelling matrix

element

Figure 7.1: (Color online) Schematic of the tunnelling device discussed here.
Also shown are the tuning potentials Vb, Vg and Vt and direction of the applied
magnetic field B. This figure was published in Physical Review B [2].

The schematic of the device we study is shown in Fig. 7.1 with the assumed

direction of the magnetic field, B. The device is similar to that used in Chap-

ter 6 with a few changes. First, the source electrode consists of Bernal bilayer

graphene, while the drain electrode is comprised of monolayer graphene. Second,
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the thickness of the SiO2 is increased to dSiO2 = 300 nm, allowing finer control

over the doping1. Additionally, a gold top gate is attached to the source electrode,

to allow further control over electrostatic parameters. This top gate is separated

from the source electrode by dTop = 30 nm of hBN, with a voltage, Vt applied

between them2. The BLG and MLG electrodes can be rotationally misaligned so

that their crystallographic directions are rotated by an angle θ [139]. Following

experimental device architectures [17, 131, 134], we assume that both MLG and

BLG are encapsulated with hBN. We additionally assume that the misalignment

between graphene electrodes and hBN (both the barrier as well as the top and

bottom encapsulating layers) is large so that moiré effects like miniband forma-

tion [54] or lattice relaxation [31], important for highly-aligned interfaces [33],

can be neglected.

The tunnelling matrix element can be modelled using Eq. (6.2). In a mul-

tilayer electrode, such as bilayer graphene, the overall wave function can be de-

scribed as a linear combination of the wave functions on the constituent layers.

Therefore, in the case of an N -layer source electrode we can write

Ψs(r, ε) =
N∑
i=1

niψs,i(r, ε), (7.1)

where ψs,i is the electronic wave function of the i-th layer of the source electrode

and |ni|2 describes the relative occupation of the ith layer by an electron in state

Ψs.

Assuming a clean sample, all Ψs(r, ε) are separable into the in-plane and

perpendicular components, Ψs(r, ε) = ϕs(x, y, ε)φs(z, ε). This enables us to de-

compose the matrix element, Eq. (6.2), into transverse, z, and in-plane, x, y,

components. We model the transverse components using an exponential decay,

as discussed in Eq. (6.3), only with certain caveats. In our case, there are two

materials to consider: hBN, comprising the tunnelling barrier, and graphene. We

assign to them decay constants c(ε) and c′(ε), respectively (the decay constants

vary as a function of the tunnelling state energy ε [146]). With these assump-

tions, we integrate the expression in Eq. (6.2) in the direction transverse to the

barrier. For our BLG source electrode which consists of two graphene layers, the

electrons from the layer closest to the barrier tunnel directly to the drain, pass-

1The carrier density in a capacitor is less sensitive to the voltage if the insulator thickness
is larger.

2Both gold and silicon, separated from the electrodes by an insulating layer are effective
gating materials, however the results presented in this chapter are unaffected by the materials
used assuming they are first, not insulators and second, the carrier density of these materials
is much larger than in the source and drain electrodes.
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ing only through one material, hBN. However, the electrons in the layer further

from the barrier have to travel an increased distance. Since there are no available

states on the other graphene layer the electrons have to pass through, it can be

effectively treated as an insulator and so the only mechanism for transport is

tunnelling. Integrating over the total width of the barrier 3 for these electrons,

defined as the sum of the hBN barrier width, d = 13 Åand the interlayer sepa-

ration of graphene, d0 = 3.3 Å, we obtain an expression depending only on the

in-plane components of the wave function and energy,

M(n1, n2, ε) ∝ e−c(ε)d
[ ∫

ϕ∗D(x, y, ε) (7.2)

·
(
n1 n2e

−c′(ε)d0
)
·

(
ϕS,1(x, y, ε)

ϕS,2(x, y, ε)

)
dA

]
,

where we have absorbed all normalisation factors into ϕs,i(x, y, ε) and used the

fact that in our device the drain electrode is built of only one layer and the source

of two layers. Note that the expression in Eq. (7.2) conserves the in-plane electron

momentum in the tunnelling process, as is the case in experiments performed on

the highest quality devices [130, 131, 144, 164]. This momentum conservation is

encoded in the real space integration over the in-plane harmonic oscillator states,

ϕS,D on the source and drain electrode respectively which manifests in a Landau

level index and rotational misalignment angle dependence in the matrix element

(outlined later in Fig. 7.2).

While the argument above can be extended to any number of layers in both

the source and drain electrodes, the exponential dependence of tunnelling prob-

ability on the barrier width means that only tunnelling from/into the first few

layers next to the barrier is measurable. As discussed in the previous chapter,

experimental works [134, 136, 137, 143, 144, 150] suggest a value of the decay

constant c(0) ≈ 5 nm−1. In the case of graphene, studies of its role as a barrier in

magnetic tunnel junctions [170, 171, 172] and between metal contacts [173, 174]

showed that it behaves as a strong out-of-plane insulator. In fact, in experi-

ments conducted in the absence of a magnetic field and in the presence of a field

parallel to the graphene layers, the measured tunnelling current has been well de-

scribed by assuming that all tunnelling from the further BLG layer is suppressed

3In Eq. (6.2) care must be taken to describe the wave functions of the pz orbitals in graphene
within regions of different materials, which, based on experiment, leads to different decay con-
stants. Therefore, the integration becomes a sum of integrals over these different regions (in
our case hBN and graphene).
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[134, 164]. For this reason, here, we take the limit c′ = c, corresponding to the

decay through graphene being significant and similar to that through hexagonal

boron nitride. However our conclusions hold for notably smaller c′ (we discuss

what happens for differing estimates of c′ in Appendix 7.A).

