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Abstract

Many of the principal high-performance libraries are written in assembly language. When a
new CPU architecture appears on the market, it takes time for the developers of high perfor-
mance libraries to gain access to it and to port their kernels to that system. During that period
performance for a wide range of applications suffers.

To provide a suitable middle ground, the author proposes using a tailored subset of the
optimization options built into the available compilers. The available options are not ideal for
all software programs on all architectures, and in the general case compilation times need to be
kept short. However, scientific computing kernels are so heavily used that an expensive one-off
compilation can be afforded.

Searching the large number of available compiler flags by hand would be extremely time
consuming, and difficult to do without an intimate understanding of the hardware, the compiler
of choice and the software being compiled. Instead, this search is best automated, and that is
what the author has attempted to do in the form of a tool referred to as OptSearch.

This tool reads in a number of options from a configuration file: These include the list of
compiler flags to search through, the application to be compiled, a clean-up routine, and two
sets of tests to run; one for accuracy, one for performance.

After investigation of a number of optimisation algorithms, a robust search method (PSO
[49]) is selected and used as a number of the compilations are liable to end in an error from
the compiler. The end result is a set of compiler flags that deliver better performance than
the defaults for that particular piece of code on that hardware. While this will not rival expert
hand-coding, it is observed to deliver significant performance improvements over using -O3.

To date, OptSearch has been used with the reference BLAS [117] and the HPL bench-
mark [136]. In the future the author intends to target other libraries fundamental to scientific
computing.



CHAPTER 1
INTRODUCTION

It’s not overstating the case to say that software is vital to research. If we were
to magically remove software from research, 7 out of 10 researchers would be out
of a job.

Simon Hettrick [80]

Most modern scientists make use of high performance computers (HPCs) for the running
of computational models or data mining and statistical analysis. The greater the speed or
throughput of the machine, the more detail the model can contain and the larger the dataset
being analysed can be. HPC is a vital part of modern science, and, with over 90% of UK
researchers dependent on software to facilitate their work [80] [104], the importance of good,
maintainable software to research cannot be over stated.

Users of HPC depend heavily on advances both in hardware and software to achieve the
staggering speeds of computation announced in press releases and in the TOP500 [122] list.
Unfortunately, these advances rarely happen at the same rate. In practice, it is common for
high performance libraries, required by the many applications in use on HPC systems, to take
several months to deliver the same level of performance on a newly introduced system that
were seen on the previous generation.

These libraries rely on hand-coded routines, generally written in assembler, and require
a great deal of skill and tuning to deliver such high efficiencies. There can also be difficul-
ties in library developers gaining access to a new microarchitecture, leading to further delays
before the high efficiencies seen in the TOP500 list (often with a Rmax or achieved floating
point throughput of 90% or more of the theoretical peak, Rpeak) can be realised. Debugging is
difficult and portability depends on having a pre-written kernel for the architecture being tar-
geted, or requesting that the developers support it (requiring that they have access to a suitable
machine on which to work).

Often, scientific software developers will make adjustments to their software to increase
performance. Many of these adjustments reduce the portability of the application in which
they are made, since they frequently depend on particular compilers, operating systems and
hardware to work as intended. Moving to another machine may result in software that does not
compile, or behaves unpredictably, depending on the changes that were made.1

1In introductory courses on using HPC systems, the author frequently welcomes users to the 1960’s, although
in truth things are better now as standards have meant far less variation between machines.
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Chapter 1. Introduction

Unfortunately, many developers of scientific software work on a single project for only
a few years before moving on. It is left to the next person, usually a PhD student like their
predecessor, to pick up where they left off and advance the work forward, often moving to a
newer machine in the process. Maintainability and portability of the software could be argued
to be of high importance in such situations, but these things are rarely priorities in practice,
compared with a paper or thesis deadline.

This problem has been recognised by others, and in recent years efforts have focussed on
addressing it through various means, including community codes (some with well defined cod-
ing standards), the Research Software Engineer (RSE) movement and efforts of the Software
Sustainability Institute (SSI) [2], among others. These efforts have helped to alleviate the prob-
lem in some of the more established disciplines in HPC, but it is an ongoing battle with a long
way to go before the problem can be considered solved.

It remains the case for many people both in and outside of scientific computing that if a
given program compiles and runs, this is good enough. Little thought is given to the flags
passed to the compiler at compile time, whether these are provided by the user, or more com-
monly, by the Makefile supplied with (or generated by the build process of) the software.
However, where it is important to get as much efficiency (however that is defined) out of a pro-
gram as possible, it may pay dividends to study the compiler manual and customise the flags
accordingly. To realise this performance benefit, the individual responsible for choosing and
customising the chosen flag/parameter set for an application must have an intimate knowledge
not only of the effects of the chosen flags and their values, but also of the target hardware and
the software being compiled. A sufficiently high level of familiarity with one is uncommon;
with more than one of these it is rare.

Administrators of supercomputers are probably more interested than most in having ap-
plications on the machines they manage run as fast as possible2, yet without having the time
and the necessary depth of knowledge, (even) they cannot choose the most effective compiler
flags for each program, nor for each compiler. The author, an experienced supercomputer ad-
ministrator of many years, is aware that it is common for the administrators of such systems
to spend as much as 6 months to a year rebuilding the set of software required by the users
whenever a new machine comes into production. With the broad range of software packages
and libraries typically required by the research community at a single institution (a subset of
which can be seen in the ARCHER documentation [51]), it is unlikely that any one individual
could be familiar with them all to the extent necessary to choose the best compilation options
in every case.

Students of scientific computing courses are often taught arcane ways to optimize their
code. Some of these optimizations are things that we might reasonably expect a compiler to
be able to do, such as loop unrolling, tiling and jamming, and code in-lining. Compilers, they
are told3, are not good enough to do this for you, at least not beyond a very basic level. These
alterations to what was a relatively simple piece of code are necessary to achieve performance
[167], and have been for some time4, even though they may make it unreadable and difficult
to debug and maintain. The abundance of such difficult to comprehend software is a growing
problem in these times of heightened awareness of the insecurities of both hardware and soft-
ware, when peer review could be considered critical. They also affect the ease of porting the

2or, increasingly in these times, as energy efficiently as possible
3On one course, taught by an employee of a well known chip manufacturer, the author was told this despite the

chip manufacturer investing heavily in their own compilers and high performance libraries
4The author’s supervisor wrote his first piece of self-inlining machine code to improve FORTRAN performance

in 1971
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code from one architecture to another, as further code changes are necessary to maintain perfor-
mance, and a change that is beneficial with one combination of compiler and target architecture
may be detrimental to, or even entirely incompatible with, another.

That code must be altered in this way is something that has been taught to more than one
generation. The author has heard or read it stated (and re-stated) for more than a decade. The
life time of the average scientific code is generally greater than a single CPU architecture5,
making a more portable method highly desirable.

1.1 Motivation

Portability might matter more than mere performance. That is, you can sacri-
fice probably a few percent of extra performance if you get on to better portability
and sustainability of your developments.

Jean-Philippe Nominé, CEA [97]

Many scientists find their work is limited in how much data can be processed, how large
a simulation can be run or how finely detailed that simulation. These limitations are often
described as being due to the availability of the hardware, but this is not necessarily the only
limitation. Supercomputing centres are usually quick to invest in hardware, but few show a
willingness to invest in the software their facilities are created to support.

Performance portability is a significant challenge for the average user of HPC. Anything
that allows them to move their work to the next machine without requiring them to acquire new
skills or expend effort that might otherwise be used for research is likely to be well received.
As explained in [7, page 31]:

“Users are overwhelmingly concerned about the challenge of performance
portability. The high development and maintenance effort required to tune to mul-
tiple platforms is considered a large burden, taking time and resources that might
otherwise be spent on other aspects of the projects. As a result, developers may
either limit the number of platforms their codes are ported to or limit how well
their codes are optimized for specific platforms of interest.”

Even on established hardware, many of the most popular applications fail to deliver even
10% of theoretical peak floating point performance (Rpeak) on the machines they are running
on [20] [24]6 [47, slide 22].If efficiency could be increased, throughput or simulation detail
could be increased without needing to invest in more and better hardware.

Efficiency does not need to be increased greatly to have a significant impact on machine
throughput. In [17] the case is made for investing in 2 months of an expert’s time in return for a
5% improvement in performance. Despite the extremely conservative estimate of 5%, and the
demonstration of its worth even with this relatively low return, in practice it is more common
for HPC sites to invest in hardware. This is perhaps better attributed to financial constraints
placed on such sites, rather than simply an indication of how software investment is viewed. If
not designed with portability in mind, software improvements are unlikely to be portable. Thus
the investment cannot continue to offer returns beyond the lifetime of the current production
machines.

5The UK Met Office typically buys a new computer for production purposes every three years, but embarks on
a major software re-write every 20 years [23].

6In point of fact, [24] is now more than 10 years old, and the problem appears to be getting worse.
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While every scientific software developer (and user) is likely to know about the pre-defined
optimization levels of compilers (-O2 and -O3 being the most commonly used), there is less
understanding of what these do in practice. Compilers generally have a number of flags for
tuning optimization. GCC [154] version 7.3.0 has over 400 flags for this purpose (the exact
number varies depending on the target architecture and how the compiler itself was built), yet
the pre-defined optimization levels will only equate to a subset of these.

There are also many who do not realise that the pre-defined optimization levels, such as
-O2, are not equivalent on all compilers. Rather, they are the result of choices made by the
compiler developers, who must make many assumptions about the typical usage of their soft-
ware and the environment in which it will run. GNU, whose compilers are widely used for
open source software, including Linux distributions, must worry about portability far more
than Intel, who need only support one architecture, x86, and are free to prioritise performance
on a smaller list of hardware – their own.

Unfortunately, very few people have the time or the knowledge to go looking through the
compiler manuals, and sometimes the source, for the compiler options available to them. They
have even less time available to spend searching for the best combination, something that can
take a considerable amount of time, even for simple programs. Yet those who have taken the
time to do the search by hand have already observed significant gains in performance, and
these are often appreciated by HPC users (see for example the email in appendix D). This
demonstrates that compilers, used correctly, can deliver the needed improvements in at least a
handful of cases. The difficulty is in knowing how best to instruct them. The search space is
so vast that a naive search is simply not practical.

Fortunately, it has been shown that it is possible to find “good” combinations of compiler
optimizations programmatically, for example in [131], though [6] highlights the difficulty of
picking an appropriate search algorithm.

Auto-tuning has been turned to in various guises in an attempt to solve the problem of per-
formance portability, giving rise to a number of possible auto-tuning approaches. An overview
of these is suggested in [13, table 1, page 3]. Surprisingly, the approach suggested by this
project, of auto-tuning (or automatically assisted tuning of) the selection of compiler flags,
does not appear in this table. This type of approach would be best applied during porting:
When a new machine has been commissioned and delivered but has not yet entered full pro-
duction (that is, it is not yet being heavily used).

1.2 Aims of this thesis

At present, tuning the performance of programs is something done only by those few who have
the time, aptitude and the knowledge to do it. Much of it involves taking those sections of the
code identified to be most critical to performance and re-writing them in assembly code. To
date, it has not been possible to replace such work with an automated process, and it requires
both time and extensive familiarity with both the algorithms and the target hardware. As a
result, there is a noticeable delay, usually in the order of 12-24 months, before a high perfor-
mance library for a new CPU architecture (or microarchitecture) achieves the performance seen
on existing, established hardware. Prior to that, a compatible library (other than a reference
implementation) may not even be available.

[34] classified scientific applications by their broad type and application. From this list of
7 (since expanded to 13 [133]), dense linear algebra has been chosen as the first topic for thor-
ough investigation. The author considers that this is the most well understood, with work on
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optimizing the Basic Linear Algebra Subprograms (BLAS) [117], in particular double preci-
sion (dense) general matrix multiplication (DGEMM), having been driven largely by the TOP500
list [122], and the commercial implications thereof, for slightly more than two decades.

The BLAS libraries delivering the highest performance are well known, and depend heav-
ily on kernels (sometimes in a parameterised form) written by hand in assembler or machine
code for particular processors. One side-effect of this is the delay in support for new hardware.
Hardware that is not available, or not of interest, to the authors of the libraries is rarely sup-
ported by them. For example, [184], [172] and [175], give a few occasions where difficulties
in obtaining hardware has delayed support.

In this thesis, an alternative approach is proposed, inspired by the author’s success in hand-
tuning the selection of compiler flags of commonly used libraries (see appendix D for example).
Bischof et al justified a high investment in hand-optimization to gain a 5% improvement in
performance [17], suggesting a target for success for an automated approach, something which
will surely require a lower future investment.

The questions to be answered here are:

RQ1 Is machine code necessary for performance?

RQ2 Is performance-portability achievable?

RQ3 What is the economic value?

These questions are equally valid for libraries and applications. In this thesis, these ques-
tions will be answered in the context of libraries, rather than applications. This is to keep the
approach both simple and to affect as great a number of scientific applications as possible.
Well established libraries frequently have thorough test suites, which allow the builder of the
library to check that numerical integrity has not been compromised. This is difficult to do for
applications, which typically perform a number of functions depending on the input data and
usage. It is not clear that these research questions can be answered for an application such as
DL POLY [165] outside of the small test cases. In addition, by targeting libraries it is possible
to avoid the problem of how to deal with areas of the code that have been written in assembly
language or using architecture-specific compiler intrinsics, as is the case in applications such
as GROMACS [15] (as described in [144]).

1.3 Document overview

The reader is first presented in chapter 2 with an overview of how the supercomputing land-
scape has changed since the 1960s, increasing in complexity through to the present day in order
to increase processing speed and throughput. Many of the challenges faced in attempting to
make use of these advances today are constrained by historical decisions.

Discussion moves on with chapter 3 and an overview of similar work in this field, with a
note about the difficulties of understanding default compiler optimization levels.

In chapter 4, attention is drawn to the author’s early work investigating the workings of two
high performance implementations of the BLAS, and of difficulties arising from the purchase
of new and emerging hardware.

This is followed in chapter 5 by an analysis of the requirements of a software auto-tuning
tool through iterative prototyping and discussion of this project’s high-level use case.

In chapter 6, a study on the convergence of a common benchmark is presented; a necessary
investigation for automated judgement of such to be successful. This study was carried out in
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parallel with the creation of early prototypes (discussed in section 5.2.2), and used to inform
later design decisions.

Chapter 7 contains a discussion of the design specification and lists the decisions made as
a result of the prototyping work, while chapter 8 attempts to explain some of the difficulties
that arose during implementation. Results are given in chapter 9 and a critical assessment of
these can be found in chapter 10.

Several opportunities for further work are discussed in chapter 11. The document con-
cludes in chapter 12 with answers to the research questions listed above and their implications
for the wider HPC community.
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CHAPTER 2
THE LANDSCAPE

Some changes come from unexpected directions. Take Moore’s Law, for ex-
ample. Moore’s Law had a far greater impact on the latter third of the 20th century
than the lunar landings of the Apollo program (and it was formulated around the
same time), but relatively few people know of it. Certainly, back in 1968 nobody
(except perhaps Gordon Moore) might have expected it to result in the world we
see today . . .

Charles Stross [156]

The landscape of scientific computing has changed greatly over the past decade, and its use
and popularity has gained ground across all scientific disciplines, especially in recent years. A
proper treatment of the history of computing, and especially as it relates to modern super-
computers, would require its own book (or series of them). This chapter attempts to give a
stratospheric overview of the key innovations that have brought computing, and particularly
supercomputing, to where it is today.

Standards in hardware (e.g. IEEE 754 [72]) and software have helped to make moving
software from one machine to another less painful than it once was, both in terms of it running
at all and in terms of its running “correctly”. Language [25] [59] and library [60] standards
have also served to make life considerably easier for those developing applications.

Despite the success of standardization, achieving performance portability is still beyond
the reach of most, and platform-specific optimizations tend to result in unmaintainable (or very
difficult to maintain) code. Some, such as the authors of Intel’s Math Kernel Library (MKL)
library, have gone the route of “fat binaries” and use CPU dispatchers to achieve the appearance
of performance portability between their own chips.

2.1 Computational Hardware

The first commercially successful computer was the UNIVAC 1, which began shipping in June
1951 with a list price of $250,000 [78], a significant amount of money at the time.1

1In the December 1957 issue of the New Scientist, the University of Southampton offered the princely sum of
£250 a year for a “computer operator” for the Ferranti Pegasus they were in the process of acquiring.
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IBM soon followed suit, producing several computers through the 1950s, 1960s and 1970s
(and beyond). Until the mid-1980s it was not yet normal for computers even from the same
manufacturer to share a common architecture. It was not until 1964, when the IBM 360 de-
buted, that designers began to realise that machines that shared a common machine language
could be cheaper to produce. This was found to benefit not only their own programmers, but
be popular with customers, who had previously had to invest considerable effort to port their
programs from one machine to another.

This realisation of the importance of portability is probably responsible for a large part of
the success of these early IBM mainframes. As a consequence of this wide adoption, many of
the IBM engineers’ decisions affect us almost half a century later2.

2.1.1 Purpose-built supercomputers

The most well-known supercomputer is the Cray-1 (1976), but it was not the first, as that
honour is usually given to Control Data Corporation’s (CDC) 6600 (1964). However, several
machines preceding both of these were used for scientific computing. One such example was
the Ferranti Pegasus (1956) installed at the University of Southampton in 1957. This machine
was used in the (structural) design of the Sydney Opera house3

The 1960s brought more “giant machines”, ICT boasting in Autumn 19674 of a 1906A
capable of one instruction per microsecond and a whopping 64k words of main memory. Com-
puter mainframes of this type, while impressive, could not match the performance of vector
supercomputers, which quickly became the computers of choice for those working in scientific
computing.

The first generation of vector supercomputers included the Illiac-IV, Texas Instruments’
(TI) ASC and Control Data Corporation’s (CDC) Star-100, all produced during the 1960s. The
Illiac-IV did not prove to be very popular, with only a few being installed, while the Star-
100 and ASC were more successful. Both of these systems could achieve a remarkable 40
megaFLOPS in the hands of a skilled operator.

The second generation of vector supercomputers brought with it the Cray-1. With Sey-
mour Cray having learned much from his days at CDC, it shared some of the features of the
CDC-6600/7600 systems, though with many improvements. Until the early-1980s, it was con-
sidered to be the fastest supercomputer ever built, capable of achieving 160 megaFLOPS if
programmed efficiently. Quite an achievement for the time.

The Cray-1 benefited not only from its multiple pipelines and vector processor design, but
also from its accompanying vectorising compiler, which supported an extended FORTRAN.
Soon after its release, CDC and Fujitsu continued the trend with the CDC Cyber-205 (de-
scended from the Star-100) (1982) and Fujitsu F230-75 APU (1977), VP-200 (1983) and later
machines. These three were joined by NEC and Hitachi in Japan, and by Convex, Parsytec,
Silicon Graphics and MasPar in the US, and for almost two decades vector supercomputers
dominated the TOP500 [122] list.

