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Abstract

Dinatural transformations, which have been used to interpret the second-order λ-
calculus as well as derivations in intuitionistic logic and multiplicative linear logic,
fail to compose in general; this has been known since they were discovered by Dubuc
and Street in 1970. Many ad hoc solutions to this remarkable shortcoming have been
found, but a general theory of compositionality was missing. In this thesis we show
how acyclicity of certain graphs associated to these transformations is a su�cient
and essentially necessary condition that ensures that the composite of two arbitrary
dinatural transformations is in turn dinatural. �is leads (not straightforwardly) to
the de�nition of a generalised functor category, whose objects are functors of mixed
variance in many variables, and whose morphisms are transformations that happen
to be dinatural only in some of their variables.

We also de�ne a notion of horizontal composition for dinatural transformations,
extending the well-known version for natural transformations, and prove it is asso-
ciative and unitary. Horizontal composition embodies substitution of functors into
transformations and vice-versa, and is intuitively re�ected from the string-diagram
point of view by substitution of graphs into graphs.

�is work represents the �rst, fundamental steps towards a Godement-like calculus
of dinatural transformations as sought originally by Kelly, with the intention then
to apply it to describe coherence problems abstractly. �ere are still fundamental
di�culties that are yet to be overcome in order to achieve such a calculus, and these
will be the subject of future work; however, our contribution places us well in track on
the path traced by Kelly towards a Godement calculus for dinatural transformations.
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Introduction

Dinatural transformations are the generalisation of one of the very pillars
of Category �eory: natural transformations. As such, they are ubiquitous in

Mathematics and Computer Science, in particular in the �elds of logic and theory
of programming languages. One of their most prominent applications is giving the
correct categorical semantics for the notion of parametric polymorphism in second-
order λ-calculus [BFSS90], but numerous studies have been conducted about them, as
we shall see later on.

Despite the crucial role they play in Category �eory and �eoretical Computer
Science, they su�er from a troublesome shortcoming: they do not compose. �is
remarkable problem has haunted mathematicians and computer scientists alike for
several decades since they were introduced by Dubuc and Street in [DS70]. �ere are
certain conditions, known already to their discoverers, under which two dinatural
transformations ϕ and ψ compose: if either of them is natural, or if a certain square
happens to be a pullback or a pushout, then the compositeψ◦ϕ turns out to be dinatural.
However, these are far from being satisfactory solutions for the compositionality
problem, for either they are too restrictive (as in the �rst case), or they speak of
properties enjoyed not by ϕ and ψ themselves, but rather by other structures, namely
one of the functors involved.

So far, only ad hoc solutions for restricted classes of dinatural transformations
have been found and a proper compositional calculus of dinaturals has never been
formalised. �e �rst contribution of this thesis is to �nally solve the compositionality
problem of dinatural transformations in its full generality. We shall see in Chapter 1
how we revealed the inherent computational nature of dinaturals by using Petri Nets

as string diagrams for them, and reducing the compositionality problem to a ma�er of
reachability of certain con�gurations in acyclic Petri Nets. Moreover, we also de�ned
a notion of horizontal composition (Chapter 2), extending the well-known version for
natural transformations, and proved it is associative and unitary, cf. [MS18]. Finally,
we obtained a working de�nition of a category of mixed-variance functors and (par-
tially) dinatural transformations (Chapter 3) using the vertical compositionality result,
together with a category of formal substitutions entailing horizontal composition; the
connection between the two is expressed by an adjunction. �ese results are the �rst
steps towards a generalised Godement calculus, sought—but never achieved—by Kelly
in order to solve the coherence problem in its complete generality [Kel72b].
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Introduction

�e origins

Natural transformations and the Godement calculus. Functors and natural
transformations are among the fundamental notions of Category �eory, and indeed
they appear in the �rst article in which categories were treated in their own right
by Eilenberg and Mac Lane [EM45]. Functors provide a way to translate objects of
a category C into objects of a category D while respecting composition: they are,
essentially, “homomorphisms” of categories, in the typical sense of “preserving the
algebraic structure”, namely composition. In the same way, natural transformations are
homomorphisms of functors: given functors F,G : C→ D, a natural transformation
ϕ : F → G is a family of morphisms (ϕA : F(A) → G(A))A∈C in D such that for all
f : A→ B morphism in C the following square commutes:

F(A) G(A)

F(B) G(B)

ϕA

F( f ) G( f )

ϕB

Hence such a ϕ “transforms” images of objects along F into images of objects along
G, coherently with the images of morphisms along F and G. �is essentially means
that natural transformations are operations that act uniformly, independently of the
speci�c structure of the objects A, B or their images. For example, given an arbitrary
set A, we can always de�ne the diagonal map δA : A→ A × A that maps a ∈ A into
the pair (a,a). �is operation does not depend on the very nature of A, and it is indeed
a natural transformation from the identity functor to the diagonal functor on Set (this
can be generalised to an arbitrary category with �nite products).

Functors can be composed, and so can natural transformations. In fact, the la�er
can compose in not just one, but two di�erent ways: vertically and horizontally. For if
we have natural transformations F G H

ϕ ψ , with F,G,H : C→ D, then we can
consider the family of morphisms ψ ◦ ϕ de�ned as

ψ ◦ ϕ = (ψA ◦ ϕA)A∈C

and it is immediate to see that it is still a natural transformation F → H. Here
ψ ◦ ϕ is the vertical composite of ϕ and ψ, and it is easily proven that ◦ is associative
and unitary. Now, if in addition to ϕ above we also have functors V : B → C and
U : D→ E, that is we are in the following situation:

B C D E
V

F

G

Uϕ

we can compose U and V with ϕ in what is called whiskering, to obtain a natural
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The origins

transformation U ∗ ϕ ∗ V : UFV → UGV de�ned as

U ∗ ϕ ∗ V =
(
U(ϕV(A))

)
A∈B.

If U (respectively, V ) is the identity functor, we shall simply write ϕ ∗ V (respectively,
U ∗ ϕ). Godement [God58] individuated some simple properties relating whiskering
with vertical composition of natural transformations and sequential composition of
functors, the famous �ve rules of the functorial calculus, which we report from the
original source.

�eorem (Godement Calculus). Let F, G, U and V be functors, and ϕ, ψ natural

transformations.

(I) In the following situation:

• • • •
V U

ϕ

we have (UV) ∗ ϕ = U ∗ (V ∗ ϕ);

(II) If

• • • •
V U ϕ

then ϕ ∗ (UV) = (ϕ ∗U) ∗ V ;

(III) If

• • • •
V U

ϕ

then (U ∗ ϕ) ∗ V = U ∗ (ϕ ∗ V) = U ∗ ϕ ∗ V ;

(IV) If

• • • •
V U

ϕ

ψ

then U ∗ (ψ ◦ ϕ) ∗ V = (U ∗ ψ ∗ V) ◦ (U ∗ ϕ ∗ V);

(V) If

• • •

F

G

U

V

ϕ ψ

then (ψ ∗ G) ◦ (U ∗ ϕ) = (V ∗ ϕ) ◦ (ψ ∗ F).
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In slightly more modern terminology, the horizontal composition of two transform-
ations ϕ and ψ as in the following situation:

C D E

F

G

U

V

ϕ ψ

is de�ned to be either side of the equation in (V), and denoted by ψ ∗ ϕ: it is therefore
the transformation UF → VG whose A-th component, for A ∈ C, is either leg of the
following square, which commutes by virtue of the naturality of ψ:

UF(A) VF(A)

UG(A) UG(A)

ψF(A)

U(ϕA) V(ϕA)

ψG(A)

It turns out that horizontal composition is associative and unitary; moreover, it
is coherent with vertical composition in the following sense. Suppose we are in the
situation depicted below:

C D E
ϕ

ψ

ϕ′

ψ ′

with ϕ, ψ, ϕ′ and ψ′ natural transformations. �en one can prove the following identity
(the interchange law) as a consequence of the naturality of ϕ, ψ, ϕ′ and ψ′:

(ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ) = (ψ′ ∗ ψ) ◦ (ϕ′ ∗ ϕ),

which makes the categoryCat of small categories, functors and natural transformations
a 2-category. In fact, under the hypothesis of associativity and unitarity of ◦, we have
that the �ve rules of the Godement calculus are equivalent to the interchange law
together with associativity and unitarity of horizontal composition (in the sense
that assuming the �ve Godement rules one can prove the properties of horizontal
composition without referring to naturality conditions, and vice versa). Hence why
in the literature (for example, in [EK66] and [Kel72a]) the Godement calculus is
usually intended as the set of two operations on natural transformations, vertical and
horizontal composition, both of which being associative and unitary and satisfying
the interchange law.

Extraordinary natural transformations. Of course one can expand the Gode-
ment calculus to contravariant functors and functors of many variables by using dual

8



The origins

categories and product of categories. However, Eilenberg and Kelly [EK66] recognised
that there are interesting situations not covered by the notion of natural transforma-
tion. Take again the category Set (or any cartesian closed category). For every pair
of sets A and B, denote by A⇒ B the set of all functions from A to B. ((−) ⇒ (−) is
a functor Setop × Set→ Set, contravariant in its �rst argument and covariant in the
second.) We have the evaluation function

A × (A⇒ B) B

(a, f ) f (a)

evalA,B

and therefore a family of morphisms eval = (evalA,B)A,B∈Set. If we �x the set A, as a
family in B it is indeed a natural transformation; if we �x B though, the assignment
A A × (A⇒ B) is not even a functor, because A appears both covariantly and
contravariantly at once. However, the following is indeed a functor:

Set × Setop × Set Set
(X,Y, Z) X × (Y ⇒ Z)

F

and eval−,B still satis�es a “universal equational property” that resembles naturality:
for all f : A→ A′, the following square commutes:

A × (A′⇒ B) A × (A⇒ B)

A′ × (A′⇒ B) B

1×( f⇒1)

f×(1⇒1) evalA,B

evalA′,B

Notice how the f “jumps”, as it were, from the covariant to the contravariant argument
of F in the two legs of the square. Eilenberg and Kelly designed a generalised notion
of natural transformation, which are now known as extranatural transformations, to
take into account transformations like eval.
De�nition ([EK66]). Let F : A ×Bop ×B→ E, G : A ×Cop ×C→ E be functors. An
extranatural transformation ϕ : F → G is a family of morphisms in E

ϕ = (ϕA,B,C : F(A,B,B) → G(A,C,C))A∈A,B∈B,C∈C

such that for all f : A→ A′, g : B → B′, h : C → C′ in A, B and C respectively, the
following diagrams commute:

F(A,B,B) G(A,C,C)

F(A′,B,B) G(A′,C,C)

ϕA,B,C

F( f ,1,1) G( f ,1,1)
ϕA′,B,C

F(A,B′,B) F(A,B,B)

F(A,B′,B′) G(A,C,C)

F(1,g,1)

F(1,1,g) ϕA,B,C

ϕA,B′,C

9
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F(A,B,B) G(A,C,C)

G(A,C′,C′) G(A,C,C′)

ϕA,B,C

ϕA,B,C ′ G(1,1,h)
G(1,h,1)

�

If we take B and C to be the terminal category, then we are le� with the usual
naturality square; this is why we say that ϕ is “natural in A” and “properly extranatural”
in B and C. �is also shows that an extranatural transformation can depend on
fewer than three variables. At the same time, if we replace A, B and C with products
A1×· · ·×An,B1×· · ·×Bt andC1×· · ·×Cs, then we obtain a de�nition of extranaturality
for families of morphisms

ϕA1,...,An,B1,...,Bt,C1,...,Cs : F(A1 . . . An,B1 . . . Bt,B1 . . . Bt) →

→ G(A1 . . . An,C1 . . .Cs,C1 . . .Cs).

�is means that extranatural transformations can depend on an arbitrary number
of variables, but with a crucial constraint: every variable has to appear exactly twice

between F and G; either once in F and once in G like the Ai’s, or twice in F and never
in G like the Bi’s, or twice in G and never in F like the Ci’s.

Extranatural transformations, however, share the same fate of dinaturals: they
do not compose. For if H : A × Dop × D → E is a functor and ψA,C,D : G(A,C,C) →
H(A,D,D) is extranatural, then the composition

F(A,B,B) G(A,C,C) H(A,D,D)
ϕA,B,C ψA,C ,D

is a family of morphisms depending on A, B, C and D, therefore is not a well-de�ned
extranatural transformation F → H, as C never appears in any of these functors.
Even if we allowed for variables to either appear twice or not at all, the above family
would be (extra)natural in C only when it is constant in C, which in general is not
true (Example (1.15) shows transformations ϕ and ψ with A = B = D = I, I being the
terminal category, whose composite is not constant, hence not extranatural).

Nevertheless, Eilenberg and Kelly found a su�cient and also essentially necessary
condition for ϕ andψ to compose, by associating to each of them a graph (the archetype
of a string diagram) whose vertices are the categories involved by F, G and H, and
the links connect the vertices corresponding to those arguments of F, G and H
that are set to be equal when we write the general components of ϕ and ψ. For a
ϕA,B,C : F(A,B,B) → G(A,C,C) then, its graph would be:

A Bop B

A Cop C

10
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Eilenberg and Kelly’s result asserts that if the composite graph of ϕ and ψ is acyclic,
then the composite transformation is again extranatural, see �eorem (1.37) and dis-
cussion a�erwards. �e condition of acyclicity will be central to our compositionality
result for dinatural transformations (�eorem (1.38)).

Dinatural transformations. Four years a�er Eilenberg and Kelly’s paper, Dubuc
and Street introduced the notion of dinatural transformation for the �rst time in [DS70],
as a common se�ing for natural and properly extranatural transformations.

De�nition ([DS70]). Let F : Cop × C → D and G : Cop × C → D be functors. A
dinatural transformation ϕ : F → G is a family of morphisms in D

ϕ = (ϕA : F(A, A) → G(A, A))A∈C

such that for all f : A→ B in C, the following hexagon commutes:

F(A, A) G(A, A)

F(B, A) G(A,B)

F(B,B) G(B,B)

ϕA

G(1, f )F( f ,1)

F(1, f )

ϕB

G( f ,1)

�

�e reason for which they are called dinatural is that their components are arrows
between the values of the functors computed on the diagonal. In [DS70], the authors
provide some results studying the connections between naturals and dinaturals, and a
few examples of dinatural transformations occurring in Category �eory; a particularly
interesting one is given by the Church numerals: for any category C, if

HomC : Cop × C→ Set

is the Hom-functor and n is a natural number, the family of morphisms

nA : HomC(A, A) → HomC(A, A)

given by nA( f ) = f n, that is the n-th iterated composition of f with itself, is dinatural.
(See Example (1.12) for more details.)

If ϕ : F → G is dinatural, and F and G are both dummy in the �rst variable, then
ϕ is in fact natural; if F or G is constant, then ϕ is properly extranatural. In particular,
dinatural transformations do not compose, since extranaturals do not either, but the
reason for which they do not is even more striking: consider ψ : G → H dinatural
and the composite family ψ ◦ ϕ = (ψA ◦ ϕA)A∈C. Saying that ψ ◦ ϕ is dinatural means

11
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that the outer hexagon in the following diagram commutes for all f : A→ B:

F(A, A) G(A, A) H(A, A)

F(B, A) G(B, A) G(A,B) H(A,B)

F(B,B) G(B,B) H(B,B)

ϕA ψA

G(1, f ) H(1, f )F( f ,1)

F(1, f )

G( f ,1)

G(1, f )

ϕB

G( f ,1)

ψB

H( f ,1)

�ere is no way, in general, to infer the commutativity of the outer hexagon from
that of the two inner ones. Yet, as we shall see, dinatural transformations are a key
categorical tool in the semantics of programming languages.

Ad hoc compositionality in denotational semantics

Denotational semantics is a methodology in Computer Science that gives mathematical
meaning to programming languages. It assigns to each expression in the language a
mathematical structure, its denotation, o�en of an algebraic nature: by understanding
the mathematical properties of these structures, one automatically understands the
computational properties of their counterparts.

A crucial feature of denotational semantics is the compositionality paradigm: the
mathematical denotation of a composite program has to be given in terms of the
denotations of its minor parts. �is allows us to study arbitrarily complex programs
by �rst decomposing them and analysing the smaller blocks they are made of, and
then composing their interpretations in the mathematical world, as it were.

Despite the fact that dinatural transformations fail to compose, they have been
found extremely useful in denotational semantics. We now explore how computer
scientists have managed to get round the problem of compositionality in a few ex-
amples of applications of dinatural transformations in the semantics of programming
languages.

Parametric polymorphism. Polymorphism is a feature of many typed program-
ming languages, whereby some functions are de�ned over multiple types at once. For
example, say that f is a function of argument α which returns objects of type β: f
has then type α⇒ β. Given a list L of type List(α), we can imagine a function map

which applies f to each element of L, yielding therefore a new list L′ of type List(β).
We have then that map is a polymorphic function of type

(α⇒ β,List(α)) ⇒ List(β).

12



Ad hoc compositionality in denotational semantics

�e algorithm de�ning map is completely independent of α and β: no ma�er their
nature, map acts in the exact same way on arbitrary inputs of the appropriate type.
�is is an instance of what Strachey called parametric polymorphism [Str67]. Strachey
distinguished also another notion of polymorphism, named ad hoc polymorphism,
to refer to those polymorphic functions whose algorithm does change when we
instantiate them at di�erent types. �e typical arithmetic operators, such as +, fall
into this category: the algorithm computing the sum of two integers di�ers from the
one that adds together two �oating-point numbers.

From the mathematical point of view, an extension of the typed λ-calculus that
allows for variable types, that is a higher-order λ-calculus, was independently de-
veloped by Girard [Gir72] (which he called System F ) and Reynolds [Rey74]; the la�er
proposed it as a syntax for Strachey’s parametric polymorphism. �e semantics of
this calculus though has a particularly di�cult story: Reynolds [Rey83] suggested
that it might have a set-theoretical interpretation, but later [Rey84] showed that the
only set model is trivial. However, Pi�s [Pit87] proved that if we limit ourselves in
the realm of constructive (intuitionistic) set theory, then it is indeed possible to give
proper models to the Girard-Reynolds calculus.

�e starting point of Bainbridge, Girard, Scedrov and Sco� [BFSS90] was indeed
to understand how to interpret the terms of the polymorphic λ-calculus without using
set models. �ey looked at the polymorphic identity term, which is

Λα. (λxα. x) : ∀α. (α⇒ α).

�is means that Λα. (λxα. x)[A] = λxA. x: once the polymorphic identity is instanti-
ated at a type A we obtain the simply-typed identity function on A. HenceΛα. (λxα. x)
is a type-indexed family of identity functions.

One would therefore be tempted to de�ne ∀α. (α⇒ α) as the product ΠA(A⇒ A)
over all types, but such a product is simply too big: it also contains those ad hoc

elements that do not comply with the parametricity paradigm. In [Rey83], Reynolds
proposes to consider only parametric elements of this product by means of certain in-
variance conditions, that capture Strachey’s intuition, in the context of a set-theoretical
model which, as we said, does not exist.

Bainbridge et al.’s approach was to interpret the uniformity conditions of para-
metric terms as naturality conditions: they interpreted types as functors and terms
as natural transformations, all de�ned over a �xed cartesian closed category C of
“ground” types. In particular, the function space α⇒ β is interpreted by the internal
hom-functor (−) ⇒ (−) : Cop × C→ C, which is contravariant in its �rst argument
and covariant in the second. �is immediately poses a problem: we need more than
mere natural transformations, as they are de�ned between covariant functors only.
Dinatural transformations are precisely what we require: in [BFSS90] the authors gave
a semantic approximation to Strachey’s notion of parametric polymorphism by means
of certain dinatural transformations over a speci�c cartesian closed category. (In par-
ticular, the type ∀α. (α⇒ α) is interpreted using the end [Yon60] of the hom-functor,
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which involves a universal dinatural transformation.)
But how did they tackle the “most perverse aspect of the calculus of dinatural

transformations” (sic), namely the failure of composition? �e answer is: with ad hoc
arrangements. �ey took C to be the category Per of partial equivalence relations
(that is, symmetric and transitive relations) over the natural numbers and they con-
sidered particular families of morphisms, called realizable families, between functors
of mixed variance over Per. �e authors did not know if realizable families were
automatically dinatural (Freyd, Robinson and Rosolini gave su�cient conditions for
the dinaturality of realizable families in [FRR92]), but they proved that realizable
dinatural transformations do compose by using a crucial property of Per: namely the
fact that every morphism in Per can be decomposed into isomorphisms and “I-maps”,
for I a speci�c subcategory of Per, see [BFSS90, Proposition 2.4]. �ey then showed
that the realizable families used to interpret the terms of the polymorphic λ-calculus
are all dinatural, hence, as far as they were concerned, the compositionality problem
of dinatural transformations posed no further issues.

Intuitionistic logic and λ-calculus. Girard, Scedrov and Sco� [GSS92] interpreted
the simply typed λ-calculus with type variables, that is essentially the fragment of
the Girard-Reynolds calculus where type variables are quanti�ed only implicitly over
all the possible types (but the quanti�cation is not encoded into the syntax of the
calculus), using the same “recipe” provided in [BFSS90], but in an arbitrary cartesian
closed category C. Hence, types are mixed-variance functors and terms are families
of morphisms, all built using the cartesian closed structure of C: such functors and
transformations are called de�nable. �e two main results are that de�nable transform-
ations are actually dinatural and they always compose; an important consequence of
this is that well-formed terms provably satisfy dinaturality equations in the λ-calculus,
in addition to those given by axiom, like the β-η rules. (We shall discuss the example
of the dinaturality equation for �lter in the next paragraph, on p. 16.)

Girard, Scedrov and Sco� made use of the Curry-Howard correspondence [GLT89]
to translate valid λ-terms in normal form into normal natural deduction proofs in intu-
itionistic logic. Such proofs arise from (possibly many) cut-free proofs in the sequent
calculus, which in turn translate to certain closed λ-terms: these terms yield the de�n-
able transformations mentioned above. �ey proved that de�nable transformations
are always dinatural by induction on cut-free Gentzen sequent proofs: they analysed
each inference rule of the intuitionistic sequent calculus, except—crucially—the cut
rule, and assuming a dinatural transformation is given for every premiss of the rule,
they constructed a transformation interpreting the conclusion and proved that it is still
dinatural. (�e axiom is interpreted by an identity natural transformation; the other
rules by making use of the cartesian closed structure.) �ey showed the dinaturality
of the resulting transformation “by hand”, as it were, but in fact one can easily apply
the compositionality theorem (1.38) proved in this thesis to their case: it is very easy
to see that the graph of the transformations associated with the conclusion of each
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rule is always acyclic, hence dinatural.
�e key to circumvent the compositionality problem of dinatural transformations

was indeed the ability to ignore the cut rule:

Γ ` A ∆, A ` B
Γ,∆ ` B

For simplicity, suppose ∆ is empty, and suppose that ϕ : F → G is the dinatural
transformation interpreting the sequent Γ ` A, while ψ : G → H interprets A ` B.
�e obvious transformation interpreting the conclusion is indeed ψ ◦ ϕ, which in
general is not dinatural (and indeed, if we try to draw their graphs, they can well form
cycles upon composition). However, thanks to Gentzen’s cut-elimination theorem, and
the fact that a cut-elimination step yields β-η equivalent terms (hence equal families
of morphisms), there is no need to consider the cut-rule, as ψ ◦ ϕ above is equal to
another transformation arising from a cut-free derivation, hence dinatural.

It is clear, then, that all that Girard, Scedrov and Sco� proved (far from being of li�le
importance!) is that the dinatural transformations arising from the cartesian closed
structure of a category always compose, and given that such transformations are all
they were interested in, they were satis�ed with the result. Blute [Blu93] generalised
their result for multiplicative Linear Logic [Gir87], both classical and intuitionistic. In
his case, therefore, he interpreted deductions as families of morphisms in a symmetric
monoidal closed (intuitionistic case) or ∗-autonomous category (classical) C, using the
closed structure of C; he then proved they compose again by using a cut-elimination
technique in a similar way to [GSS92]. As we have mentioned at the beginning, this
thesis takes a very di�erent approach: we shall consider arbitrary dinatural trans-
formations ϕ and ψ between functors of arbitrary variance over arbitrary categories,
and we will �nd a su�cient condition for the dinaturality of ψ ◦ ϕ that generalises
Eilenberg and Kelly’s result about extranatural transformations.

Dinaturality and parametricity. A similar result to Girard et al. about dinat-
urality of polymorphic terms had already been noticed by Wadler [Wad89] in his
famous �eorems for free!. In there, Wadler gave a relational semantics of the poly-
morphic λ-calculus and proved it satis�es parametricity, in the following sense: if one
instantiates a term of a polymorphic type at two related types, then the two values
obtained are themselves related. He then showed how to deduce, using parametricity,
equational properties “for free” satis�ed by every term of a given type, for arbitrary
types. Take, for example, the polymorphic function �lter, of type

∀α.
(
(α⇒ Bool,List(α)) ⇒ List(α)

)
which, given a property p : α ⇒ Bool and a list L of type List(α), returns a list L′

obtained from L by keeping only those elements of L that satisfy p. �e “theorem
for free” that Wadler found says that for every function f : A ⇒ B, p : A ⇒ Bool
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and for every list L : List(A) we have, if we denote, for short, by f ∗ the function
map[A,B]( f , ·) : List(A) ⇒ List(B),

f ∗
(
�lter[A](p ◦ f , L)

)
= �lter[B]

(
p, f ∗(L)

)
.

�is equational property is, in fact, a dinaturality equation, as it is tantamount to the
commutativity of the following hexagon (in Set, say):

(B⇒ Bool) × List(A)

(A⇒ Bool) × List(A) List(A)

List(B)

(B⇒ Bool) × List(B) List(B)

( f⇒Bool)×1

�lter[A]

f ∗

1× f ∗

�lter[B]

1

Later on, Plotkin and Abadi [PA93] formally proved that dinaturality is a consequence
of relational parametricity.

Dinaturality in System F. As we said, Girard et al. gave an interpretation of
term judgments in the simply-typed λ-calculus with type variables (with no explicit
quanti�cations over the types) using dinatural transformations over an arbitrary
cartesian closed category C. In particular, if C is the syntactic category generated by
the calculus, then we have that every valid term is indeed a dinatural transformation.
What happens if we consider the full second-order λ-calculus, that is Girard’s System
F? Lataillade [Lat09] showed that not every term in System F, seen as a family of
morphisms in the syntactic category generated by the calculus, is in fact dinatural.
For example, the term

t = λx∀Y .(Y⇒Y ). λyX . (x[X])(y),

which is valid, is not dinatural in X , in the sense that the family of terms
(
t[A/X]

)
A is

not a dinatural transformation in the syntactic category. Indeed, for it to be dinatural
it should be the case that, for all valid terms f : B→ C,

λx∀Y .(Y⇒Y ). λyB. f
(
(x[B])(y)

)
= λx∀Y .(Y⇒Y ). λyB. (x[C])( f (y))

which is not true in general. �e criterion found by Lataillade is very simple: a term
is dinatural in X if and only if its normal form contains no type instantiation where X
appears as a free variable. (In our t above, X is free and appears in a type instantiation.)

Note that this is not in contrast with Bainbridge et al.’s [BFSS90] result. What
they proved was that every valid term generates a dinatural transformation, that is
true, but over a speci�c model, namely the category Per of partial equivalence relations

16



Other applications of dinatural transformations

on N. Lataillade’s result is, in fact, stronger: he put himself in the free category
generated by the calculus, hence anything that is dinatural in Lataillade’s sense is
dinatural in any model of System F; but saying that a term s is not dinatural in the
syntactic category does not mean that s is not dinatural in any model. Indeed, our t
above, interpreted using realizable dinatural transformations in Per, is dinatural by
Bainbridge et al.’s theorem. �is means, therefore, that although not every valid term
is provably dinatural in System F, it is not inconsistent to impose dinaturality (for
example, by requiring relational parametricity as in [PA93]).

Other applications of dinatural transformations

Structural polymorphism. A few years a�er his paper with Bainbridge, Scedrov
and Sco�, Freyd [Fre93] used a di�erent approach to give a semantics of parametric
polymorphism: instead of considering “mixed-variance” natural transformations (that
is, dinatural), he generalised the concept of functor, introducing the notion of structor.
Given categories A and B, a structor S from A to B is a function from the morphisms
of A to the spans in B that carries a map f : A→ B to

S(A) S( f ) S(B),
l( f ) r( f )

where if f is an identity, then the span above consists only of identity morphisms, and
the objects S(A) and S(B) depend only on A and B respectively. A transformation of
structors from S to T : A→ B is a family of morphisms in B indexed by the morphisms
of A:

(ϕ f : S( f ) → T( f )) f : A→B

such that for all f : A→ B the following diagram commutes:

S(A) S( f ) S(B)

T(A) T( f ) T(B)

ϕidA ϕ f ϕidB

Structor transformations do compose, of course. One can see ordinary covariant
functors F : A→ B as structors sending f : A→ B to

F(A) F(A) F(B)
id F( f )

and contravariant functors G : Aop → B as structors mapping f : A→ B to

G(A) G(B) G(B).
G( f ) id
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Ordinary natural transformations between covariant functors are in natural corres-
pondence with the transformations of the associated structors.

Given a functor F : Aop × A→ B, F gives rise to two structors: its le� diagonaliz-

ation HF, that sends f : A→ B to

F(A, A) F(B, A) F(B,B)
F( f ,idA) F(idB, f )

and, if it exists, its right diagonalization, FH, that sends f : A→ B to the top-le� span
of the pullback diagram:

FH( f ) F(B,B)

F(A, A) F(A,B)

F( f ,idB)

F(idA, f )

�en ifB has pullbacks, it can be easily seen that the dinatural transformations F → G
are in natural correspondence with the structor transformations HF → GH. Hence,
dinaturals are transformations between structors of a particular shape.

Freyd’s way to bypass the compositionality problem of dinatural transformations
when interpreting the polymorphic λ-calculus is to use structors and structor trans-
formations instead. He proved that if B is cartesian closed with pullbacks then so is
the category of structors from A to B, for any A. �is means that one can interpret
the simply-typed λ-calculus with type variables (like Girard, Scedrov and Sco� did
in [GSS92]) using the cartesian closed structure of endo-structors and transformations
between them over an arbitrary cartesian closed category with pullbacks.

To interpret quanti�ed types, Freyd introduced the notion of binding of a structor
S : A → B, when it exists, as an object of B, denoted ∀X . S(X), together with a
canonical structor transformation ∀X . S(X) → S. It is very reminiscent of the notion
of end of a functor, and indeed if F : Aop × A→ B is an ordinary functor, its end is
precisely the binding of HF. Freyd �nally interpreted the second-order λ-calculus
using realizable structors and realizable transformations between them (appropriately
de�ned) over the category of partial equivalence relations on N, by showing that the
category of realizable endo-structors is indeed cartesian closed with pullbacks and
that every realizable endo-structor has a binding.

Dinatural numbers. Paré and Román [PR98], inspired by how Bainbridge, Girard,
Scedrov and Sco� circumvented the compositionality problem of dinatural transform-
ations by working in a speci�c category (Per) where the transformations they were
interested in do compose, due to their special form and the peculiar properties of Per,
wondered how much one can say about dinaturals over nice categories like Set. In
particular, they focused on the following question: we have seen that natural numbers
de�ne dinatural transformations HomC → HomC by iterated composition for any
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category C; is it true that every dinatural transformation ϕ : HomC → HomC is of the
form ϕA( f ) = f n for some n natural number, if C = Set?

�ey answered this question negatively by showing a counterexample. However,
they introduced a stronger notion of dinatural transformation suggested by Barr, for
which the answer to the question above is in fact yes; moreover, these dinaturals do
compose. In more detail, a Barr dinatural transformation ϕ : Aop × A → B, for B a
category with pullbacks, is a family of morphisms ϕA : F(A, A) → G(A, A) such that
for all f : A→ B in A, the following diagram commutes:

Ff

F(A, A) G(A, A)

G(A,B)

F(B,B) G(B,B)

ϕA

G(1, f )

ϕB

G( f ,1)

where Ff is given by the pullback

Ff

F(A, A)

F(B,B)

F(A,B)

F(1, f )

F( f ,1)

It is clear that Barr dinaturals are dinaturals. However, the former do compose, thanks
to the pullback property that gives a �ll-in τ making everything in sight commute:

F(A, A) G(A, A) H(A, A)

Ff G f G(A,B) H(A,B)

F(B,B) G(B,B) H(B,B)

ϕA ψA

τ

ϕB ψB

By spelling out the de�nition, a Barr dinatural transformation ϕ : HomA → HomA
is a family of morphisms such that for all k : A → B, f : A → A and g : B → B, if

19



Introduction

k ◦ f = g ◦ k then k ◦ ϕA( f ) = ϕB(g) ◦ k , that is:

A A

B B

f

k k
g

commutes⇒
A A

B B

ϕA( f )

k k
ϕB(g)

commutes.

For example, ϕA( f ) = f n is Barr dinatural, because if k ◦ f = g ◦ k then k ◦ f n = gn ◦ k .
In fact, every Barr dinatural transformation ϕ : HomSet → HomSet is of the form
ϕA( f ) = f n, for n given uniquely by ϕN(s)(0), where N is the set of natural numbers
and s : N→ N is the successor function [PR98, Proposition 1, due to Barr].

Paré and Román rephrased Barr’s result for arbitrary monoidal categories A with
a natural numbers object [Law63], that is a diagram I N N0 s universal among
diagrams of the form A B B,

f g which is used to de�ne an “internal” notion of
iterative composition. �en they showed that there is a one-to-one correspondence
between the elements of N (i.e. maps I → N) and a speci�c subclass of Barr dinatural
transformations, called dinatural numbers. (A dinatural number is a Barr dinatural
transformation ϕ : HomA → HomA such that for all A and g : B → B we have
ϕA⊗B(g) = idA ⊗ ϕB(g).) Dinatural numbers have a beautiful arithmetic that really
does justice to their names: the transformation ϕA : HomA(A, A) → HomA(A, A)
de�ned by ϕA( f ) = idA for all f : A→ A is a dinatural number, and we shall call it
0. Given a dinatural number ϕ, one can de�ne σ(ϕ)A : HomA(A, A) → HomA(A, A)
as σ(ϕ)A( f ) = f ◦ ϕA( f ) and prove it is also a dinatural number, playing the role of
the successor of ϕ. Hence we can de�ne the standard numerals: if n is an ordinary
natural number, let n = σ(σ(σ(. . . (0) . . . ))), where σ has been applied n times. �en
n( f ) = f ◦ f ◦ · · · ◦ f , n times.

�e authors then studied the arithmetic of dinatural numbers, de�ning an operation
of addition (that forms a commutative monoid on dinatural numbers with unit 0) and
multiplication (monoid, but not commutative, with unit 1). If A is also closed, then
also exponentiation is de�ned, satisfying some nice coherent properties with addition
and multiplication.

Fixed point operators and dinaturality. Yet another application of dinatural
transformations in Computer Science is given by �xed point operators. �e work
of Mulry and Simpson shows the intimate connection between the two notions,
by demonstrating that the least �xed point operator is a dinatural transformation
([Mul90]) and in fact it is the only one, between the appropriate functors, in many
categories of domains ([Sim93]).

Mulry set himself in the category of Sco� domains (see, for example, [AJ95])
Dom, where objects are algebraic, bounded cpos (directed-complete partial orders
with a least element ⊥) with countably many compact elements; morphisms are
the Sco�-continuous functions, i.e. monotone maps preserving directed sups. It is
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well known that Dom is cartesian closed and every map f has a least �xed point,
namely

∨
n∈N f n(⊥). A natural numbers object (nno) in a cartesian closed category

C is now a diagram 1 N N0 s universal with respect to any other data of the
form 1 D D.d F However, Huwig and Poigné [HP90] proved that any cartesian
closed category with �xpoints and a natural numbers object is degenerate (that is, it
reduces to a point): Dom therefore certainly does not have a nno. Although this could
have cast doubt on the possibility of any intrinsic, explicit use of natural numbers in
relation with �xed point operators, Mulry found a way around the problem: to use a
slightly weaker notion of nno, that is what he called an ordered-natural numbers object

(onno), which is the same as a nno except that it is required to be universal only with
respect of data (d,F) with d ≤ F(d). In Dom there is indeed a onno: the domain N∞,
with 0 ≤ 1 ≤ 2 · · · ≤ ∞ where s(n) = n + 1 if n , ∞, s(∞) = ∞.

Now, take a Sco�-continuous function F : D→ D. By the universality of the onno
N∞, we have that there is a unique map T(F) : N∞ → D such that

1 N∞ N∞

D D

0

⊥

s

T(F) T(F)

F

commutes. Since ⊥ ≤ F(⊥) and F is monotone, we have a chain ⊥ ≤ F(⊥) ≤
F2(⊥) . . . in D. By commutativity of the above diagram, we have that T(F)(0) = ⊥,
T(F)(1) = F(⊥), T(F)(2) = F2(⊥) and so on. Since D is closed under directed sups,∨

Fn(⊥) exists and equals T(F)(∞) by continuity of T(F); moreover it is the least
�xed point of F, as we already know. Now, it turns out that the map T : (D⇒ D) →
(D⇒ D) is in fact Sco�-continuous, hence a morphism in Dom. Since evaluation is
continuous, so is the map eval∞ : (N∞ ⇒ D) → D, evaluation at ∞. �erefore we
have that if lfp denotes the least �xed point combinator,

lfp = eval∞ ◦ T .

Mulry then shows how lfp is indeed a dinatural transformation
(
(−) ⇒ (−)

)
→ idDom,

see Example (1.13) for details of the proof. �is is tantamount to saying that for any
f : D→ E , g : E → D,

lfpE ( f ◦ g) = f (lfpD(g ◦ f )).

He comments that the dinaturality of lfp was discovered independently by Freyd
(who did not use natural numbers objects) who also observed that any dinatural
transformation

(
(−) ⇒ (−)

)
→ idDom generates a family of �xpoint operators. For this

reason, Simpson [Sim93] calls dinatural transformations between these two functors
�x-dinaturals.