In both MLG and BLG, the wave functions are distributed asymmetrically

between the two sublattices concerned (A, B in MLG and A1, B2 in BLG). In

particular, the electrons in the n = 0 MLG level and m = 0, 1 BLG states occupy

only one of the sublattices4. For the case of BLG, this results in two states that

in the K+ valley are located only on layer 1 and in the K− valley only on layer

2. We define layer 1 (2) in BLG as the layer closer (further) to the tunnelling

barrier such that, in the vertical tunnelling transistor geometry like in Fig. 7.1,

we expect electrons from layer 2 to have a smaller chance of tunnelling through

the barrier than electrons from layer 1, due to the additional effective barrier

thickness. As a result, more electrons from BLG K+ valley will tunnel through

than from the K− valley, leading to valley-polarized current arriving in the MLG

drain electrode.

In order to quantify valley polarisation of the tunnelling current, we use the

wave functions from Eq. (2.41) and (2.38) to compute the tunnelling matrix

element, Eq. (7.2). The Landau level wave functions of BLG are already written

so that their components correspond to different layers and we can identify the

states in Eq. (2.41) with (ϕS,1(x, y, ε), ϕS,2(x, y, ε))T in Eq. (7.2). However,

although the MLG wave functions are also written as spinors in Eq. (2.38), both

of their components correspond to wave function amplitudes on sublattices in the

same layer. Hence, for a given Landau level state we take ϕD = χA + χB, where

(χA, χB)T is the corresponding spinor in Eq. (2.38).

In a system containing both monolayer and bilayer graphene in the presence

of a magnetic field, the theoretical description presented in the previous subsec-

tions is sufficient. However, when one of these elements is rotated about the

z-axis relative to the other, keeping to a fixed frame of reference means modifica-

tion of the Hamiltonian is required to accurately describe the resulting electronic

wavefunctions.

We consider a monolayer graphene electrode misaligned compared to the ori-

gin axis (in this case a bilayer graphene electrode). A small anticlockwise ro-

tation of the MLG sheet about the z-axis by angle θ, leads to an identical

rotation between the corresponding Brillouin zones. As a result of this rota-

4The single-sublattice occupation of the n = 1 BLG Landau level is not preserved beyond
the low-energy two-band model we use here [175]. However, it remains a good approximation
for the magnetic fields considered here.

104



CHAPTER 7. VALLEY-POLARISED TUNNELLING CURRENTS IN
BILAYER GRAPHENE TUNNELLING TRANSISTORS

tion, the position of MLG valley centres is offset from that of BLG by a vector

∆Kξ =
(
∆Kx

ξ ,∆K
y
ξ

)
= (1̂ − R̂θ)Kξ, where R̂θ is the anti-clockwise rotation

operator. Taking into account this shift as well as the rotation between the two

materials, electrons in the MLG electrode are described by a Hamiltonian

ĤRot,MLG = v

(
0 (π̂† + ˜̂π†)e−iθ

(π̂ + ˜̂π)eiθ 0

)
, (7.3)

where ˜̂π = ~(∆Kx
ξ + i∆Ky

ξ ). Furthermore the displacement of the momentum-

origin changes the unrotated harmonic oscillator state, Eq. (2.36), into φ̃n(x),

φ̃n(x) =An exp

[
− 1

2λ2
B

(x−X̃)2 − i∆Kx
ξ (x− X̃)

]
×Hn

(
1

λB
(x− X̃)

)
,

(7.4)

and shifts the cyclotron orbits to X̃ = λ2
B(ky + ∆Ky

ξ ). Therefore, the wave

function corresponding to the n-th Landau level in rotated MLG can be written

as

ψ̃0 =

(
φ̃0

0

)
eikyy,

ψ̃n,s′ =
1√
2

(
φ̃n

−s′ieiθφ̃n−1

)
eiky .y, n ≥ 1. (7.5)

The matrix element determining the tunnelling between the BLG and MLG elec-

trodes depends on the Landau level indices, n,m, as well as the magnetic field,

B, and misalignment angle between the two sheets, θ. For the K+ valley, it can

be written as

M s′,s
n,m,K+

(ε) =
V0Pn,m√

2
e−c(ε)d (7.6)

×
[
C1Λξ

n,m − s′ieiθC1Λξ
n−1,m

+ e−c
′(ε)d0

(
C2Λξ

n,m−2 − s′ieiθC2Λξ
n−1,m−2

)]
,
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whereas, for the K− valley, we obtain

M s′,s
n,m,K−

(ε) =
V0Pn,m√

2
e−c(ε)d (7.7)

×
[
C2Λξ

n,|m|−2 + s′ie−iθC2Λξ
n−1,m−2

+ e−c
′(ε)d0

(
C1Λξ

n,m + s′ie−iθC1Λξ
n−1,m

)]
.

In both cases we define

C1 =


ε0
m√
C

m 6= 0, 1

1 m = 0, 1

,

C2 =


[
εm,s,ξ − ξ u2 + ξumη2

]
√
C

m 6= 0, 1

0 m = 0, 1

,

Λξ
n,m = Nn,m2max{n,m}(min{n,m})!ei

1
2

∆Kx
ξ ∆Ky

ξ λ
2
B

×
(

sgn(n−m)
1

2
λB∆Ky

ξ − i
1

2
λB∆Kx

ξ )

)|n−m|

× e
−

∆K2
ξλ

2
B

4 L|n−m|min{n,m}

(
∆K2

ξλ
2
B

2

)
, (7.8)

where Nn,m and Pn,m =
√

(1 + δn,0) are normalisation constants and Lβα(x) are

generalised Laguerre polynomials. The strength of the coupling at the K+ valley,

|M s′,s
n,m,K+

|2, is shown for B = 1 T and as a function of Landau level, n,m, and

band indices, s, s′, in Fig. 7.2(a) and (b) at misalignment angles θ = 0.25◦ and

θ = 0.5◦ respectively.

For zero misalignment angle, the matrix element is simply a linear combination

of Kronecker deltas (each expressing orthonormality of the harmonic oscillator

states), suggesting only transitions between certain Landau states are allowed.