All of these systems utilised multiple pipelines for concurrent vector processing, some-
thing that is still relied on by modern CPUs to increase floating point throughput and thus

2When they chose to move from 24-bit to 32-bit addressing, but did not immediately make use of it for perfor-
mance reasons, programmers quickly began to make use of those unused extra bits. Modern compilers still check
the values of those bits, to ensure that this “trick” is not being employed on modern machines.

3Sadly acoustic modelling did not make an appearance until some years later.
4A former employee, writing in the Winter 2017 issue of the journal of the Computer Conservation Society,

notes that there was not one in operation until a year later, so ICT were exaggerating in their press release
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performance. To facilitate access to larger pools of memory, computer designs moved from
predominantly using 24-bit addressing to 32-bit addressing, while caches allowed those ac-
cesses to happen with relatively low latency. Good compilers were as essential then as they are
now, and most programmers adopted one of two high-level languages that still dominate HPC
software now: Fortran, or the (at the time) trendier C.

However, despite this movement towards uniformity, CPU architectures have diverged in
other ways, and recent new-comers to the scientific computing world have called for the adop-
tion of new approaches and techniques. Those working on software for these systems now have
to consider variation in clock speed between individual cores within a chip [91], as well as dif-
fering clock speeds between “identical” chips that are still deemed to be within specification
[113].

More recently, it has become necessary for both programmers and (especially) compiler
writers to make adjustments for differences in floating point arithmetic between chips from the
same manufacturer [95]. This is something that has not been a concern for around 2 decades,
and is requiring the latest generation of programmers to re-discover or reinvent many of the
tricks of their predecessors.

2.1.2 Floating point hardware

Until 19855, moving from one machine to another entailed a great deal of work, especially
in checking that the outputs were as expected. This was not only due to the differences in
operating systems, but also the large variation in architecture. In fact, it was not until some
years after 1985 that manufacturers settled, largely, on machines with the same byte size. Now
only a few chips exist that do not use 8-bit bytes.

In the 1960s, bytes of 6-bits were more common, and there was a great deal of variety
throughout the 1960s into the 1990s. Some early machines, such as the UNIVAC 1050, had
variable length words, and not all machines used binary. Those that did were not all using the
same binary representation. It certainly made life more challenging for the programmer. Now,
it seems that only specialist architectures such as XAP, used for ASICs, use a different size
fundamental unit (in this case, 16-bit, 24-bit or 32-bit).

2.1.3 Multiply-Accumulate

Multiply-Accumulate (MAC) operations are variously known as multiply-add fused (thanks
to IBM), Fused Multiply-Add (FMA) or fused multiply-accumulate (FMAC) when performed
with a single rounding (as opposed to 2). They are described in the 2008 edition of IEEE754
[72] and have been supported in the C standard since C99 [26]. They have been implemented
in hardware for much longer, at least since VAX implemented their POLY instruction in 1977,
though before its inclusion in IEEE 754 the exact implementation varied by machine.

These instructions allow the computation of the product of two numbers and its addition
to an accumulator to be computed in one instruction. In a modern CPU with a dedicated
MAC unit, this instruction is performed in a single cycle and may be combined with one or
more Single Instruction, Multiple Data (SIMD) instructions. MAC operations are also used to
increase floating point throughput in modern Graphics Processing Unit (GPU)s, which have
much in common with early vector processors.

5In reality, it was a little while before the IEEE 754 standard was adopted widely by hardware manufacturers

22



Chapter 2. The landscape

2.1.4 Vectorisation

Vector or SIMD instructions involve the application of one operation to vectors of values. In
most current implementations, the hardware design limits the length of these vectors to one of a
set of fixed sizes. This type of instruction was utilised by many of the early supercomputers and
their predecessors throughout the 1970s. However, most of those working on software today
are likely to have first encountered SIMD instructions in the form of x86 MMX, which arrived
on the scene in the late 1990s. Coincidentally, this was about the same time that dedicated
vector processors, such as those designed by Cray Research, were on the way out.

Unlike the processors of vector supercomputers, the MMX instructions are a fixed size,
using 8 64-bit wide registers to apply a single operation to 2 64-bit integers, 4 16-bit integers
or 8 8-bit integers in one instruction. The registers are named MMX0 through MMX7, making
them easy to spot in generated assembler.

Since MMX instructions were introduced, many others (SSE, SSSE, 3dnow, etc) using
wider and wider vector registers have appeared over the years. The latest available version in
the x86 instruction set is AVX-512. As the name suggests, the vector registers used are 512-bits
wide. Wider SIMD instructions are expected to follow soon.

More recently, Arm Ltd have published processor designs using variable length vector
instructions6 (referred to as scalable vector extensions, or SVE), which includes a form for
complex numbers [9]. The latter is likely to be of interest to both engineers and chemists, since
prior to that, operations on complex numbers could not be (efficiently) vectorised and any-
one reliant on the Fourier transform for their work would see little benefit from the increased
throughput of SIMD instructions. While the x86 instruction set does include some support for
complex numbers, it is limited to a few SSE4 instructions at present.

2.1.5 Accelerators

While use of GPUs has garnered a lot of attention during the last two decades, the use of
additional hardware to provide higher computational throughput is not unprecedented. “At-
tached array processors”, such as the IBM 3838 were available during the 1960s and 1970s,
allowing more general purpose machines, both mainframes such as the IBM 308X series, and
minicomputers such as the DEC PDP-11 and VAX 11-series, to be used for scientific work.
These attached processors, as the name implies, could not be used alone, just as a modern GPU
cannot be used in isolation. They also relied upon multiple pipelines and vectorisation.

The two most popular attached processors in the early 1980s were Floating Point Systems’s
(FPS) AP-120B and FPS-164. These worked very similarly to today’s GPUs, providing a way
to process large vectors or matrices at a faster rate than a standard minicomputer or mainframe,
yet at a substantially lower cost than that of a purpose-built supercomputer. They could not
deliver the same performance: FPS claimed a mere 12 megaFLOPS for the AP-120B.

Modern General Purpose Graphics Processing Unit (GPGPU) hardware has until recently
tended to remain in card form, limited in bandwidth and subject to the latencies of the PCI-e
BUS over which it must communicate with the rest of the machine. Some of the more recent
designs, such as NVidia’s P100, have moved to a CPU-like architecture, allowing them to
benefit from increased bandwidth and reduced latencies for data movement. Other innovations
have focussed on improving network bandwidth and latencies, allowing GPU cards to pass data
between one another more directly.

6This produced much nostalgia among the older Cray engineers.
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Users of GPUs often find it challenging to write software for them, particularly with the
difficulty of debugging applications on something that uses direct memory access (DMA) and
so accesses main memory independently of the CPU. Data movement is even more costly,
and there is arguably greater variation in architecture even between cards made by the same
manufacturer. However, performance gains are often seen if an appropriate algorithm exists,
and several have been suggested, for example in [3]. Even so, performance portability is rarely
seen in practice, as GPU hardware designs differ far more even between generations from the
same manufacturer than do modern CPU designs. This has made them the target of many high
performance library authors (for example [74] and [53]), as well as attempts to autotune or
automatically generate kernels, particularly for stencil computations (as in [101]).

The continued popularity of these accelerators, which could be considered a type of vector
processor, says something about the nature of the algorithms they are used for. It is not sur-
prising that modern CPU manufacturers have begun to include support for ever-larger vector
operations in their chip designs.

Specialised hardware

Although the area has seen interest for more than 40 years, Artificial Intelligence (AI), and
Machine Learning (ML) in particular, interest in this area exploded in the early 21st century.
This has given rise to investment in specialised hardware for the purpose. Some, such as
Google [147] and Tensilica (since bought by Cadence) [86], have even gone so far as to focus
their efforts on particular applications (in this case, TensorFlow [4]). Others, such as [87], are
targeting broad classes of ML algorithms. Even the venerable IBM is investing in research in
this area [123], propelled in large part by increased interest and funding from organisations
such as DARPA.

These chips are not destined to take over from “traditional” CPU designs (at least, not yet),
but are expected to be used in a similar way to the old attached-array processors and current
GPUs. Due to the greater variation between designs and rapid speed of development, it is
likely that many applications will continue to rely upon skilled programmers for performance
benefits for some time to come.

2.1.6 Computational Speed and FLOPs

In the HPC world, performance is currently measured in floating-point operations per second
(FLOPS), or rather gigaFLOPS7 (thousands of millions of (IEEE binary64) floating-point
operations per second), where an operation is any one of addition, subtraction, multiplication
or division.

What effect do all these features have on the performance of a computer? Suppose we have
a (somewhat simplistic8) model machine with FMA and AVX-512, executing one instruction
per cycle. Then one cycle can operate on vectors of eight binary64 numbers at a time, doing
one FMA operation on each, hence sixteen floating-point operations in terms of raw GFLOPs.
Thus a 2.5 GHz machine could be (and therefore will be) quoted as a 40 GFLOP machine,
even though it might only be capable of doing 2.5 GFLOP when doing individual divisions.

Figures of this type could be considered misleading, and it is just one of many criticisms
of the TOP500 [122] and the HPL [136] benchmark in particular ( [44, slide 9]).

7Today, even desktop computers can be measured in GFLOPS; supercomputers today are typically rated in
petaFLOPS, but benchmarks still output their figures in GFLOPS.

8Ignoring pipelines, warm-up, narrow vectors etc.
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2.2 Interconnect

As those working in scientific and high performance computing know, computational speed
is not the only, or even necessarily the best, indicator of good performance. Parallel applica-
tions, by their nature, depend on communication between processes. Some applications may
spend more than half of their execution time in calls to communication libraries, with Message
Passing Interface (MPI) being the most commonly used currently.

Good communication performance depends on several factors, particularly network band-
width and latency. A machine with high computational performance but high network latencies
is liable to result in application processes stalling as they wait for the next message to arrive
or be received. Not every algorithm can be expressed in an asynchronous form, and those that
can often still rely on some parts happening in a particular order. Interconnect has thus been
fundamental to supercomputer performance for some time, especially for real applications (as
opposed to artificial benchmarks).

Early supercomputers had very simple internal interconnect. The Cray 1, which was com-
posed of a series of boards or “modules”, depended on a great many pairs of wires carefully
measured to precise lengths to guarantee timings. A single arithmetic unit was effectively built
from several modules, making a CPU rather larger than today’s small chips. The curved shape
ensured that distances for cables could be kept short, which helped it achieve its impressive
(for the time) computational speeds. This interconnect was used for communication between
the modules (in the centre of the C-shaped machine) and the memory (located at each of the
ends of the C), as well as between modules.

Modern machines have diverged from such designs, with interconnect between supercom-
puter nodes having become a completely separate component from that used within and be-
tween the CPUs, and between the CPUs and memory modules.

Currently, supercomputing centre managers may expect to spend around half the cost of
the machine on its interconnect, and few would argue that it was not worth the investment.
Although some systems are based on forms of Ethernet, many opt for the arguably higher
performance of an interconnect designed for supercomputing. The most popular of these is
InfiniBand (IB), although its more recent rival, Intel ®Omni-path (based on IP purchased from
Cray) is rising in popularity now that it is included within the Intel processor package. In
addition, there are custom interconnects used within purpose built machines (as opposed to
those based on commodity components), such as Cray’s Aries and Slingshot interconnects, as
well as HP’s (since they acquired SGI) NUMAlink, used for their Symmetric Multi-Processor
(SMP) systems.

Despite their various differences, all of these interconnect designs attempt to keep band-
width high and latencies low, so that the applications using them do not stall or become throt-
tled by slow data transfer rates. As with memory access, a variety of tricks are employed by
manufacturers to hide latencies, usually involving caching at various levels within the network.

Unfortunately, even the very highest specification interconnect has limitations. If many
communication-heavy applications run simultaneously it is possible for the network to become
saturated. Techniques employed to avoid this can only do so much, as eventually the hard limits
of modern technology are reached, leaving the users of systems unhappy about the sudden slow
speeds of execution [181]. Despite a lot of investment in research, there are no solutions to this
problem at time of writing, and it is difficult to see how there could be without violating the
laws of physics.
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2.3 The power consumption/performance trade-off

Power has always been a problem in supercomputing. While the Cray-1 may have made it into
several museums, the hardware required to power it has not. This machine also required its
own rotary converter, producing electricity with a 400Hz cycle to smooth out the roughness of
the incoming sine wave. This was coupled to various other pieces of power hardware, so more
smoothing could be performed, before the power was finally clean enough to be fed into the
fragile electronics within the huge C-shaped computer. This equipment had to be housed near
to the Cray-1, and was generally placed in a separate plant room next door to the computer
room.

Modern supercomputers similarly require a considerable amount of room to house their
power infrastructure, though they do not usually need their own rotating converters (or gener-
ators) for normal operation. They are also very power hungry, and, while they may be more
efficient (one can get many more FLOPS per Watt), they are also far bigger than the old sys-
tems, and so require more than the 115kW or so that the Cray-1 used.

Supercomputing centres are not the only customers to be crying out for greater power effi-
ciencies. Computer usage is fundamental to modern life, and huge data centres are increasingly
behind much of what we take for granted.

A result of the growing demand for power savings, and with the promise of such savings
leading to greater chip sales figures, chip manufacturers have worked hard to reduce power
consumption (and cooling, another big cost factor for data centre owners) of their chips. They
have addressed the power usage problem in three especially significant ways:

• Voltage scaling

• Frequency scaling

• Powering on/off components

Both voltage and frequency scaling change the clock speed of the processor, and both were
for a time controlled by separate electronics on computer mainboards. Sometimes this was
configurable via BIOS settings. Now this hardware is (mostly) part of the chip itself, and may
be controlled by microcode.

All three of these methods have performance implications, making them unpopular with
supercomputer users. Some may even affect scientific results if detailed timing data is required.
This is particularly noticeable in the case of powering off/on components of the chip, as floating
point hardware is one of the parts to suffer from this innovation. The Floating Point Unit (FPU)
and the vector hardware is powered down rapidly (if no instructions requiring this hardware
are seen in the pipeline, and can take several hundred microseconds to power on again when
required. For example, Skylake chips have been observed to temporarily use the lower 128-
bit half of the vector execution units for 256-bit SIMD operations, to alleviate the problem of
waiting the full 14µs for full-speed 256-bit SIMD instructions to become available [56]. Using
the lower 128-bit half twice for a 256-bit instruction in this way is about 4-5 times slower, but
means that overall throughput is higher. The units are powered down again if another 256-bit
SIMD instruction is not seen again within 675µs.

A fourth design change in many modern chips is the elimination of ‘dead’ code by the
CPU itself, rather than relying wholly on the compiler to do this. Increasingly, compiler op-
timizations are making their way into hardware too. The removal of redundant instructions
is more than a mere time saving; each instruction has an energy cost associated with it. In
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the case of chip manufacturers who target the embedded electronics industry, they have also
designed their compilers to optimize for energy usage and executable/library size, rather than
pure performance.

All of these changes have implications for HPC. Lower average power consumption means,
for many data centres, that higher compute densities can be accommodated. During periods of
lower power usage, the processors will also be producing less heat, so cooling demands are not
as great either9.

The end result of these and many other changes to reduce power consumption (and heat
output) is that the speed of execution of the user’s code is highly variable. “Turbo” can only be
sustained for short periods, and it alone can account for as much as a 10% difference in speeds
between individual cores; not all need be in “Turbo” mode at the same time, and their speeds
differ slightly too [89].

Add to this the problem of chips being binned (an industry term for grading) by thermal
design power (TDP), and the resulting variation between individual chips, and the amount of
variation a user’s code must now tolerate is very high. While the data centre managers may be
happy with the situation, users of the machines must be able to tolerate the greater variation
in processor clock speed and other effects, such as stalling or running some instructions more
slowly.

Note that if a chip is being insufficiently cooled, its own internal thermal protection mech-
anisms will trigger, making the problem many times worse. Unless the problem is severe, no
fault will be raised in the system logs, and the administrators may remain unaware while the
users of their systems wonder what they are doing wrong.

2.4 Memory Hardware

In 1980, memory performance and CPU performance were very similar. They rapidly diverged,
and despite many advances in memory design, memory has still been left far behind. Since
most software applications are more likely to be memory-bound than compute-bound, memory
access speeds have a marked impact on observed system performance.

This is especially true for scientific applications, the majority of which are designed for
rapid processing of vast quantities of data. For these scientific programmers, it is the average
speed of memory access (a combination of memory latency and bandwidth), not the CPU
speed, which determines how quickly their software returns a publishable result. Since this
is a difficult problem to address, many of the innovations in hardware, operating system and
compiler design have sought to reduce the frequency of memory access, or at least to hide it
when it cannot be avoided.

In addition to the ever widening gap in performance between the CPU and main memory,
both have increased in complexity, and power saving features have been introduced that add
additional latencies to many of the operations essential to numerical and scientific codes.

2.4.1 Virtual Memory

Hierarchical memory has been an expected feature of computers from the very beginning,
and many early architectures split the memory in some way. This was not hidden from the
programmer, and was a source of inconvenience and many bugs. Both the Ferranti Mercury

9Unfortunately, any supercomputer that sees high utilisation is unlikely to benefit from this, and it could be
argued to be a waste of money to buy one that is not so well used
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and the Atlas computer had two levels of memory: A small core memory and a larger drum
memory. All transfers between the two had to be explicitly programmed, and were error prone.
There was little in the way of protection, and not many were skilled enough to program these
transfers efficiently, for example, by arranging accesses so that the drum memory need not
rotate far, if at all.

Automatic management of these multiple levels of memory was not suggested (in print)
until 1962 [106]. The Atlas had three levels of storage; core, drum (with an access time of
6µs) and tape, with the first two providing a large (for the time) amount of memory at a much
lower price than a large core memory with the same capacity10.

This was a commonly made compromise, but presented a problem for the programmer,
who needed to keep track of where (in which memory) his/her program’s data resided. It made
a complicated program at least an order of magnitude more difficult to write, especially if any
attempt at efficiency was to be made.

To address this problem, virtual memory was introduced. This is a simple concept, primar-
ily implemented in the operating system, which presents to the programmer a single address
space. In this way the multiple areas of storage appear as a single, large memory, even though
the available working memory may be small.

In the implementation on the Atlas, Ferranti introduced a system that we now refer to as
paging. The entire memory space is divided into equally sized blocks, known as pages. These
pages may be moved between different levels of storage by the operating system, which may
have limited assistance from the hardware, and which must keep track of such movements
through an artefact known as the page table. This table keeps a record of virtual to physical
address mappings for each page, and must be updated every time a page is moved. In the case
of the Atlas, the natural size for these pages was 512 words, since this was the size of the fixed
blocks on the drums and magnetic tapes. Through virtual addressing, the small, expensive,
ferrite core memory, the drums and magnetic tapes could all appear as one large storage pool,
with identical addressing; pages were transferred from the drum to the core memory by the
Atlas Supervisor (described in more detail in section 2.9) automatically, reducing the cognitive
load of the programmer.

Seemingly always with a focus on the trade-off between ease of use and performance, Bur-
roughs had implemented a type of virtual memory through segmentation in their B5000 system
in 1963. While this was not entirely transparent to the user/programmer, it was somewhat eas-
ier to work with than similar systems without any kind of virtual memory. It did not protect
against memory fragmentation, so care was still required to use it efficiently. Interestingly this
is a concept (as with stack-based processing) later used in the Intel 8086 processor, but which
otherwise all but died out in the late 1970s.