Although this result gives lfp a nice algebraic description as a dinatural trans-
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formation and makes evident the role of induction in its de�nition, Mulry wondered
whether lfp can be characterised as the unique �x-dinatural transformation in some
suitable categories of domains. Note that in the category of complete la�ices and
monotone functions there are at least two such dinatural transformations: the least
�xed point and the greatest �xed point operators.

Simpson [Sim93] answered Mulry’s question by giving a su�cient condition on
subcategories of the category of algebraic cpos AlgCpo for the characterisation to
hold, which we now brie�y explain. Given an algebraic cpo D and a strict �nite chain
C = {c0, c1, . . . , cn} ⊆ D, with ⊥ = c0 < c1 < · · · < cn and n ≥ 0, he de�ned the
cokernel (in Dom) of C as the pushout of the inclusion i : C → D along itself:

C D

D E

i

i
p

−g

g

He showed that such a pushout exists by computing it explicitly: it is essentially two
copies of D, where the elements of C have been identi�ed, together with a particular
order that goes “via the elements of C”, as it were. More precisely, one can take E to
be the following cpo:

E = {(0, c) | c ∈ C} ∪ {(1, d) | d ∈ D \ C} ∪ {(−1, d) | d ∈ D \ C},

ordered by:

(σ, d) ≤ (τ, e) ⇐⇒ d ≤ e and either σ = τ or there is c ∈ C such that d ≤ c ≤ e.

So one can perhaps imagine E as a cpo with the chain C in the middle and two copies
of D\C, one on its le� and the other on its right: two elements d and e are comparable
if either they are on the same side of C and are comparable in D, or they are on
opposite sides but there is a common central element of C in between the two. �e
two functions g and −g in the pushout above are de�ned as

g(d) =

{
(0, d) d ∈ C
(1, d) d < C

− g(d) =

{
(0, d) d ∈ C
(−1, d) d < C

Simpson then showed that if D is algebraic, then so is E precisely if all the elements
of C are compact. �e main result is then the following: if K is a cartesian closed full

subcategory of AlgCpo that is closed under cokernels of strict �nite chains of compact

elements (which means that for every algebraic cpo D in K and for every strict �nite
chain C ⊆ D of compact elements the cokernel of i : C → D is in K), then the least

�xed point operator lfp is the unique dinatural transformation

(
(−) ⇒ (−)

)
→ idK. (�is

result extends to all the categories of retractions of K’s above, which are cartesian
closed and full subcategories of ContCpo, the category of continuous cpos.)
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It turns out that this condition is satis�ed in many known categories of domains
(see [Sim93, Corollary 5.2]), but not all of them: the category of algebraic (complete)
la�ices is not closed under cokernels of strict �nite chains of compact elements.
If ContCL is the cartesian closed full subcategory of ContCpo whose objects are
continuous la�ices, Simpson in fact proved that lfp is not the unique �x-dinatural
transformation in any nontrivial cartesian closed full subcategory of ContCL, which
includes the algebraic la�ices as well.

Kelly’s project for coherence problems

We have seen so far important examples and applications of dinatural transformations,
and how in some cases the compositionality problem was handled. However, the real
frame for the research presented in this thesis is Kelly’s project to solve coherence
problems abstractly [Kel72a; Kel72b].

�e problem of coherence for a certain theory (like monoidal, monoidal closed. . . )
consists in understanding which diagrams necessarily commute as a consequence
of the axioms. One of the most famous results is Mac Lane’s theorem on coherence
for monoidal categories [Mac63]: every diagram built up only using associators
and unitors, which are the data that come with the de�nition of monoidal category,
commutes. One of the consequences of this fact is that every monoidal category is
monoidally equivalent to a strict monoidal category, where associators and unitors are,
in fact, identities. From the point of view of logic and semantics, what this tells us is
that those operations that one regards as not important (what is sometimes referred to
as bureaucracy) really are not important. Solving the coherence problem for a theory,
therefore, is fundamental to the complete understanding of the theory itself.

Substitution. Coherence problems are concerned with categories carrying an extra
structure: a collection of functors and natural transformations subject to various
equational axioms. For example, in a monoidal category A we have ⊗ : A2 → A,
I : A0 → A; if A is also closed then we would have a functor of mixed variance
(−) ⇒ (−) : Aop × A→ A. �e natural transformations that are part of the data, like
associativity in the monoidal case:

αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C),

connect not the basic functors directly, but rather functors obtained from them by
iterated substitution. By “substitution” we mean the process where, given functors

K : A × Bop × C→ D, F : E × G→ A, G : H × Lop → B, H : Mop → C

we obtain the new functor

K(F,Gop,H) : E × G × Hop × L ×Mop → D
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sending (A,B,C,D,E) to K(F(A,B),Gop(C,D),H(E)). Hence substitution generalises
composition of functors, to which it reduces if we only consider one-variable functors.
In the same way, the equational axioms for the structure, like the pentagonal axiom
for monoidal categories:

(A ⊗ B) ⊗ (C ⊗ D)

(
(A ⊗ B) ⊗ C

)
⊗ D A ⊗

(
B ⊗ (C ⊗ D)

)
(
A ⊗ (B ⊗ C)

)
⊗ D A ⊗

(
(B ⊗ C) ⊗ D

)

αA,B,C⊗DαA⊗B,C ,D

αA,B,C⊗D

αA,B⊗C ,D

A⊗αB,C ,D

involve natural transformations obtained from the basic ones by “substituting functors
into them and them into functors”, like αA⊗B,C,D and αA,B,C ⊗ D above.

By substitution of functors into transformations and transformations into functors
we mean therefore a generalised whiskering operation or, more broadly, a generalised
horizontal composition of transformations. For these reasons Kelly argued in [Kel72a]
that an abstract theory of coherence requires “a tidy calculus of substitution” for
functors of many variables and appropriately general kinds of natural transformations,
generalising the usual Godement calculus for ordinary functors in one variable and
ordinary natural transformations.

One could ask why bother introducing the notion of substitution, given that it
is not primitive, as the functor K(F,Gop,H) above can be easily seen to be the usual
composite K ◦ (F × Gop × H). Kelly’s argument is that there is no need to consider
functors whose codomain is a product of categories, like F ×Gop × H, or the twisting
functor T(A,B) = (B, A), or the diagonal functor∆ : A→ A×A given by∆(A) = (A, A),
if we consider substitution as an operation on its own. In fact, in some cases these
functors are just not enough: take a cartesian closed category A, and consider the
diagonal transformation δA : A → A × A, the symmetry γA,B : A × B → B × A and
the evaluation transformation evalA,B : A × (A ⇒ B) → B. It is true that we can
see δ and γ as transformations idA → ∆ and × → × ◦ T , but, as we have already
noticed, there is no way to involve ∆ into the codomain of eval, given that the variable
A appears covariantly and contravariantly. Kelly suggested, then, to use the same
idea of graph for extranatural transformations that he had with Eilenberg in the
aforementioned [EK66] to natural transformations as well; that is, he proposed to
consider natural transformations ϕ : F → G between functors of many variables
together with a graph Γ(ϕ) that tells us which arguments of F and G are to be equated
when we write down the general component of ϕ.

With the notion of “graph of a natural transformation”, Kelly constructed a full
Godement calculus for covariant functors only. His starting point was the observation
that the usual Godement calculus essentially asserts that Cat is a 2-category, as we
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have seen, but this is saying less than saying that Cat is actually cartesian closed, −× B
having a right adjoint [B,−] for [B,C] the functor category. Since every cartesian
closed category is enriched over itself, we have that Cat is a Cat-category, which is just
another way to say 2-category. Now, vertical composition of natural transformations
is embodied in [B,C], but composition of functors and horizontal composition of
natural transformations are embodied in the functor

M : [B,C] × [A,B] → [A,C]

given by the closed structure (using the adjunction and the evaluation map twice).
What Kelly does, therefore, is to create a generalised functor category {B,C} over a
category of graphs P and to show that the functor {−,−} is the internal-hom of Cat P,
which is then monoidal closed (in fact, far from being cartesian or even symmetric),
the le� adjoint of {B,−} being denoted as − ◦B. �e analogue of the M above, now of
the form {B,C} ◦ {A,B} → {A,C}, is what provides the desired substitution calculus,
see §3.1 for a technical overview.

When trying to deal with the mixed-variance case, however, Kelly ran into prob-
lems. He considered the every-variable-twice extranatural transformations, and al-
though he got “tantalizingly close”, to use his words, to a sensible calculus, he could
not �nd a way to de�ne a category of graphs that can handle cycles in a proper way.
�is is the reason for the “I” in the title Many-Variable Functorial Calculus, I of [Kel72a]:
he hoped to solve these issues in a future paper, which sadly has never seen the light
of day. In this thesis we propose a category G of graphs for transformations of mixed
variance that does handle loops, and we hope this can be the �rst step towards the
ful�lment of Kelly’s project.

Anabstract approach to coherence. Armed with the substitution calculus built, at
least in the covariant case, in [Kel72a], Kelly framed the coherence problem in [Kel72b]
around the notion of substitution in the following terms. Given basic functors and
appropriately natural transformations together with their graphs as above, we can con-
sider the wider class of allowable transformations and functors obtained by unlimited
composition and substitution. Now, if ϕ,ψ : T → S are two such allowable trans-
formations with the same domain and codomain, it makes no sense to ask whether
they are equal or not unless they have the same graphs, otherwise their general com-
ponents would not have same domain and codomain objects (because if the graphs
are di�erent, then the arguments of T and S to be equated when writing down the
general component of ϕ would be di�erent than those required to be equal by ψ). One
then might add a set of axioms requiring certain formally di�erent pairs ϕ,ψ : T → S
with the same graph to coincide (like the two legs of the pentagon axiom in monoidal
categories above). �e coherence problem for the given structure consists in deciding
which other formally di�erent allowable natural transformations necessarily coincide
as a consequence of the axioms.

If in [Mac63] the coherence problem for monoidal categories was actually of the
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form “every diagram commutes”, this is not the case for other examples, like [KM71],
where Kelly and Mac Lane obtained only a partial result of the form “ϕ andψ coincide if
they have the same graphs and their domain and codomain are proper”, that is belong to
a speci�c subset of the allowable functors. An ideal solution to the coherence problem,
however, would be to �nd necessary and su�cient conditions for two allowable
transformations to coincide.

Kelly emphasises a crucial point: the allowable functors and natural transform-
ations we have mentioned ought not to form a subcategory All(A) of the gener-
alised functor category {A,A}, because two formally di�erent allowable functors
Q,T : An → A might fortuitously coincide in a particular model A: hence, as Kelly
said, “honest allowable transformations ϕ : P → Q, ψ : T → S could be composed
in {A,A} to form a freak allowable ψ ◦ ϕ” not writeable in another model B. What
we need is therefore a universal All whose objects are formal allowable functors
and morphisms formal allowable natural transformations, completely independent
of particular models A. �en we would have that ϕ = ψ in All if and only if their
realisations in A coincide for all models A of the theory at ma�er.

Kelly individuates this universalAll as a clubK. Without ge�ing into details, a club
is a category that admits formal substitution of objects into objects and morphisms
into morphisms within itself ({A,A} is an example). To give an extra structure to
a category A by listing basic data and axioms is then the same as giving a functor
φ : K → {A,A} or, equivalently by adjunction, an action θ : K ◦ A → A. What we
called allowable functors and transformations would essentially be, in these terms,
the objects and morphisms in the image of φ, and we have that u = v in K if and only
if φ(u) = φ(v) for every model A. All in all, therefore, solving the coherence problem
for a given structure is tantamount to calculating the corresponding club K. Moreover,
understanding K also provides knowledge of the free-category-with-structure over A,
because the la�er is precisely K ◦ A.

In [Kel72b] Kelly shows how to explicitly build K from a set of generators and
relations given by the basic functors and transformations provided by the basic data of
the theory, at least in the fully covariant case. He also �nds a way to partially discuss
the case of transformations like Eilenberg and Kelly’s ones, but only provided that the
data ensures that no loops can arise upon composing the graphs of formal allowable
transformations (in which case, though, there is no functor category {A,A}). If loops
can in fact happen, then the theory is said to be not clubbable, in the sense that we
cannot describe its models in terms of a “universal” club.

Our contribution. What we have done in this thesis is, in fact, consider trans-
formations between mixed-variance functors whose type is even more general than
Eilenberg and Kelly’s, corresponding to G∗ in [Kel72a], recognising that they are a
straightforward generalisation of dinatural transformations in many variables. We
determine when they compose (�eorem (1.38), (3.31)) by means of a satisfactory
property that sounds exactly like Eilenberg and Kelly’s result: acyclicity is again the
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crucial—and only—requirement. We de�ne a working notion of horizontal composi-
tion (De�nition (2.6)), that we believe will play the role of substitution of dinaturals
into dinaturals, precisely as horizontal composition of natural transformation does, as
shown by Kelly in [Kel72a]. Next, we form a generalised functor category {B,C} for
these transformations (De�nition (3.39)). Finally, we prove that {B,−} has indeed a
le� adjoint − ◦ B, which gives us the de�nition of a category of formal substitutions
A ◦B generalising Kelly’s one. Although the road paved by Kelly towards a Godement
calculus still stretches a long way, our work sets the �rst steps in the right direction for
a full understanding of the compositionality properties of dinatural transformations,
which hopefully will be achieved soon.

Notations. �roughout the thesis, N is the set of natural numbers, including 0, and
we shall ambiguously write n for both the natural number n and the set {1, . . . ,n}.

We denote by I the category with one object and one morphism. Let α ∈ List{+,−},
|α | = n, with |−| denoting the length function (and also the cardinality of an ordinary
set). We refer to the i-th element of α as αi . We denote by α the list obtained from α by
swapping the signs. Given a category C, if n ≥ 1, then we de�ne Cα = Cα1 × · · · ×Cαn ,
with C+ = C and C− = Cop, otherwise Cα = I.

If F : Cα → D is a functor, we de�ne F(A|B) to be the following object (if A, B
are objects) or morphism (if they are morphisms) of D:

F(A|B) = F(X1, . . . ,X|α |) where Xi =

{
A αi = −

B αi = +

Also, we call Fop : Cα → Dop the opposite functor, which is the obvious functor that
acts like F between opposite categories.

Composition of morphisms f : A→ B and g : B→ C will be denoted by g ◦ f , g f
or also f ; g. �e identity morphism of an object A will be denoted by idA, 1A (possibly
without subscripts, if there is no risk of confusion), or A itself.

If f : X → Y is a function of sets, and Z ⊆ X , we write f�Z : Z → Y for the
restriction of f to Z . Given y ∈ Y , the preimage of y along f is denoted by f −1{y}.
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Chapter 1

Vertical compositionality

Afull understanding of how and when dinatural transformations compose is, of
course, the very �rst step towards a proper calculus of dinaturals. Regarding the

how, the best thing to do is to introduce the notion of transformation (§1.1) between
two functors, which is simply a family of morphisms that does not have to satisfy
any naturality condition. (�is simple idea is not, unsurprisingly, new: it appears, for
example, in [PR97].) Following Kelly’s principle [Kel72a] of having transformations
equipped with a graph telling us which arguments of the functors involved are to be
equated, we shall require that transformations have a cospan in FinSet as part of their
data; such a cospan will play the role of the graph of the transformation. In Chapter 3
we shall see how cospans are not quite enough, but for pedagogic simplicity and for
clarity of exposure we shall use cospans in this chapter. Transformations then compose,
and their graphs compose by computing pushouts in FinSet. �e question now is:
When is the dinaturality condition preserved, upon composition of transformations?
We shall give an actual diagrammatic and computational �avour to our graphs, by
interpreting them as Petri Nets (§1.2). By reading the dinaturality condition of a
transformation as the �ring of an enabled transition in the corresponding net, we will
�nd a su�cient (§1.3) and “essentially necessary” (§1.4) condition for two dinatural
transformations to compose, thus solving the compositionality problem in its full
generality.

§1.1 Dinatural transformations

�e categoryCoSpan(C). �e categoryCoSpan(C), for a categoryCwith pushouts,
has been introduced for the �rst time by [Bén67] as an example of a bicategory, which
is a weak version of 2-category where associativity and unitarity of composition only
hold up to coherent isomorphism. We recall here the usual categori�ed version of it,
obtained—as it is standard—by appropriately quotienting morphisms. For the purposes
of this thesis, we are not interested in the 2-cells.
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(1.1) De�nition. Let C be a category with pushouts, f =
(
A X Bσ τ )

and f ′ =(
A X′ Bσ′ τ′ )

cospans in C. We de�ne an equivalence relation ∼ as follows:

f ∼ f ′ ⇐⇒ ∃π : X → X′ isomorphism such that
{
σ′ = πσ

τ′ = πτ
.

In this case, with li�le abuse of notation, we write f ′ = π f . We denote by [ f ] or also
[σ,τ] the equivalence class of f . �

�e objects ofCoSpan(C) are the same as those ofC, while a morphism [ f ] : A→ B
is an equivalence class of cospans in C as in De�nition (1.1):

f =
(
A X Bσ τ )

.

Composition of [ f ] and
[
g =

(
B Y Cσ′ τ′ ) ]

is the equivalence class of the cospan
g f = (A Z C) got by computing the pushout of τ against σ′:

(1.2)

C

B Y

A X Z

τ′

τ
p

σ′

ξ

σ ζ

It is easy to see that composition is well de�ned using the universal property of

pushouts. �e identity morphism idA is given by
[
A A A

idA idA

]
.

Generalised dinatural transformations. We now introduce the notion of trans-

formation between functors of arbitrary variance. It consists of a family of morphisms
equipped with a cospan in FinSet that tells which arguments of the functors involved
are to be set equal when writing down the general component of the family of morph-
isms. We call this cospan the type of the transformation. �is is the same idea described
by Kelly in [Kel72a, p. 95].

(1.3) De�nition. Let α, β ∈ List{+,−}, F : Cα → D, G : Cβ → D functors. A trans-

formation ϕ : F → G of type f =
(
|α | k |β|

σ τ )
(with k positive integer) is a

family of morphisms(
ϕA1,...,Ak

: F
(
Aσ1, . . . , Aσ |α |

)
→ G

(
Aτ1, . . . , Aτ |β |

) )
(A1...Ak )∈Ck

.
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Given ϕ′ : F → G of type f ′, we say that

ϕ ∼ ϕ′ ⇐⇒ ∃π : k → k isomorphism such that
{

f ′ = π f
ϕ′A1,...,Ak

= ϕAπ1,...,Aπk
.

∼ so de�ned is an equivalence relation and we denote by [ϕ] the equivalence class of
ϕ. Notice that σ and τ need not be surjective, so we may have unused variables. �

(1.4) Remark. Two transformations are equivalent precisely when they di�er only
by a permutation of the indexes: they are “essentially the same”. For this reason, from
now on we shall drop an explicit reference to the equivalence class [ϕ] and just reason
with the representative ϕ, except when de�ning new operations on transformations,
like the vertical composition below.

(1.5) De�nition. Let ϕ : F → G of type f be a transformation as in De�nition (1.3),
H : Cγ → D and ψ : G→ H a transformation of type g =

(
|β | p |γ |

σ′ τ′ )
, so that

we have, for all B1, . . . ,Bp,

ψB1,...,Bp : G
(
Bσ′1, . . . ,Bσ′ |β |

)
→ H

(
Bτ′1, . . . ,Bτ′ |γ |

)
.

�e vertical composition [ψ] ◦ [ϕ] is de�ned as the equivalence class of ψ ◦ ϕ, which is
the transformation of type

g f = |α | q |γ |
ζσ ξτ′

where ζ and ξ are given by (1.2) and (ψ ◦ ϕ)C1,...,Cq
is the composite:

F
(
Cζσ1, . . . ,Cζσ |α |

)
G

(
Cζτ1, . . . ,Cζτ |β |

)
G

(
Cξσ′1, . . . ,Cξσ′ |β|

)
H

(
Cξτ′1, . . . ,Cξτ′ |γ |

)
ϕCζ1 ,...,Cζk

=

ψCξ1 ,...,Cξp

(Notice that by de�nition ϕCζ1,...,Cζk requires that the i-th variable of F be the σi-th
element of the list (Cζ1, . . . ,Cζ k), which is indeed Cζσi .) �

(1.6) De�nition. Consider F : Cα → D, G : Cβ → D, ϕ : F → G a transforma-
tion of type |α | k |β |

σ τ as in De�nition (1.3). For i ∈ {1, . . . , k}, we say that
ϕ is dinatural in Ai (or, more precisely, in its i-th variable) if and only if for all
A1, . . . , Ai−1, Ai+1, . . . , Ak objects ofC and for all f : A→ B inC the following diagram
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Chapter 1. Vertical compositionality

commutes:

· ·

· ·

· ·

ϕA1 ,...,Ai−1 ,B,Ai+1 ,...,Ak

G(y1,...,y |β |)F(x1,...,x |α |)

F(x′1,...,x
′
|α |
) ϕA1 ,...,Ai−1 ,A,Ai+1 ,...,Ak

G(y′1,...,y
′
|β |
)

where

x j =


f σ j = i ∧ α j = +

idB σ j = i ∧ α j = −

idAσ j σ j , i
y j =


idB τ j = i ∧ β j = +

f τ j = i ∧ β j = −

idAτ j τ j , i

x′j =


idA σ j = i ∧ α j = +

f σ j = i ∧ α j = −

idAσ j σ j , i
y′j =


f τ j = i ∧ β j = +

idA τ j = i ∧ β j = −

idAτ j τ j , i
�

�e condition σ j = i means that in the domain of ϕA1,...,Ak
, Ai will be the j-th

variable of F (by de�nition); the dinaturality condition asserts that, focusing only on
the arguments of F and G which are involved by the i-th variable of the transformation
ϕ, computing F on f in all the ”positive” (that is, covariant) variables, followed by ϕ,
followed by G computed on f in all the ”negative” (that is, contravariant) variables, is
the same as computing F on f in all the negative variables, followed by the appropriate
component of ϕ, followed by G computed on f in all the positive variables.

(1.7) Remark. De�nition (1.6) is a generalisation of the well known notion of dinatural
transformation, which we can obtain when α = β = [−,+] and k = 1. Here we
are allowing multiple variables at once and the possibility for F and G of having
an arbitrary number of copies of C and Cop in their domain, for each variable i ∈
{1, . . . , k}.

It is known that dinatural transformations generalise natural and extranatural ones.
Here we make this fact explicit by de�ning the la�er as particular cases of dinatural
transformations where the functors and the type have a special shape: essentially, a
dinatural transformation ϕ : F → G is natural in Ai if F and G are both covariant or
both contravariant in the variables involved by Ai ; ϕ is extranatural in Ai if one of the
functors F and G does not involve the variable Ai while Ai appears both covariantly
and contravariantly in the other.

(1.8) De�nition. Let ϕ : F → G be a transformation as in De�nition (1.3). ϕ =(
ϕA1,...,Ak

)
is said to be natural in Ai if and only if

• it is dinatural in Ai;

32



§1.1. Dinatural transformations

• ∀u ∈ σ−1{i}.∀v ∈ τ−1{i}. (αu = βv = +) ∨ (αu = βv = −).

ϕ is called extranatural in Ai if and only if

• it is dinatural in Ai;

•
(
σ−1{i} = � ∧ ∃ j1, j2 ∈ τ−1{i}. β j1 , β j2

)
∨

∨
(
τ−1{i} = � ∧ ∃i1, i2 ∈ σ−1{i}. αi1 , αi2

)
. �

Notice that our notion of (extra)natural transformation is more general than the
one given by Eilenberg and Kelly in [EK66], as we allow the arguments of F and G to
be equated not just in pairs, but in an arbitrary number, according to σ and τ.

(1.9) Example. Suppose thatC is a cartesian category, with× : C×C→ C the product
functor. �e diagonal transformation

δ = (δA : A→ A × A)A∈C,

classically a natural transformation from idC to the diagonal functor, can be equi-
valently seen in our notations as a transformation δ : idC → × of type 1 1 2.
We have that δ is indeed natural in its only variable , because for all f : A→ B the
following diagram commutes:

B B × B

A B × B

A A × A

δB

idB × idBf

idA
δA

f× f

�

(1.10) Example. Suppose that C is a cartesian closed category and consider the
functor

C × Cop × C C

(X,Y, Z) X × (Y ⇒ Z)

T

�e evaluation eval =
(
evalA,B : A × (A⇒ B) → B

)
A,B∈C : T → idC is a transforma-

tion of type
3 2 1
1 1 1
2 2
3

which is extranatural in A and natural in B because the following hexagons commute
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for all f : A→ A′ and g : B→ B′:

A′ × (A′⇒ B) B

A × (A′⇒ B) B

A × (A⇒ B) B

evalA′,B

1f×(1⇒1)

1×( f⇒1)
evalA,B

1

(extranaturality in A)

A × (A⇒ B′) B′

A × (A⇒ B) B′

A × (A⇒ B) B

evalA,B′

11×(1⇒g)

1×(1⇒1)
evalA,B

g

(naturality in B)

Indeed, the commutativity of the �rst hexagon above is equivalent to the following
true equality in the internal language [Cro94] of C:

λaA. λhA′⇒B. h( f (a)) = λaA. λhA′⇒B(h ◦ f )(a),

while the second one to:

λaA. λhA⇒B. ( f ◦ h)(a) = λaA. λhA⇒B f (h(a)). �

(1.11) Example. Suppose again thatC is cartesian closed. With li�le abuse of notation,
call 1 : I → C the constant functor with value the terminal object 1. Consider the
transformation

pidq : 1→ (− ⇒ −)

of type 0 1 2 where pidqA is given by λxA. x (known as the “name” of the
identity of A). �en pidq is extranatural in its only variable: for all f : A → B, the
following square

1 A⇒ A

B⇒ B A⇒ B

pidqA

pidqB 1⇒ f

f⇒1

commutes because that is equivalent to say that f ◦ idA = idB ◦ f . �

(1.12) Example. Call HomC : Cop×C→ Set the hom-functor of C. �e n-th numeral
([DS70]) is the transformation n : HomC → HomC of type 2 1 2 whose general

34



§1.1. Dinatural transformations

component nA : C(A, A) → C(A, A) is given, for A ∈ A and g : A→ A, by

nA(g) = gn,

with 0A(g) = idA. �en n is dinatural because for all f : A→ B the following hexagon
commutes:

C(B,B) C(B,B)

C(B, A) C(A,B)

C(A, A) C(A, A)

nB

−◦ ff ◦−

−◦ f
nA

f ◦−

It is indeed true that for h : B→ A, ( f ◦ h)n ◦ f = f ◦ (h ◦ f )n: for n = 0 it follows from
the identity axiom; for n ≥ 1 it is a consequence of associativity of composition. �

(1.13) Example. (From [Sim93], cf. also [Mul90] and [BFSS90], Appendix 2.) Suppose
C is a PoSet-enriched category which is cartesian closed in the PoSet-enriched sense
and such that the functorC(1,−) : C→ PoSet is faithful. �e la�er requirement means
that we can treat C as a category of partially ordered sets and monotone functions:
in virtue of this, we shall use set-theoretic notation for global elements and function
application.

Consider the transformation Y : (− ⇒ −) → idC of type 2 1 1 where
YA : (A⇒ A) → A takes a morphism h : A→ A into the least �xed-point of h, which
concretely means that YA(h) = h(YA(h)) and that x = h(x) ∈ A implies YA(h) ≤ x.
�en Y is dinatural, that is, the following hexagon commutes for all f : A→ B:

A⇒ A A

B⇒ A B

B⇒ B B

YA

ff⇒1

1⇒ f
YB

1

Indeed, let g : B→ A and x = f (YA(g ◦ f )). We have that x is a �xed point of f ◦ g,
because

( f ◦ g)(x) = f ((g ◦ f ) (YA (g ◦ f ))) = f (YA(g ◦ f )) = x,

hence YB( f ◦ g) ≤ f (YA(g ◦ f )). Applying g, we obtain the inequality

g(YB( f ◦ g)) ≤ g( f (YA(g ◦ f ))) = YA(g ◦ f ).

It now su�ces to repeat the same argument interchanging the roles of f and g to
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Chapter 1. Vertical compositionality

obtain that f (YA(g ◦ f )) ≤ YB( f ◦ g). �erefore f (YA(g ◦ f )) = YB( f ◦ g), which means
Y is dinatural. �

�e compositionality problem. Dinatural transformations are mostly famous for
what they fail to do: to compose. Indeed, consider two dinatural transformations
ϕ : F → G and ψ : G→ H, both of type 2 1 2, with F,G,H : Cop ×C→ D say.
�e dinaturality of their composite ψ ◦ ϕ = (ψA ◦ ϕA)A∈C is tantamount to saying that
the outer hexagon in the following diagram commutes for all f : A→ B:

(1.14)

F(A, A) G(A, A) H(A, A)

F(B, A) G(B, A) G(A,B) H(A,B)

F(B,B) G(B,B) H(B,B)

ϕA ψA

G(1, f ) H(1, f )F( f ,1)

F(1, f )

G( f ,1)

G(1, f )

ϕB

G( f ,1)

ψB

H( f ,1)

However, while both inner hexagons commute, the outer does not in general. �e
following is a classic counter-example.
(1.15) Example. Take C = Set, ϕ = pidq. �e transformation ψ : (− ⇒ −) → {0,1}
(here {0,1} seen as a constant functor) of type 2 1 0 where ψA : (A⇒ A) →
{0,1} returns 0 if the number of �xed points of its argument is even or in�nite, and 1 if
it is odd, is dinatural (in fact, extranatural). �e reason for this is that, given f : A→ B
and g : B→ A, there is a bijective correspondence between the �xed points of g ◦ f
and those of f ◦ g. However, the composite ψ ◦ ϕ : 1→ {0,1} is a non-constant family
of morphisms between constant functors: it cannot be dinatural. �

It is known that there are certain conditions that guarantee the commutativity of
(1.14). For example, if either ϕ or ψ is natural, then one of the two internal hexagons
reduces to a square, and everything in sight commutes. Also, if the middle square
happens to be a pullback, then there is a unique map from F(B, A) to G(B, A) that
makes everything commutative:

F(A, A) G(A, A) H(A, A)

F(B, A) G(B, A) G(A,B) H(A,B)

F(B,B) G(B,B) H(B,B)

ϕA ψA

G(1, f ) H(1, f )F( f ,1)

F(1, f )

!

G( f ,1)

G(1, f )

ϕB

G( f ,1)

ψB

H( f ,1)

Dually, if the middle square is a pushout, then the outer hexagon commutes. However,
these are conditions that depend on the nature of the category D and the functor G,
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and not on the dinaturality of ϕ and ψ alone. We shall now work towards stating a
su�cient condition for the dinaturality of ψ ◦ ϕ that does rely only on the “geometry”,
as it were, of ϕ and ψ.

�e graph of a transformation. Given a transformation ϕ, we now de�ne a graph
that re�ects its signature, which we shall use to solve the compositionality problem
of dinatural transformations. �is graph is, as a ma�er of fact, a string diagram for
the transformation. String diagrams have been introduced by Eilenberg and Kelly
in [EK66] (indeed our graphs are inspired by theirs) and have had a great success in
the study of coherence problems ([Mac63],[KL80]) and monoidal categories in general
([JS91],[JSV96], a nice survey can be found in [Sel10]).
(1.16) De�nition. Let F : Cα → D and G : Cβ → D be functors, and let ϕ : F → G be
a transformation of type |α | k |β |

σ τ . We de�ne its graph Γ(ϕ) = (P,T,·(−), (−)·)
as a directed, bipartite graph as follows:

• P = |α | + |β | and T = k are distinct �nite sets of vertices;

• ·(−), (−)·: T → P(P) are the input and output functions for elements in T :
there is an arc from p to t if and only if p ∈·t, and there is an arc from t to p if
and only if p ∈ t·. Indicating with ι|α | : |α | → P and ι|β| : |β| → P the injections
de�ned as follows:

ι|α |(x) = x, ι|β |(x) = |α | + x,

we have:

·t = {ι|α |(p) | σ(p) = t, αp = +} ∪ {ι|β |(p) | τ(p) = t, βp = −}

t·= {ι|α |(p) | σ(p) = t, αp = −} ∪ {ι|β |(p) | τ(p) = t, βp = +}

In other words, elements of P correspond to the arguments of F and G, while those
of T to the variables of ϕ. For t ∈ T , its inputs are the covariant arguments of F and
the contravariant arguments of G which are mapped by σ and τ to t; similarly for its
outputs (swapping ‘covariant’ and ‘contravariant’). �

Graphically, we draw elements of P as white or grey boxes (if corresponding to
a covariant or contravariant argument of a functor, respectively), and elements of T
as black squares. �e boxes for the domain functor are drawn at the top, while those
for the codomain at the bo�om; the black boxes in the middle. �e graphs of the
transformations given in examples (1.9)-(1.13) are the following:

• δ = (δA : A→ A × A)A∈C (example (1.9)):
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• eval =
(
evalA,B : A × (A⇒ B) → B

)
A,B∈C (example (1.10)):

• pidq = (pidqA : 1→ (A⇒ A))A∈C (example (1.11)):

• n = (nA : C(A, A) → C(A, A))A∈C (example (1.12)):

• Y = (YA : (A⇒ A) → A)A∈C (example (1.13)):

(1.17) Remark. Each connected component of Γ(ϕ) corresponds to one variable of ϕ:
the arguments of the domain and codomain of ϕ corresponding to (white, grey) boxes
belonging to the same connected component are all computed on the same object,
when we write down the general component of ϕ.

�is graphical counterpart of a transformation ϕ : F → G permits us to represent,
in an informal fashion, the dinaturality properties of ϕ. By writing inside a box a
morphism f and reading a graph from top to bo�om as “compute F in the morphisms
as they are wri�en in its corresponding boxes, compose that with an appropriate
component of ϕ, and compose that with G computed in the morphisms as they
are wri�en in its boxes (treating an empty box as an identity)”, we can express the
commutativity of a dinaturality diagram as an informal equation of graphs. (We shall
make this precise in §1.3.) For instance, the dinaturality of examples (1.9)-(1.13) can
be depicted as follows, where the upper leg of the diagrams are the le�-hand sides of
the equations:
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• δ = (δA : A→ A × A)A∈C (example (1.9)):

A B

A × A B × B

f

δA δB

f× f

f

=

f f

• eval =
(
evalA,B : A × (A⇒ B) → B

)
A,B∈C (example (1.10)):

A × (A′⇒ B) A′ × (A′⇒ B)

A × (A⇒ B) B

f×(1⇒1)

1×( f⇒1) evalA′ ,B

evalA,B

f

=

f

A × (A⇒ B) A × (A⇒ B′)

B B′

1×(1⇒g)

evalA,B evalA,B′

g

g

=

g

• pidq = (pidqA : 1→ (A⇒ A))A∈C (example (1.11)):

1 B⇒ B

A⇒ A A⇒ B

pidqA

pidqB

f⇒1
1⇒ f f

=
f

• n = (nA : C(A, A) → C(A, A))A∈C (example (1.12)):

C(B,B) C(B,B)

C(B, A) C(A,B)

C(A, A) C(A, A)

nB

C( f ,1)C(1, f )

C( f ,1)
nA

C(1, f )

f

f

=

f

f

• Y = (YA : (A⇒ A) → A)A∈C (example (1.13)):

B⇒ B B

B⇒ A B

A⇒ A A

YB

1

f⇒1

1⇒ f

YA
f

f

=

f

f
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All in all, the dinaturality condition becomes, in graphical terms, as follows: ϕ is

dinatural if and only if having in Γ(ϕ) one f in all white boxes at the top and grey boxes

at the bo�om is the same as having one f in all grey boxes at the top and white boxes at

the bo�om.
Not only does Γ(ϕ) give an intuitive representation of the dinaturality properties

of ϕ, but also of the process of composition of transformations. Given two transform-
ations ϕ : F → G and ψ : G → H as in De�nition (1.5), the act of computing the
pushout (1.2) corresponds to “glueing together” Γ(ϕ) and Γ(ψ) along the boxes corres-
ponding to the functor G (more precisely, one takes the disjoint union of Γ(ϕ) and
Γ(ψ) and then identi�es the G-boxes), obtaining a “temporary” graph Γ∗(ψ ◦ ϕ). �e
number of its connected components is, indeed, the result of the pushout. �at being
done, Γ(ψ ◦ ϕ) is obtained by collapsing each connected component of Γ∗(ψ ◦ ϕ) into
a single black square together with the F- and H-boxes. �e following example shows
this process. �e graph Γ∗(ψ ◦ ϕ) will play a crucial role into the compositionality
problem of ψ ◦ ϕ.

(1.18) Example. Suppose that C is cartesian closed, �x an object R in C, consider
functors

C × Cop C

(A,B) A × (B⇒ R)

F
C × C × Cop C

(A,B,C) A × B × (C ⇒ R)

G
C C

A A × R

H

and transformations ϕ = δ × id(−)⇒R : F → G and ψ = idC ×eval(−),R : G → H of
types, respectively,

2 2 3
1 1 1
2 2 2

3

σ τ

and
3 2 1
1 1 1
2 2
3

η θ

so that

ϕA,B = δA × idB⇒R : F(A,B) → G(A, A,B), ψA,B = idA ×evalB,R : G(A,B,B) → H(A).