However, as shown in Fig. 7.2 (a), increasing misalignment redistributes the

coupling strength amongst other transitions (in particular, for any non-zero θ,

transitions between any two oscillator states are in principle allowed). Interest-

ingly, changing the misalignment angle also changes the preferred transition (the

one with the largest coupling strength). However, because the matrix element

depends on products of the type ∆K2
ξλ

2
B, a change of angle (which determines

∆Kξ) can be to some extent counterbalanced by changing the magnetic field

(and hence λB).
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Figure 7.2: (Color online) Colour map of the tunnelling matrix element

|M s,s′

n,m,K+
(0)|2 between Landau levels of MLG (with indices s′n) and gapless BLG

(indices sm) for B = 1 T and (a) θ = 0.25◦ and (b) θ = 0.5◦. All values are
normalised to the maximum value in (a). This figure was published in Physical
Review B [2].

In clean samples, with a small misalignment angle between the source and

drain electrodes the shift ∆Kξ is small and for all the dominant processes the

valley quantum number is conserved in the tunnelling process [134, 144]. There-

fore, as in Eq. (6.4), we use Fermi’s golden rule to relate the tunnelling matrix

element to the current of electrons originating from the Kξ valley of BLG,

Iξ =
4πe

~
∑

n,m,s′,s

∫ µMLG+∆

µBLG

|M s,s′

n,m,ξ(ε)|
2 (7.9)

×DBLG(ε, εm,s,ξ)DMLG(ε−∆, εn,s)dε,

where we have already taken the spin degeneracy into account. We measure the

energy ε from the charge neutrality point of the BLG electrode while µBLG and

µMLG represent the distance in energy between the charge neutrality point and the

chemical potential in the BLG and MLG electrode, respectively. An example of

this is shown in Fig. 7.3, where the blue (orange) dashed line corresponds to µMLG

(µBLG). Finally, we define ∆ as the shift between the source and drain neutrality

points, marked with the dotted lines in Fig. 7.3, such that, in the low temperature

limit, the local chemical potentials in the source and drain electrodes, µBLG and

µMLG + ∆ respectively, determine the energy window within which tunnelling
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Figure 7.3: Illustration of the DOS of the monolayer graphene (blue) and bilayer
graphene (orange) electrodes. Also indicated are the chemical potentials µMLG

(blue dashed line) and µBLG (orange dashed line) with filled states below these
values indicated by the filled DOS curves. The neutrality points are indicated
by the dotted lines, with the separation between them marked by ∆. The bias
voltage Vb is also indicated.

processes can occur, while the number of initial and final states at a given energy

is provided by the densities of states DMLG and DBLG in the monolayer and bilayer

graphene, respectively. In a device with high quality layers, free from defects and

in a quantizing external magnetic field, these densities of states consist of a series

of sharp peaks at the energies of the Landau levels. We model the latter using a

Lorentzian shape with the same full width at half maximum for all Landau levels,

2 meV and 4 meV for B = 1 T and B = 4 T, respectively, following previous

experimental works [144, 176] and theoretical considerations [177].

Finally, we define the valley polarisation, P , of the tunnelling current,

P =
I+ − I−
I+ + I−

. (7.10)

Because our tunnelling matrix element, Eq. (6.2), is defined up to a proportion-

ality constant, values of tunnelling current in this chapter are given in arbitrary

units. Polarisation, however, as a ratio of currents, does not depend on that

constant itself.

In the same way as in Chapter 4, we can relate the energies ε, µBLG and µMLG
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to the applied voltages Vt, Vb and Vg (see Fig. 7.1), through the electrostatic

equations,

Vb =
1

e
[µBLG − µMLG −∆] ,

Vg = −e(nMLG + nBLG,u + nAu)(dSiO2εhBN + dhBNεSiO2)

εhBNεSiO2ε0
,

Vt =
−enAudTop

ε0εhBN

. (7.11)

We define nMLG, nBLG and nAu as the carrier densities on the MLG, BLG and gold

electrodes respectively. The distance between the gold top gate and BLG, dTop,

is set as 30 nm in our numerical calculations. Furthermore, dhBN and dSiO2 rep-

resent the thicknesses of the hBN and SiO2 substrates, which, following previous

experimental works [131, 134], we set as 30 nm and 300 nm respectively. Finally,

ε0 is the permittivity of free space while εhBN ≈ 3 and εSiO2 ≈ 3.9 are the relative

permittivities of hBN and SiO2. We also take into account that the electric field

between the graphene layers of BLG induces the interlayer asymmetry u which

we compute self-consistently,

u = −e
2d0(nAu + nBLG,2(u))

ε0
, (7.12)

where nBLG,i(u) is the carrier density on the i-th layer of BLG. For a given

interlayer asymmetry, we compute the electronic wave functions for all Landau

levels included in the calculation and their distributions on the atomic sites (while

the number of Landau levels considered depended on the magnetic field and

applied voltage range, we checked the convergence of our results in all cases). For

each Landau level, we use the square of the wave function amplitude on the site

B2 to obtain the contribution to nBLG,2 from that level. We then determine the

unique value of u for which Eq. (7.12) is fulfilled.