However, it was a few years later (in 197211) when IBM’s 370 family of machines, which
also heralded the first TLB, made the concept more widely available, implementing true virtual
memory in the sense that a modern programmer might understand it. As today, the implemen-
tation was mainly a result of considerable work on the operating system (TSS on the IBM),
making use of the hardware features designed to support it and rendering them invisible (to a
greater or lesser extent) to the programmer.

The IBM 370 family implemented virtual memory with paging, as originally introduced
on the Ferranti Atlas, rather than segmentation. Other hardware manufacturers implemented

10The Atlas actually had two small core memory stores, one for common routines, and one as working space
for the Supervisor, and so inaccessible to the programmer.

11Although the IBM 370 family of machines began shipping in 1971, 370s with virtual memory did not ship
until the following year
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similar systems.
Multi-processing (also addressed by Burroughs in the B5000), complicates matters, as the

memory regions of different processes must be kept separate, but the basic concept remains
unchanged in modern computers.

2.4.2 Caches and Translation Look-Aside Buffers (TLBs)

Although for a short time, memory and CPUs ran at similar clock rates, getting the data (or
the instructions) to the CPU in time to avoid it stalling has always been a problem. (For the
purposes of this discussion, we will ignore caches that sit between main memory and non-
volatile storage, and focus on those between the CPU and main memory.)

One way that was, and still is, used to hide the latencies involved in memory access is to
use a small, faster memory near to the CPU and pre-fetch data (and instructions) to it before it
is needed. This small, higher-speed memory is known as a cache, and acts as a buffer between
the slow main memory and the CPU. The concept was first suggested in 1965 by Maurice
Wilkes [179], who referred to it as a “slave memory”, and neatly described a direct-mapped
cache.

With its small size, the cache does not only bring higher speed (usually 5-10 times faster
than the main memory on early machines), it also brings a different, though related, set of
problems: Those of cache misses. A cache miss occurs when the data required by an instruction
is not located within the cache. There are three main types of cache misses [81]:

Compulsory Caused by the first reference to a memory location; without very sophisticated
prediction, this one is unavoidable.

Capacity Caused by a lack of free space in the cache; with its limited size, it is not possible
for the cache to contain all the blocks needed for execution in all cases.

Conflict Perhaps more serious, and dependent on the placement strategy used for cache blocks
(e.g. set associative, fully associative, or direct mapped), this is caused by two or more
blocks mapping to the same position in the cache set.

Avoiding all three is of interest to both hardware designers and compiler writers, who must
work together to achieve the best performance, despite their best efforts, they can only do so
much to mitigate the problems. Alas, bad programming often leads to thrashing, which is
when the same blocks are repeatedly evicted and reinstated in the cache, drastically reducing
the performance of the running software.

The first commercial implementation was introduced by IBM with their 360/85 to avoid the
need for large amounts of expensive memory. The TLB followed shortly after, made available
in the IBM 360/67. This addressed some of the performance issues not addressed by the
addition of a cache, by maintaining a table of recently used, and so translated, virtual addresses
and their physical counterparts. In modern hardware, it is usually part of the CPU’s memory
management unit (MMU), and can be thought of as an address-translation cache.

2.4.3 Caches on modern CPUs

Modern CPUs achieve many of their staggering memory access speeds by careful use of sev-
eral levels of caches, combined with both hardware and software prefetching to hide access
latencies where possible.
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The use of several caches was researched during the late 1980s, for example in [143], and
found to be as good (in terms of performance) as using one large cache. This was good news
for manufacturers, who could reduce costs slightly by avoiding buying large amounts of the
very highest speed memory, instead using slightly differing speeds of memory for the different
cache levels.

The level 1 cache, closest to the arithmetic logic units (ALUs), floating point units (FPUs)
and registers, can be accessed much more rapidly than the lower level caches. On SMP or
multi-core (the term used by Intel) chips, these caches may be shared by one or more processors
(cores if using Intel’s convention) residing within the same die or chip. Lower cache levels are
usually larger than the higher levels, and data must be passed from one cache to another, up to
the level 1 cache, to be operated on either directly or passed into registers.

Pre-fetching is employed heavily in both hardware and software (compilers often assist)
to reduce the occurrence of cache misses. For programs accessing memory contiguously, the
latencies involved in fetching data from main memory can be almost entirely hidden. Other
memory access patterns are not so easily anticipated, and so application performance depends
heavily on both the skills of the software developer and those of the compiler author. Both
must have an understanding of the hardware to make choices in their designs that make best
use of its features.

The use of multiple levels of cache introduces greater complexity, with memory manage-
ment now shared between the hardware, the operating system and user software. Many per-
formance problems occur when these three do not interact as the original designers expected,
with thrashing (of either the cache or TLB) still one of the most common.

2.5 Symmetric Multi-Processor (SMP) systems

Burroughs produced a multiprocessor system, the aforementioned B5000, in 1961, but this
was used in an asymmetric manner, with each processor assigned different tasks (one might
run user programs while the other was used for the operating system). A user could not make
use of multiple processors in their programs, but that would soon change.

In 1964, UNIVAC announced the 1108 II, which could have as many as three proces-
sors [114]. In the same year, another mainframe manufacturer, IBM, announced their dual-
processor System/360. From that point onwards, the numbers of single processor mainframes
available began to decline as customers demanded the ability to process ever larger datasets.

When the Cray-1 was unveiled, the speed of memory access had already dropped below
the rate at which the CPU could process data, yet users of these and similar systems continued
to demand the ability to process ever larger data sets. Cray Research’s answer to this was to
produce the Cray X-MP. Announced in 1982, this was a “cleaned up” version of the Cray-1,
extended with two vector processors with shared registers, a large, shared, concurrently acces-
sible memory and I/O subsystems. This design focussed on increasing throughput throughout,
rather than simply adding more processors or increasing their speed. It had 8 times the mem-
ory bandwidth of the Cray-1, and the 32-way interleaved memory banks could be accessed
independently and in parallel.

Users of the X-MP could run different programs on each processor, or one program that
utilised both. This, coupled with binary compatibility with the Cray-1 (and the same COS
operating system until 1986), probably contributed to the X-MP’s popularity.

In the 1990s, it became possible to manufacture chips containing multiple processing units,
with the first on-chip multiprocessor, a design by IBM, shipping in 2000. These on-chip mul-
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tiprocessors, more commonly referred to now as multicore chips, saved power and time by
bringing components into closer proximity. Shared last level caches, and shorter distances
for snoop traffic, among other things, significantly improved performance for multi-threaded
applications.

2.5.1 Simultaneous Multi-Threading (SMT)

Simultaneous Multi-Threading (SMT) was researched through the 1960s until it became widely
commercially available with Intel’s ®Northwood microprocessor in the early 2000’s. Sun’s Ul-
traSPARC T1 and IBM’s POWER5 followed within 2 years, providing the ability to run larger
numbers of threads on the same processing unit at (approximately) the same time.

Several modern chips, with increasing numbers of processing units on the die, attempt
savings in space and energy by sharing components. Although AMD was criticised for doing
this with their Bulldozer architecture, where two processing units might share a single FPU, this
approach seems to be proving increasingly attractive for chip manufacturers. It is less popular
with scientific users, who have also struggled with increasingly Non-Uniform Memory Access
(NUMA) architectures and rarely benefit from the use of SMT [128]. Unfortunately, scientific
users are rarely the source of the majority of a chip manufacturer’s income, and their pleas are
likely to fall on deaf ears.

Although popular in mobile computing, heterogeneous processing units on a single die
have not yet found success in supercomputing. AMD had some limited success in the desktop
and server markets with their APU, a line of chips that include GPU components on the same
die as the general purpose CPU. However, these chips were not popular with the computer
gamers who provide the majority of AMD’s income.

2.5.2 Non-Uniform Memory Access (NUMA) Architectures

As explained in in section 2.4.1, the system memory does not have to all be in one place, and
the same is true when that memory is shared across multiple processors. In such distributed
memory systems, it is rare that all processors can access every part of memory without in-
curring differing (time and latency) penalties. In these NUMA systems, the cost of accessing
different areas in memory is dependent on not only the memory type, but its location. As vir-
tual memory addressing gives the illusion of a single memory through a single address space,
programmers must employ a variety of techniques to ensure that the data their programs are
accessing is in a location that is not expensive to access, a cost that is dependent on where
(which processor) the accessing process is running.

NUMA splits the system memory into regions, depending on cost of access. Program-
mers can make use of NUMA-aware libraries to determine which NUMA region their code is
running in. On today’s systems, NUMA regions may be “owned” by a particular socket.

2.5.3 Pipelining

Instruction pipelining, and pipeline chains, were one of the ways in which performance could
be increased. Extensive use of these (and vector loops) was one of the ways in which the Cray-
1 was able to out-pace its rivals. Through the use of pipelining, after an initial start-up time or
latency period, a sufficiently well programmed CPU can produce an answer every clock cycle.
Pipelines move operands through the functional units of a processor in a similar manner to a
production line; one pair of operands enter a floating point unit or other functional unit as the
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previous pair leave it to enter the next one. A sufficiently skilled programmer (often aided by
a good compiler) ensures that gaps or “bubbles” do not occur in the pipeline, thereby avoiding
a stall as one or more functional unit is starved of data.

By chaining pipelines together, the Cray-1 processor could achieve a high throughput.

2.6 Compilers

Although in theory the user can write machine code for a given machine, in practice this is very
rare. Code is nearly always written in some high-level language, which can be compiled for a
given machine, or indeed a set of machines, by appropriate compilers. In theory, the compiler
knows about the machine it is compiling for, and it is the job of the compiler to produce the
best code it can. In practice things are not so simple.

While some early computer designers, such as Robert (Bob) Barton who designed the
Burroughs B5000 and its descendants in the 1950s, put a great deal of work into ensuring that
the hardware was relatively easy to program12, this did not last long.

As hardware became more complicated it fell to compiler writers to bridge the gap between
the programmers and the hardware. Since the mid-late 1960s, compilers and high level lan-
guages have been essential to the delivery of almost all software projects, and the vast majority
of developers could not make use of a computer without them. Also of note is how many are
dependent on the diagnostic help of a compiler to find and correct simple errors, and to enforce
language standards compliance. This support is now so ingrained that it is taken for granted,
noticed only when it is absent.

In the Mythical Man Month [99], which chiefly deals with problems encountered with the
increasingly popular IBM machines of the 1970s, an entire chapter is dedicated to comparing
the development challenges and speeds of writing in machine code vs using a high level lan-
guage. At that time, software was relatively simple, yet a five-fold increase in programming
productivity is claimed. With the complexity of modern software, the gains are likely to be far
higher. Even the early supercomputers were difficult to utilise effectively without the aid of
a vectorising compiler. Porting software between machines has been made far less painful by
the combination of high level languages and good compilers.

It could be argued that, as a society so heavily dependent on computers and the software
they run, we owe a considerable debt to the writers of compilers.

2.6.1 Compilers in practice

Just as hardware has become more difficult for the end-user to understand, so too have com-
pilers. Equally, few can make do without them. Indeed, a chip manufacturer could not sell
a new chip without either providing compilers, or ensuring (typically by contributing effort)
that the free open-source community is providing compilers. Some manufacturers do both.
In addition to translating from a high level language to machine code (something that sounds
far more simple than it is), compilers perform a number of optimizations at each stage of the
compilation process.

Early compilers were monolithic in nature, but over time the compilation process has been
broken up into several stages. The exact order varies from compiler to compiler, but in general

12The stack-based B5000, B5500 and B6000 used reverse Polish notation for expression evaluation, for exam-
ple.

32



Chapter 2. The landscape

the first of these is performed by the lexical analyser (also referred to as the lexer or tokeniser),
which breaks the program statements into lexemes or tokens for the parser to make sense of.

Very little optimization is performed at this stage, while a table of symbols is constructed
which is eventually used to build an abstract syntax tree. Trees, being easier to reason about,
are a good point for the more aggressive optimizations to begin to be employed.

Again, the order and nature of optimizations varies from one compiler to another. There
is though a finite number of different changes that may be made to the code, and so the list is
general. Optimizations are characterised as either machine-independent or machine-dependent,
with the latter tending to occur during the later stages of compilation. Most of the former are
applied to the abstract syntax tree (AST), intermediate representation, or machine indepen-
dent code, with the intention of generating better performing machine code at the end of the
compilation process.

Many optimizations are aimed at small code patterns that have a tendency to dominate
program runtime, such as loops, while others rewrite code patterns identified as inefficient, such
as branches. Branches are often straightened, avoiding unnecessary comparisons and allowing
code that might not otherwise vectorize efficiently to be targeted for further optimization.

Loops may be manipulated in a variety of ways, not only to remove loop-invariants (i.e.
code within the loop that does not change between iterations) but also to facilitate more efficient
use of the hardware. Thus many loop optimizations, such as loop blocking, interchange or strip-
mining, are performed to allow memory access to take place in a manner more suited to the
design of the hardware. Compilers will also insert instructions to prefetch data into the CPU
cache before it is required, thereby allowing data accesses to appear to happen more quickly.

Most compiler optimizations can be controlled, to an extent, by the user of the compiler,
via a number of flags passed to the compiler at compile time. However, there are so many
optimizations performed by the modern compiler that it is impractical to expect the compiler
user to pick all the optimizations by hand. A long established practice among compiler authors
is to define sets of optimizations or optimization levels that are chosen by the user of the
compiler via the flag -ON where N may be a number from 0, denoting no optimization, to 3
or 4, the highest default level of optimization. Some compilers use fast instead of 4. A
further level, s, may be provided if the size of the resulting machine code is more important
than execution speed, as may be the case in embedded systems.

This practice is so common and so well-established that it often leads to misunderstanding
among users, who assume that, for example, -O3 means the same thing to all compilers. How-
ever once the use cases of each compiler are considered, it becomes clear that the developers
and maintainers of these compilers have different goals in mind and will attribute different
meanings to these same flags.

Some compilers, especially some proprietary ones targeting a subset of machine architec-
tures, may have best performance as their primary goal if that is what drives sales of their
software (and hardware, in the case of chip manufacturers).

In contrast, a compiler used primarily by the open source software community to compile
software for distribution in its binary (i.e. compiled) format is likely to take a more conservative
approach to ensure portability between machines of several generations and manufacturers.

There are also the difficulties of managing user expectation. Code optimization takes time.
Large software projects already run full build and testing cycles overnight or even, in some
cases, over weekends, to try to ensure high productivity. If the compiler takes too long to
compile a development team’s software it will be very unpopular. On the other hand, they will
also be upset if their software runs extremely slowly once built.

Compiler authors are required to find a good balance point between these two conflict-
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ing requirements; that code compiles quickly and that optimization is performed aggressively
enough to ensure that once compiled, the software runs quickly too. To give users control over
this balance, and over what optimizations are performed, most of the many stages of optimiza-
tion have user-callable flags that can be passed to the compiler to fine-tune the process, and in
some cases to inform the compiler of the developer’s priorities; sometimes smaller executables
and libraries are more desirable than the highest performance.

Of course, optimization is only one of the useful things that compilers offer their users. As
a critical part of the software development cycle, they also support a range of instrumentation
and debugging options. Some of these may have an impact on the optimization passes, but this
is not always stated in documentation. In contrast, the documentation of other compilers may
be confusingly thorough, listing instrumentation flags under optimization because they have an
impact on some part of the optimization process.

Some of the more obvious options are those that enable profiling of an application, as often
the information gathered can be fed back to the compiler when the code is recompiled, guiding
the optimization process.

2.6.2 Today’s HPC Compilers

With the popularity of Linux, now the dominant HPC operating system, it is unsurprising that
the most commonly used compilers are those provided by GNU. The GCC [154] supports a
large number of different architectures and is heavily used, and supported, by the open source
community. As a consequence, portability is an important consideration for GCC developers,
with the result being that the compiler’s pre-defined optimization levels (-O2, -O3, etc) are
perhaps more conservative than they might otherwise be. On x86 systems, -O3 only implied
the generation of SSE4 instructions relatively recently, and still does not imply the generation
of AVX instructions.

In addition to the various on/off flags, such as -funroll-loops, there are a number
of parameters used to tune compiler optimization stages. One such example is --param
loop-block-tile-size=N, which affects loop blocking or strip mining transformations,
depending on whether the flags -floop-block and/or -floop-strip-mine are in-
cluded. It defaults to a value of 51, which is curious; this was found to be referred to only
in one entry on a GCC developer mailing list. The author described the change to 51 from 64
as being due to 51 being “more magic” [140]. This change took place shortly after the patch
adding this parameter was accepted into the GCC source. It is difficult to see how the average
user of GCC might be expected to guess what the most appropriate value might be for this (and
similar) parameters.

A relative new-comer to this area is the Low Level Virtual Machine (LLVM) [160] compiler
infrastructure. This provides C and Fortran compiler interfaces in the form of clang and
flang. It is popular on ARM architectures due to support from Arm Ltd, and is rising in
popularity elsewhere. Being around 20 years younger than GCC, its design draws heavily on
lessons learned in software engineering. It is highly compartmentalised, with an emphasis on
being easy to extend and maintain. Its development has been supported by Apple Inc for much
of its existence, and it is used by other commercial companies as a basis for their own compilers
and software development tools.

The compatibility of many of the clang command-line options with those of GCC high-
lights the dominance of the older, more monolithic compiler, but the flexibility and greater
functionality offered by these LLVM-based compilers has lead to its use in a number of
development-related tools [1]. Clang has also seen increasing support from open source projects
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that could previously only be compiled reliably with GCC.
Currently, on the majority of architectures it does not rival GCC in performance and is not

yet widely used, but that looks set to change as it grows in popularity with developers and
hardware manufacturers. In scientific computing, one problem that has prevented wider use of
clang and flang is that these compilers do not support all of the options available in GCC
compiler for controlling optimisation, for example, it does not support -fno-unroll-loops
or -fno-move-loop-invariants. For sensitive numerical codes, some optimisations,
while they may make the code run much faster, cause it to produce invalid or inaccurate re-
sults. In such cases, being able to turn optimisations off as well as on is essential (as are good
numerical tests).

Other open source compilers do not enjoy the same levels of popularity or attention as these
two, and are not widely supported, so are not considered here.

In addition to the two popular open source compilers, there are a few well-used commercial
compilers. One of the most well known, in part due to their domination of the x86 processor
market, is that of Intel®. This compiler differs in approach to both GCC and LLVM, and the
optimizations made when given -O3 are less conservative.

The Intel®compiler suite generates code that uses CPU dispatching to choose from several
versions of each function. The choice is determined based the output of the CPUID instruc-
tion to determine which Intel microarchitecture the executable is running on. If the decoded
instruction output does not appear to describe a processor that the Intel compiler that generated
that executable or library supports, it will fall back to a generic version that does not use any
SIMD instructions newer than SSE3 [96].