�en ψ ◦ ϕ has type 2 1 1 and Γ∗(ψ ◦ ϕ) is:
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§1.1. Dinatural transformations

�e two upper boxes at the top correspond to the arguments of F, the three in the
middle to the arguments of G, and the bo�om one to the only argument of H. �is is
a connected graph (indeed, ψ ◦ ϕ depends only on one variable) and by collapsing it
into a single black box we obtain Γ(ψ ◦ ϕ) as it is according to De�nition (1.16):

We have that ψ ◦ϕ is a (non-natural, non-extranatural) dinatural transformation. (�is
is one of the transformations studied by Girard, Scedrov and Sco� in [GSS92].) �e
following string-diagrammatic argument proves that:

f

= f f = f

f

= f

f

=

f

f

�e �rst equation is due to naturality of ϕ in its �rst variable; the second to naturality
of ψ in its �rst variable; the third to extranaturality of ψ in its second variable; the
fourth equation holds by naturality of ϕ in its second variable. �

We shall solve the compositionality problem by interpreting Γ∗(ψ ◦ ϕ), for arbitrary
transformations ϕ and ψ, as a Petri Net whose set of places is P and of transitions is T .
�e dinaturality of ψ ◦ ϕ will be expressed as a reachability problem. In order to do
this, we �rst discuss some general properties of Petri Nets in the following section.
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Chapter 1. Vertical compositionality

§1.2 Petri Nets

Petri Nets have been invented by Carl Adam Petri in 1962 in [Pet62], and have been
used since then to model concurrent systems, resource sensitivity and many dynamic
systems. A nice survey of their properties was wri�en by Murata in [Mur89], to which
we refer the reader for more details and examples. Here we shall limit ourselves only
to the de�nitions and the properties of which we will make use in the thesis.

(1.19) De�nition. A Petri Net N is a tuple (P,T,·(−), (−)·)where P and T are distinct,
�nite sets, and·(−), (−)·: T → P(P) are functions. For t a transition,·t is the set
of inputs of t, and t· is the set of its outputs. Elements of P are called places, while
elements of T are called transitions. A marking for N is a function M : P→ N. �

Graphically, the elements of P and T are drawn as light-blue circles and black bars
respectively. Notice that the graph of a transformation is, as a ma�er of fact, a Petri
Net. We can represent a marking M by drawing, in each place p, M(p) tokens (black
dots). Note that there is only one arrow from a node to another.

With li�le abuse of notation, we extend the input and output notation for places
too, where

·p = {t ∈ T | p ∈ t·}, p·= {t ∈ T | p ∈·t}.
A pair of a place p and a transition t where p is both an input and an output

of t is called self-loop. Without loss of generality, we shall only consider Petri Nets
that contain no self-loops. Indeed, any self-loop can be transformed into a loop by
introducing a new place and a new transition as follows:

 

(1.20) De�nition. Let N be a Petri Net. A place p of N is said to be a source if·p = �,
whereas is said to be a sink if p·= �. A source (or sink) place p is said to be proper if
p·, � (or·p , �, respectively). �

�e �ring rule. We can give a dynamic �avour to Petri Nets by allowing the tokens
to “�ow” through the nets, that is allowing markings to change according to the
following transition �ring rule.

(1.21) De�nition. Let N = (P,T,·(−), (−)·) be a Petri Net, and M a marking for N .
A transition t is said to be enabled if for all p ∈ ·t we have M(p) ≥ 1. An enabled
transition may �re; the �ring of an enabled transition t removes one token from each
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§1.2. Petri Nets

p ∈·t and adds one token to each p ∈ t·, generating the following new marking M′:

M′(p) =


M(p) − 1 p ∈·t
M(p) + 1 p ∈ t·
M(p) otherwise

�

(1.22) Example. Consider the following net:

p1

q1 q5

p4 p5

t t′

p1

q2 q5

p4 p5

t t′

p1

q3 q5

p4 p5

t t′

p1

q4 q5

p4 p5

t t′

p2

q1 q5

p4 p5

t t′

p2

q2 q5

p4 p5

t t′

p2

q3 q5

p4 p5

t t′

p2

q4 q5

p4 p5

t t′

p3

q1 q5

p4 p5

t t′

p3

q2 q5

p4 p5

t t′

p3

q3 q5

p4 p5

t t′

p3

q4 q5

p4 p5

t t′

�ere are two transitions, t and t′, but only t is enabled. Firing t will change the state
of the net as follows:

p1

q1 q5

p4 p5

t t′

p1

q2 q5

p4 p5

t t′

p1

q3 q5

p4 p5

t t′

p1

q4 q5

p4 p5

t t′

p2

q1 q5

p4 p5

t t′

p2

q2 q5

p4 p5

t t′

p2

q3 q5

p4 p5

t t′

p2

q4 q5

p4 p5

t t′

p3

q1 q5

p4 p5

t t′

p3

q2 q5

p4 p5

t t′

p3

q3 q5

p4 p5

t t′

p3

q4 q5

p4 p5

t t′

Now t is disabled, but t′ is enabled, and by �ring it we obtain:

p1

q1 q5

p4 p5

t t′

p1

q2 q5

p4 p5

t t′

p1

q3 q5

p4 p5

t t′

p1

q4 q5

p4 p5

t t′

p2

q1 q5

p4 p5

t t′

p2

q2 q5

p4 p5

t t′

p2

q3 q5

p4 p5

t t′

p2

q4 q5

p4 p5

t t′

p3

q1 q5

p4 p5

t t′

p3

q2 q5

p4 p5

t t′

p3

q3 q5

p4 p5

t t′

p3

q4 q5

p4 p5

t t′ �

(1.23) Remark. �e following net is a legitimate one and its only transition is always

enabled: all it does is create tokens out of nowhere, when it �res:
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Chapter 1. Vertical compositionality

�e following net instead destroys tokens, when its transition is enabled and it �res:

�e reachability problem and dinaturality. Suppose we have a Petri Net N and
an initial marking M0. �e �ring of an enabled transition in N will change the
distribution of tokens from M0 to M1, according to the �ring transition rule, therefore
a sequence of �rings of enabled transitions yields a sequence of markings. A �ring

sequence is denoted by σ = (t0, . . . , tn) where the ti’s are transitions which �re.

(1.24) De�nition. A marking M for a Petri Net N is said to be reachable from a
marking M0 if there exists a �ring sequence (t0, . . . , tn) and markings M1, . . . ,Mn where
Mi is obtained from Mi−1 by �ring transition ti , for i ∈ {1, . . . ,n}, and Mn = M . �

�e reachability problem for Petri Nets consists in checking whether a marking
M is or is not reachable from M0. It has been shown that the reachability problem is
decidable [Kos82; May81].

(1.25) Remark. Given a Petri Net N , consider the reversed net Nop obtained from N
by reversing the direction of all the arrows. �en a marking Md is reachable from M0
in N if and only if M0 is reachable from Md in Nop.

(1.26) Remark. �e crucial observation that will allow us to solve the compositional-
ity problem for dinatural transformations is that the �ring of an enabled transition in
the graph of a dinatural transformation ϕ corresponds, under certain circumstances,
to the dinaturality condition of ϕ in one of its variables. Take, for instance, the n-th
numeral transformation (see example (1.12)). Call t the only transition, and consider
the following marking M0:

t

t is enabled, and once it �res we obtain the following marking M1:

t
t

�res
t

�e striking resemblance with the graphical version of the dinaturality condition for
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n is evident:
f

f

=

f

f

By treating the “morphism f in a box” as a “token in a place” of Γ(n), we have seen
that the �ring of t generates an equation in Set, namely the one that expresses the
dinaturality of n.

Suppose now we have two composable transformations ϕ and ψ dinatural in all
their variables, in a category D. We shall make precise how certain markings of
Γ∗(ψ ◦ ϕ) correspond to morphisms in D, and how the �ring of an enabled transition
corresponds to applying the dinaturality of ϕ or ψ in one of their variables, thus
creating an equation of morphisms in D. �erefore, if the �ring of a single transition
generates an equality in the category, a sequence of �rings of enabled transitions yields
a chain of equalities. By individuating two markings M0 and Md , each corresponding
to a leg of the dinaturality hexagon for ψ ◦ ϕ we want to prove is commutative, and by
showing that Md is reachable from M0, we shall have proved that ψ ◦ ϕ is dinatural.

From an intellectual point of view, this approach reveals a remarkable connection
between two disparate areas of research: Category �eory and Petri Nets. �e practical
advantage of reducing our compositionality problem of ψ ◦ ϕ to the reachability
problem for certain markings in the Petri Net Γ∗(ψ ◦ ϕ) is that we can make use of the
necessary and su�cient conditions for reachability which have already been studied
in the past.

�e incidence matrix of a Petri Net. �e dynamics of Petri Nets is governed by
a system of linear equations, which we now proceed to introduce. First of all, we
associate a matrix to each Petri Net as follows. (Recall that we assume our nets do not
contain self-loops.)

(1.27) De�nition. Let N be a Petri Net with m places and n transitions. �e incidence

matrix A = [apt] of N is a m × n matrix of integers where apt is the number of tokens
changed in place p when transition t �res once, that is:

�(1.28) apt =


1 p ∈ t·
−1 p ∈·t
0 otherwise

In writing matrix equations, we write a marking Mk as an m × 1 column vector,
where the p-th entry of Mk denotes the number of tokens in place p immediately a�er
the k-th �ring in some �ring sequence. �e k-th �ring or control vector uk is a n × 1
column vector made of all 0’s except for one entry; a 1 in the t-th position indicating
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Chapter 1. Vertical compositionality

that transition t �res at the k-th �ring. In fact, the t-th column of the incidence matrix
A denotes the change of the marking as the result of �ring transition t, therefore the
following state equation for a Petri Net holds [Mur89]:

(1.29) Mk = Mk−1 + Auk, k = 1,2, . . .

Suppose now that a destination marking Md is indeed reachable from M0 through a
�ring sequence {u1, . . . ,ud}. Writing the state equation (1.29) for each i = 1, . . . , d
and summing them, we obtain

Md = M0 + A
d∑

k=1
uk

which can be rewri�en as

(1.30) Md = M0 + Ax

where x =
∑d

k=1 uk . x is therefore a n × 1 column vector of non-negative integers and
is called the �ring count vector, whose t-th entry denotes the number of times that
transition t must �re to transform M0 into Md . Notice though that x does not tell us in
which order to �re the transitions to get from M0 to Md . We have then the following
necessary condition for the reachability problem in arbitrary Petri Nets [Mur89].

(1.31) �eorem. Let N be a Petri Net, M0 and Md markings for N . If Md is reachable

from M0, then the system of linear equations with integer coe�cients (1.30) has a non-

negative integer solution.

(1.32) Example. Consider the following Petri Net:

p1

p2

p3

p4

t1t2

t3

�e state equation (1.29) is shown below, where the transition t3 �res to result in the
marking M1 = [3,0,0,1]T from M0 = [2,0,1,0]T :

3
0
0
1

 =

2
0
1
0

 +

−1 1 1
1 −1 0
1 0 −1
0 −1 1



0
0
1

 �
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We now introduce the notion of (directed) path in a Petri Net, which we need in
order to talk about acyclic Nets.

(1.33) De�nition. Let N be a Petri Net. A path from a vertex v to a vertex w is a
�nite sequence of vertices π = (v0, . . . , vl) where l ≥ 1, v0 = v, vl = w and for all
i ∈ {0, . . . , l − 1} vi+1 ∈ vi·∪·vi . Two vertices are said to be connected if there is a
path from one to the other. If every vertex in N is connected with every other vertex,
then N is said to be weakly connected.

A directed path from a vertex v to a vertex w is a �nite sequence of vertices
π = (v0, . . . , vl) such that v = v0, w = vl and for all i ∈ {0, . . . , l − 1} vi+1 ∈ vi·. In
this case we say that the path π has length l. A directed path from a vertex to itself
is called a cycle, or loop; if N does not have cycles, then it is said to be acyclic. Two
vertices v and w are said to be directly connected if there is a directed path either from
v to w or from w to v. �

�e existence of a non-negative integer solution to equation (1.30) is in general
only a necessary condition, but for acyclic Petri Nets it turns out to be also su�cient:
if x is a non-negative integer solution for (1.30), then Md is reachable from M0 by
�ring each transition t exactly x(t) times, as we can see in the following theorem.

(1.34) �eorem ([HI88]). Let N be an acyclic Petri Net and A its incidence matrix, M0,

Md markings for N . �en Md is reachable from M0 if and only if there is a non-negative

integer solution x for the equation

Md = M0 + Ax.

Proof. Only su�ciency has to be shown. Suppose there exists x vector of non-
negative integers satisfying equation Md = M0+Ax, call Nx the subnet of N consisting
of all those transitions t such that x(t) > 0, together with their input and output places
and connecting arcs. Denote by M0x the subvector of M0 for places in Nx .

�e subnet Nx is obviously acyclic. Claim: there is at least one transition t in
Nx that is enabled in marking M0x . If there were not such a t, then consider any
disabled transition s: there must be at least one token-free input place of s, say p1.
If p1 is not a source, then it is the output of another disabled transition s′. Continue
to back-track token-free input places of disabled transitions: this process will end,
because of the acyclicity of Nx , at at least one token-free source place p. �at means
that M0(p) = 0, and by de�nition of the incidence matrix A (1.28), we have apj ≤ 0
for all j transitions in Nx , as p is not the output of any transition. However, there is
at least one j0 transition which has p as input, as we found p by back-tracking input
places of non-�rable transitions, hence apj0 = −1. Since x( j) > 0 for all j transitions
in Nx , we have, if n is the total number of transitions,

0 ≤ Md(p) = 0 + (Ax)(p) =
n∑

j=1
apj x( j) < 0
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which is a contradiction, hence the claim holds and there is indeed an enabled transition
t in M0x . Now, �re t, call ut the n-vector consisting of all 0’s except for a 1 in the t-th
entry, let the resulting marking be M′ = M0 + Aut , and let x′ = x − ut : we have then
Md = M′ + Ax′, with x′ vector of non-negative integers, and the subnet Nx′ is still
acyclic. Repeating this process until x′ reduces to a zero vector will yield to a �ring
sequence that transforms M0 in Md . �ed

(1.35) Remark. �e proof of �eorem (1.34) shown here is non-constructive; however,
a constructive proof has been proposed in [SB02]: the idea is to classify the transitions
in terms of how “far” they are from source places, and to notice that the incidence
matrix can obtain a block-triangular structure by re-arranging the rows and columns
accordingly. We refer the reader to [SB02] for more details.

§1.3 A su�cient condition for compositionality

We are now ready to apply the theory of Petri Nets to solve the problem of com-
positionality of arbitrary dinatural transformations. For the rest of this chapter, �x
transformations ϕ : F1 → F2 and ψ : F2 → F3 where

• Fi : Cαi → D is a functor for all i ∈ {1,2,3},

• ϕ and ψ have type, respectively,

|α1 | k1 |α2 |
σ1 τ1 and |α2 | k2 |α3 |.

σ2 τ2

We shall establish a su�cient condition for the dinaturality of ψ ◦ ϕ in some of
its variables. However, since we are interested in analysing the dinaturality of the
composition in each of its variables separately, we start by assuming that ψ◦ϕ depends
on only one variable, i.e. has type |α1 | 1 |α3 |, and that ϕ and ψ are dinatural in
all their variables. In this case, we have to show that the following hexagon commutes
for all f : A→ B, recalling from p.26 that F1(B |A) is the result of applying functor F1
in B in all its contravariant arguments and in A in all its covariant ones:

(1.36)

F1(A|A) F2(A|A) F3(A|A)

F1(B |A) F3(A|B)

F1(B |B) F2(B |B) F3(B |B)

ϕA...A ψA...A

F3(1| f )F1( f |1)

F1(1| f )

ϕB...B ψB...B

F3( f |1)

�e no-rami�cation case. Rephrasing Eilenberg and Kelly’s work in [EK66]
on what they called “generalised natural transformations” in our terms, they treated
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the case in which ϕ and ψ are either natural or extranatural in each variable and their
graphs do not contain rami�cations. �is means that every variable of ϕ and ψ is used
exactly twice when writing down their general components, or, in other words, the
boxes in Γ(ϕ) and Γ(ψ) are linked in pairs. Examples (1.10), (1.11) are instances of
Eilenberg-Kelly transformations. Indeed, their de�nition of graph of a transformation
does not involve the black squares corresponding to the variables of the family of
morphisms, since there was no need for that.

(Extra)natural transformations with no rami�cations already do not compose
in general, as example (1.15) applies. However, Eilenberg and Kelly individuated
a su�cient and “essentially necessary” condition for composability, which in our
notations is the following:

(1.37)�eorem (Eilenberg-Kelly, 1966). Suppose ϕ and ψ are either natural or extranat-

ural in all their variables, and Γ(ϕ) and Γ(ψ) contain no rami�cations. If Γ∗(ψ ◦ ϕ) is

acyclic, then ψ ◦ ϕ is either natural or extranatural.

In their proof, they showed that there are only three possible schemes of cases for
Γ(ϕ) and Γ(ψ) in order to have Γ∗(ψ ◦ ϕ) acyclic:

• “Yanking” case:

If . . .
Γ(ϕ)

Γ(ψ)

then ψ ◦ ϕ is natural.

• “Stalactite” case:

If . . .
Γ(ϕ)

Γ(ψ)

then ψ ◦ ϕ is extranatural.

49



Chapter 1. Vertical compositionality

• “Stalagmite” case:

If . . .
Γ(ψ)

Γ(ϕ)

then ψ ◦ ϕ is extranatural.

�eir proof is essentially combinatoric, but in fact it shows that “plugging” an f at the
top le� box in the �rst two cases and in the bo�om le� box in the last one, the f can
“travel” through the graph in virtue of the (extra)naturality of ϕ and ψ in each of their
variables, until it reaches the opposite end of the graph, no ma�er how many U-turns
there are. �e result is “essentially necessary” in the sense that if we do create a cycle
upon constructing Γ∗(ψ ◦ ϕ), then that means we are in a situation like this:

where we have a transformation between constant functors, like in Example (1.15).
Such a family of morphisms is (extra)natural precisely when it is constant (that is, if
every component is equal to the same morphism).

�e general case. What happens when we li� the hypothesis of no rami�ca-
tions? Now Eilenberg and Kelly’s proof is not useful any more, as there are not just
three schemes of cases for Γ(ϕ) and Γ(ψ) so that Γ∗(ψ ◦ ϕ) is acyclic, but in�nitely
many. Nonetheless, the presence of cycles is clearly problematic for the same reasons
as before, and by looking at acyclic examples, like (1.18), one can see that dinaturality
is preserved. �e result we want to prove is then the following direct generalisation
of (1.37).

(1.38) �eorem. Let ϕ and ψ be transformations which are dinatural in all their vari-

ables and such that ψ ◦ ϕ depends on only one variable. If Γ∗(ψ ◦ ϕ) is acyclic, then

ψ ◦ ϕ is a dinatural transformation.

As already said in Remark (1.26), the key to prove this theorem is to see Γ∗(ψ ◦ ϕ)
as a Petri Net, reducing the dinaturality of ψ ◦ ϕ to the reachability problem for
two markings we shall individuate and then using �eorem (1.34). We begin by
unfolding the de�nition of Γ∗(ψ ◦ ϕ): we have Γ∗(ψ ◦ ϕ) = (P,T,·(−), (−)·) where
P = |α1 | + |α2 | + |α3 |, T = k1 + k2 and, indicating with ιi : |αi | → P and ρi : ki → T
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the injections de�ned similarly to ι|α | and ι|β| in (1.16),

(1.39)
·(ρi(t)) = {ιi(p) | σi(p) = t, αi

p = +} ∪ {ιi+1(p) | τi(p) = t, αi+1
p = −},

(ρi(t))·= {ιi(p) | σi(p) = t, αi
p = −} ∪ {ιi+1(p) | τi(p) = t, αi+1

p = +}.

For the rest of this chapter, we shall reserve the names P and T for the sets of places
and transitions of Γ∗(ψ ◦ ϕ).

(1.40) Remark. Since σi and τi are functions, we have that |·p|, |p·| ≤ 1 and also
that |·p ∪ p·| ≥ 1 for all p ∈ P. (In particular, every source or sink is proper.) With
a li�le abuse of notation then, if·p = {t} then we shall simply write·p = t, and
similarly for p·.
Labelled markings as morphisms. We now show how to formally translate cer-
tain markings of Γ∗(ψ ◦ ϕ) in actual morphisms ofD. �e idea is to treat every token in
the net as a �xed, arbitrary morphism f : A→ B of C and then use the idea discussed
in p. 38.

However, not all possible markings of Γ∗(ψ ◦ ϕ) have a corresponding morphism in
D as such. For example, if M is a marking and p is a place such that M(p) > 1, it makes
no sense to “compute a functor Fi in f twice” in the argument of Fi corresponding to
p. Hence, only markings M : P→ {0,1} can be considered. Moreover, we have to be
careful with where the marking puts tokens: if a token corresponds to a morphism
f : A → B, we have to make sure that there are no two consecutive tokens (more
in general, we have to make sure that there is at most one token in every directed
path), otherwise a naive a�empt to assign a morphism to that marking might end up
with type-checking problems. For instance, consider the diagonal transformation in a
Cartesian category (example (1.9)) and the following marking:

�e token on the top white box should be interpreted as idC( f ) : A→ B, hence the
black middle box should correspond to the B-th component of the family δ, that is
δB : B→ B×B. However, the bo�om two white boxes are read as f × f : A×A→ B×B,
which cannot be composed with δB!

We therefore introduce the notion of labelled marking, which consists of a marking
together with a labelling of the transitions, such that a certain coherence condition
between the two is satis�ed. �is restraint will ensure that every labelled marking
will be “translatable”, as it were, into a morphism of C. We will then use only some

labelled markings to prove our compositionality theorem.

51



Chapter 1. Vertical compositionality

(1.41) De�nition. Consider f : A → B a morphism in C. A labelled marking for
Γ∗(ψ ◦ ϕ) is a triple (M, L, f ) where functions M : P→ {0,1} and L : T → {A,B} are
such that for all p ∈ P

M(p) = 1⇒ L(·p) = A, L(p·) = B

M(p) = 0⇒ L(·p) = L(p·)
�ese conditions need to be satis�ed only when they make sense; for example if
M(p) = 1 and·p = �, condition L(·p) = A is to be ignored. �

(1.42) Proposition. If (M, L, f : A → B) is a labelled marking, then every directed

path in Γ∗(ψ ◦ ϕ) contains at most one token. If π is a directed path containing one

token, then every transition preceding the token is labelled with A, while every transition

following it is labelled with B. If π does not contain any token, then every transition in π
has the same label, either A or B.

Proof. We only prove the �rst statement; the rest follows from a similar argument.
Suppose that there is a directed path π = (v0, . . . , vl) with vi+1 ∈ vi· that contains two
tokens, say one in place p = v0 and one in place q = vl (l is even). �en L(p·) = B
and L(·q) = A. Now, p·= v1 and since we assumed π only contains two tokens, we
have that M(v1·) = M(v2) = 0. Hence, L(v3) = L(v2·) = L(·v2) = L(v1) = L(p·) = B.
By repeating the process, we have that L(v5) = · · · = L(vl−1) = B, which is in
contradiction with the fact that A = L(·q) = L(vl−1). �ed

We are now ready to assign a morphism in D to every labelled marking by reading
a token in a place as a morphism f in one of the arguments of a functor, while an
empty place corresponds to the identity morphism of the label of the transition of
which the place is an input or an output.

(1.43) De�nition. Let (M, L, f : A→ B) be a labelled marking. We de�ne a morphism
µ(M, L, f ) in D as follows:

µ(M, L, f ) = F1(x1
1, . . . , x

1
|α1 |); ϕX1

1 ...X
1
k1

; F2(x2
1, . . . , x

2
|α2 |);ψX2

1 ...X
2
k2

; F3(x3
1, . . . , x

3
|α3 |)

where

xi
j =

{
f M(ιi( j)) = 1
idL(t) M(ιi( j)) = 0 ∧ t ∈·ιv( j) ∪ ιv( j)· X i

j = L(ρi( j)).

for all i ∈ {1,2,3} and j ∈ {1, . . . , |αi |}. (Recall that ιi : |αi | → P and ρi : ki → T are
the injections de�ned similarly to ι|α | and ι|β | in (1.16).) �

(1.44) Proposition. µ(M, L, f ) is indeed a morphism of D.
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Proof. We prove that the morphisms µ(M, L,F) is made of are actually composable,
by making use of the de�nition of labelled marking (1.41) and the explicit de�nition
of Γ∗(ψ ◦ ϕ) (1.39). We only show that codom

(
F1(x1

1, . . . , x
1
|α1 |
)

)
= dom

(
ϕX1

1 ,...,X
1
k1

)
, all

the remaining equalities can be shown by an analogous argument.
We have codom

(
F1(x1

1, . . . , x
1
|α1 |
)

)
= F1(C1, . . . ,C|α1 |) where

Cj =


codom

(
x1

j

)
α1

j = +

dom

(
x1

j

)
α1

j = −

whereas

dom

(
ϕX1,...,Xk1

)
= F1

(
X1
σ11, . . . ,X

1
σ1 |α1 |

)
= F1

(
L(ρ1σ11), . . . , L(ρ1σ1 |α

1 |)
)

and we prove that Cj = L(ρ1σ1 j) for all j ∈ {1, . . . , |α1 |}.
Case α1

j = +. We have Cj = codom

(
x j

)
,·ι1( j) = �, ι1( j)·= ρ1σ1 j .

• If M(ι1 j) = 1, then x1
j = f and Cj = B while L(ρ1σ1 j) = L((ι1 j)·) = B.

• If M(ι1 j) = 0, then Cj = L((ι1 j)·) = L(ρ1σ1 j).

Case α1
j = −. We have Cj = dom

(
x j

)
, ι1( j)·= �,·ι1( j) = ρ1(σ1 j).

• If M(ι1 j) = 1, then Cj = A while L(ρ1σ1 j) = L(·(ι1 j)) = A.

• If M(ι1 j) = 0, then Cj = L(·(ι1 j)) = L(ρ1σ1 j). �ed

What are the labelled markings corresponding to the two legs of diagram (1.36)?
In the lower leg of the hexagon, f appears in all the covariant arguments of F1 and
the contravariant ones of F3, which correspond in Γ∗(ψ ◦ ϕ) to those places which
have no inputs (in Petri nets terminology, sources), and all variables of ϕ are equal
to B; in the upper leg, f appears in those arguments corresponding to places with
no outputs (sinks), and ψ is computed in A in each variable. Hence, the lower leg is
µ(M0, L0, f ) while the upper leg is µ(Md, Ld, f ), where:

(1.45)

M0(p) =

{
1 ·p = �
0 otherwise

Md(p) =

{
1 p·= �
0 otherwise

L0(t) = B Ld(t) = A

for all p ∈ P and t ∈ T . It is an immediate consequence of the de�nition that (M0, L0, f )
and (Md, Ld, f ) so de�ned are labelled markings.

We aim to show that Md is reachable from M0 by means of a �ring sequence that
“preserves” the morphism µ(M0, L0, f ). In order to do so, we now prove that �ring
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a B-labelled transition in an arbitrary labelled marking (M, L, f ) generates a new
labelled marking, whose associated morphism in D is still equal to µ(M, L, f ).

(1.46) Proposition. Let (M, L, f ) be a labelled marking, t ∈ T an enabled transition

such that L(t) = B. Consider

(1.47)

P {0,1} T {A,B}

p


0 p ∈·t
1 p ∈ t·
M(p) otherwise

s

{
A s = t
L(s) s , t

M ′ L ′

�en (M′, L′, f ) is a labelled marking and µ(M, L, f ) = µ(M′, L′, f ).

Proof. By de�nition of labelled marking, if t·, � and L(t) = B then M(p) = 0 for
all p ∈ t·, because if there were a p ∈ t·with M(p) = 1, then L(t) = A. M′ is therefore
the marking obtained from M when t �res once. We now show that (M′, L′, f ) is a
labelled marking.

Case M′(p) = 1. If p ∈ t·, then L′(·p) = L′(t) = A and L′(p·) = L(p·) = B,
the last equation is due to the fact that M(p) = 0, so L(p·) = L(·p) = L(t) = B by
hypothesis. If p < t·, then 1 = M′(p) = M(p) and·p , t. Since (M, L, f ) is a labelled
marking, we have that L′(·p) = L(·p) = A and L′(p·) = L(p·) = B because p·, t
as if it were we would have M′(p) = 0 by de�nition of M′.

Case M′(p) = 0. If p ∈·t, then L′(·p) = L(·p) (remember that we do not allow for
self loops, that is·p , p· for all places p) and since M(p) = 1 given that t is enabled
in M , we have L(·p) = A = L′(t) = L′(p·). If instead p <·t, then 0 = M′(p) = M(p)
and p· , t. Since (M, L, f ) is a labelled marking, we have that L′(·p) = L(·p) as
·p , t (otherwise we would have M′(p) = 1), moreover L(·p) = L(p·) = L′(p·).

We have now to prove that µ(M, L, f ) = µ(M′, L′, f ). Since t ∈ T , we have
t = ρu(i) for some u ∈ {1,2} and i ∈ {1, . . . , ku}. �e fact that t is enabled in M ,
together with (1.39) and (1.43), ensures that, in the notations of De�nition (1.43),

σu( j) = i ∧ αu
j = +⇒ xu

j = f

σu( j) = i ∧ αu
j = − ⇒ xu

j = idB

τu( j) = i ∧ αu+1
j = +⇒ xu+1

j = idB

τu( j) = i ∧ αu+1
j = − ⇒ xu+1

j = f

hence we can apply the dinaturality of ϕ or ψ (if, respectively, u = 1 or u = 2) in its
i-th variable. For the sake of simplicity, assume that u = 1: we obtain therefore a new
morphism

F1(y
1
1, . . . , y

1
|α1 |); ϕY 1

1 ...Y
1
k1

; F2(y
2
1, . . . , y

2
|α2 |);ψX2

1 ...X
2
k2

; F3(x3
1, . . . , x

3
|α3 |)
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where

y1
j =


idA σ1( j) = i ∧ α1

j = +

f σ1( j) = i ∧ α1
j = −

x1
j otherwise

y2
j =


f σ2( j) = i ∧ α2

j = +

idA σ2( j) = i ∧ α2
j = −

x2
j otherwise

Y 1
j =

{
A j = i
X1

j j , i

On the other hand,

µ(M′, L′, f ) = F1(z1
1, . . . , x

1
|α1 |); ϕZ1

1 ...Z
1
k1

; F2(z2
1, . . . , z

2
|α2 |);ψX2

1 ...X
2
k2

; F3(x3
1, . . . , x

3
|α3 |)

where

zvj =

{
f M′(ιv( j)) = 1
idL ′(s) M′(ιv( j)) = 0 ∧ s ∈·ιv( j) ∪ ιv( j)· Z1

j = L′(ρ1( j))

for v ∈ {1,2}. Is it true that yvj = zvj for all v ∈ {1,2} and j ∈ {1, . . . , |αv |}? We
consider case v = 1. Call p = ι1( j). �en

z1
j = f ⇐⇒ M′(p) = 1 ⇐⇒ p ∈ t·∨ (p <·t ∧ M(p) = 1)
y1

j = f ⇐⇒ (σ1( j) = i ∧ α1
j = −) ∨ (σ1( j) , i ∧ M(p) = 1)

Condition p ∈ t· is equivalent, by (1.39), to σ1( j) = i ∧ α1
j = −, whereas

p <·t ∧M(p) = 1 ⇐⇒ (p ∈ t·∨σ1( j) , i) ∧M(p) = 1 ⇐⇒ σ1( j) , i ∧M(p) = 1

the last equivalence following from the fact that p ∈ t·∧M(p) = 1 is false, as remarked
at the very beginning of this proof. Moreover, z1

j , f precisely when M′(p) = 0, in
which case z1

j = idL ′(s) for s ∈·p ∪ p·. On the other hand,

y1
j , f ⇐⇒ (σ1( j) = i ∧ α1

j = +) ∨ (σ1( j) , i ∧ M(p) = 0)

and in any case y1
j , f means y1

j = idL ′(s) for s ∈ ·p ∪ p·, as if σ1( j) = i ∧ α1
j = −

then L′(·p) = L′(t) = A, and if σ1( j) , i ∧ M(p) = 0 then y1
f = x1

j = idL(s) = idL ′(s),
since s , t. Finally, condition M′(p) = 0 means that either p ∈·t, which is the same
as saying that σ1( j) = i ∧ α1

j = +, or p < t·∧ M(p) = 0, which is equivalent to
σ1( j) , i ∧ M(p) = 0.

We have now only to check that Y 1
j = Z1

j for all j ∈ {1, . . . , k1}. If j = i, then

Z1
j = L′(ρ1i) = L′(t) = A = Y 1

j
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whereas if j , i then ρ1 j , t, therefore

Z1
j = L′(ρ1 j) = L(ρ1 j) = Y 1

j . �ed

It immediately follows that a sequence of �rings of B-labelled transitions gives
rise to a labelled marking whose associated morphism is still equal to the original one,
as the following Proposition states.

(1.48) Proposition. Let µ(M, L, f ) be a labelled marking, M′ a marking reachable

from M by �ring only B-labelled transitions t1, . . . , tm, L′ : T → {A,B} de�ned as:

L′(s) =

{
A s = ti for some i ∈ {1, . . . ,m}
L(s) otherwise

�en (M′, L′, f ) is a labelled marking and µ(M, L, f ) = µ(M′, L′, f ).

(1.49) Remark. Although the previous Propositions hold for arbitrary labelled mark-
ings, we shall make use of them only for those markings that are “intermediate” in
between (M0, L0, f ) and (Md, Ld, f ). �ese intermediate markings are characterised
by the fact that they put exactly one token in each directed path.

Now all we have to show is that Md is reachable from M0 (see (1.45)) by only
�ring B-labelled transitions: it is enough to make sure that each transition is �red at
most once to satisfy this condition. �eorem (1.34) provides a necessary and su�cient
condition for the reachability of Md from M0: �nd a vector x of non-negative integers
that solves equation Md = M0 + Ax, with A the incidence matrix of Γ∗(ψ ◦ ϕ). Here
x has length k1 + k2, which is the number of transitions in Γ∗(ψ ◦ ϕ), and x(t) is the
number of times transition t has to �re in order to transform M0 into Md . Hence,
as long as we know how many times each transition should �re, and the resulting
vector is a solution to (1.30), �eorem (1.34) ensures us that there is indeed a way to
transform M0 into Md by �ring each transition t exactly x(t) times.

A necessary condition for x. We start by showing some necessary conditions for
x to be a non-negative integer solution of Md = M0 + Ax: these conditions, together
with the fact that we want x(t) ≤ 1 for all t transitions as we have already observed,
will lead us to �nd x explicitly. For reasons that will become clear in Chapter 3, it
is useful to work abstractly in the general theory of Petri Nets. We now introduce a
special class of Nets, to which our Γ∗(ψ ◦ ϕ) belongs (Remark (1.40)), where all places
have at most one input and at most one output.

(1.50) De�nition. A Petri Net is said to be forward-backward con�ict free (FBCF) if
for all p place |·p| ≤ 1 and |p·| ≤ 1. �

In this section we �x an arbitrary FBCF Petri Net N with m places and n transitions,
call A its incidence matrix, and de�ne markings M0 and Md as in (1.45). We recall
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again that M0 puts one token in every source, while Md in every sink; if p is a source
and a sink at once (so it is a place “�oating in space” as it were, not connected to any
transition), then M0(p) = Md(p). (Notice that such places do not exist in Γ∗(ψ ◦ ϕ), as
all sources and sinks are proper.) We assume that Md is indeed reachable from M0 by
means of a �ring sequence u1, . . . ,ud , with

(1.51) x =
d∑

k=1
uk

(each ui is a n × 1 vector consisting of n − 1 zeros and one 1 in the entry which
corresponds to the transition �red at step i). What can we infer about x?

(1.52) Remark. If N does not have any sources or sinks, then M0 = Md and x =
[0, . . . ,0]. For N = Γ∗(ψ ◦ ϕ), this would mean that ψ ◦ ϕ is a transformation between
constant functors, which is dinatural precisely when it is a constant family of morph-
isms. Also if every source is also a sink, then M0 = Md and x = [0, . . . ,0] as well.

(1.53) Remark. By de�nition of incidence matrix, the p-th row of A is a n × 1 vector
that is null precisely if p has no inputs or outputs and, if p does have at least one input
or output, then it is made of all zeros except for:

• exactly one 1 and one −1, when p has one input and one output,

• exactly one 1, when p has one input and no outputs (i.e. is a proper sink),

• exactly one −1, when p has one output and no inputs (i.e. is a proper source),

�e following Lemma states a very simple remark: if there is at least one proper
source or sink place in N , and Md is reachable from M0, then at least one transition
must �re. Intuitively, if no transition �red, then the tokens in the proper source places
(put there by M0) would never move away from them, and the proper sink places
would never be marked (as they should be in Md).

(1.54) Lemma. Suppose that N has at least one proper source or proper sink place. �en

there is a transition t such that x(t) > 0.

Proof. De�ne the m × 1 vectors

Mk = Mk−1 + Auk k ∈ {1, . . . , d}.

Suppose that there is a proper source (sink) place p, and call t its only output (input).
If, by contradiction, x(t) = 0, then uk(t) = 0 for all k by de�nition of x (1.51). Hence
Mk(p) = Mk−1(p) for all k ≥ 1: indeed,

(Auk) (p) =
n∑

j=1
apj uk( j)
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and

apj =


−1 j = t and p is a source
+1 j = t and p is a sink
0 otherwise

In any case,
∑n

j=1 apj uk( j) = ±uk(t) = 0, hence Mk(p) = Mk−1(p). �is is in contra-
diction with M0(p) , Md(p), be p a source or a sink place. �ed

We move on by observing that if Md is reachable from M0 and a particular transition
�res at least once, then all transitions directly connected to it must �re as well: again
intuitively, in order for a transition t to �re it must be enabled, hence those transitions
which are between the source places and t must �re to move the tokens to the input
places of t; moreover, if t �res, then also all those transitions “on the way” from t to
the sink places must �re, otherwise some tokens would get stuck in the middle of the
net, in disagreement with Md .

(1.55) Lemma. If there is a transition t such that x(t) > 0, then x(t) > 0 for all

transitions t connected to t.