7.3 Momentum-conserving tunnelling

7.3.1 Total tunnelling current at B = 1 T

Our simulation of the total tunnelling current, I = I+ + I−, between the

BLG and MLG electrodes, produced using Eq. (7.9), is shown in Fig. 7.4. For

momentum-conserving tunnelling, the strength of the coupling is dictated by the

magnitude of the applied magnetic field, relative orientation of the electrodes and

Landau level indices of the involved electronic states.
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Figure 7.4: (Color online) Total tunnelling current at B = 1 T as a function
of the bias and gate voltages, Vb and Vg for θ = 0◦ and Vt = 0 V is shown in
(a). The interlayer asymmetry is plotted as a function of bias and gate voltages
in (b). Red lines and labels in (b) indicate the points where µMLG lies at the
centre of a MLG Landau level. Blue (cyan) lines and labels in (b) indicate the
points where µBLG lies at the centre of a BLG Landau level in the K+ (K−)
valley. The Landau levels, n and m providing the dominant contribution to the
tunnelling current in (a) are shown in (c) and (d) respectively. Panel (e) shows
current curves corresponding to the lines marked in (a), with changing Vb and
constant Vg from -9 V to 9 V in steps of 3 V. Part of this figure was published in
Physical Review B [2].
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In panel (a), we show the current for Vt = 0 V and ideally aligned electrodes,

θ = 0◦. For Vg = Vb = Vt = 0 V, the chemical potentials in the BLG and

MLG electrodes, µBLG and µMLG + ∆, are located at their respective neutrality

points, which are at the same energy, resulting in zero tunnelling current. As

the bias voltage is increased, a shift between the local chemical potentials in the

two electrodes is induced. This opens an energy window, within which electrons

occupying states in one electrode can tunnel into empty states at the same en-

ergy in the other electrode, thus leading to a non-zero tunnelling current. The

coupling strength between the initial and final states in the tunnelling process is

set by |M s,s′

n,m,ξ(ε)|2 which, because of the spinorial nature of the MLG and BLG

wave functions, is expressed as a sum of four terms, each of which contains an

integral
∫
φ̃∗nφmdA of two oscillator states φ̃n and φm. For ideal alignment of the

electrodes, θ = 0◦, the set {φ̃n} is equivalent to {φm} and the integrals express

orthonormality of functions with different indices,
∫
φ∗nφmdA = δn,m. As a re-

sult, tunnelling only occurs if one of the four conditions is fulfilled: i) n = m, ii)

n− 1 = m, iii) n = m− 2 or iv) n− 1 = m− 2. Hence, the central region of large

current in Fig. 7.4(a), for Vg = 0 V and non-zero Vb (finger-like features between

the blue (cyan) m = 0, 1 and m = 2 (−2) lines in Fig. 7.4 (b)), corresponds to the

coupling between m = 0 and n = 0 Landau levels in BLG and MLG respectively,

as demonstrated by the Landau level maps in Fig. 7.4 (c) and (d). Although

at low voltages the m = 0 and m = 1 Landau levels in BLG are degenerate,

transitions between the m = 1 and n = 0 level in MLG are forbidden. Moreover,

although increasing Vb increases the size of the tunnelling energy window to in-

clude higher Landau levels, due to the selection rules for θ = 0◦, these do not

contribute to the tunnelling current.

Setting non-zero Vg, at constant Vb dopes the graphene electrodes, shifting

the two chemical potentials together such that the difference between them re-

mains unchanged. At small Vb and zero Vg in Fig. 7.4 (a), clear current is

observed. However, as Vg is increased (decreased), the electrodes become hole-

doped (electron-doped). As a result, the tunnelling energy window, set by Vb,

moves away from the positions of the m = 0 and n = 0 Landau levels and the

current decreases. Additionally, Vb and Vg induce an electric field between the

graphene layers in BLG which leads to non-zero interlayer asymmetry u. This

opens a band gap in the electronic spectrum of BLG [23] and hence affects the

current characteristics of the device. Within the voltage window shown in panel

(a), u is the largest in the top right/bottom left corners of the (Vb, Vg) diagram

and reaches a magnitude of ∼ 20 meV.

Finally, the current diagram as shown in panel (a) of Fig. 7.4 seems to have
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inversion antisymmetry with respect to the point (Vb, Vg) = (0, 0), I(Vb, Vg) =

−I(−Vb,−Vg). In fact, within the voltage window presented in Fig. 7.4 (a),

this antisymmetry is only weakly broken by the energy dependence of the decay

coefficient c(ε) (see also Appendix 7.A) - a feature also observed experimentally

[143, 150]. We investigate this symmetry in more detail in panel (e) where we

present current plots for changing Vb and constant Vg from -9 V to 9 V in steps of

3 V corresponding to solid/dashed lines marked in (a). We show with solid lines

current for negative Vg and Vb and, with dashed lines, current for positive Vb and

Vg. The same colour is used for curves with the same magnitude of Vg and, for

all Vg, we have I(Vg, Vb) almost equal to −I(−Vg,−Vb).

Figure 7.5: (Color online) Total tunnelling current at B = 1 T as a function of
the bias and gate voltages, Vb and Vg, for θ = 0◦ and Vt = 0.5 V is shown in (a).
The interlayer asymmetry is plotted as a function of bias and gate voltages in (b).
Red lines and labels in (b) indicate the points where µMLG lies at the centre of a
MLG Landau level. Blue (cyan) lines and labels in (b) indicate the points where
µBLG lies at the centre of a BLG Landau level in the K+ (K−) valley. Part of
this figure was published in Physical Review B [2].

In Fig. 7.5 (a), we show the tunnelling current as a function of Vb and Vg for

Vt = 0.5 V. Non-zero Vt induces interlayer asymmetry, u, even for Vb = Vg = 0 V

while also introducing a shift between the MLG and BLG neutrality points, ∆.

The former leads to valley splitting resulting in the separation of the m = 0, 1 lines

in the two valleys in Fig. 7.5 (b), while the latter leads to energy misalignment

of the m = n = 0 Landau levels. However, because in BLG the position of the

m = 0 Landau level depends linearly on u (see Eq. (2.40)), the impact of Vt

can be counterbalanced by choosing Vg such that the overall u shifts the m = 0

BLG Landau level in the K+ valley back into alignment with the n = 0 Landau

level in MLG. This restores the finger-like feature in panel (a), visible for some
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positive Vg.

