

University of Bath

PHD

A lambda-calculus that achieves full laziness with spine duplication

Sherratt, David

Award date:
2019

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Sep. 2021

https://researchportal.bath.ac.uk/en/studentthesis/a-lambdacalculus-that-achieves-full-laziness-with-spine-duplication(1212dd9f-b150-4a80-87c6-ee59097e653c).html

A lambda-calculus that achieves full

laziness with spine duplication
submitted by

David Rhys Sherratt
for the degree of Doctor of Philosophy

of the

University of Bath
Department of Computer Science

March 2019

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy
of this thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that they must not copy it or use
material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within
the University Library and may be photocopied or lent to
other libraries for the purposes of consultation with effect
from . (date)

Signed on behalf of the Faculty of Science .

Summary

This work introduces a variant of Gundersen, Heijltjes, and Parigot’s atomic lambda calcu-
lus. This typeable calculus with explicit sharing extends the Curry-Howard interpretation
of open deduction already established by the mentioned. We extend the intuitionisitc proof
system with a switch inference rule, which corresponds to an end-of-scope operator i.e. the
switch rule can only be applied to subterms of an abstraction that do not have the binding
variable occuring freely inside. Combining this notion of scope with the previous calculus,
where duplication of terms is performed atomically, results in the ability to duplicate the
spine of an abstraction, where the spine is the direct path from the binder to the bound
variable. Spine duplication has been witnessed previously with strategies involving graphs
and labels, but this work uses environments and remains in a typed setting. We prove that
this calculus preserves strong normalisation with respect to the lambda calculus, satisfies
the confluence property, and can duplicate the spine on any abstraction.

1

2

Acknowledgments

I would like to thank my supervisor, Willem Heijltjes (Hell-Juice), for taking me in and
supporting me throughout this strenuous part of my life. You always gave me the push I
needed to improve and I will always be grateful for your time and effort. Thank you for
believing in me.

I would also like to greatly thank my examiners Delia Kesner and Guy McCusker, for
the surprisingly fun but interesting discussions held at the defense of this thesis.

This work was raised from the foundations provided by Willem Heijltjes, Tom Gundersen
and Michel Parigot. Your contributions to the field are invaluable.

I am deeply grateful to Alessio Guglielmi (Big Alessio, but not big as in hefty, hench,
or superior). You have always been a reliable source of advice, guidance, and constructive
criticism. Because of you, I will never cut my potatoes with a knife in Germany.

I would like to thank my amazing previous and current colleagues; Andrea Aler Tubella,
Chris Barrett, Valentin Blot, Paola Bruscoli, Cillian Dudley, Giulio Guerrieri, John Power,
and Ben Ralph. You supported me greatly and were always willing to help me. I would like
to include a special note of thanks to my older and wiser academic sister, Fanny He, who
introduced me to the λ-calculus when starting my PhD. You are an incredible influence
to my research. And I would not have achieved what I have without Alessio Santamaria
(Little Alessio), the most English foreigner I have ever had the pleasure of meeting.

I had the pleasure of working with Marco Solieri during his short time at Bath, studying
the graphical variant of the atomic λ-calculus. It is a regret that only a crumb of that work
has made it into this thesis. Opportunities to attend workshops and present my research
were also available because of Anupam Das, thank you.

Without the continuous encouragement and kindness from Arnold Beckmann, I would
not be where I am today. You gave me the courage for this adventure.

Fe hoffwn i ddiolch fy ffrindiau o’r cartref; Aled, David, David, David, Jack, Jason,
Jordan, Lisa, Naomi, Sam a fy nheulu; Mam, Tad, a Robbie fy mrawd mawr. O achos ichi,
dwi’n berson mwy hyderus.

Zijian, I lack the words to express my true gratitude, but your support throughout most
of this journey is irreplaceable.

And finally to me
- without whom this book would not have been possible.

3

4

Contents

1 Introduction 7
1.1 Motivation and Related Work . 10

1.1.1 The λ-Calculus . 10
1.1.2 Deep Inference . 11
1.1.3 The Atomic λ-Calculus . 12
1.1.4 Scopes . 17
1.1.5 Duplication Strategies . 21
1.1.6 Preservation of Strong Normalisation 24

1.2 Curry-Howard Correspondence . 25
1.3 A calculus that achieves spine duplication 26

2 Switch and End-Of-Scope 27

3 Spinal atomic λ-calculus 31
3.1 Calculus . 34

3.1.1 Pre-Terms and Terms . 34
3.1.2 Operations . 42

3.2 Reduction . 48
3.2.1 Beta reduction . 49
3.2.2 Deletion . 49
3.2.3 Duplication . 50
3.2.4 Compound . 51
3.2.5 Lifting . 51

3.3 Typing System . 61
3.3.1 Inference Rules . 61
3.3.2 Reduction Rules . 62
3.3.3 Switch Effects . 67

4 The weakening calculus 73
4.1 Syntax and Translations . 74
4.2 Weakening reductions . 81

5 Strong Normalisation of Sharing Reductions 87
5.1 Multisets . 88
5.2 Sharing Measure . 88

5

6 CONTENTS

5.2.1 Height . 89
5.2.2 Weight . 90

5.3 Strong normalisation and confluence of ↝(R,D,L,C) 98

6 Preservation of Strong Normalisation and Confluence 101
6.1 Preservation of Strong Normalisation . 101
6.2 Confluence . 102

7 Spine Duplication 105
7.1 The V-Spine . 106
7.2 Spine Equivalence . 109
7.3 Full Laziness . 110

8 Conclusion 115
8.1 What we have . 115
8.2 Steps forward . 116

Chapter 1

Introduction

无理取闹
wú ľı qǔ nào

To create problems for no reason

The main interest of this work is of the following switch rule for intuitionistic logic.

(A→ B) ∧C
s

A→ (B ∧C)

The switch rule we are interested in has been seen in the following deep inference proof
system [Gug07]. Furthermore, there do exist other switch rules for deep inference systems
of intuitionistic logic that work with different connectives [Tiu06, GS14]. The switch rule
has been mentioned previously not in the context of deep inference. The switch rule for
multiplicative linear logic was studied in [CS97] (called “weak distributivity”) and further
studied in [DP04]. In weak distributivity, the switch rule can be seen for tensor (⊗) and
par (⊕), i.e. the maps A⊗ (B ⊕C)→ (A⊗B)⊕C and A⊗ (B ⊕C)→ B ⊕ (A⊗C).

We are interested in this particular rule mentioned as it can be interpreted as an end-
of-scope operator in the λ-calculus. Such operators have been explored in [BF82, HvO03].
This observation is fundamental of this work and explained more concretely in Chapter 2,
but to give an intuition suppose we have a term λx.t where x is of type A and let s be a
subterm of t of type C. Reading the rule upwards, the switch rule is able to split the parts
of the term in the scope of x (‘the B part’, as it were) and subterms (such as s) that do
not contain x as a free variable (’the C part’). With the use of the switch rule, we can
identify the subterms of an abstraction λx.t that do not contain x as a free variable.

This explicit notion of scope in the λ-calculus allows us to identify the spine of an
abstraction. The spine of an abstraction are the direct paths from the binder to bound
variables. By identifying the largest subterms in λx.t that do not contain the variable x,
we consequently identify the direct path from λx to all occurrences of x. The graph below
provides an example of this for the term λx.(λz.z)λy.(y y)x, where the spine of λx is the
very thick red line and the largest subterms that would be identified by an end-of-scope
operator/the switch rule are enclosed by yellow boxes.

7

8 CHAPTER 1. INTRODUCTION

λx

@

λz

z

λy

@

@

y y

x

Spine

Subterm

Identifying the spine of terms was implemented using graphs and labels by Blanc, Lévy,
and Maranget in [BLM07], and further studied by Balabonski in [Bal12]. The latter shows
that when sharing a subterm, the ability to duplicate just the spine of the subterm allows
for an optimal reduction in the sense of Lévy [Lév80] for weak reduction [CH98], where a
β-reduction (λx.t) s occuring in a subterm u can only reduce if the all free variables in the
redex are also free in the term u. Given the restriction that u is a closed term, this is then
the same as closed reduction [FM99, FMS05a].

The switch is one of two characteristic inference rules in deep inference. The other rule
is the medial.

(A ∨B)→ (C ∧D)
m

(A→ C) ∧ (B →D)

The computational interpretation of this medial rule was investigated in [GHP13], where the
authors provide a proof system for intuitionistic logic and a Curry-Howard correspondence to
a variant of the λ-calculus, the atomic λ-calculus. The Curry-Howard correspondence means
derivations corresponds to terms and proof normalisation corresponds to term reduction.
In this work we extend the proof system with this switch rule, and introduce a new variant
of the calculus that corresponds with the new proof system.

The interpretation of the switch rule as a computational component and the interaction
between switch and medial, results in a term calculus with explicit sharing that naturally
captures this ability to duplicate the spine of a term, based on a Curry-Howard interpretation
of a deep inference proof system for intuitionistic logic that uses both the presented medial
and the switch rule. This new calculus differs from the result of [GHP13], which duplicates
the skeleton of an abstraction (the union of all the spines of abstractions on the spine, or
the iterated spine). It should be noted that ‘skeleton’ and ‘spine’ is terminology taken from
[Bal12], and this notion of spine is discussed in [KvOvR93] called ‘scope’, but we use spine
to avoid ambiguity with the natural meaning of scope in a term calculus. The following
graph highlights the skeleton and spine of the term as before, where the skeleton of λx is
composed of the very thick lines, the red lines being the spine of λx, the blue lines being
the spine of λy, and purple where the spines overlap.

9

λx

@

λz

z

λy

@

@

y y

x

λx

@

λz

z

λy

@

@

y y

x

Skeleton Spine

Thesis outline

The main contribution of this work is a refinement of the atomic λ-calculus that has more
control over duplication. Furthermore we extend the Curry-Howard correspondence between
deep inference formalisms and term calculi, by looking at the computational interpretation
of the switch rule. We show that our refined calculus preserves strong normalisation with
respect to the λ-calculus (PSN), with the ability to duplicate the spine of a term.

In the rest of this chapter we discuss the related works for the ideas behind this dis-
sertation. In Chapter 2 we discuss the switch rule and its Curry-Howard interpretation,
an explicit end-of-scope operator, and we go over a few simple examples. In Chapter 3
we formally introduce a new variant of the atomic λ-calculus, the spinal atomic λ-calculus
(ΛSa). We introduce the syntax, compilation and readback translations to the λ-calculus,
and operations for the calculus (substitution, book-keeping and exorcisms). We also give
the typing system in open deduction for the calculus. In Chapter 4 we introduce the weak-
ening calculus, a ‘middle’ calculus between the atomic λ-calculus and the λ-calculus. We
define the compilation and readback functions from our calculus to the weakening calculus,
and describe the relationship and connections between the reduction rules in each calcu-
lus. In Chapter 5 we prove that the sharing reduction rules of our calculus are strongly
normalising and confluent. We do this by invoking a measure on atomic terms, where the
measure is based on the equivalent term in the weakening calculus obtained via translation.
In Chapter 6 we prove that our calculus satisfies PSN with respect to the λ-calculus, i.e.
for any term in the λ-calculus that is strongly normalising, the resulting term in the atomic
λ-calculus obtained from translation is also strongly normalising. Lastly before our conclu-
sion, in Chapter 7 we focus on spine duplication, and prove that our calculus is capable
of duplicating the spine and only the spine of an abstraction, and leaving the maximal
subterms not connected to the spine shared, achieving full laziness.

10 CHAPTER 1. INTRODUCTION

1.1 Motivation and Related Work

In this section we discuss the related work of this dissertation in detail, and describe the
details of the fundamental ideas behind this work i.e. how the switch rule corresponds to
an explicit end-of-scope operator and how the interaction between the switch rule and the
medial rule in [GHP13] allows for spine duplication.

1.1.1 The λ-Calculus

The λ-calculus was introduced by Church in [Chu41] as an approach to formalise the foun-
dations of mathematics. It is known for being “the world’s smallest universal programming
language” [Roj15]. Because of this, many functional programming languages are built
based on the λ-calculus. A functional program consists of an expression M (represent-
ing both the algorithm and the inputs), which is then “computed” via term rewrite rules,
M ↝ M ′ where M ′ is the resulting expression. These expressions are defined recursively
with the syntax

M ∶∶= x ∣ λx.M ∣ MM

where (from left to right) we have variable, abstraction and application. Computation in
the λ-calculus is implemented with beta-reduction. Reduction is nothing more than textual
replacement of a formal parameter in the body of a function by the actual parameter
supplied, and is formally shown below.

(λx.M)N ↝β M{N/x}

Types were first proposed by Russell in his development of mathematical logic [WR28],
and were used as a solution to the well known Russell’s paradox. The idea of types for the
λ-calculus is simple. Every λ-term is a function, and its type informs us what kind of input
it expects and what kind of output it will return. The grammar of types is given by

A ∶∶= ○ ∣ A→ A

Here, ○ is a fixed type called base type. The grammar for terms in the typed λ-calculus is
almost the same as before, the difference is that we label abstracted variables with their
type i.e. λxA.M .Some terms will not have a type, and is not considered a valid term in
this calculus. Once we know what type each free variable of a term has, the term will have
at most one type. Types give us information about the behaviour of functions. A term
is well-typed if all of the abstractions-applications within it are sensible i.e. if you apply a
function of type A → B, the argument you give it must have type A. It is also true that
substitution and β-reduction preserve the typing of terms.

A consequence of using types is that self-application is no longer possible i.e. the term
Ω cannot be typed. This is because the types introduce a stratification of terms: terms of
type A can be supplied to terms of type A → B. A term cannot have both these types at
the same time, i.e. Ω = ww = (λx.xx)λx.xx cannot be typed as wA→BwA as the types
of w need to be consistent. This constraint means that all typed λ-terms are strongly
normalising. A term M is called strongly normalising if there is a bound k and a term N

1.1. MOTIVATION AND RELATED WORK 11

which is in normal form of M such that every sequence M ↝β M1 ↝β M2 ↝β ⋅ ⋅ ⋅↝β N has
at most k steps. The typed λ-calculus is closely related to proof theory and mathematical
logic via the Curry-Howard correspondence [How80].

1.1.2 Deep Inference

Deep inference is a methodology for designing proof systems that can be argued to have less
syntactic bureaucracy compared to more traditional formlisms [BL05, GGP10] and which
allows for shorter proofs [Das14b] and to express logics that were not expressible before (for
example modal logics in [SS05, Sto07]). Deep inference is a general idea in structural proof
theory that is an alternative approach compared to Gentzen’s formalisms i.e. the sequent
calculus and natural deduction. Deep inference was first published in 2001 [GS01, BT01],
and there are at least two formalisms have been designed and developed in the style of deep
inference: the calculus of structures introduced in [Gug07] and open deduction [GGP10]. A
third approach introduces deep inference features into a more traditional Gentzen formalism
[Brü06, Brü10].

The main difference between deep inference and Gentzen’s formalisms involve two prin-
ciples. First we have that inference rules can be applied ‘deeply’. There is no longer an idea
of a main connective, nor is there anymore a distinction between meta-level and object-
level. This is the main principle for the calculus of structures. Second is that proofs can be
horizontally composed by the same logical connectives that are used to compose formulae.
This is the main principle for open deduction. Both approaches reject the idea of tree-shape
proofs of Gentzen’s deductions for derivations with a single premise and conclusion. The
syntax used to define these systems is similar to that of categorical logic [Hug04], but the
aims and principles of proof theory are different since we study proof normalisation [AT17]
and proof complexity [Das14a].

This thesis focuses on open deduction. We discuss the following example to show
how we apply logical connectives at the level of derivations as well as formulas. Let there
be inference rule r1 where the premise is the formula A and the conclusion is C and an
inference rule r2 where the premise is B and the conclusion D as shown below.

A
r1

C
B

r2
D

We then apply these rules to the formula A ∧B to obtain a derivation with conclusion
C∧D. In calculus of structures, we need to decide which rule ro apply first. The derivations
below are not considered syntactically equal, even though they have the same premise and
conclusion, because they apply the inference rules in a different order.

In open deduction, we can generalise these two derivations so that they can be consid-
ered syntactically equal. These two derivations are harmonised into one derivation, where
the conjunction is applied to the two derivations. This motivates the general idea of com-
posing proofs together.

A ∧B
r1

A ∧D
r2

C ∧D
≠

A ∧B
r2

C ∧B
r1

C ∧D
A
r1

C
∧B r2
D

12 CHAPTER 1. INTRODUCTION

We now give a more formal definition of a derivation in open deduction, with a premise
A and conclusion C. We work modulo symmetry, associativity, and unit laws of conjunction.
A derivation is constructed with the following syntax.

A
ÚÚÙ
C

::= A ∣
A1
ÚÚÙ
C1

∧
A2
ÚÚÙ
C2

∣
C1
ÚÚÙ
A1

→
A2
ÚÚÙ
C2

∣

A
ÚÚÙ
B1

r
B2
ÚÚÙ
C

where from left to right, (1) the premise and the conclusion can be the same formula
i.e. A = C. (2) We can compose derivations horizontally with a conjunction ∧, where
A = A1 ∧ A2 and C = C1 ∧ C2. (3) We can compose derivations horizonstally with an
implication → where A = A1 → A2 and C = C1 → C2, note that the derivation on the
antecedent of the implication is inverted, it can be interpreted as a derivation where we
treat the premise as the conclusion and the conclusion as the premise. Lastly (4) derivations
can be composed vertically with an inference rule r from B1 to B2. Additionally the
generic vertical composition of two derivations (without a mediating rule) exists as a derived
operation in [GGP10].

A proof system in open deduction is given by connectives and inference rules, where
we need to know how the connectives compose derivations as well as formulas (i.e. their
arguments must have an ”up/down” or ”covariant/contravariant” direction). The inference
rules we are interested in are exactly those that will help us type the λ-calculus.

1.1.3 The Atomic λ-Calculus

The atomic λ-calculus, presented in [GHP13], is an extension of the ordinary λ-calculus
that include closure constructs in an explicit-substitution-like syntax. We use open deduc-
tion derivations to type the terms of the calculus. The basic inference rules obtained by
embedding the usual natural deduction systems for the λ-calculus into open deduction are
presented below, and are abstraction, application and (n-ary) contraction from left to right.

B
λ

A→ (B ∧A)
A ∧ (A→ B)

@
B

A △
A ∧ ⋅ ⋅ ⋅ ∧A

These rules are used to type terms of the basic calculus, given by the grammar

s, t ∶∶= x ∣ λx.t ∣ s t ∣ s[x1, . . . , xn ← t]

where the four constructors are called, from left to right, variable, abstraction, application
and sharing. This is a linear calculus, so each variable occurs exactly once, and a sharing
construct is used to represent multiple occurrences of a variable (or term). The variable
bound by an abstraction must occur within the body of the abstraction i.e. in the term λx.t,
x ∈ (t)fv. Lastly and similarly, each variable bound by the sharing construct must occur
and become bound i.e. in the term s[x1, . . . , xn ← t], each xi ∈ (u)fv for all 1 ≤ i ≤ n.
The typing derivations in open deduction for this calculus is displayed below, where the
corresponding types and derivations for terms are in red. The formula A (and B) is defined

1.1. MOTIVATION AND RELATED WORK 13

by the grammar of types discussed previously in Section 1.1.1 and Γ (and ∆) is either a
conjunction of zero or more clauses where each clause is defined by A. We add the boxes
to aid the reader see the horizontal composition of derivations. The colour of the box has
no meaning other than to help identify derivations.

Ax

Γ
λ

A→
Ax ∧ Γ

ÚÚÙt
B

Γ
ÚÚÙs
A

∧
∆
ÚÚÙt

A→ B
@

B

∆ ∧
Γ
ÚÚÙt
A △

Ax1 ∧ ⋅ ⋅ ⋅ ∧Axn
ÚÚÙs
B

The terms can also be interpreted graphically, as displayed below. Notice that the deriva-
tions are rotated 180 degrees compared to the graphical depictions of the terms.

ń

t
@

s t

s

t

As an example, let us observe the atomic λ-term 2 (I I) where 2 is the Church numeral
λf.λx.f1 (f2 x)[f1, f2 ← f] and I the identity function λx.x. Below we display the typing
judgement for this term as well as a graphical interpretation. The dotted line in the
derivation is the identity inference rule and is only used to improve readability. The coloured
boxes highlighted correspond to each other.

λ

(A→ A)→

(A→ A)
λ

A→

A ∧
(A→ A)

△

(A→ A) ∧ (A→ A)

A ∧ (A→ A)
@

A
∧ (A→ A)

@
A

∧
λ

A→ A ∧ λ
(A→ A)→ (A→ A)

@
A→ A

@
A→ A

14 CHAPTER 1. INTRODUCTION

@

ń

ń

@

@

@

ń ń

Beta reduction in the atomic λ-calculus is as expected, (λx.t) s ↝β t{s/x}. We use a
linear substitution since there is only one occurrence of the bound variable. This reduction
can be expressed as a proof rewrite rule and graph rewrite rule as shown below.

Γ
λ

A→
A ∧ Γ

ÚÚÙt
B

∧
∆
ÚÚÙs
A

@
B

↝β

∆
ÚÚÙt
A

∧ Γ

A ∧ Γ
ÚÚÙs
B

@

s

ń

t

↝β t

s

In our example 2 (I I), after performing a β-step we see the subterm I I become shared.

2 (I I) = (λf.λx.f1 (f2 x)[f1, f2 ← f]) (I I)↝β λf.λx.f1 (f2 x)[f1, f2 ← I I]

Next we consider duplication. The ‘atomic’ in atomic λ-calculus comes from the fact
that the reduction rules allow for duplication of the constructors, i.e. we duplicate a term
atomically. This method of duplication is commonly seen in graphical representations of λ-
calculi with sharing [Lam90, GAL92, Mac98] and has been proven to not cause any overhead
to reduction [GS17]. In our example where the term I I is shared, the first contructor we
would duplicate would be the application. Duplication of applications is handled by the
rule below, where all introduced variables are fresh. The proof and graph rewritings are
also shown.

u[x1 . . . xn ← s t]↝S u{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]

∆
ÚÚÙs

A→ B

∧
Γ
ÚÚÙt
A

@
B △

Bx1 ∧ ⋅ ⋅ ⋅ ∧Bxn

∧Ω

ÚÚÙu
C

↝S

∆
ÚÚÙs

A→ B △
(A→ B)z1 ∧ ⋅ ⋅ ⋅ ∧ (A→ B)zn

∧
Γ
ÚÚÙt
A △

Ay1 ∧ ⋅ ⋅ ⋅ ∧Ayn
(A→ B) ∧A

@
B

∧ ⋅ ⋅ ⋅ ∧ (A→ B) ∧A
@

B

∧Ω

ÚÚÙu
C

1.1. MOTIVATION AND RELATED WORK 15

@

s t
↝S

@

@

s t

The other constructor to duplicate is abstraction. The main idea of the atomic lambda-
calculus is to give a computational interpretation to the following medial rule

(A ∨B)→ (C ∧D)
m

(A→ C) ∧ (B →D)

There are many other medial rules e.g. found in [BT01, Tiu06, Str07, GG08, AT17] and
more continue to be found [PH18]. The medial rule mentioned by Brünnler and Tiu in
2001 to enable the atomicity property for classical logic, where contraction rules can be
restricted to their atomic form. This is different from the atomic in the atomic λ-calculus,
which referes to atomic duplication. This rule then allows for the following proof rewriting
step when duplicating an abstraction. Note that the co-contraction rule in the derivation
is morally inverted, i.e. the premise of the derivation is A→ B and not (A ∨A)→ B.

A→ B △
(A→ B) ∧ (A→ B) ↝

A ∨A
A

→ B △
B ∧B

m
(A→ B) ∧ (A→ B)

Here, a contraction inference on a formula A → B is replaced by a medial rule, where we
introduce a new inference rule shown on the antecedent of the implication above the medial
(in the yellow box), which we call co-contraction. This rewrite can be displayed graphically

ń

↝
ń

ń

where the co-contraction is denoted as a darker version of the sharing node. The medial
then corresponds to the two λ-nodes in the graph on the right taken together. However, in
order to avoid introducing disjunction into our typing system, the atomic λ-calculus refines
the medial rule and the co-contraction rule into a distribution rule (d).

A→ (B ∧C)
d

(A→ B) ∧ (A→ C) ∼
A ∨A
A

→ (B ∧C)
m

(A→ B) ∧ (A→ C)

With this rule comes a new construct for the term calculus, duly called the distributor. The
distributor is the computational interpretation of the distribution rule, and is what allows

16 CHAPTER 1. INTRODUCTION

us to duplicate abstractions atomically. The full syntax of the term calculus for the atomic
λ-calculus is then the grammar given before extended with

t[x1, . . . , xn↞ λy⟨t1, . . . , tn⟩[Γ]]

where each xi occurs in t and becomes bound, ⟨t1, . . . , tn⟩ is a tuple of terms, [Γ] is
an environment: a collection of sharings and (nested) distributors that all bind variables
located in the tuple of term, and y occurs within a term found in the environment. Also
note that the number of terms in the tuple (n) corresponds to the number of variables
bound by the distributor.

When an abstraction is to be duplicated, we introduce a distributor as opposed to
duplicating the subterm as a whole. The rewrite rule is shown below, where all introduced
variables are fresh.

u[x1, . . . , xn ← λy.t]↝S u[x1, . . . , xn↞ λy⟨z1, . . . , zn⟩[z1, . . . , zn ← t]]

The proof transformation and graph rewriting step for this reduction are shown below. This
rewrite rule allows reduction to continue on the body of the abstraction which is still shared.
This can be observed in both the proof and graph depictions, where a contraction inference
rule is ready to proceed up the derivation of the term t. The distributor is represented by
the grey box in graphical setting, leaving the sharing node to carry on with duplication.

Γ
λ

A→
A ∧ Γ

ÚÚÙt
B

△
(A→ C) ∧ (A→ C)

↝S

Γ
λ

A→
A ∧ Γ

ÚÚÙt
B △

B ∧B
d

(A→ C) ∧ (A→ C)

ń
↝S

ń ń

As reduction continues, the variables that were initially in the tuple become substituted
and replaced with terms. This can by seen in the proof normalisation as the derivations
that occur underneath the contraction rule and above the distribution rule. In the graphical
setting, these terms in the tuple are exactly the graphs between the distributor (grey box)
and the sharing node. This continues until we are ready to eliminate the distributor, but
it may be the case that we lift sharings/distributors out of the distributor first before
eliminating the distributor and finish duplicating the abstraction. For example,

u[x1, . . . , xn↞ λy⟨t1, . . . , tn⟩[y1, . . . , ym ← y][z1, . . . , zp ← s]]↝S
u[x1, . . . , xn↞ λy⟨t1, . . . , tn⟩[y1, . . . , ym ← y]][z1, . . . , zp ← s]

After lifting out the sharing, the distributor in the example is ready to be eliminated.
Eliminating the distributor means constructing the abstractions to be substituted into u
from the terms in the tuple of the distributor. The rewrite rule is shown below where we
write z⃗ as a short hand notation for z1, . . . , zm.

u[x1, . . . , xn↞ λy⟨t1, . . . , tn⟩[z⃗ ← y]]↝S u{λyi.ti[z⃗i ← yi]/xi}1≤i≤n

where for each i ≤ n, {z⃗i} = {z⃗} ∩ (ti)fv . The notation {t/xi}1≤i≤n is short for multiple
substitutions. The abstracted y variable in the example is shared among the ts, where z⃗

1.1. MOTIVATION AND RELATED WORK 17

contain any number of variables from each ti. The λy is nominally also shared by the
ts. What happens to that each ti is given its own abstraction λyi, and its own sharing
[z⃗i ← yi], forming λyi.ti[z⃗i ← yi] which is substituted for xi.

The idea is a lot easier to see in proof theory and graph rewriting, where we take
derivations (resp. graphs) and reorder them to obtain more abstractions.

λ

A→

A △
A
ÚÚÙt1
B

∧ ⋅ ⋅ ⋅ ∧
A
ÚÚÙtn
B

d
(A→ B) ∧ (A→ B)

↝S

λ

A→
A
ÚÚÙt1
B

∧ ⋅ ⋅ ⋅ ∧

λ

A→
A
ÚÚÙtn
B

ń ń

t1 tn ↝

ń ń

t1 tn

With the reductions we’ve considered above, the atomic λ-calculus duplicates terms
atomically which was only ever seen before in graphical calculi. This calculus also stems
from the exploration of a correspondence between open deduction and the λ-calculus, and
has solid foundations in proof theory. The reductions presented are proven to have the
good basic, reduction property that is preserves strong normalisation with respect to the
λ-calculus; discussed in Section 1.1.6. They also allow for fully lazy sharing, discussed in
Section 1.1.5.

1.1.4 Scopes

The atomic λ-calculus as presented in [GHP13] has some great, natural properties: it has
strong foundations in proof theory (presented in both deep inference and sequent calculus),
it has an intuitive graphical interpretation, and it has nice reduction properties; PSN and
full laziness. However, there is one criticism about the calculus we can make; the reduction
rules are not local. More specifically, we can only perform the lifting rules outside of an
abstraction (or distributor) if the variable bound by the abstraction does not occur in a
subterm being lifted. This means an implementation of this calculus would be required to
check for free variables.

The standard solution to the problem is making variable information locally available
with an explicit end-of-scope marker, as explored by Berkling and Fehr [?], and more
recently by Hendriks and Van Oostrom [HvO03]. This allows us to identiy the skeleton
of an abstraction. We use their adbmal (λ) to illustrate the idea: the constructor λx.N
indicates that the subterm N does not contain occurrences of x (or that any that do
occur are not available to a binder λx outside λx.N). The scope of an abstraction thus

18 CHAPTER 1. INTRODUCTION

becomes explicitly indicated in the term. This opens up a distinction between balanced
and unbalanced scopes: whether scopes must be properly nested, or not; for example, in
λx.λy.N , a subterm λy. λx.M is balanced, but λx. λy.M is not. With balanced scope,
one can indicate the skeleton of an abstraction; with unbalanced scope (which Hendriks
and Van Oostrom dismiss) one can indicate the spine. We do so for the example term
λx.λy.((λz.z)y)x below, where blue denotes the skeleton of the abstraction λ.x and red
the spine.

Balanced: λx.λy.((λy.(λx. λz.z)y)(λy.x)
Unbalanced: λx.λy.(λx.(λy.λz.z)y)(λy.x)

This constructor was used in [vOvdLZ04] only in the balanced case to define an algo-
rithm for optimal reduction, that uses graph rewriting techniques, like Lamping’s algorihtm
[Lam90] which use bracket nodes to dictate enclosures, including those for abstractions.
These closures update the labels on each node, that decide whether, when two sharing
nodes meet, they should copy each other or eliminate each other. This is also a known as
the problem of implementing (efficiently) the boxes of linear logic [Gir87].

A closely related approach is the use of director strings, introduced by Kennaway and
Sleep in [KS88] for combinator reduction and further generalised for any reduction strategy
by Fernández et al. in [FMS05b]. Director strings are an annotation on terms detailing the
location of variable occurrences, providing an alternative to variable names. In the nature
of substitutions, director strings would dictate the path substitutions would travel to reach
the intended variables by informing at each application (@) if they intended variable is in
the function part (←), the argument part (→), or even in both parts (↔). Additionally, each
character in the annotation (the arrows) correspond to one variable, and for each abstraction
(λ), director strings can inform us of variable bindings i.e. if the variable is bound by the
abstraction (−) or not (↓). For intuition, the following graphical representation of the term
λx.x(xy){Y /y} highlights the ideal paths of the substitution with annotations − ↓, ↔→,
and ←→.

λx

@

@

x x y

λ

@

@

x x y

− ↓

↔→

←→

Director strings have already been used in many implementations (see [FMS05a, FMS05b,
SFM03]), and efficient reduction strategies involving director strings have already been stud-
ied in [FM99, SFM03] that involve restricting the strings to a canonical form, where these
strategies are considered efficient in the sense of the number of rewrite steps (not just
β-steps). However, both adbmal and director strings are more focused on the guiding of
substitutions and elminating the need for α-conversion. Furthermore, although director
strings are able to identify the spine of an abstraction, there is no study into extracting the
spine for duplication. This would lead to heavy book-keeping steps to maintain the variable
bindings between the spine and the subterms.

1.1. MOTIVATION AND RELATED WORK 19

Previously we briefly discussed how the switch rule can identify subterms that do not
contain bound variables. The main idea of this thesis comes from extending the proof
system from which the atomic λ-calculus is derived with this new rule, which allows us
to restrict the abstraction inference rule to an axiom, making the scope of an abstraction
more flexible in the proof theory that we did not have before. This new inference changes
the way we view abstractions in the typing system. Now abstractions are composed of two
inference rules, the abstraction rule and the scope rule (switch rule).

Γ
λ

A→
A ∧ Γ

ÚÚÙ
B

∼

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
B

Using the previous example with director strings, we can type the term λx.x (xy)
where x has type A → A (where we write B for short) and y has type A in the following
derivation. The switch rules can then correspond to sorting the variables paths annotated
with − and those with ↓ for each abstraction, as the variables annotated with ↓ are exactly
those ‘brought out’ of scope with the switch rule.

(B → B ∧B) ∧A
s

Bλx → Bx ∧ Bx ∧Ay
@

A
@

A

(B → B ∧B) ∧A
s

B → (B ∧B)− ∧A↓

The switch rule enables us to perform spine duplication. More details about this given
in Section 3.3.3, but here we demonstrate the exact proof normalisation technique, using
both the distribution rule of [GHP13] and the switch, that allows for spine duplication. The
distribution rule is introduced when one wishes to duplicate an abstraction in the atomic
λ-calculus. To demonstrate this technique, below is the proof derivation of the shared term
λx.λy.x y where x has type B and y has type A, and the proof derivation of the term once
the distribution rule is introduced for both abstractions.

λ

B →
B ∧ λ

A→ A
s

A→ B ∧A
@

A
△

(B → A→ A) ∧ (B → A→ A)

↝

λ

B →

B ∧ λ
A→ A

s

A→
B ∧A

@
A △

A ∧A
d

(A→ A) ∧ (A→ A)
d

(B → A→ A) ∧ (B → A→ A)

We can then proceed to duplicate the application rule as described before. Now we push
the derivations underneath the distribution rule i.e. we substitute the terms into context.
In the example we combine the two steps so that the derivations are pushed underneath
both rules.