Proof. If t = t, there is nothing to prove. As every path can be split into a sequence
of directed ones, it is enough to prove the lemma for those transitions t directly
connected with t. We prove that for all l ≥ 2, for all t transition such that there is a
path π = (v0, . . . , vl) from t to t or from t to t it is the case that x(t) > 0, by induction
on l, the length of π.
Case l = 2. Suppose π = (t, p, t), that is we are in the situation

. . . . . .

. . .

. . . . . .

. . .

p

t

t

De�ne the m × 1 vectors

Mk = Mk−1 + Auk k ∈ {1, . . . , d}.

�e fact that x(t) > 0 implies that there is a k ∈ {1, . . . , d} such that uk(t) = 1,
which is the same as saying that t �res at step k for some k . Necessarily then,
Mk−1(p) > 0, otherwise t would be disabled and unable to �re at step k . (Notice
that k cannot be 1, as M0(p) = 0, but we do not need this additional information.) Now,
suppose that t never �res, that is x(t) = 0: we prove that in this case Mi(p) = 0 for
all i ∈ {1, . . . , d} (i.e. p is never marked), which contradicts the fact that Mk−1(p) > 0,
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by �nite induction on i. As we have already observed, M0(p) = 0, what with p being
neither a source nor a sink place; suppose that Mi−1(p) = 0 for a �xed i ≥ 1: we have,
by de�nition of Mi ,

Mi(p) = Mi−1(p) + (Auk) (p) = (Auk) (p) =
n∑

j=1
Apj ui( j)

where

Apj =


+1 j = t
−1 j = t
0 otherwise

�erefore, Mi(p) = ui(t) − ui(t) = 0 because ui(t) = 0 as x(t) = 0 and because ui(t) = 0
as Mi−1(p) = 0, hence t cannot �re at step i.

If, instead, π = (t, p, t), then we are in the following situation:

. . . . . .

. . .

. . . . . .

. . .

p

t

t

Again, we have uk(t) = for some k , which implies Mk(p) > 0. Suppose, by
contradiction, that x(t) = 0: then ui(t) = 0 for all i. We prove that Mi(p) > 0 for all
i ∈ {k, . . . , d} by �nite induction on i. �e base case is already proven, suppose now
Mi−1(p) > 0 for a �xed i ≥ k + 1. Since

Apj =


+1 j = t
−1 j = t
0 otherwise

we have
Mi(p) = Mi−1(p) + ui(t) − ui(t) = Mi−1(p) + ui(t) > 0

as ui(t) ≥ 0.
Inductive step. Fix now l ≥ 2, suppose that for all k ≤ l, for all t transitions
directly connected to t by a path of length k we have indeed x(t) > 0. Consider then a
transition t directly connected to t by a path π = (v0, . . . , vl+1) of length l + 1. �en
the vertices v2 and vl−1, which are transitions, are such that x(v2) > 0 and x(vl−1) > 0
by inductive hypothesis. Hence, by the base case, also x(t) > 0, regardless of whether
π is a path from t to t or vice versa. �ed
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Combining Lemmas (1.54) and (1.55), we obtain the following necessary condition
for reachability of Md from M0 in case N is weakly connected and has at least one
proper source or sink.

(1.56) �eorem. Suppose N is weakly connected and has at least one proper source

or proper sink. If Md is reachable from M0 through a �ring sequence u1, . . . ,ud and

x =
∑d

k=1 uk , then x(t) > 0 for all t transitions in N .

�e proof of �eorem (1.38). We have proved that in an arbitrary FBCF Petri Net
N with at least one proper source or sink each transition has to �re at least once
in order for Md to be reachable from M0. On the other hand, when N = Γ∗(ψ ◦ ϕ),
we cannot �re any transition more than once, since we only want to �re B-labelled
transitions. It is clear then that what we want is to �re every transition exactly once:
the vector x = [1, . . . ,1] is indeed the solution we are seeking.

(1.57) �eorem. Let N be a FBCF Petri Net, M0, Md markings as in (1.45). If N is

acyclic, then Md is reachable from M0 by �ring each transition exactly once.

Proof. Suppose N has m places and n transitions. Consider the n × 1 vector x =
[1, . . . ,1]. We have, by Remark (1.53),

(Ax) (p) =
n∑

j=1
Apj =


−1 p is a proper source
+1 p is a proper sink
0 otherwise.

By de�nition of M0 and Md then,

M0(p) + (Ax) (p) =


1 − 1 p is a proper source
0 + 1 p is a proper sink
1 + 0 p is a source and a sink
0 + 0 otherwise

= Md(p).

By �eorem (1.34), we conclude. �ed

We are now ready to prove �eorem (1.38), which solves the compositionality
problem of dinatural transformations.

Proof of Theorem (1.38). Let f : A → B be a morphism in C, and de�ne labelled
markings (M0, L0, f ) and (Md, Ld, f ) as in (1.41). �en µ(M0, L0, f ) is the lower leg of
(1.36), while µ(Md, Ld, f ) is the upper leg. By theorem (1.57), marking Md is reachable
from M0 by �ring each transition of Γ∗(ψ ◦ ϕ) exactly once, hence by only �ring B-
labelled transitions. By Proposition (1.48), we have that the dinaturality hexagon (1.36)
commutes. �ed
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�eorem (1.38) can then be straightforwardly generalised to the case in which
ψ ◦ ϕ depends on n variables for an arbitrary n. Suppose then that the type of ψ ◦ ϕ is
given by the following pushout:

(1.58)

|α3 |

|α2 | k2

|α1 | k1 n

τ2

τ1
p

σ2

ξ

σ1 ζ

Γ∗(ψ ◦ ϕ) now has n connected components, and a su�cient condition for the dinat-
urality of ψ ◦ ϕ in its i-th variable is that ϕ and ψ are dinatural in all those variables of
theirs which are “involved”, as it were, in the i-th connected component of Γ∗(ψ ◦ ϕ)
and each such connected component is acyclic.

(1.59) �eorem. In the notations above, let i ∈ {1, . . . ,n}. If ϕ and ψ are dinatural

in all their variables in, respectively, ζ−1{i} and ξ−1{i} (with ζ and ξ given by the

pushout (1.58)), and if the i-th connected component of Γ∗(ψ ◦ ϕ) is acyclic, then ψ ◦ ϕ is

dinatural in its i-th variable.

We conclude with a straightforward corollary.

(1.60) Corollary. Let ϕ : F → G and ψ : G→ H be transformations which are dinat-

ural in all their variables. If Γ∗(ψ ◦ ϕ) is acyclic, then ψ ◦ ϕ is dinatural in all its

variables.

§1.4 A “necessary” condition for compositionality

Going back to the general theory of FBCF Petri Nets, �eorem (1.56) has also another
consequence: if N is weakly connected, has at least one proper source or one proper
sink and Md is reachable from M0, then N cannot contain any cycle. �e reason is that
all the transitions involved in any cycle cannot be enabled at any point, as the places in
the loop will never be marked. We therefore obtain a sort of inverse of �eorem (1.57).

(1.61) �eorem. Let N be weakly connected with at least one proper source or one

proper sink place. If Md is reachable from M0, then N is acyclic.

Proof. Suppose Md is reachable from M0 through a �ring sequence u1, . . . ,ud , de�ne
x =

∑d
k=1 uk and, as usual,

Mk = Mk−1 + Auk k ∈ {1, . . . , d}.
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Suppose also that N contains a directed path π = (v0, . . . , v2l) where v0 = v2l is a place.
We prove that for all k ∈ {1, . . . , d}, for all i = 0, . . . , l, Mk(v2i) = 0 by �nite induction
on k . �is implies that all the transitions in π will be forever disabled, contradicting
�eorem (1.56).

Indeed, M0(v2i) = 0 for all i because v2i is neither a source nor a sink place by
de�nition of (circular) directed path. Suppose now that for all i, Mk−1(v2i) = 0 for a
�xed k ≥ 1. �en, given an arbitrary i,

Mk(v2i) = Mk−1(v2i) + (Auk) (v2i) = uk(v2i−1) − uk(v2i+1) = 0

where uk(v2i−1) = 0 and uk(v2i+1) = 0 since, respectively, Mk−1(v2i−2) = 0 and
Mk−1(v2i) = 0 by inductive hypothesis (so transitions v2i−1 and v2i+1 cannot �re
at step k). �ed

In other words, if N contains a loop—in the hypothesis that N is weakly connected
and has at least one proper source or sink place—then Md is not reachable from M0.
In the case of N = Γ∗(ψ ◦ ϕ), given the correspondence between the dinaturality
condition of ϕ and ψ in each of their variables and the �ring of the corresponding
transitions, this intuitively means that ψ ◦ ϕ cannot be proved to be dinatural as a
sole consequence of the dinaturality of ϕ and ψ when Γ∗(ψ ◦ ϕ) is cyclic. �erefore,
acyclicity is not only a su�cient condition for the dinaturality of the composite
transformation, but also “essentially necessary”: if the composite happens to be
dinatural despite the cyclicity of the graph, then this is due to some “third” property,
like the fact that certain squares of morphisms are pullbacks or pushouts (see discussion
a�er example (1.15)). We prove this intuition formally by considering a syntactic
category generated by the equations determined by the dinaturality conditions of ϕ
and ψ, and by showing that in there ψ ◦ ϕ is not dinatural.

�e syntactic category over a signature. We begin by recalling from [Mim11;
Bur93; Str76] the concept of syntactic category over a given signature.

(1.62) De�nition. A signature Σ is a tuple (O,M,dom, codom) where O and M are
sets, together with functions dom, codom : M → O. O is the set of the generators for

objects, M of generators for morphisms. �e signature Σ generates a category S whose
objects are the elements of O and morphisms are formal composite of elements of M
and formal identity morphisms, quotiented by suitable laws ensuring associativity
and unitarity of composition.

An equational theory is a tuple (O,M,dom, codom,E, l,r)where (O,M,dom, codom)

is a signature, whereas E is a set of relations. Call M∗ the set of morphisms of
the category generated by the signature (O,M,dom, codom): then l,r : E → M∗ are
functions such that dom ◦ l = dom ◦ r and codom ◦ l = codom ◦ r .

�e syntactic category over the equational theory (O,M,dom, codom,E, l,r) is the
category obtained from the category S generated by the signature (O,M,dom, codom)
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by quotienting its morphisms by the smallest congruence ≡, with respect to composi-
tion, such that l(e) ≡ r(e) for all e ∈ E . �

Given now our category C and transformations ϕ and ψ as in §1.3 (dinatural in all
their variables), where we suppose again that Γ∗(ψ ◦ ϕ) is connected, call

C+ = C + discrete category over {dom (x) , codom (x)}

where x here will play the role of an “indeterminate morphism”. dom (x) and codom (x)
are, at the moment, just two additional objects which we add toC to get the categoryC+.
Now, call Cx the free category over the equational theory (O,M,dom, codom,E, l,r)
where:

O = {Fi(A1, . . . , A|αi |) | i ∈ {1,2,3}, A j ∈ C
+}

M = {Fi(a1, . . . ,a|αi |) | i ∈ {1,2,3}, a j = x or idX for some X ∈ C+} ∪
∪ {ϕA1,...,Ak1

| A j ∈ C
+} ∪ {ψA1,...,An | A j ∈ C

+}

and E consists of all those relations asserting functoriality of F1, F2 and F3, together
with the dinaturality conditions of ϕ and ψ on x : dom (x) → codom (x) in each of
their variables. In other words, Cx is the syntactic category whose only morphisms
are components of ϕ and ψ ranging over the objects of C+, together with the images
along the functors Fi’s of identity morphisms and x, which has been arti�cially added
to C. In Cx , the only equations that hold, other than those given by the de�nition of
category, are those obtained by functoriality conditions on the Fi’s and by dinaturality
conditions of ϕ and ψ.

For f : A→ B morphism in C, de�ne the functor S f
x : Cx → D which acts

• on objects by substituting dom (x) with A and codom (x) with B;

• on morphisms by substituting x : dom (x) → codom (x) with f : A→ B.

�is is well de�ned for all f , as if m1 = m2 in Cx then S f
x (m1) = S f

x (m2) in D because
S f

x preserves the equations of E , given that Fi’s are indeed functors and ϕ and ψ are
indeed dinatural in all their variables. Essentially, S f

x instantiates the indeterminate
morphism x in Cx with the actual morphism f of C, and in doing so we come back to
our usual C.

We want to prove that if the dinaturality hexagon ofψ◦ϕ on morphism x commutes
in Cx , which implies (via use of S f

x ) that ψ◦ϕ is “really” dinatural and its dinaturality is
due exclusively by dinaturality of ϕ and ψ and by functoriality of Fi’s, then Γ∗(ψ ◦ ϕ)
is acyclic.

(1.63) �eorem. Consider the following diagram in Cx , where for lack of space we
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abbreviate dom (x) as Dx and codom (x) as Cx :

(1.64)

F1(Dx |Dx) F2(Dx |Dx) F3(Dx |Dx)

F1(Cx |Dx) F3(Dx |Cx)

F1(Cx |Cx) F2(Cx |Cx) F3(Cx |Cx)

ϕDx ...Dx ψDx ...Dx

F3(1|x)F1(x |1)

F1(1|x)

ϕCx ...Cx ψCx ...Cx

F3(x |1)

If this diagram commutes, then Γ∗(ψ ◦ ϕ) is acyclic.

Now, saying that (1.64) commutes in Cx is equivalent to having a (�nite) chain
of equations starting from the upper leg and ending at the lower one, where each
equation is due to the dinaturality of ϕ or ψ in one of their variables:

(1.65)

F1(x |1) ; ϕdom(x)...dom(x) ; ψdom(x)...dom(x) ; F3(1|x)
= F1(u1

1, . . . ,u
1
|α1 |) ; ϕX1

1 ,...,X
1
k1

; G(v1
1, . . . , v

1
|α2 |) ; ψY 1

1 ,...,Y
1
k2

; H(w1
1, . . . ,w

1
|α3 |)

= F1(u2
1, . . . ,u

2
|α1 |) ; ϕX2

1 ,...,X
2
k1

; G(v2
1, . . . , v

2
|α2 |) ; ψY 2

1 ,...,Y
2
k2

; H(w2
1, . . . ,w

2
|α3 |)

= . . .

= F1(uk
1 , . . . ,u

k
|α1 |) ; ϕXk

1 ,...,X
k
k1

; G(vk
1 , . . . , v

k
|α2 |) ; ψY k

1 ,...,Y
k
k2

; H(wk
1 , . . . ,w

k
|α3 |)

= F1(1|x) ; ϕcodom(x)...codom(x) ; ψcodom(x)...codom(x) ; F3(x |1)

By de�nition of generators of morphisms in Cx , every ui
j , v

i
j and wi

j is either iddom(x),
idcodom(x) or x. Each morphism in the chain therefore corresponds to a labelled marking
(Mi, Li, x)where Mi puts one token in each place whose corresponding argument of F1,
F2 or F3 is x and 0 elsewhere; Li assigns to each transition value dom (x) or codom (x)
according to the corresponding variable of ϕ and ψ.

By orientating the equations from le� to right, each equation corresponds to the
�ring of a single, enabled, codom (x)-labelled transition in Γ∗(ψ ◦ ϕ) or to the �ring
of a single, enabled, dom (x)-labelled transition in Γ∗(ψ ◦ ϕ)op (which is Γ∗(ψ ◦ ϕ)
with all the arrows reversed). We have indeed to take into account that, of course,
dinaturality conditions can be used to pass from one leg to the other of the dinaturality
hexagon interchangeably.

Given N an arbitrary Petri Net, an enabled transition in Nop is, by de�nition, a
transition t in N where each of its outputs contain at least one token. We say that t is
coenabled in N and we call un�ring the act of removing one token from every output
of t and adding one token to each of its inputs. �e chain of equations (1.65) translates
therefore into a chain of labelled markings (Mi, Li, x), starting from (M0, L0, x) and
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ending with (Md, Ld, x) with:

(1.66)

M0(p) =

{
1 ·p = �
0 otherwise

Md(p) =

{
1 p·= �
0 otherwise

L0(t) = codom (x) Ld(t) = dom (x)

and where each labelled marking is obtained from the preceding one by either �ring
an enabled codom (x)-labelled transition or by un�ring a coenabled dom (x)-labelled
transition.

�e strategy we shall use to prove �eorem (1.63) is the following. First we prove
that we can “eliminate” the un�rings in this chain, that is that we can individuate
a sequence of �rings of enabled codom (x)-labelled transitions from M0 to Md ; in
other words, we can rearrange equations (1.65) in a way that we only use dinaturality
conditions “in one direction”. �is will show that Md is reachable from M0. We will
then use �eorem (1.61) to imply that Γ∗(ψ ◦ ϕ) must necessarily be acyclic.

We prove the following un�ring elimination theorem in the hypothesis that we
have an arbitrary sequence of labelled markings, starting from our (M0, L0, x) but
ending with any labelled marking, where only one un�ring happens, and it happens
at the very end. �is is indeed su�cient for the elimination of all un�rings from the
chain of equations (1.65) (as we can apply the argument to one initial segment at a time,
starting from the one that ends with the �rst un�ring, applying un�ring elimination,
repeat the argument with the initial segment ending with the second un�ring, and
so on). �e theorem essentially states that in such a situation we can �nd a new
sequence of labelled markings with same initial and �nal labelled marking, where each
(Mi, Li, x) is obtained from the preceding one by �ring an enabled, codom (x)-labelled
transition. In the proof we show that this is possible by observing that the coenabled,
dom (x) transition that un�res at the last step is in fact one of the transitions that has
�red earlier on: hence by avoiding �ring it in the �rst place, we eliminate the problem.
(1.67) �eorem (Unfiring elimination). Let (Mi, Li, x)i∈{0,...,k+1} be a sequence of

labelled markings, with M0, L0 as in (1.66), and let yi , for i ∈ {0, . . . , k − 1}, be vectors

of length k1 + k2 consisting of all 0’s except for one 1, call ti the corresponding transition.

Call A = [apt] the incidence matrix of Γ∗(ψ ◦ ϕ). Suppose that for all i ∈ {0, . . . , k − 1}
(i) Mi+1 = Mi + Ayi (Mi+1 is obtained by �ring ti),

(ii) ∀p ∈ P. (apti = −1⇒ Mi(p) = 1) (ti is enabled in Mi),

(iii) ∀t ∈ T . Li+1(t) =

{
dom (x) t = ti
Li(t) otherwise

(ti becomes dom (x)-labelled a�er �ring),

(iv) Li(ti) = codom (x) (ti is codom (x) labelled before �ring)

(that is, the enabled, codom (x)- labelled transition ti �res transforming Mi into Mi+1 and

its label changes to dom (x)). Consider vector yk of length k1 + k2 consisting of all 0’s

except for one −1, call tk the corresponding transition. Suppose that
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(v) Mk+1 = Mk + Ayk

(vi) ∀p ∈ P. (aptk = 1⇒ Mk(p) = 1)

(vii) ∀t ∈ T . Lk+1(t) =

{
codom (x) t = tk

Lk(t) otherwise

(viii) Lk(tk) = dom (x)

(that is, coenabled, dom (x)-labelled transition tk un�res transforming Mk into Mk+1 and

its label changes to codom (x)).

�en there exists a sequence of labelled markings (M′i , L
′
i , x)i∈{0,...,k ′+1} and vectors

y′0, . . . , y
′
k ′, each of which consists of all 0’s except for one 1 at transition t′i , such that

(M0, L0, x) = (M′0, L
′
0, x), (Mk+1, Lk+1, x) = (M′k ′+1, L

′
k ′+1, x) and for all i ∈ {0, . . . , k′}:

(1) M′i+1 = M′i + Ay′i

(2) ∀p ∈ P. (apt ′i = −1⇒ M′i (p) = 1)

(3) ∀t ∈ T . L′i+1(t) =

{
dom (x) t = t′i
L′i (t) otherwise

(4) L′i (ti) = codom (x)

Proof. Induction on k .
Case k = 1. We have three markings with accompanying labellings: M0, where there
is one token in each source and every transition has label codom (x); M1, obtained by
�ring a single enabled transition t0 in M0, with now L1(t0) = dom (x); M2, obtained
by un�ring a coenabled, dom (x)-labelled transition t1 in M1, with L2(t1) = codom (x).
Necessarily then t0 = t1, because the only transition t such that L1(t) = dom (x) is
t0 itself. �is means that we �rst �red and then un�red t0: (M0, L0, x) and (M2, L2, x)
are the same. Hence consider k′ = 0, M′0 = M0, L′0 = L0, y′0 = y0 and t′0 = t0. �en
conditions (1)-(4) are equivalent to (i)-(iv).
Inductive step. Let k ≥ 1 and suppose the theorem is true for any sequence of
labelled markings satisfying conditions (i)-(viii) of length less than or equal to k + 1.
Let now (Mi, Li, x)i∈{0,...,k+2} be a sequence of labelled markings and x0, . . . , xk+1 be
vectors of length k1 + k2 as in the hypothesis of the theorem: for i ∈ {0, . . . , k}, Mi+1
is obtained from Mi by �ring an enabled transition ti with Li(ti) = codom (x); Li+1 is
the same as Li except that now Li+1(ti) = dom (x); whereas Mk+2 is obtained from
Mk+1 by un�ring a coenabled transition tk+1, where Lk+1(tk+1) = dom (x). �e �nal
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labelling Lk+2 di�ers from Lk+1 only on tk+1, where it has value codom (x).

M0
L0(t) = codom (x) for all t

M1
L1(t0) = dom (x)

L1(t) = codom (x) otherwise

. . .
M2

L2(t1) = dom (x)
L2(t) = L1(t) otherwise

Mk+1
Lk+1(tk) = dom (x)

Lk+1(t) = Lk(t) otherwise

Mk+2
Lk+2(tk+1) = codom (x)

Lk+2(t) = Lk+1(t) otherwise

t0 �res

t1 �res

tk �res (Lk(tk) = codom (x))

tk+1 un�res
(Lk+1(tk+1) = dom (x))

If tk = tk+1, then a similar argument to case k = 1 can be followed: we are in the
presence of a series of �ring of enabled transitions t0, . . . , tk , a�er which we un�re
tk , hence the sequence (Mi, Li, x)i∈{0,...,k}, where we avoided �ring tk altogether, is the
desired solution.

If tk , tk+1, then we argue that we can �rst un�re tk+1 at stage (Mk, Lk) and then
�re tk . More precisely, we have

Mk+2 = Mk+1 + Ayk+1 = Mk + Ayk + Ayk+1

(where yk has a 1 in position tk , while yk+1 has a −1 in position tk+1). Let:

• Mk+1 = Mk + Ayk+1,

• yk = yk+1, yk+1 = yk ,

• tk = tk+1, tk+1 = tk ,

• Mi = Mi and Li = Li for i ∈ {0, . . . , k}, yi = yi for i ∈ {0, . . . , k − 1},

• Lk+1(t) =

{
codom (x) t = tk

Lk(t) otherwise

We want to show that the sequence of labelled markings (Mi, Li, x)i∈{0,...,k+1} satis�es
the hypotheses (i)−(viii) of the theorem, so that we can apply the inductive hypothesis.

Now, conditions (i) − (iv) are already satis�ed, since the labelled markings and
the �ring vectors have not changed. Condition (v) holds by de�nition of Mk+1 and yk .
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We now check that condition (vi) is true, that is ∀p ∈ P. (aptk = 1⇒ Mk(p) = 1). Let
then p ∈ P and suppose aptk = 1. �en Mk+1(p) = 1 because aptk+1 = aptk = 1 and (vi)
holds for Mk . We have then:

1 = Mk+1(p) = Mk(p) + Ayk(p) = Mk(p) + aptk .

Since p is an output of tk = tk+1, it cannot be an output of tk as well (remember that
we assumed tk , tk+1), so aptk , 1. If it were the case that aptk = −1, that is if p were
an input of tk and output of tk+1 at once, then necessarily Mk(p) = 1 (as tk is enabled
in Mk ), hence

1 = Mk(p) + aptk = 1 − 1 = 0

which is impossible. �erefore aptk = 0 and Mk(p) = Mk+1(p) = 1.

Condition (vii) is satis�ed by de�nition of Lk+1. As per condition (viii), we have:

Lk(tk) = Lk(tk) = Lk(tk+1) = Lk+1(tk+1) = dom (x) .

(�e penultimate equation is due to our assumption that tk , tk+1, whereas the
last one by hypothesis.) �us we can apply the inductive hypothesis and conclude
the existence of a new sequence of labelled markings (M′i , L

′
i , x)i∈{0,...,k ′+1} and vec-

tors y′0, . . . , y
′
k ′ with y′i a vector 0 everywhere except in position t′i , (M0, L0, x) =

(M′0, L
′
0, x), (Mk+1, Lk+1, x) = (M′k ′+1, L

′
k ′+1, x) and satisfying conditions (1) − (4) for all

i ∈ {0, . . . , k′}. De�ne M′k ′+2 = Mk+2 and

L′k ′+2(t) =

{
dom (x) t = tk+1

L′k+1(t) otherwise

(hence we de�ned t′k ′+1 = tk+1 and y′k ′+1 = yk+1). All we have to do now is to show
that

(M′0, L
′
0, x), . . . , (M

′
k ′+1, L

′
k ′+1, x), (M

′
k ′+2, L

′
k ′+2, x)

is the sequence satisfying conditions (1)−(4) for all i ∈ {0, . . . , k′+1} which concludes
the proof.

Only case i = k′+ 1 is le� to check. Condition (1) requires M′k ′+2 = M′k ′+1 + Ay′k ′+1,
which is true:

M′k ′+2 = Mk+2 = Mk + Ayk+1 + Ayk = Mk+1 + Ayk+1 = M′k ′+1 + Ay′k ′+1.

Condition (2) asks for transition t′k ′+1 = tk to be enabled in M′k ′+1 = Mk+1. Let then
p ∈ P and suppose aptk = −1 (that is, p is an input of tk ). We have to prove that
M′k ′+1(p) = 1.

Now, M′k ′+1(p) = Mk(p) + Ayk+1(p). Since yk+1 = (0, . . . ,0,−1,0, . . . ,0) with the
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−1 in position tk+1 and aptk = −1, we have

Ayk+1(p) = Σtaptyk+1(t) = −aptk+1.

Since p is an input of tk and tk , tk+1, necessarily aptk+1 , −1. If aptk+1 = 1, that is, if p
were an output of tk+1, then by hypothesis Mk+1(p) = 1 (as tk+1 is coenabled in Mk+1).
On the other hand, since p is an input of tk as well, and tk is enabled in Mk , we have
Mk(p) = 1. We have then:

1 = Mk+1(p) = Mk(p) + Ayk(p) = 1 + aptk = 1 − 1 = 0

which is impossible. Hence necessarily aptk+1 = 0, therefore

M′k+1(p) = Mk(p) − aptk+1 = Mk(p) = 1.

Condition (3) is satis�ed by de�nition of L′k ′+2. Finally, regarding condition (4):

L′k ′+1(t
′
k ′+1) = Lk+1(tk+1) = Lk+1(tk) = Lk(tk) = Lk(tk) = codom (x) . �ed

As we have mentioned already in the discussion prior to �eorem (1.67), we have
the following straightforward corollary.

(1.68) Corollary. Let (Mi, Li, x)i∈{0,...,k} be a sequence of labelled markings, with M0, L0
as in (1.66), where (Mi+1, Li+1, x) is obtained from (Mi, Li, x) by either �ring an enabled,

codom (x)-labelled transition ti or by un�ring a coenabled, dom (x)-labelled transition ti ,
and Li+1 di�ers from Li only on ti . �en Mk is reachable from M0 by only �ring enabled,

codom (x)-labelled transitions.

We can now then prove �eorem (1.63), which states how acyclicity of the com-
posite graph is an “essentially necessary” condition for compositionality of dinatural
transformations.

Proof of Theorem (1.57). We have already noticed how the chain of equations (1.65)
translates into a sequence of labelled markings (Mi, Li, x), starting from (M0, L0, x) and
ending with (Md, Ld, x) given by (1.66) satisfying the hypotheses of Corollary (1.68).
Hence we can say that Md is reachable from M0. By �eorem (1.61), we conclude that
Γ∗(ψ ◦ ϕ) has to be acyclic. �ed
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Chapter 2

Horizontal compositionality

Hhorizontal composition of natural transformations is co-protagonist, together
with vertical composition, in the classical Godement calculus. In this chapter

we de�ne a new operation of horizontal composition for dinatural transformations,
generalising the well-known version for natural transformations. We also study its
algebraic properties, proving it is associative and unitary. Remarkably, horizontal
composition behaves be�er than vertical composition, as it is always de�ned between
dinatural transformations of matching type. We begin in §2.1 with an analysis of the
natural case in order to obtain a suitably general version for dinatural transformations.
In §2.2 we prove that the result of the horizontal composition is in turn dinatural;
moreover, we individuate a unit for the composition. In §2.3 we carefully build up the
proof of associativity of horizontal composition, while in §2.4 we discuss the problem
of compatibility with vertical composition.

§2.1 From the natural to the dinatural

Horizontal composition of natural transformations [Mac78] is a well-known operation
which is rich in interesting properties: it is associative, unitary and compatible with
vertical composition. As such, it makes Cat a strict 2-category. Also, it plays a crucial
role in the calculus of substitution of functors and natural transformations developed
by Kelly in [Kel72a]; in fact, as we have seen in the introduction, it is at the heart of
Kelly’s abstract approach to coherence. An appropriate generalisation of this notion
for dinatural transformations seems to be absent in the literature: in this chapter we
propose a working de�nition, as we shall see. �e best place to start is to take a look
at the usual de�nition for the natural case.

(2.1) De�nition. Consider (classical) natural transformations

A B C

F

G

H

K

ϕ ψ
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Chapter 2. Horizontal compositionality

�e horizontal composition ψ ∗ ϕ : HF → KG is the natural transformation whose
A-th component, for A ∈ A, is either leg of the following commutative square:

�(2.2)

HF(A) KF(A)

HG(A) KG(A)

ψF(A)

H(ϕA) K(ϕA)

ψG(A)

Now, the commutativity of (2.2) is due to the naturality of ψ; the fact that ψ ∗ ϕ is
in turn a natural transformation is due to the naturality of both ϕ and ψ. However,
in order to de�ne the family of morphisms ψ ∗ ϕ, all we have to do is to apply the
naturality condition of ψ to the components of ϕ, one by one. We apply the very same
idea to dinatural transformations, leading to the following preliminary de�nition for
classical dinatural transformations.

(2.3) De�nition. Let ϕ : F → G and ψ : H → K dinatural transformations of type
2 1 2, where F,G : Aop × A → B and H,K : Bop × B → C. �e horizontal

composition ψ ∗ ϕ is the family of morphisms(
(ψ ∗ ϕ)A : H(G(A, A),F(A, A)) → K(F(A, A),G(A, A))

)
A∈A

where the general component (ψ ∗ ϕ)A is given, for any object A ∈ A, by either leg of
the following commutative hexagon:

H(F(A, A), F(A, A)) K(F(A, A), F(A, A))

H(G(A, A), F(A, A)) K(F(A, A),G(A, A))

H(G(A, A),G(A, A)) K(G(A, A),G(A, A))

ψF(A,A)

K(1,ϕA)H(ϕA,1)

H(1,ϕA) ψG(A,A)
K(ϕA,1)

�

(2.4) Remark. In the same notations as in (2.3), suppose that F, G, H and K all
factor through the second projection, that is there are functors F′,G′ : A → B and
H′,K′ : B→ C such that

B

Aop × A A

B

π2

F

G

F ′

G

and

C

Bop × B A

C

π2

H

K

H ′

K

commute. (In other words, suppose that they are “dummy” in their �rst variable.)
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§2.1. From the natural to the dinatural

�e dinaturality of ϕ and ψ is equivalent to the naturality of ϕ′ and ψ′, with ϕ′ =
(ϕA : F′(A) → G′(A))A∈A and ψ′ = (ψA : H′(A) → K′(A))A∈A (as F(A, A) = F′(A),
etc.). In simpler terms, we have that ϕ and ψ are (classical) natural transformations.
In this case, De�nition (2.3) reduces to the usual De�nition (2.1).

As in the classical natural case, we can deduce the dinaturality of ψ ∗ ϕ from the
dinaturality of ϕ and ψ, as the following �eorem states. (Recall that for F : A→ B a
functor, Fop : Aop → Bop is the obvious functor which behaves like F.)

(2.5) �eorem. Let ϕ and ψ be dinatural transformations as in De�nition (2.3). �en

ψ ∗ ϕ is a dinatural transformation

ψ ∗ ϕ : H(Gop,F) → K(Fop,G)

of type 4 1 4, where H(Gop,F),K(Fop,G) : A[+,−,−,+] → C are de�ned on objects

as

H(Gop,F)(A,B,C,D) = H(Gop(A,B),F(C,D))
K(Fop,G)(A,B,C,D) = K(Fop(A,B),G(C,D))

and similarly on morphisms.

Proof. �e proof consists in showing that the diagram that asserts the dinaturality
of ψ ∗ ϕ commutes: this is done in Figure 2.1. �ed

Note that the domain and codomain ofψ∗ϕ are the result of a particular substitution
of functors as it appears in the Introduction at page 23.

�e general de�nition. We can now proceed with the general de�nition, which
involves transformations of arbitrary type. As the idea behind De�nition (2.3) is to
apply the dinaturality of ψ to the general component of ϕ in order to de�ne ψ ∗ ϕ, if ψ
is a transformation with many variables, then we have many dinaturality conditions
we can apply to ϕ, namely one for each variable of ψ in which ψ is dinatural. Hence,
the general de�nition will depend on the variable of ψ we want to use. For the sake
of simplicity, we shall consider only the one-category case, that is when all functors
in the de�nition involve one category C, in line with our approach in Chapter 1; the
general case follows with no substantial complications except for a much heavier
notation.

Notation. Given A, B and C objects of a category C with coproducts, and given
f : A→ C and g : B→ C, we denote by [ f ,g] : A + B→ C the unique map granted
by the universal property of +.

(2.6) De�nition. Let F : Cα → C, G : Cβ → C, H : Cγ → C, K : Cδ → C be
functors, ϕ = (ϕA1,...,An) : F → G be a transformation of type |α | n |β |

σ τ and
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§2.1. From the natural to the dinatural

ψ = (ψB1,...,Bm) : H → K of type |γ | m |δ |
η θ a transformation which is dinatural

in its i-th variable. Denoting with ++ the concatenation of a family of lists, let

H(X1 . . . X|γ |) : C
|γ |
++
u=1

λu

→ C, K(Y1 . . .Y|δ |) : C
|δ |
++
v=1

µv

→ C

be functors, de�ned similarly to H(Gop,F) and K(Fop,G) in �eorem (2.5), where for
all u ∈ {1, . . . , |γ |} and v ∈ {1, . . . , |δ |}:

Xu =


F ηu = i ∧ γu = +

Gop ηu = i ∧ γu = −

idCγu ηu , i
λu =


α ηu = i ∧ γu = +

β∗ ηu = i ∧ γu = −

[γu] ηu , i

Yv =


G θv = i ∧ δv = +
Fop θv = i ∧ δv = −
idCδv θv , i

µv =


β θv = i ∧ δv = +
α θv = i ∧ δv = −
[δv] θv , i

De�ne for all u ∈ {1, . . . , |γ |} and v ∈ {1, . . . , |δ |} the following functions:

au =


ιnσ ηu = i ∧ γu = +

ιnτ ηu = i ∧ γu = −

ιmKηu ηu , i
bv =


ιnτ θv = i ∧ δv = +
ιnσ θv = i ∧ δv = −
ιmKθv θv , i

with Kηu : 1→ m the constant function equal to ηu, while ιn and ιm are de�ned as:

n (i − 1) + n + (m − i)

x i − 1 + x

ιn
m (i − 1) + n + (m − i)

x

{
x x < i
x + n − 1 x ≥ i

ιm

�e i-th horizontal composition [ψ]
i

∗ [ϕ] is the equivalence class of the transformation

ψ
i

∗ ϕ : H(X1 . . . X|γ |) → K(Y1 . . .Y|δ |)

of type
|γ |∑

u=1
|λu | (i − 1) + n + (m − i)

|δ |∑
v=1
|µv |

[a1...a |γ |] [b1...b |δ |]

whose general component, (ψ i

∗ ϕ)B1...Bi−1,A1...An,Bi+1...Bm, is the diagonal of the commut-
ative hexagon obtained by applying the dinaturality of ψ in its i-th variable to the

∗Remember that for any β ∈ List{+,−} we denote β the list obtained from β by swapping the signs.
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Chapter 2. Horizontal compositionality

general component ϕA1,...,An of ϕ:

· ·

· ·

· ·

ψB1 ...Bi−1 ,G(Aτ1 ...Aτ |β | ),Bi+1 ...Bm

K(y1,...,y |δ |)H(x1,...,x |γ |)

H(x′1,...,x
′
|γ |
)

(ψ
i
∗ϕ)B1 ...Bi−1 ,A1 ...An ,Bi+1 ...Bm

ψB1 ...Bi−1 ,F(Aσ1 ...Aσ |α | ),Bi+1 ...Bm

K(y′1,...,y
′
|δ |
)

where

xu =


ϕA1,...,An ηu = i ∧ γu = +

idG(Aτ1...Aτ |β |) ηu = i ∧ γu = −

idBηu ηu , i
yv =


idG(Aτ1...Aτ |β |) θv = i ∧ δv = +
ϕA1,...,An θv = i ∧ δv = −
idBθv θv , i

x′u =


idF(Aσ1...Aσ |α |) ηu = i ∧ γu = +

ϕA1,...,An ηu = i ∧ γu = −

idBηu ηu , i
yv =


ϕA1,...,An θv = i ∧ δv = +
idF(Aσ1...Aσ |α |) θv = i ∧ δv = −
idBθv θv , i

�

In other words, the domain of ψ i

∗ ϕ is obtained by substituting the arguments of
H (the domain of ψ) that are in the i-th connected component of Γ(ψ) (which is the
condition ηu = i in Xu) with F (the domain of ϕ) if they are covariant, and with Gop

(the opposite of the codomain of ϕ) if they are contravariant; those arguments not in
the i-th connected component are le� untouched. Similarly the codomain. �e type
of ψ i

∗ ϕ is obtained by replacing the i-th variable of ψ with all the variables of ϕ and
adjusting the type of ψ with σ and τ to re�ect this act. In the following example, we
see what happens to Γ(ϕ) and Γ(ψ) upon horizontal composition.