Figure 7.6: (Color online) Total tunnelling current at B = 1 T as a function of
the bias and gate voltages, Vb and Vg for (a) θ = 0.25◦ and Vt = 0 V (b) θ = 0.5◦

and Vt = 0 V. The interlayer asymmetry is plotted as a function of bias and gate
voltages in (b). Red lines and labels in (b) indicate the points where µMLG lies
at the centre of a MLG Landau level. Blue (cyan) lines and labels in (b) indicate
the points where µBLG lies at the centre of a BLG Landau level in the K+ (K−)
valley. The Landau levels, n and m with dominant contribution to the tunnelling
current in (a) are shown in (c) and (d) respectively. Panel (e) shows current
curves corresponding to the lines marked in (a), with changing Vb and constant
Vg from -9 V to 9 V in steps of 3 V. Part of this figure was published in Physical
Review B [2].
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In Fig. 7.6 (a) and (b), we show the impact of misalignment θ = 0.25◦ and

θ = 0.5◦, respectively, between the two electrodes on the tunnelling current. For

non-zero θ, the oscillator functions φ̃n and φm are no longer orthonormal and

transitions between any pair of states are allowed. This can be observed in Fig.

7.6 (c) and (d) where we show, respectively, the n and m with the strongest

contribution to the current in (a). Therefore, in panels (a) and (b), the finger-

like feature present in Fig. 7.4 and 7.5 becomes increasingly smeared out with

increasing θ and the tunnelling current also decreases as compared to Fig. 7.4

and 7.5. Furthermore, due to the misalignment angle, this finger-like region is

predominantly as a result of tunnelling transitions between the n = 0 level in

MLG and a range of levels in BLG (rather than just n = 0 and m = 0 as in Fig.

7.4). Additionally, misalignment between the electrodes breaks the approximate

inversion antisymmetry of the current diagram in Fig. 7.4. In the presence of

θ 6= 0◦, each of the four terms of the kind
∫
φ̃nφmdA appearing in the calculation

of the matrix element M s,s′

n,m,ξ(ε) (see also Eqs. (7.6) and (7.7) ) comes with a

prefactor that depends on the MLG and BLG band indices s′ and s (s′ and C2

in particular). Upon inversion from I(Vg, Vb) to I(−Vg,−Vb), the interference

between these terms leads to different results depending on whether the initial

and final states originate in the conduction or valence band. As a consequence,

the approximate inversion antisymmetry about (Vg, Vb) = (0, 0), present in Fig.

7.4 is strongly broken in both Fig. 7.6 (a) and (b). This is demonstrated in more

detail in Fig. 7.6 (e), where we show similar current curves as in Fig. 7.4 (e)

(changing Vb for constant Vg from -9 V to 9 V in steps of 3 V with the same

colour scheme) produced for θ = 0.25◦ (the cuts are also indicated in panel (a)).

In particular, the magnitude of the current for Vg = 0 V is much larger for Vb < 0

V than Vb > 0 V.

7.3.2 Valley polarisation at B = 1 T

As the Landau level wave functions of BLG are not distributed equally be-

tween its two constituent graphene layers and this distribution is reversed between

the valleys, tunnelling in the device shown in Fig. 7.1 can be used to produce

unequal electron occupations in the MLG drain electrode. Such an effect can be

characterised by the valley polarisation, P , of the tunnelling current, introduced

in Eq. (7.10), which we plot in Fig. 7.7 as a function of the gate voltages Vg and

Vb for B = 1 T. Panels (a)-(d) in this figure correspond to the same parameters

for which we presented total tunnelling current (Fig. 7.4 (a), Fig. 7.5 (a), Fig.

7.6 (a) and Fig. 7.6 (b) respectively).
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Figure 7.7: (Color online) Valley polarisation of the tunnellling current at B = 1
T, as a function of the bias and gate voltages Vb and Vg. Each of the panels (a)-(d)
corresponds to a total current plot shown in the previous section: (a) θ = 0◦ and
Vt = 0 V (b) θ = 0◦ and Vt = 0.5 V, (c) θ = 0.25◦ and Vt = 0 V and (d) θ = 0.5◦

and Vt = 0 V. Positive (negative) polarisation indicates current favouring the K+

(K−) valley. Part of this figure was published in Physical Review B [2].

In panel (a), we show the case of θ = 0◦ and Vt = 0 V. The polarisation

diagram has inversion symmetry with respect to (Vb, Vg) = (0, 0). A bright red

cross-like feature corresponds to P ∼ 50% with a region of P ∼ 80% in the centre

of the diagram. This high valley polarisation is due to the tunnelling between the

m = 0 BLG and n = 0 MLG Landau levels. In the BLG K+ valley, electrons in

the m = 0 state occupy exclusively the layer closer to the barrier, whereas in the

K− valley all of them sit on the layer further from the barrier. Consequently,

the current in the K+ valley is significantly larger than in the K− valley.

As Vg is increased, the m = 0 and n = 0 Landau levels move out of alignment

and the dominant source of tunnelling current becomes the m = 2 to n = 0 tran-

sition. From Eq. (2.41), the BLG m = 2 wave function is ψξ2,s ∝ (C1φ2, C2φ0)T ,

where C1 and C2 are complex numbers, and the first and second components of
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ψξ2,s are located respectively on layer 1 (layer 2) and layer 2 (layer 1) in valley

K+ (K−). For the MLG n = 0, ψ̃ = (φ̃0, 0), so that for θ = 0◦, tunnelling in K+

is only possible for BLG electrons from layer 2, further from the barrier, while

in K− it is the electrons from layer 1 that can tunnel into MLG. As a result,

the overall current has negative (K−) polarization as shown by dark blue regions

above and below the central red cross in Fig.7.7 (a). Similar arguments can be

used to explain other regions of the polarisation diagram.