This approach, and the more aggressive default optimization levels, ensure good perfor-
mance on all of the supported (i.e. Intel-manufactured) processors, so long as a new enough
version of the compiler is used to support any additional, performance-critical instructions.
Unfortunately, some of the optimizations that correspond to the default optimization levels
for this compiler are unsafe for scientific code, making it unpopular with developers of such
software. This can lead them to recommend against using it, or to avoid supporting it, as the
problems of numerical inaccuracy may be levelled against the software authors rather than the
choices of the compiler writers. An example warning is given in the build documentation of
the ATLAS BLAS library [174], which states:

“Intel’s icc was not tried for this release since it is a non-free compiler, but even
worse, from the documentation icc does not seem to have any firm IEEE floating
point compliance unless you want to run so slow that you could compute it by
hand faster.”

Whaley is thought to be exaggerating a little in this statement, but it is the author’s expe-
rience that many (perhaps all) of the performance advantages of using this compiler come at
the expense of precision, something that Intel admits to in [94]. For the majority of users of
this compiler, that may be considered acceptable, but it is unlikely to be something that is (or
should be) tolerated by many scientific users.

For those more focussed on supercomputing, Cray and IBM both provide their own com-
pilers for use on their hardware [85] [37]. Since in both cases much of the hardware is their
own proprietary design, and a close-kept trade secret, it makes sense to provide an optimized
compiler for it.
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2.7 Libraries

In practice similar problems are solved repeatedly, so it make sense to spend time and ef-
fort designing and implementing a suitable algorithm in a form that can be re-used. If this
is sufficiently modular, and the design includes a well-defined Application Programming In-
terface (API), this could become a widely used standard. Such practices improve portability,
regardless of whether the implementation is identical on all systems, because the various im-
plementations of the API are indistinguishable from the point of view of the programmer using
them. Such collections of frequently used algorithms are referred to as libraries, though not all
are so successful in design as to be widely re-used.

In scientific computing, most tasks can be categorised into one of a set first identified by
Phil Colella [34] and since expanded from the original 7 to 13 [10] [133]. One of these has
an arguably greater impact on computer architecture than it perhaps deserves: Dense linear
algebra. The reason for this is the TOP500 list [122], and in particular the benchmark it uses
to rank supercomputers by achieved performance (Rpeak); HPL [136].

This benchmark

“solves a (random) dense linear system in double precision (64 bits) arithmetic on
distributed-memory computers.”

It includes precise timing and testing routines for checking the result is not invalid, but does
not provide the dense linear algebra routines on which it depends. These are instead provided
by a library, the BLAS [117], which as a result has been the focus of much work from chip
manufacturers, library authors and compiler writers. All are intent on achieving a high score as
positions in the upper reaches of the TOP500 are highly sought by their biggest customers, and
help to cement a reputation as a supplier of the highest performing hardware/software. This has
ensured that the BLAS, and in particular the DGEMM routine, especially as applied to square
matrices, have garnered more attention than they might otherwise deserve.

2.7.1 Dense Linear Algebra

Of all the dense linear algebra libraries, the two most widely used and well known are probably
Linear Algebra PACKage (LAPACK) [112], and the BLAS [117], on which it and the HPL
benchmark depend.

The BLAS is an API for a collection of routines for the basic matrix and vector operations.
These routines are split in to 3 levels depending on the type of operation being performed:

Level 1 Scalar-vector and vector-vector operations

Level 2 Matrix-vector operations

Level 3 Matrix-matrix operations (added in [43])

This well-established, clearly-defined API allows the software that depends on it to benefit
from performance gains made by work to optimize its routines. Much of this work has focussed
on double-precision GEMM for square matrices (DGEMM), driven by the HPL [136] benchmark
and its role in the TOP500 [122] list.

Reference BLAS The reference BLAS is a naive implementation of the BLAS API, written in
Fortran. The simplicity of its implementation makes it portable, as it is easily compiled
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on any platform. However, as this implementation lacks any attempt at optimization (re-
quired to ensure clarity of the code), its performance (in terms of % of Rpeak) is dictated
by the optimization work of the compiler.

Many compilers will now spot the routine vital to HPL performance, DGEMM. This rou-
tine performs a matrix-matrix operation of the form:
C = α× f (A)× f (B)+β ×C where f () is one of f (X) = X or f (X) = XT

α and β are scalars, and A, B and C are matrices. f (A) is an m by k matrix, f (B) a k by
n matrix and C an m by n matrix.

In this reference implementation, although some basic checks are carried out to ensure a
quick return if the computation is unnecessary, the basic algorithm loops through the el-
ements of the matrices in a sequential fashion. For the form C = f (A)× f (B)+C where
f (X) = X , the basic algorithm (ignoring simple checks to avoid unnecessary computa-
tion) is as follows:

Algorithm 1 Basic DGEMM

for j ∈ {1, . . . ,n} do
for l ∈ {1, . . . ,k} do

for i ∈ {1, . . . ,m} do
Ci, j←Ci,l +(Bl, j×Ai,l)

end for
end for

end for

Why other BLAS As can be seen in algorithm 1, one memory access is required per oper-
ation. While many optimizations are possible [167], these would defeat the point of a
reference implementation by making it difficult for the reader to comprehend (and po-
tentially less portable).

These memory accesses are optimized to some degree by the processor, since they access
memory contiguously and thus benefit from prefetching, but this is not enough to deliver
anything close to the floating point throughput that we know the processor is theoretically
capable of (Rpeak). In addition, this type of memory access pattern is severely affected
by differences in hardware design.

GotoBLAS Kazushige Goto, a skilled hand-coder, is the sole developer of GotoBLAS, and
the basic design is a fairly simple one. At compile time, the install script checks the
processor type of the machine it is running on and selects a pre-written kernel from a
small selection. As in [69], Goto himself states:

Implementing all the algorithms discussed . . . on a cross-section of architec-
tures would be a formidable task.

GotoBLAS is thought of as ‘portable’ only in the sense that Goto has implemented ker-
nels for a number of currently popular processors, although he also includes a generic
(for x86) implementation.

Each kernel is written by hand in assembler, using various architectural quirks wherever
they may convey an advantage. There are slightly different kernels for different matrix
shapes and sizes, to ensure that not only square matrices are manipulated efficiently.
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Unfortunately, development on GotoBLAS/GotoBLAS2 stopped in 2010 when Goto left
his post at the University of Texas [183]. In 2011, development moved to OpenBLAS
[180].

ATLAS The ATLAS (Automatically Tuned Linear Algebra) project [178] is an established
project created and maintained by R. Clint Whaley. He explains in [169]:

ATLAS is an implementation of a new style of high performance software
production/maintenance called Automated Empirical Optimisation of Soft-
ware (AEOS). In an AEOS-enabled library, many different ways of perform-
ing a given kernel operation are supplied, and timers are used to empirically
determine which implementation is best for a given architectural platform.
...
ATLAS is designed such that several kernel routines supply performance for
the entire library. The entire Level 3 BLAS may be sped up by improving the
one simple kernel, which we will refer to as gemmK, to distinguish it from
a full GEMM routine. The Level 2 routines make similarly be sped up by
providing GER and GEMV kernels (there are several of these, as discussed
later). ATLAS has standard timers which can call user-programmed versions
of these kernels, and automatically use them throughout the library when they
are superior to the ATLAS-produced versions.

ATLAS is designed with maintainability [177] in mind, but that does mean that it makes
some sacrifices in order to achieve it. For example, there are no plans to have the code-
generators produce machine-specific code [169]. On the other hand, if you were to
compile and tune ATLAS on a previously unknown architecture there is a reasonable
chance that you would get good results. This is of course one of the biggest benefits of
auto-tuning – the code is made more portable than hand-tuned alternatives.

There are also a number of proprietary BLAS libraries. Most of these are created by hard-
ware vendors, who naturally wish their hardware to be compared favourably with that of their
competitors, particularly in published benchmarks.

2.7.2 Fast Fourier Transform (FFT)

Though this thesis does not directly address the fast Fourier transform (FFT), these algorithms
would be the next topic to be considered. Another of the Dwarves first identified in [34],
FFT is a much more complicated algorithm than the BLAS, and is heavily used in scientific
applications. It operates on complex numbers, which make it a difficult target for vectorisation,
especially given the current lack of modern CPUs with complex SIMD instructions.

The most popular non-proprietary FFT library is FFTW [62]. This library attempts to self-
optimize during runtime, with a limited amount of input supplied by the programmer calling
the routines.

2.8 Software

The extensive variation in hardware has left its mark on some of the software standards that
we rely on today, such as the C [25] and POSIX [142] standards. Many will be familiar with
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the definitions of types, and particularly their sizes, in the C standard, though inexperienced
programmers tend to forget that the standard merely sets their minimum sizes.

The original LINPACK benchmark [42] has a placeholder for the benchmarker to insert
their own calls to a suitable timing routine, since there was no standard way of doing this
at the time. In contrast, all one needs to run its successor, HPL [137], is to ensure that an
implementation of the MPI and BLAS libraries, and a suitable C compiler, are available. All
of these are governed by now-established standards. While all standards have failings13, they
still reduce the amount of ambiguity and help to make the lives of developers much easier.

At the time of the University of Southampton’s 2014 experiments with 64-bit ARM, much
software was missing, and a large proportion of what was available was buggy. Compilers
were limited to Clang and GCC. While their support was good enough to get something to
run, optimization was lagging behind as the compiler authors were using “generically good”
options behind -O3 et al. The high performance libraries were mostly absent. Of the BLAS
libraries, only ATLAS was available and working, and that delivered a mere 20% of Rpeak at
the time. Without any tuning of the compiler flags, this was still far beyond what the reference
BLAS could offer. It was here that some of the early prototypes for this project were tested.

Since then, Arm Ltd has produced more software for this area, with its own libraries and a
compiler and tool suite based on LLVM.

2.9 Operating Systems

Early computers were supplied not only without compilers but without operating systems,
something that is often forgotten by those who now depend on computers for their trade. They
were single program, and so single user, who would supply the instructions either by punched
card or paper tape. The earliest scheduling systems were entirely physical: Cambridge Uni-
versity famously used a clothes line, with punched paper tapes pegged to it, their order rep-
resenting their positions in the queue, and the colour of the pegs indicating priority. Early
accounting involved measuring used machine time by checking a clock mounted on a wall;
modern workload managers still refer to time used as “walltime”, or “wall-clock time”.

Later, simple programs offering some of the functions now taken for granted in modern
operating systems may have been supplied either by the manufacturer (on request) or by the
customers, who would likely hire their own team of developers at the same time as, or shortly
after, purchasing a machine. These people would have the laborious task of programming in
machine code, and later, in assembly language14.

Early operating systems were very rudimentary by today’s standards, beginning as simple
libraries and programs that ran before and after each user’s program. As processing speed in-
creased (along with the sometimes devious antics of users desperate to get as much out of their
allocated time as possible), the complexity of these runtime libraries increased also, until they
became a program that ran first, before any user processes, read in each user program, con-
trolled its execution, performed any necessary cleaning up of the used resources and recorded
data about resource usage, before moving on to consider the next user program. The clothes
line had been replaced by software.

The Atlas Supervisor, famously introduced on the Atlas computer at Manchester in 1962,
has been described as “the most significant breakthrough in the history of operating systems”

13Some might argue that the C and POSIX standards have considerable failings
14It could be argued that, since manufacturers supplied libraries and programs to translate from human readable

symbols to machine code, compilers pre-date operating systems by a few years.
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[73]. Its function was to manage the assorted components of the Atlas computer, with its many
peripheral devices, including the different levels of memory. In this way it was not entirely
unlike a modern operating system, though few modern users would recognise it as such.

The early operating systems also differed greatly from one manufacturer, and often ma-
chine, to another: The mechanisms for managing memory, processes, I/O and interrupts (if
they existed) were unlikely to share many similarities, meaning that software would have to be
rewritten, perhaps even redesigned, whenever a new machine was purchased.

The CDC 6600 was supplied with a copy of the Chippewa Operating System, which was
really a simple scheduler or job control system. The first two Cray-1 machines to roll out of
the factory were supplied without any operating system [38], but serial number 003 used the
Cray Time Sharing System (CTSS), a descendent of the earlier system used on the CDC 6600.
At this time it was already apparent that a large part of the cost of developing a supercomputer
was in creating and maintaining the software. This is something that is still true today. It is
therefore unsurprising that Cray, along with other manufacturers, has moved from their own,
in-house operating system (Cray Operating System), choosing UNICOS (based on UNIX) for
the Cray-2 (1985) and Cray X-MP from 1986, before eventually moving to Linux.

More recently, the TOP500 shows 100% of listed machines to be running some variant of
the Linux (a UNIX-like) operating system. Such harmonisation has made working on software
for these systems very much less surprising than it once was, and portability is relatively simple
to achieve.

The POSIX standard [142], introduced in 1988, was an attempt by the IEEE to push op-
erating system authors towards some sort of uniformity, and it has largely succeeded. Today,
the most used variants of UNIX and UNIX-like operating systems are all POSIX-compliant,
allowing many open source software applications to become widely used.
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RELATED WORK

Auto-tuning has been turned to by researchers for a number of years to try to find a way to
improve performance without losing the advantages of portable code.

This project is targeted at the person, either a member of a research group or a system
administrator, who has a piece of software (in source code, otherwise he has no control) that
he wishes to run more efficiently than “out of the box” compilation provides. To make sense
of this desire, he must first pick some “typical” jobs that he wishes to run faster, and attempt to
improve the runtime of these. There are then two obvious options for doing so.

1. Rewrite it (presumably the expensive portions of it, an activity which in turn requires
a non-trivial profiling operation to determine these) in machine code. This process is
labour-intensive and requires skills that are in very short supply. Its results also have
a short lifespan, as the next machine may completely invalidate this (if a different chip
vendor is chosen) or at least will change the target.

2. Try a non-standard compilation. Obviously, if ”out of the box” is -O0, one can try
higher levels. Beyond this, there are many options, such as “should I change the value of
--param loop-block-tile-size=N?”. Doing this requires intimate knowledge
of the compiler, and also some knowledge of the application: a combination of skills also
in very short supply. This process is also liable to be labour-intensive and have the same
short lifespan as the previous.

This project falls in the area of auto-tuning, packaging and automating option 2. It is
the first in this area to combine a number of techniques (workload distribution, verification
of compilation and statistical analysis of results, and portability of the tuner) and to target
emerging HPC architectures. However, is it not the first time that libraries have been targeted
to improve performance for a number of applications without those applications needing to be
altered, or to attempt to do so through controlling compiler optimization by searching for a
more optimal set of compiler flags.

While this approach is related to iterative compilation, it is different in that it does not
attempt to integrate with a particular compiler, and a black-box approach is taken to the tar-
get software. It is not an extension to the compiler, but rather a method of driving it. This
separation is maintained in order to remain compiler agnostic.
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3.1 Auto-tuning

Auto-tuning is the process of taking a set of parameters and a target application or code, and
searching for the best-performing variant of that application or code. Although “performance”
may be defined in terms of energy or memory use, or some other indicator of how the hardware
is used, in HPC most people are interested in speed of execution, particularly of floating point
arithmetic.

Auto-tuning can be implemented at one or more of several stages in the life-cycle of the
target software. It may start at compile or code generation time, or happen dynamically during
the runtime of the program, or it may rely on data gathered during runtime to re-generate the
code to improve the performance when the software is next used.

Choice of auto-tuning target also changes depending on the approach taken. Some software
provides its own auto-tuning mechanism. This is the route taken by several library authors, of
which ATLAS [178] and FFTW [62] are examples.

ATLAS employs auto-tuning during the build process to choose from a set of parameterised
kernels, and to determine the correct parameters to use on a given machine. This auto-tuning
takes place during build time, and relies on a long (perhaps 48 hours in some cases) period
of uninterrupted time on a dedicated computer, identical (particularly in terms of the CPU)
to that on which the software using the library will be run. A similar approach is taken in
PHiPAC [16]. Both PHiPAC and ATLAS attempt a limited amount of tuning of the compiler
flag choices during the build process. In contrast, FFTW tunes its kernels dynamically during
the library’s use (in addition to generating kernels at build time), with limited input from the
user.

The work done on a particular library, no matter how good that work is or how widely
used the library, can still only benefit a limited number of applications. To reach a wider, more
general, audience, some have provided compiler extensions [64] or language extensions as in
[103], [75] and [146] (often requiring bespoke code-preprocessors). The major benefit in this
approach is that the developer can attempt to improve the reasoning of the compiler, thereby
potentially allowing more aggressive optimisations to be performed. It is difficult for the non-
developer to make use of these language extensions or annotations, as the person adding them
must be intimately familiar with the application being modified. It may also be necessary to
target “hot spots” after profiling the application, to save time.

The work in [64] is one of several (reviewed in [11]) that use ML techniques to improve
compiler optimisation. This type of approach was considered early on by the author but dis-
carded on the grounds that a lot of training data must be available first. This data must be
available for the compiler and the architecture, which in practice requires a method of generat-
ing such data; a time-consuming process that is difficult to do portably. Milepost [64] itself is
compiler and compiler-version specific, a trait that would not be suitable where portability of
the tuner is important.

Where Milepost uses static and dynamic profiling to obtain information about the target
application, [115] and [145] use hardware counters to make choices about compiler optimiza-
tions. While initially attractive, especially with the availability of Linux perf tools [22], hard-
ware counters are unreliable: The author has several times noticed chips misreporting event
counts, and recent specification updates for Intel processors have mentioned the problem of ei-
ther not counting or counting events more than once (see for example CA93 in [89, page 42]).
In the worst cases, counters have been observed to fail to count as many as 1/4 of occurrences
of an event, or count 4 times more occurrences than have actually taken place. In addition,
hardware counters differ greatly between chips, and in bleeding edge hardware may be poorly
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documented, as has been the author’s experience.
The TACT project in [138] is much closer in goal and nature to this project, although it is

not focussed on HPC. The authors use a genetic algorithm and a concurrent tuning approach
to optimise software for several development boards containing ARM Cortex A9 chips. They
state that it can take 1-2 days to get two-digit speed-ups for their target software. Such a delay
is tolerable if a program is to run for a long period of time, as the cost in CPU-hours during
tuning is regained through a shorter runtime. In scientific computing, that may mean more
results or more detailed models, or it may mean a higher throughput for the supercomputer
centre overall.

In [138], Plotnikov et al pass the compiler flag string (built from a subset of up to 200
flags) by setting the environment variable “CFLAGS”. This is an obvious approach to take for
open source software, where the convention of using CFLAGS to allow any person building
that software to adjust the flags passed to the C compiler.

Some have created optimization frameworks for use with/on software that one does not
wish to personally alter [12] [102] [8], removing the need to use a particular language to benefit
from auto-tuning. These still require substantial work on the part of the user before they can be
used. In the case of OpenTuner [8], it is implemented in Python, a language unsuitable (albeit
popular) for HPC applications. The portability problems that this introduces are discussed in
section 7.1.1.

Auto-tuning and benchmarks

Auto-tuning benchmarks can be a controversial topic, depending on the aims of the bench-
marker. In [78, page 29], altering compiler flags for benchmarks attempting to compare the
performance of different systems is strongly discouraged.