(2.7) Example. Consider transformations δ and eval (see examples (1.9),(1.10)). In
the notations of De�nition (2.6), we have F = idC : C → C, G = × : C[+,+] → C,
H : C[+,−,+] → C de�ned as H(X,Y, Z) = X × (Y ⇒ Z) and K = idC : C → C. �e
types of δ and eval are respectively

1 1 2 and
3 2 1
1 1 1
2 2
3

�e transformation eval is extranatural in its �rst variable and natural in its second: we
have two horizontal compositions. (eval

1
∗ δ)A,B is given by either leg of the following
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commutative square:

(2.8)

A ×
(
(A × A) ⇒ B

)
(A × A) ×

(
(A × A) ⇒ B

)
A × (A⇒ B) B

δA×(1⇒1)

1×(δA⇒1) evalA×A,B

evalA,B

We have eval

1
∗ δ : H(idC,×, idC) → idC(idC) where idC(idC) = idC and

C[+,−,−,+] C

(X,Y, Z,W) X ×
(
(Y × Z) ⇒ W

)H(idC,×,idC)

and it is of type
4 2 1
1 1 1
2 2
3
4

Intuitively, Γ
(
eval

1
∗ δ

)
is obtained by substituting Γ(δ) = into the �rst

connected component of Γ(eval) = , by “bending”, as it were,

Γ(δ) into the U-turn that is the �rst connected component of Γ(eval):

or

Here the �rst graph corresponds to the upper leg of (2.8), the second to the lower one.
Notice how the component evalA×A,B has now two wires, one per each A in the graph
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Chapter 2. Horizontal compositionality

on the le�. �e result is therefore

Γ

(
eval

1
∗ δ

)
=

Turning now to the other possible horizontal composition, we have that eval

2
∗

δ : H(idC, idC, idC) → idC(×) where H(idC, idC, idC) = H and idC(×) = × by de�ni-
tion; it is of type

3 2 2
1 1 1
2 2 2
3

and (eval

2
∗ δ)A,B is given by either leg of the following commutative square:

A × (A⇒ B) A ×
(
A⇒ (B × B)

)
B B × B

1×(1⇒δB)

evalA,B evalA,B×B

δB

Substituting Γ(δ) into the second connected component of Γ(eval), which is just a
“straight line”, results into the following graph:

Γ

(
eval

2
∗ δ

)
= �

§2.2 Dinaturality of horizontal composition

We aim to prove here that our de�nition of horizontal composition, which we have
already noticed generalises the well-known version for classical natural transform-
ations (Remark (2.4)), is a closed operation on dinatural transformations. For the
rest of this chapter, we shall �x transformations ϕ and ψ with the notations used in
De�nition (2.6) for their signature; we also �x the “names” of the variables of ϕ as
A1, . . . , An and of ψ as B1, . . . ,Bm. In this spirit, i is a �xed element of {1, . . . ,m}, we
assume ψ to be dinatural in Bi and we shall sometimes refer to ψ i

∗ ϕ also as ψ Bi

∗ ϕ.
As in the classical natural case (De�nition (2.1)), only the dinaturality of ψ in

Bi is needed to de�ne the i-th horizontal composition of ϕ and ψ. Here we want to
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§2.2. Dinaturality of horizontal composition

understand in which variables the i-th horizontal composition

ψ
Bi

∗ ϕ =
(
(ψ

Bi

∗ ϕ)B1...Bi−1,A1...An,Bi+1...Bm

)
itself is in turn dinatural. It is straightforward to see that ψ Bi

∗ ϕ is dinatural in all its
B-variables where ψ is dinatural, since the act of horizontally composing ϕ and ψ in
Bi has not “perturbed” H, K and ψ in any way except in those arguments involved in
the i-th connected component of Γ(ψ), see example (2.7). Hence we have the following
preliminary result.

(2.9) Proposition. If ψ is dinatural in B j , for j , i, then ψ
Bi

∗ ϕ is also dinatural in B j .

More interestingly, it turns out that ψ Bi

∗ ϕ is also dinatural in all those A-variables
where ϕ is dinatural in the �rst place. We aim then to prove the following �eorem.

(2.10) �eorem. If ϕ is dinatural in its k-th variable and ψ in its i-th one, then ψ
i

∗ ϕ is

dinatural in its (i − 1 + k)-th variable. In other words, if ϕ is dinatural in Ak and ψ in

Bi , then ψ
Bi

∗ ϕ is dinatural in Ak .

�e proof of this theorem relies on the fact that we can reduce ourselves, without
loss of generality, to �eorem (2.5). To prove that, we introduce the notion of focal-

isation of a transformation on one of its variables: essentially, the focalisation of a
transformation φ is a transformation depending on only one variable between functors
that have only one covariant and one contravariant argument, obtained by �xing all
the parts of the data involving variables di�erent from the one we are focusing on.

(2.11) De�nition. Let φ = (φA1,...,Ap ) : T → S be a transformation of type

|α | p |β |
σ τ

with T : Cα → C and S : Cβ → C. Fix k ∈ {1, . . . , p} and objects A1, . . . , Ak−1,
Ak+1, . . . , Ap in C. Consider functors T

k , S
k : Cop × C→ C de�ned by

T
k
(A,B) = T(C1, . . . ,C|α |)

S
k
(A,B) = S(D1, . . . ,D|β |)

where for every X object of C

Cu =


B σu = k ∧ αu = +

A σu = k ∧ αu = −

Aσu σu , k
Dv =


B τv = k ∧ βv = +
A τv = k ∧ βv = −
Aτv τv , k
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�e focalisation of φ on its k-th variable is the transformation

φ
k : T

k
→ S

k

of type 2 1 2 where

φ
k
X = ϕA1...Ak−1,X,Ak+1...Ap .

Sometimes we may write φAk : T
Ak
→ S

Ak too, when we �x as A1, . . . , Ap the name of
the variables of φ. �

(2.12) Remark. φ is dinatural in its k-th variable if and only if φk is dinatural in its
only variable for all objects A1, . . . , Ak−1, Ak+1, . . . , Ap �xed by the focalisation of φ.

�e (−)
k

construction depends on the k−1 objects we �x, but not to make the nota-
tion too heavy, we shall always call those (arbitrary) objects A1, . . . , Ak−1, Ak+1, . . . , An

for ϕk and B1, . . . ,Bi−1, Bi+1, . . . ,Bm for ψi .

(2.13) Remark. It immediately follows from the de�nitions of horizontal composition
and of the (−)

i
, (−)

k
constructions that(

ψ
i
∗ ϕk

)
X
= (ψ

i

∗ ϕ)B1...Bi−1,A1...Ak−1,X,Ak+1...An,Bi+1...Bm =

(
ψ

i

∗ ϕ
(i−1+k)

)
X

.

(2.14) Lemma. It is the case that ψ
i

∗ ϕ is dinatural in its (i − 1 + k)-th variable if and

only if ψ
i
∗ ϕk

is dinatural in its only variable for all objects B1, . . . ,Bi−1, A1, . . . , Ak−1,

Ak+1, . . . , An, Bi+1, . . . ,Bm in C �xed by the focalisations of ϕ and ψ.

Proof. �e proof consists in unwrapping the two de�nitions and showing that they
require the exact same hexagon to commute.

Recall that ϕ : F → G and ψ : H → K have the following type:

|α | n |β |
σ τ and |γ | m |δ |

η θ

We have that ϕk : F
k
→ G

k ,ψi : H
i
→ K

i are both transformations of type 2 1 2
with ψ

i dinatural by Remark (2.12), since we assumed ψ to be dinatural in its i-th
variable. Saying that ψi

∗ ϕk is dinatural for all objects A1, . . . , Ak−1, Ak+1, . . . , An and
B1, . . . ,Bi−1, Bi+1, . . . ,Bm is equivalent to say that for all such A j ’s and B j ’s and for
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every f : X → Y morphism in C

(2.15)

· ·

· ·

· ·

(
ψ
i
∗ϕk

)
X

K
i
(
F
kop

,G
k
)
( f ,idX,idX, f )H

i
(
G

kop
,F

k
)
(idX, f , f ,idX )

H
i
(
G

kop
,F

k
)
( f ,idY ,idY , f ) (

ψ
i
∗ϕk

)
Y

K
i
(
F
kop

,G
k
)
(idY , f , f ,idY )

Now,

H
i
(
G

k op
,F

k
)
(idX, f , f , idX) = H

i
(
G

k op
(idX, f ),F

k
( f , idX)

)
= H(L1, . . . , L|γ |)

where for u ∈ {1, . . . , |γ |}, v ∈ {1, . . . , |α |} and w ∈ {1, . . . , |β|}:

Lu =


F

k
( f , idX) ηu = i ∧ γu = +

G
k op
(idX, f ) ηu = i ∧ γu = −

idBηu ηu , i

=


F(cu

1, . . . , c
u
|α |
) ηu = i ∧ γu = +

Gop(du
1 , . . . , d

u
|β |
) ηu = i ∧ γu = −

idBηu ηu , i

cu
v =


idX σv = k ∧ αv = +
f σv = k ∧ αv = −
idAσv σv , k

du
w =


f τw = k ∧ βw = +
idX τw = k ∧ βw = −
idBηu τw , k

Similarly for K
i
(
F

k op
,G

k
)
( f , idX, idX, f ). By De�nition (2.3), we have(

ψ
i
∗ ϕk

)
X
= H

i
(
(ϕk
)X, idF

k
(X,X)

)
; (ψi
)
F
k
(X,X)

; K
i
(
id

F
k
(X,X)

, (ϕk
)X

)
= H(x1, . . . , x|γ |) ; ψB1...Bi−1,F(O1...O |α |),Bi+1...Bm

; K(y1, . . . , y|δ |)

with

xu =


idF(O1...O |α |) ηu = i ∧ γu = +

ϕA1...Ak−1,X,Ak+1...An ηu = i ∧ γu = −

idBηu ηu , i
Ow =

{
X σw = k
Aσw σw , k

yv =


ϕA1...Ak−1,X,Ak+1...An θv = i ∧ δu = +

idF(O1...O |α |) θv = i ∧ δu = −

idBθv θv , i
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Chapter 2. Horizontal compositionality

Now, the dinaturality condition for ψ i

∗ ϕ in its (i − 1+ k)-th variable asks for a certain
hexagon depending on an arbitrary morphism f : X → Y to commute. One leg of
this hexagon involves the component of ψ i

∗ ϕ having X as its (i − 1 + k)-th variable,
the other having Y instead. We analyse the former leg and show that it is equal to
the corresponding leg (the upper one) of the dinaturality hexagon (2.15). It is the
following composite of morphisms:

H(X1, . . . ,X|γ |)
(
r1

1 , . . . ,r
1
|λ1 |, . . . ,r

|γ |
1 , . . . ,r |γ |

|λ |γ | |

)
;(

ψ
i

∗ ϕ
)

B1...Bi−1,A1...Ak−1,X,Ak+1...An,Bi+1...Bm

;

K(Y1, . . . ,Y|δ |)
(
s1

1, . . . , s
1
|µ1 |, . . . , s

|δ |
1 , . . . , s

|δ |

|µ |δ | |

)
where for all u ∈ {1, . . . , |γ |}, v ∈ {1, . . . , |λu |}, x ∈ {1, . . . (i − 1) + n + (m − i)} and
functions ιn and ιm de�ned as in De�nition (2.6):

Xu =


F ηu = i ∧ γu = +

Gop ηu = i ∧ γu = −

idCγu ηu , i
λu =


α ηu = i ∧ γu = +

β ηu = i ∧ γu = −

[γu] ηu , i

au =


ιnσ ηu = i ∧ γu = +

ιnτ ηu = i ∧ γu = −

ιmKηu ηu , i
Vx =


Bx x < i
Ax−(i−1) i ≤ x < i + n
Bx−(n−1) x ≥ i + n

ru
v =


idX au(v) = i − 1 + k ∧ λu

v = +

f au(v) = i − 1 + k ∧ λu
v = −

idVau (v)
au(v) , i − 1 + k

�erefore, to conclude we have to prove the following equalities:

• H(L1, . . . , L|γ |) = H(X1, . . . ,X|γ |)
(
r1

1 , . . . ,r
1
|λ1 |
, . . . ,r |γ |1 , . . . ,r |γ |

|λ |γ | |

)
,

•
(
ψ

i
∗ ϕk

)
X
=

(
ψ

i

∗ ϕ
)

B1...Bi−1,A1...Ak−1,X,Ak+1...An,Bi+1...Bm

,

• K
i
(
F

k op
,G

k
)
( f , idX, idX, f ) = K(Y1, . . . ,Y|δ |)

(
s1

1, . . . , s
1
|µ1 |
, . . . , s |δ |1 , . . . , s

|δ |

|µ |δ | |

)
.

We only prove the �rst equation: the third is analogous, while the second has already
been observed in Remark (2.13). Now, by de�nition of H(X1, . . . ,X|γ |), we have

H(X1, . . . ,X|γ |)
(
r1

1 , . . . ,r
1
|λ1 |, . . . ,r

|γ |
1 , . . . ,r |γ |

|λ |γ | |

)
=

= H
(
X1(r1

1 , . . . ,r
1
|λ1 |), . . . ,X|γ |(r

|γ |
1 , . . . ,r |γ |

|λ |γ | |
)

)
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§2.2. Dinaturality of horizontal composition

We shall then prove that Lu = Xu(ru
1 , . . . ,r

u
|λu |
) for all u ∈ {1, . . . , |γ |}.

Case ηu = i∧ γu = +. We have Lu = F(cu
1, . . . , c

u
|α |
), Xu = F , λu = α, au = ιnσ. Hence

we have to prove that cu
v = ru

v for all v ∈ {1, . . . , |α |}.
Recall from (2.6) the de�nition of ιn and ιm:

n (i − 1) + n + (m − i)

x i − 1 + x

ιn
m (i − 1) + n + (m − i)

x

{
x x < i
x − 1 + n x ≥ i

ιm

Since au = ιnσ, we have au(v) = ιn(σv) = i−1+σv hence condition au(v) = k+i−1 is
equivalent to σv = k . �is immediately tells us that cu

v and ru
v coincide when σv = k .

When σv , k , we have cu
v = idAσv while ru

v = idVau (v)
. But

Vau(v) = Vi−1+σv

and given that 1 ≤ σv ≤ n, we have i ≤ i − 1 + σv ≤ i − 1 + n < i + n hence

Vi−1+σv = Ai−1+σv−(i−1) = Aσv .

Case ηu = i ∧ γu = −. We have Lu = Gop(du
1 , . . . , d

u
|β |
), Xu = Gop, λu = β, au = ιnτ.

Similarly to the previous case, we prove that du
v = ru

v for all v ∈ {1, . . . , |β |}.
Now condition au(v) = k + i − 1 is equivalent to τv = k , therefore du

v and ru
v

coincide when τv = k , because λu
v = βv hence λu

v = − if and only if βv = +. When
τv , k , again Vau(v) = Aτv by de�nition of Vx because au(v) = τv + i − 1 is such that
i ≤ i − 1 + τv < i + n. Hence du

v = ru
v .

Case ηu , i. We have Lu = idBηu , Xu = idCγu , λu = [γu], au = ιmKηu. In particular
|λu | = 1. We now show that au(1) , i − 1 + k , so that we can imply that ru

1 = idVau (1) .
We have:

au(1) = ιmKηu(1) = ιm(ηu) =

{
ηu ηu < i
ηu − 1 + n ηu > i

and, given that 1 ≤ k ≤ n, we have that i ≤ i − 1+ k ≤ i − 1+ n. Hence, if ηu < i then
au(1) = ηu < i − 1+ k ; if instead ηu > i, then au(1) = ηu− 1+ n > i − 1+ n ≥ i − 1+ k .
In any case, au(1) , i − 1 + k .

We now show that Lu = ru
1 , concluding the proof.

Vau(1) =

{
Vηu ηu < i
Vηu−1+n ηu > i

=

{
Bηu ηu < i
Bηu−1+n−(n−1) ηu > i

= Bηu

hence idBηu = idVau (1) , as required. �ed

We can now prove that horizontal composition preserves dinaturality.
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Chapter 2. Horizontal compositionality

Proof of Theorem (2.10). Consider transformations ϕk and ψi . By Remark (2.12),
they are both dinatural in their only variable. Hence, by �eorem (2.5), ψi

∗ ϕk is
dinatural and by Lemma (2.14) we conclude. �ed

Unitarity. It is straightforward to see that horizontal composition has a le� and a
right unit, namely the identity (di)natural transformation on the appropriate identity
functor.

(2.16) �eorem. Let T : Cα → D, S : Cβ → D be functors, and let φ : T → S be a

transformation of any type. �en

ididD ∗ φ = φ.

If φ is dinatural in its i-th variable, for an appropriate i, then also

φ
i

∗ ididC
= φ.

Proof. Direct consequence of the de�nition of horizontal composition. �ed

§2.3 Associativity of horizontal composition

Associativity is a crucial property of any respectable algebraic operation. It gives us
the opportunity to safely compose not just two, but an arbitrarily long �nite string of
objects in whichever order we prefer: in other words, “bracketing does not ma�er”.
We begin by considering “classical” dinatural transformations ϕ : F → G, ψ : H → K
and χ : U → V , for F,G,H,K,U,V : Cop × C→ C functors, all of type 2 1 2.

(2.17) �eorem. χ ∗ (ψ ∗ ϕ) = (χ ∗ ψ) ∗ ϕ.

Proof. We �rst prove that the two transformations have same domain and codomain
functors. Since they both depend on one variable, this also immediately implies they
have same type.

We have ψ ∗ ϕ : H(Gop,F) → K(Fop,G), hence

χ ∗ (ψ ∗ ϕ) : U
(
K(Fop,G)op,H(Gop,F)

)
→ V

(
H(Gop,F)op,K(Fop,G)

)
.

Notice that K(Fop,G)op = Kop(F,Gop) and H(Gop,F)op = Hop(G,Fop). Next, we have
χ ∗ ψ : U(Kop,H) → V(Hop,K). Given that U(Kop,H),V(Hop,K) : C[+,−,−,+] → C, we
have

(χ ∗ ψ) ∗ ϕ : U(Kop,H)(F,Gop,Gop,F)︸                           ︷︷                           ︸
U
(
Kop(F,Gop),H(Gop,F)

) → V(Hop,K)(G,Fop,Fop,G)︸                           ︷︷                           ︸
V
(
Hop(G,Fop),K(Fop,G)

) .
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§2.3. Associativity of horizontal composition

�is proves χ ∗ (ψ ∗ ϕ) and (χ ∗ ψ) ∗ ϕ have the same signature.
Only equality of the single components is le� to show. Fix then an object A in

C. Figure 2.2 shows how to pass from (χ ∗ ψ) ∗ ϕ to χ ∗ (ψ ∗ ϕ) by pasting three
commutative diagrams. In order to save space, we simply wrote “H(G,F)” instead of
the proper “H(Gop(A, A),F(A, A))” and similarly for all the other instances of functors
in the nodes of the diagram in Figure 2.2; we also dropped the subscript for components
of ϕ, ψ and χ when they appear as arrows, that is we simply wrote ϕ instead of ϕA,
since there is only one object involved and there is no risk of confusion. �ed

We can now start discussing the general case for transformations with an ar-
bitrary number of variables; we shall prove associativity by reducing ourselves to
�eorem (2.17) using focalisation (see De�nition (2.11)). For the rest of this section,
�x transformations ϕ, ψ and χ, dinatural in all their variables, with signatures:

• ϕ : F → G, for F : Cα → C and G : Cβ → C, of type |α | n |β|
σ τ ;

• ψ : H → K , for H : Cγ → C and K : Cδ → C, of type |γ | m |δ |
η θ ;

• χ : U → V , for U : Cε → C and V : Cζ → C, of type |ε | l |ζ |
π ω

For sake of simplicity, let us �x the name of the variables for ϕ as A1, . . . , An, for ψ
as B1, . . . ,Bm and for χ as C1, . . . ,Cl . In this spirit we also �x the variables of the
horizontal compositions, so for i ∈ {1, . . . ,m}, the variables of ψ i

∗ ϕ are

B1, . . . ,Bi−1, A1, . . . , An,Bi+1, . . . ,Bm

while for j ∈ {1, . . . , l} the variables of χ j

∗ ψ are

C1, . . . ,Cj−1,B1, . . . ,Bm,Cj+1, . . . ,Cl .

�e theorem asserting associativity of horizontal composition, which we prove in the
rest of this section, is the following.

(2.18) �eorem. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , l},

χ
j

∗

(
ψ

i

∗ ϕ
)
=

(
χ

j

∗ ψ
)

j − 1 + i
∗ ϕ

or, in alternative notation,

(2.19) χ
C j

∗

(
ψ

Bi

∗ ϕ
)
=

(
χ

C j

∗ ψ
)

Bi

∗ ϕ.

Notice, �rst of all, that both sides of (2.19) depend on the following variables:

C1, . . . ,Cj−1,B1, . . . ,Bi−1, A1, . . . , An,Bi+1, . . . ,Bm,Cj+1, . . . ,Cl .
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§2.3. Associativity of horizontal composition

Next, we compute their domain and codomain functors. We have that

ψ
i

∗ ϕ : H(X1, . . . ,X|γ |) → K(Y1, . . . ,Y|δ |)

(with the same notations as in De�nition (2.6)). Hence

χ
C j

∗

(
ψ

Bi

∗ ϕ
)

: U(W1, . . . ,W|ε |) → V(Z1, . . . , Z|ζ |)

with U(W1, . . . ,W|ε |) : C
|ε |
++
u=1

νu

→ C, V(Z1, . . . , Z|ζ |) : C
|ζ |
++
u=1

ξu

→ C where

Wu =


H(X1, . . . ,X|γ |) πu = j ∧ εu = +

K(Y1, . . . ,Y|δ |)op πu = j ∧ εu = −

idCεu πu , j
νu =



|γ |
++
u=1

λu πu = j ∧ εu = +

|δ |
++
u=1

µu πu = j ∧ εu = −

[εu] πu , j

and similarly are de�ned Zu and ξu (swapping H(X1, . . . ,X|γ |) with K(Y1, . . . ,Y|δ |), ω
with π, ε with ζ and so on).

To compute the domain and codomain of the right-hand side of (2.19), we need the
complete signature of χ

C j

∗ ψ, which we list now following De�nition (2.6). We have

χ
C j

∗ ψ : U(L1, . . . , L|ε |) → V(M1, . . . ,M|ζ |)

with U(L1, . . . , L|ε |) : C
|ε |
++
u=1

ρu

→ C, V(M1, . . . ,M|ζ |) : C
|ζ |
++
u=1

ϑu

→ C where, as usual, if
the u-th argument of U is “involved” by the j-th variable of χ (that is, if it belongs to
the j-th connected component of Γ(χ)), which means if πu = j , then Lu is either the
domain or the codomain of ψ, depending whether the u-th argument of U is covariant
(εu = +) or contravariant (εu = −); if instead πu , j , then we leave U untouched in
its u-th argument. More precisely, we have:

Lu =


H πu = j ∧ εu = +

Kop πu = j ∧ εu = −

idCεu πu , j
ρu =


γ πu = j ∧ εu = +

δ πu = j ∧ εu = −

[εu] πu , j

Mu =


K ωu = j ∧ ζu = +

Hop ωu = j ∧ ζu = −

idCζu ωu , j
ϑu =


δ ωu = j ∧ ζu = +

γ ωu = j ∧ ζu = −

[ζu] ωu , j
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χ
C j

∗ ψ has type
|ε |∑

u=1
|ρu | ( j − 1) + m + (l − j)

|ζ |∑
u=1
|ϑu |

[c1,...,c |ε |] [d1,...,d |ζ |] with

cu=


ιmη πu = j ∧ εu = +

ιmθ πu = j ∧ εu = −

ιlKπu
† πu , j

du=


ιmθ ωu = j ∧ ζu = +

ιmη ωu = j ∧ ζu = −

ιlKωu ωu , j

m ( j − 1) + m + (l − j)

x x + j − 1

ιm
l ( j − 1) + m + (l − j)

x

{
x x ≤ j
x + m − 1 x > j

ιl

�erefore, the domain and codomain of
(
χ

C j

∗ ψ
)

Bi

∗ ϕ are, respectively:

U(L1, . . . , L|ε |)(P1
1, . . . ,P

1
|ρ1 |, . . . ,P

|ε |
1 , . . . ,P |ε |

|ρ |ε | |
) and

V(M1, . . . ,M|ζ |)(Q1
1, . . . ,Q

1
|ϑ1 |, . . . ,Q

|ζ |
1 , . . . ,Q

|ζ |

|ϑ |ζ | |
)

where

Pu
v =


F cu(v) = j − 1 + i ∧ ρuv = +
Gop cu(v) = j − 1 + i ∧ ρuv = −
idCρ

u
v cu(v) , j − 1 + i

Qu
v =


G du(v) = j − 1 + i ∧ ϑuv = +
Fop du(v) = j − 1 + i ∧ ϑuv = −
idCϑ

u
v du(v) , j − 1 + i

(Remember that Bi is the ( j − 1 + i)-th variable of χ
C j

∗ ψ. �e use of an upper and
lower index helps us to keep track of which cu and du to use: it is a heavy but working
notation.) Denoting the domain of

(
χ

C j

∗ ψ
)

Bi

∗ ϕ as U(L(P)) for short, we have

U(L(P)) : C
|ε |
++
u=1

(
|ρu |
++
v=1

wu
v

)
→ D

where

wu
v =


α cu(v) = j − 1 + i ∧ ρu

v = +

β cu(v) = j − 1 + i ∧ ρu
v = −

[ρu
v] cu(v) , j − 1 + i

and similarly for V(M(Q)). Now we are ready to prove the following Lemma.

(2.20) Lemma. �e transformations χ
C j

∗

(
ψ

Bi

∗ ϕ
)

and

(
χ

C j

∗ ψ
)

Bi

∗ ϕ have same domain,

codomain and type.

†Kπu : 1→ l is the constant function equal to πu.
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Proof. One can prove that
|ε |
++
u=1

(
|ρu |
++
v=1

wu
v

)
=
|ε |
++
u=1

νu by showing that
|ρu |
++
v=1

wu
v = ν

u for all
u ∈ {1, . . . , |ε |}, analysing each of the three cases for ηu that de�ne νu.

Next, we have that

U(L(P)) = U
(
L1

(
P1

1, . . . ,P
1
|ρ1 |

)
, . . . , L|ε |

(
P |ε |1 , . . . ,P |ε |

|ρ |ε | |

) )
as the action of these two functors coincide on every object and morphism of C

|ε |
++
u=1

νu .
By showing that Wu = Lu

(
Pu

1 , . . . ,P
u
|ρu |

)
for all u ∈ {1, . . . , |ε |}, one proves that

χ
C j

∗

(
ψ

Bi

∗ ϕ
)

and
(
χ

C j

∗ ψ
)

Bi

∗ ϕ have the same domain; an analogous procedure shows
that they also share the same codomain.

Finally, we brie�y analyse only the le� hand sides of the types of χ
C j

∗

(
ψ

Bi

∗ ϕ
)

and(
χ

C j

∗ ψ
)

Bi

∗ ϕ (that is, the half of the cospan that involves the variance of the domain

functors); the right hand sides are handled analogously. For χ
C j

∗

(
ψ

Bi

∗ ϕ
)

we have

|ε |∑
u=1
|νu | ( j − 1) + [(i − 1) + n + (m − i)] + (l − j)

[r1,...,r |ε |]

with, calling N = ( j − 1) + [(i − 1) + n + (m − i)] + (l − j) for short:

ru =


ιN
(i−1)+n+(m−i) ◦ [a1, . . . ,a|γ |] πu = j ∧ εu = +

ιN
(i−1)+n+(m−i) ◦ [b1, . . . , b|δ |] πu = j ∧ εu = −

ιNl Kπu πu , j

where

(i − 1) + n + (m − i) N

x x + j − 1

ιN
(i−1)+n+(m−i) l N

x

{
x x ≤ j
x + (i − 1) + n + (m − i) − 1 x > j

ιN
l

For
(
χ

C j

∗ ψ
)

Bi

∗ ϕ, which is the same as
(
χ

j

∗ ψ
)

j − 1 + i
∗ ϕ, we have

|ε |∑
u=1

|ρu |∑
v=1
|wu

v | M
[s1

1,...,s
1
|ρ1 |

,...,s |ε |1 ,...,s |ε |
|ρ |ε | |
]
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where M = [( j − 1 + i) − 1] + n + [(( j − 1) + m + (l − j)) − ( j − 1 + i)] and

su
v =


ιMn ◦ σ cu(v) = j − 1 + i ∧ ρu

v = +

ιMn ◦ τ cu(v) = j − 1 + i ∧ ρu
v = −

ιM
( j−1)+m+(l− j)Kcu(v) cu(v) , j − 1 + i

with
n M
x x + [( j − 1 + i) − 1]

ιMn

and

( j − 1) + m + (l − j) M

x

{
x x ≤ j − 1 + i
x + n − 1 x > j − 1 + i

ιM
(j−1)+m+(l−j)

(remember that cu(v) ∈ ( j − 1) + m + (l − j), so Kcu(v) : 1 → ( j − 1) + m + (l − j)).
It is immediate to see that N = M as natural numbers, hence they de�ne the same
set. Checking that ru = [su

1, . . . , s
u
|ρu |
] and noticing that functions [. . . ru . . . ] and

[. . . su
v . . . ] coincide on every elements of their domain, we conclude. �ed

Now that we know that the two sides of (2.19) share the same signature, we can
focus on proving that they coincide component-wise. �e strategy will be to show
that we can reduce ourselves to the classical case of �eorem (2.17). We �rst need a
technical lemma that will allow us to do that.

(2.21) Lemma. Let Φ = (ΦV1,...,Vp ) and Ψ = (ΨW1,...,Wq ) be transformations such that

Ψ is dinatural in Ws, for s ∈ {1, . . . ,q}. Let V1, . . . ,Vr−1, Vr+1, . . . ,Vp, W1, . . . ,Ws−1,

Ws+1, . . . ,Wq be objects of C, and let Φ
Vr

and Ψ
Ws

be the focalisation of Φ and Ψ in its

r-th and s-th variable respectively using the �xed objects above. Let also X be an object

of C. �en

(i)

(
Ψ

Ws
∗ Φ

Vr
)

X
=

(
Ψ

Ws

∗ Φ

)
W1,...,Ws−1,V1,...,Vr−1,X,Vr+1,...,Vp,Ws+1,...,Wq

=

(
Ψ

Ws

∗ Φ

Vr )
X

(ii) (co)dom

(
Ψ

Ws

∗ Φ

Vr )
(x, y) = (co)dom

(
Ψ

Ws
∗ Φ

Vr
)
(x, y, y, x) for any morphisms

x and y.

Proof. Part (i) asserts Remark (2.13) for arbitrary transformations, and it is a direct
consequence of the de�nitions of horizontal composition and (−)

Ws
, (−)

Vr construc-
tions. Regarding (ii), it is enough to repeat the argument we discussed in Lemma (2.14).
In there, we computed dom

(
ψ

i
∗ ϕ j

)
(idX, f , f , idX) (the top-le� leg of (2.15)) and we
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§2.3. Associativity of horizontal composition

showed it is equal to dom

(
ψ

i

∗ ϕ
)
(. . . ,ru

v , . . . ). By de�nition, the la�er is the same

as dom

(
ψ

i

∗ ϕ
j )
( f , idX). Claim (ii) in the present Lemma is proved in the same way

mutatis mutandis. �ed

(2.22) Remark. Part (i) asserts an equality between morphisms and not transform-

ations, as ΨWs
∗ Φ

Vr and Ψ Ws

∗ Φ have di�erent types and even di�erent domain and
codomain functors.

We now �nally have all the tools to prove associativity of horizontal composition
in the general case.

Proof of Theorem (2.18). By Lemma (2.20), only equality between the single com-
ponents has to be shown. Let us �x then C1, . . . , Cj−1, B1, . . . , Bi−1, A1, . . . , Ak−1, X ,
Ak+1, . . . , An, Bi+1, . . . , Bm, Cj+1, . . . , Cl objects in C. Writing just V for this long list
of objects, we have, by Lemma (2.21), that((

χ
C j

∗ ψ
)

Bi

∗ ϕ
)

V
=

(
χ

C j

∗ ψ

Bi

∗ ϕAk

)
X

Now, we cannot apply again Lemma (2.21) to χ
C j

∗ ψ

Bi

because of what we said in
Remark (2.22), but we can use the de�nition of horizontal composition to write down
explicitly the right-hand side of the equation above: it is the morphism

codom

(
χ

C j

∗ ψ

Bi
)
(idF (X,X), (ϕ

Ak )X) ◦

(
χ

C j

∗ ψ

Bi
)

F (X,X)

◦ dom

(
χ

C j

∗ ψ

Bi
)
((ϕAk )X, idF (X,X))

(Remember that ϕAk : F
Ak
→ G

Ak , here we wrote F (X,X) instead of F
Ak
(X,X) to

save space.) Now we can use Lemma (2.21) to “split the bar”, as it were:

codom

(
χCj ∗ ψ

Bi
) (
(ϕAk )X, idF (X,X), idF (X,X), (ϕ

Ak )X
)
◦(

χCj ∗ ψ
Bi
)

F (X,X)
◦

dom

(
χCj ∗ ψ

Bi
) (

idF (X,X), (ϕ
Ak )X, (ϕ

Ak )X, idF (X,X)

)
�is morphism is equal, by de�nition of horizontal composition, to((

χCj ∗ ψ
Bi
)
∗ ϕAk

)
X
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Chapter 2. Horizontal compositionality

which, by �eorem (2.17), is the same as(
χCj ∗

(
ψ

Bi
∗ ϕAk

))
X
.

An analogous series of steps shows how this is equal to
(
χ

C j

∗

(
ψ

Bi

∗ ϕ
))

V
, thus con-

cluding the proof. �ed

§2.4 (In?)Compatibility with vertical composition

Looking at the classical natural case, there is one last property to analyse: the inter-

change law [Mac78]. In the following situation,

A B C
ϕ

ψ

ϕ′

ψ ′

with ϕ, ϕ′,ψ and ψ′ natural transformations, we have:

(†) (ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ) = (ψ′ ∗ ψ) ◦ (ϕ′ ∗ ϕ).

�e interchange law is the crucial property that makes Cat a 2-category and com-
pletes the Godement calculus for natural transformations. It is then certainly highly
interesting to wonder whether a similar property holds for the more general notion of
horizontal composition for dinatural transformations too.

As we know all too well, dinatural transformations are far from being as well-
behaved as natural transformations, given that they do not, in general, vertically
compose; on the other hand, their horizontal composition always works just �ne. Are
these two operations compatible, at least when vertical composition is de�ned? �e
answer, unfortunately, is No, at least if by “compatible” we mean “compatible as in the
natural case (†)”. Indeed, consider classical dinatural transformations

(2.23) Aop × A B Bop × B C

F

G

H

J

K

L

ϕ

ψ

ϕ′

ψ ′

such that ψ ◦ ϕ and ψ′ ◦ ϕ′ are dinatural. �en

ϕ′ ∗ ϕ : J(Gop,F) → K(Fop,G) ψ′ ∗ ψ : K(Hop,G) → L(Gop,H)

which means that ϕ′ ∗ ϕ and ψ′ ∗ψ are not even composable as families of morphisms,

92



§2.4. (In?)Compatibility with vertical composition

as the codomain of the former is not the domain of the la�er. �e problem stems
from the fact that the codomain of the horizontal composition ϕ′ ∗ ϕ depends on the
codomain of ϕ′ and also the domain and codomain of ϕ, which are not the same as
the domain and codomain of ψ: indeed, in order to be vertically composable, ϕ and ψ
must share only one functor, and not both. �is does not happen in the natural case:
the presence of mixed variance, which forces to consider the codomain of ϕ in ϕ′ ∗ ϕ
and so on, is the real culprit here.

�e failure of (†) does not come completely unexpected: a�er all, our de�nition
of horizontal composition is strictly more general than the classical one for natural
transformations, as it extends the audience of functors and transformations it can
be applied to quite considerably. Hence it is not surprising that this comes at the
cost of losing one of its properties, albeit so desirable. Of course, one can wonder
whether a di�erent, “be�er”, as it were, de�nition of horizontal composition exists
for which (†) holds. Although I cannot exclude a priori this possibility, the fact that
ours not only is a very natural generalisation of the classical de�nition for natural
transformations (as it follows the same idea, see discussion a�er De�nition (2.1)), but
also enjoys associativity and unitarity, let me think that we do have the right de�nition
at hand. (As a side point, behold Figure 2.1: its elegance cannot be the fruit of a wrong
de�nition!)