For non-zero top gate voltage, as shown in Fig. 7.7 (b) for Vt = 0.5 V, the

polarisation map is modified as a result of the shift between the neutrality points,

∆, as well as non-zero interlayer asymmetry, u, at (Vb, Vg)=(0,0). The latter lifts

the valley degeneracy of the BLG m = 0 Landau level. Alignment of the K+

BLG m = 0 and MLG n = 0 states, responsible for the red cross-like feature in

(a), now requires compensating with positive gate voltage. However, for negative

Vb it is not possible to both align these two states and position the BLG and

MLG chemical potentials such that the aligned states contribute to the current.

As a result, the left arm of the red cross disappears and the m = 2 to n = 0

transitions lead to negative polarisation in this region.

In Fig. 7.7 (c) and (d), we show valley polarisation as a function of Vb and Vg

for increasing misalignment between the electrodes, θ = 0.25◦ and θ = 0.5◦ cor-

responding to total current plots in Fig. 7.6 (a) and (b). Similar to the current

features, when the graphene electrodes are misaligned, individual polarisation

features become smeared out and the variation of polarisation throughout the

(Vb, Vg)-space becomes more gradual. The oscillator states φm and φ̃n are not

orthonormal for θ 6= 0◦ so that many different transitions contribute to the over-

all polarisation for given (Vb, Vg). Importantly, interference of electronic states

tunnelling between any of the BLG layers and any of the MLG sublattices which

leads to different outcomes for conduction band-conduction band and valence

band-valence band transitions, strongly breaks the inversion symmetry of polar-

isation present in Fig. 7.7 (a) for θ = 0◦. This symmetry breaking grows with

increasing θ.

7.3.3 Tunnelling at B = 4 T

The Landau level structures in BLG and MLG depend on the strength of the

magnetic field differently, hence the tunnelling current and polarisation features

in the (Vb, Vg) diagrams depend on B. For this reason, to contrast our results

for B = 1 T presented in Fig. 7.4 - 7.7 with the case of stronger magnetic field,

in Fig. 7.8 we show the tunnelling current and its valley polarisation for B = 4
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T, θ = 0◦ and Vt = 0 V. Due to the increased electron density per Landau level

at B = 4 T, it is necessary to increase the voltage range in order to compare

features arising from similar electronic tunnelling transitions. In a similar way to

the B = 1 T case, a finger-like structure can be observed in Fig. 7.8 (a). In fact,

it is more pronounced because the separation between the m = n = 0 Landau

levels and the rest of the electronic spectra in the corresponding materials is

increased. Consequently, the central cross-like region of K+-polarised current is

also sharper, including polarisation of P ∼ 90% in the vicinity of (Vb, Vg) = (0, 0).

The maximum K− polarisation in the blue region dominated by m = 2 to n = 0

tunnelling is also increased.

Figure 7.8: (Color online) Total tunnelling current (a) and valley polarisation
(b) as a function of the bias and gate voltages Vb and Vg for magnetic field B = 4
T, θ = 0◦ and Vt = 0 V. The maximum polarisation observed is as much as 90%
in favour of the K+ valley. Part of this figure was published in Physical Review
B [2].

7.4 Tunnelling with strong momentum

scattering

In the presence of a poor interface between the electrodes and the hBN barrier,

the scattering length-scale becomes very small such that the momentum resolu-

tion of the tunnelling electron becomes lost. In this limit, the momentum-nature

of the initial and final state has no effect on the magnitude and valley polari-
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sation of the current across the device. Instead, the tunnelling current depends

only on the density of states of the source and drain electrode. As a consequence,

we expect the valley polarisation of the tunnelling current to arise purely due to

differences in valley occupations of the two BLG layers. We model this regime

by setting each harmonic oscillator integral,
∫
φ̃nφmdA, equal to 1 for all the

transitions independently of their initial and final states5 and present our results

for θ = 0◦ and Vt = 0 V in Fig. 7.9.

In panels (a) and (b), we show the tunnelling current for B = 1 T and B = 4

T, respectively. Because, in the limit of relaxed momentum conservation, all of

the transitions are now allowed, the graphs look similar to that in Fig. 7.7 (b),

corresponding to θ = 0.5◦. In (b), the increased magnitude of the magnetic field

leads to larger spacing between the Landau levels so that, as compared to (a), a

larger voltage window is necessary to capture features due to transitions between

the same pair of Landau levels.

In Fig. 7.9 (c) and (d), we present valley polarisation of the currents shown in

Fig. 7.9 (a) and (b), respectively. The relaxation of the selection rules discussed

in the previous section results in polarisation maps which are heavily weighted in

favour of the K+ valley. In particular, the maximum valley polarisation occurs

at low voltages, where the participating Landau levels are those with low index

(in particular m = 0 and m = 1). This is because, for the m = 0 and m = 1 BLG

Landau levels, the valley and layer degrees of freedom are coupled. Furthermore,

the interlayer asymmetry, u, generates a layer population difference in the m ≥ 2

Landau levels in BLG, which is opposite in the two valleys. This induced inter-

layer asymmetry is responsible for small regions of minor K− polarisation which

occur at higher voltages. These two principles are responsible for all polarisation

features observed in Fig. 7.9 (c) and (d).

The relative misalignment of the graphene electrodes has no effect on the

tunnelling probability in this limit. Similarly to the case of momentum-conserving

tunnelling between misaligned electrodes, where θ 6= 0◦, the lack of restrictions

on allowed transitions leads to chiral interference. This interference results in the

asymmetry in inversion about the origin that is observed in Fig. 7.9. We expect

momentum non-conserving tunnelling to be the dominant mechanism when the

misalignment angle between the graphene electrodes is large. This is because,

while increasing misalignment angle decreases the magnitude of the momentum-

conserving current, it should have no effect on the transitions involving scattering.

5This limit is equivalent to setting the scattering length much smaller than the magnetic
length (σ � λB) in the theoretical model employed in Ref. [144]
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Figure 7.9: (Color online) Electron transport through the proposed device in
the absence of momentum conservation and as a function of the bias and gate
voltages Vb and Vg with Vt = 0. Panels (a) and (b) show the total tunnelling
current for θ=0◦ and (a) B = 1 T, (b) B = 4 T. Panels (c) and (d) present valley
polarisation of the current shown in (a) and (b), respectively. Part of this figure
was published in Physical Review B [2].