Hennessy’s advice would appear to assume that the compiler will not detect the underlying
hardware and make different adjustments dependent on what it finds. In these times of clever
compilers, a true comparison of the hardware might require that the benchmarker employs no
optimization at all. Even then, the hardware itself may make benchmarking difficult, as seen
by Fogg when attempting to time instruction execution in modern chips [56].

One benchmark that has perhaps affected compilers (and hardware designs) is the HPL
benchmark [136]. As the DGEMM algorithm is relatively trivial for the compiler to discover, it
is an obvious target for aggressive optimization. It might make for a more interesting TOP500
[122] if both unoptimized and optimized versions of the benchmark (and the BLAS library
on which it chiefly depends) were run, but this is unlikely to be popular with compiler or
hardware vendors, or the benchmarkers who are chiefly employed to guarantee as high a result
as possible is obtained from the benchmark.

3.2 Tuning the choice of compiler flags

While many are aware of and have discussed the way that ATLAS chooses kernels and suitable
parameters, they may not have noticed a C program called mmflagsearch.c, mentioned
only briefly in the install documentation [171]. This simple program uses a greedy linear
search to find the best combination of a small set of flags provided in a text file. It does not
search values for specific flags (e.g. --param loop-block-tile-size=N), but rather
tests whether the flag has a performance impact or not. For flags with multiple values, all
possible valid values for those flags must be listed, making the approach impractical for large
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numbers of flags that take a range of values. It also does not consider dependencies between
flags, although there appear to be very few of these, nor does it attempt to evaluate the benefits
of particular combinations of flags.

The list is hard-coded and began with only a small handful of flags, hinting at its origins
as a small experiment. The list has grown as more have been found by Whaley, the ATLAS
author, to produce good results generally when compiling a GEMM kernel. Only machine-
independent optimizations are considered. The mmflagsearch.c program can only be used
with GCC, but this is also the only compiler that is stated as being (fully) supported for use
with ATLAS.

Whaley’s experience mirrors what others (such as [131], [84] and [141]) have found: That
careful choice of the flags provided to the compiler can out-perform the choices of the compiler
writers that optimization levels such as -O3 represent. This does not need to be automated if
the individual making the selection is knowledgeable enough about both the compiler and the
code being compiled, but such knowledge is seemingly rare.

In [131], the authors focus on eliminating flags from the search, a useful technique in a large
search space, but only consider the small subset of flags corresponding to -O3. Similarly, in
[84], the 60 on/off flags corresponding to -O3 of GCC at that time is searched for the best
combination. Cole et al report an improvement of 53% over the standard optimization levels.
They consider only the SPEC benchmarks [155], and the authors do not concern themselves
with the possibility of numerically unsafe optimizations being performed.

Closer to this project is the example presented in [8], which tunes all the flags and param-
eters of GCC via a simple genetic search algorithm. This choice of search algorithm is similar
to that employed in [6], in which a very similar (in nature) search space is described. However,
Almagor et al were able to explore their much smaller search space, and some of its subspaces,
exhaustively. This is not feasible with GCC, or any of the popular modern compilers.

[110] and [35] address a similar problem, also searching for the best ordering of optimiza-
tions in a bespoke adaptive compiler. In the project in this thesis, targeting an existing compiler,
the only option is to turn the optimizations on or off, adjusting them where possible via one of
the provided parameters. No widely-used compiler allows for the order of optimization passes
to be tuned by the user.

Of perhaps more relevance, in [130] GCC flags are searched for a “good” combination, this
time tuning with the aim of reducing energy usage.

In [141], Popov et al use CERE [40], a codelet extractor built on LLVM [160]. Their tool
targets the generated bytecode to tune further compiler optimizations of small sections of the
targeted code. This made possible by LLVM’s use of bytecode and modular design. Until
LLVM becomes more widely used, the potential for this approach is limited to those codes that
support it, although this list is growing.

[166] tunes the optimizations of hot code segments by the Intel ®compiler on Itanium, also
targeting some of the SPEC benchmarks. Again, a greater than 20% performance improvement
is reported, which would be impressive if it can be repeated with real codes, without unwanted
side-effects.

3.2.1 A note about optimization levels of compilers

As explained in section 2.6.2, the optimizations corresponding to -O3 and other optimization
levels are picked by the compiler authors, who have a specific use case in mind.

It should also be remembered that -O3 is revised by the authors of the various compilers
when work is done and changes made to the optimization stages of compiler. If the stated
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goal of a tuner’s author is to out-perform -O3, then it would be foolish to imagine that this is
anything other than a moving target.

This is not to say that compiler writers do not know what they are doing when these choices
are made. On the contrary, it highlights two problems: Choice of flags is dependent on both
the architecture (and microarchitecture) of the target platform and on the code being compiled.
For the GCC authors, their choices for -O3 must be made with the understanding that the
target platforms are diverse, as is the software being compiled. Portability is an important
consideration. It is also difficult, as stated in [131] for the compiler to know enough at compile
time (without taking longer than is likely to be tolerated by the developer) to make optimal
choices.

For some proprietary compiler authors, such as Intel®, the problem is slightly easier. They
need only target their own hardware, and, unlike the GCC developers, have no need to worry
about Linux distributions using their compiler to create binary packages for installation across
every hardware platform that distribution supports (and some it does not).

Even when the authors of compilers are, as one might imagine is the case for those em-
ployed by Intel, intimately familiar with the hardware, they can never claim such familiarity
with the software being compiled. They cannot know what it will be, or what it will look like,
and so their choices for -O2, -O3 et al must be based on a great many assumptions about what
a “typical” application looks like, and how it will behave.1

A relevant example is found in [105], where, for the specific problem being investigated
with certain combinations of input sizes, -O1 may actually yield better performance than -O3.
A 20% improvement in this instance, contrary to what might otherwise be expected.

3.3 Distributed compilation

Over the past decade, distributed compilation has increased in popularity. This would appear
to be due to the huge growth in large software projects and demand for tools to manage them,
accompanied by a drop in cost of commodity hardware. Although several distributed build
systems exist, none are intended for use in the HPC environment, and benchmarking is not a
normal part of the software build cycle2. They also do not concern themselves with jitter [39],
which we know, for example from [119], can have a noticeable impact on benchmark results.

The many features that make distributed build systems and compilers so interesting to
software developers could add considerably to existing machine noise. There is little incentive
for the maintainers of these projects to pay attention to this, since the average software project,
their main use case, makes little use of auto-tuning and so is not adversely affected.

Popular examples are DistCC [139], expanded by others, such as the SUSE team [157], to
create their own custom distributed build systems, and MRCC [116]. DistCC is written in C++,
and is really a wrapper for GCC. It requires a daemon running on dedicated build servers, and
does not allow for benchmarking or testing of optimization results. SUSE’s “Icecream” (their
customised version of DistCC) also requires a daemon to be running on the build servers, as
well as at least one server for distributing the work. Koji [108], a distributed build system used
by the Fedora Linux project [54], works in a similar way, but its goal is to build RPM packages
for distribution (after signing via another distributed system). This means that each build task

1To claim otherwise would suggest the possession of a level of psychic ability that surely would grant the
possessor the prospect of a far more lucrative career than that of a mere software developer.

2Though companies often do benchmark their software, it is generally done manually and near the end of the
release cycle, if at all.
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will run a variety of scripts, one of which usually includes a “make test” if available.
MRCC is designed to compile large software projects on MapReduce servers, so in some

ways it fits better with the HPC model. Compilation jobs are submitted to the MapReduce
scheduler, and no dedicated nodes are required. It too does not allow for benchmarking or
checking whether optimization has caused instabilities, but in theory these tasks could be cre-
ated as stand-alone MapReduce jobs and run in a similar way.

A more interesting project published at the end of 2017 is the work of Mohamed Boussa
[21]. This project uses Docker [41] containers to get around many of the difficulties in using
distributed build systems on a university cluster. Unfortunately, Docker is not without its own
difficulties, and discussions around its appropriateness in that environment tend to provoke
heated debates. This is particularly true among those responsible for running and maintaining
university HPC facilities. Despite this, it is very popular with users, and so the US Department
of Energy has produced two projects, Singularity [111] and Shifter [126] to allow Docker
images to be ported to a format with lower performance overheads and slightly less noise.
Both seem to work in a similar way. This involves unpacking the Docker containers into a
chroot, and placing this within a more space-friendly squashfs image. This also helps
to placate those systems administrators concerned about the proliferation of Docker exploits,
although it cannot alleviate all their fears.
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An unhealthy preoccupation with floating-point arithmetic’s Speed, as if it
were the same as Throughput, has distracted the computing industry and its mar-
ketplace from other important qualities that computers’ arithmetic hardware and
software should possess too, qualities like

Accuracy, Reliability, Ease of Use, Adaptability, . . .

William Kahan [100]

When a new supercomputer is bought, a great deal of money is spent on obtaining the latest
and greatest hardware. While there are good reasons for this, it does present a problem during
the first 1-2 years. Much of the software on which scientific applications rely requires time and
effort on the part of the maintainers of these applications, and in particular the library authors,
to optimize for the latest architectures.

Similarly, the administrators of these machines wish to be able to provide tuned software
as early as possible, since shorter run times make for higher throughput. In addition, there are
financial arguments for production systems. The placement of a system within the TOP500
[122] list may be important to many, but it is rarely justification for such investment. Why pay
so much for the latest hardware if your users’ applications do not perform as efficiently as on
older hardware, albeit that their jobs may run faster than on the previous system? Research
supercomputing centres must balance the needs of those who need access to bleeding edge
hardware with those who just need a good number cruncher. Furthermore, it could be argued
that the more modern the hardware at time of commission, the longer the useful lifetime of the
machine.

Gaining access to hardware in a timely fashion is often a problem for maintainers of open
source libraries. Even those working on closed source libraries, including those in a relatively
privileged position such as the developers of Intel’s®MKL [88], require time to discover and
implement the best algorithm variants for that hardware.

When the first Knights Corner (Intel Xeon Phi) cards became available in 2012/2013, many
invested, but they were let down primarily by the libraries. The author, working on the Iridis
4 (appendix A.2.3) cluster at the University of Southampton, was disappointed to discover that
very little effort had gone into the MKL at that time. Only DGEMM operating on square matrices
appeared to have reasonable performance, and this remained the case for at least the next 2
years. Open source libraries were even slower to deliver, and maintainers on mailing lists were
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seen stating that they were struggling to obtain access to the hardware and so could not support
it [172].

The period of time between a supercomputer first entering production and high perfor-
mance implementations of the libraries used by the software that runs on them becoming avail-
able is observed to be between 1 and 2 years at the current time, and appears to be lengthening
as CPU architectures become more complex.

This increase in complexity can be seen by looking at the increasing numbers of CPU
errata issued by chip manufacturers. Between the first specification date for the Xeon E7 v2
(IvyBridge) processors issued by Intel in November 2013, and the version issued in September
2017, the number of errata swelled from 106 to 162 [90]. In a similar time period (September
2014-2017), that for the Xeon E5 v3 family (Haswell) swelled from 76 to 119 [91]. The errata
in the specification update for Skylake, first issued in July 2017, already number 71 [93], and
are expected to continue to increase.

It has long been an annoyance that the manuals of the chip manufacturers may be ambigu-
ous or otherwise diverge in subtle ways from the observed behaviour of the hardware. Such
divergence has been noted by both library authors and optimizers [57] [58].

Even experts struggle to understand chip designs fully. In [98], it was shown that the well
known and respected author of GotoBLAS [68] seemed to have mis-described the importance
of his treatment of the DTLB.

4.1 Case study: When cache matters, a comparison of ATLAS and
GotoBLAS

In early 2006, the University of Bath took delivery of its first modern supercomputer, Aquila
(appendix A.2.1), a cluster built from off the shelf components, typical of those installed at
many universities in the UK, EU and US. The first step after delivery was to put the system
through a series of rigorous acceptance tests, ensuring that what was delivered was fit for
purpose and met the requirements of the sales contract. The author, being at that time one of
the two systems administrators responsible for HPC systems at Bath at that time, was heavily
involved in this process.

During this stage, the engineer sent by the vendor to install the system ran into problems.
The system was contractually required to achieve an observed HPL benchmark performance
(Rmax) of 80% of its theoretical peak (Rpeak), but nothing that the engineer did would allow
this figure to be reached. Eventually, the BLAS library being used with the benchmark was
switched with another, and the system managed to pass this test. Most did not ask after the
cause, but some, including the author, were left wondering.

4.1.1 Comparing BLAS library performance

Work began by looking at the difference in HPL benchmark performance on Aquila (see
appendix A.2.1) using the GotoBLAS [67] and ATLAS [178] BLAS libraries. There were two
versions of GotoBLAS on Aquila at the time, and these were compared first, as it would take
some time to compile ATLAS 3.8.2 - at the time the latest stable version. This first comparison
between two versions of the same BLAS library yielded surprising results.

The processor installed in Aquila, as explained in appendix A.2.1 on page 121, was an
Intel chip, the microarchitecture of which was given the development name of Penryn. It was
not long since this chip had been released, as is often the case for machines of this type and

48



Chapter 4. Initial Experiences

for supercomputers in general. The older version of the library delivered lower performance,
around 20% slower than the later version. This was initially blamed on support for the pro-
cessor being lacking, but digging into the source of the library build system suggested a more
interesting reason.

It turned out that the library’s build system, largely driven by custom scripting of the devel-
oper, had misidentified the processor. The library produced was in fact optimized for an older
Intel microarchitecture, Prescott, and as a result was unable to reach the level of performance
usually expected for this library.

It later became clear that, during the work that he did to fix the performance issue, the
engineer working on the system at the time made contact with Goto, author of the GotoBLAS
library, who had needed access to Aquila in order to fix his software. With the library build-
ing correctly, using the kernel hand-crafted for the Penryn microarchitecture, the HPL bench-
mark easily managed 78.8% of Rpeak

1. This was close enough to the required 80% to allow the
system to pass that part of the acceptance testing.

With that complete, attention turned to the ATLAS BLAS library. This library is very
different from GotoBLAS. Whereas the GotoBLAS build system picks from a small set of
hand-written kernels, with a few parameters set on a per-microarchitecture basis, the ATLAS
build system is considerably more complex. Goto requires access to the hardware his library
supports. In contrast, ATLAS auto-tunes, searching through a number of parameterised, rela-
tively generic kernels in an attempt to provide a high performance library even for architectures
(and microarchitectures) that Whaley, the ATLAS author, has no knowledge or experience of.

In practice, this approach is not always able to deliver such high performance as might be
hoped, but it does manage to produce something far better than the reference BLAS compiled
with -O3 with any of the established compilers2. In the case of Aquila, this version of
ATLAS was able to deliver 55% of Rpeak.

Later versions, after significant development, are capable of achieving far more, though
only on x86 architectures. Other architectures are significantly different that such good perfor-
mance is difficult to achieve even for ATLAS.

4.1.2 Observations of TOP500 list

An analysis of the November 2008 TOP500 [122] list shows that, if reported Rmax is considered
as a percentage of Rpeak for each machine listed, a bimodal distribution becomes apparent. The
peaks are observed to correspond approximately to the differences in performance between
ATLAS and GotoBLAS on Aquila. Unfortunately, TOP500 does not state which BLAS
library is used with the benchmark (nor which compiler or combination of compiler flags) to
obtain the submitted figures, so it is not practical to determine whether this distribution is due,
either wholly or partly, to choice of BLAS library.

4.1.3 Comparing ATLAS and GotoBLAS

Why was there such a big difference in performance between these two, both impressive, BLAS
libraries?

1This increased to 85% when the benchmark itself was later rebuilt by the author with a more careful choice
of compiler flags

2Note that for the machine in appendix A.2.4, ATLAS at that time could only manage 20% of Rpeak; still
significantly better than the 2-3% of -O3.
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In [67], Goto claimed that the superior performance of his library are due largely to his
approach to the (presumably data) TLB, chiefly work on avoiding TLB misses, observing that:

for the current generation of architectures, much of the overhead comes from TLB
table misses

and goes on to state that the GotoBLAS approach is really focused on avoiding these misses,
additionally informing the reader that:

prefetching can mask a cache miss, but not a TLB miss

this being because a TLB miss stalls the CPU while it waits for the TLB to be updated. The
GotoBLAS library is then compared with the performance of ATLAS (and Intel’s MKL) on one
machine, the Pentium-4 based production system at UTACC. Approximately the same gap in
performance on his multiprocessor, Intel Pentium 4, machine was also observed on Aquila.

Interestingly, while the difference in performance could be reproduced on both Aquila
and a machine with a very similar chip to that used by Goto, insights provided by profiling did
not seem to agree with Goto’s assertion about the TLB. ATLAS did not see more TLB misses
than GotoBLAS when used with HPL on these systems and, further to this, no other thrashing
was observed.

In support of his argument, in [67], Goto also quotes results for small matrices of only
100x100 elements, where high numbers of TLB misses are unlikely even for naive code, Go-
toBLAS still significantly outperforms its rivals.

Despite his claims in [67], it would appear that it is actually Goto’s superior assembly that
is the likely cause for his performance gains. ATLAS only has a large number of TLB misses
when it deems the matrices too small to be worth copying into cache. This is discussed in the
ATLAS author’s own paper on the subject [178], where it is stated that unless the matrices being
operated on are above a certain size (this dependent on architecture and found empirically by
ATLAS at compile time), it is more expensive to copy the matrices into cache than to operate
on them where they are in memory, rather than to copy and transpose. Once it begins using the
implementation that does copy and transpose the matrices then you see very little difference in
performance, regardless of matrix size.

Through profiling, it becomes clear that with these versions of the BLAS library, there is
a big difference in how they use the processor cache. While discussing the matter with the
ATLAS author, Whaley explained [170] that he also believed that the difference was largely
due to treatment of the cache. In later versions of ATLAS, this was fixed by allowing the
ATLAS build system to consider blocking for any level of the cache [173], which seems to
be the more sensible approach, given the increasingly complicated memory arrangements of
modern processors.

Prior to this, ATLAS would block only for the L1 cache, whereas GotoBLAS would block
for the L2 cache, something that Goto mentions in [69] (where, perhaps tellingly, there is
no longer any emphasis given to treatment of the TLB). Since the changes to the ATLAS
build system were made, the performance gap has narrowed significantly, so that on many
architectures it matters little which library is used.

What the work of both Goto and Whaley has highlighted is that, when last level cache
(LLC) bandwidth is sufficient - as it apparently is on current machines - then there is no real
advantage to be gained in blocking for the L1 cache. Thus if the block size is NB, then you can
dominate the NB2 load costs with your NB3 flops if you pick NB to fit into the min(DT LB,LLC)
instead of L1.
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The bandwidth to the L2 cache (L3 and possibly L4 in later chips) is generally more limited
than to the L1 cache, so it is necessary to copy to special formats that have a fairly high
spatial locality (according to Whaley [173], greater than those used in the ATLAS block-major
format in 2014) so that you can be certain that you do not exceed the L2 bandwidth. This
was a problem on many earlier chips, which is why Whaley, in focussing on portability over
performance, continued to block for the L1 in ATLAS despite knowing of these advances on
newer x86 chips for a few years. It also required considerable work to ensure that portability
was maintained and future architectures would not be harmed by moving to a different blocking
strategy. GotoBLAS does not support many chip architectures, and so enjoys an advantage over
ATLAS where ease of maintenance and speed of development is concerned.