What I suspect, instead, is that a di�erent interchange law should be formulated,
that can accommodate the hexagonal shape of the dinatural condition. Indeed, what
proves (†) in the natural case is the naturality of either ϕ′ or ψ′. For instance, the
following diagrammatic proof uses the la�er, for ϕ : F → G, ψ : G→ H, ϕ′ : J → K ,
ψ′ : K → L natural:

JF(A) KF(A) LF(A)

KG(A) LG(A)

LH(A)

ϕ′
F(A)

(ϕ′∗ϕ)A

ψ ′
F(A)

K(ϕA) L(ϕA)

ψ ′
G(A)

(ψ ′∗ψ)A
L(ψA)

(�e upper leg of the diagram is (ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ).) �e naturality condition of ψ′ is
what causes ϕ and ψ′ to swap places, allowing now ϕ and ϕ′ to interact with each
other via horizontal composition; same for ψ and ψ′.
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Chapter 2. Horizontal compositionality

However, for ϕ,ψ, ϕ′,ψ′ dinatural as in (2.23), this does not happen:

J(F,F) K(F,F) L(F,F)

J(G,F) L(F,G)

J(H,F) L(F,H)

ϕ′ ψ ′

L(1,ϕ)J(ϕ,1)

(ψ ′◦ϕ′)∗ϕ

L(1,ψ)J(ψ,1)

Here, the upper leg of the diagram is again (ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ); we have dropped
the lower-scripts of the transformations and we have wri�en “J(H,F)” instead of
“J(H(A, A),F(A, A))” to save space. �e dinaturality conditions of ϕ′ and ψ′ do not
allow a place-swap for ϕ and ϕ′ or for ϕ and ψ′; in fact, they cannot be applied at all!
�e only thing we can notice is that we can isolate ϕ from ϕ′, obtaining the following:

(ψ′ ◦ ϕ′) ∗ (ψ ◦ ϕ) = L(1,ψ) ◦
(
(ψ′ ◦ ϕ′) ∗ ϕ

)
◦ J(ψ,1).

Notice that the right-hand side is not

(
(ψ′ ◦ ϕ′) ∗ ϕ

)
∗ ψ, as one might suspect at �rst

glance, simply because the domain of (ψ′ ◦ ϕ′) ∗ ϕ is not J and its codomain is not L.
It is clear then that the only assumption of ϕ′ ◦ ϕ and ψ′ ◦ ψ being dinatural (for

whatever reason) is not enough. One chance of success could come from involving
the graph of our transformations; for example, if the composite graphs Γ∗(ψ ◦ ϕ) and
Γ∗(ψ′ ◦ ϕ′) are acyclic—hence dinatural, yes, but for a “good” reason—then maybe we
could be able to deduce a suitably more general, “hexagonal” version of (†) for dinatural
transformations. It also may well be that there is simply no sort of interchange law, of
course. �is is still an open question, and the ma�er of further study in the future. In
the conclusions §3.5 we shall make some additional comments in light of the calculus
we will build in Chapter 3.
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Chapter 3

Towards a Godement calculus

The Godement calculus for functors of a single variable and ordinary natural
transformations is at the heart of category theory: it governs and describes the

behaviour of vertical and horizontal composition of natural transformations, and it
consists, ultimately, in the assertion “Cat is a 2-category” or, more strongly, “Cat is
cartesian closed”. In the previous chapters, we have seen a detailed analysis of the
properties of generalised versions of such compositions, now for functors of mixed
variance and dinatural transformations of many variables and of arbitrary types.
Both have their virtues and �aws: vertical composition is only partially de�ned, but
we have a su�cient and essentially necessary condition that ensures compositional-
ity—acyclicity; on the other hand, horizontal composition is always de�ned, but it
is still unclear how it interacts with vertical composition. �is chapter is dedicated
to se�ing down formally the �rst steps to build a complete Godement calculus for
our generalised transformations. Such a calculus will be the overarching structure
entailing both vertical and horizontal composition.

In §3.1, we will give an overview of Kelly’s original approach that led him to
generalise the classical Godement calculus for covariant-only functors of many vari-
ables and natural transformations. In §3.2, we will introduce the notion of generalised

graph of a transformation to allow for internal places (unlike the graphs considered
in Chapter 1), which will require us to prove a more general compositionality result
corresponding to �eorem (1.38). �is will be needed in §3.3 where we will de�ne a
generalised functor category {B,C}. Finally, in §3.4 we will prove that the functor
{B,−} has a le� adjoint − ◦B. �is brings us signi�cantly closer to the formulation of
a Godement calculus, although non-trivial work is le� to do, as we shall see in §3.5.

§3.1 Kelly’s fully covariant case

In 1972, Kelly [Kel72a] developed a full generalisation of the Godement calculus for
functors of many arguments, but fully covariant, and generalised natural transforma-
tions of many variables. �ese transformations are described as in Chapter 1 of this
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Chapter 3. Towards a Godement calculus

thesis: they are families of morphisms equipped with a type. However, in Kelly’s case
they are particularly simple: their domain and codomain functors have the same arity
and their arguments are linked in pairs. Hence why in [Kel72a] the type (or “graph”, as
Kelly called it) of his natural transformations are not cospans, but simply permutations.
In this section we shall give an overview of his work, following [Kel72a, §2].

Notation. To keep notations consistent with [Kel72a], in this section we shall denote
the components of transformations ϕ in k variables as ϕ(A1, . . . , Ak) instead of the
usual ϕA1,...,Ak

.

As we mentioned, Kelly considered the category P of permutations: its objects are
natural numbers (with our same convention whereby we ambiguously denote by n the
natural number n or the �nite set {1, . . . ,n}), with no morphisms n→ m for n , m,
and with permutations of n as the morphisms n→ n. He then de�ned a “generalised
functor category” {B,C} as follows.

(3.1) De�nition. Let B and C be categories. �e category {B,C} consists of the
following data:

• Objects are pairs (n,T), where n ∈ N and T : Bn → C is a functor;

• �ere are no morphisms (n,T) → (m,S) unless n = m, that is, unless T and S
have the same arity. In that case, a morphism (n,T) → (n,S) is a pair (ξ, [ϕ]), for
ξ : n→ n a permutation, and [ϕ] the equivalence class of a natural transforma-
tion ϕ : T → S “of graph ξ”: in our notations, ϕ is a natural transformation of
type

n n n
ξ idn

hence it has components of the form

ϕ(B1, . . . ,Bn) : T(Bξ1, . . . ,Bξn) → S(B1, . . . ,Bn). �

(3.2) Remark. A permutation ξ : n→ n induces a functor

Bn Bn

(B1, . . . ,Bn) (Bξ1, . . . ,Bξn)

Bξ

Hence a natural transformation ϕ : T → S : Bn → C of graph ξ is a classical natural
transformation (as in [Mac78]) ϕ : TBξ → S.

(3.3) Proposition. De�ning Γ(n,T) = n and Γ(ξ, ϕ) = ξ , we have that {B,C} is an

object of Cat P, the category of categories over P, with augmentation Γ.

Now, the assignment B,C 7→ {B,C} provides a functor Catop × Cat → Cat P
continuous in C (that is, preserving all limits). We then have the following preliminary
result.
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§3.1. Kelly’s fully covariant case

(3.4) �eorem. �e functor {B,−} has a le� adjoint

Cat P Cat

−◦B

{B,−}

⊥

therefore there is a natural isomorphism

(3.5) Cat
(
A ◦ B,C

)
� Cat P

(
A, {B,C}

)
.

Moreover, ◦ : Cat P × Cat→ Cat is a functor.

In order to see what A ◦ B looks like, let us analyse the right side of (3.5). Write
Γ for all augmentations over P. An element Φ of Cat P

(
A, {B,C}

)
, that is a functor

Φ : A→ {B,C} over P, consists of the following data:

1. for each A ∈ A with ΓA = n, a functor ΦA : Bn → C, which means:

1.a) for each B1, . . . ,Bn ∈ B, objects ΦA(B1, . . . ,Bn) in C,

1.b) for each gi : Bi → B′i in B, morphisms

ΦA(g1, . . . ,gn) : ΦA(B1, . . . ,Bn) → ΦA(B′1, . . . ,B
′
n) in C,

2. for each f : A → A′ in A with Γ f = ξ : n → n, a natural transformation
Φ f : ΦA→ ΦA′ of graph ξ , that is a family of morphisms

Φ f (B1, . . . ,Bn) : ΦA(Bξ1, . . . ,Bξn) → ΦA′(B1, . . . ,Bn).

All such data subject to the conditions making Φ and ΦA functors and Φ f natural.
�is means that A ◦ B consists of:

• objects of the form A[B1, . . . ,Bn] with A ∈ A, Bi ∈ B and ΓA = n,

• morphisms to be generated by A[g1, . . . ,gn] : A[B1, . . . ,Bn] → A[B′1, . . . ,B
′
n]

and f [B1, . . . ,Bn] : A[Bξ1, . . . ,Bξn] → A′[B1, . . . ,Bn],

all this data is to satisfy conditions corresponding to the relations making Φ and ΦA
functors and Φ f natural above (in this way, Φ can indeed be seen as a functor from
A ◦ B to C where Φ

(
A[B1, . . . ,Bn]

)
= ΦA(B1, . . . ,Bn) and so on). One of these, the
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Chapter 3. Towards a Godement calculus

naturality of Φ f , gives the following commutative square:

(3.6)

A[Bξ1, . . . ,Bξn] A′[B1, . . . ,Bn]

A[B′ξ1, . . . ,B
′
ξn] A′[B′1, . . . ,B

′
n]

f [B1,...,Bn]

A[gξ1,...,gξn] A′[g1,...,gn]

f [B′1,...,B
′
n]

Writing f [g1, . . . ,gn] for the diagonal of the above diagram, one can see that this is
the most general morphism of A ◦ B, that is, that every morphism in A ◦ B has its
form; the edges of (3.6) are just the special cases in which A and Bi stand for idA and
idBi , as is usual.

�e construction of A ◦ B as such is only the �rst step towards a full Godement
calculus for natural transformations with permutations for types. �e next one is
extending ◦ : Cat P × Cat→ Cat to a functor

◦ : Cat P × Cat P→ Cat P.

One de�nes A ◦ B exactly as before, ignoring the fact that B is a category over P, and
then augment A ◦ B by se�ing

Γ
(
A[B1, . . . ,Bn]

)
= ΓB1 + · · · + ΓBn

on objects, with an appropriate de�nition on morphisms (essentially, one has to
permute the Γ(gi) according to Γ f to get Γ

(
f [g1, . . . ,gn]

)
). By verifying that the

bifunctor ◦ on Cat P is coherently associative with a coherent identity J, given by

I P

∗ 1

J

one proves that Cat P is a monoidal category. Finally, one shows that our functor
{−,−} : Catop × Cat→ Cat P extends to

{−,−} : (Cat P)
op × (Cat P) → Cat P

and the natural isomorphism (3.5) to

(3.7) Cat P
(
A ◦ B,C

)
� Cat P

(
A, {B,C}

)
which proves Cat P is a monoidal closed category with ◦ as tensor.

From the closed structure of Cat P, then, Kelly extracted the generalisation of the
Godement calculus he sought. �e objects and the morphisms of {B,C} replace the
functors and the natural transformations of the classical calculus, and composition in
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§3.1. Kelly’s fully covariant case

{B,C} plays the role of generalised vertical composition. By iterating the “evaluation
map” ε : {B,C} ◦ B → C, which is the counit of the adjunction (3.7), we obtain a
functor

{B,C} ◦ {A,B} ◦ A {B,C} ◦ B C
1◦ε ε

and hence by adjunction (3.7) a functor over P

µ : {B,C} ◦ {A,B} → {A,C}.

�e operation µ is what embodies substitution, which is a generalisation of the classical
horizontal composition. If T : Bn → C, Si : Ami → B are functors for i ∈ {1, . . . ,n},
then µ

(
T[S1, . . . ,Sn]

)
is the following ordinary composite:

Am1 × · · · × Amn Bn C
S1×···×Sn T

Writing µ
(
T[S1, . . . ,Sn]

)
= T(S1, . . . ,Sn), its image on objects is

T(S1, . . . ,Sn)(A1
1, . . . , A

1
m1, . . . , A

n
1, . . . , A

n
mn
) = T

(
S1(A1

1, . . . , A
1
m1), . . . ,Sn(An

1, . . . , A
n
mn
)
)

and similarly on morphisms. If ϕ : T → T ′ is a natural transformation of graph
ξ, and ψi : Si → S′i are natural transformations of graph ηi for i ∈ {1, . . . ,n}, then
µ
(
ϕ[ψ1, . . . ,ψn]

)
is the classical horizontal composite ϕ ∗ (ψ1 × · · · × ψn):

Am1 × Amn Bn C

S1Aη1×···×SnAηn

S′1×···×S′n

TBξ

T ′

ψ1×···×ψn ϕ

What we have done and what we have yet to do. Kelly’s se�ing is perfectly in
line with our de�nition of horizontal composition for dinatural transformations of
arbitrary type. Take ϕ and ψ as they appear in De�nition (2.6), assuming however
that all the functors involved are fully covariant. �e functors H(X1, . . . ,X|γ |) and
K(Y1, . . . ,Y|δ |) in there, domain and codomain of the horizontal composition, are
de�ned exactly as µ

(
T[S1, . . . ,Sn]

)
above. �e i-th horizontal composition ψ i

∗ ϕ itself
would then be µ

(
ψ[ididC

, . . . , ididC
, ϕ, ididC

, . . . , ididC
]
)
, where ϕ is in i-th position in the

list. Moreover, the associativity of horizontal composition would be the re�ection of
the fact that ◦ is coherently associative.

�is sheds a light of hope for the formalisation of a full Godement calculus for
functors of mixed variance, as we do have a notion of substitution at hand that already
shows promising signs of success. However, this task is far from being simple to realise,
as we shall see. What we have to do is to follow Kelly’s steps enlightened above as
far as we possibly can, starting from the very �rst one: �nd the right “category of
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Chapter 3. Towards a Godement calculus

graphs”, which we shall call G, and de�ne a generalised functor category over G. �e
morphisms of this category will not be simply dinatural transformations in many
variables, because these do not, in general, always vertically compose. We shall
then have instead transformations that are dinatural only in some of their variables,
and use the theory of Chapter 1 to handle the dinaturality properties of composite
transformations.

§3.2 A compositionality result for general graphs

For Kelly’s natural transformations whose graphs do nothing wilder than permuting
the variables, the category P of permutations is the natural choice. We need, however,
something more complex than that. Our transformations, as de�ned in Chapter 1,
carry a cospan of functions between �nite sets, what we called their type, to describe
which arguments of their domain and codomain functors are to be equated when
writing down their general component. Hence our categoryG of graphs has to contain
this information.

In this section, we will build up the theory needed to de�ne a category of functors
and transformations {B,C}∗ and a category of generalised graphs G∗, both of which
contain extra elements which we will not need, ultimately. However, for the sake of
clarity of exposure, we believe it is convenient to �rst introduce these relatively “large”
categories, and then de�ne the desired {B,C} andG as speci�c (non-full) subcategories
of them. In this way we will be able to use the full theory designed in this section
to prove that {B,C}∗ is indeed a category, whose too-general transformations have
graphs in G∗; only a�er this we shall “trim down” {B,C}∗ to the desired, more natural

{B,C} by restricting ourselves only to the transformations that can arise in nature.

A �rst attempt. Bearing in mind that our aim is to develop a generalised functor
category {B,C} whose morphisms are transformations that are dinatural in some of
their variables, and the categoryGwe want to de�ne has to take into account in which
variables a given transformation is dinatural, our �rst a�empt would be to de�ne G in
the following way.

• Objects: List{+,−}.

• Morphisms: a morphism f : α→ β is an equivalence class of diagrams in FinSet

|α | k |β|

{0,1}

σ

∆ f

τ

Two diagrams being equivalent if they di�er by a coherent permutation on k . ∆ f
here is the “discriminant” function that tells us in which variables a transforma-
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tion ϕ of graph f is dinatural: if ∆ f (i) = 1, then ϕ would be dinatural in its i-th
variable. �e pair (σ,τ) de�nes a graph Γ(σ,τ) exactly as in De�nition (1.16).

• Composition: given f = (σ,τ,∆ f ) : α→ β as above and g = (η, θ,∆g) (equival-
ence classes of) diagrams in FinSet, their composite is given by (the equivalence
class of) diagram (ζσ, ξθ,∆g f ) as in:

|γ |

|β| p

|α | k q

{0,1}

θ

τ

η

p
ξ

σ ζ

∆gf

where∆g f (x) is de�ned to be 1 if the x-th connected component of the composite
graph Γ∗((η, θ) ◦ (σ,τ)) (obtained by joining together Γ(σ,τ) and Γ(η, θ) along
the common interface) is acyclic and for all y ∈ ζ−1{x} and z ∈ ξ−1{x} we have
that ∆ f (y) = 1 = ∆g(z).

At this point one would de�ne the functor category {B,C} to have as objects pairs
(α,F : Bα → C) and a morphism (α,F) → (β,G) would be a tuple (σ,τ,∆, ϕ) of a
transformation ϕ : F → G of type |α | k β

σ τ that is dinatural in all variables in
∆−1{1}. By �eorem (1.59), composition in {B,C} would be always de�ned.

�ere is only one problem: G so de�ned is not a category, and neither is {B,C}!
What fails here is associativity of composition. In the following example we show �ve
“consecutive” transformations, whose composite is a family of morphisms with two
di�erent ∆ discriminant functions depending on the bracketing we choose. (All the
rest of the data does not cause any problems: composition of families of morphisms is

associative, as is composition of cospans.)

(3.8) Example. LetC be a cartesian closed category, and B a �xed object ofC. Consider
the following transformations:

ϕ1 =
(
δA × δA⇒B : A × (A⇒ B) → A × A × (A⇒ B) × (A⇒ B)

)
A∈C

ϕ2 =
(
idA ×evalA,B × idA⇒B : A × A × (A⇒ B) × (A⇒ B) → A × B × (A⇒ B)

)
A∈C

ϕ3 =
(
σX,B × idY⇒B : X × B × (Y ⇒ B) → B × X × (Y ⇒ B)

)
X,Y∈C

ϕ4 = (idB ×ϕ
1
A)A∈C

ϕ5 = (idB ×ϕ
2
A)A∈C
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We have then that Γ∗
(
ϕ2 ◦ ϕ1) is the following graph:

(3.9)

Hence, by �eorem (1.59), ϕ2 ◦ ϕ1 is dinatural. Γ∗
(
ϕ5 ◦ ϕ4) looks exactly the same

as (3.9), therefore

(3.10) Γ
(
ϕ2 ◦ ϕ1) = Γ (ϕ5 ◦ ϕ4) =

and since

Γ
(
ϕ3) =

we have ϕ5 ◦ ϕ4 and (ϕ5 ◦ ϕ4) ◦ ϕ3 are both dinatural, with Γ
(
(ϕ5 ◦ ϕ4) ◦ ϕ3) =

Γ
(
ϕ5 ◦ ϕ4) . Hence, by composing with ϕ2 ◦ ϕ1, we obtain

(3.11) Γ
∗
(
(ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ (ϕ2 ◦ ϕ1)

)
=

We have created a cycle: the discriminant function of the transformation (ϕ5 ◦ ϕ4 ◦
ϕ3) ◦ (ϕ2 ◦ ϕ1) is the function ∆ : 1→ {0,1} returning 0.

However, let us see what happens when we compose ϕ5 ◦ ϕ4 ◦ ϕ3 with ϕ2 �rst,
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and then ϕ1 at a later time. We get

Γ
∗
(
(ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ ϕ2) =

�is means that (ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ ϕ2 is dinatural and, once we collapse the connected
components, we obtain

Γ
(
(ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ ϕ2) =

We then have that Γ∗
(
(ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2) ◦ ϕ1) is

(3.12)

which is acyclic! Hence the discriminant function of the transformation (ϕ5 ◦ ϕ4 ◦
ϕ3 ◦ ϕ2) ◦ ϕ1, which is no di�erent in any aspect from (ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ (ϕ2 ◦ ϕ1), is
∆′ : 1→ {0,1} returning 1. �erefore composition in G is not associative. �

What went wrong? In the graph of ϕ2 ◦ ϕ1, depicted in (3.10), there is a path
from the bo�om-right node to the bo�om-le� node, which then extends to a cycle
once connected to Γ

(
ϕ5 ◦ ϕ4 ◦ ϕ3) , as shown in (3.11). �at path was created upon

collapsing the composite graph Γ∗
(
ϕ2 ◦ ϕ1) , pictured in (3.9), into a single connected

component: but in (3.9) there was no path from the bo�om-right node to the bo�om-
le� one! And rightly so: to get a token moved to the bo�om-le� vertex of (3.9), we
have no need to put one token in the bo�om-right vertex. �erefore, once we have
formed (3.10), we have lost a crucial information about which sources and sinks are
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directly connected with which others, because we have collapsed the entire connected
component into a single internal transition, with no internal places. As it happens, by
computing the composite graph in a di�erent order, instead, no new paths have been
created, hence no cycles appear where there should not be. A�er all, by �eorem (1.59)
we know that ϕ5 ◦ · · · ◦ ϕ1 is dinatural because it can be wri�en as the composite of
two dinatural transformations, namely ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 and ϕ1, whose composite
graph is acyclic.

We should emphasise again the fact that composition of transformations and
composition of types (that is, cospans of functions over �nite sets) are associative.
Indeed, (ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2) ◦ ϕ1 and (ϕ5 ◦ ϕ4 ◦ ϕ3) ◦ (ϕ2 ◦ ϕ1) are the same family of
morphisms, between the same functors, with the same type (hence, the same graph).
More importantly, the previous example does not contradict our compositionality
theorem (1.59): if we call ϕ = ϕ2 ◦ ϕ1 and ψ = ϕ5 ◦ ϕ4 ◦ ϕ3, since Γ∗(ψ ◦ ϕ) contains
a cycle, we cannot conclude anything about the dinaturality of ψ ◦ ϕ. Also, our
“essentially necessary” result (1.63) has not been confuted: it is true that there is no
way to prove the dinaturality of ψ ◦ ϕ by only using the dinaturality properties of ϕ
and ψ themselves (and not also of their composing blocks ϕi!). �is can be seen more
clearly if we link together the graphs of all the ϕi’s without collapsing anything (we
only omit Γ

(
ϕ3) as it would add only a straight line):

(3.13)

ϕ

ψ

To prove that ψ ◦ ϕ is dinatural, we do have to use the dinaturality properties of the
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ϕi’s: if we treat ϕ and ψ as “black boxes”,

ϕ

ψ

ignoring the fact that they actually are the composite of simpler transformations, we
are not able to “move the f ’s” from the sources all the way to the sinks.

�is tells us that the crucial reason for which associativity fails in our preliminary
de�nition of the category G is that only keeping track of which connected component
each of the arguments of the domain and codomain functors belongs to is not enough:
we are forge�ing too much information, namely the paths that directly connect the
white and grey boxes. Hence our category of graphs will have to consist of more
complicated Petri Nets that do contain internal places, and upon composition we shall
simply link the graphs together along the common interface, without collapsing entire
connected components into a single transition.

�e category of FBCF Petri Nets. Recall from De�nition (1.50) that a FBCF Petri
Net is a net where all the places have at most one input and at most one output trans-
ition. We now introduce the category of FBCF Petri Nets, using the usual de�nition of
morphism for bipartite graphs.

(3.14) De�nition. �e category PN consists of the following data:

• objects are FBCF Petri Nets N = (PN,TN,·(−), (−)·) together with a �xed order-
ing of its connected components. Such an ordering will allow us to speak about
the “i-th connected component” of N ;

• a morphism f : N → M is a pair of functions ( fP, fT ), for fP : PN → PM and
fT : TN → TM , such that for all t ∈ TN

·fT (t) = { fP(p) | p ∈·t} and fT (t)·= { fP(p) | p ∈ t·}. �

Note that if f : N → M is a morphism in PN then f preserves (undirected) paths,
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hence for C a c.c. of N we have that f (C) is connected. In particular, if f is an
isomorphism then f (C) is a c.c. of M .
(3.15) Remark. We have a canonical inclusion FinSet → PN by seeing a set as a
Petri Net with only places and no transitions.

For a function x : A→ B of sets we call P(x) : P(A) → P(B) the function such
that P(x)(S) = {x(a) | a ∈ S} for S ⊆ A. We then have that if f : N → M is a
morphism in PN, then

TN TM

P(PN ) P(PM)

fT

·(−) ·(−)
P( fP)

and
TN TM

P(PN ) P(PM)

fT

(−)· (−)·
P( fP)

commute by de�nition of the category PN.
We now show that PN admits pushouts, with the aim then to de�ne G using

particular cospans in PN.
(3.16) Proposition. Let N,M, L be in PN, and consider the following diagram in PN:

(3.17)

(PN,TN,·N (−), (−)·N ) (PL,TL,·L(−), (−)·L)

(PM,TM,·M(−), (−)·M) (PQ,TQ,·Q(−), (−)·Q)

(gP,gT )

( fP, fT ) (kP,kT )

(hP,hT )

where

PN PL

PM PQ

gP

fP kP
hP

and
TN TL

TM TQ

gT

fT kT
hT

are pushouts and·Q(−) : TQ → P(PQ) is the unique map (the dashed one) that makes

the following diagram commute:

P(PN )

TN TL P(PL)

TM TQ

P(PM) P(PQ)

P( fP)

P(gP)

gT

fT

·N (−)

kT

·L(−)

P(kP)
hT

·M (−)
P(hP)
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(−)·Q : TQ → P(PQ) is de�ned analogously. �en (3.17) is a pushout.

Proof. We check that the de�nition of pushout is satis�ed. Suppose then we have
morphisms u : M → R and v : L → R such that u ◦ f = v ◦ g. �en there are
unique functions wP : PQ → PR and wT : TQ → TR that make the following diagrams
commute:

PN PL

PM PQ

PR

gP

fP kP
vPhP

uP

wP

and

TN TL

TM TQ

TR

gT

fT kT
vThT

uT

wT

We claim that the pair w = (wP,wT ) is a morphism in PN from Q to R such that
w ◦ h = u and w ◦ k = v. We have shown just now that these two equalities hold,
therefore we only have to check that w satis�es the de�nition of morphism in PN,
which is tantamount to the commutativity of the following squares:

TQ TR

P(PQ) P(PR)

wT

·Q(−) ·R(−)
P(wP)

and
TQ TR

P(PQ) P(PR)

wT

(−)·Q (−)·R
P(wP)

To prove the commutativity of the �rst square, since hT and kT are jointly epi (because
they are the result of a pushout), it is enough to prove that{
·R(−) ◦ wT ◦ hT = P(wP) ◦·Q(−) ◦ hT : TM → P(PQ)

·R(−) ◦ wT ◦ kT = P(wP) ◦·Q(−) ◦ kT : TL → P(PQ)

We only show the �rst equation, the other is analogous. We have:

·R(−) ◦ wT ◦ hT =·R(−) ◦ uT

= P(uP) ◦·M(−)
= P(wP) ◦ P(hP) ◦·M(−)
= P(wP) ◦·Q(−) ◦ hT

�e second square is then proved to be commutative in a similar way. �ed

A “preliminary” category of graphs. Remember from Remark (3.15) that �nite
sets can be seen as places-only Petri Nets: if S is a set and N is an object in PN, then a
morphism f : S → N in PN is a pair of functions f = ( fP, fT ) where fT is the empty
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map � : � → TN . Hence, by li�le abuse of notation, we will refer to fP simply as f .
Bearing in mind Example (3.8) and the following discussion, we begin our “journey”

towards individuating the correct category of graphs G of transformations by consid-
ering the following category, consisting of particular cospans in PN. Such cospans are
essentially Petri Nets N in PN with “interfaces”, that is speci�c places seen as “inputs”
and “outputs” of N . Composition will then be computed by “glueing together” two
consecutive nets along the common interface. G will be built up using only some of
its morphisms, as we shall see.

(3.18) De�nition. �e category H consists of the following data:

• objects are lists in List{+,−};

• morphisms f : α→ β are (equivalence classes of) cospans in PN of the form

|α | N |β |
σ τ

where σ : |α | → PN and τ : |β| → PN are injective functions, hence we can see
|α | and |β | as subsets of PN . Two such cospans are in the same class if and only
if they di�er by an isomorphism of Petri Nets on N coherent with σ, τ and the
ordering of the connected components of N ;

• composition is that of CoSpan(PN). �

We now show in detail how composition in H works. Consider |α | M |β |
σ τ

and |β | L |γ |
η θ two morphisms in H. By Proposition (3.16) then, their composite

is given by computing the pushouts

|β| PL

PM PQ

η

τ kP
hP

and
� TL

TM TQ

�

� kT
hT

Now, the injectivity of η and θ implies that kP and hP are also injective, as the pushout
(in Set) of an injective map against another yields injective functions. PQ, in particular,
can be seen as the quotient of PM + PL where the elements of PM and PL with a
common pre-image in |β | are identi�ed. Next, the pushout of the empty map against
itself yields as a result the coproduct, thus TQ = TM + TL where hT and kT are the
injections. Hence, the input function of the composite is de�ned as follows:

TM + TL P(PQ)

t

{
·M(t) t ∈ TM

·L(t) t ∈ TL

·(−)
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and similarly for the output function. All in all, therefore, composition inH is computed
by “glueing” together the Petri Nets M and L along the common |β|-places.

Generalised graphs of a transformation. We can now start working towards the
de�nition of a category {B,C} of functors of mixed variance and transformations that
are dinatural only on some of their variables; {B,C} will be a category over G in the
sense that transformations in {B,C} will carry along, as part of their data, certain
cospans in PN. �e category of graphs G will be built from {B,C} by “forge�ing” the
transformations. As such, G will be de�ned a�er {B,C}.

It is clear how to de�ne the objects of {B,C}: they will be pairs (α,F : Bα → C).
Morphisms are less obvious to de�ne, as we learnt in our “�rst a�empt” on p. 100.
A morphism (α,F) → (β,G) will consist of a transformation ϕ : F → G of type
|α | n |β |

σ τ , together though with a morphism |α | N |β|
σ τ in H “coherent

with the type of ϕ”, in the sense that the Petri Net N , under certain conditions, looks
exactly like Γ(ϕ) as de�ned in (1.16) except that it allows for internal places as well.
For example, (3.13) would be a graph coherent with the type of ϕ5 ◦ · · · ◦ ϕ1 as in
Example (3.8). In other words, N will have n connected components, its sources (sinks)
are exactly the places corresponding to the positive (negative) entries of α and the
negative (positive) entries of β, and elements in |α | (|β|) mapped by σ (τ) into the
same i ∈ {1, . . . ,n} will belong to the i-th connected component of N . A priori N can
contain places with no inputs or outputs: this will be useful for the special case of
ϕ = idF as we shall see in �eorem (3.36); however, if all sources and sinks in N are
proper, then N plays the role of a generalised Γ(ϕ).

(3.19) De�nition. Let ϕ : F → G be a transformation of type |α | n |β |
σ τ . A

cospan in PN, which is a representative of a morphism inH |α | N |β|
σ τ (hence σ

and τ are injective), is said to be coherent with the type of ϕ if and only if the following
conditions are satis�ed:

• N has n connected components;

• for all i ∈ |α | and j ∈ |β |, σ(i) belongs to the σ(i)-th connected component of
N and τ( j) belongs to the τ( j)-th connected component of N ;

• sources(N) = {σ(i) | αi = +} ∪ {τ(i) | βi = −};

• sinks(N) = {σ(i) | αi = −} ∪ {τ(i) | βi = +}.

In this case we say that N is a generalised graph of ϕ. �

(3.20) Example. For ϕ : F → G a transformation of type |α | n |β |
σ τ , recall that

the set of places of Γ(ϕ) is P = |α |+ |β|. If we call ι|α | and ι|β | the injections as in (1.16),
then

|α | Γ(ϕ) |β |
ι |α | ι |β |
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is indeed coherent with the type of ϕ. Moreover, if σ and τ are jointly epi, then also
|α | n |β |

σ τ itself, seen as a cospan in PN, is coherent with itself. (If there is i ∈ n
that is not in the image of σ or τ, then the i-th place in n seen as a Petri Net would be
a source and a sink that would falsify the last two conditions of the de�nition.) �

(3.21) Remark. If N is a generalised graph of ϕ as in the notations of De�nition (3.19)
and does not have any place which is a source and a sink at once, then N has exactly
|α | + |β | sources and sinks and their union coincides with the joint image of σ and τ.
Moreover, σ and τ have to make sure that they map elements of their domain into
places belonging to the correct connected component: in this way, N re�ects the type
of ϕ in a Petri Net like Γ(ϕ), with the possible addition of internal places.

We shall now show how composition in H preserves generalised graphs, in the
following sense.

(3.22) Proposition. Let ϕ : F → G and ψ : G → H be transformations of type, re-

spectively, |α | n |β |
σ τ

and |β| m |γ |
η θ

; let also u = |α | N |β|
σ τ

and

v = |β | N′ |γ |
η θ

be cospans in PN coherent with the type of ϕ and ψ, respectively.

Suppose the type of ψ ◦ ϕ is given by

|γ |

|β | m

|α | n l

θ

τ

η

p
ξ

σ ζ

and that the composite in H of u and v is given by

(3.23)

|γ |

|β | N′

|α | N N′ ◦ N

θ

τ

η

p
ξ

σ ζ

�en v ◦ u is coherent with the type of ψ ◦ ϕ.

Proof. As we said in the discussion a�er De�nition (3.18), N′ ◦ N is obtained by
glueing together N and N′ along the |β| places which they have in common. �e
number of connected components of N′◦N is indeed l by construction. �e morphisms
ζ and ξ in PN are pairs of injections that map each place and transition of N and N′
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to itself in the composite N′ ◦ N . �is means that ζσ(i) does belong to the ζσ(i)-th
connected component of N′ ◦ N , as the la�er contains the σ(i)-th c.c. of N ; similarly
the ξθ( j) belongs to the ξθ( j)-th c.c. of N′ ◦ N . Finally, we have that the sources of
N′ ◦ N are the sources of N and N′ except those which happen to be |β | places, which
upon composition become internal places. Indeed, for all j ∈ |β|, if β j = + then we
have that τ( j) is a source for N and a sink for N′; if β j = −, then vice versa. In other
words,

sources(N′ ◦ N) =
(
sources(N) \ τ(|β|)

)
∪

(
sources(N′) \ η(|β|)

)
= {σ(i) | αi = +} ∪ {θ(i) | γi = −}

and similarly for sinks(N′ ◦ N). �ed

(3.24) Remark. In the previous proposition, if N = Γ(ϕ) and N′ = Γ(ψ), then
N′ ◦ N = Γ∗(ψ ◦ ϕ).

A generalised compositionality theorem. At this point we need a means to tell
in which variables, if any, a composite transformation ψ ◦ ϕ is dinatural, given the
dinaturality properties of ϕ and ψ, that looks not at the acyclicity of Γ∗(ψ ◦ ϕ), since
as discussed in Example (3.8) this leads to an incorrect de�nition, but at the acyclicity
of the composite cospan in PN. We have therefore to adapt our compositionality
result (1.38) (and consequently also (1.59)) to the case in which Γ(ϕ) and Γ(ψ) may
have internal places as well.

(3.25) Remark. By considering transformations carrying, as part of their data, a Petri
Net with possibly internal places “as long as it is coherent with their type”, we will
be considering far more transformations than those arising in nature such as those
of Examples (1.9)-(1.13). Hence why we will end up with a category {B,C}∗ which is
larger than strictly necessary, but for which a general compositionality result holds.
For such “atomic” transformations like the ones in the examples above, the natural
thing to do would still be to consider, as their generalised graphs, simply their graphs
as in De�nition (1.16); only upon composition of these simple transformations (as in
Example (3.8)) we would consider the more complicated Petri Nets obtained by pasting
together the graphs of the components. In this spirit, only transformations which are
explicitly recognisable as the composite of two or more families of morphisms ought
to have an associated Net with internal places. Nonetheless, the general morphism of
{B,C}∗ has to admit an arbitrarily complicated FBCF Net, hence why we will work in
such generality. We will then de�ne the proper {B,C} as the subcategory of {B,C}∗
generated by the atomic transformations with their no-internal-places graphs.

�e whole spirit of �eorem (1.38) was to reduce the dinaturality problem of the
composite transformation ψ ◦ ϕ to a reachability problem of the composite Petri Net
Γ∗(ψ ◦ ϕ), by showing that the �ring of an enabled transition yields an equality of
morphisms. To do so, we isolated a speci�c class of markings, the labelled markings
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(De�nition (1.41)), and de�ned an associated morphism to each of them in De�n-
ition (1.43). �is was possible because every place in Γ∗(ψ ◦ ϕ) corresponds to an
argument of one of the domain or codomain functors of ϕ and ψ; however, this is
not the case any more if we allow for Γ(ϕ) and Γ(ψ) to have internal places, which
do not correspond to anything in particular, in general. (In light of Remark (3.25),
such internal places would indeed correspond to arguments of functors involved by
transformations whose composite are ϕ and ψ, if these are not atomic.) Hence we
need that any transformation in {B,C}∗ has, in addition to a type and a cospan in PN
that gives its graph, also a translating function T that converts a labelled marking
into an actual morphism of C. For transformations ϕ and ψ whose graph contains no
internal places, the translating function of the composite ψ ◦ ϕ will be de�ned exactly
as µ in De�nition (1.43).