7.5 Summary

We have explored the tunnelling characteristics of a vertical field effect tran-

sistor comprising monolayer and bilayer graphene electrodes, in the presence of

a perpendicular magnetic field. The coupled layer and valley polarisation in

the Landau levels of bilayer graphene gives rise to a valley-polarised tunnelling
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current through the device resulting in unequal valley populations in monolayer

graphene. Our result is due to the difference in effective tunnelling barrier widths

for electrons in the two layers of the BLG electrode. As such, valley polarisation

should persist in the presence of small local variations of the tunnelling rates

(and hence effective tunnelling decay lengths). Importantly, this valley polari-

sation can be tuned solely by electrostatic means without the need to reverse

the direction of the magnetic field. Our modelling suggests that P ∼ ±80% is

possible in high quality devices in homogeneous fields of B = 1 T. Fields of such

magnitude could be in principle generated by placing ferromagnets on top of the

device [178]. While the homogeneity of the field distribution across the device

would then depend on the size of the ferromagnet, thickness of the tunnelling

junction and distance between the two, valley polarisation might still be possi-

ble in such a setup. The relatively low magnetic fields required suggest possible

valleytronic applications.

In both the momentum-conserving and non-conserving regimes, the most per-

sistent feature in valley polarisation plots is the cross-like region of K+-polarised

current around (Vg, Vb) = (0, 0). In the same voltage region, the total tunnelling

current forms a finger-like pattern. Both originate in tunnelling current from

m = 0 (m = 0, 1 in the absence of momentum conservation) to n = 0, so that

observing the finger-like features in the current should indicate a region of con-

siderable valley polarisation. In order to detect the valley polarisation produced

using the proposed device directly, two stacks could be connected in series: the

first one to produce unequal valley populations and the second to act as a de-

tector. Alternatively, the produced valley polarisation can be measured using

optical means [179].

7.A Changing the decay constant of graphene

In the main text, we take the decay constant c′(ε) characterising tunnelling

through monolayer graphene to be equivalent to the decay constant c(ε) corre-

sponding to tunnelling through hBN. Here we discuss the effect of changing the

decay constant c′(ε), on our results.

In our work, we use the expression in Eq. (A1) to obtain the decay constant

c′(ε) = c(ε) for the tunnelling of BLG electrons from the layer further from the

barrier across the graphene layer closer to the barrier. While both the barrier

height and the effective mass would be different for graphene as compared to

hBN our main conclusions are quite insensitive to the numerical values of c′(ε)
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Figure 7.10: (Color online) Valley polarisation for momentum-conserving tun-
nelling between perfectly-aligned electrodes (θ = 0◦) and for B = 1 T as a
function of Vb and Vg with Vt = 0 V. In contrast to the polarisation shown in Fig.
7.7 (a), the plots here are obtained using the decay constant decreased by a factor
(a) 1√

2
and (b) 1

2
(compared to in the main text). This figure was published in

Physical Review B [2].

and c(ε). In fact, the latter impacts both the electrons tunnelling from the top

and bottom BLG layers in the same way and hence leads to an identical numerical

coefficient for all tunnelling processes for given applied voltages. The physics we

describe arises primarily due to the additional exponential factor, exp (−c′(ε)d0),

in tunnelling from the bottom layer as compared to the top one.

In Fig. 7.10, we demonstrate the valley polarisation at B = 1 T and θ = 0◦

for effective graphene decay constant, c′(ε), scaled by a factor of (a) 1√
2

and (b)
1
2

as compared to the hBN value provided by Eq. (A1). While the asymmetry

between P (Vb, Vg) and P (−Vb,−Vg) increases slightly for smaller decay constant,

qualitative features of the valley polarisation graphs remain the same. Also,

the maximum valley polarisations are still significant, 58% and 48% respectively,

compared to 80% in Fig. 7.7 (a). Increasing c′(ε) (making graphene more

insulating) increases the valley polarisation of the tunnelling current.
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In this thesis, we have explored the theoretical electronic properties of stacked

two-dimensional atomic crystals. In particular, we demonstrate that the elec-

tronic properties of the resulting van der Waals heterostructures differ notably

from the constituent layers. We pay particular attention to the relative alignment

of the constituent layers, where the twist angle between their crystallographic axis

becomes crucial in determining the resulting electronic behaviour.

In Chapter 2, we described the basic electronic properties of monolayer and

bilayer graphene using the familiar tight-binding descriptions. Furthermore, we

derived expressions for the resulting Landau level spectra in these materials as

a result of applying a strong magnetic field perpendicular to the layer plane.

We shifted our attention to moiré superlattice structures incorporating graphene

in Chapter 3. We introduced the basic geometry of these moiré superlattices

as well as the concept of commensuration before deriving theoretical models for

twisted bilayer graphene, graphene on hBN and graphene on α−In2Te2. We then

considered the effect of a magnetic field on the moiré superlattice in graphene on

hBN and demonstrated theoretically that the Landau level spectrum undergoes

significant changes forming Hofstadter’s butterfly.

We introduced electronic Raman scattering in Chapter 4, where we showed

that it can be used to characterise the misalignment angle in twisted bilayer

graphene. Furthermore, the sensitivity of the dominant Raman peak to the twist

angle suggested that electronic Raman scattering can be used to accurately deter-

mine whether the misalignment in a bilayer sample is close to the magic angle. We

observed that the spectral profile and position of the peaks allowed the dominant

excitation to be described. Importantly, by comparison to monolayer graphene

(on which experimental electronic Raman has been carried out [102]), we demon-

strated that the Raman peaks observed in the electronic Raman spectrum of

twisted bilayer graphene should be measureable at low angles, where these strong

peaks occur at Raman wavelengths far away from the large phonon modes.