20 CHAPTER 1. INTRODUCTION

λ

B →

B △
B ∧B ∧

λ

A→ A △
A ∧A

s

A→ B ∧A
@

A
∧ B ∧A

@
A

d
(A→ A) ∧ (A→ A)

d
(B → A→ A) ∧ (B → A→ A)

↝

λ

B →

B △
B ∧B ∧

λ

A→ A △
A ∧A

s
A→ (B ∧A) ∧ (B ∧A)

d
(A→ B ∧A) ∧ (A→ B ∧A)

d

(B → A→ B ∧A
@

A
) ∧ (B → A→ B ∧A

@
A

)

Now between the innermost distributor and the abstraction rule introducing A is only
the switch rule. Since we are duplicating an abstraction, and since we have already pushed
some of the body of the abstraction into context underneath the distributor, it would make
sense that these partial duplicates of abstractions have their own scope. We can therefore
duplicate the switch rule accordingly. This is the core idea behind this thesis and is key
to understanding what is happening. Below is the rule for when a distributor and switch
interact as well as the continued example demonstrating the rule.

(A→ B ∧C) ∧D
s

A→ B ∧C ∧D
d

(A→ B) ∧ (A→ C ∧D)
↝

(A→ B ∧C)
d

(A→ B) ∧ (A→ C) ∧D

(A→ B) ∧ (A→ C) ∧D
s

A→ C ∧D

λ

B →

B △
B ∧B ∧

λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

B ∧ (A→ A)
s

A→ B ∧A
∧ B ∧ (A→ A)

s
A→ B ∧A

d

B → A→ B ∧A
@

A
∧B → A→ B ∧A

@
A

We then, as before, push these derivations underneath the distributor.This is something
that the original atomic λ-calculus cannot do as the formulas are maintained with the
switch rule.

λ

B →
B △

B ∧B ∧
λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

(B ∧ (A→ A)) ∧ (B ∧ (A→ A))
d

B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

∧B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

1.1. MOTIVATION AND RELATED WORK 21

We can now lift the innermost distributor (in the green box) outside the scope of the
abstraction of B, and use a switch rule to reintroduce it.

λ

B → B △
B ∧B

∧
λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

s
B → (B ∧ (A→ A)) ∧ (B ∧ (A→ A))

d

B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

∧B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

And just as before, we can duplicate the switch rule into the partial duplicate abstractions
and push them underneath the distributor, moving the distributor closer to the abstraction.

λ

B → B △
B ∧B

d
(B → B) ∧ (B → B)

∧
λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

(B → B) ∧ (A→ A)
s

B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

∧

(B → B) ∧ (A→ A)
s

B →
B ∧ (A→ A)

s

A→ B ∧A
@

A

Now we can eliminate any of the distributors. In the previous system without the switch, dis-
tributors as nested. In the B → A→ A in the example,the distributor for the A would have
to be resolved before the distributor for the B. This corresponds to skeleton-duplication,
since the formula is B → A→ A and the abstraction for A is on the spine of the abstraction
for B. In the new calculus, we can resolve B first, and leave the abstraction for A as a
distributor i.e. duplicated exactly where the spines of B and A coincide and no further.

1.1.5 Duplication Strategies

Laziness

The purpose of all sharing techniques in the λ-calculus, in which multiple instances of a
common subterm has one shared representation, permitting evaluation of the subterms
to happen simultaneously. This desire of control is also found in explicit subtitutitions
[ACCL91]. Lazy evaluation/call-by-need [AF97] postpones the duplication of a term for as
long as possible, and the term is only duplicated when a value is needed during reduction
e.g. if the term is the abstraction that forms part of a redex. By evaluating the term, we
avoid duplicating executable work. Additionally, we can avoid evaluating the term unless it
is actually required to do so i.e. until we need to duplicate it.

Sharing cannot be achieved through the use of only λ-terms: it requires technical tools.
Possibly the most famous approach for expressing sharing is the use of graphs. Terms
are initially encoded into a graph, and graph rewrite rules correspond to reduction in the

22 CHAPTER 1. INTRODUCTION

λ-calculus.In the picture below, observe the redex (where the @ node and λ node interact)
and notice that the λ is binding multiple variables occurring in s, through the use of the
sharing node (the triangle).

@

ń

s
t

↝β
s

t

↝∗
β

s

t′

↝
s

t′ t′

The picture depicts how β-reduction would look as a graph rewrite rule. In this example,
the term t becomes shared after beta reduction. Then following a lazy evaluation strategy,
if it is necessary to duplicate t, we can first evaluate the graph representing the term t,
resulting in t′, thus avoiding the repetition of work. We can then duplicate the term t′ with
other graph rewrite rules.

Another approach to dealing with sharing involves directly restructuring the program,
called program transformations. When compiling the λ-calculus into the program, terms
are transformed via lambda lifting [Joh85, PJ87]. Lambda lifting is a process that restruc-
tures a program, transforming local functions into global functions (from block-structured
functional programs to recursive equations). Since the scope is global, it can be interpreted
as sharing.

A third approach utilizes closures and memory heaps. This approach names the argu-
ments of applications with fresh variable names, using the let ... in ... construct.
After naming the arguments we then put the arguments into a heap such that one can
look up the argument with its corresponding name. The heap then shares these arguments
throughout evaluation. Laziness occurs when one needs to access the content of a variable
and the corresponding expression is duplicated. Lazy evaluation is then simply memoiza-
tion: when accessing the contents of a variable, the corresponding expression in the heap
is first evaluated, and the heap is first updated with the evaluated expression and then the
evaluated expression is duplicated. Launchbury provides the semantics of this approach to
implementing lazy evaluation in [Lau93].

Full Laziness: Skeleton Duplication

The purpose of sharing is to obtain more control over the duplication of terms, which is
a costly operation and may cause redundant computations. Laziness duplicates the whole
expression, regardless whether the expression is evaluated due to the lazy strategy or not.
However, following a lazy evaluation strategy does not mean work is not duplicated. If we
look at the term taken from [Sin08], (λf.(f I) (f I)) (λw.(I I)w) where I is the identity
function, after the outermost redex is reduced, following a lazy evaluation strategy the
subterm λw.(I I)w should become shared. Regardless of the sharing technique we use,
this expression is already considered a value (when considering abstractions as values which
is standard), as a result the redex I I will inescapably become duplicated.

1.1. MOTIVATION AND RELATED WORK 23

To overcome this, and thus become more efficient in the sense that we avoid reducing
terms more than once, even if they appear inside the body of an abstraction, as long as they
do not mention the variable bound by the abstraction, a stronger and more powerful notion
of sharing is required. The answer of course, is the appropriately named fully lazy sharing
or again just full laziness. The concept of full laziness was introduced by Wadsworth in
[Wad71] as a graph evaluation technique.

A maximal free subexpression (MFS) of an function λy.t is a subexpressions of t, s, such
that (i) for all variables z, if z ∈ (s)bv then z ∈ (λy.t)bv and if z ∈ (s)fv then z ∈ (λy.t)fv and
(ii) there does not exist a subexpression of t that meets the conditions of (i) and contains
s as a subexpression. With this, we can say full laziness is a notion of sharing such that
duplicating an abstraction expression avoids copying the maximal free subexpressions. Only
the skeleton of the body of the abstraction is duplicated. The maximal free subexpressions
of the term λw.(I I)w consist of the one subexpression I I.

The three methods discussed for implementing sharing (graphs, closures and program
transformation) and combinations of methods have been used to implement full laziness.
Balabonski [Bal12] provides a nice summary of implementations that use full laziness that we
summarise here. Shivers and Wand [SW04] enrich Wadsworth graph evaluation technique
by representing terms as a DAG as opposed to a tree, allowing for a more simple and
efficient implementation. Blanc et al. [BLM07] derive a graph implementation of fully lazy
sharing by labeling the nodes of the graph. This is also done by Sinot in [Sin06] for a fully
lazy graph-based abstract machine.

Full laziness has also been implemented by combining graphs with other methods.
Peyton-Jones in [PJ87] discusses the transformation fully lazy λ-lifting : which extracts the
maximal free subexpressions of an expression first before translating it into a graph.

Sestoft [Ses97] use the extraction of maximal free subexpressions from closures repre-
sented by let statements to outline a revision of Launchbury’s operational semantics of
the lazy evaluation strategy, so that it uses fully lazy sharing instead of the original lazy
sharing. Sinot similarly revises Launchbury’s operational semantics in [Sin08] for completely
lazy evaluation, another notion of laziness. This is an evaluation strategy with a powerful
notion of sharing. Complete laziness requires all immediate redexes in an expression to
be evaluated at most once, as well as the redexes that can be generated by performing
β-reductions in the body of abstractions. For example (λf.(f I) (f I)) (λw.(I I)w), a
completely lazy evaluation would require the reduction sequence (I I)w ↝β I w ↝β w.
This is clearly stronger than the requirements of lazy evaluation as implemented in [PJ87],
which would consider λw.(I I)w a value and does not require the redexes underneath the
abstraction to be evaluated. Sinot claims that complete laziness has more ‘sharing power’
than full laziness. This statement is also claimed explicitly in [HG91]. Here he states
that complete laziness captures the spirit of full laziness, and that some implementations
[SW04, Sin08] that are known to implement full laziness that are likely to follow the se-
mantics of complete laziness, because they use only graph rewriting techniques where all
immediate redexes are reduced. This remains unchecked however.

24 CHAPTER 1. INTRODUCTION

Full Laziness: Spine Duplication

Expanding on the idea of full laziness is spine duplication. The concept of this notion of
sharing is easy to see when considering expressions as graphs. When an abstraction needs
to be duplicated (when a copy is required), we duplicate the shortest path possible to the
variables bound to the abstraction from the root node (the spine). The diagram underneath
illustrates this, where the thick red line indicates the nodes that will get duplicated with
each duplication strategy mentioned so far.

ń

@

ń ń

@

@

ń

@

ń ń

@

@

ń

@

ń ń

@

@

Term Skeleton Spine

These degrees of sharing have all been seen before e.g. laziness used in to define its
big step operational semtantics by Launchbury in [Lau93], full laziness used in the abstract
machine defined in [Sin06], and spine duplication is implemented with labels in [BLM07].
The idea of using labels when sharing terms is fairly common, and can have some great
advantages. One notable use of labels for sharings is Lamping’s algorithm [Lam90] for
optimal reduction in the sense of Lévy [Lév80].

1.1.6 Preservation of Strong Normalisation

In a desire to capture the behaviour of computation in its use of computational resources,
explicit-substitution calculi [ACCL91] were introduced to obtain more control over the sub-
stitution process. This is done by representing substitutions explicitly in the term calculus
i.e. we implement substitution based of its mathematical recursive definition. Abadi et
al. introduced in [ACCL91] the λσ-calculus as a bridge between the classical λ-calculus
and more concrete implementations of the calculus, which used explicit substitutions that
could be delayed and stored. This can be seen as an approach to obtaining control over
duplication of terms in term-calculi, as compared to the graph reductions.

Given a calculus with explicit substitutions, we say that it preserves β-strong normalisa-
tion (PSN) if for a term M ∈ λ is strongly normalising then its compilation into the calculus
with explicit substitutions is strongly normalising i.e. no infinite reductions are created by
the use of explicit substitutions. PSN may seem like a natural property, but it was shown by
Mellies in [Mel95] that the λσ-calculus may not terminate. Since then, PSN has become
increasingly studied. To our knowledge, there exist three approaches to proving strong
normalisation with respect to the λ-calculus.

1.2. CURRY-HOWARD CORRESPONDENCE 25

One method works by defining a typing system that uses intersection types [CDC78,
CDC80]. By providing an intersection type discipline for the terms of the calculus, we verify
the the typed terms are strongly normalising. Then, if there is a correspondence between
the calculus and the typing system with the λ-calculus, the property of preserving strong
normalisation (PSN) is immediate. This approach was taken by Kesner and Ó Conchúir in
[KC08]. A deep inference system for intersection types has been explored by Paulus and
Heijltjes in [PH18].

Another way of proving PSN is by proving the calculus holds the IE property (relating
termination of Implicit substitutions to termination of Explicit substitutions) which states
that for any given terms u and t of the calculus and variable x, the two facts that strong
normalisation of the term t{u/x} (where {u/x} denotes implicit substitution) and strong
normalisation of the term u, imply strong normalisation of the term t[u/x], where [u/x]
denotes an explicit substitution. Intuitively, this property is saying explicit substitutions
implement implicit substitutions and nothing more than that. This technique of proving
PSN was first introduced by Kesner in [Kes08] and further explored in [Kes09]. This method
was used by Kesner and Accattoli in [AK12b].

The third method, and the method we choose, translates the calculus into a “weakened”
calculus which is not able to erase terms. David and Guillaume introduced a calculus that
uses explicit substitutions and labels which corresponded to explicit weakenings [DG01] in
order to address the problem raised by Mellies’ counter-example, and showed this calculus
has PSN and controlled composition of explicit substitutions i.e. converting explicit substi-
tutions into implicit substitutions. Then Cosmo, Kesner and Polonovski show in [DCKP00]
that typed terms in this calculus are strongly normalising by using variable names instead
of de Bruijn indices. They achieve this by presenting a variant of the calculus in [DG01]
that makes use of Linear Logic’s proof-nets (a graphical representation), suggesting the
weakening and contraction (erasure and duplication) can be added to the calculus with-
out loss of termination. The correspondence between the proof-nets and the weakening
calculus is made more clear in [KL05]. The weakening calculus relates to Barendregts λ-I
calculus [Bar84] (a relevant λ-calculus, where variables must occur). It originates from
Klop’s version with memory in [Klo80].

The approach of proving PSN by reducing the problem to proving PSN for the weak-
ening calculus was done in [AK12a], where they reduced the problem to a second calculus
which is used as an auxiliary tool to show confluence for the original calculus preserving
infinite reductions. PSN was then reduced to an already proven result found in [AK12b].
The atomic λ-calculus was reduced to a weakening calculus presented in the same paper
[GHP13].

1.2 Curry-Howard Correspondence

The Curry-Howard correspondence relates computer programming and mathematical logic,
where formulas are types, proofs are programs, and proof normalisation is computation.
This correspondence allows us to directly interpret results in proof theory as results about
computation.

Curry observed that the types of combinators could be observed as axiom schemes
for intuitionistic implicational logic (1934) and later in Hilbert systems (1958). Howard

26 CHAPTER 1. INTRODUCTION

observed (1969) another correspondence between proof systems and computation: natural
deduction and the simply typed λ-calculus. One can use the following rules to derive a
proof in minimal logic that corresponds to a term in the simply typed λ-calculus.

VAR
A ⊢ x ∶ A

Γ,A ⊢ t ∶ B
ABS

Γ ⊢ λx.t ∶ A→ B

Γ ⊢ t ∶ A→ B ∆ ⊢ u ∶ A
APP

Γ,∆ ⊢ t u ∶ B
These proofs are in the style of natural deduction, and can translated into the style of

open deduction, as discussed in [GHP13]. The atomic λ-calculus was derived from deep
inference (in particular the medial rule) as a Curry-Howard interpretation. Another common
rule used in deep inference is the switch rule, so this leaves the question: what is the Curry-
Howard interpretation of the switch rule, in computation, and how does it interact with the
distributor, the computational interpretation of the medial rule.

A ∨A
A

→ B △
B ∧B

m
(A→ B) ∧ (A→ B)

(A→ B) ∧C
s

A→ (B ∧C)

1.3 A calculus that achieves spine duplication

The atomic λ-calculus [GHP13] makes a good theoretical foundations for understanding
the full laziness. This is due to its strong connections with proof theory, a close intuition
with graph rewriting, and powerful reductions that allow for full laziness with good, natural
properties such as PSN.

We present a calculus that can naturally perform a more powerful notion of full laziness.
We maintain the strong connection with proof theory, providing a Curry-Howard correspon-
dence between logic and this calculus. More concretely, we describe the correspondence
between the switch rule commonly seen in deep inference and scopes in programming. We
provide a natural graphical intuition, as well as proving the reductions of this calculus sat-
isfy PSN as well as allowing for spine duplication. Moreover, we provide a calculus which
implements duplication through the use of environments and as far has only been witnessed
to use graphs and labels [BLM07, Bal12].

Chapter 2

Switch and End-Of-Scope

言为心声
yán wéi x̄ınshēng

Words are the voice of the mind

In this chapter we explore the relationship between a switch rule in deep inference
and explicit end-of-scope constructors. An end-of-scope constructor helps determine the
binding of variables to abstractions in the λ-calculus. As an example, take de Bruijn’s
indices [dB72], where variables are represented by natural numbers that denote the number
of binders in scope between the variable and its correpsonding binder. A term is displayed
below in the λ-calculus and the equivalent using de Bruijn’s notation.

λx.λy.λz.x z (y z) λ.λ.λ.2 0 (1 0)

The idea of scope can be made more explicit by representing natural numbers N by
the following recursive definition

N ∶∶= 0 ∣ SN

where a natural number n are represented by n applications of the successor function on
the number 0. This idea of typing these terms was found in [FPT99, vOvdLZ04], and so we
follow their exposition. These successor functions S can then be viewed as an explicit end-
of-scope constructor in the term calculus, that dictate the scope between the occurrence
of a variable (0) and its corresponding binder (λ). We can express the previous example as

λ.λ.λ.(SS0)0 ((S0)0)

Making the scope more explicit allows for scope manipulation; liberating the S function from
applying only to numbers to becoming a term constructor in the calculus. For example,
consider the situation where we have the term λ.λ.(S0) (S0) where we have two calls
of the successor function. In this term, the application is in the scope of the second
(innermost) abstraction, and the variables are not. It is possible to rewrite this term in a
way that maintains bindings but alters the scope so that the application is not in scope
of the innermost abstraction i.e. ↝ λ.λ.S(0 0). The idea that switch is a proof theoretic
equivalent to the term constructor S is fundamental to our work, and we explore what

27

28 CHAPTER 2. SWITCH AND END-OF-SCOPE

scope manipulation means for the atomic λ-calculus, discovering new reduction techniques
that were otherwise not possible.

Let us consider the open deduction used for the λ-calculus. We represent the successor
function in a term with the following switch rule

(A→ B) ∧C
s

A→ (B ∧C)

The intuition behind the rule is as follows: A → B is the type of a function λ.N , and
C is the type of a variable that is not captured by the λ. The switch rule ‘brings’ the
variable into context i.e. we know it will occur in the body of the abstraction (N). For
a λ-term M in the de Bruijn notation using 0 and S, we can express its typing derivation
in open deduction in the same way as before, where we restrict the abstraction rule to an
axiom and use the switch rule for each occurrence of the successor function in the term.
For example, λ.λ.λ.(S2S30)0 ((S10)0) has the typing derivation below, where we identify
each successor function and switch rule such that Si = si, and where B = A → A and
C = A→ A→ A.

λ

C →

C ∧

λ

B → B ∧
λ

A→ A △
A ∧A

s1
A→ B ∧A ∧A

s2

B →

C ∧ (A→ B ∧A ∧A)
s3

A→
C ∧A

@
B

∧B ∧A
@

A
@

A

In the sense of proof theory, scope manipulation corresponds to the rewrite rules that
involve the switch rule. Considering the term rewrite rule discussed before, (SM)SN ↝
S(MN), where M and N are subterms, the equivalent proof rewrite rule is,

C → Γ ∧
ÚÚÙM

A→ B
s

C → (Γ ∧A→ B)

∧
ÚÚÙN
A

s

C → Γ ∧ (A→ B) ∧A
@

B

↝ (C → Γ) ∧
ÚÚÙM

A→ B
∧

ÚÚÙN
A

@
B

s
C → Γ ∧B

The main result of this work is studying the effects of adding the switch rule to the
typing system, introducing the spinal atomic λ-calculus (ΛSa). By making the scope explicit
in the typing system, we unlock a new reduction scheme that allows for spine duplication.
So far, we have looked at the proof theory from the perspective of Be Bruijn’s calculus
where we make the scopes explicit. Now we explore the λ-calculus from the perspective of
the proof theory.

29

We first notice that we can generalise the switch rule so that it brings multiple variables
into the scope of an abstraction. This allows for the following rewrite rule.

λ
A→ A ∧B

s
A→ (A ∧B)

∧C

s
A→ (A ∧B ∧C)

↝
λ

A→ A ∧B ∧C
s

A→ (A ∧B ∧C)

As a result of this rule, we can rewrite proofs such that the maximum number of switch
rules in a derivation of a term is the number of abstraction rules. In the rest of this
document we discuss the calculus with explicit sharing interpreted from the proof theory
using the switch rule, and the proof normalisation technique that corresponds to duplication
of shared terms and how the switch rule affect duplication.

30

Chapter 3

Spinal atomic λ-calculus

水滴石穿
shǔıd̄ı sh́ıchuān

Dripping water wears through rock

- Persistence pays off

This chapter introduces a refinement of the atomic λ-calculus. Our aim is to obtain
a calculus that can naturally perform spine duplication by discovering the Curry-Howard
correspondence to the switch rule in open deduction. We extend the typing system used
with the switch rule, and define the terms based of the derivations.

This chapter starts by presenting the pre-terms of ΛSa , then defining the terms. We
show the translations to and from the λ-calculus, describing the relationship. We describe
the reduction rules, including β-reduction, where we describe how duplication is handled by
this calculus and how it differs from that of the original. Lastly, we discuss the typing system
used for our calculus, which is an extension from the old, and show subject reduction: the
type of a term is preserved during reduction. We also explain why the addition of this
switch rule to the typing system is necessary for spine duplication, and why the original
typing system was not able to allow this strategy of duplication.

Before we formally introduce the spinal atomic λ-calculus, we provide some intuition.
First we show how we will represent the scope of an abstraction in our calculus. We represent
abstractions with the syntax x⟨x ⟩.t, where t is a term and x is the variable located free
in t that is captured. Figure 3.1 shows the typing derivation for this abstraction. The
switch rule is used to ‘bring into context’ the free variables of t that are not captured by
the abstraction (the ∆).

⊺
λ

A→ A
∧∆

s

Ax →
Ax ∧∆

ÚÚÙt
C

Figure 3.1: The typing derivation for x⟨x ⟩.t

31

32 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

This work introduces the notion of a phantom-abstraction. These can be thought of
as partially duplicated abstractions; the abstraction has been duplicated where the bound
variable has not yet been duplicated. The syntax for these is d⟨x1, . . . , xn ⟩.t, where we can
abbreviate the variables in the tuple as x⃗. Figure 3.2 shows the typing derivation for this
phantom-abstraction. The d is the phantom-variable, which will eventually be the binding
variable once duplication of the abstraction is complete. The variables in the tuple x⃗ are
the variables in t that will be substituted for during duplication.

(A→ Γ) ∧∆
s

Ad →
Γx⃗ ∧∆

ÚÚÙt
C

Figure 3.2: The typing derivation for d⟨ x⃗ ⟩.t

When considering the spine as discussed in Chapter 1, the variables in the tuple are
exactly those connected to the spine that represent a subterm with a free occurrence of the
binding variable. We repeat here the same example on the first page of the introduction.
For the spine of λx here to be duplicated, the abstraction λy would be duplicated and
not the subterm y y. Therefore, the intuition behind the phantom-abstraction is that we
would have a partial duplicate of the λy, i.e. y⟨w ⟩.w x where w is a fresh variable that
represents the subterm y y. The notion of phantom-abstraction is then important here to
achieve spine duplication.

λx

@

λz

z

λy

@

@

y y

x

This calculus will introduce phantom-abstractions naturally when duplicating an ab-
straction. Similarly as described in Section 1.1.3, abstractions are duplicated with the
distributor construct. This is shown below in the proof theory, which is the almost the
same as in [GHP13] (because of the switch rule).

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
B

△
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
B △

B ∧B
d

(A→ B) ∧ (A→ B)

33

We know use some proof rewriting rules that were not used before. As the shar-
ing proceeds through the derivation creating multiple (in the example, two) derivations,
we can flush the derivations underneath the distributor. The formulars A → B under-
neath the distributor represent the phantom-abstractions, and this flushing (as displayed
below) represent substituting terms into the variables that are named inside the tuple of
the phantom-abstraction. As an example, before we could have d⟨w ⟩.t where d has type
A and w has type B, and afterwards we could have d⟨ x⃗ ⟩.t{s/w} where x⃗ = (s)fv, and
that each variable in x⃗ has a type listed in ∆1.

λ
A→ A ∧ Γ

s

A→

A ∧ Γ
ÚÚÙ

∆1 ∧∆2

∆1
ÚÚÙ
B

∧
∆2
ÚÚÙ
B

d
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
∆1 ∧∆2

d

(A→
∆1
ÚÚÙ
B

) ∧ (A→
∆2
ÚÚÙ
B

)

The switch rule here becomes vital. We can ‘declutter’ the distributor by removing
the types of variables that we know are free in the distributor and are not captured by the
abstraction, just like C in the derivation below. We can instead introduce a switch rule for
the phantom-abstraction underneath the distributor, to bring C into context of the term
independently of the distributor. This would mean that, if we know that for variable x
in d⟨ x⃗ ⋅ x ⟩.t corresponds to a term that does not have the binding variable occurring free
inside of it, we can remove it from the list of tuples.

λ
A→ A ∧ Γ ∧C

s

A→
A ∧ Γ

ÚÚÙ
∆1 ∧∆2

∧C

d
(A→∆1) ∧ (A→∆2 ∧C)

↝

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
∆1 ∧∆2

d
(A→∆1) ∧ (A→∆2)

∧C

(A→∆1) ∧
(A→∆2) ∧C

s
A→∆2 ∧C

Eliminating the distributor is now simpler than before because all the derivations have
either been flushed or decluttered. An example of this is shown below. In the term calculus,
eliminating a distributor results in converting the phantom-abstractions into abstractions.

λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

↝ λ
A→ A ∧ λ

A→ A

34 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

3.1 Calculus

3.1.1 Pre-Terms and Terms

We formally introduce the syntax of the spinal atomic λ-calculus (ΛSa) pre-terms and terms.

Definition 1 (Pre-Terms). The pre-terms t ∈ ΛSa are defined by the following syntax

t ∶∶= x ∣ t t ∣ x⟨ y1, . . . , yn ⟩.t ∣ t[Γ]

[Γ] ∶∶= [x1, . . . , xn ← t] ∣ [e1⟨x1
1 . . . x

1
k1

⟩ . . . en⟨xn1 . . . xnkn ⟩ ∣d⟨ y⃗ ⟩ [Γ]]

[Γ] ∶∶= [Γ] ∣ [Γ][Γ]

Where we use the following variable and naming conventions

● w,x, y, z are variables
● c, d, e, f, g are phantom-variables
● r, s, t, u are (pre-)terms
● s t is an application
● c⟨x1, . . . , xn ⟩.t is a phantom-abstraction
● x⟨x ⟩.t is an abstraction
● c⟨x1, . . . , xn ⟩ is a cover
● [Γ] is a closure

● [Γ] is an environment
● [x1, . . . , xn ← t] is a sharing
● [← s] is a weakening

● [e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y1, . . . , ym ⟩ [Γ]] is a distributor

Additionally, we sometimes shorten lists of variables as x⃗ = x1, . . . , xn. Note that an
abstraction and a phantom-abstraction are two instances of the same construct, the same
can be said for sharing and weakening.

Terms will be the preterms in ΛSa where variables and phantom-variables are correctly
and sensibly bound. In order to define this, it is essential to define the free and bound
variables, phantom-variables and covers of pre-terms. We then use these definitions to
further define the constraints on pre-terms that result in terms for the spinal atomic λ-
calculus.

Definition 2 (Free and Bound Variables). The free variables (−)fv and bound variables
(−)bv of a pre-term t is defined as follows

(x)fv = {x} (x)bv = {}
(s t)fv = (s)fv ∪ (t)fv (s t)bv = (s)bv ∪ (t)bv

(x⟨x ⟩.t)fv = (t)fv − {x} (x⟨x ⟩.t)bv = (t)bv ∪ {x}
(c⟨ x⃗ ⟩.t)fv = (t)fv (c⟨ x⃗ ⟩.t)bv = (t)bv

(u[x⃗← t])fv = (u)fv ∪ (t)fv − {x⃗} (u[x⃗← t])bv = (u)bv ∪ (t)bv ∪ {x⃗}

3.1. CALCULUS 35

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])fv = (u[Γ])fv − {c}
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])bv = (u[Γ])bv ∪ {c}

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])fv = (u[Γ])fv
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])bv = (u[Γ])bv

As an example, take the pre-term

t = e2⟨w2 ⟩.w2 ((e1⟨w1 ⟩.w1) z)[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ y ⟩ [w1,w2 ← x⟨x ⟩.x y]]

(t)fv = {y, z} (t)bv = {w1,w2, x}

Note: The distributor u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]] does not bind

variables xij for 1 ≤ i ≤ n and 1 ≤ j ≤ ki. The same is true for the variables y⃗ in the
phantom-abstraction x⟨ y⃗ ⟩.t.

Definition 3 (Free and Bound Phanton-Variables). The free phantom-variables (−)fp and
bound phantom-variables (−)bp of the pre-term t is defined as follows

(x)fp = {} (x)bp = {}
(s t)fp = (s)fp ∪ (t)fp (s t)bp = (s)bp ∪ (t)bp

(x⟨x ⟩.t)fp = (t)fp (x⟨x ⟩.t)bp = (t)bp
(c⟨ x⃗ ⟩.t)fp = (t)fp ∪ {c} (c⟨ x⃗ ⟩.t)bp = (t)bp

(u[x⃗← t])fp = (u)fp ∪ (t)fp (u[x⃗← t])bp = (u)bp ∪ (t)bp

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])fp = (u[Γ])fp − {e1, . . . , en}
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])bp = (u[Γ])bp ∪ {e1, . . . , en}

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])fp = (u[Γ])fp ∪ {c} − {e1, . . . , en}
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])bp = (u[Γ])bp ∪ {e1, . . . , en}

As an example, for the pre-term above

(t)fp = {c} (t)bp = {e1, e2}

36 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Definition 4 (Free and Bound Covers). The free covers (−)fc and bound covers (−)bc of
a pre-term t is defined as follows

(x)fc = {} (x)bc = {}
(s t)fc = (s)fc ∪ (t)fc (s t)bc = (s)bc ∪ (t)bc

(x⟨x ⟩.t)fc = (t)fc (x⟨x ⟩.t)bc = (t)bc
(c⟨ x⃗ ⟩.t)fc = (t)fc ∪ {c⟨ x⃗ ⟩} (c⟨ x⃗ ⟩.t)bc = (t)bc

(u[x⃗← t])fc = (u)fc ∪ (t)fc (u[x⃗← t])bc = (u)bc ∪ (t)bc

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])fc = (u[Γ])fc − {ei⟨xi1 . . . xiki ⟩}i≤n
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ c ⟩ [Γ]])bc = (u[Γ])bc ∪ {ei⟨xi1 . . . xiki ⟩}i≤n

(u[e1⟨x1
1, . . . , x

1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])fc = (u[Γ])fc ∪ {c⟨ y⃗ ⟩} − {ei⟨xi1 . . . xiki ⟩}i≤n
(u[e1⟨x1

1, . . . , x
1
k1

⟩ . . . en⟨xn1 , . . . , xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]])bc = (u[Γ])bc ∪ {ei⟨xi1 . . . xiki ⟩}i≤n

As an example, for the pre-term before

(t)fc = {c⟨ y ⟩} (t)bc = {e1⟨w1 ⟩, e2⟨w2 ⟩}

We now use these definitions to precisely define the ΛSa -terms.

Definition 5 (Terms). A term t ∈ ΛSa is a pre-term with the following constraints

1. Each variable may occur at most once.

2. In an abstraction x⟨x ⟩.t, x ∈ (t)fv.

3. In a phantom-abstraction c⟨x1, . . . , xn ⟩.t, {x1, . . . , xn} ⊂ (t)fv.

4. In a sharing u[x1, . . . , xn ← t], {x1, . . . , xn} ⊂ (u)fv.

5. In a distributor u[e1⟨w1
1, . . . ,w

1
k1

⟩ . . . en⟨wn1 , . . . ,wnkn ⟩ ∣ c⟨ c ⟩ [Γ]]

(a) For all 1 ≤ i ≤ n and 1 ≤m ≤ kn, wim(u)fv and becomes bound by [Γ] .

(b) {e1⟨w1
1, . . . ,w

1
k1

⟩, . . . , en⟨wn1 , . . . ,wnkn ⟩} ⊂ (u)fc, and {e1, . . . , en} ⊂ (u)fp,
and each ei becomes bound.

(c) The variable c occurs somewhere in the environments [Γ].

6. In a distributor u[e1⟨w1
1, . . . ,w

1
k1

⟩ . . . en⟨wn1 , . . . ,wnkn ⟩ ∣ c⟨ y1, . . . , ym ⟩ [Γ]]

(a) Both 5(a) and 5(b) hold.

(b) For all 1 ≤ i ≤m, yi occurs in the environments [Γ].

3.1. CALCULUS 37

x

ń

t

x

@

t u

u

t

x1 xn

x x⟨x ⟩.t t u u[x1, . . . , xn ← t]

Figure 3.3: Graphical interpretation of some ΛSa terms

ň

t
x⃗ y⃗

c

ň

u
ň

Γ

x1
1, . . . , x

1
k1

xn
1 , . . . , xn

kn

e1

en

y

c⟨ x⃗ ⟩.t u[e1⟨x1
1 . . . x

1
k1

⟩ . . . en⟨xn1 . . . xnkn ⟩ ∣ y⟨ y ⟩ [Γ]]

Figure 3.4: Graphical interpretation of phantom-abstraction and the distributor

Figure 3.3 shows the graphical interpretation of some ΛSa -terms, that is variable, ab-
straction, application, and sharing. The nodes used in the graphs are the abstraction node
(λ), application node (@) and a sharing node (△). We annotate the scope of abstractions
with a yellow box. Highlighting the scopes allow us to see the locations of sharings in graph-
ical format i.e. we can distinguish between x⟨x ⟩.t[y1, y2 ← s] and (x⟨x ⟩.t)[y1, y2 ← s].
These interpretations are an adaptation of those used in the original paper [GHP13].

The spinal atomic λ-calculus introduces 2 new constructors, the phantom-abstraction
and the refined distributor. Figure 3.4 shows the graphical interpretation of these construc-
tors. The phantom-abstraction node is similar to the abstraction node, but the input wire
comes from a term out of scope. We annotate the scopes of phantom-abstractions with
a green box. The free variables of the body of the phantom-abstraction are one of two
categories: either they are captured by a sharing located inside a distributor that binds the
phantom-variable, in which case the variable is named in the brackets, or they are not and
they are not named. The graph for c⟨ x⃗ ⟩.t shows the variables for both x⃗ and y⃗ where
{y⃗} = (t)fv − {x⃗}. The variables x⃗ are, intuitively, those that will be captured by the
environment in the distributor that captures the phantom-variable c.