(3.26) De�nition. Let F : Bα → C, G : Bβ → C be functors, ϕ : F → G be a
transformation of type |α | n |β|

σ τ , |α | N |β|
σ τ be a cospan in PN coher-

ent with the type of ϕ. Call LM(N) the set of labelled markings for N , which are
de�ned in the same way as in De�nition (1.41). �en a translating function for (ϕ,N)
Tϕ,N : LM(N) → Morph(C) is a map such that for all labelled marking (M, L, f ) for
N , with f : A→ B in B, the following conditions are satis�ed:

• Tϕ,N (M, L, f ) = F(a1, . . . ,a|α |); x(M,L); G(b1, . . . , b|β |) where

ai =

{
f M(σ(i)) = 1
idL(t) M(σ(i)) = 0 ∧ t ∈·σ(i) ∪ σ(i)·

bi =

{
f M(τ(i)) = 1
idL(t) M(τ(i)) = 0 ∧ t ∈·τ(i) ∪ τ(i)·

for a certain morphism x(M,L) in C;

• if (M0, L0, f ) and (Md, Ld, f ) are de�ned as in (1.45), then x(M0,L0) = ϕB,...,B and
xMd,Ld

= ϕA,...,A;

• if ϕ is dinatural in its i-th variable, t ∈ TN is an enabled transition belonging
to the i-th connected component of N such that L(t) = B and (M′, L′, f ) is a
labelled marking de�ned as in (1.47), then Tϕ,N (M, L, f ) = Tϕ,N (M′, L′, f ). �

We shall then assume that the morphisms of {B,C}∗ will be transformations
together with a generalised graph that admit the existence of a translating function,
which provides the key to interpret labelled markings for the generalised graph of the
transformation as distinct morphisms in C that have a special shape; moreover, this
translating function “preserves �rings” of enabled, B-labelled transitions by de�nition.
Given an ordinary transformation ϕ, we can always �nd a canonical translating
function for it, if we take as generalised graph the usual Γ(ϕ).
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(3.27) Proposition. Let ϕ : F → G be a transformation of type |α | n |β|
σ τ

. �en

(ϕ,Γ(ϕ)) (cf. Example (3.20)) admits a canonical translating function Tϕ,Γ(ϕ) which, for

(M, L, f ) labelled marking of Γ(ϕ), is de�ned as follows:

Tϕ,Γ(ϕ) = F(a1, . . . ,a|α |); ϕL(1),...,L(n); G(b1, . . . , b|β |)

where

ai =

{
f M(ι|α |(i)) = 1
idL(σi) M(ι|α |(i)) = 0

bi =

{
f M(ι|β|(i)) = 1
idL(τi) M(ι|β|(i)) = 0

(3.28) Proposition. Let ϕ : F → G and ψ : G → H be transformations, and let

|α | N |β|
σ τ

and |β| N′ |γ |
η θ

be cospans in PN coherent with the type of ϕ
and ψ, respectively. If (ϕ,N) and (ψ,N′) admit a translating function, then so does

(ψ ◦ ϕ,N′ ◦ N).

Proof. Suppose that the composite generalised graph N′◦N , obtained by just glueing
together N and N′ along the common interface, is given as in (3.23):

|γ |

|β | N′

|α | N N′ ◦ N

θ

τ

η

p
ξ

σ ζ

In particular, both N and N′ are subnets, via ζ and ξ (whose components are injective)
of N′ ◦ N : it is immediate to see that if f : A → B in B and (M, L, f ) is a labelled
marking for N′ ◦ N , then the restrictions M�PN and L�TN form a labelled marking
(M�PN , L�TN , f ) for N . (More precisely, the marking M�PN is the function M ◦ ζP.)

Let Tϕ,N and Tψ,N be translating functions for (ϕ,N) and (ψ,N) respectively. �ere
is a natural way to endow ψ ◦ ϕ and N′ ◦ N with a translating function, that is also
obtained by “glueing together” Tϕ,N and Tψ,N ′: for f : A → B in B and (M, L, f )
labelled marking for N′ ◦ N , say we have

Tϕ,N (M�PN , L�TN , f ) = F(a1, . . . ,a|α |); x(M�PN ,L�TN ); G(b1, . . . , b|β|)

Tψ,N ′(M�PN ′
, L�TN ′

, f ) = G(b′1, . . . , b
′
|β |); y(M�PN ′ ,L�TN ′ ); H(c1, . . . , c|γ |)

where

ai =

{
f M�PN (σ(i)) = 1
idL�TN (t)

M�PN (σ(i)) = 0 ∧ t ∈·σ(i) ∪ σ(i)·
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bi =

{
f M�PN (τ(i)) = 1
idL�TN (t)

M�PN (τ(i)) = 0 ∧ t ∈·τ(i) ∪ τ(i)·
b′i =

{
f M�PN ′

(η(i)) = 1
idL�TN ′ (t)

M�PN ′
(η(i)) = 0 ∧ t ∈·η(i) ∪ η(i)·

ci =

{
f M�PN ′

(θ(i)) = 1
idL�TN ′ (t)

M�PN ′
(θ(i)) = 0 ∧ t ∈·θ(i) ∪ θ(i)·

Notice that, in fact, bi = b′i , because M�PN (τ(i)) = M(ζPτ(i)) = M(ξPη(i)) =
M�PN ′

(η(i)). De�ne then Tψ◦ϕ,N ′◦N : LM(N′ ◦ N) → Morph(C) as

(3.29) Tψ◦ϕ,N ′◦N (M, L, f ) =

︸                                                ︷︷                                                ︸
Tϕ,N (MζP,LζT , f )

F(a1, . . . ,a|α |); x
(MζP,LζT )

;

Tψ,N ′(MξP,LξT , f )︷                                                ︸︸                                                ︷
G(b1, . . . , b|β|); y(MξP,LξT )

; H(c1, . . . , c|γ |) .

It is easy to see that Tψ◦ϕ,N ′◦N so de�ned is indeed a translating function. �ed

(3.30) Remark. If ϕ and ψ are two consecutive transformations, equipped with
Γ(ϕ) and Γ(ψ) respectively as generalised graphs and with the canonical translating
functions Tϕ,Γ(ϕ) and Tψ,Γ(ψ) as in Proposition (3.28), then Γ(ψ) ◦ Γ(ϕ) = Γ∗(ψ ◦ ϕ) and
(ψ ◦ ϕ,Γ∗(ψ ◦ ϕ)) admits as translating function the map µ given in De�nition (1.43).

We can now state a more general compositionality theorem for dinatural trans-
formations with a generalised graph accompanying them. Remember that every

transformation ϕ can be equipped with a generalised graph N coherent with its type
by simply taking N = Γ(ϕ): the following theorem reduces to �eorem (1.38) if we do
this for ϕ and ψ.

(3.31) �eorem. Let F : Bα → C, G : Bβ → C, H : Bγ → C be functors, ϕ : F → G

and ψ : G → H transformations of type |α | n |β |
σ τ

and |β | m |γ |
η θ

, with

generalised graphs given by |α | N |β |
σ τ

and |β | N′ |γ |
η θ

and translating

functions, respectively, Tϕ,N and Tψ,N ′. Suppose N′ ◦ N is connected and ϕ and ψ are

dinatural in all their variables. If N′ ◦ N is acyclic, then ψ ◦ ϕ is dinatural.

Proof. Let f : A→ B be a morphism in B. Consider the labelled markings (M0, L0, f )
and (Md, Ld, f ) as in (1.45). By de�nition of Tψ◦ϕ,N ′◦N , if the composite N′ ◦ N is
computed as in (3.23), we have

Tψ◦ϕ,N ′◦N (M0, L0, f ) = F(a1, . . . ,a|α |) ◦ ϕB,...,B; G(idB, . . . , idB);ψB,...,B; H(b1, . . . , b|γ |)
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where

ai =

{
f ζPσ(i) source
idB otherwise

=

{
f αi = +

idB αi = −

bi =

{
f ξPθ(i) source
idB otherwise

=

{
f γi = −

idB γi = +

(G is computed in idB everywhere because the places corresponding to the arguments
of G are internal, hence not marked by M0.) �is means that Tψ◦ϕ,N ′◦N (M0, L0, f ) is
e�ectively one of the legs of the dinaturality hexagon for ψ ◦ ϕ; in a similar way one
can see that Tψ◦ϕ,N ′◦N (Md, Ld, f ) is the other one.

Now, by de�nition of translating function, the �ring of a single, B-labelled trans-
ition generates a labelled marking whose image along Tψ◦ϕ,N ′◦N is the same as the
original marking’s image. Hence, it is enough to show that Md is reachable from
M0 by only �ring B-labelled transitions, and indeed �eorem (1.57) applied to the
FBCF Petri Net N′ ◦ N ensures us that Md is in fact reachable from M0 by �ring each
transition exactly once. �e �eorem is then proved. �ed

A straightforward generalisation of �eorem (3.31), that corresponds to �e-
orem (1.59) but for transformations of arbitrarily complicated graph, is the following.

(3.32) �eorem. Let F : Bα → C, G : Bβ → C, H : Bγ → C be functors, ϕ : F → G

and ψ : G → H transformations of type |α | n |β |
σ τ

and |β| m |γ |
η θ

, with

generalised graphs N and N′ respectively. Consider the composite transformation ψ ◦ ϕ
whose type is given by the following pushout:

|γ |

|β | m

|α | n l

θ

τ

η

p
ξ

σ ζ

Suppose ϕ and ψ are dinatural in all those variables in ζ−1(i) and in ξ−1(i), for a �xed

i ∈ {1, . . . , l}. If the i-th connected component of N′ ◦N is acyclic, then ψ ◦ϕ is dinatural

in its i-th variable.

§3.3 A generalised functor category

We are now ready to de�ne a category of “too general” transformations in a precise way.
Morphisms will be transformations equipped with a morphism inH coherent with their
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type and a discriminant function that tells us in which variables the transformation
is dinatural. We will only consider transformations admi�ing the existence of a
translating function; due to Propositions (3.27) and (3.28) all ordinary transformations
appear in this category. Here we are not requiring that translating functions be part
of the data of a morphism, as there is no need for it and by not carrying them around
proofs of the following �eorems will be simpler. As we mentioned in (3.25), the
generalised functor category {B,C} will be its subcategory generated by ordinary
transformations with their graphs as de�ned in Chapter 1.

(3.33) De�nition. Let B and C be categories. �e category {B,C}∗ consists of the
following data:

• objects are pairs (α,F), for α ∈ List{+,−} and F : Bα → C a functor;

• morphisms (α,F) → (β,G) are equivalence classes of tuples

Φ = (ϕ, |α | n |β |
σ τ

, |α | N |β |
σ τ

,∆Φ)

where:

– ∆Φ : n→ {0,1} is called the discriminant function,

– ϕ : F → G is a transformation of type |α | n |β |
σ τ dinatural in all variables

in ∆−1
Φ
{1},

– |α | N |β |
σ τ is a cospan in PN coherent with the type of ϕ, where for

all i ∈ {1, . . . ,n} the i-th connected component of N is acyclic whenever
∆Φ(i) = 1∗,

– (ϕ,N) admits a translating function.

We say that Φ ∼ Φ′, for Φ′ = (ϕ′, |α | n |β |
σ′ τ′

, |α | N′ |β|
σ′ τ′

,∆Φ′) if and
only if the transformations di�er only by a permutation of their variables (in a
coherent way with the rest of the data) and their generalised graphs are coherently
isomorphic: more precisely, when

– there is a permutation π : n → n such that σ′ = πσ, τ′ = πτ, ϕ′A1,...,An
=

ϕAπ1,...,Aπn , ∆Φ = ∆Φ′π;
– there is an isomorphism f = ( fP, fT ) : N → N′ in PN such that the following

diagram commutes:
|α | N |β |

N′

σ

σ′
f

τ

τ′

∗�is condition is essential to ensure that composition is unitary.
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mapping the i-th connected component of N to the π(i)-th connected compon-
ent of N′.

• Composition of Φ as above and

Ψ = (ψ, |β| m |γ |
η θ

, |β | N′ |γ |
η θ

,∆Ψ)

is component-wise: it is the equivalence class of the tuple

(3.34) Ψ ◦ Φ = (ψ ◦ ϕ, |α | l |γ |
ζσ ξθ

, |α | N′ ◦ N |γ |
ζσ ξθ

,∆Ψ◦Φ)

where ψ ◦ ϕ is the transformation of type given by the result of the pushout

|γ |

|β| m

|α | n l

θ

τ

η

p
ξ

σ ζ

N′ ◦ N is computed by the pushout (3.23) and the discriminant ∆Ψ◦Φ : l → {0,1} is
obtained by se�ing∆Ψ◦Φ(x) = 1 if and only if the x-th connected component of N′◦N
is acyclic and for all y ∈ ζ−1{x} and z ∈ ξ−1{x} we have that ∆Φ(y) = 1 = ∆Ψ(z).
�e la�er condition is tantamount to asking that ϕ and ψ are dinatural in all the
variables involved by the x-th connected component of the composite graph N′ ◦ N
of ψ ◦ ϕ. �

We shall prove that {B,C}∗ is in fact a category, but �rst we need to show that
composition does not depend on the choice of the representatives of the equivalence
classes of Φ and Ψ.

(3.35) Lemma. Composition as in (3.34) is well de�ned.

Proof. Notice �rst of all that (3.34) is indeed a morphism (α,F) → (β,G): by Propos-
ition (3.22) we have that N′ ◦ N is a generalised graph for ψ ◦ ϕ; by �eorem (3.31) we
have that ψ ◦ ϕ is dinatural in all those variables in ∆−1

Ψ◦Φ
{1}.

Next, suppose we have

Φ = (ϕ, |α | n |β |
σ τ

, |α | N1 |β |
σ τ

,∆Φ) : (α,F) → (β,G)

Φ
′ = (ϕ′, |α | n |β |

σ′ τ′
, |α | N2 |β |

σ′ τ′
,∆Φ′) : (α,F) → (β,G)

Ψ = (ψ, |β| m |γ |
η θ

, |β | N′ |γ |
η θ

,∆Ψ) : (β,G) → (γ,H)
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with Φ ∼ Φ′. We want to show that Ψ ◦ Φ ∼ Ψ ◦ Φ′; the same argument would also
show that for Ψ′ ∼ Ψ we have Ψ ◦ Φ ∼ Ψ′ ◦ Φ′.

It is well known that composition of cospans via pushouts is well de�ned for ∼,
hence we only have to prove that there exists a permutation π̃ : l → l (if l is the number
of variables of ψ ◦ ϕ) such that ∆Ψ◦Φ = ∆Ψ◦Φ′ π̃ and that there is an isomorphism
f̃ = ( f̃P, f̃T ) : N′ ◦ N1 → N′ ◦ N2 mapping the i-th connected component of N′ ◦ N1 to
the π̃(i)-th connected component of N′ ◦ N2.

By the assumption thatΦ ∼ Φ′, we know that there is a permutation π : n→ n such
that σ′ = πσ, τ′ = πτ, ∆Φ = ∆Φ′π and there is an isomorphism in PN f : N1 → N2
mapping the x-th c.c. of N1 to the π(x)-th c.c. of N2 and such that σ′ = fPσ, τ′ = fPτ.
Suppose then that the types and generalised graphs of ψ ◦ ϕ and ψ ◦ ϕ′ are computed
as follows.

ψ ◦ ϕ :

|γ |

|β| m

|α | n l

θ

τ

η

p
ξ

σ ζ

|γ |

|β | N′

|α | N1 N′ ◦ N1

θ

τ

η

p
ξ

σ ζ

ψ ◦ ϕ′ :

|γ |

|β| m

|α | n l′

θ

τ′

η

p
ξ ′

σ′ ζ ′

|γ |

|β | N′

|α | N2 N′ ◦ N2

θ

τ′

η

p
ξ ′

σ′ ζ ′

(In fact l = l′, but here we keep two di�erent names to easily distinguish them.) �e
desired isomorphisms f̃ and π̃ are given by the universal property of the pushouts, as
the unique maps making everything commute:

|β | m

n l

n l′

η

τ

τ′

ξ
ξ ′

ζ

π
π̃

ζ ′

|β| N′

N1 N′ ◦ N1

N2 N′ ◦ N2

η

τ

τ′

ξ
ξ ′

ζ

f
f̃

ζ ′

We argue that f̃ maps the i-th c.c. of N′ ◦ N1 to the π̃(i)-th c.c. of N′ ◦ N2. By
assumption, we know that f maps the x-th c.c. of N1 to the π(x)-th c.c. of N2. Consider
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then i ∈ l.
Case ζ−1{i} = �. Since ζ and ξ are jointly epi, then there must be a y ∈ m such that
ξ(y) = i, in which case ξ′(y) = π̃(i). �is means that the y-th c.c. of N′ is “contained”
(from the graphical point of view, it makes part of) in the π̃(i)-th c.c. of N′ ◦ N2: since
f̃ preserves undirected paths (because it preserves all inputs and outputs of every
transition), the entire i-th c.c. of N′ ◦ N1 must be mapped by f̃ to the π̃(i)-th c.c. of
N′ ◦ N2.
Case ζ−1{i} , �. Let x ∈ ζ−1{i}. �e x-th c.c. of N1 is mapped along f to the π(x)-th
c.c. of N2, which is contained in the π̃(i)-th c.c. of N′ ◦ N2. Since it contains the x-th
c.c. of N1, the whole i-th c.c. of N′ ◦ N1 is mapped to the π̃(i)-th c.c. of N′ ◦ N2.

Finally, we prove that ∆Ψ◦Φ = ∆Ψ◦Φ′ ◦ π̃. By de�nition, for i ∈ l, we have that
∆Ψ◦Φ(i) = 1 precisely when the i-th c.c. of N′◦N1 is acyclic and when for all a ∈ ζ−1{i}
and for all b ∈ ξ−1{i} we have ∆Φ(a) = 1 = ∆Ψ(b). On the other hand, we have that
∆Ψ◦Φ′(π̃(i)) = 1 when:

• the π̃(i)-th c.c. of N′ ◦ N2 is acyclic,

• for all x ∈ ζ ′−1{π̃(i)} we have ∆′
Φ
(x) = 1,

• for all y ∈ ξ−1{π̃(i)} we have ∆Ψ(y) = 1.

We proved that f̃ maps the i-th c.c. of N′ ◦ N1 to the π̃(i)-th c.c. of N′ ◦ N2: since f̃ is
an isomorphism, it preserves and re�ect cycles, hence the �rst condition is satis�ed.
Now, we have the following chain of equivalences:

x ∈ ζ ′−1
{π̃(i)} ⇐⇒ ζ ′(x) = π̃(i) ⇐⇒ π̃−1 (ζ ′(x)) = i ⇐⇒ ζ

(
π−1(x)

)
= i

⇐⇒ π−1(x) ∈ ζ−1{i}

and we know that for a ∈ ζ−1{i}, 1 = ∆Φ(a) = ∆Φ′(π(a)), because Φ ∼ Φ′. Let
x ∈ ζ ′1{π̃(i)}: then a = π−1(x) ∈ ζ−1{i}, hence ∆Φ′(π(a)) = ∆Φ′(x) = 1, as we wanted.
A similar argument also shows the third condition, and the proof is complete. �ed

(3.36) �eorem. {B,C}∗ is indeed a category.

Proof. For (α,F) object of {B,C}∗, the identity morphism is given by the equivalence
class of

(idF, |α | |α | |α |
id id

, |α | |α | |α |
id id

,K1)

where the discriminant function K1 is the constant function equal to 1, as the iden-
tity transformation is indeed (di)natural in all its variables. (Notice that id|α | is an
epimorphism, hence as discussed in Example (3.20) we have that |α | is a generalised
graph for idF .)
Unitarity. Consider

Φ = (ϕ, |α | n |β |
σ1 τ1

, |α | N1 |β |
σ1 τ1

,∆Φ) : (α,F) → (β,G).
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We prove thatΦ◦ id(α,F) = Φ and id(β,G) ◦Φ = Φ (by “Φ” here we mean its equivalence
class). It is clear that Φ ◦ id(α,F) consists of ϕ together with its type and generalised
graph as speci�ed in Φ. Also, ∆Φ◦id(α,F)(x) = 1 precisely when the x-th connected
component of N is acyclic and ∆Φ(x) = 1, by de�nition. Given that ∆Φ(x) = 1 implies
that the x-th c.c. of N is acyclic, we have that ∆Φ◦id(α,F) = ∆Φ. One can prove in a
similar way the other identity law.
Associativity. Consider Φ1 = Φ as above and also

Φ2 = (ϕ2, |β| m |γ |
σ2 τ2

, |β | N2 |γ |
σ2 τ2

,∆Φ2) : (β,G) → (γ,H),

Φ3 = (ϕ3, |γ | p |δ |
σ3 τ3

, |γ | N3 |δ |
σ3 τ3

,∆Φ3) : (γ,H) → (δ,K).

We know that composition of cospans via pushout is associative, as well as composition
of transformations; suppose therefore that ϕ3 ◦ ϕ2 ◦ ϕ1 has type given by:

|δ |

|γ | p

|β| m q

|α | n l r

τ3

σ3

τ2
p

ξ2

σ2

τ1
p

ζ2

ξ1
p

ξ3

σ1 ζ1 ζ3

and the generalised graph N3 ◦ N2 ◦ N1 is obtained as the result of the following
pushout-pasting:

|δ |

|γ | N3

|β| N2 N3 ◦ N2

|α | N1 N2 ◦ N1 N3 ◦ N2 ◦ N1

τ3

σ3

τ2

p
ξ2

σ2

τ1
p

ζ2

ξ1

p
ξ3

σ1 ζ1 ζ3

We prove that ∆Φ3◦(Φ2◦Φ1) = ∆(Φ3◦Φ2)◦Φ1 . We have that ∆Φ3◦(Φ2◦Φ1)(x) = 1 if and only
if, by de�nition:

(1) the x-th c.c. of N3 ◦ N2 ◦ N1 is acyclic;
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(2) ∀y ∈ ζ−1
3 {x}.∆Φ2◦Φ1(y) = 1;

(3) ∀z ∈ (ξ3 ◦ ξ2)
−1{x}.∆Φ3(z) = 1;

which is equivalent to say that:

(1) the x-th c.c. of N3 ◦ N2 ◦ N1 is acyclic;

(2a) ∀y ∈ l .
[
ζ3(y) = x ⇒ y-th c.c. of N2 ◦ N1 is acyclic

]
;

(2b) ∀y ∈ l .
[
ζ3(y) = x ⇒ ∀a ∈ n.

(
ζ1(a) = y ⇒ ∆Φ1(a) = 1

)]
;

(2c) ∀y ∈ l .
[
ζ3(y) = x ⇒ ∀b ∈ m.

(
ξ1(b) = y ⇒ ∆Φ2(b) = 1

)]
;

(3) ∀z ∈ p.
[
ξ3

(
ξ2(z)

)
= x ⇒ ∆Φ3(z) = 1

]
.

Call A the conjunction of the conditions above. Next, we have that ∆(Φ3◦Φ2)◦Φ1(x) = 1
if and only if:

(i) the x-th c.c. of N3 ◦ N2 ◦ N1 is acyclic;

(ii) ∀a ∈ n.
[
ζ3

(
ζ1(a)

)
= x ⇒ ∆Φ1(a) = 1

]
;

(iiia) ∀w ∈ q.
[
ξ3(w) = x ⇒ w-th c.c. of N3 ◦ N2 is acyclic

]
;

(iiib) ∀w ∈ q.
[
ξ3(w) = x ⇒ ∀b ∈ m.

(
ζ2(b) = w ⇒ ∆Φ2(b) = 1

)]
;

(iiic) ∀w ∈ q.
[
ξ3(w) = x ⇒ ∀z ∈ p.

(
ξ2(z) = w ⇒ ∆Φ3(z) = 1

)]
Call B the conjunction of these last �ve conditions. We prove that A implies B; in a
similar way one can prove the converse as well.

(ii) Let a ∈ n, suppose ζ3
(
ζ1(a)

)
= x. By (2b), with y = ζ1(a), we have ∆Φ1(a) = 1.

(iiia) Let w ∈ q, suppose ξ3(w) = x. �en the w-th c.c. of N3 ◦ N2 must be acyclic as it
is part of the x-th c.c. of N3 ◦ N2 ◦ N1, which is acyclic.

(iiib) Let w ∈ q, suppose ξ3(w) = x. Let also b ∈ m and suppose ζ2(b) = w. �en
x = ξ3

(
ζ2(b)

)
= ζ3

(
ξ1(b)

)
. By (2c), with y = ξ1(b), we have ∆Φ2(b) = 1.

(iiic) Let w ∈ q, suppose ξ3(w) = x. Let z ∈ p be such that ξ2(z) = w. �en
ξ3

(
ξ2(z)

)
= x: by (3), we have ∆Φ3(z) = 1. �ed

As anticipated in Remark (3.25), there is a natural way to interpret ordinary
transformations as morphisms in {B,C}∗.
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(3.37) De�nition. Let F : Bα → C, G : Bβ → C be functors and ϕ : F → G be a
transformation of type |α | n |β|

σ τ
. ϕ can be seen as a morphism (α,F) → (β,G)

in {B,C}∗ in a natural way by considering the (equivalence class of)

Φ = (ϕ, |α | n |β|
σ τ

, |α | Γ(ϕ) |β|
ι |α | ι |β |

,∆Φ)

where we de�ne ∆Φ(i) = 1 if and only if ϕ is dinatural in its i-th variable. (Notice that,
by construction, Γ(ϕ) is acyclic.) We call (the equivalence class of) Φ the standard

representation of ϕ in {B,C}∗. �

Still in line with what we said in Remark (3.25), we would use the standard repres-
entation only for “atomic” transformations, that is transformations that we cannot (or
do not want to) explicitly recognise as composite of smaller blocks.

�ings start ge�ing interesting upon composition. If we also have a ψ : G→ H,
seen as a morphism Ψ in an analogous way, then Ψ ◦ Φ consists of ψ ◦ ϕ with its
type, equipped with Γ∗(ψ ◦ ϕ) as a generalised graph and µ as translating function,
see (3.30). �e discriminant ∆Ψ◦Φ ends up mapping i to 1 precisely when ψ ◦ ϕ is
dinatural in its i-th variable “for a good reason”, i.e. because �eorem (1.59) applies.

(3.38) Example. Consider transformations ϕ1, . . . , ϕ5 as in Example (3.8). By compos-
ing their standard representations in {B,C}∗, the generalised graph of the composite
would be (3.13). Its acyclicity ensures the dinaturality of the composite. �

�e condition “the i-th connected component of N is acyclic whenever ∆Φ(i) = 1”
in De�nition (3.33) is designed to ignore dinaturality properties that happen to be
satis�ed “by accident”, as it were, which could cause problems upon composition.
Indeed, suppose that we have a transformation ϕ which is the composite of four
transformations ϕ1, . . . , ϕ4, whose resulting generalised graph, obtained by pasting
together Γ(ϕ1), . . . ,Γ(ϕ4), is as follows:

N =
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Call Φ the tuple in {B,C}∗ consisting of ϕ with its type 1 1 1 and N as a gener-
alised graph, as a composite of the standard representations of ϕ1, . . . , ϕ4. Suppose that
ϕ happens to be dinatural in its only variable for some reason (extreme example: the
category C is the terminal category). If in the de�nition of {B,C}∗ the only condition
on ∆ were “ϕ is dinatural in every variable in ∆−1

Φ
{1}”, without requiring that the i-th

c.c. of N be acyclic if ∆Φ(i) = 1, then equipping ϕ in Φ with a discriminant function
∆Φ de�ned as

1 1
1 1

∆Φ

would be legitimate. Compose now Φ with the identity morphism of {B,C}∗: by
de�nition we would obtain again Φ except for the discriminant function, which would
be de�ned as ∆Φ◦id(1) = 0 because the composite graph, which is N , is not acyclic.
Composition would not be unitary! �e condition “the i-th connected component of
N is acyclic whenever ∆Φ(i) = 1” in De�nition (3.33) is therefore not only su�cient,
as we saw in the proof of unitarity of composition in {B,C}∗, but also necessary.

�e proper generalised functor category. Now we can “trim-down” the morph-
isms of {B,C}∗ by only considering those which are either standard representations,
or composites of them. In this way, we get a subcategory that consists precisely of
transformations whose generalised graphs are either “simple” (they do not contain
internal places) or a composite of simple graphs, in which case the transformation
itself is a composite of simpler ones. �e graph of a transformation ϕ in {B,C} con-
tains only meaningful information: each place and transition really corresponds to an
argument of a functor or a variable of a transformation used to build up ϕ, and the
�ring of an enabled transition really corresponds to applying a dinaturality condition.
Such a ϕ, therefore, does admit a translating function that really works like µ in
De�nition (3.30).

(3.39) De�nition. LetB andC be categories. �e generalised functor category {B,C} is
the wide subcategory of {B,C}∗ (that is, it contains all the objects of {B,C}∗) generated
by the standard representations of transformations. Hence, a morphism in {B,C} is a
morphism of {B,C}∗ that is either:

• an identity (idF, |α | |α | |α |
id id

, |α | |α | |α |
id id

,K1),

• a standard representation of a transformation ϕ of type |α | n |β |
σ τ :

Φ = (ϕ, |α | n |β |
σ τ

, |α | Γ(ϕ) |β|
ι |α | ι |β |

,∆Φ)

with ∆Φ(i) = 1 if and only if ϕ is dinatural in its i-th variable; we call these
morphisms of {B,C} atomic,

• a �nite composite of standard representations of transformations. �
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(3.40) Remark. Although it is impossible, in general, to judge whether a transform-
ation is or is not a composite of others by looking at its type, one can distinguish
atomic morphisms of {B,C} from composite morphisms by looking at the generalised
graph N they come together with. Indeed, if a non-identity morphism of {B,C}∗

Φ = (ϕ, |α | n |β |
σ τ

, |α | N |β|
σ τ

,∆Φ)

is actually a morphism in {B,C} too, then Φ is atomic if and only if N = Γ(ϕ). In
case N , Γ(ϕ), then N contains internal places as a result of composing together
“atomic” graphs of transformations: that is, we have that ϕ = ϕk ◦ · · · ◦ ϕ1 for some
transformations ϕi , and N = Γ(ϕk) ◦ · · · ◦ Γ(ϕ1). �is decomposition of ϕ and N is
not necessarily unique.

�e category of graphs. We can now �nally individuate the category G of graphs
of transformations. To do so, much like we did to �nd the proper functor category
{B,C}, we will �rst build a “large” category of graphs G∗, which will consist of those
morphisms inH that are the generalised graph of a transformation in {B,C}∗, together
with a discriminant function, and later de�ne the “proper” G as a subcategory of it.

We begin by de�ning the notion of skeleton of a morphism in H, as it will be useful
later on.

(3.41) De�nition. Let f = |α | N |β|
σ τ be a morphism in H, and let n be the

number of connected components of N . �e skeleton of the cospan f is an (equivalence
class of) cospan(s) in FinSet

|α | n |β |
σ τ

where σ(i) is the number of the connected component of N to which σ(i) belongs to,
and similarly is de�ned τ. �

(3.42) Remark. If ϕ is a transformation and N is a generalised graph of ϕ, then the
type of ϕ is the skeleton of N .

�e category G∗ will then consist of only part of the data of {B,C}∗, obtained, as
it were, by discarding functors and transformations, and only considering the graphs
and the discriminant functions.

(3.43) De�nition. �e category G∗ of graphs consists of the following data.

• Objects are lists in List{+,−}.

• Morphisms α→ β are equivalence classes of pairs(
|α | N |β |

σ τ
,∆N

)
where:
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– (σ,τ,N) is a morphism in H,

– sources(N) = {σ(i) | αi = +} ∪ {τ(i) | βi = −},

– sinks(N) = {σ(i) | αi = −} ∪ {τ(i) | βi = +},

– let n be the number of connected components of N : then ∆N : n → {0,1} is
called discriminant function and it is such that ∆(i) = 1 implies that the i-th
connected component of N is acyclic.

A pair above is equivalent to another ((σ′, τ′,N′),∆N ′), where N′ also has n connected
components, if and only if there exists f : N → N′ an isomorphism in PN and
π : n→ n a permutation such that

|α | N |β |

N′

σ

σ′
f

τ

τ′
and

n {0,1}

n

∆N

π
∆′N

commute and f maps the i-th c.c. of N to the π(i)-th c.c. of N′.

• Composition is de�ned exactly as in {B,C}∗. To wit, composition of(
|α | N |β |

σ τ
,∆N

)
and

(
|β| N |γ |

η θ
,∆N ′

)
is the equivalence class of the pair

( |α | N′ ◦ N |γ |
ζσ ξθ

,∆g◦ f )

where N′ ◦ N is the Petri Net given by the result of the pushout

|γ |

|β| N′

|α | N N′ ◦ N

θ

τ

η

p
ξ

σ ζ

and ∆N ′◦N is de�ned as follows. If |α | n |β |
σ τ and |β| m |γ |

η θ are the
skeletons of (σ,τ,N) and (η, θ,N′) respectively, then the skeleton of (ζσ, ξθ,N′ ◦N)

125



Chapter 3. Towards a Godement calculus

is given by the pushout

|γ |

|β| m

|α | n l

θ

τ

η

p
ξ

σ ζ

(cf. Proposition (3.22)). De�ne therefore ∆N ′◦N (x) = 1 if and only if the x-th connec-
ted component of N′ ◦ N is acyclic and for all y ∈ ζ−1{x} and z ∈ ξ−1{x} we have
that ∆N (y) = 1 = ∆N ′(z). �

(3.44) De�nition. �e category G of graphs is the wide subcategory of G∗ generated
by equivalence classes of pairs(

|α | N |β |
σ τ

,∆N
)

where PN = |α | + |β|, σ = ι|α | , τ = ι|β | and for all p place, |·p| + |p·| = 1 (equivalently,
N has no internal places and every place is either a proper source or a proper sink).
Hence, the general morphism of G is either:

• an identity
(
|α | |α | |α |

id id

,K1
)
,

• a generator satisfying the conditions above; such morphisms are called atomic,

• a �nite composite of atomic morphisms. �

�e assignment (α,F) 7→ α and[
(ϕ, |α | n |β |

σ τ
, |α | Γ(ϕ) |β |

ι |α | ι |β |
,∆Φ)

]
7→

[ (
|α | Γ(ϕ) |β|

ι |α | ι |β |
,∆Φ

) ]
mapping atomic morphisms of {B,C} to atomic morphisms of G uniquely extends
to a functor Γ : {B,C} → G. Moreover, Γ has two special properties, by virtue of
the “modularity” of our {B,C} and G and the fact that all and only atoms in {B,C}
have atomic images: it re�ects compositions and identities. By “re�ects identities”
we mean that if Φ : (α,F) → (α,F) is such that Γ(Φ) = id|α | , then Φ = id(α,F). By
“re�ects compositions” we mean that if Φ is a morphism in {B,C} and Γ(Φ) is not
atomic, i.e. Γ(Φ) = (Nk,∆k) ◦ · · · ◦ (N1,∆1) with (Ni,∆i) atomic in G, then there must
exist Φ1, . . . ,Φk morphisms in {B,C} such that:

• Φ = Φk ◦ · · · ◦ Φ1,

• Γ(Φi) = (Ni,∆i).
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Hence, sayΦ = (ϕ, |α | n |β |
σ τ

, |α | N |β|
σ τ

,∆Φ): then there must exist trans-
formations ϕi with graph Γ(ϕi) (hence atomic), dinatural according to ∆i , such that
ϕ = ϕk ◦ · · · ◦ ϕ1, cf. (3.40). In other words, Γ satis�es the following de�nition.

(3.45) De�nition. Let D,E be any categories. A functor P : D → E is said to be a
weak Conduché �bration (WCF) if, given f : A→ B in D:

• P( f ) = id implies f = id;

• given a decomposition P( f ) = u ◦ v in E, we have that there exist g, h in D such
that f = g ◦ h, P(g) = u, P(h) = v.

We de�ne Cat E to be the full subcategory of Cat E whose objects are the categories
over E whose augmentation is a weak Conduché �bration. �

We have then proved the following theorem.

(3.46) �eorem. {B,C} is an object of Cat
G.

Conduché �brations were individuated in [Con72] as a re-discovery a�er the
original work of Giraud [Gir64] on exponentiable functors in slice categories. �ey
have to satisfy an additional property than our weak version, namely that the decom-
position f = g ◦ h is unique up to equivalence, where we say that two factorisations
g ◦ h and g′ ◦ h′ are equivalent if there exists a morphism j : codom (h) → dom (g′)

such that everything in sight commutes in the following diagram:

codom (h) B

A dom (g′)

g

jh

h′

g′

We will not, in fact, need such uniqueness; moreover, it is not evident whether our Γ
is a Conduché �bration or not.

(3.47) Remark. �e fact that {B,C} is not just an object of Cat
G, but even of Cat

G,
will allow us to build the substitution category A ◦ B just for categories A over G
whose augmentation is more than a mere functor: it is a weak Conduché �bration.
Indeed, ultimately we will be interested in a functor µ : {B,C} ◦ {A,B} → {A,C},
like Kelly, that will embody the substitution calculus: this means that as long as the
domain of ◦ contains {B,C}, we will be content. �e main advantage of restricting our
a�ention to Cat

G is that a category A in it inherits, in a sense, the modular structure
of G, as we shall see in the next Lemma.

(3.48) De�nition. Let P : D→ G be an object of Cat
G. A morphism d in D is said

to be atomic if P(d) is atomic. �
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(3.49) Lemma. Suppose that, in the following diagram, P is a weak Conduché �brations

and Q is an ordinary functor.

D F

G

Q

P

�en Q is completely determined on morphisms by the image of atomic morphisms of D.

Proof. Let d : D → D′ be a morphism in D with P(D) = α, P(D′) = β and P(d) =[ (
|α | N |β |

σ τ
,∆d

) ]
. If P(d) is not atomic, then either P(d) = id, in which case

d = id (because P is a weak Conduché �bration), or P(d) = (Nk,∆k) ◦ · · · ◦ (N1,∆1)
for some (not necessarily unique) atomic (Ni,∆i). Hence there must exist d1, . . . , dk
in D such that d = dk ◦ · · · ◦ d1 and P(di) = (Ni,∆i). �en Q(d) will necessarily be
de�ned as id in the �rst case, or as Q(dk) ◦ · · · ◦Q(d1) in the second case, otherwise
Q would not be a functor. �ed

§3.4 �e category of formal substitutions

Come to this point, Kelly considers the functor {B,−} and claims that it is “evidently
continuous”, which leads to �eorem (3.4). Although far from being evident, it is true
that the proof of its continuity is a classic exercise of Category �eory. Here we report
a detailed proof for our case.

First, we give an explicit de�nition of the functor {B,−} : Cat→ Cat
G. Given a

functor K : C→ C′, we de�ne {B,K} : {B,C} → {B,C′} to be the functor mapping
(α,F : Bα → C) to (α,KF : Bα → C′); and if

Φ = (ϕ, |α | n |β |
σ τ

, |α | N |β |
σ τ

,∆Φ) : (α,F) → (β,G)

is a morphism in {B,C}, then {B,K}(Φ) is obtained by whiskering K with ϕ, obtaining
therefore a transformation with the same type and generalised graph as before, with
the same dinaturality properties:

{B,K}(Φ) = (Kϕ, |α | n |β|
σ τ

, |α | N |β |
σ τ

,∆Φ).