In Chapter 5, we proposed a unique parameter set which self-consistently de-

scribes the interlayer coupling between twisted graphene layers. In particular, we

proposed that twisted trilayer graphene is the smallest system where parts can be

simultaneously described using the real space tight-binding model and the recip-

rocal space continuum model, hence allowing the self-consistency of our model to

be accurately probed. By modelling angle-resolved photoemission spectroscopy,

we can verify this description by comparison to experimental data.

In Chapter 6, we introduced the concept of van der Waals tunnelling tran-

sistors comprised of graphene electrodes separated by a hBN tunnelling barrier.

By placing either another misaligned graphene layer, or another type of almost
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commensurate two-dimensional atomic crystal such as hBN or α − In2Te2, in

the source/drain electrode, the electronic band structures become strongly mod-

ified leading to non-linear tunnelling current characteristics. In particular, we

demonstrated that this leads to negative differential resistance in the absence of

momentum conserving tunnelling. In the case of electrodes comprised of graphene

on α− In2Te2, a peak-to-valley ratio of the order of ∼ 10 was obtained suggesting

practical applications.

Finally, in Chapter 7, we demonstrated that in a van der Waals tunnelling

transistor comprising a bilayer graphene source electrode and monolayer drain

electrode, all in the presence of a perpendicular magnetic field, a strongly valley

polarised current can be generated as a function of applied voltages. The polar-

isation and current properties of the device depend strongly on the twist angle

between the source and drain electrode as well as the magnetic field strength. In

this case, the interplay between the tunnelling matrix element and the quantised

density of states, as well as the coupled layer and valley degrees of freedom lead

to this valley polarisation. Furthermore, we explained that these coupled layer

and valley degrees of freedom lead to valley polarisation even in the absence of

momentum conservation. Valley polarisation as large as 80% was found at B = 1

T which suggests that the proposed setup could be used as a valleytronic device.

8.1 Future work

In this section, we will describe possible avenues for future work related to the

content described in this thesis. We demonstrated that electronic Raman scatter-

ing could be used as an effective probe of the twist angle in Chapter 4, however

improvements to this model could be made. Firstly at low twist angles, including

around the magic angle, in an effort to minimise its energy, the crystal structure

of twisted bilayer becomes strained. This strain would need to be included to

improve the accuracy of our model. Second, we could, although unlikely to be

important, include higher order processes in the electronic Raman calculation,

including the contact interaction. Extending this theory to twisted trilayer or

including in-plane magnetic fields could be interesting while including a strong

out-of plane magnetic field would lead to Landau quantisation and Hofstadter’s

butterfly, a system in which electronic Raman scattering has not been calculated.

In this case, we believe selection rules between the fractal magnetic minibands

could lead to a unique electronic Raman spectrum

In Chapter 5 we focused on using the ARPES spectra of twisted trilayer
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graphene to determine the interlayer coupling in twisted graphene layers. Ideally,

in order to strengthen the arguments of this work, we should compare the theo-

retical and experimental ARPES spectra for a wider range of angles. Moreover,

a few natural continuations of this work exist. First, we focused primarily on

twisted trilayers of the form (θ− 0− 0) and a natural next step would be to look

at the ARPES spectra of trilayer with two or more relative rotations (between

each pair of layers). Second, it would be interesting to look at special misalign-

ment angles in twisted bilayer graphene, in particular 30◦. At this twist angle,

it has been demonstrated [77], that Dirac cone replicas in the ARPES spectra

are significantly more intense than at other angles. This arises as a result of the

multiple scattering paths projecting onto the same point in reciprocal space. The

authors of this work [77], use a parameter set, t̃(q, d0) with a much sharper drop

off than used in this thesis, which appears to be in contradiction with the ARPES

experiment. Since the ARPES intensity of Dirac cone replicas is dependent on

the interlayer coupling at large q, we suggest that our more slowly diminishing

t̃(q, d0) could explain this discrepancy. We could also try extending the con-

tinuum model to try and capture more terms in the electronic Hamiltonian of

twisted bilayer graphene in the zero-angle limit, in particular reproducing terms

corresponding to γ3 and γ4 in Chapter 2.

The results presented in Chapter 6 are very general with many degrees of free-

dom in the construction of the van der Waals tunnelling transistor. By changing

the materials in the source and drain electrodes, as well as changing the twist

angle, it may be possible to generate an NDR even larger than those discussed

in this thesis such as combinations of magic-angle twisted bilayer graphene and

graphene on other almost-commensurate substrates.

The valley polarisation generated by the van der Waals tunnelling transistor

proposed in Chapter 7 could have practical applications as a valleytronic device,

however the difficulty is measuring this valley polarisation. Future work could

include modelling a way to probe this valley polarisation by either placing two

devices in series, or by optical means. The application of a large perpendicular

magnetic field could lead to spin splitting via the Zeeman effect. Furthermore, as

the magnetic field increases, the magnetic length decreases, confining the electrons

and leading to stronger electron-electron interactions. These two effects can lift

the degeneracy of the Landau levels, possibly altering the valley polarisation and

current characteristics.

This thesis has focused on graphene-based heterostructures, however other

materials such as transition metal dichalcogenides could be used in its place, for

example MoS2. The continuum model described in Chapter 3 can be extended
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to twisted bilayers/trilayers of TMDs and it would be interesting to see whether

phenomena such as Van Hove singularities and flat bands are observed. Fur-

thermore, valley polarisation is of particular interest in TMD materials, where

circularly polarised light can be utilised to generate/probe valley polarisation

[163]. As such, probing the valley polarisation using a setup similar to that in

Chapter 7 could be used in tandem with optical methods.
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Review Applied 10(3), 034014 (2018).

[2] Thompson, J. J. P., Leech, D. J., and Mucha-Kruczyński, M. Physical
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