The distributor makes use of a cosharing node, which acts similar as a sharing but for
wires in the opposite direction. The distributor in this calculus differs from the original in

38 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
B

△
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
B △

B ∧B
d

(A→ B) ∧ (A→ B)
(a) Introducing Distributor

λ

A→ A △
A ∧A

d
(A→ A) ∧ (A→ A)

↝ λ
A→ A ∧ λ

A→ A

(b) Eliminating Distributor
λ

A→ A ∧ Γ
s

A→

A ∧ Γ
ÚÚÙ

∆1 ∧∆2

∆1
ÚÚÙ
B

∧
∆2
ÚÚÙ
B

d
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ

s

A→
A ∧ Γ

ÚÚÙ
∆1 ∧∆2

d

(A→
∆1
ÚÚÙ
B

) ∧ (A→
∆2
ÚÚÙ
B

)

(c) Flushing terms

Figure 3.5: The distributor in open deduction

[GHP13] since in the original calculus, the distributor stores terms in a tuple and substitutes
the terms into the body when the distributor is ready to be eliminated whereas our distrib-
utor substitutes the terms into the body immediately. In the original calculus we may have
the term u{z1}{z2}[z1, z2 ↞ λc⟨t1, t2⟩[Γ]] where u is a term with variables z1, z2, but in
our calculus we would instead have u{f1⟨ x⃗1 ⟩.t1}{f2⟨ x⃗2 ⟩.t2}[f1⟨ x⃗1 ⟩, f2⟨ x⃗2 ⟩ ∣ c⟨ c ⟩ [Γ]]
where the distributor captures the phantom-variables f1 and f2, and x1 and x2 are the free
variables of t1 and t2 that are captured by [Γ]. The difference can also be illustrated in the
proof theory. We introduce the distributor when an abstraction is duplicated as in Figure
3.5a. The introduced contraction inference rule would traverse up the derivation until it
reached the abstraction inference rule that introduces the abstraction we are duplicating.
At this point, we generate multiple independant derivations that correspond to the terms
in the tuple. We use these derviations when eliminating the distributor and complete dupli-
cation as in Figure 3.5b. In our calculus, these derivations are pushed underneath the the
distribution inference rule, and the idea is that we move the distributor up until it meets
the abstraction as in Figure 3.5c. This becomes an important change when including the
switch inference rule into the system, as it allows for more elegant rewrite steps. This will
be explained in more detail in Section 3.3.3.

Below we show some examples of pre-terms and terms

3.1. CALCULUS 39

● Pre-Terms (not Terms)

○ c⟨x ⟩.y.

Violating condition 3 in Definition 5.

○ xy[x, z ← w].
Violating condition 4

○ e2⟨w2 ⟩.w2 ((e1⟨w1 ⟩.w1) z)[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ z ⟩ [w1,w2 ← x⟨x ⟩.x y]]
Violating condition 6(b)

● Terms

○ x⟨x ⟩.x
○ x⟨x ⟩.(y⟨ y ⟩.x1 (x2 y)[x1, x2 ← x])
○ e2⟨w2 ⟩.w2 ((e1⟨w1 ⟩.w1) z)[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ c ⟩ [w1,w2 ← x⟨x ⟩.x c]]

Compilation and Readback

We now define the translations between ΛSa and the original λ-calculus. First we define the
interpretation Λ → ΛSa (compilation). Intuitively, it replaces each abstraction λx.− with
the term x⟨x ⟩. − [x1, . . . , xn ← x] where x1, . . . , xn replace the occurrences of x. Actual
substitutions are denoted as {t/x}. Let ∣M ∣x denote the number of occurrences of x in M ,
and if ∣M ∣x = n let M n

x denote M with the occurrences of x by fresh, distinct variables
x1, . . . , xn. First, the translation of a λ-term M is LM M, defined below

Definition 6 (Compilation). The interpretation of λ terms, LΛ M′ ∶ Λ→ ΛSa , is defined as

LM
n1

x1
. . .

nk
xk

M′[x1
1, . . . , x

n1
1 ← x1] . . . [x1

k, . . . , x
nk

k ← xk]

where x1, . . . , xk are the free variables of M such that ∣M ∣xi = ni > 1 and L− M′ is
defined on closed λ-terms as:

Lx M′ = x
LMN M′ = LM M′ LN M′

Lλx.M M′ =
⎧⎪⎪⎨⎪⎪⎩

x⟨x ⟩.LM M′ if ∣M ∣x = 1

x⟨x ⟩.LM n
x M′[x1, . . . , xn ← x] if ∣M ∣x = n ≠ 1

As an example we compile the SKI combinators introduced by Curry in [Cur30]

Lλx.x M = x⟨x ⟩.x
Lλx.λy.x M = x⟨x ⟩.y⟨ y ⟩.(x[← y])

Lλxλyλzxz (y z) M = x⟨x ⟩.y⟨ y ⟩.z⟨ z ⟩.x z1 (y z2)[z1, z2 ← z]

To define the readback interpretation J− K, we first discuss why it is not so simple.
The complications rise from the distributor and phantom-abstractions. The distributor is
duplicating an abstraction and captures phantom-variables of the phantom-abstractions (its

40 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

partial duplicates), and the environment in the distributor captures the variables listed in the
cover of those phantom-abstractions. When translating this into the λ-calculus, we need to
remember the (phantom-)variable bindings. When converting each phantom-abstraction
into the original, it is not enough to convert them to the original abstraction variable
name i.e. Ju[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ c ⟩ [w1,w2 ← c]] K = Ju K{w1/c}{w2/c}{λc/λe1}{λc/λe2}
where {λc/λe} renames the binding variable of an abstraction e.g. (λx.x){λy/λx} = λy.x.
Example 7 would then be converted as λc.λc.c c, thus the bindings of the variables are not
maintained during translation.

Therefore, in the translation we need to keep track of the bindings so that in the case of
interpreting a phantom-abstraction, we convert it into an abstraction and use the phantom-
variable as the binding variable. To achieve this, we need to keep track of the bindings of
phantom-variables. This will be the purpose of the map γ. As we traverse through the term
we keep track of which abstraction a phantom-abstraction is a duplicate of. Then when it
is time to evaluate the phantom-abstraction, we analyse the variables in the tuple. These
variables will have terms substituted into them (as would happen during reduction). These
terms being substituted in potentially have the variable we need to bind, and in such case
we rename this variable to the name of the phantom-variable. This is done with the help
of σ, which can be interpretated as an organised collection of substitutions. If we instead
used regular subtitutions, we would need to wait for them to reach the phantom-variables
before we continue as they might have the variable we need to bind.

Example 7. Let e1⟨w1 ⟩ and e2⟨w2 ⟩ be captured by the same distributor.

(x⟨x ⟩.e1⟨w1 ⟩.xw1) y⟨ y ⟩.e2⟨w2 ⟩.y w2

↝β e1⟨w1 ⟩.(y⟨ y ⟩.e2⟨w2 ⟩.y w2)w1

↝β e1⟨w1 ⟩.e2⟨w2 ⟩.w1w2

We here discuss the notations used for the maps needed for the readback interpretation.
We provide here the definition for the map from variables to Λ-terms σ ∶ V → Λ. The
definitions for the map from variables to variables γ is defined in a similar way.

Definition 8. We define a function σ ∶ V → Λ, which we denote as an infinite set of pairs
of variables and Λ-terms. Given a variable x, σ(x) =M such that (x↦M) ∈ σ and there
does not exist N where M ≠ N and (x↦ N) ∈ σ.

We use the following notation to make these functions more concise.

Notation 9. We write σ = {x1 ↦ M1, . . . , xn ↦ Mn} to mean the map where for xi ∈
{x1, . . . , xn}, σ(xi) =Mi and for y /∈ {x1, . . . , xn}, σ(y) = y.

We also may need to combine maps to ontain a new map. This can only be done if, for
all variables, the two different maps do not return two different terms where either of the
terms is the variable itself.

Definition 10. Given maps σ1 and σ2, such that for all variables x, either (a) σ1(x) = x =
σ2(x), (b) σ1(x) =M and σ2(x) = x, or (c) σ1(x) = x and σ2(x) =M for some term M .

Let A be the set of variables such that if x ∈ A then σ1(x) ≠ x and σ2(x) = x, and let
B be the set of variables for if y ∈ B then σ1(y) = x and σ2(y) ≠ y.

3.1. CALCULUS 41

The union of these maps σ1 ∪ σ2 is defined as

⋃
x∈A

σ1(x) ∪ ⋃
y∈B

σ2(y)

Example 11. Let σ1 = {x1 ↦ N1, x2 ↦ N2} and σ2 = {y1 ↦M1}. Then σ1 ∪ σ2 = {x1 ↦
N1, x2 ↦ N2, y1 ↦M1}
Example 12. Let σ1 = {x1 ↦ N1, x2 ↦ N2} and σ2 = {x1 ↦ N2}. Then σ1 ∪ σ2 is
undefined.

When using the map σ as part of the translation, the intuition is that for all bound
variables x in the term we are translatings, it should be that σ(x) = x. The map γ ∶ V → V
is defined similarly, and the purpose is to keep track of the binding of phantom-variables.

Definition 13. The interpretation J− ∣ −− K ∶ ΛSa × (V → Λ) × (V → V)→ Λ is defined as

Jx ∣ σ
γ

K = σ(x)

J s t ∣ σ
γ

K = J s ∣ σ
γ

K J t ∣ σ
γ

K

J c⟨ c ⟩.t ∣ σ
γ

K = λc.J t ∣ σ
′

γ
K

where σ′ = σ − {c↦M}

J c⟨x1, . . . , xn ⟩.t ∣ σ
γ

K = λc.J t ∣ σ
′

γ
K

let σ1 = σ − {x1, ..., xn}
then σ′ = σ1 ∪ {x1 ↦ σ(x1){c/d},∪...∪, xn ↦ σ(xn){c/d}}
where d = γ(c)

Ju[x1, . . . , xn ← t] ∣ σ
γ

K = Ju ∣ σ
′

γ
K

let σ1 = σ − {x1, . . . , xn}

where σ′ = σ1 ∪ {xi ↦ J t ∣ σ
γ

K}1≤i≤n

Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σ
γ

K = Ju[Γ] ∣ σ
γ′

K

where γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ]] ∣ σ
γ

K = Ju[Γ] ∣ σ
′

γ′
K

where γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}
σ1 = σ − {x1, . . . , xm}

σ′ = σ1 ∪ {x1 ↦M1{c/γ(c)}, . . . , xm ↦Mm{c/γ(c)}}

42 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Definition 14. We say J t K = J t ∣ II K where I is the identity function.

Notions of Equivalence

In the term calculus, we consider terms equal up to the congruence induced by the exchange
of closures. Consider the term t[Γ1][Γ2] where [Γ1] and [Γ2] are both closures. Then
t[Γ1][Γ2] ∼ t[Γ2][Γ1] iff [Γ2] only binds variables and phantom-variables located in t. This
equivalence is essential to the rewriting theory.

We also consider terms equal up to symmetry of contraction. We consider the sequence
of variables xs modulo permutations. Let x⃗ be a list of variables and let x⃗P be a permutation
of that list, then the following terms are considered equal.

u[x⃗← t] ∼ u[x⃗P ← t]
c⟨ x⃗ ⟩.t ∼ c⟨ x⃗P ⟩.t

3.1.2 Operations

The spinal atomic λ-calculus is a refinement of the original [GHP13], where during re-
duction, duplication of subterms proceeds on individual constructors, similar to Lamping’s
optimal graph reduction [Lam90]. The reduction rules (defined later in Section 3.2) will
make use of some operations. We will here define the three different operations, substitu-
tion, book-keeping, and exorcism.

The purpose of the operation of substitution, as expected, is to replace free variables x
occurring in a term t with a subterm u, written as t{s/x}. Substitution in our calculus also
changes the covers of phantom-abstractions if the variable we are substituting for is listed.
For example (c⟨x ⟩.t){s/x}, after the substitution moves under the phantom-abstraction
the variable in the cover is replaced with all the free variables in s, i.e. c⟨ z⃗ ⟩.t{s/x} where
{z⃗} = (s)fv.

In the case of the distributor, substitutions need to travel through the environment
of the distributor and afterwards leave the distributor and travel through the term. This
is because variables occurring in the term may be bound by a sharing in the distributor.
When we define our reductions in Section 3.2, some of these reductions will generate
substitutions, and some of these may occur within the environment of the distributor,
therefore the substitutions need some way of ‘escaping’ the distributor.

We use
ÐÐÐ→
e⟨ w⃗ ⟩ to denote e1⟨w1

1, . . . ,w
1
k1

⟩ . . . en⟨wn1 , . . . ,wnkn ⟩ for some arbitrary n and

k. We write e{ei⟨ w⃗i ⟩} to denote a list of covers
ÐÐÐ→
e⟨ w⃗ ⟩ where ei⟨ w⃗i ⟩ occurs in the list.

Definition 15 (Substitution). The operation substitution is defined as

x{s/x} = s
y{s/x} = y

(u t){s/x} = (u{s/x}) t{s/x}
(c⟨ y⃗ ⟩.t){s/x} = c⟨ y⃗ ⟩.t{s/x}

(c⟨ y⃗ ⋅ x ⟩.t){s/x} = c⟨ y⃗ ⋅ z⃗ ⟩.t{s/x}
u[y⃗ ← t]{s/x} = u{s/x}[y⃗ ← t{s/x}]

3.1. CALCULUS 43

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⟩ [Γ]]{s/x} = u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⟩ [Γ]{s/x}]

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⋅ x ⟩ [Γ]]{s/x} = u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⋅ z⃗ ⟩ [Γ]{s/x}]

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⟩ {s/x}[Γ]] = u{s/x}[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⟩ [Γ]]

u[e{ei⟨ w⃗ ⋅ x ⟩} ∣ c⟨ y⃗ ⟩ {s/x}[Γ]] = u{s/x}[e{ei⟨ w⃗ ⋅ z⃗ ⟩} ∣ c⟨ y⃗ ⟩ [Γ]]

Where z⃗ = (s)fv

Although substitution performs some book-keeping on phantom-abstractions, we define
an explicit notion that updates the variables stored in a free-cover i.e. for a term t, e⟨ x⃗ ⟩ ∈
(t)fc then e⟨ y⃗ ⟩ ∈ (t{y⃗/e}b)fc.

Definition 16 (Book-Keeping). The operation book-keeping is defined as

x{w⃗/e}b = x
s t{w⃗/e}b = (s{w⃗/e}b) t{w⃗/e}b

e⟨ z⃗ ⟩.t{w⃗/e}b = e⟨ w⃗ ⟩.t
(c⟨ z⃗ ⟩.t){w⃗/e}b = c⟨ z⃗ ⟩.t{w⃗/e}b
u[z⃗ ← t]{w⃗/e}b = u{w⃗/e}b[z⃗ ← t{w⃗/e}b]

u[
ÐÐÐ→
f⟨ y⃗ ⟩ ∣ e⟨ z⃗ ⟩ [Γ]]{w⃗/e}b = u[

ÐÐÐ→
f⟨ y⃗ ⟩ ∣ e⟨ w⃗ ⟩ [Γ]]

u[
ÐÐÐ→
f⟨ y⃗ ⟩ ∣ c⟨ z⃗ ⟩ [Γ]]{w⃗/e}b = u[

ÐÐÐ→
f⟨ y⃗ ⟩ ∣ c⟨ z⃗ ⟩ [Γ]{w⃗/e}b]

u[
ÐÐÐ→
f⟨ y⃗ ⟩ ∣ c⟨ z⃗ ⟩ {w⃗/e}b[Γ]] = u{w⃗/e}b[

ÐÐÐ→
f⟨ y⃗ ⟩ ∣ c⟨ z⃗ ⟩ [Γ]]

The last operation we introduce is called exorcism {c⟨ x⃗ ⟩}e. We perform exorcisms on
phantom-abstractions to convert them to abstractions. Intuitively, this will be performed on
phantom-abstractions with phantom-variables bound to a distributor when said distributor
is eliminated. It converts phantom-abstractions to abstractions by introducing a sharing
of the phantom-variable that captures the variables in the cover, i.e. c⟨ x⃗ ⟩.t{c⟨ x⃗ ⟩}e =
c⟨ c ⟩.t[x⃗← c].

Definition 17 (Exorcism). The operation exorcism is defined as

y{c⟨ x⃗ ⟩}e = y
s t{c⟨ x⃗ ⟩}e = (s{c⟨ x⃗ ⟩}e) t{c⟨ x⃗ ⟩}e

c⟨ x⃗ ⟩.t{c⟨ x⃗ ⟩}e = c⟨ c ⟩.t[x⃗← c]
d⟨ y⃗ ⟩.t{c⟨ x⃗ ⟩}e = d⟨ y⃗ ⟩.t{c⟨ x⃗ ⟩}e

u[y⃗ ← t]{c⟨ x⃗ ⟩}e = u{c⟨ x⃗ ⟩}e[y⃗ ← t{c⟨ x⃗ ⟩}e]

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]{c⟨ x⃗ ⟩}e = u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ][x⃗← c]]

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣d⟨ y⃗ ⟩ [Γ]]{c⟨ x⃗ ⟩}e = u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣d⟨ y⃗ ⟩ [Γ]{c⟨ x⃗ ⟩}e]

u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣d⟨ y⃗ ⟩ {c⟨ x⃗ ⟩}e[Γ]] = u{c⟨ w⃗ ⟩}e[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣d⟨ y⃗ ⟩ [Γ]]

44 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Proposition 18. Given M ∈ Λ such that for all v ∈ V , γ(v) /∈ (M)fv and σ(x) = x, the
translation J− ∣ σγ K commutes with substitution (Def 15) in the following way

Ju ∣ σ
′

γ
K = Ju ∣ σ

γ
K{M/x}

where σ′ = σ{M/x} ∪ {x↦M}

Proof. We prove this by induction on u

Base Case: Variable
Jx ∣ σγ K{M/x} = x{M/x} =M = Jx ∣ σ′γ K

J y ∣ σγ K{M/x} = N{M/x} = J y ∣ σ′γ K

Inductive Case: Application

J s t ∣ σγ K{M/x} = J s ∣ σγ K{M/x} J t ∣ σγ K{M/x} I.H.
= J s ∣ σγ K J t ∣ σ′γ K = J s t ∣ σ′γ K

Inductive Case: Abstraction
J c⟨ c ⟩.t ∣ σγ K{M/x} = λc.J t ∣ σγ K{M/x} I.H.

= λc.J t ∣ σ′γ K = J c⟨ c ⟩.t ∣ σ′γ K

Inductive Case: Phantom-Abstraction
J c⟨x1, . . . , xn ⟩.t ∣ σγ K{M/x} = (λc.J t ∣ σ′′γ K){M/x} = λc.J t ∣ σ′′γ K{M/x} I.H.

= λc.J t ∣ σ′′′γ K
= J c⟨x1, . . . , xn ⟩.t ∣ σ′γ K
where
σ = σ1 ∪ {x1 ↦ N1, . . . , xn ↦ Nn}
σ′′ = σ1 ∪ {x1 ↦ N1{c/d}, . . . , xn ↦ Nn{c/d}}
σ′′′ = σ′′{M/x} ∪ {x↦M}
σ′′′ = σ1{M/x} ∪ {x1 ↦ N1{M/x}{c/d}, . . . , xn ↦ Nn{M/x}{c/d}, x↦M}

Inductive Case: Sharing

Ju[z1, . . . , zn ← t] ∣ σγ K{M/x} = Ju ∣ σ′′γ K{M/x} I.H.
= Ju ∣ σ′′′γ K = Ju[z1, . . . , zn ← t] ∣ σ′γ K

where
σ′′ = σ ∪ ⋃

1≤i≤n
{zi ↦ J t ∣ σγ K}

σ′′′ = σ{M/x} ∪ ⋃
1≤i≤n

{zi ↦ J t ∣ σ{x/M}∪{x↦M}
γ K, x↦M}

Inductive Case: Distributor 1
Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ K{M/x}
= Ju[Γ] ∣ σγ′ K{M/x} I.H.

= Ju[Γ] ∣ σ′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σ′γ K
where
γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

Inductive Case: Distributor 2
Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ K{M/x}

3.1. CALCULUS 45

= Ju[Γ] ∣ σ′′γ′ K{M/x} I.H.
= Ju[Γ] ∣ σ′′′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σ′γ K
where
γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

Proposition 19. Substitution commutes with the translation in the following way

Ju{t/x} ∣ σ
γ

K = Ju ∣ σ
′

γ
K

where σ′ = σ ∪ {x↦ J t ∣ σγ K}

Proof. We prove this by induction on u

Base Case: Variable
Jx{t/x} ∣ σγ K = J t ∣ σγ K = Jx ∣ σ′γ K

J y ∣ σγ K = σ(y) = σ′(y) = J y ∣ σ′γ K

Inductive Case: Application

Jus{t/x} ∣ σγ K = Ju{t/x} ∣ σγ K J s{t/x} ∣ σγ K I.H.
= Ju ∣ σ′γ K J s ∣ σ′γ K = Jus ∣ σ′γ K

Induvtive Case: Abstraction
J (c⟨ c ⟩.s){t/x} ∣ σγ K = λc.J s{t/x} ∣ σγ K I.H.

= λc.J s ∣ σ′γ K = J c⟨ c ⟩.s ∣ σ′γ K

Inductive Case: Phantom-Abstraction
J (c⟨x1, . . . , xn ⟩.s){t/x} ∣ σγ K

Case: x ∈ {x1, . . . , xn}
= J (c⟨x1, . . . , xn, x ⟩.s){t/x} ∣ σγ K = J c⟨x1, . . . , xn, y1, . . . , ym ⟩.s{t/x} ∣ σγ K
where {y1, . . . , ym} = (t)fv
= λc.J s{t/x} ∣ σ′′γ K I.H.

= λc.J s ∣ σ
′′′
1

γ K prop 18
= λc.J s ∣ σ

′′′
2

γ K = J c⟨x1, . . . , xn, x ⟩.s ∣ σ′γ K
where σ = σ′′′′ ∪ {x1 ↦M1, . . . , ym ↦ Nm}
σ′′ = σ′′′′ ∪ {x1 ↦M1{c/d}, . . . , ym ↦ Nm{c/d}}
where d = γ(c)
σ′′′1 = σ′′ ∪ {x↦ J t ∣ σ′′γ K}
σ′′′2 = σ′′′′∪{y1 ↦ N1, . . . , ym ↦ Nm, x1 ↦M1{c/d}, . . . , xn ↦Mn{c/d}, x↦ J t ∣ σ′γ K{c/d}}

Case: x ∈ {x1, . . . , xn}
= J c⟨x1, . . . , xn ⟩.s{t/x} ∣ σγ K = λc.J s{t/x} ∣ σ′′γ K I.H.

= λc.J t ∣ σ′′′γ K = J c⟨x1, . . . , xn ⟩.s ∣ σ′γ K
where
σ = σ′′′′ ∪ {x1 ↦ N1, . . . , xn ↦ Nn}
σ′′ = σ′′′′ ∪ {x1 ↦ N1{c/d}, . . . , xn ↦ Nn{c/d}}
d = γ(c)
σ′′′ = σ′′ ∪ {x↦ J t ∣ σ′′γ K}

46 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Inductive Case: Sharing
Ju[z1, . . . , zn ← s]{t/x} ∣ σγ K = Ju{t/x}[z1, . . . , zn ← s{t/x}] ∣ σγ K = Ju{t/x} ∣ σ′′γ K
I.H.
= Ju ∣ σ′′′γ K = Ju[z1, . . . , zn ← s] ∣ σ′γ K
where
σ′′ = σ ∪ {z1 ↦ J s{t/x} ∣ σγ K, . . . , zn ↦ J s{t/x} ∣ σγ K}
σ′′′ = σ′ ∪ {z1 ↦ J s ∣ σ′γ K, . . . , zn ↦ J s ∣ σ′γ K}

Inductive Case: Distributor 1
Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]]{t/x} ∣ σγ K

= Ju[Γ]{t/x} ∣ σγ′ K
I.H.
= Ju[Γ] ∣ σ′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σ′γ K
where
γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

Inductive Case: Distributor 2
Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]{t/x} ∣ σγ K

= Ju[Γ]{t/x} ∣ σ′′γ′ K I.H.
= Ju[Γ] ∣ σ′′′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σ′γ K
where
γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

Proposition 20. Book-keeping commutes with the translation in the following way

if c⟨ y1, . . . , ym ⟩. ∈ (u)fc such that {x1, . . . , xn} ⊂ {y1, . . . , ym}
and for those z ∈ {y1, . . . , ym}/{x1, . . . , xn}, γ(c) /∈ (σ(z))fv
or if simply {x1, . . . , xn} ∩ (u)fv = {}

Ju{x1, . . . , xn/c}b ∣
σ

γ
K = Ju ∣ σ

γ
K

Proof. We prove this by induction on u

Base Case: Variable
Jx{x1, . . . , xn/c}b ∣ σγ K = Jx ∣ σγ K = σ(x) = σ′(x) = Jx ∣ σ′γ′ K
Since is cannot be that x ∈ {x1, . . . , xn}

Base Case: Phantom-Abstraction
J (c⟨ y1, . . . , ym ⟩.t){x1, . . . , xn/c}b ∣ σγ K = J c⟨x1, . . . , xn ⟩.t ∣ σγ K
= λc.J t ∣ σ′′γ K = λc.J t ∣ σ′′γ′ K = J c⟨ y1, . . . , ym ⟩.t ∣ σ′γ′ K
where
σ = σ1 ∪ {x1 ↦M1, . . . , xn ↦Mn}
σ′′ = σ1 ∪ {x1 ↦M1{c/d}, . . . , xn ↦Mn{c/d}}
γ(c) = d
Note: due to condition of Proposition any {yi ↦Mi{c/d}} = {yi ↦Mi}

3.1. CALCULUS 47

Base Case: Distributor
Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ y1, . . . , ym ⟩ [Γ]]{x1, . . . , xn/c}b ∣ σγ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σγ K = Ju[Γ] ∣ σ′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ y1, . . . , ym ⟩ [Γ]] ∣ σγ K
where γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}
σ = σ1 ∪ {x1 ↦M1, . . . , xn ↦Mn}
σ′ = σ1 ∪ {x1 ↦M1{c/γ(c)}, . . . , xn ↦Mn{c/γ(c)}}

Inductive Case: Application
J (s t){x1, . . . , xn/c}b ∣ σγ K = J s{x1, . . . , xn/c}b ∣ σγ K J t{x1, . . . , xn/c}b ∣ σγ K
I.H.
= J s ∣ σγ K J t ∣ σγ K = J s t ∣ σγ K

Inductive Case: Abstraction
J (z⟨ z ⟩.t){x1, . . . , xn/c}b ∣ σγ K = λz.J t{x1, . . . , xn/c}b ∣ σγ K I.H.

= λz.J t ∣ σγ K = J z⟨ z ⟩.t ∣ σγ K

Inductive Case: Phantom-Abstraction
J (d⟨ z1, . . . , zm ⟩.t){x1, . . . , xn/c}b ∣ σγ K = λd.J t{x1, . . . , xn/c}b ∣ σ

′

γ K
I.H.
= λd.J t ∣ σ′γ K = Jd⟨ z1, . . . , zm ⟩.t ∣ σγ K

Inductive Case: Sharing
Ju[z1, . . . , zm ← t]{x1, . . . , xn/c}b ∣ σγ K
= Ju{x1, . . . , xn/c}b[z1, . . . , zm ← t{x1, . . . , xn/c}b] ∣ σγ K

= Ju{x1, . . . , xn/c}b ∣ σ
′

γ K I.H.
= Ju ∣ σ′′γ K = Ju[z1, . . . , zm ← t] ∣ σγ K

Inductive Case: Distributor
Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]]{x1, . . . , xn/c}b ∣ σγ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]{x1, . . . , xn/c}b] ∣ σγ K

= Ju[Γ]{x1, . . . , xn/c}b ∣ σγ′ K
I.H.
= Ju[Γ] ∣ σγ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]] ∣ σγ K

Proposition 21. Exorcisms commute with the translation in the following way

if c⟨x1, . . . , xn ⟩. ∈ (u)fc or {x1, . . . , xn} ∩ (u)fv = {}

Ju{c⟨x1, . . . , xn ⟩}e ∣
σ

γ
K = Ju ∣ σ

′

γ
K

where

σ′ = σ ∪ (x1 ↦ c) ∪ ⋅ ⋅ ⋅ ∪ (xn ↦ c)

Proof. We prove this by induction on u

Base Case: Variable
J z{c⟨x1, . . . , xn ⟩}e ∣ σγ K = J z ∣ σγ K = σ(z) = σ′(z) = J z ∣ σ′γ K

48 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Base Case: Phantom-Abstraction
J (c⟨x1, . . . , xn ⟩.t){c⟨x1, . . . , xn ⟩}e ∣ σγ K = J c⟨ c ⟩.t[x1, . . . , xn ← c] ∣ σγ K
= λc.J t[x1, . . . , xn ← c] ∣ σγ K = λc.J t ∣ σ′γ K = J c⟨x1, . . . , xn ⟩.t ∣ σ′γ K

Base Case: Distributor
Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]]{c⟨x1, . . . , xn ⟩}e ∣ σγ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨ c ⟩ [Γ][x1, . . . , xn ← c]] ∣ σγ K

= Ju[Γ][x1, . . . , xn ← c] ∣ σγ′ K = Ju[Γ] ∣ σ′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σ′γ K

Inductive Case: Application
J (s t){c⟨x1, . . . , xn ⟩}e ∣ σγ K = J s{c⟨x1, . . . , xn ⟩}e ∣ σγ K J t{c⟨x1, . . . , xn ⟩}e ∣ σγ K
I.H.
= J s ∣ σ′γ K J t ∣ σ′γ K = J s t ∣ σ′γ K

Inductive Case: Abstraction
J (z⟨ z ⟩.t){c⟨x1, . . . , xn ⟩}e ∣ σγ K = λz.J t{c⟨x1, . . . , xn ⟩}e ∣ σγ K
I.H.
= λz.J t ∣ σ′γ K = J z⟨ z ⟩.t ∣ σ′γ K

Inductive Case: Phantom-Abstraction
J (d⟨ z1, . . . , zm ⟩.t){c⟨x1, . . . , xn ⟩}e ∣ σγ K = λd.J t{c⟨x1, . . . , xn ⟩}e ∣ σ

′′

γ K
I.H.
= λd.J t ∣ σ′′′γ K = Jd⟨ z1, . . . , zm ⟩.t ∣ σ′γ K

Inductive Case: Sharing
Ju[z1, . . . , zm ← t]{c⟨x1, . . . , xn ⟩}e ∣ σγ K
= Ju{c⟨x1, . . . , xn ⟩}e[z1, . . . , zm ← t{c⟨x1, . . . , xn ⟩}e] ∣ σγ K

= Ju{c⟨x1, . . . , xn ⟩}e ∣ σ
′′

γ K I.H.
= Ju ∣ σ′′′γ K = Ju[z1, . . . , zm ← t] ∣ σ′γ K

Inductive Case: Distributor
Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]]{c⟨x1, . . . , xn ⟩}e ∣ σγ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]{c⟨x1, . . . , xn ⟩}e] ∣ σγ K

= Ju[Γ]{c⟨x1, . . . , xn ⟩}e ∣ σγ′ K
I.H.
= Ju[Γ] ∣ σ′γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣d⟨d ⟩ [Γ]] ∣ σγ′ K

Now that we have defined the three operations, we can formalise reduction in ΛSa .

3.2 Reduction

Reduction for the spinal atomic λ-calculus performs atomic duplication of terms. The
reductions will allow to copy the constructors of a term individually rather than the whole
complete term. We divide the reductions into four categories, the beta reduction, deletion
reductions, duplication reductions and lifting reductions. Beta reduction will follow the

3.2. REDUCTION 49

same intuition as the λ-calculus. Deletion reductions will deal with weakenings i.e. s[← t].
Duplication will deal with sharings (that are not weakenings) and the distributor, and lifting
reductions will deal with the scope of closures. The reductions are categorised in this way
for the purposes of Chapter 4 and Chapter 5.

3.2.1 Beta reduction

Perhaps the most well known reduction in the λ-calculus is beta reduction i.e. for some
M,N ∈ Λ we have (λx.M)N ↝β M{N/x}. This is because the beta step is viewed as a
computational step under Curry-Howard interpretation.

Our calculus will have an equivalent rule. It is important to notice that we only allow
beta reduction for abstractions and not for phantom-abstractions. Phantom-abstractions
will first have to be resolved (by eliminating the distributor that binds them) before we can
perform a beta step.

(x⟨x ⟩.t) s↝β t{s/x} (β)

Figure 3.6 shows the graphical interpretation of this rule. The scope (yellow box) of
the abstraction is destroyed after reduction, substituting the term s for the variable x.

3.2.2 Deletion

During reduction, it may become necessary to reduce weakened terms i.e. u[← t]. These
can be seen as special cases of the duplication rules (defined in Section 3.2.3). We define
these rules seperately for the benefits of Chapter 4 and Chapter 5. The first deletion rule
deals with the case where an application is weakened. Figure 3.7a shows the graphical
illustration.

u[← s t]↝R u[← s][← t] (r1)

The next rule deals when a (phantom-)abstraction is weakened, which introduces a
distributor that does not bind any phantom-variables. This rule acts the same for both
phantom-abstractions and abstractions i.e. when x⃗ = c and x⃗ ≠ c. Figure 3.7b and Figure
3.7c shows the graphical illustration of the rule in the two different cases.

@

s

ń

t

↝β t

s

Figure 3.6: Graphical illustration of the beta rule (β)

50 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

@

s t
↝R

s t

(a) (r1)

ń

t ↝R t

(b) (r2)

ň

t ↝R t

(c) (r2)

↝R

(d) (r3)

Figure 3.7: Graphical illustrations of deletion rules

u[← c⟨ x⃗ ⟩.t]↝R u[∣ c⟨ x⃗ ⟩ [← t]] (r2)

Lastly we have the case of eliminating the distributor that does not bind any phantom-
variables. This is done by simply removing the distributor. Figure 3.7d shows the graphical
illustration for this.

u[∣ c⟨ c ⟩ [← c]]↝R u (r3)

3.2.3 Duplication

The duplication rules are the rules that allow us to duplicate terms atomically, i.e. on
individual constructors. When an abstraction or application is shared, we duplicate the
constructors independently from all subterms. Each and all introduced variables are fresh.

The first rule is when a sharing meets an application, and works exactly the same as in
the original atomic λ-calculus. Figure 3.8a shows the graphical illustration for this rule.

u[x1 . . . xn ← s t]↝D u{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t] (d1)

When an (phantom-)abstraction is duplicated, we introduce the distributor. This
distributor captures the phantom-abstractions (the phantom-variables associated to the
phantom-abstractions) which are substituted into context, replacing the variables the shar-
ing captured. This rule can be applied to both abstractions and phantom-abstractions, i.e.
the variables y⃗ = c have no effect. Figure 3.8b shows the graphical illustration for when an
abstraction is duplicated and Figure 3.8c for a phantom-abstraction.