Neither ATLAS nor GotoBLAS is novel in the way that blocking is done to suite the avail-
able data caches on the chip being used. A similar approach was taken almost 10 years earlier
in [79], and is also used in several proprietary libraries. In [143], simulations were used to
show that several smaller caches could perform as well as one large one, and, although Przy-
bylski did not have the BLAS in mind, it is not a great leap of imagination to see how this work
might apply to those writing such libraries.

4.1.4 How much does the TLB really matter (to GotoBLAS)?

Intrigued by Goto’s claims about data translation look-aside buffer (DTLB) treatment in [67],
a short study was undertaken by the author [98]. This made extensive use of variables in the
GotoBLAS build system that related to the DTLB, in particular its size. It became clear through
examining the performance counters on the Penryn chips of Aquila that DTLB misses were
not affected by changing the reported size of the DTLB where it was used by the build system.
Further examination of the source seemed to suggest that in fact, changing the reported size of
the DTLB affected very little in the code, which is supported by there being almost no practical
affect on the performance of HPL. The main conclusion that can be drawn from this is that
GotoBLAS is even less portable than it first appears, and also more difficult to maintain, as
most of the important variables (along with several architecture-specific performance “tricks”)
are hard-coded in assembler.

4.2 Towards a deeper understanding

There are several guides on the internet about how to choose the best numbers for running
HPL on your own computer in order to find the highest Rmax. In most cases, the authors tend to
quote from “the Quick and Dirty Linpack Benchmark Howto”, a resource that seems to have
since disappeared from the internet, or to give numbers that they have obtained experimentally.

The numbers that they find could have been estimated had the authors had an intimate
knowledge of how the HPL and BLAS algorithms work, along with some facts about their
hardware.

In particular, the DGEMM implementation in the BLAS library that they pick will make a
big difference to the best numbers chosen for use with HPL. In the example at the beginning of
this section, because that version of ATLAS blocks for the L1 cache, the number 80 (or 160 for
some of the more modern chips with larger caches) gives the best performance when chosen
for NB, the block size. In contrast, because GotoBLAS is blocking for L2, then depending on
the size of your L2 cache you might choose 112 or 224 for the same processor. On Aquila in
2009, the best NB turned out to be 160 if using HPL with ATLAS and 224 if using GotoBLAS.
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A small NB is good for communication purposes, but for performance it is still necessary
to pick the largest size that will fit into the data cache size that the chosen BLAS library is
blocking for. This is because of the sizes of the caches most used by those GEMM algorithms,
and the way they are treated by the GEMM.

This does not account for the problems caused by thrashing, for example if data is cache
mis-aligned or if threads are fighting over the same pages in memory, but it is hoped that
most users of HPC will avoid these issues by having access to well-written, high performance
libraries.

4.3 Early motivation

In 2012, the RaspberryPi [61] helped to increase interest in the ARM architecture among those
outside of the mobile and integrated worlds it has previously tended to inhabit. This resulted in
a great deal more support for the architecture among open source projects, though the focus of
the majority of the community has been on desktop and more general purpose server software.
Nevertheless, it helped to spark serious interest in the world of HPC, as the back of the work
required to create a scientific computing ecosystem had already been broken.

When the University of Southampton unveiled its RaspberryPi cluster [36], it was not re-
ally expected that it would be a machine that performed at anything like the speeds seen from
the much higher powered x86 64-based supercomputers in the university’s data centres. Only
two years later, a more promising ARM-based cluster arrived, populated with APM X-Gene 1
processors. This also could not compete, its vector instruction set being limited to the approx-
imate equivalent of only MMX, but it showed how quickly the gap was closing and how much
work was still to be done.

At time of writing (early 2018), no TOP500 systems are ARM-based, and more than 95%
of the listed CPU architectures are x863, but the author believes that it is only a matter of time
before a more balanced mixture of CPU architectures are seen in the list again4.

3In both the June 2017 and November 2018 lists, non-x86 chips make up just 4.6% and 4.8% of each list
respectively, with only 3 of the top 10 systems in November being non-x86.

4Returning to this statement in March 2019, the most recent top 10 list contains only 6 x86-based systems,
none of them in the top 3.
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Having decided on an area of approach, that of auto-tuning the selection of compiler flags,
further work was necessary to fully understand how this might be manifested in a useable tool.
Before and during design of this tuning tool, as well as during its testing, some investigation
would be required.

Not only would several prototypes be necessary to develop a detailed understanding of the
problem area, and inform the final design, but the platforms on which the tests would be run had
to be benchmarked (sometimes referred to as baselining in this context). The benchmarking
activity would provide data on the baseline performance of the target software on the target
hardware, under target conditions. This last activity was necessary both for comparing the
tuning results to the baseline performance figures obtained from using the compiler’s built-in
optimization levels (-O2, -O3 et al), and to obtain correct input values to the tuner itself.

Throwaway prototyping was used to give a better understanding of the problem area. Initial
prototypes were written in Python, for speed of development, with the prototype 5 making use
of the OpenTuner [8] framework, though this proved to be unwieldy.

As expected, the early prototypes required discarding and re-designing frequently. Despite
the issues with portability, discussed later in section 7.1.1, Python, and the framework provided
by OpenTuner, were useful for this early stage. They increased the speed of development
greatly and allowed the author to gain a better understanding of the task at hand in a shorter
amount of time. Ansel was also able to provide assistance, in the form of advice and a simple
example, for which the author is grateful.

5.1 Initial High Level Use Case

In order to begin prototyping, it is necessary to have some idea of what the problem being
addressed is, with respect to the proposed solution. At the beginning of the work, despite
the potential broad application for the resulting tool, the decision was made to target libraries
for HPC. This was judged to be of the greatest value to the academic community, potentially
increasing significantly the throughput of a research supercomputer early in its production life.

The task could now be restated thus:
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Create a tool for auto-tuning the choice of optimization flags of a compiler during the
building of a library for users of HPC systems, with the aim of producing a higher per-
forming version of that library, on the target hardware, than might be obtained without
such assistance.

There are three additional goals for the project implied in this statement, which would be
further defined through knowledge gained during the prototyping process, and through experi-
mentation. These are:

(i) The tool shall work on as many supercomputers as possible

(ii) The tool shall target at least the most commonly used/available compiler

(iii) The tool shall be flexible enough to target the most commonly used scientific libraries

Goal (i) is best answered by looking carefully at the TOP500 [122], and in particular at the
operating systems used in those performance figures. While TOP500 is perhaps not the most
inclusive list, consisting only of those machines whose owners wished to publish details, it is
thought to be representative of the supercomputing landscape. The more eccentric designs tend
to be found around the top of the list, but list is dominated by the more commonly used (and
cheaper) clusters. The common features of these machines are broken into slightly more detail
in list 5.2.

Goals (ii) and (iii) are hopefully obvious to the reader. In order to be portable, the ideal
tuner would be flexible enough to work with any compiler. Fortunately for this project, most
supercomputers now use some form of Linux, with a very few outliers still covered by POSIX-
compliant UNIX of some kind. Operating system portability is therefore relatively simple to
ensure.

Likewise, in the compiler space most systems will have GCC available. Although Clang
(from LLVM [160]) is becoming more common, the dominance of GCC means that Clang
behaves similarly in terms of what options it takes on the command line in order to maintain
compatibility.

Targeting libraries, as stated in requirement (iii), seems an obvious choice. It could be
considered that libraries are already the target of many systems administrators, who take the
trouble to install high performance versions, confident that most scientific applications will
make use of these [34]. While it is possible to narrow down the most commonly used routines
within individual libraries and target those separately, as has been done in approaches such as
[40], this type of approach is unable to keep up with the rapidly changing world of scientific
software. A library that has only some routines tuned is liable to require re-building when the
un-tuned routines become more heavily used in future.

5.2 Requirements Specification

At the beginning of the project, having looked at the current state of software in high perfor-
mance computing and the problem previously described, it was not too difficult to draw up a
preliminary set of requirements with which to begin work on the early prototypes.

To begin with, some simple assumptions were made:

• The environment would be that typical of most HPC systems:
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– Linux OS

– x86 64

– Several homogeneous nodes

– No virtualisation

– Dedicated access to the compute nodes doing the tuning (ie. not shared with other
users)

• The person using this would be a systems administrator or application support specialist,
responsible for building software for use by those working on a supercomputer

• Any benchmark used tuner will be run for sufficiently long to represent user code

• Any benchmark used will give consistent results (similar run times) when run repeatedly
under the same conditions

These are based on typical HPC facilities, such as those at UK academic institutions. The
TOP500 list [122] has shown towards the lower end of the rankings that these sorts of fa-
cilities are the most common. It also helpfully lists operating systems as well as hardware.
For the duration of this project, Linux adoption was above 90%. By the end, it had reached
100%, although there is some discussion about whether this is a true reflection of the top end
machines1.

5.2.1 Initial Requirements

The design was largely use-case driven (using the use-case implied by the task stated in sec-
tion 5.1), with additional non-functional requirements.

Non-functional Requirements

1. Shall be portable between different machine architectures

2. Shall be able to target a variety of codes2

3. Shall be able to target at least the GCC compiler

(a) Ideally, should be able to target other compilers

4. Shall work on a single host or on several

5. Shall work on Linux3

(a) Should also run on AIX, BSD, other *nixes

6. Should not require a steep learning curve or specialist knowledge on the part of the user

1It was pointed out to the author by colleagues at a DoE lab that the high end machines, such as those provided
by IBM and Cray, frequently use one OS for the login/front end nodes, and something custom on the compute
nodes. This is not reflected in the TOP500 list statistics.

2at least one of the Dwarves [133] [34]
3The TOP500 list in July 2016 showed 96% of the publicly known about supercomputers run the Linux oper-

ating system. By the following year, the number had risen to 100%.
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These requirements were all taken into account during the creation of the first prototype,
but some were ignored or simplified in order to explore the problem space more rapidly. The
early prototypes only considered GCC, and in fact the data about GCC was hard-coded in
the first and second one, so only one version could be targeted initially. This hard-coding was
mostly absent in the later prototypes, but it was still only able to target GCC due to assumptions
about how compilers are used and behave. Distributed parallelism was also not fully possible
at this stage beyond a small number of nodes, due to policies placing restrictions upon those
using the university HPC depending on whether or not they had research funding allocated for
CPU-cycles. Python was used to create the prototypes because it allowed development to take
place rapidly, but was not expected to be suitable for the final implementation.

5.2.2 The Prototypes

Table 5.1 gives an overview of the timeline for these, with the major GCC releases and Intel
microarchitectures (ignoring desktop and mobile chips). Chips should be assumed to be 64-bit
x86 unless otherwise stated. It should be noted that although the prototypes span a time period
from 2010 to 2016, in reality work on the final project, OptSearch began in February 2014.
In table 5.1 the starting year is given as 2016, as this is when work dramatically picked up in
pace and could progress without need for further input from prototyping.

Work was carried out in stages, with the identified requirements used to set specific mile-
stones. At each milestone, more work was done with the prototypes to inform the next stages,
so as to avoid the project becoming stale and falling so far behind the rapidly moving advances
in compiler versions and CPU architectures as to be come useless.

The earliest work began as a hobby project in approximately August 2004, more than two
years before the author officially registered as a PhD student, working on two generations of
Intel Pentium 4 processors (Northwood and Prescott) and on AMD Athlon64. There were
additionally several intervals when the work had to be halted, including for most of 2015 and
part of 2016, during which time the PhD was suspended.

Prototype 1 (Python/Simple). In the first prototype, developed using Python 2.6 on Aquila
at the University of Bath (see appendix A.2.1), the chosen optimization algorithm was a highly
simplistic linear search [107]. While quick and easy to write, this turned out to be a poor
choice even with a small subset of compiler flags. The search always failed due to the nature
of the search space, and the frequency of local minima, which was far greater than expected at
the start of the project.

With this prototype, the search space could only be explored by manual intervention. When-
ever a local minimum was encountered, this would be noted and the prototype adjusted to avoid
it. This was considered acceptable for an early prototype, but clearly undesirable for a final
implementation.

It was not only the speed of the search that was a problem. With prototype 1, several
of the tuning runs were found to simply not terminate, or to fail with an error, due to the
decisions made by the compiler during optimization. Similar failures were encountered during
the compilation itself. This meant that few meaningful results could be obtained.

A similar search space is described in [6]. Although the authors use their own adaptive
compiler, it uses what has become a familiar break down of optimization types in compiler
design. This suggests that a search space of this nature should be expected with all modern
compilers.
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Prototype 2 (Python/Fixed-Random). This prototype was based heavily on the code in pro-
totype 1. It prototype attempted to improve on the earlier prototype by replacing the search
algorithm with a naively implemented fixed step size random search [149].

It did not scale well to a large search space, requiring more memory than could be allowed
with a benchmark running on the same machine, and was slow to converge.

Prototype 3 (Python/NAG). Prototype 2 was modified, replacing the optimization algorithm
with a call to the NAG library [129], routine E05JBF ( [127]). This took some time to imple-
ment, due to the difficulties of interfacing between Python 2.6 and Fortran 77. This prototype
performed better than the earlier ones, but struggled with the frequently encountered local
minima and would often become stuck.

It was not expected that the NAG library would be used in the final design, as it would be
hampered by the limited portability of this proprietary library, but it again served as a useful
example. Despite the problems of interfacing with a Fortran 77 library, it was faster to imple-
ment this interface than to write and test a similar search algorithm written from scratch. It was
also reassuring to know that the one being used has been carefully tested.

A simple state machine giving some indication of the workings of prototype 3 can be seen
in figure 5-1.

Start

Initialise from command-line

arguments

Parse GCC source (params.def)

and output of:

gcc --help={optimizers,targets,params}

Perform naive binary search

to find correct bounds for

range flags/parameters

Initialise arrays for objective

function wrapper (C/swig)

NAG function

Objective function called

via C interface

Perform fitness evaluation:

- Clean

- Build

- Test

- Benchmark

Record runtime of benchmark.

Return runtime as

fitness value
Converged:

Print best flags

Failed:

Print failure message

End

Figure 5-1: State transitions of prototype 3

Prototype 4 (Python27/Random-Random). Prototype 2 was rewritten in Python 2.7, with the
search algorithm replaced with a recursive (random step size) random search, based on a
simplification of [182]. This prototype performed better, avoiding the problems caused by
frequently encountering local minima, but did not perform as well as hoped. Memory usage,
and interference with the benchmark, were again a problem due to the difficulties in controlling
the Python interpreter’s use of memory, etc.

These early prototypes were simplistic in nature, making no use of multithreading or MPI.
They ran on a variety of systems, most of them servers of varying performance, since at the
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time Aquila was the only cluster the author initially officially had access to4.
These early prototypes were created with the sole intention of informing the author and

helping to demonstrate that a similar technique could be viable. It was not expected that their
exact approach would be appropriate in the final version. As well as the problems of interfer-
ence from the search algorithm, the search itself was still very slow, with assessments carried
out at many, many points in the search space (the benchmark being the most time-consuming
part of the overall runtime), and could not guarantee finding an answer. Instead it served as a
useful exercise, giving a better understanding of the search space. This was necessary to guide
the choice of a suitable search algorithm later.

Several search algorithms were investigated and discarded during the development of these
prototypes. Hill-climbing was one of these; it was ruled out once it became clear that the
search space contains many local minima. Similarly, gradient descent and simulated annealing
were also ruled out as approaches due to a tendency to take a very long time to leave a local
minimum once encountered, if they leave it at all. A random search approach was initially
very attractive as it is fast to implement and unlikely to be prone to such problems. Unlike
most machine-learning approaches, it does not require a body of training data to be collected,
a task that was likely to be time-consuming and which would have the problem of data storage
becoming a problem5.

Work at this time moved to Iridis 3 and Iridis 4 at the University of Southampton
(see appendix A.2.2 and A.2.3).

Prototype 5 (Python27/OpenTuner). This prototype took a different approach, building on a
simple example written in Python 2.7 by Ansel and now included with OpenTuner [8]. This
was also not designed to be distributed across multiple compute nodes, and in fact the run time
was very long as Ansel chose to use a genetic algorithm for searching.

Later in the development of this prototype, Ansel also provided some other search options,
including an implementation of Standard Particle Swarm Optimization (SPSO) [33], but this
was not until after the decision had been made to abandon this approach. However, the genetic
search did not suffer with the problems that the first two prototypes had suffered from, and
produced reasonable results in line with those seen in [8].

One major difficulty with prototype 5 was that it made use of Python subprocesses to run
in multiple threads. This meant that the obtained benchmark results were highly susceptible
to interference from other threads running the compilation or benchmarking phases. This was
expected at the time, but the use of subprocesses pervades the design of OpenTuner, and could
not be easily avoided without significant work. In addition, this prototype took a very long
time (2-3 weeks) to converge, too long (in the author’s opinion) to justify its use on production
machines, unless the performance gains are large.

A greater problem lay with the choice of Python for implementation, something that had
already proven problematic in the earlier prototypes. At the time, of the machines the author
had access to, prototype 5 could only be used on Iridis 4, as it required a later version
of the operating system than was available elsewhere due to the large number of Python 2.7
libraries used by OpenTuner. Some of these would not build from source successfully on the
older machines.

4The Maths dept had its own small HPCs, maintained by the author, but these were not used for her own
research.

5At this time, the author was noticed to be the largest user of file system space on Aquila, where space was
at a premium.
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Prototype 6 (Python27/MPI). The final prototype was an evolution of the previous one, using
MPI to distribute the workload, instead of Python subprocesses, and added checkpointing so
that the previously 2-3 week runs could be shortened to a mere 4-6 days, and broken up without
risking losing valuable CPU cycles to system failures or maintenance windows, etc. It also
avoided interference with the benchmark by moving the fitness evaluation to a dedicated node,
keeping the optimization algorithm separate.

The demonstrated gains helped to emphasise the necessity of a more scalable approach,
as the previous long run-time would have made tuning libraries for real world use impractical
for most HPC centres.

Attempts were made to use both prototype 5 and prototype 6 on Southampton’s Amber
cluster (appendix A.2.4). These were unsuccessful, due a dearth of Python modules on that
architecture, many of which could not be built from source without modification. This was
confirmation, if any were needed, that Python was not going to be suitable for a portable auto-
tuner of this nature.