In particular, {B,K} is clearly a functor over G.
We wish to prove that {B,−} is continuous, that is, preserves all small limits. We

recall the de�nition of limit of a functor X : S→ Cat, which will set up the notation
for the following �eorem.

(3.50) De�nition. Let S be a (non-empty) small category, X : S→ Cat a functor. Call
I the set of objects of S, Xi = X(i) for i ∈ I , Xa = X(a) for a a morphism in S.
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§3.4. The category of formal substitutions

A cone of X is a pair (L, (Pi)i∈I) where L is a category and for all i ∈ I , Pi : L→ Xi
is a functor such that

∀a : i → j in S,
L Xi

X j

Pi

Pj
Xa commutes.

A limit of X is a universal cone, that is, is a cone (L, (Pi)i∈I) such that for any cone
(A, (Fi : A→ Xi)i∈I) there exists a unique functor F : A→ L such that

L Xi

A

Pi

F
Fi

commutes.
A functor T : Cat → E is said to be continuous if and only if for all X : S → Cat

functor and (L, (Pi)i∈I) limit of X (if it exists), the pair (T(L), (T(Pi))i∈I) is a limit in E
for the composite S Cat E

X T
. �

(3.51) Remark. �e uniqueness condition in the notion of limit is equivalent to
requiring that the family (Fi)i∈I be jointly mono, which in our case means that if u and
v are objects (or morphisms) in L such that Pi(u) = Pi(v) for all i ∈ I , then u = v.
(3.52) �eorem. {B,−} is continuous.

Proof. In the same notations of the previous de�nition, suppose that (L, (Pi)i∈I) is a
limit in Cat of X : S→ Cat. We have to prove that the pair(

{B,L}, ({B,Pi})i∈I
)

is a limit in Cat
G of S Cat Cat

G
X {B,−} . In this proof, when we talk about categories

or functors “over G”, we mean objects or morphisms of Cat
G.

Any functor transforms cones into cones, so we have to prove that it is universal.
Call Γ all the weak Conduché �brations that categories in Cat

G come along with. Let
then D be a category over G, and let, for all i ∈ I , Gi : D→ {B,Xi} be a functor over
G such that (D, (Gi)i∈I) is a cone of {B,−} ◦ X , which means that for all a : i → j in S,
the following triangle in Cat

G

(†)

D {B,Xi}

{B,X j}

Gi

G j
{B,Xa}
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commutes. To conclude, we have to de�ne a functor G : D→ {B,L} over G, which
means that

D {B,L}

G

G

Γ
Γ

has to commute, such that for all i ∈ I also the following triangle commutes:

{B,L} {B,Xi}

D

{B,Pi}

G
Gi

We de�ne the action of G on objects �rst. Given an object D ∈ D with Γ(D) = α,
we have to provide a pair G(D) = (α,TD : Bα → L) such that {B,Pi}

(
G(D)

)
= Gi(D)

as objects of the generalised functor category {B,Xi} for all i ∈ I . Now, for all i ∈ I
we do have pairs

Gi(D) = (α,FD
i : Bα → Xi).

(�e functors FD
i have all the same variance α because Gi is a functor over G, hence

Γ
(
Gi(D)

)
= Γ(D) = α for all i ∈ I .) Consider then the pair(

Bα, (FD
i )i∈I

)
.

Is it a cone of X in Cat? It is if and only if for all a : i → j in S the following diagram
commutes:

Bα Xi

X j

FD
i

FD
j

Xa

and indeed it does because of (†), which says that for any D object ofD, Xa◦FD
i = Fj(D)

by de�nition of {B,Xa}. Hence, by universality of
(
L, (Pi)i∈I

)
, there exists a unique

functor TD : Bα → L such that Pi ◦ TD = FD
i . De�ne then

G(D) = (α,TD).

�en ({B,Pi} ◦ G)(D) = (α,Pi ◦ TD) = (α,FD
i ) = Gi(D), as required.

We now de�ne G on morphisms as follows. Let d : D→ D′ be a morphism in D
with Γ(D) = α, Γ(D′) = β and Γ(d) =

[ (
|α | N |β |

σ τ
,∆d

) ]
. Fix a representative

N and suppose that the Petri Net N has n ordered connected components. (A di�erent
representative N′ of the same class still has n connected components, possibly ordered
in a di�erent way.) By Lemma (3.49) we can assume, without loss of generality, that
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Γ(d) is atomic. Hence, suppose that PN = |α | + |β |, σ = ι|α | , τ = ι|β | and every place
in N is either a proper source or a proper sink. �en for all i ∈ I we have that Gi(d) is
an equivalence class of tuples as the following one:

Gi(d) =
[ (
ϕi,d, |α | n |β|

σ τ
, |α | N |β |

ι |α | ι |β |
,∆d

) ]
.

Once an ordering of the connected components of N has been �xed, the functions
σ and τ are uniquely determined by σ and τ (in fact, (σ,τ,n) is the skeleton of
(ι|α |, ι|β |,N)); di�erent orderings yield equivalent tuples and hence the same morphism
in {B,Xi}. Notice in particular that N is none other than the graph of ϕi,d in the sense
of De�nition (1.16).

�is means that we have transformations ϕi,d : T D
i → T D′

i with components

ϕi,d
B1,...,Bn

: T D
i (Bσ1, . . . ,Bσ |α |) → T D′

i (Bτ1, . . . ,Bτ |β|),

all of the same graph N , each such ϕi,d being dinatural in all variables Bk such that
∆d(k) = 1. Moreover, because of (†) and by de�nition of {B,Xa} we have that for all
a : i → j:

Xa(ϕ
i,d) = ϕ

j
d .

We aim to de�ne a morphism G(d) in {B,L}, which means we have to �nd a trans-
formation ϕd : TD → TD′ of type |α | n |β |

σ τ (hence its graph is automatically N)
and ∆d as discriminant function, in such a way that ({B,Pi} ◦ G)(d) = Gi(d) for all
i ∈ I .

We shall, of course, construct ϕd by building a cone of X in Cat and then using
the universality of (L, (Pi)), as we did with the de�nition of G(D). However, cones are
made of functors A → Xi , while we would like to build the cone of all the ϕi,d

B1,...,Bn
,

which are actual morphisms in Xi . �e trick is to consider the “arrow category” Arr,
which consists of two objects, called dom and codom, and only one non-identity arrow
dom→ codom. �en a functor from Arr to any category C is precisely a morphism of
C. If f : A→ B is in C, call p f q : Arr→ C the corresponding functor.

For B1, . . . ,Bn objects of B, we then have that the pair(
Arr, (pϕi,d

B1,...,Bn
q : Arr→ Xi)i∈I

)
is indeed a cone of X in Cat: there exists then a unique functor Arr → L, i.e. a
unique morphism ϕd

B1,...,Bm
of L, such that Pi(ϕ

d
B1,...,Bn

) = ϕi,d
B1,...,Bn

for all i ∈ I . We have
therefore a family of morphisms (ϕd

B1,...,Bn
), but is it actually a transformation TD → TD′

of type |α | n |β|
σ τ ? To answer this question, we have to calculate the domain

and codomain of ϕd
B1,...,Bn

and prove that the former is precisely TD(Bσ1, . . . ,Bσ |α |),
the la�er TD′(Bτ1, . . . ,Bτ |β |).

Remember that I is the category with one object and one morphism: a functor
I→ C is precisely an object ofC. If we write pCq for the functor I→ C that “indicates”
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the object C of C, consider the following composite:

I Arr Xi
pdomq

pϕi,dB1 ,...,Bn
q

As a family in i it makes a cone of X , hence there exists a unique object L of L (functor
I → L) such that Pi(L) = dom

(
ϕi,d

B1,...,Bn

)
= FD

i (Bσ1, . . . ,Bσ |α |). We show that both

dom

(
ϕd

B1,...,Bn

)
and TD(Bσ1, . . . ,Bσ |α |) satisfy the same property of L, hence they must

be equal. Indeed,

Pi

(
dom

(
ϕd

B1,...,Bn

))
= dom

(
Pi

(
ϕd

B1,...,Bn

))
= dom

(
ϕi,d

B1,...,Bn

)
= FD

i (Bσ1, . . . ,Bσ |α |)

(the �rst equation is due, of course, to the functoriality of Pi), and also

Pi
(
TD(Bσ1, . . . ,Bσ |α |)) = FD

i (Bσ1, . . . ,Bσ |α |)

by construction of TD as the unique functor that, once post-composed with Pi , is equal
to FD

i . Hence the domain of ϕd
B1,...,Bn

is indeed TD(Bσ1, . . . ,Bσ |α |); in a completely
analogous way one checks that its codomain is TD′(Bτ1, . . . ,Bτ |β|). We therefore have
a transformation ϕd : TD → TD′ of type |α | n |β |

σ τ .

Finally, we have to prove that ϕd so de�ned is dinatural in all variables Bk with
∆d(k) = 1. We show how to see this in the special case of α = β = [−,+] and n = 1,
but the argument holds for any α, β and n, as will be evident.

We are wondering whether ϕd is dinatural in its only variable, that is if it is true
that for all f : A→ B in B the following hexagon commutes:

(3.53)

TD(A, A) TD′(A, A)

TD(B, A) TD′(A,B)

TD(B,B) TD′(B,B)

ϕd
A

TD′(1, f )TD( f ,1)

TD(1, f )

ϕdB

TD′( f ,1)

�e image along Pi of the diagram is, by functoriality of Pi and by de�nition of TD,
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TD′ and ϕd , none other than

FD
i (A, A) FD′

i (A, A)

FD
i (B, A) FD′

i (A,B)

FD
i (B,B) FD′

i (B,B)

ϕi,d
A

FD′

i (1, f )FD
i ( f ,1)

FD
i (1, f )

ϕi,dB

FD′

i ( f ,1)

which is indeed commutative because ϕi,d is dinatural in its only variable. So the
two legs of (3.53) are morphisms u and v such that Pi(u) = Pi(v) for all i ∈ I: by
joint-monicity of the family (Pi)i∈I , we conclude that u = v. Now apply this argument
to the general case: the dinaturality of ϕd in its k-th variable, with ∆d(k) = 1, is
tantamount to proving that two morphisms in L are equal. We know that ϕi,d is
dinatural in its k-th variable for all i ∈ I , hence the image along Pi of the two legs
of the dinaturality hexagon are equal morphisms in Xi for every i. Since the Pi’s are
jointly mono, we conclude.

De�ne therefore

G(d) =
[
(ϕd, |α | n |β |

σ τ
, |α | N |β |

ι |α | ι |β |
,∆d)

]
.

�is extends to a functor G : D→ {B,L}, as we have seen before. Moreover, it is the
only possible such functor satisfying the condition {B,Pi} ◦ G = Gi for all i ∈ I by
construction. �ed

�e category A ◦ B. �e continuity of {B,−} gives us hope for the existence of a
le� adjoint

− ◦ B : Cat
G→ Cat.

We shall prove so by �rst constructing the category A ◦B explicitly, and then showing
the existence of a universal arrow (A ◦ B,FA : A→ {B,A ◦ B}) from A to {B,−}.

To see what A ◦ B looks like, we follow Kelly’s strategy: we aim to prove that
there is a natural isomorphism

Cat(A ◦ B,C) � Cat
G(A, {B,C})

and we use this to infer how A ◦ B must be. Write Γ for all augmentations (as weak
Conduché �brations) over G, and let Φ be an element of Cat

G(A, {B,C}). We now
spell out all we can infer from this fact. To facilitate reading, and to comply with Kelly’s
notation in [Kel72a] as in §3.1, we shall now refer to the (A1, . . . , Am)-th component
of a transformation ϕ as ϕ(A1, . . . , Am) instead of ϕA1,...,Am .

133



Chapter 3. Towards a Godement calculus

(a) For all A ∈ A, Γ(A) = α we have ΦA : Bα → C is a functor, hence

(a.i) for all B1, . . . ,B|α | objects of B, ΦA(B1, . . . ,B|α |) is an object of C,

(a.ii) for all g1, . . . ,g|α | , with gi : Bi → B′i a morphism in B, we have

Φ(A)(g1, . . . ,g|α |) : ΦA(C1, . . . ,C|α |) → ΦA(D1, . . . ,D|α |)

is a morphism in C, where

Ci =

{
Bi αi = +

B′i αi = −
Di =

{
B′i αi = +

Bi αi = −

�is data is subject to functoriality of ΦA, that is:

(1) ΦA(idB1, . . . , idB |α | ) = idΦA(B1,...,B |α |)

(2) For h1, . . . , h|α | , with hi : B′i → B′′i morphism of B,

ΦA(x1 ◦Bα1 y1, . . . , x|α | ◦Bα|α | y|α |) = ΦA(x1, . . . , x|α |) ◦ ΦA(y1, . . . , y|α |)

where

xi =

{
hi αi = +

gi αi = −
yi =

{
gi αi = +

hi αi = −

(b) For all f : A → A′ in A with Γ( f ) =
[ (
|α | N |β |

σ τ
,∆ f

) ]
, we have that Φ f

is an equivalence class of transformations whose graphs are representatives of Γ( f ),
such transformations being dinatural in some variables according to ∆ f . Hence for
all ξ =

(
(σ,τ,N),∆ξ

)
∈ Γ( f ) we have a transformation Φ fξ : ΦA→ ΦA′ whose type

|α | n |β |
σ τ is the skeleton of (σ,τ,N) and with discriminant function ∆ξ that

tells us in which variables Φ fξ is dinatural. �erefore to give Φ f one has to provide,
for all ξ =

(
(σ,τ,N),∆ξ

)
∈ Γ( f ), for all B1, . . . ,Bn objects of B, a morphism in C

Φ fξ(B1, . . . ,Bn) : ΦA(Bσ1, . . . ,Bσ |α |) → ΦA′(Bτ1, . . . ,Bτ |β|)

such that:

(3) for all π : n→ n permutation, Φ fπξ(B1, . . . ,Bn) = Φ fξ(Bπ1, . . . ,Bπn),

(4) for g1, . . . ,gn morphisms in B, with gi : Bi → B′i if ∆ξ(i) = 1, otherwise
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§3.4. The category of formal substitutions

gi = idBi , the following hexagon commutes:

ΦA(Bσ1, . . . , Bσ |α |) ΦA′(Bτ1, . . . , Bτ |β |)

ΦA(C1, . . . ,C|α |) ΦA′(D1, . . . ,D|β |)

ΦA(B′σ1, . . . , B
′
σ |α |
) ΦA′(B′τ1, . . . , B

′
τ |β |
)

Φ fξ (B1,...,Bn)

ΦA′(y1,...,y |β |)ΦA(x1,...,x |α |)

ΦA(x′1,...,x
′
|α |
)

Φ fξ (B′1,...,B
′
n)

ΦA′(y′1,...,y
′
|β |
)

where

Ci =

{
Bσi αi = +

B′σi αi = −
xi =

{
Bσi αi = +

gσi αi = −
yi =

{
gτi βi = +

Bτi βi = −

Di =

{
B′τi βi = +

Bτi βi = −
x′i =

{
gσi αi = +

Bσi αi = −
y′i =

{
Bτi βi = +

gτi βi = −

(c) �e data provided in (a) and (b) is subject to the functoriality of Φ itself, hence:

(5) Φ(idA) = idΦA,
(6) for f : A→ A′ and f ′ : A′→ A′′, Φ( f ′ ◦A f ) = Φ f ′ ◦{B,C} Φ f .

We now mirror all the data and properties of a functor Φ : A→ {B,C} over G to
de�ne the category A ◦ B.

(3.54) De�nition. LetA be a category overG via a weak Conduché �bration Γ : A→
G, and let B be any category. �e category A ◦ B of formal substitutions of elements
of B into those of A is the free category generated by the following data. We use the
same enumeration as above to enlighten the correspondence between each piece of
information.

(a.i) Objects are of the form A[B1, . . . ,B|α |], for A an object of A, Γ(A) = α, and for
objects B1, . . . ,B|α | in B.

(a.ii),(b) Morphisms are to be generated by

A[g1, . . . ,g|α |] : A[C1, . . . ,C|α |] → A[D1, . . . ,D|α |]

for A in A with Γ(A) = α, and gi : Bi → B′i in B, where

Ci =

{
Bi αi = +

B′i αi = −
Di =

{
B′i αi = +

Bi αi = −
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and by
fξ[B1, . . . ,Bn] : A[Bσ1, . . . ,Bσ |α |] → A′[Bτ1, . . . ,Bτ |β|]

for f : A → A′ in A, ξ =
(
|α | N |β |

σ τ
,∆ξ

)
a representative of Γ( f ), (σ,τ,n)

the skeleton of (σ,τ,N), B1, . . . ,Bn objects of B.

Such data is subject to the following conditions:

(3) For all π : n→ n permutation, for all B1, . . . ,Bn objects of B,

fπξ[B1, . . . ,Bn] = fξ[Bπ1, . . . ,Bπn],

(1),(5) For all A ∈ A, Γ(A) = α, B1, . . . ,B|α | objects on B,

A[idB1, . . . , idB |α |] = idA[B1,...,B |α |] = idA[B1, . . . ,B|α |],

(2) For all A ∈ A, Γ(A) = α, for all gi : Bi → B′i and hi : B′i → B′′i in B, i ∈ {1, . . . , |α |},

A[x1 ◦ y1, . . . , x|α | ◦ y|α |] = A[x1, . . . , x|α |] ◦ A[y1, . . . , y|α |]

where

xi =

{
hi αi = +

gi αi = −
yi =

{
gi αi = +

hi αi = −

(6) For all f : A→ A′ and f ′ : A′→ A′′ in A, for all(
|α | N |β|

σ τ
,∆

)
∈ Γ( f ) and

(
|β | M |γ |

η θ
,∆′

)
∈ Γ( f ′),

with (σ,τ,n) and (η, θ,m) the skeletons of, respectively, (σ,τ,N) and (η, θ,M), and
for all choices of a pushout

|γ |

|β| m

|α | n l

θ

τ

η

p
ξ

σ ζ

each choice determining the skeleton of (the �rst projection of) a representative of
Γ( f ′ ◦ f ),

f ′
(η,θ)[Bξ1, . . . ,Bξm] ◦ f(σ,τ)[Bζ1, . . . ,Bζn] = ( f ′ ◦ f )(ζσ,ξθ)[B1, . . . ,Bl],
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(4) For all f : A→ A′, ξ =
(
|α | N |β |

σ τ
,∆ξ

)
∈ Γ( f ), with (σ,τ,n) the skeleton

of (σ,τ,N), for all g1, . . . ,gn in B, with gi : Bi → B′i if ∆ξ(i) = 1, otherwise gi = idBi ,
the following hexagon commutes:

(3.55)

A[Bσ1, . . . , Bσ |α |] A′[Bτ1, . . . , Bτ |β |]

A[C1, . . . ,C|α |] A′[D1, . . . ,D|β |]

A[B′σ1, . . . , B
′
σ |α |
] A′[B′τ1, . . . , B

′
τ |β |
]

fξ [B1,...,Bn]

A′[y1,...,y |β |]A[x1,...,x |α |]

A[x′1,...,x
′
|α |
]

fξ [B′1,...,B
′
n]

A′[y′1,...,y
′
|β |
]

where

Ci =

{
Bσi αi = +

B′σi αi = −
xi =

{
Bσi αi = +

gσi αi = −
yi =

{
gτi βi = +

Bτi βi = −

Di =

{
B′τi βi = +

Bτi βi = −
x′i =

{
gσi αi = +

Bσi αi = −
y′i =

{
Bτi βi = +

gτi βi = −

We will denote the diagonal of (3.55) as f [g1, . . . ,gn]. �

(3.56) Remark. By (5) and (2), we have

A[g1, . . . ,g|α |] = idA[g1, . . . ,g|α |]

and by (1), we have
f [B1, . . . ,Bn] = f [idB1, . . . , idBn]

which is coherent with the usual notation of A for idA.

Note that f [g1, . . . ,gn] is not the most general morphism of A ◦ B, as opposed to
what happens in Kelly’s covariant case (cf. discussion a�er (3.6)). Indeed, consider
f [g1, . . . ,gn] given by (3.55), and take h1, . . . , h|β | morphisms of B, where

hi :
{

B′τi → B′′i βi = +

B′′i → Bτi βi = −

�en A′[h1, . . . , h|β |] ◦ f [g1, . . . ,gn] is not, in general, of the form f ′[g′1, . . . ,g
′
n].

Indeed, although two consecutive morphisms both of type (a.ii) or both of type (b)
can be “merged” together into a single one by (2) and (6), we have no way, in general,
to swap the order of a morphism of type A[g1, . . . ,g|α |] followed by one of the form
fξ[B1, . . . ,Bn], because the only axiom that relates the two generators is (3.55). �is is
a dinaturality condition, that is not quite like Kelly’s naturality equation (3.6) which
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Chapter 3. Towards a Godement calculus

does allow the “cross-over” of morphisms of di�erent kind. Of course, if (3.6) happens
to be a naturality square, that is if fξ is a natural transformation, then everything
works as in Kelly’s case. �erefore, all we can say about the general morphism of
A ◦ B is that it is a “string” of compositions of alternate morphisms of type (a.ii) and
(b), subject to the equations (1)-(6).

(3.57) Remark. If A is such that |Γ(A)| = 1 for all objects A in A, then A ◦B is highly
reminiscent of the category A ⊗ B as described by Power and Robinson in [PR97].
�e authors studied the other symmetric monoidal closed structure of Cat, where
the exponential [B,C] is the category of functors from B to C and morphisms are
simply transformations (not necessarily natural), and ⊗B is the tensor functor that
is the le� adjoint of [B,−]. �e category A ⊗ B has pairs (A,B) of objects of A and
B, and a morphism from (A,B) to (A′,B′) is a �nite sequence of non-identity arrows
consisting of alternate chains of consecutive morphisms of A and B. Composition is
given by concatenation followed by cancellation accorded by the composition in A
and B, much like our A ◦ B. �e only di�erence with their case is that we have the
additional dinaturality equality (4). For an arbitrary category A over G, our A ◦ B
would be a sort of “generalised tensor product”, where the number of objects of B we
“pair up” with an object A of A depends on Γ(A).

A le� adjoint. We conclude with a last result, that corresponds to Kelly’s �e-
orem (3.4). �is is going to be a crucial step towards a complete Godement calculus
for dinatural transformations; we shall discuss some ideas and conjectures about the
following steps a�erwards.

(3.58) �eorem. �e functor {B,−} has a le� adjoint

Cat
G Cat

−◦B

{B,−}

⊥

therefore there is a natural isomorphism

(3.59) Cat
(
A ◦ B,C

)
� Cat

G
(
A, {B,C}

)
.

Moreover, ◦ : Cat
G × Cat→ Cat is a functor.

Proof. Recall that to give an adjunction (− ◦ B) a {B,−} is equivalent to give, for
all A ∈ Cat

G, a universal arrow (A ◦ B,FA : A→ {B,A ◦ B}) from A to the functor
{B,−}; FA being a morphism of Cat

G. �is means that, for a �xed A, we have to
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de�ne a functor over G that makes the following triangle commute:

A {B,A ◦ B}

G

FA

Γ
Γ

which is universal among all arrows from A to {B,−}: for all arrows (C,Φ : A →
{B,C}) from A to {B,−} (Φ being a functor over G), there must exist a unique morph-
ism in Cat, that is a functor, H : A ◦ B→ C such that

A {B,A ◦ B}

{B,C}

FA

Φ
{B,H}

commutes. In the proof we will refer to properties (1)-(6) as given in the de�nition of
A ◦ B.

Let then A be a category over G with Γ : A→ G a weak Conduché �bration. We
de�ne the action of FA on objects �rst. If A is an object of A with Γ(A) = α, then the
assignment

Bα A ◦ B

(B1, . . . ,B|α |) A[B1, . . . ,B|α |]

(B′1, . . . ,B
′
|α |
) A[B′1, . . . ,B

′
|α |
]

FA(A)

(g1,...,g |α |) A[g1,...,g |α |]

(each gi : Bi → B′i in Bαi ) is a functor by virtue of (1) and (2). By li�le abuse of notation,
call FA(A) also the pair (α,FA(A)), which is an object of {B,A ◦ B}.

To de�ne FA on morphisms, let f : A → A′ a morphism in A, with Γ(A) = α,
Γ(A′) = β, let

ξ =
(
|α | N |β |

σ τ
,∆ξ

)
∈ Γ( f ),

and call |α | n |β |
σ τ the skeleton of (σ,τ,N). We de�ne FA( f ) : FA(A) → FA(A′)

to be the equivalent class of the tuple(
FA( f )ξ, |α | n |β |

σ τ
, |α | N |β|

σ τ
,∆ξ

)
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Chapter 3. Towards a Godement calculus

where FA( f )ξ is a transformation whose general component is

FA(A)(Bσ1, . . . ,Bσ |α |) FA(A′)(Bτ1, . . . ,Bτ |β |)

A[Bσ1, . . . ,Bσ |α |] A′[Bτ1, . . . ,Bτ |β|]

=

fξ [B1,...,Bn]

=

�en FA( f )ξ is indeed dinatural in its i-th variable whenever ∆ξ(i) = 1 because
of (4). Moreover, FA is well-de�ned on morphisms because of (3) and is in fact a
functor thanks to (5) and (6). Finally, FA( f ) so de�ned is indeed a morphism of
{B,A ◦ B}: if f is such that Γ( f ) is atomic, then FA( f ) is the standard representation
of the transformation FA( f )ξ , hence an atomic morphism of {B,A ◦ B}; if instead
Γ( f ) = (Nk,∆k)◦ · · ·◦(N1,∆1)where (Ni,∆i) is atomic, then there exists a factorisation
f = fk ◦ · · · ◦ f1 in A with Γ( fi) = (Ni,∆i) because Γ is a weak Conduché �bration. By
functoriality of FA, we have that FA( f ) = FA( fk) ◦ · · · ◦ FA( f1), hence it is a composite
of standard representations of transformations.

We now prove that FA is universal. Let then Φ : A → {B,C} be a morphism in
Cat
G, that is a functor over G. We de�ne H : A ◦ B→ C as follows:

(a.i) For A ∈ A with Γ(A) = α,

H
(
A[B1, . . . ,B|α |]

)
= Φ(A)(B1, . . . ,B|α |);

(a.ii) For A ∈ A with Γ(A) = α, for gi : Bi → B′i in Bαi , i ∈ {1, . . . , |α |},

H
(
A[g1, . . . ,g|α |]

)
= Φ(A)(g1, . . . ,g|α |);

(b) For f : A→ A′ in A, ξ = (Nξ,∆ξ) ∈ Γ( f ) where Nξ has n connected components,
for B1, . . . ,Bn ∈ B,

H
(
fξ[B1, . . . ,Bn]

)
= Φ( f )ξ(B1, . . . ,Bn),

where Φ( f )ξ is the representative of Φ( f ) whose type is given by the skeleton of Nξ ,
cf. the discussion on the data entailed by a functorΦ : A→ {B,C} overG preceding
De�nition (3.54).

H so de�ned on the generators of A ◦ B extends to a unique functor provided that
H preserves the equalities (1)-(6) in A ◦ B, which it does as they have been designed
precisely to re�ect all the properties of a functor Φ : A → {B,C}, and H is de�ned
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using Φ accordingly. Finally, by construction

A {B,A ◦ B}

{B,C}

FA

Φ
{B,H}

commutes. �e uniqueness of H follows from the fact that the commutativity of the
above triangle implies that Φ(A) = H(FA(A)) for all A ∈ A and Φ( f ) = H(FA( f )),
hence any such functor H must be de�ned as we did to make the triangle commutative.

With such a universal arrow (A ◦ B,FA : A→ {B,A ◦ B}) we can de�ne a functor
− ◦ B which is the le� adjoint of {B,−}. Given F : A → A′ a functor over G, by
universality of FA there exists a unique functor F ◦ B : A ◦ B→ A′ ◦ B that makes
the following square commute:

A {B,A ◦ B}

A′ {B,A′ ◦ B}

FA

F {B,F◦B}

FA′

Such F◦B is de�ned on objects as F◦B
(
A[B1, . . . ,B|α |]

)
= (FA′◦F)(A)(B1, . . . ,B|α |) =

F A[B1, . . . ,B|α |] and on morphisms as

F ◦ B
(
A[g1, . . . g|α |]

)
= F A[g1, . . . ,g|α |], F ◦ B

(
f [B1, . . . ,Bn]

)
= F f [B1, . . . ,Bn].

Finally, ◦ extends to a functor

Cat
G × Cat Cat

A B A ◦ B

A′ B′ A′ ◦ B′

◦

F G F◦G

where F ◦ G is de�ned as follows on the generators:

• F ◦ G
(
A[B1, . . . ,B|α |]

)
= F A[GB1, . . . ,GB|α |],

• F ◦ G
(
A[g1, . . . ,g|α |]

)
= F A[Gg1, . . . ,Gg|α |],

• F ◦ G
(
f [B1, . . . ,Bn]

)
= F f [GB1, . . . ,GBn].

It is easy to see that F ◦ G is well de�ned (i.e. it preserves equalities in A ◦ B), thanks
to the functoriality of F and G. It is also immediate to verify that ◦ is indeed a
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functor; for example, here is the proof that for A A′ A′′
F1 F2 and B B′ B′′

G1 G2

in, respectively, Cat
G and Cat, the functors (F2F1) ◦ (G2G1) and (F2 ◦ G2)(F1 ◦ G1)

coincide on objects:

(F2F1) ◦ (G2G1)
(
A[B1, . . . ,B|α |]

)
= (F2F1)A[(G2G1)B1, . . . , (G2G1)B|α |]
= F2(F1 A)[G2(G1B1), . . . ,G2(G1B|α |)]
= (F2 ◦ G2)

(
F1 A[G1B1, . . . ,G1B|α |]

)
= (F2 ◦ G2)

(
(F1 ◦ G1)

(
A[B1, . . . ,B|α |]

) )
= (F2 ◦ G2)(F1 ◦ G1)

(
A[B1, . . . ,B|α |]

)
. �ed

§3.5 Coda: conclusions and next steps

�e story so far. We have come a long way from [DS70], where dinatural trans-
formations, just discovered, revealed themselves as far from being accommodating,
since they fail to compose. We have seen in the Introduction a survey of the literature
in Computer Science that involves them, despite their evident problem, and how re-
searchers had to circumvent their lack of compositionality via ad hoc, partial solutions;
ultimately, however, dinatural transformations have remained poorly understood.
Although Eilenberg and Kelly’s work on extranatural transformations [EK66] gave
us a hint of the fact that acyclicity is the appropriate requirement for composition-
ality, there is no hope to use, mutatis mutandis, their proof for the case of dinatural
transformations: it relies on the crucial hypothesis of absence of rami�cations in the
graphs.

We have seen how, perhaps surprisingly at �rst, Petri Nets, traditionally used
to model computational processes, have provided us with the correct technical tool
to connect a purely algebraic condition, the commutativity of a certain hexagon
in a category, with a purely geometric one: the acyclicity of a certain graph. Yet,
the correspondence dinatural transformations - (certain) Petri Nets is extremely nat-
ural: applying the dinaturality condition of a transformation in one of its variable
is tantamount to �ring the (enabled by construction) transition corresponding to
that variable. Such simple observation gave us the key to prove �eorem (1.38), by
translating the dinaturality condition of a composite ψ ◦ ϕ into a reachability problem
between two speci�c markings. An analysis of the la�er revealed that, indeed under
the hypothesis of acyclicity, the required reachability condition is always satis�ed.
�e long-standing problem of compositionality of dinatural transformations is, at last,
solved in its complete generality.

On a parallel road, we have studied also how dinatural transformations compose
horizontally. A working de�nition of horizontal composition exists and is based on the
same idea behind the well-known version for natural transformations. Such operation
is, as it is proper, associative and unitary. �e “classical” interchange law is not
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satis�ed, that is true, but we are con�dent that a dinatural version of it can be found.
�is will be the object of further studies.

�e two theories of compositionality of dinatural transformations are intertwined
in the context of a Godement calculus that generalises the one for ordinary functors
and natural transformations. �e work towards such a calculus was started, as we
saw, by Kelly [Kel72a] for purely covariant functors and generalised natural trans-
formations. Our work in this �nal chapter was to replicate, as faithfully as possible,
Kelly’s steps. Once again, the simultaneous presence of both rami�cations and U-turns
(which are typical of extranaturality conditions) made things more complicated than
Kelly’s situation. Our notion of graph of a transformation is not just a permutation,
and is not just a cospan in FinSet either: it is a whole Petri Net with speci�ed “do-
main” and “codomain” places along which to compose them. A generalisation of the
compositionality result for transformations with (appropriate) “complicated” graphs,
that is �eorem (3.31), yields a category {B,C} of functors of mixed variance from
B to C and partially dinatural transformations between them. {−,−} embodies the
theory of vertical composition, and its le� adjoint ◦ will, we believe, entail the theory
of horizontal composition instead as indeed happens in Kelly’s case.

A look into the future. �e ultimate goal to achieve a complete Godement calculus
of dinatural transformations is to obtain an appropriate functor over G

µ : {B,C} ◦ {A,B} → {A,C}

which, de facto, realises a formal substitution of functors into functors and trans-
formations into transformations as an actual new functor or transformation. As in
Kelly’s case, horizontal composition of dinatural transformations will be at the core,
we believe, of the desired functor; the rules of vertical composition are, instead, already
embodied into the de�nition of {B,C}.

Such µ will arise as a consequence of proving that Cat
G is a monoidal closed

category, much like Kelly did, by showing that the natural isomorphism (3.59) extends
to

Cat
G(A ◦ B,C) �

Cat
G(A, {B,C}).

Necessarily then, we will �rst have to show that the substitution category A ◦ B is
itself an object of Cat

G. Following Kelly’s steps, this will be done by extending our
functor ◦ : Cat

G × Cat→ Cat to a functor

◦ : Cat
G ×
Cat
G→

Cat
G,

exhibiting Cat
G as a monoidal category, with tensor ◦. To do so in his case, Kelly

de�ned A ◦ B just as before, ignoring the augmentation on B, and then augmented
A ◦ B using the augmentations of A and B. In fact, what he did, using the category
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P of permutations, was to regard P as a category over itself in the obvious way and
then to de�ne a functor P : P ◦ P → P that computes substitution of permutations
into permutations. �at done, he set Γ : A ◦ B→ P as a composite

A ◦ B P

P ◦ P

ΓA◦ΓB P

�is suggests, as usual, to do the same in our case. Hence, the next step will be to
come up with a “substitution” functor

S : G ◦ G→ G,

which is tantamount to de�ne an operation of substitution of graphs, and then de�ne
Γ : A ◦ B→ G as

(3.60)

A ◦ B G

G ◦ G

ΓA◦ΓB S

A possible hint to how to do this is given by how we de�ned the horizontal
composition of dinatural transformations in Chapter 2, and what happened to the
graphs of the transformations (that is, we look at the special case of A = B = {C,C}).
Let us look back at Example (2.7). In there, we had the transformations δ : idC → ×

and eval : H → idC, where H : C[+,−,+] → C is de�ned as H(X,Y, Z) = X × (Y ⇒ Z).
�en (the standard representations of) δ and eval constitute elements of {C,C}

(δ,1 1 2, ,K1) : ([+], idC) → ([+,+],×)

and

(eval,

3 2 1
1 1 1
2 2
3

, ,K1) : ([+,−,+],H) → ([+], idC).

When we computed the �rst horizontal composition of δ and (evalA,B)A,B, in fact
we considered the formal substitution eval

[
δ, ([+], idC)

]
in {C,C} ◦ {C,C}, which

we then realised into the transformation eval

1
∗ δ. �e “realisation” part is what the
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§3.5. Coda: conclusions and next steps

desired functor µ will do, once properly de�ned. Now, consider, in G ◦ G, the formal
substitution Γ(eval)

[
Γ(δ) , [+]

]
, which is the image of eval

[
δ, ([+], idC)

]
along the

functor Γ ◦ Γ : {C,C} ◦ {C,C} → G ◦G. Since µ : {C,C} ◦ {C,C} ought to be a functor
over G, we have that S

(
Γ(eval)

[
Γ(δ) , [+]

] )
should be the graph that eval

1
∗ δ has,

which is

�e intuition for it was that we “bent” Γ(δ) into the U-turn that is the �rst connected
component of Γ(eval). �e intuitive idea I intend to pursue, for a general de�nition of
substitution of graphs into graphs, is the following: given two connected graphs N1,
N2 in G, the graph S

(
N1[N2]

)
is the result of subjecting N2 to all the rami�cations and

U-turns of N1. Slightly more in detail, one would have to substitute a copy of N2 in
every directed path of N1. �is idea is not original, as it was suggested by Guglielmi,
Gundersen and Parigot [GGP] in private communications to implement substitution
of atomic �ows, which are graphs extracted from certain proofs in Deep Inference and
they look very much like a morphism in G. For an excellent introduction to Deep
Inference and atomic �ows, we refer the reader to Gundersen’s thesis [Gun09].

At the time of writing, I have not looked yet in detail at how to put into a formal,
working de�nition such an intuitive idea, but I am con�dent it is indeed possible,
although far from being trivial. Once that is done, the rest should follow relatively
easily, and I would expect that the correct compatibility law for horizontal and vertical
composition sought in §2.4 will become apparent, once the substitution functor µ
above will be found as part of a monoidal closed structure. �e task of de�ning the
notion of substitution of graphs remains, however, the �rst and foremost obstacle
towards a Godement calculus of dinatural transformations; if I am not able to solve
this problem, to use Kelly’s �nal words in [Kel72a], perhaps some colleague will supply

my lack of wit.
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a ricordarmi in quanti modi diversi si può andare all’Inferno). Considero entrambi
miei amici e parte di una ristre�a “famiglia scienti�ca”. Rimarrò senz’altro in conta�o
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