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D
u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1

1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y⃗ ⟩ [w1
1, . . . ,w

n
1 ← t]]

(d2)

3.2. REDUCTION 51

Lastly we have the rule that allows us to eliminate a distributor, and finish successfully
duplicating an abstraction i.e. converting phantom-abstractions to abstractions. It is im-
portant to notice that we can only eliminate distributors that are duplicating abstractions
and not phantom-abstractions. Intuitively, if a term t has a subterm where a distributor
duplicating a phantom-abstraction, one will have to wait until that phantom-abstraction
becomes exorcised before completing the duplication and eliminating the distributor.

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]]
↝D u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e

(d3)

Figure 3.8d shows an illustration of eliminating a distributor, but it does not paint the
whole picture. It is also possible that one of the phantom-variables bound to the distributor
becomes duplicated again, introducing a second distributor. After eliminating the first
distributor, the exorcism in this case would implicitly convert the phantom-abstraction into
an abstraction, by connecting the wires in the environment to the cosharing node.

3.2.4 Compound

These reduction rules deal with the compound of sharings. The first rule compounds 2
consecutive sharings, and is the same rule as in the original calculus. Figure 3.9a shows the
graphical illustration for this rule.

u[w1, . . . ,wm ← yi][y1, . . . , yn ← t]↝C
u[y1, . . . , yi−1,w1, . . . ,wm, yi+1, . . . , yn ← t] (c1)

We also have the rule where a sharing can be converted into a substitution if it captures
exactly one variable. Figure 3.9b shows the graphical illustration for this.

u[x← t]↝C u{t/x} (c2)

3.2.5 Lifting

The last set of rules are the lifting rules, which are required to lift closures out of scopes
of abstractions and distributors. These rules move closures towards the outside of a term,
including lifting closures outside of the scope of a distributor, which may allow us to
eliminate said distributor after lifting the closure by applying rule (d3).

In the original atomic λ-calculus, the lifting rules were equalities in the graphical illus-
trations. However, in our illustrations we make the scopes of abstractions and distributors
explicit, so they will no longer be considered equal in the graphical setting.

For the following rules, we talk about closures i.e. sharings and distributors. We rep-
resent the closure as [Γ]. We write ([Γ])fv to mean the variables that appear free in the
term(s) in the closure. The following 2 rules are also the same as in the original, that
involve lifting closures past applications. These rules are considered an equivalence in the
view of the graphical illustrations.

s[Γ] t↝L (s t)[Γ] (l1)

52 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

@

s t
↝D

@

@

s t

(a) (d1)

ń

t

↝D

ň
ň

t

(b) (d2)

ň

t

↝D

ň
ň

t

(c) (d2)

ň

t

ň

s

↝D ń

t

ń

s

(d) (d3)

Figure 3.8: Graphical illustrations of duplication rules

s t[Γ]↝L (s t)[Γ] (l2)

The next rule considers the case of lifting a closure past a (phantom-)abstraction. In
the case of lifting past an abstraction, the rule is identical to that of the original. In the
case of the phantom-abstraction, we require that each variable in the cover appears free
in the body of the term (the same condition as an abstraction). This is to preserve the
conditions on terms (Definition 5). Therefore, we also consider that x⃗ can be equal to d.
Figure 3.10a shows the graphical illustration of lifting a sharing past an abstraction and
Figure 3.10b shows lifting a distributor past an abstraction.

d⟨ x⃗ ⟩.t[Γ]↝L (d⟨ x⃗ ⟩.t)[Γ]
iff x ∈ x⃗→ x ∈ (t)fv and d /∈ ([Γ])fv

(l3)

3.2. REDUCTION 53

↝C

(a) (c1)

t
↝C

t

(b) (c2)

Figure 3.9: Graphical illustrations of compound rules

The next rule is again the same as the original equivalent, lifting a closure past a sharing.

u[x1, . . . , xn ← t[Γ]]↝L u[x1, . . . , xn ← t][Γ] (l4)

The only case left to consider is lifting a closure past a distributor. Just like in the case
of abstraction (l3), the variable occurrence condition must be satisfied i.e. the variables
in the cover of the distributor cannot appear in the closure that is being lifted. This rule
generates book-keepings that affect the covers captured by the distributor i.e. the variables
captured by the closure should not appear in the covers after lifting it out of the distributor.
We show the two cases separately to make precise the book-keepings. The fact that the
cover of the distributor is an abstraction or a phantom-abstraction does not affect the rule
i.e. x⃗ can be equal to c. Figure 3.10c and Figure 3.10d show the graphical illustrations of
these rules where the distributor is duplicating an abstraction.

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L
u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t]

iff x ∈ x⃗→ x /∈ (t)fv
(l5)

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]]↝L

u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b[e1⟨ w⃗1/z⃗ ⟩ . . . en⟨ w⃗n/z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]

iff x ∈ x⃗→ x ∈ (u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]])fv
(l6)

Example 22. Take the λ-term M = (λf.λx.f (f x))λg.λy.g (g y).
Then LM M = (f⟨ f ⟩.x⟨x ⟩.f1 (f2 x)[f1, f2 ← f]) (g⟨ g ⟩.y⟨ y ⟩.g1 (g2 y)[g1, g2 ← g]).
We then may have the following reduction sequence.

(f⟨ f ⟩.x⟨x ⟩.f1 (f2 x)[f1, f2 ← f]) (g⟨ g ⟩.y⟨ y ⟩.g1 (g2 y)[g1, g2 ← g])
↝β x⟨x ⟩.f1 (f2 x)[f1, f2 ← g⟨ g ⟩.y⟨ y ⟩.g1 (g2 y)[g1, g2 ← g]] (β)

↝D x⟨x ⟩.(f1⟨w1 ⟩.w1 ((f2⟨w2 ⟩.w2)x))
[f1⟨w1 ⟩, f2⟨w2 ⟩ ∣ g⟨ g ⟩ [w1,w2 ← y⟨ y ⟩.g1 (g2 y)[g1, g2 ← g]]] (d2)

54 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

ń

t

s
↝L

ń

t

s

(a) (l3)

ń

t

Γ

↝L

ń

t

Γ

(b) (l3)

Γ

u
↝L

Γ

u

(c) (l5)

Γ

Γ

↝L

Γ

Γ

(d) (l6)

Figure 3.10: Graphical illustrations of lifting rules

3.2. REDUCTION 55

↝D x⟨x ⟩.(f1⟨ z1 ⟩.y1⟨ z1 ⟩.z1 ((f2⟨ z2 ⟩.y2⟨ z2 ⟩.z2)x))
[f1⟨ z1 ⟩, f2⟨ z2 ⟩ ∣ g⟨ g ⟩[y1⟨ z1 ⟩, y2⟨ z2 ⟩ ∣ y⟨ y ⟩

[z1, z2 ← g1 (g2 y)[g1, g2 ← g]]]] (d2)

↝L x⟨x ⟩.(f1⟨ z1 ⟩.y1⟨ z1 ⟩.z1 ((f2⟨ z2 ⟩.y2⟨ z2 ⟩.z2)x))
[f1⟨ z1 ⟩, f2⟨ z2 ⟩ ∣ g⟨ g ⟩[y1⟨ z1 ⟩, y2⟨ z2 ⟩ ∣ y⟨ y ⟩

[z1, z2 ← g1 (g2 y)][g1, g2 ← g]]] (l4)

↝D x⟨x ⟩.((f1⟨a1, b1 ⟩.y1⟨a1, b1 ⟩.a1 b1) ((f2⟨a2, b2 ⟩.y2⟨a2, b2 ⟩.a2 b2)x))
[f1⟨a1, b1 ⟩, f2⟨a2, b2 ⟩ ∣ g⟨ g ⟩[y1⟨a1, b1 ⟩, y2⟨a2, b2 ⟩ ∣ y⟨ y ⟩

[a1, a2 ← g1][b1, b2 ← g2 y][g1, g2 ← g]]] (d1)

↝C x⟨x ⟩.((f1⟨a1, b1 ⟩.y1⟨a1, b1 ⟩.a1 b1) ((f2⟨a2, b2 ⟩.y2⟨a2, b2 ⟩.a2 b2)x))
[f1⟨a1, b1 ⟩, f2⟨a2, b2 ⟩ ∣ g⟨ g ⟩[y1⟨a1, b1 ⟩, y2⟨a2, b2 ⟩ ∣ y⟨ y ⟩

[b1, b2 ← g2 y][a1, a2, g2 ← g]]] (c1)

↝D x⟨x ⟩.((f1⟨a1, b1, c1 ⟩.y1⟨a1, b1, c1 ⟩.a1 (b1 c1))
((f2⟨a2, b2, c2 ⟩.y2⟨a2, b2, c2 ⟩.a2 (b2 c2))x)

[f1⟨a1, b1, c1 ⟩, f2⟨a2, b2, c2 ⟩ ∣ g⟨ g ⟩[y1⟨a1, b1, c1 ⟩, y2⟨a2, b2, c2 ⟩ ∣ y⟨ y ⟩
[b1, b2 ← g2][c1, c2 ← y][a1, a2, g2 ← g]]] (d1)

↝C x⟨x ⟩.((f1⟨a1, b1, c1 ⟩.y1⟨a1, b1, c1 ⟩.a1 (b1 c1))
((f2⟨a2, b2, c2 ⟩.y2⟨a2, b2, c2 ⟩.a2 (b2 c2))x)

[f1⟨a1, b1, c1 ⟩, f2⟨a2, b2, c2 ⟩ ∣ g⟨ g ⟩[y1⟨a1, b1, c1 ⟩, y2⟨a2, b2, c2 ⟩ ∣ y⟨ y ⟩
[c1, c2 ← y][a1, b1, a2, b2 ← g]]] (c1)

↝L x⟨x ⟩.((f1⟨a1, b1, c1 ⟩.y1⟨ c1 ⟩.a1 (b1 c1))
((f2⟨a2, b2, c2 ⟩.y2⟨ c2 ⟩.a2 (b2 c2))x)

[f1⟨a1, b1, c1 ⟩, f2⟨a2, b2, c2 ⟩ ∣ g⟨ g ⟩[y1⟨ c1 ⟩, y2⟨ c2 ⟩ ∣ y⟨ y ⟩
[c1, c2 ← y]][a1, b1, a2, b2 ← g]] (l5)

↝L x⟨x ⟩.((f1⟨a1, b1 ⟩.y1⟨ c1 ⟩.a1 (b1 c1)) ((f2⟨a2, b2 ⟩.y2⟨ c2 ⟩.a2 (b2 c2))x))
[f1⟨a1, b1 ⟩, f2⟨a2, b2 ⟩ ∣ g⟨ g ⟩ [a1, b1, a2, b2 ← g]]

[y1⟨ c1 ⟩, y2⟨ c2 ⟩ ∣ y⟨ y ⟩ [c1, c2 ← y]] (l6)

↝D x⟨x ⟩.((f1⟨ f1 ⟩.y1⟨ c1 ⟩.a1 (b1 c1)[a1, b1 ← f1])
((f2⟨ f2 ⟩.y2⟨ c2 ⟩.a2 (b2 c2)[a2, b2 ← f2])x)

[y1⟨ c1 ⟩, y2⟨ c2 ⟩ ∣ y⟨ y ⟩ [c1, c2 ← y]] (d3)

↝D x⟨x ⟩.((f1⟨ f1 ⟩.y1⟨ y1 ⟩.a1 (b1 y1)[a1, b1 ← f1])
((f2⟨ f2 ⟩.y2⟨ y2 ⟩.a2 (b2 y2)[a2, b2 ← f2])x) (d3)

Definition 23. For a term t ∈ ΛSa , if there does not exists a term s ∈ ΛSa such that
t↝(R,D,L) s then it is said that t is in sharing normal form.

Lemma 24. For a t ∈ ΛSa in sharing normal form and a N ∈ Λ.

J LN M K = N L J t K M = t ∃M∈Λ.t = LM M

56 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Proof. We prove J LN M′ K = N by induction on N

Base Case: Variable
J Lx M K = Jx K = x

Inductive Case: Application
J LMN M K = J LM M K J LN M K =MN

Inductive Case: Abstraction
J Lλx.M M K

Case: ∣M ∣x = 1
= λx.J LM M K = λx.M

Case: ∣M ∣x = n
= λx.J LM n

x M′[x1, . . . , xn ← x] K = λx.J LM n
x M′ ∣ σI K prop 18

= λx.J LM n
x M′ K{x/xi}1≤i≤n

I.H.
= λx.M n

x{x/xi}1≤i≤n = λx.M

We prove L J t K M′ = t by induction on t

Base Case: Variable
L Jx K M = Lx M = x

Inductive Case: Application

L J s t K M = L J s K M′ L J t K M I.H.
= s t

Inductive Case: Abstraction
Case: L Jx⟨x ⟩.t K M = x⟨x ⟩.L J t K M I.H.

= x⟨x ⟩.t

Case: L Jx⟨x ⟩.t[x1, . . . , xn ← x] K M = Lλx.J t ∣ σI K M
prop 18

= Lλx.J t K{x/xi}1≤i≤n M = x⟨x ⟩.L J t K M[x1, . . . , xn ← x]
I.H.
= x⟨x ⟩.t[x1, . . . , xn ← x]

Lemma 25 (Sharing reduction preserves denotation). If s ↝(R,D,L,C) t, then J s ∣ σγ K =
J t ∣ σγ K.

Proof. We prove this by induction. First we cover all the base cases.

Case: (r1)

u[← s t]↝R u[← s][← t]

Ju[← s t] ∣ σγ K = Ju ∣ σγ K = Ju[← s][← t] ∣ σγ K
Case: (r2)

u[← c⟨ x⃗ ⟩.t]↝R u[∣ c⟨ x⃗ ⟩ [← t]]

3.2. REDUCTION 57

Ju[← c⟨ x⃗ ⟩.t] ∣ σγ K = Ju ∣ σγ K = Ju[∣ c⟨ x⃗ ⟩ [← t]] ∣ σγ K

Case: (r3)

u[∣ c⟨ c ⟩ [← c]]↝R u

Ju[∣ c⟨ c ⟩ [← c]] ∣ σγ K = Ju ∣ σγ K

Case: (c2)

u[x← t]↝C u{t/x}

Ju[x← t] ∣ σγ K = Ju ∣ σ′γ K prop 19
= Ju{t/x} ∣ σγ K

where
σ′ = σ ∪ {x↦ J t ∣ σγ K}

Case: (d1)

u[x1 . . . xn ← s t]↝D u{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]

Ju[x1 . . . xn ← s t] ∣ σγ K = Ju ∣ σ′γ K
where
σ′ = σ ∪ {xi ↦ J s t ∣ σγ K}1≤i≤n = σ ∪ {xi ↦ J s ∣ σγ K J t ∣ σγ K}1≤i≤n

Ju{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t] ∣ σγ K
= Ju{z1 y1/x1} . . .{zn yn/xn} ∣ σ′′γ K
where
σ′′ = σ ∪ {zi ↦ J s ∣ σγ K}1≤i≤n ∪ {yi ↦ J t ∣ σγ K}1≤i≤n since yi /∈ (s)fv
prop 18

= Ju ∣ σ′′′γ K
where
σ′′′ = σ′′ ∪ {xi ↦ J zi yi ∣ σ

′′

γ K}1≤i≤n = σ ∪ {xi ↦ J s ∣ σγ K J t ∣ σγ K}1≤i≤n
since zi and yi /∈ (u)fv

Case: (d2)

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D
u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1

1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y⃗ ⟩ [w1
1, . . . ,w

n
1 ← t]]

SubCase: y⃗ = c
Ju[x1, . . . , xn ← c⟨ c ⟩.t] ∣ σγ K = Ju ∣ σ′γ K
where σ′ = σ ∪ {xi ↦ J c⟨ c ⟩.t ∣ σγ K}1≤i≤n = σ ∪ {xi ↦ λc.J t ∣ σγ K}1≤i≤n

Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1
1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ c ⟩ [w1

1, . . . ,w
n
1 ← t]] ∣ σγ K

Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t] ∣ σγ′ K

= Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n ∣ σ′γ′ K
where
γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}

58 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

σ′ = σ ∪ {wi1 ↦ J t ∣ σγ′ K}1≤i≤n = σ ∪ {wi1 ↦ J t ∣ σγ K}1≤i≤n
prop 18

= Ju ∣ σ′′γ′ K = Ju ∣ σ′′γ K
where
σ′′ = σ′ ∪ {xi ↦ J ei⟨wi1 ⟩.wi1 ∣ σ

′

γ′ K}1≤i≤n = σ′ ∪ {xi ↦ λei.Jwi1 ∣
σ′i
γ′ K}1≤i≤n

= σ′ ∪ {xi ↦ λei.J t ∣ σγ K{ei/c}}1≤i≤n =α σ′ ∪ {xi ↦ λc.J t ∣ σγ K}1≤i≤n

= σ ∪ {xi ↦ λc.J t ∣ σγ K}1≤i≤n since wi1 /∈ (u)fv

SubCase: y⃗ = {y1, . . . , ym}
Ju[x1, . . . , xn ← c⟨ y1, . . . , ym ⟩.t] ∣ σγ K = Ju ∣ σ′γ K
where
σ′ = σ ∪ {xi ↦ J c⟨ y1, . . . , ym ⟩.t ∣ σγ K}1≤i≤n = σ ∪ {xi ↦ λc.J t ∣ σ′′γ K}1≤i≤n
σ′′ = σ − {y1, . . . , ym} ∪ {y1 ↦ σ(y1){c/γ(c)}, . . . , ym ↦ σ(ym){c/γ(c)}}

Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1
1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y1, . . . , ym ⟩ [w1

1, . . . ,w
n
1 ← t]] ∣ σγ K

Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t] ∣ σ′′γ′ K

where γ′ = γ ∪ {e1 ↦ c, . . . , en ↦ c}
= Ju{ei⟨wi1 ⟩.wi1/xi}1≤i≤n ∣ σ′′′γ′ K
where σ′′′ = σ′′ ∪ {wi1 ↦ J t ∣ σ′′γ′ K}1≤i≤n = σ′′ ∪ {wi1 ↦ J t ∣ σ′′γ K}1≤i≤n
prop 18

= Ju ∣ σ′′′′γ′ K = Ju ∣ σ′′′′γ K = Ju ∣ σ′′γ K

where σ′′′′ = σ′′′ ∪ {xi ↦ J ei⟨wi1 ⟩.wi1 ∣ σ
′′′

γ′ K}1≤i≤n = σ′′′ ∪ {xi ↦ λei.Jwi1 ∣
σ′′′i
γ′ K}1≤i≤n

= σ′′′ ∪ {xi ↦ λei.J t ∣ σ
′′

γ K{ei/γ′(ei)}}1≤i≤n =α σ′′′ ∪ {xi ↦ λc.J t ∣ σ′′γ K}1≤i≤n

Case: (d3)

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]]↝D u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e

Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]] ∣ σγ K
= Ju[w⃗1, . . . , w⃗n ← c] ∣ σγ′ K = Ju ∣ σ′γ′ K
prop 21

= Ju{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e ∣ σγ′ K = Ju{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e ∣ σγ K

Case: (c1)

u[w⃗ ← y][x⃗ ⋅ y ← t]↝C u[x⃗ ⋅ w⃗ ← t]

Ju[w⃗ ← y][x⃗ ⋅ y ← t] ∣ σγ K = Ju[w⃗ ← y] ∣ σ′γ K = Ju ∣ σ′′γ K = Ju[x⃗ ⋅ w⃗ ← t] ∣ σγ K
where
σ′ = σ ∪ {x↦ J t ∣ σγ K}∀x∈x⃗ ∪ {y ↦ J t ∣ σγ K}
σ′′ = σ′ ∪ {w ↦ J t ∣ σγ K}∀w∈w⃗

For the remaining cases, we say J t[Γ] ∣ σγ K produces J t ∣ σΓ

γΓ
K where σΓ and γΓ are the

resulting maps from interpreting the closure [Γ]
Case: (l1)

s[Γ] t↝L (s t)[Γ]

3.2. REDUCTION 59

J s[Γ] t ∣ σγ K = J s ∣ σΓ

γΓ
K J t ∣ σγ K = J s ∣ σΓ

γΓ
K J t ∣ σΓ

γΓ
K = J (s t)[Γ] ∣ σγ K

Case: (l2)
s[Γ] t↝L (s t)[Γ]

J s (t[Γ]) ∣ σγ K = J s ∣ σγ K J t ∣ σΓ

γΓ
K = J s ∣ σΓ

γΓ
K J t ∣ σΓ

γΓ
K = J (s t)[Γ] ∣ σγ K

Case: (l3)
d⟨ x⃗ ⟩.t[Γ]↝L (d⟨ x⃗ ⟩.t)[Γ]

SubCase: x⃗ = d
Jd⟨d ⟩.t[Γ] ∣ σγ K = λd.J t[Γ] ∣ σγ K = λd.J t ∣ σΓ

γΓ
K = Jd⟨d ⟩.t ∣ σΓ

γΓ
K = J (d⟨d ⟩.t)[Γ] ∣ σγ K

SubCase: x⃗ = x1, . . . , xn

Jd⟨x1, . . . , xn ⟩.t[Γ] ∣ σγ K = λd.J t[Γ] ∣ σ′γ K = λd.J t ∣ σ
′
Γ

γΓ
K = Jd⟨x1, . . . , xn ⟩.t ∣ σΓ

γΓ
K

= J (d⟨x1, . . . , xn ⟩.t)[Γ] ∣ σγ K
since we know x1, . . . , xn /∈ ([Γ])fv

Case: (l4)
u[x⃗← t[Γ]]↝L u[x⃗← t][Γ]

Ju[x⃗← t[Γ]] ∣ σγ K = Ju ∣ σ′γ K = Ju ∣ σ′′γΓ
K = Ju[x⃗← t] ∣ σΓ

γΓ
K = Ju[x⃗← t[Γ]] ∣ σγ K

where
σ′ = σ ∪ {x↦ J t[Γ] ∣ σγ K}∀x∈x⃗ = σ ∪ {x↦ J t ∣ σΓ

γΓ
K}∀x∈x⃗

σ′′ = σΓ ∪ {x↦ J t ∣ σΓ

γΓ
K}∀x∈x⃗

Cases: (l5) and (l6)
u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][Γ]]↝L

u{z⃗1/e1}b . . .{z⃗n/en}b[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][Γ]

SubCase: x⃗ = c
Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ][Γ]] ∣ σγ K = Ju[Γ][Γ] ∣ σγ′ K = Ju[Γ] ∣ σΓ

γ′Γ
K

prop 20
= Ju[Γ]{z⃗1/e1}b . . .{z⃗n/en}b ∣ σΓ

γ′Γ
K = Ju{z⃗1/e1}b . . .{z⃗n/en}b[Γ] ∣ σΓ

γ′Γ
K

= Ju{z⃗1/e1}b . . .{z⃗n/en}b[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σΓ

γΓ
K

= Ju{z⃗1/e1}b . . .{z⃗n/en}b[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗n ⟩ ∣ c⟨ c ⟩ [Γ]][Γ] ∣ σγ K

SubCase: x⃗ = x1, . . . , xm
Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ][Γ]] ∣ σγ K

= Ju[Γ][Γ] ∣ σ′γ′ K = Ju[Γ] ∣ σ
′
Γ

γ′Γ
K prop 20

= Ju[Γ]{z⃗1/e1}b . . .{z⃗n/en}b ∣ σΓ

γ′Γ
K

= Ju{z⃗1/e1}b . . .{z⃗n/en}b[Γ] ∣ σΓ

γ′Γ
K

= Ju{z⃗1/e1}b . . .{z⃗n/en}b[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σΓ

γΓ
K

= Ju{z⃗1/e1}b . . .{z⃗n/en}b[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]][Γ] ∣ σγ K

60 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

Now we cover the inductive cases.

Inductive Case: Application s t↝(R,D,L,C) s
′ t

J s t ∣ σγ K = J s ∣ σγ K J t ∣ σγ K I.H.
= J s′ ∣ σγ K J t ∣ σγ K = J s′ t ∣ σγ K

Inductive Case: Application s t↝(R,D,L,C) s t
′

J s t ∣ σγ K = J s ∣ σγ K J t ∣ σγ K I.H.
= J s ∣ σγ K J t′ ∣ σγ K = J s t′ ∣ σγ K

Inductive Case: Abstraction x⟨x ⟩.t↝(R,D,L,C) x⟨x ⟩.t′

Jx⟨x ⟩.t ∣ σγ K = λx.J t ∣ σ−{x}γ K I.H.
= λx.J t′ ∣ σ−{x}γ K = Jx⟨x ⟩.t ∣ σγ K

Inductive Case: Phantom-Abstraction c⟨ x⃗ ⟩.t↝(R,D,L,C) c⟨ x⃗ ⟩.t′

J c⟨x1, . . . , xn ⟩.t ∣ σγ K = λx.J t ∣ σ′γ K I.H.
= λx.J t′ ∣ σ′γ K = J c⟨x1, . . . , xn ⟩.t ∣ σγ K

where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ σ(xi){c/γ(c)}}1≤i≤n

Inductive Case: Sharing u[x⃗← t]↝(R,D,L,C) u
′[x⃗← t]

Ju[x1, . . . , xn ← t] ∣ σγ K = Ju ∣ σ′γ K I.H.
= Ju′ ∣ σ′γ K = Ju′[x1, . . . , xn ← t] ∣ σγ K

where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t ∣ σγ K}1≤i≤n

Inductive Case: Sharing u[x⃗← t]↝(R,D,L,C) u[x⃗← t′]
Ju[x1, . . . , xn ← t] ∣ σγ K = Ju ∣ σ′γ K I.H.

= Ju ∣ σ′′γ K = Ju[x1, . . . , xn ← t′] ∣ σγ K
where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t ∣ σγ K}1≤i≤n
σ′′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t′ ∣ σγ K}1≤i≤n

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]↝(R,D,L,C) u

′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]

Ju[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ K = Ju[Γ] ∣ σγ′ K = Ju ∣ σ′γ′′ K

I.H.
= Ju′ ∣ σ′γ′′ K = Ju′[Γ] ∣ σγ′ K

= Ju′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ K

where γ′ = γ ∪ {ei ↦ c}∀ei∈e⃗

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]↝(R,D,L,C) u

′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]

Ju[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ K = Ju[Γ] ∣ σ′γ′ K = Ju ∣ σ′′γ′′ K I.H.

= Ju′ ∣ σ′γ′′ K = Ju′[Γ] ∣ σ′γ′ K

= Ju′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ K

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]↝(R,C,D,L) u

′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ c ⟩ [Γ′]]

Ju[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ K = Ju[Γ] ∣ σ−{c}γ′ K I.H.

= Ju′[Γ′] ∣ σ−{c}γ′ K

= Ju′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ c ⟩ [Γ′]] ∣ σγ K

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]↝(R,C,D,L) u

′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ x⃗ ⟩ [Γ′]]

Ju[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ K = Ju[Γ] ∣ σ′γ′ K I.H.

= Ju′[Γ′] ∣ σ′γ′ K

3.3. TYPING SYSTEM 61

= Ju′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ K

Lemma 26. Given a term t ∈ ΛSa , then L J t K M is t in sharing normal form.

Proof. We can prove this by induction on the longest sharing reduction path from t. Our
base case is already covered by Lemma 24. We are then interested in the inductive case,
where t is not in sharing normal form. By Lemma 25, J t K = J t′ K where t↝(R,D,L,C) t

′. By
induction hypothesis, L J t′ K M is in sharing normal form. Hence L J t K M is in sharing normal
form.

3.3 Typing System

We will use here the open deduction formalism [GGP10] to type the terms of the spinal
atomic λ-calculus. This is the same formalism used to type the atomic λ-calculus of
Gundersen, Heijltjes and Parigot [GHP13] and He’s atomic λµ-calculus [He18]. The typing
system used here is an extension of that of [GHP13], where we restrict the abstraction
inference rule to an axiom and add a switch inference rule, which is a common occurrence
in systems of deep inference. This small change is exactly what unlocks the ability of spinal
duplication; explained in more detail towards the end of this section.

3.3.1 Inference Rules

The addition of the switch rule means we can restrict the abstraction rule to an axiom.

Definition 27. The typing rules in open deduction for ΛSa -terms

⊺
λ

A→ A
(A→ B) ∧A

@
B

A △
A ∧ ⋅ ⋅ ⋅ ∧A

(A→ B) ∧C
s

A→ (B ∧C)
A→ (B1 ∧ ⋅ ⋅ ⋅ ∧Bn)

d
(A→ B1) ∧ ⋅ ⋅ ⋅ ∧ (A→ Bn)

Definition 28. Typing derivations for ΛSa -terms

Ax

Γ
ÚÚÙs

A→ B

∧
∆
ÚÚÙt
A

@
B

⊺
λ

A→ A
∧∆

s

Ax →
Ax ∧∆

ÚÚÙt
C

(A→ Γ) ∧∆
s

Ad →
Γx⃗ ∧∆

ÚÚÙt
C

x s t x⟨x ⟩.t d⟨ x⃗ ⟩.t

62 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

∆
ÚÚÙt
A △

Ax1 ∧ ⋅ ⋅ ⋅ ∧Axn
∧ Γ

ÚÚÙu
B

(C → Γ) ∧∆
s

Cc →
Γy⃗ ∧∆

ÚÚÙ[Γ]

Σ ∧ ⋅ ⋅ ⋅ ∧Φ
d

(Ce1 → Σx⃗1) ∧ ⋅ ⋅ ⋅ ∧ (Cen → Φx⃗n)

∧Ω

ÚÚÙu
E

u[x1, . . . , xn ← t] u[e1⟨x1
1 . . . x

1
k1

⟩ . . . en⟨xn1 . . . xnkn ⟩ ∣ c⟨ y⃗ ⟩ [Γ]]

3.3.2 Reduction Rules

Reduction rules in our calculus correspond to the following transformations in open deduc-
tion.
Beta Rule

⊺
λ

A→ A
∧ Γ

s

Ax →
Ax ∧ Γ

ÚÚÙt
B

∧
∆
ÚÚÙs
A

@
B

↝β

∆
ÚÚÙs
A

∧ Γ

A ∧ Γ
ÚÚÙt
B

(x⟨x ⟩.t) s ↝β t{s/x}
(β)

Deletion Rule

∆
ÚÚÙs

A→ B

∧
Γ
ÚÚÙt
A

@
B △⊺

↝R

∆
ÚÚÙs

A→ B △⊺

∧
Γ
ÚÚÙt
A△⊺

u[← s t] ↝R u[← s][← t]
(r1)

(A→ B) ∧ Γ
s

Ax →
By⃗ ∧ Γ

ÚÚÙt
C

△⊺

↝R

(A→ B) ∧ Γ
s

Ax →
By⃗ ∧ Γ

ÚÚÙt
C △⊺

d⊺

u[← x⟨ y⃗ ⟩.t] ↝R u[∣x⟨ y⃗ ⟩ [← t]]

3.3. TYPING SYSTEM 63

(r2)

⊺
λ

Ax → Ax △⊺
d⊺

↝R ⊺

u[∣x⟨x ⟩ [← x]] ↝R u
(r3)

Compound Rules

Γ
ÚÚÙt
A △

A⃗x⃗ ∧ Ay △
A⃗w⃗

∧ A⃗z⃗
↝C

Γ
ÚÚÙt
A △

A⃗x⃗ ∧ A⃗w⃗ ∧ A⃗z⃗

u[w⃗ ← y][x⃗ ⋅ y ⋅ z⃗ ← t] ↝C u[x⃗ ⋅ w⃗ ⋅ z⃗ ← t]
(c1)

Γ
ÚÚÙt

A △
Ax

ÚÚÙu
C

↝C

Γ
ÚÚÙt
A
ÚÚÙu
C

u[x← t] ↝C u{t/y}
(c2)

Duplication Rules

∆
ÚÚÙs

A→ B

∧
Γ
ÚÚÙt
A

@
B △

Bx1 ∧ ⋅ ⋅ ⋅ ∧Bxn

∧Ω

ÚÚÙu
C

↝D

∆
ÚÚÙs

A→ B △
(A→ B)z1 ∧ ⋅ ⋅ ⋅ ∧ (A→ B)zn

∧
Γ
ÚÚÙt
A △

Ay1 ∧ ⋅ ⋅ ⋅ ∧Ayn

(A→ B) ∧A
@

B
∧ ⋅ ⋅ ⋅ ∧ (A→ B) ∧A

@
B

∧Ω

ÚÚÙu
C

u[x1 . . . xn ← s t] ↝D u{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]
(d1)

64 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

(A→ B) ∧ Γ
s

Ac →
By⃗ ∧ Γ

ÚÚÙt
C

△
(A→ C)x1 ∧ ⋅ ⋅ ⋅ ∧ (A→ C)xn

∧Ω

ÚÚÙu
D

↝D

(A→ B) ∧ Γ
s

Ac →

By⃗ ∧ Γ
ÚÚÙt
C △

Cw
1
1 ∧ ⋅ ⋅ ⋅ ∧Cwn

1

d

(Ae1 → Cw
1
1) ∧ ⋅ ⋅ ⋅ ∧ (Aen → Cw

n
1)

∧Ω

ÚÚÙu
D

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D

u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1
1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y⃗ ⟩ [w1

1, . . . ,w
n
1 ← t]]

(d2)

⊺
λ

Ac → Ac △
Aw

1
1 ∧ ⋅ ⋅ ⋅ ∧Aw

1
k1 ∧ ⋅ ⋅ ⋅ ∧Awn

1 ∧ ⋅ ⋅ ⋅ ∧Awn
kn

d

(Ae1 → Aw
1
1 ∧ ⋅ ⋅ ⋅ ∧Aw

1
k1) ∧ ⋅ ⋅ ⋅ ∧ (Aen → Aw

n
1 ∧ ⋅ ⋅ ⋅ ∧Awn

kn)

∧Ω

ÚÚÙu
B

↓D

⊺
λ

Ae1 → Ae1 △
Aw

1
1 ∧ ⋅ ⋅ ⋅ ∧Aw

1
k1

∧ ⋅ ⋅ ⋅ ∧
⊺

λ

Aen → Aen △
Aw

n
1 ∧ ⋅ ⋅ ⋅ ∧Awn

kn

∧Ω

ÚÚÙu
B

u[e1⟨w1
1, . . . ,w

1
k1

⟩ . . . en⟨wn1 , . . . ,wnkn ⟩ ∣ c⟨ c ⟩ [w1
1, . . . ,w

1
k1
, . . . ,wn1 , . . . ,w

n
kn ← c]]↝D

u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e
(d3)

Lifting Rules

3.3. TYPING SYSTEM 65

Γ ∧
Ω
ÚÚÙ[Γ]

C △
C ∧C
ÚÚÙs

A→ B

∧
∆
ÚÚÙt
A

@
B

↝L

Γ ∧∆ ∧
Ω
ÚÚÙ[Γ]

C △
C ∧C

Γ ∧C ∧C
ÚÚÙs

A→ B

∧
∆
ÚÚÙt
A

@
B

s[Γ] t ↝L (s t)[Γ]
(l1)

Γ
ÚÚÙs

A→ B

∧
∆ ∧

Ω
ÚÚÙ[Γ]

C △
C ∧C
ÚÚÙt
A

@
B

↝L

Γ ∧∆ ∧
Ω
ÚÚÙ[Γ]

C △
C ∧C

Γ
ÚÚÙs

A→ B

∧
∆ ∧C ∧C

ÚÚÙt
A

@
B

s t[Γ] ↝L (s t)[Γ]
(l2)

(A→ B) ∧∆ ∧ Γ
s

Ad →
Bx ∧∆

ÚÚÙt
D

∧
Γ
ÚÚÙ[Γ]

C △
C ∧C

↝L

(A→ B) ∧∆ ∧
Γ
ÚÚÙ[Γ]

C △
C ∧C

s

Ad →
Bx ∧∆

ÚÚÙt
D

∧C ∧C

d⟨x ⟩.t[Γ] ↝L (d⟨x ⟩.t)[Γ] iff x ∈ (t)fv
(l3)

(C → Γ) ∧∆ ∧Ω
s

Cc →
Γx⃗ ∧∆ ∧

Ω
ÚÚÙt

A ∧ ⋅ ⋅ ⋅ ∧A
ÚÚÙ[Γ]

Σw⃗1
1 . . .Σw⃗n

n
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

↝L

(C → Γ) ∧∆ ∧
Ω
ÚÚÙt

A ∧ ⋅ ⋅ ⋅ ∧A
s

Cc →
Γx⃗ ∧∆ ∧A. . .A

ÚÚÙ[Γ]

Σw⃗1
1 . . .Σw⃗n

n
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

66 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

(C → Γ) ∧∆ ∧A
s

C →

Γ ∧∆
ÚÚÙ

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn

∧A

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧A ∧ ⋅ ⋅ ⋅ ∧Σn
d

⋅ ⋅ ⋅ ∧ (C → Σi ∧A) ∧ . . .