Further project goals

With the understanding gleaned from these prototypes, it was felt that enough had been learnt
about the problem space, and the right type of approach, to begin work on the tuner proper. In
particular we had added three further high-level goals:

(iv) It shall be possible to distribute the search workload, so that the search can complete in
a reasonable time

(v) There shall be no interference between evaluations of different points in the search space

(vi) The tool should be robust against compiler bugs

The interaction between these first two is part of the difficulty of the whole project.
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Date GCC Release Chip release (best guess at availability) Prototype begun
2002-01 - Intel Northwood First recorded manual experiments
2003-05 3.3.0
2003-09 - AMD Athlon64
2004-02 - Intel Prescott
2004-08 - First attempt at automation
2005-04 4.0.0
2006-02 4.1.0
2007-04 - Intel Penryn Beginning of PhD project
2007-05 4.2.0
2007-09 - AMD Barcelona
2008-03 4.3.0
2008-04 - AMD Budapest
2008-11 - AMD Shanghai; Intel Nehalem
2009-04 4.4.0
2009-06 - AMD Istanbul
2010-01 - Intel Westmere
2010-03 - AMD Magny-Cours; IBM POWER7 (PowerPC)
2010-04 4.5.0 Prototype 1
2010-06 - AMD Lisbon
2011-01 - AMD Valencia; Intel SandyBridge
2011-02 4.6.0 Prototype 2
2011-10 - Prototype 3
2011-11 - AMD Interlagos
2012-03 4.7.0 AMD Zurich
2012-04 - Intel IvyBridge Prototype 4
2012-11 - AMD Abu Dhabi, Delhi
2012-12 - AMD Warsaw, Seoul
2013-03 4.8.0 APM X-Gene 1 (ARMv8)
2013-06 - Intel Haswell
2014-04 4.9.0 Prototype 5
2014-06 - IBM POWER8 (PowerPC)
2015-02 - Intel Broadwell
2015-04 5.1.0
2015-07 5.2.0
2015-08 - Intel Skylake
2015-12 5.3.0
2016-03 5.4.0 Prototype 6
2016-04 6.1.0
2016-08 6.2.0 IBM POWER9 (PowerPC)
2016-10 - Final version (OptSearch)
2016-12 6.3.0
2017-02 - Intel Kaby Lake
2017-03 - Cavium ThunderX2 (ARMv8)
2017-04 6.4.0
2017-05 7.1.0
2017-06 - AMD Epyc, Ryzen
2017-08 7.2.0
2017-10 5.5.0
2018-01 7.3.0
2018-05 8.1.0
2018-07 8.2.0

Table 5.1: Timeline of major GCC releases, approximate dates of chip availability, and beginning of
work on prototypes.
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CHAPTER 6
THE CONVERGENCE OF BENCHMARKS

In parallel with the prototyping work, it was necessary to both determine the baseline per-
node performance of the target systems (an activity that was repeated several times with each
machine as the project evolved), as well as the behaviour of the benchmark with the target
library on those machines. This information was used to guide the prototyping process and to
make several of the decisions described in chapter 7.

6.1 Introduction

The practice of benchmarking is well established in supercomputing circles. It is human nature
to want to know whether one machine outperforms another, and if nothing else the TOP500
list is evidence of this. Analysis of benchmark results can also indicate the presence of subtle
(and less subtle) hardware and software problems that may not otherwise be noticed before a
supercomputer is made available to the user community. Similar analysis is vital after software
or hardware changes are made, to monitor any potential changes in performance (for example,
those introduced by security patches, as was seen with the fixes for the Spectre and Meltdown
[118] vulnerabilities).

Generally, benchmarks are run an arbitrary number of times, and a result may be picked
from this set, its choice varying depending on the purpose of the exercise. When evaluating
the results, a judgement must be made by the benchmarker as to whether the results are within
expected bounds, and whether they are close enough to one another to be relied upon. This is
especially important on modern hardware, as results vary increasingly from one run to another
[29], provoking calls for ways to ensure consistency [109].

For this project, such a process must be automated. It is simply not practical for a human
to be involved in the benchmarking step of an auto-tuner; it must happen too frequently, with
each result used to determine the next point in the search space to evaluate. It is also not
clear how often human error means that a performance benchmark has been considered to have
converged incorrectly. This is something that is rarely mentioned in benchmarking circles. It
is discussed briefly in [32], in relation to judging performance of optimization algorithms, but
otherwise appears to be an area that has been largely ignored.

In this chapter, understanding of the process is sought, and the typical results explored with
a view to automatically determining whether a benchmark can be considered to have converged
on a particular result. This exercise also fulfils a prerequisite of any auto-tuning work: That of
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providing a figure for the baseline performance of the target software on the target hardware.
Known in the industry as baselining, this is a required first step before any performance tuning
or optimization work can begin.

6.1.1 Background

It is common practice to run a benchmark several times, look at the results to ascertain their
closeness to one another, pick one (good practice would choose the median, but it is not un-
known for someone to quote the best of the set) and use that as the result.

This is not to say that the practice is invalid, though it is difficult to be certain that a
benchmark has truly converged. This is becoming increasingly difficult on modern hardware,
where the method of categorising chips known as binning tends to take into account power
consumption, rather than observed clock speed. This can result in chips that are supposedly
identical differing in clock speed by as much as 100MHz, in addition to selecting differing
per-core “Turbo” frequencies, as given in [91] and other specification updates from this and
other manufacturers.

Furthermore, as it is no longer practical to increase the clock speed of a chip and power
consumption must be constrained, optimizations and methods of keeping power consumption
low mean that we increasingly see variation even in timing [148], whether measured in cycle
count or µs, between the same small set of instructions being computed. This may be due
to some parts of the chip, such as the upper 128-bit half of the vector instruction execution
units on Intel’s Skylake processors, being powered off at the slightest suggestion of not being
required, as described in section 2.3. In this and other chips, there are also differences in how
µops are fused (or not), which results in different numbers of µops per cycle for what ought to
be the same task. For this, the blame might be laid at the feet of such optimizations as out of
order and speculative execution. Once the province of compilers, such optimizations are now
normal in hardware.

These and similar features are likely to remain with us, and to increase in number, as time
marches on. It is necessary for any benchmarking process to take into account this variation,
which will affect different applications in ways that are different and difficult, perhaps impos-
sible, to predict.

To know that a benchmark has converged, one must first know how much each result from
each run of the benchmark is expected to differ from others, both on the same hardware and on
other, supposedly identical hardware.

If we are to automate the process, it is necessary to ensure that convergence can be mea-
sured and checked. A statistical approach would also avoid the problem of human error in
determining whether a benchmark truly has converged, and whether the variation in results is
within acceptable/expected bounds.

How many times should a benchmark be run? Ideally, one would define an acceptable
variation, ε , and then proceed in running the benchmark as many times as necessary to achieve
an observed variation that is below this threshold. In the real world, we cannot simply run
the benchmark forever, so a maximum number of runs must be defined. Any set of n runs for
which the variation is above the threshold must be discarded, as their results are meaningless.

Of course, it is difficult to know what n will be for any given problem on any given machine,
and it will very probably be different for every combination of problem (benchmark, libraries,
compiler) and machine. Therefore it is necessary to determine what ε and n are for a particular
benchmark before tuning it. The only way to do this is to choose a very large n, as large as is
practical, run the benchmark n times and examine the results.
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In the course of benchmarking a system, the early results are often discarded. This is
because they are usually slightly lower than those seen later, due to the wake-up times required
in modern processors. As explained in section 2.3, many functional units of modern CPUs
power down if not in constant demand. Arguments for and against including these early results
centre on the purpose of the benchmark and how its results will be used. Seeking a more
realistic reflection of the user experience might suggest that it is better to include them, but if
the goal is a position in the TOP500, the impact of their inclusion could cost the machine a
place, causing it to be ranked lower than a competitor.

6.1.2 Method

This was a fairly simple experiment. The reference BLAS [117] was compiled with GCC [154]
with -O0, -O1, -O2 and -O3. Each resulting library was then used for 20 runs of the high
performance LINPACK benchmark (HPL) [136] on a single node.

20 was chosen because it seems intuitively to be high enough, and it is the number fre-
quently used by others when benchmarking. As in traditional benchmarking, the results were
also looked at to check that, to the eye, they appear to be “close enough”.

Machine noise was minimised as much as possible by ensuring sole use of the node on
which the benchmark was running. By spreading the workload across several machines, it was
also possible to check that no one machine was noisier than the others (within sensible limits).
With single machines used for all runs, network noise, especially that caused by the jobs of
others, could be more or less avoided entirely.

To ensure that any compiler optimization bugs were noticed, the experiment was repeated
both with and without recompiling the BLAS library each time the benchmark was run.

The results were then analysed using MATLAB’s statistical routines. This gave an indica-
tion of what to expect, particularly in terms of standard deviation, when benchmarking within
the auto-tuner.

6.1.3 Environmental constraints

Due to the restrictions on the “free” account used on Balena, parameters for HPL were cho-
sen such that the longest run, that resulting from compiling with -O0, would finish with the
maximum 6 hour walltime. This allowed for a problem size that would exercise main memory,
rather than being contained within the processor cache. To ensure such a large problem size,
the number of algorithms usually chosen in the default input file to HPL was reduced to just
one, chosen arbitrarily. Preliminary experiments had already demonstrated that there is little
difference between them, and certainly not enough to suggest one over the other for this type
of experiment.

HPL was configured to use right-looking LU factorisation for both the main and recursive
panel factorisation. The contents of the input file used is available in A copy of the HPL.dat
used is available in appendix C.

6.1.4 Results

Initial results from Balena were unexpected. Intel®IvyBridge processors are expected to
vary a little between one another, even within the same stepping, as are all modern processors.
However, this could not account for the massive variation in performance between the results
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from each node. At least two populations of nodes could immediately be discerned from the
results, and closer inspection revealed a third, clearly visible in figure 6-1.

The differences are more obvious if each dataset is plotted separately, as in figure 6-2. One
node appeared to be faulty, as it was performing very differently to its peers.

On discussion with the system administrators responsible for the machine, it became clear
that the differences seen in figure 6-1 were due to hardware differences, rather than errors. The
compute nodes could be grouped by the type of RAM installed, their differences clearly visible
in the HPL results:

1. node-sw-[001-080] have 16 8GB single ranked DIMMS at 1866MHz

2. node-sw-[081-164] have 8 8GB dual ranked DIMMS at 1866MHz

3. node-sw-fat-[001-002] have 32 32GB quad ranked DIMMS at 1333MHz (not
included in the results)

The nodes could be further broken down within those groupings, again by performance,
with the difference slightly less marked (though visible in the graph). These differences were
due to the DIMMs having been supplied by 3 manufacturers:

1. Hynix:
node-dw-ngpu-[001-003,005],
node-dw-phi-006,
node-sky-[001-014,016],
node-sw-[086,097-120,125]

2. Samsung:
node-as-ngpu-[001-007],
node-as-phi-[001-002],
node-dw-phi-[001-004],
node-nvme-[001-002],
node-sw-[001-022,081-085,087-096,121-129,131-168],
node-sw-fat-[001-002]

3. Micron:
node-dw-ngpu-004,
node-dw-phi-[005,007],
node-sw-[023-080,091]

Interestingly, although nodes with Hynix DIMMs performed slightly better than their peers,
the variation within their results was higher. In both cases the difference is so small as to be
unimportant in the vast majority of use cases.

In addition, one node, a clear outlier initially thought to be faulty, was discovered to have
been installed with a mixture of dual and single ranked DIMMs. This was drawn to the atten-
tion of the suppliers, and the problem quickly rectified. Astonishingly, it was explained that no
one had noticed in the previous 3 years of the system being in service, and so the system ad-
ministrators saw no benefit in making the information about differences between the installed
DIMMs available to the general user population.

With this new information, selecting a subset of nodes with identical DIMMs gives a pop-
ulation with a performance that is closer to normal, as shown in figure 6-4 and figure 6-5. This
provides a better set of candidates for future experiments.
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Method Mean runtime (s) Std dev Std Dev as % of mean
-O0 95.40s 0.06s 0.06
-O1 26.74s 0.02s 0.07
-O2 17.10s 0.02s 0.12
-O3 13.08s 0.03s 0.23

-Ofast 13.06s 0.04s 0.31
ATLAS 2.99s 0.01s 0.33

Table 6.1: Standard deviation of HPL at different optimization levels (subset of IvyBridge nodes)

Although both mean performance and standard deviation differed mildly between manufac-
turers, a far greater difference is observed (and expected) between differently ranked DIMMs
of different speeds. The author is surprised that this is not of interest to the general users,
since any whose distributed jobs run across a mixture of nodes will be affected by the differ-
ing speeds. It is difficult to say why they have not noticed, but it may be due to an inability
to determine what performance should be expected from a previously unencountered system.
Nevertheless, if the mixture of nodes varies, the execution speed would likely also vary, and
a casual inspection of results (assuming that they are repeated) should make this clear. It is
strange that no one would have noticed this, though in the author’s experience, many who find
problems never take the time to notify the system administrators, unless their work cannot
continue without those problems being addressed.

While the Skylake nodes are thought to be homogeneous, it is notable that figure 6-6 does
not show a normal distribution. Rather, the distribution appears skewed, with a long left-hand
tail.

As can be seen from table 6.1, which lists values for standard deviation for a subset of
nodes on Balena (58 nodes with the same memory type: node-sw-[023-080]), standard
deviation varies slightly at different optimization levels. In these results, it can be seen to
increase as a percentage of the mean runtime (in seconds) as the level of optimization increases.
Process pinning was used for all of these results, which slightly reduced the variation and
improved performance.

These results were obtained from single machines (but not a single machine, though there
appears to be no correlation). No compiler optimization bugs were observed, as the results
differed very little between runs where the BLAS library was recompiled prior to running the
benchmark every time and those runs without recompilation.

This table also shows how stable a benchmark HPL is. Other benchmarks (and user code)
has been observed to suffer from greater degrees of variation, whatever amount of optimization
is employed during compilation.This suggests its use (or that of DGEMM) in diagnosing subtle
hardware problems in CPUs, as is alluded to in [150, page 4]. The author has previously used
the HPL benchmark (among others) both during acceptance testing and for fault finding.

Although it appears from this that the performance of the reference BLAS is not great, these
results alone are not a true reflection of the performance of this BLAS (or of Balena). For
this reason table 6.1 includes a line for ATLAS [178], which uses a different implementation of
DGEMM (chosen at build time from a suite of parameterised kernels) and is known to perform
well.

Using ATLAS for comparison, it can be seen that even with -Ofast and a mature compiler
(GCC 7.3.0), the reference BLAS performs poorly, with HPL taking more than 4 times as long
to run to completion.
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A single Ivybridge node of Balena has a Rpeak of around 333 GFLOPS1 (ignoring Turbo2).
However, due the small problem used for these experiments, even ATLAS, which on Balena
is able to achieve a runtime (in seconds) of over 90% of Rpeak, cannot achieve this. Instead
a large enough problem (N in the HPL.dat file used as input to HPL) would be required to
approach Rpeak.

The HPL.dat used for these experiments is available in appendix C. The small value for
N is the largest that was usable (would finish within the allowed walltime even with the ref-
erence BLAS built with -O0) for a single node job in the non-paying queue on Balena.
Larger problems could only be considered with higher optimization levels, due to the signif-
icant differences in runtime. Note however that with the largest possible N (sized to fill the
available memory on the node in use), the runtime can be significantly longer than is practical
for anything other than acceptance testing or similar activities, being measured in hours and
days.

Note that differences in memory do not account for the noticeable performance fluctuations
between the Skylake nodes, visible in figure 6-3. These differences remain regardless of how
well optimized the library is by the compiler. In this case, not all cores are being used, and the
benchmark is pinned to the first 16 cores. The DIMMs are from the same manufacturer in all
but one node, and are of the same type, size and speed, so the variation is not due to the same
issue that is seen on the IvyBridge nodes.

12.6GHz×2FMA×4SIMD AVX×8cores×2sockets
2Because of features like Turbo, which boost the clock frequency from 2.6GHz to 3.4GHz temporarily, Rpeak

is difficult to calculate accurately
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Figure 6-5: Histogram of per-node HPL performance for a homogeneous subset of Balena IvyBridge
nodes (Reference BLAS compiled with -O3)

Figure 6-6: Histogram of per-node HPL performance for Balena Skylake nodes (Reference BLAS
compiled with -O3)
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6.1.5 Homogeneous machines are not always uniform

Contrary to what might be expected, homogeneous clusters do not guarantee “uniform” (real-
istically, within 1-2%) performance across all nodes within the cluster, nor should performance
be assumed to be within specification just because the system is new and there are no obvious
errors.

When a system is commissioned, the suppliers and/or the system administrators may spend
an appreciable amount of time running tests and studying the results for anomalies that might
give away an under-performing node3, as we saw above. Unfortunately, this practice seems to
be uncommon among the many suppliers of commodity clusters, and few system administrators
are familiar with the practice of benchmarking or its practical applications for fault finding
or early diagnosis of problems. Since their job is to keep everything running smoothly, a
knowledge of this process could benefit both them and their user community, provided they
had time to apply it.

In an ideal world, the benchmarking process would be followed during every maintenance
cycle, ensuring that all nodes are performing within specification after any changes are made.
However, this is rarely the case in practice, and not long after entering production it is common
to see performance vary across the nodes by more than the specification of the system would
allow. This often increases over time, and changes in nature as parts within the system are
replaced.

Since this variation is relatively small, for the majority of users of the system this may be
unimportant. This is especially true for those whose workloads entail large numbers of single
node jobs that are not dependent on uniform hardware, as is the case in genomics, or where
timing differences are unimportant.

Unfortunately, even slightly increased variation, and especially entirely different popula-
tions of nodes with very different behaviour, is very significant when benchmarking, and when
assessing performance of subtle changes in compilation (or algorithm), as when auto-tuning.
It is also a problem for most parallel codes, which are often slowed to the pace of the slowest
node in the cohort assigned to them by the workload manager.

It should be noted that in figure 6-3, the results within individual nodes do not fluctuate
any more than is expected for a single node. It should also be noted that, despite the variation
in performance of individual nodes, they are operating with specification according to the chip
manufacturer, Intel, as the variation between nodes is not greater than 10%. As an example,
several figures in the specification update for this processor, particularly [92, Figure 7], list
significant amounts of variation in clock frequency per core when Turbo mode is engaged.
This varies depending on how many cores are in use.

Even the stable HPL benchmark exhibits greater variation when run across multiple nodes
for this reason, and such variation may catch users of these systems off-guard if they are not
aware of it.

6.1.6 Conclusion

Even when compiled with -O3, performance of the reference BLAS is low. This is not a
revelation, as it has been known and stated many times by others.

While the performance of HPL increases with problem size, the poor performance cannot
be blamed on the use of a small problem in this case. Rather, it can be seen that the reference

3Or over-performing, though this happens rarely and is more easily dealt with
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BLAS, while easy to understand and maintain, does not deliver “good” performance. This is
not its intended purpose.

Of more interest is the observation that standard deviation increases with the level of com-
piler optimization. This was expected, but has not to the author’s knowledge been previously
documented.

It is also worth noting that preliminary experiments also showed that it is not necessary
to use a large problem size for HPL to show differences between nodes, which is useful for
those using benchmarking for diagnosis of problems within a short maintenance window. This
means that, so long as the entire node memory need not be exercised, problems relating to the
CPU or speed of memory access can be highlighted by only 5 data points from runs of HPL
that each take around 60 seconds to complete.