↝

(C → Γ) ∧∆
s

C →

Γ ∧∆
ÚÚÙ

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧ ⋅ ⋅ ⋅ ∧Σn
d

⋅ ⋅ ⋅ ∧ (C → Σi) ∧ . . .

∧A

⋅ ⋅ ⋅ ∧ (C → Σi) ∧A
s

C → Σi ∧A
∧ . . .

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L

u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t]

iff all x⃗ /∈ (t)fv
(l5) and (l6)

The typing derivation for (l4) remains unchanged, where we only consider the difference
of composition similar to (l1). The last rule shows only the case for (l5), but covers (l6)
also by replacing the sharing with a distributor. The rule can be seen as two smaller rules
combined that represent the rewrite rule, that have a closer relationship with the proof
theory rewrite rules. These are

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t]

iff all x⃗ /∈ (t)fv
and at most ∣ y⃗ ∣ applications of the rule

u[e{ei⟨ w⃗ ⋅ z ⟩} ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L

u{w⃗/ei}b[e{ei⟨ w⃗ ⟩} ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]

iff z ∈ (u[e{ei⟨ w⃗ ⋅ z ⟩} ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]])fv
We can maintain a maximum of one switch rule corresponding with each (phantom-

)abstraction with the rewrite rule below. We use this rule to restrict derivations to their
canonical form.

(A→ B) ∧∆
s

A→
B ∧∆

ÚÚÙ
C

∧ Γ

s

A→
C ∧ Γ

ÚÚÙ
D

=

(A→ B) ∧∆ ∧ Γ
s

A→

B ∧∆
ÚÚÙ
C

∧ Γ

ÚÚÙ
D

3.3. TYPING SYSTEM 67

Only variables can be brought into scope of a function, not terms. Therefore, unless
the derivation is a variable or ends with a sharing inference rule or distribution inference
rule, the following relation holds

(A→ B) ∧∆ ∧
Γ
ÚÚÙ
C

s
A→ (B ∧∆ ∧C)

=

(A→ B) ∧∆ ∧ Γ
s

A→ B ∧∆ ∧
Γ
ÚÚÙ
C

We discussed how substitutions needed to ‘escape’ the distributor previously in Section
3.1.2. The following relation shows the logic for this. As the substitution traverses through
the distributor, the derivation of the term being substituted is moved from above to below
the distribution rule. This was also briefly discussed previously when discussing Figure 3.5.

(A→ Ψ) ∧Ω
s

Ac →

Ψy⃗ ∧Ω
ÚÚÙΓ

Γ1 ∧
∆z⃗

ÚÚÙs
Bx

∧ Γ2

d

Σ1 ∧ (Aei → (Bx ∧Πw⃗)) ∧Σ2

=

(A→ Ψ) ∧Ω
s

Ac →
Ψy⃗ ∧Ω

ÚÚÙΓ

Γ1 ∧∆z⃗ ∧ Γ2

d

Σ1 ∧ (Aei → (
∆z⃗

ÚÚÙs
Bx

∧Πw⃗)) ∧Σ2

u[e{ei⟨ w⃗ ⋅ x ⟩} ∣ c⟨ y⃗ ⟩ {s/x}[Γ]] = u{s/x}[e{ei⟨ w⃗ ⋅ z⃗ ⟩} ∣ c⟨ y⃗ ⟩ [Γ]]

The above demonstrates how reductions are mirrored in the proof system, and thus
preserves types. We have the following proposition.

Proposition 29 (Subject Reduction). If s↝(β,R,D,L) t and s ∶ T , then t ∶ T

3.3.3 Switch Effects

Chapter 2 discusses the Curry-Howard correspondence between the switch and an end-
of-scope operator for the regular λ-calculus. Here we demonstrate how we can take full
advantage of the utilities that the switch rule provides, by showing how the use of the switch
rule interacts with the distribution rule (medial rule) to allow for more elegant reductions
and duplication.

Adding the switch rule to the typing system of the atomic λ-calculus allows for alter-
native rewrite rules. Because of the switch, we can eliminate distributors independently of
each other. As an example, look at the derivation below. We can lift the derivation out of
the scope of the abstraction being duplicated. This corresponds to the first proof rewrite
rule of (l5) and (l6).

68 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

λ
A→ A ∧ Γ1 ∧ Γ2

s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D

∧

Γ2
ÚÚÙ
C △

C ∧C
D ∧C

ÚÚÙ
B

∧
D ∧C

ÚÚÙ
B

d
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ1 ∧

Γ2
ÚÚÙ
C △

C ∧C
s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D

∧C ∧C

D ∧C
ÚÚÙ
B

∧
D ∧C

ÚÚÙ
B

d
(A→ B) ∧ (A→ B)

Then, we can push the derivations that are a result of duplication underneath the distribu-
tion rule. This is what we discussed in Figure 3.5.

λ
A→ A ∧ Γ1 ∧

Γ2
ÚÚÙ
C △

C ∧C
s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D

∧C ∧C

D ∧C
ÚÚÙ
B

∧
D ∧C

ÚÚÙ
B

d
(A→ B) ∧ (A→ B)

↝

λ
A→ A ∧ Γ1 ∧

Γ2
ÚÚÙ
C △

C ∧C
s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D

∧C ∧C

d

(A→
D ∧C

ÚÚÙ
B

) ∧ (A→
D ∧C

ÚÚÙ
B

)

At the moment, these rewrite rules could also have been done without the use of the
switch rule. But the addition of the switch rule allows for the following rewrite. Since we
are duplicating an abstraction, and we employ the convention that each abstraction has
at most one switch rule, it makes sense that at some point we duplicate the switch rules.
These correspond to the phantom-abstractions in the calculus.

3.3. TYPING SYSTEM 69

λ
A→ A ∧ Γ1 ∧

Γ2
ÚÚÙ
C △

C ∧C
s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D

∧C ∧C

d

(A→
D ∧C

ÚÚÙ
B

) ∧ (A→
D ∧C

ÚÚÙ
B

)

↝

λ
A→ A ∧ Γ1

s

A→

A ∧ Γ1
ÚÚÙ
D △

D ∧D
d

(A→D) ∧ (A→D)

∧

Γ2
ÚÚÙ
C △

C ∧C

(A→D) ∧C
s

A→
D ∧C

ÚÚÙ
B

∧

(A→D) ∧C
s

A→
D ∧C

ÚÚÙ
B

As a larger example, let r = u[z1, z2 ← λx.λy.(x (t{y1})) s{y2}[y1, y2 ← y]], where t
has the variable y1 occurring in it as a free variable (and the same for s and y2). In the
original atomic λ-calculus reduction would introduce 2 distributors, one for the λx and one
for the λy, however, to finish duplicating the λx abstraction i.e. eliminate that distributor,
one is forced to first eliminate the distributor associated with λy.

We will discuss an example to demonstrate why our calculus does not have the restric-
tion. We can derive the typing derivation for r as below.

⊺
λ

(A→ (B → C))x → (A→ (B → C))x ∧ Γ ∧∆
s

(A→ (B → C))x →

(A→ (B → C))x ∧ ⊺
λ

Dy →Dy ∧ Γ ∧∆
s

Dy →

(A→ (B → C))x ∧ Dy
△

Dy1 ∧Dy2
∧ Γ ∧∆

(A→ (B → C))x ∧
Dy1 ∧ Γ

ÚÚÙt
A

@
B → C

∧
Dy2 ∧∆

ÚÚÙs
B

@
C

△
((A→ (B → C))→D → C)z1 ∧ ((A→ (B → C))→D → C)z2

∧Ω

ÚÚÙu
E

We then perform the reduction (d1) twice to introduce the distributors in our calculus,
resulting in the term

u[z1, z2 ← x⟨x ⟩.y⟨ y ⟩.(x (t{y1})) s{y2}[y1, y2 ← y]]
↝∗
D

u{e1⟨a1 ⟩.f1⟨a1 ⟩.a1/z1}{e2⟨a2 ⟩.f2⟨a2 ⟩.a2/z2}
[e1⟨a1 ⟩, e2⟨a2 ⟩ ∣x⟨x ⟩ [f1⟨a1 ⟩, f2⟨a2 ⟩ ∣ y⟨ y ⟩ [a1, a2 ← (x (t{y1})) (s{y2})[y1, y2 ← y]]]]

70 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS

⊺
λ

(A→ (B → C))x → (A→ (B → C))x ∧ Γ ∧∆
s

(A→ (B → C))x →

(A→ (B → C))x ∧ ⊺
λ

Dy →Dy ∧ Γ ∧∆
s

Dy →

(A→ (B → C))x ∧ Dy
△

Dy1 ∧Dy2
∧ Γ ∧∆

(A→ (B → C))x ∧
Dy1 ∧ Γ

ÚÚÙt
A

@
B → C

∧
Dy2 ∧∆

ÚÚÙs
B

@
C △

Ca1 ∧Ca2

d

(Df1 → C) ∧ (Df2 → C)
d

((A→ (B → C))e1 → (D → C)) ∧ ((A→ (B → C))e2 → (D → C))

∧Ω

ÚÚÙu
E

Now we can duplicate the applications using the reduction rule (d1).

3.3. TYPING SYSTEM 71

u
{e

1
⟨a

1
⟩.f

1
⟨a

1
⟩.a

1
/z

1
}{
e 2

⟨a
2
⟩.f

2
⟨a

2
⟩.a

2
/z

2
}

[e
1
⟨a

1
⟩,
e 2

⟨a
2
⟩∣
x
⟨x

⟩[
f 1

⟨a
1
⟩,
f 2

⟨a
2
⟩∣
y
⟨y

⟩[
a

1
,a

2
←

(x
(t
{y

1
})

)(
s{
y 2

})
][
y 1
,y

2
←
y
]]
]

↝
∗ D

u
{e

1
⟨a

1
,b

1
,c

1
⟩.f

1
⟨a

1
,b

1
,c

1
⟩.(
a

1
b 1

)c
1
/z

1
}{
e 2

⟨a
2
,b

2
,c

2
⟩.f

2
⟨a

2
,b

2
,c

2
⟩.(
a

1
b 1

)c
2
/z

2
}

[e
1
⟨a

1
,b

1
,c

1
⟩,
e 2

⟨a
2
,b

2
,c

2
⟩∣
x
⟨x

⟩[
f 1

⟨a
1
,b

1
,c

1
⟩,
f 2

⟨a
2
,b

2
,c

2
⟩∣
y
⟨y

⟩[
a

1
,a

2
←
x
][
b 1
,b

2
←
t{
y 1

}]
[c

1
,c

2
←
s{
y 2

}]
[y

1
,y

2
←
y
]]
]

⊺
λ

(A
→

(B
→
C
))
x
→

(A
→

(B
→
C
))
x

∧
Γ
∧

∆
s

(A
→

(B
→
C
))
x
→

(A
→

(B
→
C
))
x
∧

⊺
λ

D
y
→
D
y

∧
Γ
∧

∆
s

D
y
→

(A
→

(B
→
C
))
∧

D
y

△

D
y
1
∧
D
y
2

∧
Γ
∧

∆

(A
→

(B
→
C
))

△

(A
→

(B
→
C
))
a
1
∧
(A
→

(B
→
C
))
a
2

∧

D
y
1
∧

Γ
Ú Ú Ú Ùt

A
△

A
b
1
∧
A
b
2

∧

D
y
2
∧

∆
Ú Ú Ú Ùs

B
△

B
c
1
∧
B
c
2

d

(D
f
1
→

(A
→

(B
→
C
))
∧
A
∧
B
)∧

(D
f
2
→

(A
→

(B
→
C
))
∧
A
∧
B
)

d

(A
→

(B
→
C
))
e
1
→

(D
→

(A
→

(B
→
C
))
∧
A

@
B
→
C

∧
B

@
C

)∧
(A
→

(B
→
C
))
e
2
→

(D
→

(A
→

(B
→
C
))
∧
A

@
B
→
C

∧
B

@
C

)

∧
Ω

Ú Ú Ú Ùu

E

72 CHAPTER 3. SPINAL ATOMIC λ-CALCULUS
T

h
en

,
w

e
ca

n
lif

t
ou

r
sh

ar
in

g
ou

t
of

th
e

sc
op

e
of

th
e

d
is

tr
ib

u
to

r
i.

e.
th

e
ab

st
ra

ct
io

n
b

ei
n

g
d

u
p

lic
at

ed
.

T
h

e
re

d
u

ct
io

n
ru

le
s

(l
5
)

an
d

(l
6
)

ar
e

ex
ac

tl
y

w
h

at
al

lo
w

u
s

to
lif

t
th

e
sh

ar
in

gs
,

an
d

th
u

s
lif

t
th

e
n

es
te

d
d

is
tr

ib
u

to
r

ou
t

of
th

e
ou

te
r

d
is

tr
ib

u
to

r,
an

d
el

im
in

at
e

th
e

ou
te

r
d

is
tr

ib
u

to
r

b
ef

or
e

th
e

n
es

te
d

d
is

tr
ib

u
to

r.

u
{e

1
⟨a

1
,b

1
,c

1
⟩.f

1
⟨a

1
,b

1
,c

1
⟩.(
a

1
b 1

)c
1
/z

1
}{
e 2

⟨a
2
,b

2
,c

2
⟩.f

2
⟨a

2
,b

2
,c

2
⟩.(
a

1
b 1

)c
2
/z

2
}

[e
1
⟨a

1
,b

1
,c

1
⟩,
e 2

⟨a
2
,b

2
,c

2
⟩∣
x
⟨x

⟩[
f 1

⟨a
1
,b

1
,c

1
⟩,
f 2

⟨a
2
,b

2
,c

2
⟩∣
y
⟨y

⟩[
a

1
,a

2
←
x
][
b 1
,b

2
←
t{
y 1

}]
[c

1
,c

2
←
s{
y 2

}]
[y

1
,y

2
←
y
]]
]

↝
∗ L

u
{e

1
⟨a

1
⟩.f

1
⟨b

1
,c

1
⟩.(
a

1
b 1

)c
1
/z

1
}{
e 2

⟨a
2
⟩.f

2
⟨b

2
,c

2
⟩.(
a

1
b 1

)c
2
/z

2
}

[e
1
⟨a

1
⟩,
e 2

⟨a
2
⟩∣
x
⟨x

⟩[
a

1
,a

2
←
x
]]
[f

1
⟨b

1
,c

1
⟩,
f 2

⟨b
2
,c

2
⟩∣
y
⟨y

⟩[
b 1
,b

2
←
t{
y 1

}]
[c

1
,c

2
←
s{
y 2

}]
[y

1
,y

2
←
y
]]

⊺
λ

(A
→

(B
→
C
))
x
→

(A
→

(B
→
C
))
x

△

(A
→

(B
→
C
))
a
1
∧
(A
→

(B
→
C
))
a
2

d
(A
→

(B
→
C
))
e
1
→

(A
→

(B
→
C
))
∧
(A
→

(B
→
C
))
e
2
→

(A
→

(B
→
C
))

∧

⊺
λ

D
y
→
D
y

∧
Γ
∧

∆
s

D
y
→

D
y

△

D
y
1
∧
D
y
2

∧
Γ
∧

∆

D
y
1
∧

Γ
Ú Ú Ú Ùt

A
△

A
b
1
∧
A
b
2

∧

D
y
2
∧

∆
Ú Ú Ú Ùs

B
△

B
c
1
∧
B
c
2

d

(D
f
1
→
A
∧
B
)∧

(D
f
2
→
A
∧
B
)

((
A
→

(B
→
C
))
→

(A
→

(B
→
C
))

)∧
(D
→
A
∧
B
)
s

(A
→

(B
→
C
))
→

(A
→

(B
→
C
))
∧
(D
→
A
∧
B
)
s

D
→

(A
→

(B
→
C
))
∧
A

@
B
→
C

∧
B

@
C

∧

((
A
→

(B
→
C
))
→

(A
→

(B
→
C
))

)∧
(D
→
A
∧
B
)
s

(A
→

(B
→
C
))
→

(A
→

(B
→
C
))
∧
(D
→
A
∧
B
)
s

D
→

(A
→

(B
→
C
))
∧
A

@
B
→
C

∧
B

@
C

∧
Ω

Ú Ú Ú Ùu

E

A
n

d
n

ow
w

e
ca

n
el

im
in

at
e

th
e

fi
rs

t
d

is
tr

ib
u

to
r

u
si

n
g

(d
3
)

w
it

h
ou

t
co

n
ti

n
u

in
g

to
d

u
p

lic
at

e
th

e
te

rm
s
t

an
d
s,

th
u

s
d

u
p

lic
at

in
g

le
ss

th
an

w
h

at
th

e
or

ig
in

al
at

om
ic
λ

-c
al

cu
lu

s
w

ou
ld

d
u

p
lic

at
e

to
el

im
in

at
e

th
is

d
is

tr
ib

u
to

r.

Chapter 4

The weakening calculus

删繁就简
shānfán jiùjiǎn

Simplify by cutting out the superfluous

We discuss the weakening calculus, its syntax and reduction rules. Intuitively, the
weakening calculus is the original λ-calculus extended with a weakening construct and a
bullet construct which can be interpretated as a free variable. We later use this calculus
to show normalisation of sharing reductions (↝(R,D,L,C)), by formliasing the relationship
between the spinal atomic λ-calculus and the weakening calculus.

The weakening calculus is also used to show preservation of strong normalisation with
respect to the λ-calculus. A β-step in our calculus may occur within a weakening, and
therefore is simulated by zero β-steps in the λ-calculus. Therefore if there is an infinite
reduction path located inside a weakening in ΛSa , then the reduction path is not preserved
in the corresponding λ-term as there are no weakenings. To deal with this, just as done
in [AK12a, GHP13, He18], we make use of the weakening calculus. A β-step is non-
deleteing precisely because of the weakening construct. If a β-step would be deleting in
the λ-calculus, then the weakening calculus would instead keep the deleted term around as
‘garbage’, which can continue to reduce unless explicitly ‘garbage-collected’ by extra (non-
β) reduction steps. The weakening calculus has already been shown to preserve strong
normalisation through the use of a perpetual strategy in [GHP13]. A part of proving PSN
is then using the weakening calculus to prove that if t ∈ ΛSa has a infinite reduction path,
then its translation into the weakening calculus also has an infinite reduction path.

73

74 CHAPTER 4. THE WEAKENING CALCULUS

4.1 Syntax and Translations

In this section we introduce the terms of the weakening calculus (ΛW), using the same
definition as provided in [GHP13].

Definition 30. The W-terms and the weakening calculus (ΛW) are

T,U,V ∶∶= x ∣ λx.T ∗ ∣ U V ∣ T [← U] ∣ ●

(*) where x ∈ (T)fv

The terms provided by Definition 30 are variable, abstraction, application, weakening,
and a bullet. In the weakening T [← U], the subterm U is weakened. The interpretation of
atomic terms to weakening terms J− ∣ −− KW can be seen as an extension of the translation
into the λ-calculus (Definition 13)

Definition 31. The interpretation J− ∣ −− KW ∶ ΛSa × (V → ΛW)× (V → V)→ ΛW with maps
σ ∶ V → ΛW and γ ∶ V → V is defined as an extension of the translation in (Definition 13)
with the following additional special cases.

Ju[← t] ∣ σ
γ

KW = Ju ∣ σ
γ

KW[← J t ∣ σ
γ

KW]

Ju[∣ c⟨ c ⟩ [Γ]] ∣ σ
γ

KW = Ju[Γ] ∣ σ
′

γ
KW

where σ′ = σ − {c} ∪ {c↦ ●}

Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σ
γ

KW = Ju[Γ] ∣ σ
′

γ
KW

where

σ′ = σ − {x1, . . . , xn} ∪ {xi ↦Mi{●/γ(c)}}1≤i≤n

Definition 32. We say J t KW = J t ∣ II KW where I is the identity function

Proposition 33. Given M ∈ ΛW such that for all v ∈ V , γ(v) /∈ (M)fv and σ(x) = x

Ju ∣ σ
′

γ
K = Ju ∣ σ

γ
K{M/x}

where σ′ = (σ{M/x}) ∪ {x↦M}

Proof. We prove this by induction on u. The argument is similar to the proof of Proposition
19. We only discuss here to cases involving the three special cases defined in Definition 31.

Inductive Case: Weakening

Ju[← t] ∣ σ′γ KW = Ju ∣ σ′γ K[← J t ∣ σ′γ K] I.H.
= Ju ∣ σγ K{M/x}[← J t ∣ σγ K{M/x}]

= Ju ∣ σγ K[← J t ∣ σγ K]{M/x} = Ju[← t] ∣ σγ KW{M/x}

Inductive Case: Distributor
Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σ′γ KW

4.1. SYNTAX AND TRANSLATIONS 75

SubCase: x⃗ = c
Ju[∣ c⟨ c ⟩ [Γ]] ∣ σ′γ KW = Ju[Γ] ∣ σ′′γ KW

I.H.
= Ju[Γ] ∣ σ′′′γ KW{M/x}

= Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW{M/x}
where
σ′′′ = σ ∪ {c↦ ●}
σ′′ = σ′ ∪ {c↦ ●}

SubCase x⃗ = x1, . . . , xn
Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σ′γ KW = Ju[Γ] ∣ σ′′γ KW

I.H.
= Ju[Γ] ∣ σ′′′γ KW{M/x}

= Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW{M/x}
where
σ′ = σ1{M/x} ∪ {x1 ↦M1{M/x}, . . . , xn ↦Mn{M/x}} ∪ {x↦M}
σ′′ = σ1{M/x} ∪ {x1 ↦M1{M/x}{●/γ(c)}, . . . , xn ↦Mn{M/x}{●/γ(c)}} ∪ {x↦M}
σ′′′ = σ1 ∪ {x1 ↦M1{●/γ(c)}, . . . , xn ↦Mn{●/γ(c)}}

Proposition 34. Substitution commutes with the translation in the following way

Ju{t/x} ∣ σ
γ

KW = Ju ∣ σ
′

γ
KW

where σ′ = σ ∪ {x↦ J t ∣ σγ KW}

Proof. We prove this by induction on u. The argument is similar to the proof of Proposition
18. We only discuss here to cases involving the three special cases defined in Definition 31.

Inductive Case: Weakening
Ju[← s]{t/x} ∣ σγ KW = Ju{t/x} ∣ σγ KW[← J s{t/x} ∣ σγ KW]
I.H.
= Ju ∣ σ′γ KW[← J s ∣ σ′γ KW] = Ju[← s] ∣ σ′γ KW

Inductive Case: Distributor
Ju[∣ c⟨ x⃗ ⟩ [Γ]]{t/x} ∣ σγ KW

SubCase: x⃗ = c
Ju[∣ c⟨ c ⟩ [Γ]]{t/x} ∣ σγ KW = Ju[∣ c⟨ c ⟩ [Γ]{t/x}] ∣ σγ KW
= Ju[Γ]{t/x} ∣ σ′′γ′ KW

I.H.
= Ju[Γ] ∣ σ′′′γ′ KW = Ju[∣ c⟨ c ⟩ [Γ]] ∣ σ′γ KW

where
σ′′ = σ ∪ {c↦ ●}
σ′′′ = σ ∪ {c↦ ●} ∪ {x↦ J t ∣ σ′′γ′ KW} = σ ∪ {c↦ ●} ∪ {x↦ J t ∣ σγ KW}

SubCase: x⃗ = x1, . . . , xn
Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]]{t/x} ∣ σγ KW

SubSubCase: x⃗ = x1, . . . , xn, x
Ju[∣ c⟨x1, . . . , xn, x ⟩ [Γ]]{t/x} ∣ σγ KW

76 CHAPTER 4. THE WEAKENING CALCULUS

Ju[∣ c⟨x1, . . . , xn, y1, . . . , ym ⟩ [Γ]{t/x}] ∣ σγ KW
where {y1, . . . , ym} = (t)fv
= Ju[Γ]{t/x} ∣ σ′′γ KW
where
σ = σ1 ∪ {x1 ↦M1, . . . , xn ↦Mn, y1 ↦ N1, . . . , ym ↦ Nm}
σ′′ = σ1 ∪ {x1 ↦M1{●/γ(c)},

. . . , xn ↦Mn{●/γ(c)}, y1 ↦ N1{●/γ(c)}, . . . , ym ↦ Nm{●/γ(c)}}
I.H.
= Ju[Γ] ∣ σ′′′γ KW = Ju[∣ c⟨x1, . . . , xn, x ⟩ [Γ]] ∣ σ′γ KW
where σ′′′ = σ′′ ∪ {x↦ J t ∣ σ′′γ KW} = σ′′ ∪ {x↦ J t ∣ σ′γ KW{●/γ(c)}}
since {y1, . . . , ym} = (t)fv

SubSubCase: x⃗ = x1, . . . , xn
Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]]{t/x} ∣ σγ KW = Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]{t/x}] ∣ σγ KW
Ju[Γ]{t/x} ∣ σ′′γ KW

I.H.
= Ju[Γ] ∣ σ′′′γ KW = Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σ′γ KW

σ = σ1 ∪ {x1 ↦M1, . . . , xn ↦Mn}
σ′′ = σ1 ∪ {x1 ↦M1{●/γ(c)}, . . . , xn ↦Mn{●/γ(c)}}
σ′′′ = σ′′ ∪ {x↦ J t ∣ σ′′γ KW} = σ′′ ∪ {x↦ J t ∣ σγ KW}
since {x1, . . . , xn} ∩ (t)fv = {}

Proposition 35. Book-keeping commutes with the translation in the following way

if c⟨ y1, . . . , ym ⟩. ∈ (u)fc such that {x1, . . . , xn} ⊂ {y1, . . . , ym}
and for those z ∈ {y1, . . . , ym}/{x1, . . . , xn}, γ(c) /∈ (σ(z))fv
or if simply {x1, . . . , xn} ∩ (u)fv = {}

Ju{x1, . . . , xn/c}b ∣
σ

γ
KW = Ju ∣ σ

γ
KW

Proof. We prove this by induction on u. The argument is similar to the proof of Proposition
20. We only discuss here to cases involving the three special cases defined in Definition 31.

Inductive Case: Weakening
Ju[← t]{x1, . . . , xn/c}b ∣ σγ KW = Ju{x1, . . . , xn/c}b ∣ σγ KW[← J t{x1, . . . , xn/c}b ∣ σγ KW]
I.H.
= Ju ∣ σγ KW[← J t ∣ σγ KW] = Ju[← t] ∣ σγ KW

Base Case: Distributor
Ju[∣ c⟨ x⃗ ⟩ [Γ]]{x1, . . . , xn/c}b ∣ σγ KW = Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σγ KW
Ju[Γ] ∣ σ′γ KW = Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW
where σ = σ1 ∪ {x1 ↦M1, . . . , xn ↦Mn}
σ′ = σ1 ∪ {x1 ↦M1{●/γ(c)}, . . . , xn ↦Mn{●/γ(c)}}
and for xi ≠ y ∈ x⃗, {y ↦ N} = {y ↦ N{●/γ(c)}}

Inductive Case: Distributor
Ju[∣d⟨d ⟩ [Γ]]{x1, . . . , xn/c}b ∣ σγ KW = Ju[∣d⟨d ⟩ [Γ]{x1, . . . , xn/c}b] ∣ σγ KW
Ju[Γ]{x1, . . . , xn/c}b ∣ σ

′

γ KW
I.H.
= Ju[Γ] ∣ σ′γ KW = Ju[∣d⟨d ⟩ [Γ]] ∣ σγ KW

4.1. SYNTAX AND TRANSLATIONS 77

where σ′ = σ ∪ {d↦ ●}

Ju[∣d⟨ z1, . . . , zn ⟩ [Γ]]{x1, . . . , xn/c}b ∣ σγ KW = Ju[∣d⟨ z1, . . . , zn ⟩ [Γ]{x1, . . . , xn/c}b] ∣ σγ KW
Ju[Γ]{x1, . . . , xn/c}b ∣ σ

′

γ KW
I.H.
= Ju[Γ] ∣ σ′γ KW = Ju[∣d⟨ z1, . . . , zn ⟩ [Γ]] ∣ σγ KW

where
σ = σ1 ∪ {z1 ↦M1, . . . , zn ↦Mn}
σ′ = σ1 ∪ {z1 ↦M1{●/γ(d)}, . . . , zn ↦Mn{●/γ(d)}}

Proposition 36. Exorcisms commute with the translation in the following way
if c⟨x1, . . . , xn ⟩. ∈ (u)fc or {x1, . . . , xn} ∩ (u)fv = {}

Ju{c⟨x1, . . . , xn ⟩}e ∣
σ

γ
KW = Ju ∣ σ

′

γ
KW

where
σ′ = σ ∪ {x1 ↦ c, . . . , xn ↦ c}

Proof. We prove this by induction on u. The argument is similar to the proof of Proposition
21. We only discuss here to cases involving the three special cases defined in Definition 31.

Inductive Case: Weakening
Ju[← t]{c⟨x1, . . . , xn ⟩}e ∣ σγ KW = Ju{c⟨x1, . . . , xn ⟩}e ∣ σγ KW[← J t{c⟨x1, . . . , xn ⟩}e ∣ σγ KW]
I.H.
= Ju ∣ σ′γ KW[← J t ∣ σ′γ KW] = Ju[← t] ∣ σ′γ KW

Base Case: Distributor
Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]]{c⟨x1, . . . , xn ⟩}e ∣ σγ KW = Ju[∣ c⟨ c ⟩ [Γ][x1, . . . , xn ← c]] ∣ σγ KW
= Ju[Γ][x1, . . . , xn ← c] ∣ σ′′γ KW = Ju[Γ] ∣ σ′′′γ KW = Ju[∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σ′γ KW
where
σ′′ = σ ∪ {c↦ ●}
σ′′′ = σ ∪ {x1 ↦ ●, . . . , xn ↦ ●}

Inductive Case: Distributor
Ju[∣d⟨d ⟩ [Γ]]{c⟨x1, . . . , xn ⟩}e ∣ σγ KW = Ju[∣d⟨d ⟩ [Γ]{c⟨x1, . . . , xn ⟩}e] ∣ σγ KW
= Ju[Γ]{c⟨x1, . . . , xn ⟩}e ∣ σ

′′

γ KW
I.H.
= Ju[Γ] ∣ σ′′′γ KW = Ju[∣d⟨d ⟩ [Γ]] ∣ σ′γ KW

where
σ′′ = σ ∪ {d↦ ●}
σ′′′ = σ′′ ∪ {x1 ↦ c, . . . , xn ↦ c}

Ju[∣d⟨ z1, . . . , zm ⟩ [Γ]]{c⟨x1, . . . , xn ⟩}e ∣ σγ KW
= Ju[∣d⟨ z1, . . . , zm ⟩ [Γ]{c⟨x1, . . . , xn ⟩}e] ∣ σγ KW
= Ju[Γ]{c⟨x1, . . . , xn ⟩}e ∣ σ

′′

γ KW
I.H.
= Ju[Γ] ∣ σ′′′γ KW = Ju[∣d⟨d ⟩ [Γ]] ∣ σ′γ KW

where
σ = σ1 ∪ {z1 ↦ N1, . . . , zm ↦ Nm}
σ′′ = σ1 ∪ {z1 ↦ N1{●/γ(d)}, . . . , zm ↦ Nm{●/γ(d)}}
σ′′′ = σ′′ ∪ {x1 ↦ c, . . . , xn ↦ c}

78 CHAPTER 4. THE WEAKENING CALCULUS

We also have translations of the weakening calculus to and from the lambda calcu-
lus. Both of these translations have been provided in [GHP13]. We will first discuss the
interpretation L− MW ∶ Λ→ ΛW .

Definition 37. The interpretation M ∈ Λ, L− MW ∶ Λ→ ΛW is defined by

Lx MW = x
LMN MW = LM MW LN MW

Lλx.N MW =
⎧⎪⎪⎨⎪⎪⎩

λx.LN MW if x ∈ (N)fv
λx.LN MW[← x] otherwise

The interpretation below is also taken directly from [GHP13]. It should be noted that
this is a partial function as the case of interpreting a bullet is undefined. Intuitively this
case would be resolved by replacing the bullet with a free fresh variable; resulting in the
interpretation to become non-deterministic. We avoid this however by omitting this case
since it never arises both in our work nor in the work of [GHP13].

Definition 38. The partial interpretation ⌊− ⌋ ∶ ΛW → Λ is defined by

⌊x ⌋ = x
⌊U V ⌋ = ⌊U ⌋ ⌊V ⌋
⌊λx.T ⌋ = λx.⌊T ⌋

⌊U[← T] ⌋ = ⌊U ⌋

Proposition 39. For N ∈ Λ and t ∈ ΛSa the following properties hold

ΛSa ΛW

Λ

J− ∣ σWγ KW

⌊− ⌋J− ∣ σΛ

γ K

ΛSa ΛW

Λ

J− KW

L− MWL− M

Λ Λ

ΛW

=

L− MW ⌊− ⌋

⌊ J t ∣ σWγ KW ⌋ = J t ∣ σΛ

γ K J LN M KW = LN MW ⌊ LN MW ⌋ = N

where for each {x↦M} ∈ σW then {x↦ ⌊M ⌋} ∈ σΛ

Proof. We prove ⌊ Ju ∣ σWγ KW ⌋ = Ju ∣ σΛ

γ K by induction on u.

Base Case: Variable
⌊ Jx ∣ σWγ KW ⌋ = ⌊σW(x) ⌋ = Jx ∣ σΛ

γ K

Inductive Case: Application

⌊ J s t ∣ σWγ KW ⌋ = ⌊ J s ∣ σWγ KW ⌋ ⌊ J t ∣ σWγ KW ⌋ I.H.
= J s ∣ σΛ

γ K J t ∣ σΛ

γ K = J s t ∣ σΛ

γ K

Inductive Case: Abstraction

4.1. SYNTAX AND TRANSLATIONS 79

⌊ Jx⟨x ⟩.t ∣ σWγ KW ⌋ = λx.⌊ J t ∣ σWγ KW ⌋ I.H.
= λx.J t ∣ σΛ

γ K = Jx⟨x ⟩.t ∣ σΛ

γ K

Inductive Case: Phantom-Abstraction
⌊ J c⟨x1, . . . , xn ⟩.t ∣ σWγ KW ⌋ = λc.⌊ J t ∣ σ

W
1

γ KW ⌋ I.H.
= λc.Jx ∣ σ

Λ
1

γ K = J c⟨x1, . . . , xn ⟩.t ∣ σΛ

γ K
where
σW = σ ∪ {x1 ↦M1, . . . , xn ↦Mn}
σW1 = σ ∪ {x1 ↦M1{c/γ(c)}, . . . , xn ↦Mn{c/γ(c)}}
σΛ

1 = σ ∪ {x1 ↦ ⌊M1 ⌋{c/γ(c)}, . . . , xn ↦ ⌊Mn ⌋{c/γ(c)}}

Inductive Case: Weakening

⌊ Ju[← t] ∣ σWγ KW ⌋ = ⌊ Ju ∣ σWγ KW ⌋ I.H.
= Ju ∣ σΛ

γ K = Ju[← t] ∣ σΛ

γ K

Inductive Case: Sharing

⌊ Ju[x1, . . . , xn ← t] ∣ σWγ KW ⌋ = ⌊ Ju ∣ σ
W
1

γ KW ⌋ I.H.
= Ju ∣ σ

Λ
1

γ K = Ju[x1, . . . , xn ← t] ∣ σΛ

γ K
where
σW1 = σW ∪ {xi ↦ J t ∣ σWγ KW}1≤i≤n

σΛ
1 = σΛ ∪ {xi ↦ ⌊ J t ∣ σWγ KW ⌋}1≤i≤n

I.H.
= σΛ ∪ {xi ↦ J t ∣ σΛ

γ K}1≤i≤n

Inductive Case: Distributor
⌊ Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σWγ KW ⌋

SubCase: x⃗ = c
⌊ Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σWγ KW ⌋
= ⌊ Ju[Γ] ∣ σγ′ KW ⌋ I.H.

= Ju[Γ] ∣ σΛ

γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σΛ

γ K

SubCase: x⃗ = x1, . . . , xn
⌊ Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σWγ KW ⌋
⌊ Ju[Γ] ∣ σ

W
1

γ′ KW ⌋ I.H.
= Ju[Γ] ∣ σ

Λ
1

γ′ K

= Ju[e1⟨ w⃗1 ⟩, . . . , em⟨ w⃗m ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σΛ

γ K
where
σW = σ ∪ {x1 ↦M1, . . . , xn ↦Mn}
σW1 = σ ∪ {x1 ↦M1{c/γ(c)}, . . . , xn ↦Mn{c/γ(c)}}
σΛ

1 = σ ∪ {x1 ↦ ⌊M1 ⌋{c/γ(c)}, . . . , xn ↦ ⌊Mn ⌋{c/γ(c)}}

We prove J LN M KW = LN MW by induction on N . We prove this statement by first proving
it for closed terms.

Base Case: Variable
J Lx M′ KW = Jx KW = x = Lx MW

Inductive Case: Application

J LMN M′ KW = J LM M′ KW J LN M′ KW I.H.
= LM MW LN MW = LMN MW

80 CHAPTER 4. THE WEAKENING CALCULUS

Inductive Case: Abstraction
J Lλx.M M′ KW

SubCase: ∣M ∣x = 0

= λx.J LM M′[← x] KW = λx.J LM M′ KW[← x] I.H.
= λx.LM MW[← x] = Lλx.M MW

SubCase: ∣M ∣x = 1

= λx.J LM M′ KW I.H.
= λx.LM MW = Lλx.M MW

SubCase: ∣M ∣x = n > 1

= J LM n
x M′[x1, . . . , xn ← x] KW = J LM n

x M′ ∣ σI KW
prop 33

= J LM n
x M′ KW{x/xi}1≤i≤n

I.H.
= LM n

x MW{x/xi}1≤i≤n = LM MW

Now that we have proven is works for closed terms, we can show the statement J LN M KW =
LN MW holds

J LN M KW = J LN n1

x1
. . . nk

xk
M′[x1

1, . . . , x
n1
1 ← x1] . . . [x1

k, . . . , x
nk

k ← xk] KW
prop 33

= J LN n1

x1
. . . nk

xk
M′ KW{xi/xji}1≤i≤k,1≤j≤ni

= LN n1

x1
. . . nk

xk
MW{xi/xji}1≤i≤k,1≤j≤ni

= LN MW

4.2. WEAKENING REDUCTIONS 81

4.2 Weakening reductions

We wish to use the weakening calculus to show that the spinal atomic λ-calculus satisfies
PSN. Observe that β-reduction in the weakening calculus is non-deleting.

Definition 40. In the weakening calculus, β-reduction is defined as follows, where [Γ] are
weakening constructs.

((λx.T)[Γ])U →β T{U/x}[Γ] (Wβ)

Proposition 41. If N ∈ Λ is strongly normalising, then so is LN MW

Proof. A proof for this can be found in [GHP13]. Additionally, similar ideas and results can
be found elsewhere, i.e. with memory in [Klo80], the λ-I calculus in [Bar84], the λ-void
calculus [AK12a], and the weakening λµ-calculus [He18].

When translating from the spinal atomic λ-calculus to the weakening calculus, weak-
enings are maintained whilst sharings are interpreted through duplication via substitution.
Thus the reduction rules in the weakening calculus cover the spinal reductions for nullary
distributors and weakenings.

Definition 42. The weakening reductions (→W) proceeds as follows.

λx.T [← U]→W (λx.T)[← U] if x /∈ (U)fv (W1)

U[← T]V →W (U V)[← T] (W2)

U V [← T]→W (U V)[← T] (W3)

T [← U[← V]]→W T [← U][← V] (W4)

T [← λx.U]→W T [← U{●/x}] (W5)

T [← U V]→W T [← U][← V] (W6)

T [← ●]→W T (W7)

T [← U]→W T if U is a subterm of T (W8)

It is easy to see that these rules correspond to special cases of the sharing reduction
rules for ΛSa . Lifting a closure relates (W1) and (l3), (W2) and (l1), (W3) and (l2), (W4) and
(l4), (W5) and (r2), and duplicating a term relates (W6) and (r1), and (W7) and (r3). It is
not so obvious to see what the case (W8) corresponds to. If U is a subterm of T , then in
the corresponding ΛSa -term this term would be shared and one of the copies would be in a
weakening. Thus this reduction relates to the case (c1), where we remove the weakening.
We demonstrate this with the following example.

t[← y][x⃗ ⋅ y ⋅ z⃗ ← u]↝C t[x⃗ ⋅ z⃗ ← u]

On the left hand side, the corresponding weakening-term (obtained by L− MW) would have
the weakening [← U] where U = Lu MW . This is because U is substituted into [← y], but
on the right hand side this would be gone. This situation can only occur if there are other
copies of U substituted into the term. This corresponds to if only the corresponding (c1)
reduction rule can occur.

82 CHAPTER 4. THE WEAKENING CALCULUS

Lemma 43. If t↝(β) u then J t KW →+
β Ju KW

Proof. We prove this by induction. Our base case:
J (x⟨x ⟩.t) s KW = (λx.T)S = T{S/x} = J t{s/x} KW

where T = J t KW and S = J s KW

Now we cover the inductive cases.

Inductive Case: Application s t↝(β) s
′ t

J s t ∣ σγ KW = J s ∣ σγ KW J t ∣ σγ KW
I.H.

→∗
W J s′ ∣ σγ KW J t ∣ σγ KW = J s′ t ∣ σγ KW

Inductive Case: Application s t↝(β) s t
′

J s t ∣ σγ KW = J s ∣ σγ KW J t ∣ σγ KW
I.H.

→∗
W J s ∣ σγ KW J t′ ∣ σγ KW = J s t′ ∣ σγ KW

Inductive Case: Abstraction x⟨x ⟩.t↝(β) x⟨x ⟩.t′

Jx⟨x ⟩.t ∣ σγ KW = λx.J t ∣ σ−{x}γ KW
I.H.

→∗
W λx.J t′ ∣ σ−{x}γ KW = Jx⟨x ⟩.t ∣ σγ KW

Inductive Case: Phantom-Abstraction c⟨ x⃗ ⟩.t↝(β) c⟨ x⃗ ⟩.t′

J c⟨x1, . . . , xn ⟩.t ∣ σγ KW = λx.J t ∣ σ′γ KW
I.H.

→∗
W λx.J t′ ∣ σ′γ KW = J c⟨x1, . . . , xn ⟩.t ∣ σγ KW

where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ σ(xi){c/γ(c)}}1≤i≤n

Inductive Case: Sharing u[x⃗← t]↝(β) u
′[x⃗← t]

Ju[x1, . . . , xn ← t] ∣ σγ KW = Ju ∣ σ′γ KW
I.H.

→∗
W Ju′ ∣ σ′γ KW = Ju′[x1, . . . , xn ← t] ∣ σγ KW

where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t ∣ σγ KW}1≤i≤n

Inductive Case: Sharing u[x⃗← t]↝(β) u[x⃗← t′]

Ju[x1, . . . , xn ← t] ∣ σγ KW = Ju ∣ σ′γ KW
I.H.

→∗
W Ju ∣ σ′′γ KW = Ju[x1, . . . , xn ← t′] ∣ σγ KW

where σ′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t ∣ σγ KW}1≤i≤n
σ′′ = σ − {x1, . . . , xn} ∪ {xi ↦ J t′ ∣ σγ KW}1≤i≤n

Inductive Case: Weakening: u[← t]↝(β) u[← t′]

Ju[← t] ∣ σγ KW = Ju ∣ σγ KW[← J t ∣ σγ KW]
I.H.

→∗
W Ju ∣ σγ KW[← J t′ ∣ σγ KW] = Ju[← t′] ∣ σγ KW

Inductive Case: Weakening: u[← t]↝(β) u
′[← t]

Ju[← t] ∣ σγ KW = Ju ∣ σγ KW[← J t ∣ σγ KW]
I.H.

→∗
W Ju′ ∣ σγ KW[← J t ∣ σγ KW] = Ju′[← t] ∣ σγ KW

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]↝(β) u

′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]

Ju[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σγ′ KW = Ju ∣ σ′γ′′ KW

I.H.

→∗
W Ju′ ∣ σ′γ′′ KW = Ju′[Γ] ∣ σγ′ KW

= Ju′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ KW

where γ′ = γ ∪ {ei ↦ c}∀ei∈e⃗

4.2. WEAKENING REDUCTIONS 83

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]↝(β) u

′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]

Ju[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ′ KW = Ju ∣ σ′′γ′′ KW

I.H.

→∗
W Ju′ ∣ σ′γ′′ KW = Ju′[Γ] ∣ σ′γ′ KW

= Ju′[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]↝(β) u

′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ c ⟩ [Γ′]]

Ju[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ−{c}γ′ KW

I.H.

→∗
W Ju′[Γ′] ∣ σ−{c}γ′ KW

= Ju′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ c ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]↝(β) u

′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ x⃗ ⟩ [Γ′]]

Ju[
ÐÐÐ→
e⟨ x⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ′ KW

I.H.

→∗
W Ju′[Γ′] ∣ σ′γ′ KW

= Ju′[
ÐÐÐ→
e⟨ x⃗′ ⟩ ∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ c ⟩ [Γ]]↝(β) u
′[∣ c⟨ c ⟩ [Γ]]

Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ−{c}∪{c↦●}γ KW
I.H.

→∗
W Ju′[Γ] ∣ σ−{c}∪{c↦●}γ KW = Ju′[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ c ⟩ [Γ]]↝(β) u[∣ c⟨ c ⟩ [Γ′]]
Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ−{c}∪{c↦●}γ KW
I.H.

→∗
W Ju[Γ′] ∣ σ−{c}∪{c↦●}γ KW = Ju[∣ c⟨ c ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ x⃗ ⟩ [Γ]]↝(β) u
′[∣ c⟨ x⃗ ⟩ [Γ]]

Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ KW
I.H.

→∗
W Ju[Γ′] ∣ σ′γ KW = Ju[∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ x⃗ ⟩ [Γ]]↝(β) u[∣ c⟨ x⃗ ⟩ [Γ′]]
Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ KW
I.H.

→∗
W Ju[Γ′] ∣ σ′γ KW = Ju[∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ KW

Lemma 44. If t↝(R,D,L) u and for any x ∈ (t)bv ∪ (t)fp, x /∈ (M)fv where {z ↦M} ⊂ σ.

J t ∣ σ
γ

KW →∗
W Ju ∣ σ

γ
KW

Proof. We prove this by induction, which is an extension of the proof for Lemma 25. There-
fore, we only show the interesting cases.

Case: (r1)

u[← s t]↝R u[← s][← t]

84 CHAPTER 4. THE WEAKENING CALCULUS

Ju[← s t] ∣ σγ KW = Ju ∣ σγ KW[← J s ∣ σγ KW J t ∣ σγ KW]
→W Ju ∣ σγ KW[← J s ∣ σγ KW][← J t ∣ σγ KW] = Ju[← s][← t] ∣ σγ KW

Case: (r2)
u[← c⟨ x⃗ ⟩.t]↝R u[∣ c⟨ x⃗ ⟩ [← t]]

Ju[← c⟨ x⃗ ⟩.t] ∣ σγ KW
SubCase: x⃗ = c
Ju[← c⟨ c ⟩.t] ∣ σγ KW = Ju ∣ σγ KW[← λc.J t ∣ σγ KW]→W Ju ∣ σγ KW[← J t ∣ σγ KW{●/c}]
prop 33

= Ju[← t] ∣ σ′γ KW = Ju[∣ c⟨ c ⟩ [← t]] ∣ σγ KW
where σ′ = σ ∪ {c↦ ●}

SubCase: x⃗ = x1, . . . , xn
Ju[← c⟨x1, . . . , xn ⟩.t] ∣ σγ KW = Ju ∣ σγ KW[← J c⟨x1, . . . , xn ⟩.t ∣ σγ KW]
Ju ∣ σγ KW[← λc.J t ∣ σ′γ KW]→W Ju ∣ σγ KW[← J t ∣ σ′γ KW{●/c}]
prop 33

= Ju[← t] ∣ σ′′γ KW = Ju[∣ c⟨x1, . . . , xn ⟩ [← t]] ∣ σγ KW

Case (r3)
u[∣ c⟨ c ⟩ [← c]]↝R u

Ju[∣ c⟨ c ⟩ [← c]] ∣ σγ KW = Ju[← c] ∣ σ′γ KW = Ju ∣ σ′γ KW[← ●]
= Ju ∣ σγ KW[← ●]→W Ju ∣ σγ KW

Case (c2)
u[x← t]↝C u{t/x}

Ju[x← t] ∣ σγ KW = Ju ∣ σ′γ KW
prop 34

= Ju{t/x} ∣ σγ KW
where
σ′ = σ ∪ {x↦ J t ∣ σγ KW}

For the remaining cases, we only show the cases for Ju[← t] ∣ σγ KW = Ju ∣ σγ KW[← J t ∣ σγ KW].
The other cases are similar to those in the proof for Lemma 25.

Case: (l1)
s[← t]u↝L (su)[← t]

J s[← t]u ∣ σγ KW = J s ∣ σγ KW[← J t ∣ σγ KW] Ju ∣ σγ KW →W (J s ∣ σγ KW Ju ∣ σγ KW)[← J t ∣ σγ KW]
J (su)[← t] ∣ σγ KW

The proofs for lifting past application (right) (l2) and sharing (l4) follow a similar ar-
gument so we choose to omit these cases

Case: (l3)
d⟨ x⃗ ⟩.u[← t]↝L (d⟨ x⃗ ⟩.u)[← t] iff x⃗ /∈ (t)fv

4.2. WEAKENING REDUCTIONS 85

SubCase: x⃗ = d
Jd⟨d ⟩.u[← t] ∣ σγ KW = λd.(Ju ∣ σγ KW[← J t ∣ σγ KW])→W λd.Ju ∣ σγ KW[← J t ∣ σγ KW]
= J (d⟨ x⃗ ⟩.u)[← t] ∣ σγ KW

SubCase: x⃗ = x1, . . . , xn
Jd⟨x1, . . . , xn ⟩.u[← t] ∣ σγ KW = λd.(Ju ∣ σ′γ KW[← J t ∣ σ′γ KW])
→W λd.Ju ∣ σ′γ KW[← J t ∣ σ′γ KW] = J (d⟨x1, . . . , xn ⟩.u)[← t] ∣ σγ KW

Case: (l5) and (l6)

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][← t]]↝L

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][← t]

iff all x⃗ /∈ (t)fv

Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][← t]] ∣ σγ KW
Case: x⃗ = c

= Ju[Γ][← t] ∣ σγ′ KW = Ju[Γ] ∣ σγ′ KW[← J t ∣ σγ′ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ KW[← J t ∣ σγ′ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ σγ KW[← J t ∣ σγ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]][← t] ∣ σγ KW

Case: x⃗ = x1, . . . , xn
= Ju[Γ][← t] ∣ σ′γ′ KW = Ju[Γ] ∣ σ′γ′ KW[← J t ∣ σ′γ′ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σγ KW[← J t ∣ σ′γ′ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]] ∣ σγ KW[← J t ∣ σγ KW]
= Ju[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xn ⟩ [Γ]][← t] ∣ σγ KW

And now the new inductive cases not covered in the proof for Lemma 25.

Inductive Case: Weakening: u[← t]↝(R,D,L,C) u[← t′]

Ju[← t] ∣ σγ KW = Ju ∣ σγ KW[← J t ∣ σγ KW]
I.H.

→∗
W Ju ∣ σγ KW[← J t′ ∣ σγ KW] = Ju[← t′] ∣ σγ KW

Inductive Case: Weakening: u[← t]↝(R,D,L,C) u
′[← t]

Ju[← t] ∣ σγ KW = Ju ∣ σγ KW[← J t ∣ σγ KW]
I.H.

→∗
W Ju′ ∣ σγ KW[← J t ∣ σγ KW] = Ju′[← t] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ c ⟩ [Γ]]↝(R,D,L,C) u
′[∣ c⟨ c ⟩ [Γ]]

Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ−{c}∪{c↦●}γ KW
I.H.

→∗
W Ju′[Γ] ∣ σ−{c}∪{c↦●}γ KW = Ju′[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ c ⟩ [Γ]]↝(R,D,L,C) u[∣ c⟨ c ⟩ [Γ′]]
Ju[∣ c⟨ c ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ−{c}∪{c↦●}γ KW

86 CHAPTER 4. THE WEAKENING CALCULUS

I.H.

→∗
W Ju[Γ′] ∣ σ−{c}∪{c↦●}γ KW = Ju[∣ c⟨ c ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ x⃗ ⟩ [Γ]]↝(R,D,L,C) u
′[∣ c⟨ x⃗ ⟩ [Γ]]

Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ KW
I.H.

→∗
W Ju[Γ′] ∣ σ′γ KW = Ju[∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ KW

Inductive Case: Distributor u[∣ c⟨ x⃗ ⟩ [Γ]]↝(R,D,L,C) u[∣ c⟨ x⃗ ⟩ [Γ′]]
Ju[∣ c⟨ x⃗ ⟩ [Γ]] ∣ σγ KW = Ju[Γ] ∣ σ′γ KW
I.H.

→∗
W Ju[Γ′] ∣ σ′γ KW = Ju[∣ c⟨ x⃗ ⟩ [Γ′]] ∣ σγ KW

Chapter 5

Strong Normalisation of Sharing
Reductions

靡不有初
ḿıbùyǒuchū

Everything has a beginning but not always an ending

In this section we formally relate the atomic λ-calculus and the weakening calculus. We
use the relationship to show strong normalisation of sharing reductions i.e. (↝∗

(R,D,L,C)).

This is an important step in proving preservation of strong normalisation for ΛSa , as if there
is an infinite reduction sequence then it has an infinite β-reduction sequence. This means
that (β) is solely responsible for the divergence of reductions.

To show ↝(R,D,L,C) is strongly normalising, we construct a measure that strictly de-
creases after each reduction step. This measure reasons with multisets that intuitively
represent (i) the number of copies of shared constructors (@ and λ) and (ii) the location
of the closure in the term. We show that duplication (↝(D,R)) strictly decreases the number
of copies of shared constructors, since duplicating them instantiates the copies, compound
of sharings (↝C) does not affect the number of copies of shared constructors and strictly
decreases the number of closures, and that (↝L) strictly decreases the number of steps
taken when traversing a term to reach closures.

This is similar to the apporach used in [He18], except He relates her calculus to the λ-
calculus rather than the weakening calculus, and uses the reduction rules of the weakening
calculus for the cases that involve weakenings.

87

88 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

5.1 Multisets

We prove strong normalisation of sharing reductions through the use of multisets. Intu-
itively, a multiset can be interpreted as a set where elements can be repeated, or equivalently
as lists that are considered equal up to the permutation of elements. We use multisets to
measure aspects of a term, and show that these aspects strictly decrease via ↝(R,D,L)
reduction.

Definition 45 (Multisets). A multiset m is a pair (A,f) where A is a set and f ∶ A → N
is a function that maps elements of A to a natural number.

The formal definition of multisets in Definition 45 follows intuition when we consider
the function f to tell us the number of occurrences of an element x ∈ A in the multiset m.

Example 46. Let m = ({x, y, z}, f) and f(x) = 2, f(y) = 1 and f(z) = 3. Then this
multiset can also be written as {x,x, y, z, z, z} or equivalently as {x2, y1, z3}

Remark : The empty multiset is written as {}

We will need to be able to reason about multisets in order to use them as part of
our reasoning for strong normalisation. First we discuss the union of multisets, which will
be needed when measuring a term recursively, e.g. in an application s t we will need to
measure aspects of s and unionise them with the multiset corresponding to the measure
of the same of t, to obtain the overall measure of the application. We follow the same
definition provided by Jouannaud and Lescanne in [JL82].

Definition 47 (Union of Multisets). The union (or sum) of two multisets m = (A,f) and
n = (B,g) is the multiset m⊍n = (A∪B,h) such that for all x ∈ A∪B, h(x) = f(x)+g(x).

Example 48. Let m = {a1, b3, c2} and n = {c3, d1}, then m ⊍ n = {a1, b3, c5, d1}

Remark : The notion A ∪B is the union of the sets and not a disjoint union.

To show strong normalisation of sharing reductions, we need to show that aspects of
terms that can be represented as multisets strictly decrease during reduction. In order to
show this, we need to be able determine when a multiset is larger/smaller than another i.e.
we need to be able to apply an ordering. We follow the definition provided by Huet and
Oppen in [HO80].

Definition 49 (Ordering of Multisets). Given a totally ordered set A and two multisets
m = (A,f) and n = (A,g), we say m is strictly larger than n, m > n, if the following
conditions hold

●m ≠ n
●∀x ∈ A.(g(x) > f(x)→ ∃y ∈ A.[(y > x) ∧ (f(y) > g(y))])

Example 50. {15,22,31} < {13,24,33}

5.2 Sharing Measure

The sharing measure will be the aspect of the term that we show strictly decreases.

5.2. SHARING MEASURE 89

5.2.1 Height

The height of a term is intuitively a multiset of integers that record the scope of each
sharing. The scope is measured by the number of constructors from the sharing node to
the root of the term in its graphical notation. The height is defined on terms as Hi(−),
where i is an integer.

Definition 51 (Sharing Height). The sharing height Hi(t) of a term t is a multiset given
by

Hi(x) = {}
Hi(s t) =Hi+1(s) ⊍Hi+1(t)

Hi(c⟨ x⃗ ⟩.t) =Hi+1(t)
Hi(t[Γ]) =Hi(t) ⊍Hi([Γ]) ⊍ {i1}

Hi([x1, . . . , xn ← t]) =Hi+1(t)

Hi([
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) =Hi+1([Γ]) ⊍ {(i + 1)n}

where n is the number of closures in [Γ]

Notation 52. For the environment [Γ] = [Γ1], . . . , [Γn], we denote Hi([Γ1]) ⊍ ⋅ ⋅ ⋅ ⊍
Hi([Γn]) as Hi([Γ])

Notation 53. We say H(t) for H1(t)

Lemma 54. If t↝(L) u then Hi(t) >Hi(u)

Proof. We prove this on a case-by-case basis

s[Γ] t↝L (s t)[Γ]

Hi((s[Γ]) t) =Hi+1(s[Γ]) ⊍Hi+1(t) =Hi+1(s) ⊍Hi+1(t) ⊍Hi+1([Γ]) ⊍ {i + 1}
Hi((s t)[Γ]) =Hi(s t) ⊍Hi([Γ]) =Hi+1(s) ⊍Hi+1(t) ⊍Hi([Γ]) ⊍ {i}

s t[Γ]↝L (s t)[Γ]

This case is similar to the one above and we omit it.

d⟨ x⃗ ⟩.t[Γ]↝L (d⟨ x⃗ ⟩.t)[Γ] iff all x⃗ ∈ (t)fv
Hi(c⟨ x⃗ ⟩.t[Γ]) =Hi+1(t[Γ]) =Hi+1(t) ⊍Hi+1([Γ]) ⊍ {i + 1}
Hi((c⟨ x⃗ ⟩.t)[Γ]) =Hi(c⟨ x⃗ ⟩.t) ⊍Hi([Γ]) ⊍ {i} =Hi+1(t) ⊍Hi([Γ]) ⊍ {i}

u[x⃗← t[Γ]]↝L u[x⃗← t][Γ]

Hi(u[x⃗← t[Γ]]) =Hi(u)⊍Hi([x⃗← t[Γ]])⊍{i} =Hi(u)⊍Hi+1(t)⊍Hi+1([Γ])⊍{i, i+1}
Hi(u[x⃗← t][Γ]) =Hi(u[x⃗← t]) ⊍Hi([Γ]) ⊍ {i} =Hi(u) ⊍Hi+1(t) ⊍Hi+1([Γ]) ⊍ {i, i}

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L

90 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t]

iff all x⃗ /∈ (t)fv
Hi(u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]])
=Hi(u) ⊍Hi([e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]) ⊍ {i}
=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+1([y⃗ ← t]) ⊍ {i, (i + 1)n+1}
where n is the number of closures in the environment [Γ]
=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+2(t) ⊍ {i, (i + 1)n+1}
Hi(u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t])
=Hi(u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) ⊍Hi+1(t) ⊍ {i}
=Hi(u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b) ⊍Hi+1([Γ]) ⊍Hi+1(t) ⊍ {i2, (i + 1)n}
=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+1(t) ⊍ {i2, (i + 1)n}

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]]↝L

u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b[e1⟨ w⃗1/z⃗ ⟩ . . . en⟨ w⃗n/z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]

iff all x⃗ ∈ (u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]])fv
Hi(u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][

ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]])

=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+1([
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]) ⊍ {i, (i + 1)n+1}

where n is the number of closures in [Γ]
=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+2([Γ′]) ⊍ {i, (i + 1)n+1, (i + 2)m}
where m is the number of closures in [Γ′]
Hi(u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b[e1⟨ w⃗1/z⃗ ⟩ . . . en⟨ w⃗n/z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][

ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]])

Hi(u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b[e1⟨ w⃗1/z⃗ ⟩ . . . en⟨ w⃗n/z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]])
⊍Hi+1([Γ′]) ⊍ {i, (i + 1)m}

=Hi(u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b) ⊍Hi+1([Γ]) ⊍Hi+1([Γ′]) ⊍ {i, (i + 1)n+m}
=Hi(u) ⊍Hi+1([Γ]) ⊍Hi+1([Γ′]) ⊍ {i, (i + 1)n+m}

5.2.2 Weight

The weight of a term is intuitively the number or copies each constructor (abstraction,
application and variable) will exist after duplication. Figure 5.1 illustrates this, by showing
a side-by-side comparison of the term

x⟨x ⟩.c1⟨w1 ⟩.w1 ((c2⟨w2 ⟩.w2)x)

[c1⟨w1 ⟩c2⟨w2 ⟩ ∣ y⟨ y ⟩ [w1,w2 ← z⟨ z ⟩.z1 (z2 y)[z1, z2 ← z]]]

and its equivalent in the ΛW-calculus obtained by J− KW . Each red line shows the connection
between the abstraction and application constructors in both calculi. The weight of a
constructor is then the number of red lines associated with it, e.g. the weight of the
example is the multiset {16,24,41}.

Calculuating the weight of a term requires an auxiliary function from variables to inte-
gers. This function is defined by assigning integer weights to the variables of a term. This
auxiliary function is defined on terms V i(−), where i is an integer. To measure variables

5.2. SHARING MEASURE 91

ń

@

ň
@

ň

ń

@

@

ń

@

ń

ń

@

@

@

ń

ń

@

@

4 2 1

Figure 5.1: The weight is the multiset of incoming red arcs for each application and
abstraction; here {15,23}, together with the number of purple dotted lines for each variable;
here {1,2,4}. Thus the overall weight is {16,24,4}

independently of binders is vital. It allows to measure distributors, which duplicate λ’s but
not the bound variable. Also, only bound variables for abstractions are measured since
variables bound by sharings are substituted in the interpretation.

Definition 55 (Variable weights). The function V i(t) returns a function that assigns integer
weights to the free variables of t. It is defined by the following

V i(x) = {x↦ i}
V i(s t) = V i(s) ⊍ V i(t)

V i(c⟨ c ⟩.t) = V i(t)/{c}
V i(c⟨ x⃗ ⟩.t) = V i(t) ⊍ {c↦ i}
V i(t[← s]) = V i(t) ⊍ V1(s)

V i(t[x1, . . . , xn ← s]) = V i(t)/{x1, . . . , xn} ⊍ Vf(x1)+⋅⋅⋅+f(xn)(s)
where f = V i(t)

V i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]]) = V i(t[Γ])/{c, e1, . . . , en}
V i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) = V i(t[Γ])/{e1, . . . , en} ⊍ {c↦ i}

The weight of a term can then be defined via the use of this auxiliary function. The
auxiliary function is used when calculating the weight of a sharing, where the sharing weight
of the variables bound by the sharing play a significant role in calculuating the weight of
the shared term. In the case of a weakening, we assign an initial weight of 1 to indicate
that the constructor is not duplicated by appears at least once in the weakening calculus.

92 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

Definition 56 (Sharing Weight). The sharing weight W i(t) of a term t is a multiset of
integers computed by the function defined below

W i(x) = {}
W i(s t) =W i(s) ⊍W i(t) ⊍ {i}

W i(c⟨ c ⟩.t) =W i(t) ⊍ {i} ⊍ {V i(t)(c)}
W i(c⟨ x⃗ ⟩.t) =W i(t) ⊍ {i}
W i(t[← s]) =W i(t) ⊍W1(s)

W i(t[x1, . . . , xn ← s]) =W i(t) ⊍Wf(x1)+⋅⋅⋅+f(xn)(s)
where f = V i(t)

W i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ]]) =W i(t[Γ]) ⊍ {V i(t[Γ])(c)}
W i(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) =W i(t[Γ])

Notation 57. We say W(t) for W1(t)

Proposition 58. For e /∈ w⃗, W i(t) =W i(t{w⃗/e}b)

Proof. To prove this, first we need to prove that book-keeping does not affect the function
V i(t). We prove this by induction on t.
Base Case: Variable
Vacuously True

Base Case: Abstraction
V i(e⟨ y⃗ ⟩.t{w⃗/e}b) = V i(e⟨ w⃗ ⟩.t) = V i(t) ⊍ {e↦ i} = V i(e⟨ y⃗ ⟩.t)

Base Case: Distributor
V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ e⟨ y⃗ ⟩ [Γ]]{w⃗/e}b) = V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ e⟨ w⃗ ⟩ [Γ]])

= V i(u[Γ]) {e⃗} = V i(u[
ÐÐÐ→
f⟨ z⃗ ⟩ ∣ e⟨ y⃗ ⟩ [Γ]])

Inductive Case: Application

V i(s t{w⃗/e}b) = V i((s{w⃗/e}b) t{w⃗/e}b) = V i(s{w⃗/e}b) ⊍ V i(t{w⃗/e}b)
I.H.
=

2
V i(s) ⊍ V i(t) =

V i(s t)

Inductive Case: Abstraction
Case 1
V i((c⟨ c ⟩.t){w⃗/e}b) = V i(c⟨ c ⟩.t{w⃗/e}b) = V i(t{w⃗/e}b)/{c}

I.H.
= V i(t)/{c} = V i(c⟨ c ⟩.t)

Case 2
V i((c⟨ x⃗ ⟩.t){w⃗/e}b) = V i(c⟨ x⃗ ⟩.t{w⃗/e}b) = V i(t{w⃗/e}b) ⊍ {c ↦ i} I.H.

= V i(t) ⊍ {c ↦ i} =
V i(c⟨ x⃗ ⟩.t)

Inductive Case: Weakening
V i(u[← t]{w⃗/e}b) = V i(u{w⃗/e}b[← t{w⃗/e}b]) = V i(u{w⃗/e}b) ⊍ V1(t{w⃗/e}b)

5.2. SHARING MEASURE 93

I.H.
=

2
V i(u) ⊍ V1(t) = V i(u[← t])

Inductive Case: Sharing
V i(u[x1 . . . xn ← t]{w⃗/e}b) = V i(u{w⃗/e}b[x1 . . . xn ← t{w⃗/e}b])
= (V i(u{w⃗/e}b)/{x1, . . . , xn}) ⊍ V(tj{w⃗/e}b) where j = V i(t{w⃗/e}b) + ⋅ ⋅ ⋅ + V i(t{w⃗/e}b)
I.H.
=
n+2

(V i(u)/{x1, . . . , xn}) ⊍ V(t) where j = V i(t) + ⋅ ⋅ ⋅ + V i(t) = V i(u[x1, . . . , xn ← t])

Inductive Case: Distributor
Case 1
V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]{w⃗/e}b) = V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]{w⃗/e}b]) = V i(u[Γ]{w⃗/e}b)/{c, f⃗}

I.H.
= V i(u[Γ])/{c, f⃗} = V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]])

Case 2
V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]{w⃗/e}b) = V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]{w⃗/e}b])

= V i(u[Γ]{w⃗/e}b)/{f⃗} ⊍ {c↦ i}
I.H.
= V i(u[Γ])/{f⃗} ⊍ {c↦ i} = V i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]])

We now prove this proposition by induction on t
Base Case: Variable
W i(x{w⃗/e}b) =W i(x)

Base Case: Abstraction
W i(e⟨ y⃗ ⟩.t{w⃗/e}b) =W i(e⟨ w⃗ ⟩.t) =W i(t) ⊍ {i} =W i(e⟨ y⃗ ⟩.t)

Base Case: Distributor
W i(u[

ÐÐ→
e⟨ z⃗ ⟩ ∣ e⟨ y⃗ ⟩ [Γ]]{w⃗/e}b) =W i(u[

ÐÐ→
e⟨ z⃗ ⟩ ∣ e⟨ w⃗ ⟩ [Γ]]) =W i(u[Γ])

=W i(u[
ÐÐ→
e⟨ z⃗ ⟩ ∣ e⟨ y⃗ ⟩ [Γ]])

Inductive Case: Application
W i(s t{w⃗/e}b) =W i((s{w⃗/e}b) t{w⃗/e}b) =W i(s{w⃗/e}b) ⊍W i(t{w⃗/e}b) ⊍ {i}
I.H.
=

2
W i(s) ⊍W i(t) ⊍ {i} =W i(s t)

Inductive Case: Abstraction
Case 1
W i((c⟨ c ⟩.t){w⃗/e}b) =W i(c⟨ c ⟩.t{w⃗/e}b) =W i(t{w⃗/e}b) ⊍ {i,V i(t{w⃗/e}b)(c)}
I.H.
= W i(t) ⊍ {i,V i(t)(c)} =W i(c⟨ c ⟩.t)
Case 2
W i((c⟨ x⃗ ⟩.t){w⃗/e}b) =W i(c⟨ x⃗ ⟩.t{w⃗/e}b) =W i(t{w⃗/e}b) ⊍ {i} I.H.

= W i(t) ⊍ {i}
=W i(c⟨ x⃗ ⟩.t)

Inductive Case: Weakening
W i(u[← t]{w⃗/e}b) =W i(u{w⃗/e}b[← t{w⃗/e}b]) =W i(u{w⃗/e}b) ⊍W1(t{w⃗/e}b)
I.H.
=

2
W i(u) ⊍W1(t) =W i(u[← t])

94 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

Inductive Case: Sharing
W i(u[x1, . . . , xn ← t]{w⃗/e}b) =W i(u{w⃗/e}b[x1, . . . , xn ← t{w⃗/e}b])
=W i(u{w⃗/e}b) ⊍Wj(t{w⃗/e}b) where j = V i(u{w⃗/e}b)(x1) + ⋅ ⋅ ⋅ + V i(u{w⃗/e}b)(xn)
I.H.
=
n+2
W i(u) ⊍Wj(t) where j = V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(x1) =W i(u[x1, . . . , xn ← t])

Inductive Case: Distributor
Case 1
W i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]{w⃗/e}b) =W i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]{w⃗/e}b])

=W i(u[Γ]{w⃗/e}b) ⊍ {V i(u[Γ]{w⃗/e}b)(c)}
I.H.
= W i(u[Γ]) ⊍ {V i(u[Γ])(c)}

=W i(u[
ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ c ⟩ [Γ]])

Case 2
W i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]{w⃗/e}b) =W i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]{w⃗/e}b])

=W i(u[Γ]{w⃗/e}b)
I.H.
= W i(u[Γ]) =W i(u[

ÐÐÐ→
f⟨ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]])

Lemma 59. If t↝(R,D) u then W i(t) >W i(u)

Proof. We prove this on a case-by-case basis

Deletion Rules

u[← s t]↝R u[← s][← t]

W i(u[← s t]) =W i(u) ⊍W1(s t) =W i(u) ⊍W1(s) ⊍W1(t) ⊍ {1}
W i(u[← s][← t]) =W i(u[← s]) ⊍W1(t) =W i(u) ⊍W1(s) ⊍W1(t)

u[← c⟨ x⃗ ⟩.t]↝R u[∣ c⟨ x⃗ ⟩ [← t]]

Case 1:
W i(u[← c⟨ c ⟩.t]) =W i(u) ⊍W1(c⟨ c ⟩.t) =W i(u) ⊍W1(t) ⊍ {1,V1(t)(c)}
W i(u[∣ c⟨ c ⟩ [← t]]) =W i(u[← t]) ⊍ {V i(u[← t])(c)}
=W i(u) ⊍W1(t) ⊍ {(V i(u) ⊍ V1(t))(c)} =W i(u) ⊍W1(t) ⊍ {V1(t)(c)}
Case 2:
W i(u[← c⟨ x⃗ ⟩.t]) =W i(u) ⊍W1(c⟨ x⃗ ⟩.t) =W i(u) ⊍W1(t) ⊍ {1}
W i(u[∣ c⟨ x⃗ ⟩ [← t]]) =W i(u[← t]) =W i(u) ⊍W1(t)(c)

u[∣ c⟨ c ⟩ [← c]]↝R u

W i(u[∣ c⟨ c ⟩ [← c]]) =W i(u[← c]) ⊍ {V i(u[← c])(c)}
=W i(u) ⊍W1(c) ⊍ {1} =W i(u) ⊍ {1}

Duplication Rules

u∗[x1 . . . xn ← s t]↝D u∗{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]

W i(u∗[x1 . . . xn ← s t]) =W i(u) ⊍Wj(s t) =W i(u) ⊍Wj(s) ⊍Wj(s) ⊍ {j}
where j = V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn)
W i(u∗{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t])

5.2. SHARING MEASURE 95

=W i(u∗{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s]) ⊍Wk(t)
=W i(u∗{z1 y1/x1} . . .{zn yn/xn}) ⊍W l(s) ⊍Wk(t)
where k = V i(u∗{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s])(y1) + . . .

⋅ ⋅ ⋅ + V i(u∗{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s])(yn)
= V i(u∗{z1 y1/x1} . . .{zn yn/xn})(y1) + ⋅ ⋅ ⋅ + V i(u∗{z1 y1/x1} . . .{zn yn/xn})(yn)
= V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn) = j
and where l = V i(u∗{z1 y1/x1} . . .{zn yn/xn})(z1) + . . .

⋅ ⋅ ⋅ + V i(u∗{z1 y1/x1} . . .{zn yn/xn})(zn)
= V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn) = j
Therefore
=W i(u∗{z1 y1/x1} . . .{zn yn/xn}) ⊍Wj(s) ⊍Wj(t)
=W i(u) ⊍Wj(s) ⊍Wj(t) ⊍ {V i(u)(x1), . . . ,V i(u)(xn)}

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D
u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1

1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y⃗ ⟩ [w1
1, . . . ,w

n
1 ← t]]

Case 1:
W i(u[x1, . . . , xn ← c⟨ c ⟩.t]) =W i(u) ⊍Wj(c⟨ c ⟩.t) =W i(u) ⊍Wj(t) ⊍ {j,Vj(t)(c)}
where j = V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn)
W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1

1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ c ⟩ [w1
1, . . . ,w

n
1 ← t]])

=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t])⊍

V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t])(c)

V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t])(c) = Vk(t)(c) = Vj(t)(c)

where k = V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t])(w1

1) + . . .
⋅ ⋅ ⋅ + V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1

1, . . . ,w
n
1 ← t])(wn1) = j

=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t]) ⊍ Vj(t)(c)

=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n) ⊍Wk(t) ⊍ {Vj(t)(c)}
=W i(u) ⊍Wj(t) ⊍ {V i(u)(x1), . . . ,V i(u)(xn),Vj(t)(c)}
Case: 2
W i(u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]) =W i(u) ⊍Wj(c⟨ y⃗ ⟩.t) =W i(u) ⊍Wj(t) ⊍ {j}
where j = V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn)
W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[e1⟨w1

1 ⟩ . . . en⟨wn1 ⟩ ∣ c⟨ y⃗ ⟩ [w1
1, . . . ,w

n
1 ← t]])

=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n[w1
1, . . . ,w

n
1 ← t])

=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n) ⊍Wk(t)
where k = V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n)(w1

1) + ⋅ ⋅ ⋅ + V i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n)(wn1) = j
=W i(u{ei⟨wi1 ⟩.wi1/xi}1≤i≤n) ⊍Wj(t)
=W i(u) ⊍Wj(t) ⊍ {V i(u)(x1), . . . ,V i(u)(xn)}

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]]↝D u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e
W i(u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]])
=W i(u[w⃗1, . . . , w⃗n ← c]) ⊍ {V i(u[w⃗1, . . . , w⃗n ← c](c))}
=W i(u) ⊍ {} ⊍ {j}
where j = V i(u)(w⃗1) + ⋅ ⋅ ⋅ + V i(u)(w⃗n)
W i(u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e) =W i(u) ⊍ {V i(u)(w⃗1), . . . ,V i(u)(w⃗n)}
where V i(u)(w⃗) = V i(u)(w1) + ⋅ ⋅ ⋅ + V i(u)(wn) and w⃗ = {w1, . . . ,wn}

96 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

Lemma 60. If t↝(L) u then W i(t) =W i(u)

Proof. We prove this case-by-case

u[w⃗ ← y][x⃗ ⋅ y ← t]↝L u[x⃗ ⋅ w⃗ ← t]
W i(u[w⃗ ← y][x⃗ ⋅ y ← t]) =W i(u[w⃗ ← y]) ⊍Wj(t)
where j = V i(u[w⃗ ← y])(x⃗) + V i(u[w⃗ ← y])(y) = V i(u[w⃗ ← y])(x⃗) + V i(u)(w⃗)
=W i(u) ⊍Wj(t) =W i(u[x⃗ ⋅ w⃗ ← t])

u[x← t]↝L u{t/x}
W i(u[x← t]) =W i(u) ⊍Wj(t)
where j = V i(u)(x)
W i(u{t/x}) =W i(u) ⊍WVi(u)(x)(t)

For the other lifting rules, we show that V i(u[Γ]) outputs the same integers before and
after lifting for each variable bounded by [Γ]. Then we can know it produces some multiset
M .

(s[Γ]) t↝L (s t)[Γ]
W i((s[Γ]) t) =W i(s[Γ]) ⊍W i(t) =W i(s) ⊍W i(t) ⊍M1

W i((s t)[Γ]) =W i(s t) ⊍M2 =W i(s) ⊍W i(t) ⊍M2

M1 =M2 since V i(s)(x) = V i(s t)(x) for x ∈ (s)fv and [Γ] only binds variables in s.

s t[Γ]↝L (s t)[Γ]
This case is very similar to the one above and we omit it.

d⟨ x⃗ ⟩.t[Γ]↝L (d⟨ x⃗ ⟩.t)[Γ] iff all x⃗ ∈ (t)fv
Case 1:
W i(d⟨d ⟩.(t[Γ])) =W i(t[Γ]) ⊍ {i,V i(t[Γ])(d)} =W i(t) ⊍M1 ⊍ {i,V i(t)(d)}
W i((d⟨d ⟩.t)[Γ]) =W i(d⟨d ⟩.t) ⊍M2 =W i(t) ⊍M2 ⊍ {i,V i(t)(d)}
M1 =M2 since V i(t)(x) =W i(d⟨d ⟩.t)(x) where x ≠ d and d is not bound by [Γ]
Case 2:
W i(d⟨ x⃗ ⟩.(t[σ])) =W i(t[σ]) ⊍ {i} =W i(t) ⊍M1 ⊍ {i}
W i((d⟨ x⃗ ⟩.t)[σ]) =W i(d⟨ x⃗ ⟩.t) ⊍M2 =W i(t) ⊍M2 ⊍ {i}
M1 =M2 since V i(t)(x) =W i(d⟨ x⃗ ⟩.t)(x) where x ≠ d and d is not bound by [Γ]

u[x⃗← t[Γ]]↝L u[x⃗← t][Γ]
Case 1:
W i(u[x⃗← t[Γ]]) =W i(u) ⊍Wj(t[Γ]) =W i(u) ⊍Wj(t) ⊍M1

where j = V i(u)(x1) + ⋅ ⋅ ⋅ + V i(u)(xn)
W i(u[x⃗← t][Γ]) =W i(u[x⃗← t]) ⊍M2 =W i(u) ⊍Wj(t) ⊍M2

M1 =M2 since Vj(t)(x) = V i(u[x⃗← t])(x) for x ∈ (t)fv and [Γ] only binds variables in t

5.2. SHARING MEASURE 97

Case 2:
W i(u[← t[Γ]]) =W i(u) ⊍W1(t[Γ]) =W i(u) ⊍W1(t) ⊍M1

W i(u[← t][Γ]) =W i(u[← t]) ⊍M2 =W i(u) ⊍W1(t) ⊍M2

M1 =M2 since V1(t)(x) = V i(u[← t])(x) for x ∈ (t)fv and [Γ] only binds variables in t

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][y⃗ ← t]]↝L
u{(w⃗1/y⃗)/e1}b . . .{(w⃗n/y⃗)/en}b[e1⟨ w⃗1/y⃗ ⟩ . . . en⟨ w⃗n/y⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][y⃗ ← t]

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]]↝L

u{(w⃗1/z⃗)/e1}b . . .{(w⃗n/z⃗)/en}b[e1⟨ w⃗1/z⃗ ⟩ . . . en⟨ w⃗n/z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][
ÐÐÐ→
f⟨ z⃗ ⟩ ∣d⟨ a⃗ ⟩ [Γ′]]

Since book-keeping operations do not affect the weight of a term (Proposition 58), we
simplify these two rules into one, where u′ is u with some book-keepings applied.
Note: Proposition 58 is relevant here since the book-keepings produced by this rule cannot
be of the form {e/e}b without breaking linearity.

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][Γ]]↝L u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][Γ]

Case 1:
W i(u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ][Γ]]) =W i(u[Γ][Γ]) ⊍ {V i(u[Γ][Γ](c))}
=W i(u[Γ]) ⊍M1 ⊍ {V i(u[Γ][Γ](c))}
W i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ c ⟩ [Γ]][Γ]) =W i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ c ⟩ [Γ]]) ⊍M2

=W i(u′[Γ]) ⊍M2 ⊍ {V i(u[Γ])(c)}
M1 =M2 since V i(u[Γ])(x) = V i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ c ⟩ [Γ]])(x)
for x ∈ (u[Γ]/{c, e1, . . . , en})fv and the variables c, e1, . . . , en are not bound by [Γ]
{V i(u[Γ][Γ])(c)} = {V i(u[Γ])(c)} since c ∈ ([Γ])fv and V i(u[Γ][Γ]) = V i(u[Γ]) ⊍
Vj([Γ]).
Case 2:
W i(u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ][Γ]]) =W i(u[Γ][Γ]) =W i(u[Γ]) ⊍M1

W i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ x⃗ ⟩ [Γ]][Γ]) =W i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) ⊍M2

=W i(u′[Γ]) ⊍M2

M1 =M2 since V i(u[Γ])(x) = V i(u′[e1⟨ z⃗1 ⟩ . . . en⟨ z⃗1 ⟩ ∣ c⟨ c ⟩ [Γ]])(x)
for x ∈ (u[Γ]/{c, e1, . . . , en})fv and the variables c, e1, . . . , en are not bound by [Γ]

We now prove that for the remaining reduction rules, the number of closures decreases,
otherwise it remains constant. These are rules (c1) and (c2).

Lemma 61. For u↝(C) t, the weights W i(u) =W i(t).

Proof. We prove this case-by-case

u[w⃗ ← y][x⃗ ⋅ y ← t]↝C u[x⃗ ⋅ w⃗ ← t]

W i(u[w⃗ ← y][x⃗ ⋅ y ← t]) =W i(u[w⃗ ← y]) ⊍Wj(t)
where j = V i(u[w⃗ ← y])(x⃗) + V i(u[w⃗ ← y])(y) = V i(u[w⃗ ← y])(x⃗) + V i(u)(w⃗)

98 CHAPTER 5. STRONG NORMALISATION OF SHARING REDUCTIONS

=W i(u) ⊍Wj(t) =W i(u[x⃗ ⋅ w⃗ ← t])

u[x← t]↝C u{t/x}

W i(u[x← t]) =W i(u) ⊍Wj(t)
where j = V i(u)(x)
W i(u{t/x}) =W i(u) ⊍WVi(u)(x)(t)

5.3 Strong normalisation and confluence of ↝(R,D,L,C)

We are now ready to prove that there does not exists an infinite reduction sequence con-
sisting of only sharing reductions (↝(R,D,L,C)). We first define the sharing measure of a
term.

Definition 62. The sharing measure of a ΛSa -term t is a triple (W(t), C, H(t)), where C
is the number of closures in t. We compare sharing measures by using the lexicographical
preferences according to W > C > H.

We show strong normalisation by showing that the sharing measure decreases during
reduction. Lemma 60 says that the weight remains unchanged during ↝L reductions and
Lemma 61 states the weight remains unchanged during ↝C reductions, and Lemma 59
says that the weight strictly decreases during ↝R,D reduction. Therefore there exists a
minimal weight in the reduction, where the weight cannot decrease anymore. Once we
reach this minimal weight, we won’t be able to perform any more ↝(D,R) reduction steps.
Therefore, if we can perform any sharing reductions, it will be ↝L,C which does not affect
the weight. The ↝C reductions strictly decrease the number of closures in a term, which
remains unaffected by ↝L. Therefore a minimal number of closures exists. After this, we
are left in a situation where if we can perform further reductions, they are ↝L reductions
which strictly decrease the height measure, while leaving the weight and number of closures
unchanged. Therefore, a minimal height measure will then eventually be obtained, where
we can no longer perform any ↝L steps. This is when we reach sharing normal form.

Theorem 63. Sharing reduction ↝(R,D,L,C) is strongly normalising

Proof. From Lemma 59, Lemma 60, Lemma 61 and Lemma 54, it follows that the sharing
measure of a term is strictly decreasing under ↝(R,D,L,C), proving the statement.

Now that we have proven the sharing reductions are strongly normalising, we can prove
that they are confluent for closed terms.

Theorem 64. The sharing reduction relation ↝(R,D,L,C) is confluent

Proof. Lemma 25 tells us that the preservation is preserved under reduction i.e. for s↝(R,D,L,C)
t, J s K = J t K. Therefore given t ↝∗

(R,D,L,C) s1 and t ↝∗
(R,D,L,C) s2, J t K = J s1 K = J s2 K.

Since we know that sharing reductions are strongly normalising, we know there exists terms
u1 and u2 in sharing normal form such that s1 ↝∗

(R,D,L,C) u1 and s2 ↝∗
(R,D,L,C) u2. Lemma

5.3. STRONG NORMALISATION AND CONFLUENCE OF ↝(R,D,L,C) 99

24 tells us that terms in terms in sharing normal form are in correspondence with their de-
notations i.e. L J t K M = t. Since by Lemma 25 we know Ju1 K = J s1 K = J s2 K = Ju2 K, and
by Lemma 24 L Ju1 K M = u1 and L Ju2 K M = u2, we can conclude u1 = u2. Hence, we prove
confluence.

100

Chapter 6

Preservation of Strong
Normalisation and Confluence

善始善终
shànsȟı shànzhōng

To start well and to end well

6.1 Preservation of Strong Normalisation

Here we show how ΛSa preserves strong normalisation with respect to the λ-calculus, using
the results from the previous chapters. Observe the following diagram

ΛSa

ΛSa

ΛSa

ΛW

ΛW

ΛW

Λ

Λ

Λ

↝β

↝(R,D,L,C)

↝+
β

↝∗
W

↝∗
β

=

J− KW

J− KW

⌊− ⌋

⌊− ⌋

We obtain this diagram as a result of Lemma 43 and Lemma 44, and Lemma 25.
Recall that by Proposition 39 that for all N ∈ Λ, J LN M KW = LN MW , and that Propo-

sition 41 states if a term N ∈ Λ is strongly normalising then so is LN MW . Observe that
the statement ‘if term M has an infinite reduction sequence then term N has an infinite
reduction sequence’ is equivalent to ‘if term N is strongly normalising then term M is
strongly normalising’ by contraposition.

Therefore, given a strongly normalising term N ∈ Λ, we know that its corresponding
weakening term is also strongly normalising. Furthermore, since J LN M KW = LN MW , we
know that J LN M KW is also strongly normalising.

101

102CHAPTER 6. PRESERVATION OF STRONG NORMALISATION AND CONFLUENCE

ΛSa ΛW Λ

888

L− MWJ− KW

L− M

Prop 41⇐??⇐

We prove that the spinal λ-calculus preserves strong normalisation with the following
Lemma.

Lemma 65. For t ∈ ΛSa has an infinite reduction path, then J t KW also has an infinite
reduction path.

Proof. Due to Theorem 64, we know that the infinite reduction path contains an infinite β-
reduction. This means in the reduction sequence, between each β-reduction, there are finite
many ↝(R,D,L,C) reduction steps. Lemma 44 says each ↝(R,D,L,C) step in ΛSa corresponds
to zero or more weakening reductions (↝∗

W). Lemma 43 says that each beta reduction in
ΛSa corresponds to one or more β-steps in ΛW . Therefore, it is inevitable that J t KW also
has an infinite reduction path.

Theorem 66. If N ∈ Λ is strongly normalising, then so is LN M.

Proof. For a given N ∈ Λ that is strongly normalising, we know by Lemma 41 that LN MW

is strongly normalising. Then J LN M KW is strongly normalising, since Proposition 39 states
that LN MW = J LN M KW . Then by Lemma 65, which states that if J t KW is strongly normal-
ising, then t is strongly normalising, proves that LN M is strongly normalising.

6.2 Confluence

We use the proofs used to prove preservation of strong normalisation to also prove conflu-
ence of ΛSa -terms. We will also use the folllowing Lemma.

Lemma 67. [Simulation] Given N,M ∈ Λ. If N ↝β M , then we have

LN M↝β ↝∗
(R,D,L,C) LM M

Proof. We prove this by induction on N . Recall that n
x means replacing x with n fresh

distinct variables. Let σ be the substitutions for n1

x1
. . . nm

xm
where x1, . . . , xm occur free in

N , replacing the different occurrences of each free variable with fresh, distinct variables.
Let [Γ] = [x⃗1 ← x1] . . . [x⃗m ← xm].

Base Case: (λx.N)M ↝β N{M/x}

SubCase: ∣N ∣x = 1
L (λx.N)M M = ((x⟨x ⟩.LNσ M′) LMσ M′)[Γ]↝β LNσ M′{LMσ M′/x}[Γ] = LN{M/x} M

6.2. CONFLUENCE 103

SubCase: ∣U ∣x =m
L (λx.N)M M = ((x⟨x ⟩.LNσ M′[x⃗← x]) LMσ M′)[Γ]
↝β LNσ M′[x⃗← LMσ M′][Γ] = LN{M/x} M

Inductive Case: Application NM ↝β N ′M

LNM M = (LNσ M′ LMσ M′)[Γ]
by induction hypothesis
↝β (LN ′σ M′ LMσ M′)[Γ] = LN ′M M

Inductive Case: Abstraction λx.N ↝ λx.N ′

Lλx.N M = (x⟨x ⟩.LNσ M′)[Γ]
by induction hypothesis
↝β= (x⟨x ⟩.LN ′σ M′)[Γ] = Lλx.N ′ M

Confluence was proven for the λ-calculus in 1936 by Church and Rosser in [CR36].
Using these results, we can show confluence for ΛSa -terms.

Theorem 68. Given t, s1, s2 ∈ ΛSa . If t ↝∗
(β,R,D,L,C) s1 and t ↝∗

(β,R,D,L,C) s2, there exists

a u ∈ ΛSa such that s1 ↝∗
(β,R,D,L,C) u and s2 ↝∗

(β,R,D,L,C) u.

t

s1 s2

u

* *

**

Proof. Suppose t ↝∗
(β,R,D,L,C) s1 and t ↝∗

(β,R,D,L,C) s2. Then by Lemma 25 we have

J t K ↝∗
β J s1 K and J t K ↝∗

β J s2 K. By the Church-Rosser theorem [CR36], there exists a
M ∈ Λ such that J s1 K ↝∗

β M and J s2 K ↝∗
β M . Due to Lemma 26, L J s1 K M = s′1 and

L J s2 K M = s′2 where s′1, s
′
2 ∈ ΛSa in sharing normal form. Then thanks to Lemma 67 we know

s′1 ↝∗
(β,R,D,L,C) LM M and s′2 ↝∗

(β,R,D,L,C) LM M. Combined, we get confluence.

104

Chapter 7

Spine Duplication

由简及繁
yóujiǎn j́ıfán

From the simple to the complex

In this chapter we prove that our calculus is capable of performing spine duplication
by showing the spine of any abstraction-term and only the spine can be duplicated. This
spine here is not the same spine used in [BKKS87], which defines the spine to be the path
towards the head variable.

We formalise the definition of the spine of a term in the spinal atomic λ-calculus, and
show that it is a reasonable definition when considering the equivalent spine in the λ-
calculus. We then show that the reduction rules ↝(R,D,L,C) are capable of duplicating only
the spine of the term, and any subterm that is not part of the spine is remained shared.

105

106 CHAPTER 7. SPINE DUPLICATION

7.1 The V-Spine

We first discuss spines in the λ-calculus. Intuitively, given a set of variables V and M ∈ Λ,
the spines is composed of the shortest paths from the root of the term to the free variables
of M in V. The spine can also be seen as the union of the paths to variable occur-
rences described by director strings [FMS05b], and what is duplicated in the implementa-
tion of [BLM07]. To help with intuition, let M = (λz.z)λy.(y y)x, then the x-spine of M
(spinex(M)) is thick red line in the graph below.

@

ń ń

@

@

x

Definition 69. Given a term M ∈ Λ, and a set of variables V that do not occur bound in
M , the V -spine of M is defined inductively as follows (where y is a fresh variable)

spineV (x) = x

spineV (λx.M) =
⎧⎪⎪⎨⎪⎪⎩

y (M)fv ∩ V = {}
λx.spineV (M) otherwise

spineV (MN) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y (MN)fv ∩ V = {}
(spineV (M)) y (N)fv ∩ V = {}
(y) spineV (N) (M)fv ∩ V = {}
(spineV (M)) spineV (N) otherwise

Substitution commutes with the function determining the spine in the following way

Proposition 70. Given M,N ∈ Λ, spineV ∪{x}(M){spineV (N)/x} = spineV (M{N/x})

Proof. We prove this by induction on M

Base Case: Variable
spineV ∪{x}(x){spineV (N)/x} = x{spineV (N)/x} = spineV (N) = spineV (x{N/x})

Base Case: Variable
spineV ∪{x}(y){spineV (N)/x} = y{spineV (N)/x} = y = spineV (y) = spineV (y{N/x})

Inductive Case: Application

7.1. THE V-SPINE 107

spineV ∪{x}(M1M2){spineV (N)/x}
Case: spineV ∪{x}(M1M2) = y
= y{spineV (N)/x} = y = spineV (M1M2)

Case: spineV ∪{x}(M1M2) = spineV ∪{x}(M1) y
= spineV ∪{x}(M1) y{spineV (N)/x} = spineV ∪{x}(M1){spineV (N)/x} y
I.H.
= spineV (M1{N/x}) y = spineV (M1{N/x}M2{N/x}) = spineV ((M1M2){N/x})

Case: spineV ∪{x}(M1M2) = y spineV ∪{x}(M2)
Similar to the previous case and we omit the proof

Case: spineV ∪{x}(M1M2) = (spineV ∪{x}(M1)) spineV ∪{x}(M2)
= (spineV ∪{x}(M1)) spineV ∪{x}(M2){spineV (N)/x}
= (spineV ∪{x}(M1){spineV (N)/x}) spineV ∪{x}(M2){spineV (N)/x}
I.H.
= (spineV (M1{N/x})) spineV (M2{N/x}) = spineV ((M1M2){N/x})

Inductive Case: Abstraction
spineV ∪{x}(λz.M){spineV (N)/x}

Case: spineV ∪{x}(λz.M) = y
= y{spineV (N)/x} = y = spineV ((λz.M){N/x})

Case: spineV ∪{x}(λz.M) = λz.spineV (M)
= (λz.spineV (M)){spineV (N)/x} = λz.spineV (M){spineV (N)/x}
I.H.
= λz.spineV (M{N/x}) = spineV ((λz.M){N/x})

We now define the spine in terms of the spinal atomic λ-calculus. In order to deal
with the sharing and distribtuor constructs, we need to duplicate shared terms (collapsing
sharings). Therefore, we introduce variants of terms.

Definition 71. A variant of a term t is a term obtained from t by renaming all (bound or
free) variables. A variant is fresh if its variables are fresh variables.

Notation 72. We use ti to denote a fresh variant of t obtained by replacing each variable
x in t by a fresh one xi.

Additionally, when determining the V -spine of a term in ΛSa , we may need to update the
variables in phantom-abstractions as the spine may introduce fresh variables. To keep track
of the variables, we define an auxiliary function update book-keeping which compares two
terms (one being the spine and one being the original term), and determine what subterms
containing variables in the tuple of a phantom-abstraction have been replaced with which
fresh variables.

108 CHAPTER 7. SPINE DUPLICATION

Definition 73. We define the update book-keeping function UBK(V , ΛSa , ΛSa)→ V ∗ as

UBK(x , t , y) = {y}
UBK(x , c⟨ y⃗ ⟩.t , c⟨ z⃗ ⟩.t′) = UBK(x , t , t′)

UBK(x , s t , s′ t′) =
⎧⎪⎪⎨⎪⎪⎩

UBK(x , s , s′) x ∈ (s)fv
UBK(x , t , t′) otherwise

UBK(x , s[z1, . . . , zn ← t] , u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋃
j≤n

UBK(xj , s{ti/zi}i≤n , u) x ∈ (t)fv

UBK(x , s , u) otherwise

UBK(x , t[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ y⃗ ⟩ [Γ]] , u) = UBK(x , t[Γ] , u)

Definition 74 (V -Spine). The V -spine spineV (t) of a FALC term t, with V a set of
variables that do not occur bound in t, is defined inductively as follows (where y is a fresh
variable).

spineV (x) = x

spineV (c⟨ x⃗ ⟩.t) = y
if (t)fv ∩ V = {}

spineV (c⟨ x⃗ ⟩.t) = c⟨ y⃗ ⟩.spineV (t)
where {y⃗} = ⋃

x∈x⃗
UBK(x , t , spineV (t))

spineV (u[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]]) = spineV (u[Γ])

spineV (s t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y if (s t)fv ∩ V = {}; otherwise
(spineV (s)) y if (t)fv ∩ V = {}
(y) spineV (t) if (s)fv ∩ V = {}

(spineV (s)) spineV (t) otherwise

spineV (s[x1 . . . xn ← t]) = { y if (s[x1 . . . xn ← t])fv ∩ V = {}
(spineV ⊍U(sσ)) otherwise

where σ are the substitutions {ti/xi}1≤i≤n
and U is such that z ∈ (V ∩ (t)fv)⇐⇒∀1≤i≤nzi ∈ U

Proposition 75. Given t ∈ ΛSa , spineV (t)i = spineV i(ti) where v ∈ V⇐⇒vi ∈ V i

Example 76. Let t = x⟨x ⟩.y⟨ y ⟩.(z1 x) (z2 (y1 (y2w)[y1, y2 ← y]))[z1, z2 ← z].

spine{z}(t) = x⟨a ⟩.y⟨ b ⟩.(z1 a) (z2 b)

7.2. SPINE EQUIVALENCE 109

spine{w}(t) = x⟨a ⟩.y⟨ c, d ⟩.a (b (c (dw)))

spine{w,z}(t) = x⟨a ⟩.y⟨ b, c ⟩.(z1 a) (z2 (b (cw)))

7.2 Spine Equivalence

To show we have a good definition of spine for the spinal atomic λ-calculus, we want to
show that the V -spine of t ∈ ΛSa is the same as the V -spine of M = J t K. When calculating
the spine of t ∈ ΛSa , we may duplicate the spine of shared terms. To avoid breaking linearity,
we create fresh variants for each duplicate. To show that this spine corresponds to the spine
of J t K =M ∈ Λ, we need to replace each variant with its original variable name.

In this section, we temporarily modify the definition of a spine for ΛSa -terms a little.
Specifically the case for sharing. The spine of a ΛSa -term needs to be a ΛSa -term itself, thus
Definition 74 collapses sharings and creates fresh variants of the term being shared. This
is to maintain linearity. This constraint is not required for interpretation of ΛSa -terms into
Λ-terms J− ∣ −− K (Definition 13). Therefore we use to following definition below to prove
equivalence, which is an alteration of Definition 74.

Definition 77.

spineV (s[x1 . . . xn ← t]) =
⎧⎪⎪⎨⎪⎪⎩

y if (s[x1 . . . xn ← t])fv ∩ V = {}
(spineV (sσ)) otherwise

where σ are the substitutions {t/xi}1≤i≤n

Therefore, in this section we prove the equivalence of the spine of t ∈ ΛSa and the spine
of J t K ∈ Λ, by using the altered definition below for the case of sharing which does not
introduce fresh variants. If these spines are equal, then the spines when using Definition
74 only differ by variable names. Intuitively, these are the variables that would be captured
by some sharing that shares the original variable name during reduction.

Proposition 78. Using the definition of V -spine from Definition 69 and Definition 77, and
the readback interpretation from Definition 13, we have the following equivalence.

spineV (J t ∣ I
γ

K) = J spineV (t) ∣ I
γ

K

Proof. We prove this by induction on the sharing weight of t i.e. W1(t)

Base Case: Variable
spineV (Jx ∣ Iγ K) = spineV (x) = x = Jx ∣ Iγ K = J spineV (x) ∣ Iγ K

Inductive Case: Application

SubCase: spineV (s t) = y
spineV (J s t ∣ Iγ K) = spineV (J s ∣ Iγ K J t ∣ Iγ K) = y = J y ∣ Iγ K = J spineV (s t) ∣ Iγ K

110 CHAPTER 7. SPINE DUPLICATION

SubCase: spineV (s t) = spineV (s) y
spineV (J s t ∣ Iγ K) = spineV (J s ∣ Iγ K J t ∣ Iγ K) = spineV (J s ∣ Iγ K) y
I.H.
= J spineV (s) ∣ Iγ K y = J spineV (s) y ∣ Iγ K = J spineV (s t) ∣ Iγ K

SubCase: spineV (s t) = y spineV (s)
This case is similar as before and we omit it

SubCase: spineV (s t) = spineV (t) spineV (s)
spineV (J s t ∣ Iγ K) = spineV (J s ∣ Iγ K) spineV (J t ∣ Iγ K)
I.H.
= J spineV (s) ∣ Iγ K J spineV (t) ∣ Iγ K = J spineV (s t) ∣ Iγ K

Inductive Case: Abstraction
spineV (Jx⟨x ⟩.t ∣ Iγ K) = λx.spineV (J t ∣ Iγ K) I.H.

= λx.J spineV (t) ∣ Iγ K = J spineV (x⟨x ⟩.t) ∣ Iγ K

Inductive Case: Phantom-Abstraction
spineV (J c⟨x1, . . . , xn ⟩.t ∣ Iγ K) = λc.spineV (J t ∣ Iγ K)
= λc.J spineV (t) ∣ Iγ K = J spineV (c⟨x1, . . . , xn ⟩.t) ∣ Iγ K

Inductive Case: Sharing

spineV (J t[x1, . . . , xn ← s] ∣ Iγ K) = spineV (J t ∣ σγ K) prop ??
= spineV (J tσ ∣ Iγ K)

I.H.
= J spineV (tσ) ∣ Iγ K Def 77

= J spineV (t[x1, . . . , xn ← s]) ∣ Iγ K

Inductive Case: Distributor
spineV (Ju[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ]] ∣ Iγ K)

SubCase: x⃗ = c
spineV (Ju[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]] ∣ Iγ K) = spineV (Ju[Γ] ∣ Iγ′ K)

I.H.
= JuΓ ∣ Iγ′ K = J spineV (u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨ c ⟩ [Γ]]) ∣ Iγ K

SubCase: x⃗ = x1, . . . , xm

spineV (Ju[
ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ]] ∣ Iγ K) = spineV (Ju[Γ] ∣ Iγ′ K)

I.H.
= JuΓ ∣ Iγ′ K = J spineV (u[

ÐÐÐ→
e⟨ w⃗ ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ]]) ∣ Iγ K

7.3 Full Laziness

In this section we show that the calculus is capable of performing spine duplication, i.e.
when duplicating an abstraction, we can duplicate the spine of the term and leave all
maximal subterms that do not have the spine as a subterm shared.

SubLemma 79. Given t, s ∈ ΛSa , spineV (t{spineV (s)/x}) = spineV (t{s/x})

Proof. We prove this by induction on t

7.3. FULL LAZINESS 111

Base Case: Variable
spineV (x{spineV (s)/x}) = spineV (spineV (s)) = spineV (s) = spineV (x{s/x})

spineV (y{spineV (s)/x}) = spineV (y) = spineV (y{s/x})

Inductive Case: Application
spineV (u t{spineV (s)/x}) = (spineV (u{spineV (s)/x})) spineV (t{spineV (s)/x})
I.H.
= (spineV (u{s/x})) spineV (t{s/x}) = spineV ((u t){s/x})

Inductive Case: Abstraction
spineV ((c⟨ c⃗ ⟩.t){spineV (s)/x}) = spineV (c⟨ c⃗ ⟩.t{spineV (s)/x})
= c⟨ e⃗ ⟩.spineV (t{spineV (s)/x}) I.H.

= c⟨ e⃗ ⟩.spineV (t{s/x}) = spineV (c⟨ c⃗ ⟩.t{s/x})

Inductive Case: Sharing
spineV (u[z1, . . . , zn ← t]{spineV (s)/x})
= spineV (u{spineV (s)/x}[z1, . . . , zn ← t{spineV (s)/x}])
= spineV (u{spineV (s)/x}{(t{spineV (s)/x})i/zi}1≤i≤n)
I.H.
= spineV (u{s/x}{(t{s/x})i/zi}1≤i≤n)
= spineV (u{s/x}[z1, . . . , zn ← t{s/x}])
= spineV (u[z1, . . . , zn ← t]{s/x})

Inductive Case: Distributor
spineV (u[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩ [Γ]]{spineV (s)/x})
= spineV (u[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩ [Γ]{spineV (s)/x}])
= spineV (u[Γ]{spineV (s)/x}) I.H.

= spineV (u[Γ]{s/x})
= spineV (u[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩ [Γ]{s/x}])
= spineV (u[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩ [Γ]]{s/x})

We then use SubLemma 79 to prove this next Lemma, which states that when a term is
shared we can duplicate the V -spine of it where V is a set of variables free in the term.

Lemma 80. Given t ∈ ΛSa , and a set of variables V such that v ∈ V → v /∈ (t)fc

u[x1, . . . , xn ← t]↝∗
R,L,D,C u{spineV (t)i/xi}1≤i≤n[Γ][∆]

where the environment [Γ] is made up of, for each y ∈ (t)fv ∩ V , a sharing of the form
[y1, . . . , ym ← y]

Proof. We prove this by induction on the sharing weight of t i.e. W1(t)

Base Case: Variable
u[x1, . . . , xn ← z] = u{yi/xi}1≤i≤n[y1, . . . , yn ← y]
= u{spineV (y)i/xi}1≤i≤n[y1, . . . , yn ← y]

Inductive Case: Application
Case: spineV (s t) = y

112 CHAPTER 7. SPINE DUPLICATION

u[x1, . . . , xn ← s t] = u{yi/xi}i≤n[y1, . . . , yn ← s t]
u{spineV (s t)i/xi}i≤n[y1, . . . , yn ← s t]

Case: spineV (s t) = spineV (s) y
u[x1, . . . , xn ← s t]→D u{yi zi/xi}i≤n[y1, . . . , yn ← s][z1, . . . , zn ← t]
I.H.

→∗ u{yi zi/xi}i≤n{spineV (s)i/yi}i≤n[Γ][∆][z1, . . . , zn ← t]
= u{spineV (s)i zi/xi}i≤n[Γ][∆][z1, . . . , zn ← t]
= u{spineV (s t)i/xi}i≤n[Γ][∆][z1, . . . , zn ← t]

Case: spineV (s t) = y spineV (t)
Similar to the case before

Case: spineV (s t) = spineV (s) spineV (t)
u[x1, . . . , xn ← s t]→D u{yi zi/xi}i≤n[y1, . . . , yn ← s][z1, . . . , zn ← t]
I.H.

→∗ u{yi zi/xi}i≤n{spineV (s)i/yi}i≤n{spineV (t)i/zi}i≤n[Γs][∆s][Γt][∆t]
= u{spineV (s)ispineV (t)i/xi}i≤n[Γs][∆s][Γt][∆t] = u{spineV (s t)i/xi}i≤n[Γs][∆s][Γt][∆t]

Inductive Case: (Phantom-)Abstraction
Case: spineV (c⟨ y⃗ ⟩.t) = z
u[x1, . . . , xn ← c⟨ y⃗ ⟩.t] = u{zi/xi}i≤n[z1, . . . , zn ← c⟨ y⃗ ⟩.t]
= u{spineV (c⟨ y⃗ ⟩.t)i/xi}i≤n[z1, . . . , zn ← c⟨ y⃗ ⟩.t]

Case: spineV (c⟨ y⃗ ⟩.t) = c⟨ z⃗ ⟩.spineV (t)
u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]
↝D u{ci⟨wi ⟩.wi/xi}i≤n[c1⟨w1 ⟩ . . . cn⟨wn ⟩ ∣ c⟨ y⃗ ⟩ [w1, . . . ,wn ← t]]
I.H.

→∗ u{ci⟨wi ⟩.wi/xi}i≤n[c1⟨w1 ⟩ . . . cn⟨wn ⟩ ∣ c⟨ y⃗ ⟩ {spineV (t)i/wi}i≤n[Γ][∆]]
= u{ci⟨ z⃗i ⟩.spineV (t)i/xi}i≤n[c1⟨ z⃗1 ⟩ . . . cn⟨ z⃗n ⟩ ∣ c⟨ y⃗ ⟩ [Γ][∆]]
= u{spineV (c⟨ y⃗ ⟩.t)i/xi}i≤n[c1⟨ z⃗1 ⟩ . . . cn⟨ z⃗n ⟩ ∣ c⟨ y⃗ ⟩ [Γ][∆]]
↝∗
L u{spineV (c⟨ y⃗ ⟩.t)i/xi}i≤n[Γ][c1⟨ z⃗1 ⟩ . . . cn⟨ z⃗n ⟩ ∣ c⟨ y⃗ ⟩ [∆]]

Remark: We can lift [Γ] since we know z ∈ y⃗ → z /∈ V

Inductive Case: Sharing
u[x1, . . . , xn ← s[y1, . . . , ym ← t]]→L u[x1, . . . , xn ← s][y1, . . . , ym ← t]

Case: spineV (s[y1, . . . , ym ← t]) = z
u[x1, . . . , xn ← s[y1, . . . , ym ← t]] = u{zi/xi}i≤n[z1, . . . , zn ← s[y1, . . . , ym ← t]]
= u{spineV (s[y1, . . . , ym ← t])i/xi}i≤n[z1, . . . , zn ← s[y1, . . . , ym ← t]]

Case: spineV (s[y1, . . . , ym ← t]) = spineV ⊍U(sσ) where σ = {ti/yi}1≤i≤n
u[x1, . . . , xn ← s][y1, . . . , ym ← t]
I.H.

→∗ u[x1, . . . , xn ← s]{spineV (t)i/yi}1≤i≤m[Γt][∆t]
= u[x1, . . . , xn ← s{spineV (t)i/yi}1≤i≤m][Γt][∆t]
I.H.

→∗ u{spineV ⊍U(s{spineV (t)i/yi}1≤i≤m)j/xj}1≤j≤m[Γs][∆s][Γt][∆t]

7.3. FULL LAZINESS 113

prop 75
= u{spineV ⊍U(s{spineV i(ti)/yi}1≤i≤m)j/xj}1≤j≤m[Γs][∆s][Γt][∆t]
= u{spineV ⊍U(s{ti/yi}1≤i≤m)j/xj}1≤j≤m[Γs][∆s][Γt][∆t]
Since spineV (−) is idempotent and V i is contained in U
= u{spineV (s[y1, . . . , ym ← t])j/xj}1≤j≤m[Γs][∆s][Γt][∆t]
Lastly, perform any →L rules required in the sharings [Γs][Γt] to obtain [Γ]

Inductive Case: Distributor
u[x1, . . . , xn ← s[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩ [Σ]]]

Let W be such that
= spineV ∪W (sσ) = spineV (s[Σ]) = spineV (s[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ y⃗ ⟩ [Σ]])

Let [a1
1, . . . , a

1
k1
← t1] . . . [am1 , . . . , amkm ← tm] be all the sharings in [Σ], including those in

nested distributors, where we maintain the order of the sharings in the term calculus.
We apply the induction hypothesis on the mth sharing (the outermost).
[a1

1, . . . , a
1
k1
← t1] . . . [am−1

1 , . . . , am−1
km−1

← tm−1][am1 , . . . , amkm ← tm]
I.H.

→∗ [a1
1, . . . , a

1
k1
← t1] . . . [am−1

1 , . . . , am−1
km−1

← tm−1]{spineV (tm)i/ami }1≤i≤km[Γm][∆m]
= σm[a1

1, . . . , a
1
k1
← t1σm] . . . [am−1

1 , . . . , am−1
km−1

← tm−1σm][Γm][∆m]
where σm = {spineV i(tmi)/ami }1≤i≤km by Prop 75
Now we can apply the induction hypothesis on the m − 1th sharing

I.H.

→∗ σm[a1
1, . . . , a

1
k1
← t1σm] . . . [am−1

1 , . . . , am−2
km−2

← tm−2σm]
{spineV ⊍V 1⊍⋅⋅⋅⊍V km (tm−1σm)i/am−1

i }1≤i≤km−1[Γm−1][∆m−1][Γm][∆m]

lem 79
= [a1

1, . . . , a
1
k1
← t1σm] . . . [am−1

1 , . . . , am−2
km−2

← tm−2σm]
{spineV ⊍V 1⊍⋅⋅⋅⊍V km (tm−1σ

′
m)i/am−1

i }1≤i≤km−1[Γm−1][∆m−1][Γm][∆m]
where σ′m = {tmi/ami }1≤i≤km

Continuing until we apply the induction hypothesis to all sharings, we reach
σmσ(m−1,m) . . . σ(1,...,m−1,m)[Γ1][∆1] . . . [Γm−1][∆m−1][Γm][∆m]
Where for example σ(m−1,m) = {spineV ⊍V 1⊍⋅⋅⋅⊍V km (tm−1σ

′
m)i/am−1

i }1≤i≤km−1

Note: By SubLemma 79, each substitution can be represented with one application of
spineV ⊍W (−)

Let [Σ′] be [Σ] where every sharing [ai1, . . . , aiki ← ti] is replaced with [Γi][∆i]
Then u[x1, . . . , xn ← s[e1⟨ w⃗1 ⟩ . . . em⟨ w⃗m ⟩ ∣ c⟨ y⃗ ⟩σmσ(m−1,m) . . . σ(1,...,m−1,m)[Σ′]]]
= u[x1, . . . , xn ← sσmσ(m−1,m) . . . σ(1,...,m−1,m)[e1⟨ w⃗′

1 ⟩ . . . em⟨ w⃗′
m ⟩ ∣ c⟨ y⃗ ⟩ [Σ′]]]

→L u[x1, . . . , xn ← sσmσ(m−1,m) . . . σ(1,...,m−1,m)][e1⟨ w⃗′
1 ⟩ . . . em⟨ w⃗′

m ⟩ ∣ c⟨ y⃗ ⟩ [Σ′]]
I.H.

→∗ u{spineV ⊍W (sσmσ(m−1,m) . . . σ(1,...,m−1,m))i/xi}1≤i≤n[Γs][∆s][e1⟨ w⃗′
1 ⟩ . . . em⟨ w⃗′

m ⟩ ∣ c⟨ y⃗ ⟩ [Σ′]]

spineV ⊍W (sσmσ(m−1,m) . . . σ(1,...,m−1,m))
= spineV (s[Σ]) = spineV (s[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ y⃗ ⟩ [Σ]])

114 CHAPTER 7. SPINE DUPLICATION

Lastly, we lift →L each [Γi] out of the distributors, and we know we can always do this by
conditions of the Lemma i.e. /∃v∈V (v ∈ y⃗)
Let [Σ′′] be [Σ′] with all sharings [Γi] removed
→∗
L u{spineV (s[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ y⃗ ⟩ [Σ]])i/xi}1≤i≤n

[Γ][∆s][e1⟨ w⃗′
1 ⟩ . . . em⟨ w⃗′

m ⟩ ∣ c⟨ y⃗ ⟩ [Σ′′]]

Theorem 81. The spinal atomic λ-calculus ΛSa implements spine duplication: a term
u[x1, . . . , xn ← c⟨ c ⟩.t] reduced to a term of the form u{(c⟨ c ⟩.spine{c}(t))i/xi}1≤i≤n[∆]

Proof. By Lemma 80

Chapter 8

Conclusion

思前想后
s̄ı qián xiǎng hòu

To accurately ponder over something

8.1 What we have

This dissertation describes a typed λ-calculus with explicit sharing that implements spine
duplication through atomic reduction steps. There is a natural graphical interpretation.
This calculus is the result of stuyding the Curry-Howard interpretation of open deduction
provided in [GHP13] extended with a new inference rule that corresponds to scope in the
term calculus.

The original calculus exposed a connection between proof reduction in deep inference
and the sharing mechanisms of optimal reduction graphs. Our result further expands this
connection. The sharing mechanisms of optimal reduction graphs include scope manipu-
lation. In our calculus, we manipulate the scopes of an abstraction during duplication (in
the distributor), which allows us to duplicate only the spine of the term. It is in Chapter 7
where we prove that this calculus can duplicate the spine of the body of an abstraction.

We discuss in Chapter 2 the correspondence between the switch rule and an end-of-
scope operator, such as adbmal (λ) and director strings. In the case of adbmal, the scope
of an abstraction becomes explicitly indicated in the term. This opens up a distinction
between balanced and unbalanced scopes: whether scopes must be properly nested, or
not; for example, in λx.λy.N , a subterm λy. λx.M is balanced, but λx. λy.M is not.
With balanced scope, one can indicate the skeleton of an abstraction; with unbalanced
scope (which Hendriks and Van Oostrom dismiss) one can indicate the spine. A closely
related approach is director strings. The idea is to use nameless abstractions identified by
their nesting (as with De Bruijn indices), and make the paths to bound variables explicit by
annotating each constructor with a string of directors. The primary aim of these approaches
is to eliminate α-conversion and to streamline substitution. Consequently, while they can
identify the spine, they do not readily isolate it for duplication, as would be required for
spinal full laziness. Furthermore, atomic duplication allows for the natural duplication of
the spine, whereas extracting the spine of a term making use of director strings will involve

115

116 CHAPTER 8. CONCLUSION

a lot of overhead and maintenance of annotations, something which is limited in our result
(only when lifting a closure out of a distributor is book-keeping required).

The main result of this work is preservation of strong normalization, which means that
if a term M ∈ Λ is strongly normalising then its interpretation LM M in the spine calculus
is strongly normalising. We prove this from the results of other chapters. The main result
of Chapter 5 tells us that sharing reductions are strongly normalising and confluent, which
means that a term with an infinite reduction sequence must have infinitely many β steps.
We prove strong normalisation of sharing reductions by constructing a measure that maps
constructors of terms in the atomic λ-calculus onto constructors of the equivalent term
in the weakening calculus (introduced in Chapter 4), and proving this measure strictly
decreases during reduction.

We know that infinite reduction can happen in the atomic λ-calculus, e.g. the term
t = u[← (x⟨x ⟩.xx) z⟨ z ⟩.z z] has an infinite reduction, specifically inside the weakened
terms, which is discarded in their readback interpretation J t K. Discarding this reduction
sequence creates a potential problem, as by contraposition PSN states that if a term
LM M ∈ ΛSa has an infinite reduction sequence sequence then M has an infinite reduction
sequence, and compilation may introduce weakenings e.g. Lλy.M M where y /∈ (M)fv.
Therefore throwing away the weakenings will thwart the direct construction of an infinite
reduction sequence in the λ-calculus from an infinite atomic reduction.

Using the same solution to this problem as used in [GHP13], we utilise an intermediate
calculus, the weakening calculus. It has already been shown that the weakening calculus, a
calculus with explicit weakenings, satisfies PSN with respect to the λ-calculus. Therefore
we prove PSN for the atomic λ-calculus with respect to the weakening calculus, which
consequently proves PSN.

8.2 Steps forward

There are many directions in which we can take our work. Firstly, one could develop an
implementation of the λ-calculus based on the (spinal) atomic λ-calculus. This implemen-
tation would use environments to implement sharing, and can perform full laziness. One
would need to choose a β-reduction strategy. Lazy evaluation (call-by-need) would be a
sensible first choice, but complete laziness is also feasible. It would be interesting to see
an implementation making use of the atomic reduction rules that implements complete
laziness, as it would allow us to study these more complicated reduction strategies in a
form other than graph rewrite rules as well as further demonstrate the differences between
the duplication strategies and evaluation strategies.

However, some important properties to achieve such an implementation are missing.
Reduction is non-local: several reduction steps involve the condition that a given variable
is not free in a given subterm, which requires inspection of the entire subterm. As an
example, observe rule (l3). Due to the nature of reduction, this cannot easily be addressed
by a simple one-pass annotation of terms with free variables, since terms are manipulated at
the atomic level and free variables are in constant flux. Variable location is even required in
a graphical implementation. Duplicating the spine of an abstraction x⟨x ⟩.t means knowing
precisely the location of the free variable x in t, and duplicating accordingly. Therefore,
one would have to decide if a sharing node in a graph (or a sharing in the term calculus)

8.2. STEPS FORWARD 117

would need to proceed duplicating or to stop (where in the term calculus, we would lift the
closure out of the distributor with either l5 or l6).

There are many abstract machines and implementations of the λ-calculus, and some-
times it is not feasible to make comparisons on their behaviors (perhaps due to different
methods of implementation such as graphical or using environments). Due to having a close
syntax to the λ-calculus, and working with environments while having a strong graphical
intuition, the atomic λ-calculus is a good candidate to unionize these different approaches
to sharing.

Additionally our calculus has a close relationship to calculus with explicit substitution
[ACCL91]. Typically these calculi are used to obtain more control over the substitution
process to allow for a deeper understanding of the execution models of higher-order lan-
guages. A calculus was explicit substitutions, and explicit constructs of weakening and
binary sharing was proven in [KL07] to preserve strongly normalising terms. One difference
is that this calculus uses two constructs to differentiate weakenings and sharings, whereas
in our calculus these are distinguishable instances of the same construct. Furthermore only
variables may be shared, and a term t is semantically shared by sharing a variable x and
using an explicit substitution that would replace x with term t. The biggest difference
however is that duplication of terms in our calculus proceeds atomically, allowing for more
control over not only the substitution process but also the duplication process. Explicit sub-
stitutions, like our calculus, also have a strong graphical intuition which has been formalised
in [DCKP00].

Graphical intuitions have been given for terms (Figure 3.3 and 3.4) and reduction rules
(Figure 3.6, 3.7, 3.8, and 3.9). However, these intuitions do not provide the full system,
i.e. they have a correspondence to the structural rules of our system (e.g. application) but
not the logical rules (e.g. switch). A graphical formalism may help provide a deeper insight
into the calculus, since we would expect the derivation of a term in open deduction to
correspond to the graph, therefore the typing system is more easily observed. Furthermore,
studying the relationships between graphical systems (such as Lamping’s graphs) and our
system becomes easier, as for example, the difference in how we duplicate an application as
shown in Figure 8.1, where Figure 8.1a shows how applications are duplicated in our calculus
compared to how they are duplicated in all reduction strategies for optimal reduction in
Figure 8.1b.

@
↝

@ @

(a) Atomic graphs

@
↝

@
@

(b) Sharing graphs

Figure 8.1: Duplication of application

Another direction would be to translate the result of Blanc, Lévy, and Maranget [BLM07]
into our calculus. There they show optimal reduction for a lambda calculus with a weaker
version of β-reduction. If we show their result in our formalism, we may develop a founda-

118 CHAPTER 8. CONCLUSION

tions to a logical framework for optimal reduction.
Lastly, and a long-term goal, would be to develop a complete logical framework for

optimal reduction. The algorithms for optimal reduction us graph rewriting techniques,
and nodes that specify enclosures and scopes. Furthermore, the implementations do not
share terms like in either of the atomic λ-calculi, but they share contexts i.e. terms with
holes that can be ‘filled’ with distinct terms. Thus it is clear that they use a notion of
sharing more powerful than full laziness.

It is worth mentioning a step in this direction has been made in [GM13] where Gimenez
and Moser compare the rewrite rules for a multiplicative exponential linear logic deep
inference system to graph rewrite rules (specifically interaction nets [Laf90]) used for optimal
reduction, however not every graphical reduction has a corresponding logical equivalent step.
It would be interesting to discover the Curry-Howard correspondence between the nodes
used for optimal sharing (brackets and croissants) and their logical interpretation in deep
inference, and help formalise the requirements for implementing optimal reduction.

Bibliography

[ACCL91] Martin Abadi, Luca Cardelli, Pierre-Loius Curien, and Jean-Jacques Lévy. Ex-
plicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[AF97] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus.
Journal of Functional Programming, 7(3):265–301, 1997.

[AK12a] Beniamino Accattoli and Delia Kesner. The permutative λ-calculus. In Niko-
laj Bjørner and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 23–36, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[AK12b] Beniamino Accattoli and Delia Kesner. Preservation of Strong Normalisation
modulo permutations for the structural lambda-calculus. Logical Methods in
Computer Science, 8(1):44, March 2012.

[AT17] Andrea Aler Tubella. A Study of Normalisation Through Subatomic Logic.
PhD thesis, University of Bath, 2017.

[Bal12] Thibaut Balabonski. A unified approach to fully lazy sharing. SIGPLAN Not.,
47(1):469–480, January 2012.

[Bar84] Henk P Barendregt. The lambda calculus: Its syntax and semantics, revised
ed., vol. 103 of studies in logic and the foundations of mathematics, 1984.

[BF82] Klaus J. Berkling and Elfriede Fehr. A consistent extension of the lambda-
calculus as a base for functional programming languages. Information and
Control, 55(1):89 – 101, 1982.

[BKKS87] H.P. Barendregt, J.R. Kennaway, J.W. Klop, and M.R. Sleep. Needed reduc-
tion and spine strategies for the lambda calculus. Information and Computa-
tion, 75(3):191 – 231, 1987.

[BL05] Kai Brünnler and Stéphane Lengrand. On two forms of bureaucracy in
derivations. In Paola Bruscoli, François Lamarche, and Charles Stewart, edi-
tors, Structures and Deduction, pages 69–80. Technische Universität Dresden,
2005. ICALP Workshop. ISSN 1430-211X.

[BLM07] Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing in the weak
lambda-calculus revisited. In Erik Barendsen, Herman Geuvers, Venanzio

119

120 BIBLIOGRAPHY

Capretta, and Milad Niqui, editors, Reflections on Type Theory, Lambda Cal-
culus, and the Mind, Essays Dedicated to Henk Barendregt on the Occasion
of his 60th Birthday, pages 41–50. Nijmegen Radboud Universiteit Nijmegen,
2007.

[Brü06] Kai Brünnler. Deep sequent systems for modal logic. In Guido Governatori,
Ian Hodkinson, and Yde Venema, editors, Advances in Modal Logic (AiML),
volume 6, pages 107–119. College Publications, 2006.

[Brü10] Kai Brünnler. Nested sequents. Habilitation Thesis, Universität Bern, 2010.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and Andrei Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR), volume 2250 of Lecture Notes in
Computer Science, pages 347–361. Springer-Verlag, 2001.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms.
Archiv für mathematische Logik und Grundlagenforschung, 19(1):139–156,
1978.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Logic, 21(4):685–693, 1980.

[CH98] Naim Cagman and J.Roger Hindley. Combinatory weak reduction in lambda
calculus. Theoretical Computer Science, 198(1):239 – 247, 1998.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[CR36] Alonzo Church and J. Barkley Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, 1936.

[CS97] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of
Pure and Applied Algebra, 114(2):133 – 173, 1997.

[Cur30] H. B. Curry. Grundlagen der kombinatorischen logik. American Journal of
Mathematics, 52(3):509–536, 1930.

[Das14a] Anupam Das. The Complexity of Propositional Proofs in Deep Inference. PhD
thesis, University of Bath, 2014.

[Das14b] Anupam Das. On the pigeonhole and related principles in deep inference
and monotone systems. In Thomas Henzinger and Dale Miller, editors, Joint
Meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 36:1–10. ACM, 2014.

[dB72] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the church-
rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75,
pages 381–392. Elsevier, 1972.

BIBLIOGRAPHY 121

[DCKP00] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets and
explicit substitutions. In Jerzy Tiuryn, editor, Foundations of Software Science
and Computation Structures, pages 63–81, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[DG01] René David and Bruno Guillaume. A λ-calculus with explicit weakening
and explicit substitution. Mathematical Structures in Computer Science,
11(1):169–206, 2001.

[DP04] Kosta Došen and Zoran Petrić. Proof-theoretical coherence. King’s College
Publications, 35 Ballards Lane, London N3 1XW, 2004.

[FM99] Maribel Fernández and Ian Mackie. Closed reductions in the λ-calculus. In
Jörg Flum and Mario Rodriguez-Artalejo, editors, Computer Science Logic,
pages 220–234, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[FMS05a] Maribel Fernández, Ian Mackie, and François-Régis Sinot. Closed reduction:
explicit substitutions without α-conversion. Mathematical Structures in Com-
puter Science, 15(2):343–381, 2005.

[FMS05b] Maribel Fernández, Ian Mackie, and François-Régis Sinot. Lambda-calculus
with director strings. Applicable Algebra in Engineering, Communication and
Computing, 15(6):393–437, Apr 2005.

[FPT99] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No.
PR00158), pages 193–202, July 1999.

[GAL92] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of
optimal lambda reduction. In Proceedings of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’92, pages 15–
26, New York, NY, USA, 1992. ACM.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference
via atomic flows. Logical Methods in Computer Science, 4(1):9:1–36, 2008.

[GGP10] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which
reduces syntactic bureaucracy. In Christopher Lynch, editor, 21st Interna-
tional Conference on Rewriting Techniques and Applications (RTA), volume 6
of Leibniz International Proceedings in Informatics (LIPIcs), pages 135–150.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

[GHP13] Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda cal-
culus: A typed lambda-calculus with explicit sharing. In Orna Kupferman,
editor, 28th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 311–320. IEEE, 2013.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101,
1987.

122 BIBLIOGRAPHY

[GM13] Stéphane Gimenez and Georg Moser. The Structure of Interaction. In Si-
mona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013),
volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages
316–331, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and mell in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic,
pages 54–68, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[GS14] Nicolas Guenot and Lutz Straßburger. Symmetric normalisation for intuition-
istic logic. In Thomas Henzinger and Dale Miller, editors, Joint Meeting of the
23rd EACSL Annual Conference on Computer Science Logic (CSL) and the
29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 45:1–10. ACM, 2014.

[GS17] Stefano Guerrini and Marco Solieri. Is the Optimal Implementation Inefficient?
Elementarily Not. In 2nd International Conference on Formal Structures for
Computation and Deduction (FSCD 2017), volume 84, pages 17:1 – 17:16,
Oxford, United Kingdom, September 2017.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions
on Computational Logic, 8(1):1:1–64, 2007.

[He18] Fanny He. The Atomic Lambda-Mu Calculus. PhD thesis, University of Bath,
2018.

[HG91] Carsten Kehler Holst and Darsten Krogh Gomard. Partial evaluation is fuller
laziness. SIGPLAN Not., 26(9):223–233, May 1991.

[HO80] Gérard Huet and Derek C. Oppen. Equations and rewrite rules: A survey.
In RONALD V. BOOK, editor, Formal Language Theory, pages 349 – 405.
Academic Press, 1980.

[How80] William A Howard. The formulae-as-types notion of construction. To H. B.
Curry : Essays on combinatory logic, lambda-calculus, and formalism, 44:479–
490, 1980.

[Hug04] Dominic J.D. Hughes. Deep inference proof theory equals categorical proof
theory minus coherence, 2004.

[HvO03] Dimitri Hendriks and Vincent van Oostrom. adbmal. In Franz Baader, editor,
Automated Deduction - CADE-19, 19th International Conference on Auto-
mated Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Pro-
ceedings, volume 2741 of Lecture Notes in Computer Science, pages 136–150,
2003.

[JL82] Jean-Pierre Jouannaud and Pierre Lescanne. On multiset orderings. Informa-
tion Processing Letters, 15(2):57 – 63, 1982.

BIBLIOGRAPHY 123

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Proc. Of a Conference on Functional Programming Languages and
Computer Architecture, pages 190–203, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

[KC08] Delia Kesner and Shane Ó Conchúir. Milner’s lambda calculus with partial
substitutions. Available on http://www. pps. jussieu. fr/ kesner/papers Last
visited on 07/01/2019, 2008.

[Kes08] Delia Kesner. Perpetuality for full and safe composition (in a constructive
setting). In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata,
Languages and Programming, pages 311–322, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[Kes09] Delia Kesner. A Theory of Explicit Substitutions with Safe and Full Compo-
sition. Logical Methods in Computer Science, 5(3:1):Pages 1–29, 2009.

[KL05] Delia Kesner and Stéphane Lengrand. Extending the explicit substitution
paradigm. In Jürgen Giesl, editor, Term Rewriting and Applications, pages
407–422, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for λ-calculus. In-
formation and Computation, 205(4):419 – 473, 2007. Special Issue: 16th
International Conference on Rewriting Techniques and Applications.

[Klo80] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Utrecht
University, 1980.

[KS88] Richard Kennaway and Ronan Sleep. Director strings as combinators. ACM
Trans. Program. Lang. Syst., 10(4):602–626, October 1988.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-
binatory reduction systems: introduction and survey. Theoretical Computer
Science, 121(1):279 – 308, 1993.

[Laf90] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’90,
pages 95–108, New York, NY, USA, 1990. ACM.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction. In Pro-
ceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’90, pages 16–30, New York, NY, USA, 1990.
ACM.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’93, pages 144–154, New York, NY, USA, 1993. ACM.

124 BIBLIOGRAPHY

[Lév80] Jean-Jacques Lévy. Optimal reductions in the lambda calculus. To HB Curry:
Essays on Combinatory Logic, Lambda Coalculus and Formalism, pages 159–
191, 1980.

[Mac98] Ian Mackie. Yale: Yet another lambda evaluator based on interaction nets.
SIGPLAN Not., 34(1):117–128, September 1998.

[Mel95] Paul-André Mellies. Typed λ-calculi with explicit substitutions may not termi-
nate. In Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Typed
Lambda Calculi and Applications, pages 328–334, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[PH18] Joseph Paulus and Willem Heijltjes. Deep-inference intersection types. Pre-
sented at Twenty Years of Deep Inference Workshop 2018, Oxford. Available
on http://www.cs.bath.ac.uk/wbh22/pdf/2018-heijltjes-paulus.pdf Last vis-
ited on 07/01/2019, 2018.

[PJ87] Simon Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, January 1987.

[Roj15] Raúl Rojas. A tutorial introduction to the lambda calculus. arXiv preprint
arXiv:1503.09060, 2015.

[Ses97] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Pro-
gramming, 7(3):231–264, 1997.

[SFM03] François-Régis Sinot, Maribel Fernández, and Ian Mackie. Efficient reductions
with director strings. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, pages 46–60, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[Sin06] François-Régis Sinot. Call-by-need in token-passing nets. Mathematical Struc-
tures in Computer Science, 16(4):639–666, 2006.

[Sin08] François-Régis Sinot. Complete laziness: a natural semantics. Electronic
Notes in Theoretical Computer Science, 204:129 – 145, 2008. Proceedings
of the 7th International Workshop on Reduction Strategies in Rewriting and
Programming (WRS 2007).

[SS05] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. In Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds, and
Heinrich Wansing, editors, Advances in Modal Logic (AiML), volume 5, pages
309–333. King’s College Publications, 2005.

[Sto07] Phiniki Stouppa. A deep inference system for the modal logic S5. Studia
Logica, 85(2):199–214, 2007.

[Str07] Lutz Straßburger. A characterization of medial as rewriting rule. In Franz
Baader, editor, Term Rewriting and Applications, pages 344–358, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

BIBLIOGRAPHY 125

[SW04] Olin Shivers and Mitchell Wand. Bottom-up beta-substitution: Uplinks and
lambda-dags. BRICS Report Series, 11(38), Dec. 2004.

[Tiu06] Alwen Tiu. A local system for intuitionistic logic. In Miki Hermann and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reason-
ing, pages 242–256, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[vOvdLZ04] Vincent van Oostrom, Kees-Jan van de Looij, and Marijn Zwitserlood. Lamb-
dascope: another optimal implementation of the lambda-calculus. In Work-
shop on Algebra and Logic on Programming Systems (ALPS), 2004.

[Wad71] Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda-
Calculus. PhD thesis, University of Oxford, 1971.

[WR28] Alfred North Whitehead and Bertrand Russell. Principia mathematica. Journal
of Philosophy, 25(16):438–445, 1928.