A further expansion of this work would be to perform the same evaluation on other com-
pilers, other machines and perhaps also other operating systems. A detailed comparison of
how performance variation is affected by problem size (and node count) may be interesting to
those benchmarking their systems. Other benchmarks, such as HPCG [45], could also make
interesting candidates for examination.

An understanding of the amount of deviation to be expected when benchmarking is a re-
quirement when automating the process. With this understanding, it should now be possible
to judge programmatically whether or not a benchmark needs to be repeated many times. For
an auto-tuner running on a supercomputer, where CPU hours are a precious commodity, this
knowledge is not without value.
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CHAPTER 7

DESIGN SPECIFICATION

The process of preparing programs for a digital computer is especially attrac-
tive, not only because it can be economically and scientifically rewarding, but also
because it can be an aesthetic experience much like composing poetry or music.

Donald Knuth

7.1 Lessons drawn from prototyping

This project relies heavily on the successes and failures of its early prototypes. A summary
of each of the key areas informed by this process is given below. These lessons were used to
guide the final design.

7.1.1 Language choice

At this point, it was decided that Python and in particular the OpenTuner framework, while
very helpful for prototyping, could not deliver the results that would ultimately be required.
OpenTuner is extremely complicated, too complicated for our needs. It is difficult to debug
and to extend, especially if one wishes to keep up with the changes made by Ansel, who is still
actively working on the project. In addition, Python is not as efficient a language as the more
traditional C [5], despite its popularity.

Although the OpenTuner author, Ansel, has put considerable work into the framework, it
is not ideally suited to tuning this type of problem, nor is it particularly portable to emerging
architectures. This was especially obvious when attempting to use the prototype on Southamp-
ton’s Amber (ARM) cluster (see appendix A.2.4 on page 122) in 2014. Unfortunately, very
few Python libraries were available, and building from source proved unworkable, not just due
to the sheer number of modules required. Many relied on bindings for libraries that were not
available for that architecture, and these could not be ported without considerable work.

In addition to the difficulties caused by the portability of Python and its many modules,
there are several implicit assumptions clear within the design of the framework. It was not
until over a year later, after exchanging emails with Ansel, that it looked like it might be
possible to make modifications to ensure the tuner will run in a distributed fashion. He has also
since made it much easier to add other search algorithms, so that the user is not obliged to use
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only what is provided. These pre-written search algorithms are generally fairly simplistic and
assume a continuous R space. It seems that, in the pursuit of satisfying all possible users, the
framework has become extremely large and is difficult for the uninitiated to modify or extend,
especially if their use-case is not quite what Ansel had in mind.

After several prototypes implemented in Python, it was decided that the final project would
be implemented in C. This is a language familiar to the author and is already well used in the
HPC world. In addition, it is the language used to implement the Linux operating system,
so will be well supported on any emerging architecture. If the operating system is written
in C, there must exist a C compiler that supports that architecture, something that cannot be
guaranteed with other languages.

Linux is the operating system of choice in HPC at the current time, as shown by its con-
tinued dominance of the TOP500 list [122], and it seems this is likely to continue for many
years. Any system with operating system support will have to have an existing C compiler and
standard libraries, so by writing an application that is self-contained (few, if any, dependencies
on external libraries) and adhering to accepted standards (such as POSIX) it should be possible
to ensure portability to the largest number of architectures.

Prototyping demonstrated that despite being much faster to write, Python is both slow
to run and introduces library dependencies that can be difficult to manage. Less commonly
used architectures tend to be left without key modules, and for a project aimed at emerging
platforms, this is a serious failing.

Even though the slowness of the Python interpreter can be worked around, for example,
by compiling all the Python with Cython, the resulting binary is still larger than necessary and
has been observed to be generally noisier, introducing jitter in the form of non-ideal memory
accesses (leading to an increase in cache misses), than a comparable program written directly
in C by an experienced C programmer. This noise is highly undesirable in any benchmarking
exercise due to the interference it causes, and the difficulty in attributing performance issues to
it.

Compiling the software to an executable via Cython and GCC is extremely difficult due to
the large numbers of dependencies. In addition, not all Python modules used by OpenTuner
will run on all the platforms targeted in this project. POWER8 and ARMv8 were experimented
on, but at that time the Python dependencies could not be satisfied and so ultimately OpenTuner
was unusable. This is extremely undesirable in a tool intended to target emerging architectures.

While C++ is popular, it is not as well supported as C on very new architectures. In
addition, it does not confer many advantages beyond the language features that arguably may
make it easier to use (or more difficult to maintain, or compile efficiently). The system libraries
on which this software will rely are all written in C, and few MPI implementations include C++
interfaces.

Fortran is still a very popular choice for numerical codes in HPC, but I/O is more difficult
than in C, calling system libraries (written in C) is more difficult. As with C++, it is unlikely
to be as well supported on the most bleeding edge architectures, which is where this tool is
intended to be used.

In recent years, functional programming languages have seen a resurgence. The approach
these languages facilitate is extremely attractive to the purist, but the experience of the au-
thor is that all the currently popular functional language implementations (GHC [159], Racket
[163], Chicken [158], for example) are extremely difficult to bootstrap without a functioning
version of that compiler. They are, as a result, rarely available for emerging architectures. They
also share with Python the difficulty of obtaining usable modules in a timely fashion on such
architectures.
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Other languages suffer from the these and similar problems, with interpreted languages
being the least desirable due to the additional noise generated by the interpreter. They are also
often difficult to manage where use of system resources, such as memory, are concerned.

The chosen implementation language should ideally make it easy to achieve a small mem-
ory footprint, something that can be very challenging in Python, and should be well supported
on architectures on UNIX and Linux operating systems where not all libraries may be available
yet. This is considerably easier to achieve in C than in most other languages.

UNIXes also make heavy use of C, and with standards such as POSIX it should not be too
difficult to ensure that a tool written in C will work on those too, should the landscape change.

7.1.2 Choice of optimization algorithm

These problems meant that a robust optimization algorithm had to be chosen. Initially one
of the NAG optimization routines had appeared attractive, especially considering that, being
a commercially available library, it should have been well tested. However, it was not robust
enough to cope with this type of frequent failure. Several other optimisation algorithms were
considered, but on close inspection were deemed unlikely to be suitable for this search space.

Some machine learning algorithms (particularly some of the simpler supervised learning
approaches [27], due to the shorter implementation time) were considered, but due to the train-
ing requirements these were also considered to be unrealistic to implement. Significant time
would be required to generate and use enough training data to be useful, something that would
be required for every target architecture and every target compiler on that architecture. The
barrier to entry for those expected to use the tool would be much higher unless this time-
consuming process could be automated. Creating the means to automate this data generation
(and dimension reduction, where possible) would likely add considerably to the implementa-
tion time of the project.

The OpenTuner [8] author, Ansel, had suggested using a genetic algorithm, a popular
choice for compiler optimisation tuning, and this is what he used in his simplified example.
These tend to be slow-running and somewhat clumsy as an approach, requiring many muta-
tions (and hence many assessments of points in the search space) before a successful result
is found. With the benchmark being the most time-consuming part of each fitness evaluation,
reducing the number of times this might need to be run before convergence on a suitable result
is an attractive way to ensure a search completes in a reasonable amount of time.

This led the author to search for something with the robustness of a genetic algorithm,
but which potentially requires a smaller number of fitness evaluations. One attractive option
was a particle swarm optimizer. After some success in prototyping (targeting small, artificial
problems due to time constraints), this was chosen for the final implementation, with the inten-
tion of possibly switching later to an asynchronous parallel variant, similar to that described in
[151], should it prove necessary.

PSO has already been compared favourably with other search algorithms considered during
prototyping [152]. In this comparison, the authors helpfully also provide another argument in
favour of a search algorithm of this type:

“the selection of compiler flags also affects the selection of the best code genera-
tion parameters, so we found that it is useful to tune them in conjunction with each
other.”

In using PSO, each compiler flag is mapped to a dimension in which to perform the search.
Particles are moved around within the resulting search space, allowing the adjustment of several
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dimensions (and so flag/parameter values) with each search iteration. Implementations differ
in how particles reaching, or overshooting, the boundary are treated. In [30] it was shown that
the method of confining particles can have a significant impact on how successful the search
is.

Initially it was thought that an off-the-shelf implementation might be suitable, but on in-
vestigation it was found that none are quite what is needed. Even those targeting search spaces
with many dimensions, such as [77], did not consider as many dimensions as are required for
this thesis. (In [77], 40 is presented as an example of a high number.)

This led to the author implementing a slightly modified version of [33], similar to that
described in [135]. This is used to feed the work queue of a task farm. Using MPI, this task
farm then distributes work across a number of nodes. The returned results of fitness evaluations
are used to drive this implementation of SPSO, rather than a loop, making it asynchronous.
With the differing runtimes of the benchmark with different optimisations applied, it should
also guarantee a level of randomness as recommended in [135]. Ideal parameters have to be
discovered by experimentation, but those recommended in [33] were used initially.

The established methods also almost exclusively target problems in Real search spaces,
unlike what is required here. This, and the non-continuous dimensions created by using them
as a proxy for compiler flags, has further implications for how particles that reach the search
space bounds are treated. With many very short dimensions, where the corresponding coor-
dinate can have a value only within the interval [−1,1] (with −1 generally corresponding to
the compiler default1, while the other two values represent the two states of a boolean), par-
ticles are prone to overshooting the boundaries at every iteration. The choice in such cases
is simply either “change” or “no change” (most often 0 or 1). Never changing means never
getting anywhere. Although it might initially appear attractive to concatenate several such di-
mensions into one with multiple values, this does not work when calculating the distances or
velocities/displacements required by each iteration of the search.

Boundary conditions

At boundaries, several strategies have been suggested. Initially, it was considered preferable to
bounce back in, rather than use those (such as shr or shrink) suggested in [77] and illustrated
in fig 1 of that paper).

With a discrete search space in Z rather than a continuous search space in R, the effects of
conversion from values in R to values in Z that are within the very short bounds of the search
dimensions results in particles meeting the boundaries rather more frequently than they might
in other search problems (in continuous R space) might. The additional difficulty presented by
many of the dimensional spaces being very small, with a valid range being perhaps between
[0,3), results in leaving the search space at each update being increasingly likely.

Thus a more robust method of dealing with the boundaries is necessary. Simply not moving
for an iteration, one method suggested by [77], would leave a large number of no-op cycles,
wasting a considerable amount of precious time2. There is also no guarantee that a particle on
the boundary would return to the search space in future iterations.

The initially chosen approach instead treats the particle as a ball (or similar to rays in ray
tracing), with the boundary considered as though a hard object or wall. This was the most

1A poorly documented feature of the default values is that they may set or unset other values; by not setting a
value at all, the compiler is allowed to make its own choice.

2Time is most definitely money in the world of HPC
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intuitive way to address the problem, but it met with several difficulties in implementation, and
without dampening the particle would bounce around indefinitely.

As this approach did not alleviate the problem of becoming stuck within a subspace, it
was decided to use another approach. This one, less well known in SPSO implementations,
is known as periodic boundary conditions [52], and is a well established, commonly used
technique for molecular dynamics simulation. It was also hoped that, by using this method,
which is used in molecular dynamics to “fool” particles in a small simulation into behaving as
though they are in a larger simulated area, would help to offset the difficulties caused by the
short dimensions of this discrete search space. In this case, the simplest approach of restricting
particles to the bounding box (the search space) was chosen.

7.1.3 Repetition of benchmark

Very little can be found in the literature regarding how many times a benchmark problem can
be run before convergence on a result. Clerc [32] seems to make the only real comment on
repetition of runs in this context, and does not suggest a solution.

General practice would seem to be to pick a number arbitrarily ([3,20] being a popular
range). Those experienced in benchmarking have likely observed that established benchmarks
have, in the past, exhibited what might be termed “uniform” performance, with low standard
deviation. Many benchmarks have become established precisely because of this behaviour; a
benchmark with unpredictable performance is less useful.

Unfortunately, performance variation can (and does) come from a variety of sources.

7.1.4 Choice of PRNG

The choice of optimizer is heavily dependent on the selection of a suitable PRNG [32]. Fur-
ther, results should be repeatable if possible (though an asynchronous approach may make this
impossible to guarantee), so cryptographic randomness is neither required nor desirable.

Changing the PRNG in the future is likely to be necessary if a better design is found, so
the code should allow for this.

One potential area of concern is that the vast majority of PRNG implementations produce
a double, generally in [0,1). Adjusting to produce an int (or long) that is within a very
small interval, e.g. [−1,1] is difficult to do without introducing bias.

7.1.5 Fault Tolerance

When individual nodes fail it can be difficult for any running application to detect, and doing
so is considered to be beyond the scope of this project. Usually, a single MPI rank failing
(e.g. by calling MPI Abort() or by the MPI implementation detecting a non-zero exit code)
will result in the termination of the job. This is the simplistic way that failures are handled
by the majority of supercomputing applications, with check-pointing or some other method of
resuming from a previous point the method of failure recovery.

Hard errors of this type are not a worry, but soft errors may occur and go undetected during
the search. These could affect the results, if some of those search locations are affected by being
evaluated on a faulty compute node. It is considered to be almost impossible to determine this
from within the tuner itself, and so for a search to be successful it is often necessary to rely on
the systems administrator to check and deal with any soft errors. Since the expected user of
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such a tuner is the systems administrator or application specialist, it is hoped that this is not an
unreasonable expectation.

Unfortunately, the study in chapter 6 would suggest that on the majority of systems it may
be too much to hope for. As a mitigation, it is recommended that all nodes are baselined,
similar to what was done in chapter 6, before beginning any tuning exercise.

7.2 Key design decisions

In light of the considerable investigation undertaken during analysis of the requirements, the
several decisions were made about the necessary behaviour of the software, and its form, if the
requirements are to be satisfied.

Figure 7-1 shows a very high level view of how the software works, with compilation and
fitness evaluation taking place in worker processes, each expected run on a single compute
node.

Master

(process 0)

Worker 

(process 1 .. n)

config broadcast

to workers

Fitness reported

back to master

SPSO moves particle at

that position.

New position added

to work queue, or stop

flag set to true.

SPSO initialised.

Particle positions

populate work queue.

Config file read.

Database initialised.

Database updated.

Fitness evaluation

Work items sent to

workers one by one

Next work item

sent to waiting

worker

work item

recv’d

Receive work item

{If search has not converged}

{If search has converged}

’STOP’ message sent

to waiting worker Free memory and exit

When all workers

have been sent ’STOP’,

free memory and

exit.

Figure 7-1: OptSearch sequence diagram

It should be noted that MPI processes are not expected to share nodes with other MPI
processes, to avoid interference from their work affecting benchmark results. This cannot be
reliably enforced in OptSearch, and is left to the invoking user to make sensible choices
when structuring the job script.
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7.2.1 Language choice

The final tuning application is implemented in C rather than Python. There are a number of
reasons for this, already described in section 7.1.1.

7.2.2 Distribution of work

An MPI task farm is used to distribute work across a set of homogeneous nodes. The fitness
tests do not depend on one another, so aside from updating the optimizer with the results, the
problem could be considered almost embarrassingly parallel. This is partly enabled via the use
of an asynchronous optimization algorithm.

7.2.3 Search algorithm

The search itself is guided by an asynchronous implementation of PSO, based on the SPSO
described in [33]. This is used to feed the task farm queue, with the workers of the task farm
supplying the fitness evaluation results back to the optimizer.

PSO is thought to be more tolerant of the type of search space likely to be encountered,
and particularly of the compiler/compilation failures at points in it.

7.2.4 Categorisation of flags

After examining the manuals for GCC, the Intel and the Cray compilers, it became clear that
there are three main types of flag used to control optimization options. The Cray compiler is
very different from the others, and so was not targeted in this work.

Although all of these would be mapped to integer ranges so that they can be used with
SPSO, dividing them in the configuration and in their initial handling allows for later work
where they could be treated differently.

The three main types are on/off (-fX/-fno-X in GCC), list flags, which have a number of
valid values to choose from, and range flags, which are similar, but the values are selected from
a range of integers. These may take one of two forms with GCC: --param X=Y or -fX=Y.

Some flags affect other flags, but this was found to be a very small number in the case of
GCC, and with this being the main target of this project, it was decided to avoid the complexity
of handling these to save on implementation (and debugging) time.

The input file format chosen was YAML, as it is well supported and widely understood. It
is more user-friendly than XML, yet still has the advantages of inheritance and grouping. Flag
dependencies can be expressed, but are currently ignored by the parser.

7.2.5 Choice of optimization algorithm

It was clear from the beginning that the search space would be very large (even though most
of the dimensions are short, there are more than 400 of them), and that the algorithm used
to explore this space must be robust to compiler error. Prior experience of choosing suitable
combinations of flags by hand had shown that compiler errors are to be expected, and that
failure modes can range from an immediate failure (in one case, this was a floating point
exception, raised by a flag combination found by prototype 1, much to the author’s surprise at
the time) to failure to terminate3.

3Without waiting for eternity, it can’t be verified that it would never terminate. The halting problem is definitely
outside the scope of this thesis.
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Through the early prototypes, it was made clear that the local minima occur much more
frequently than was originally anticipated, and that a search algorithm must not only be robust
but also likely to converge within a short enough time to make it viable for use in our high level
use case (section 5.1). This experience led the author to realise that the search space described
in [6] is very similar to that being explored in this project. When discussing their choice of
optimization algorithm, Almagor et al helpfully explain:

“To our knowledge, this paper is the first experimental characterization of these
search spaces. Some of the results are intuitive; for example, these spaces are
neither smooth nor continuous, so that simple steepest descent methods are not
guaranteed to reach a global minimizer.” [6, page 2]

One popular approach, used also by Ansel in the example from OpenTuner, is to use a
genetic search in these cases. This was considered, but discarded in favour of PSO [49]. It
was felt that this approach would be just as robust, but produce results more rapidly. There
are also examples of both asynchronous (e.g. [65] and [124]) and parallel (for example, [151]
and [168]) implementations, which have shown to be close in performance to the sequential,
single-threaded original.

Within OpenTuner, a simplistic PSO implementation is included and this was used in later
prototypes for this project. However, simplistic PSO does not perform well for high dimen-
sional bounded search spaces, as described in [77]. In addition, the implementation within
OpenTuner was not intended for tightly bounded integer search spaces. However, it was us-
able, and so useful as a prototype; it gave some hints on problems that might be encountered
later.

The chosen implementation of PSO was based heavily on SPSO 2011 [33], with some
small modifications to account for the difficulties of working in a discrete integer space. The
velocity update function is the geometric function listed by Clerc in [33] and the algorithm has
had some tuning, initially using parameter values from [134], which were then adjusted based
on findings in early experiments.

The neighbourhood is global for all particles. This is the simplest method for updating the
swarm when a good position is found; all particles are informed. While [31] suggests this may
not be ideal in a continuous Real space, it appears to be less problematic when the search space
is confined. This is an area that would benefit from further research.

Swarm size

The particle swarm size is calculated at runtime, and is one greater than the number of dimen-
sions. This was a decision made after reviewing the literature. As explained by Clerc in [30],
there is still a lack of research in this area, but it is clear that one must ensure the swarm size is
large enough to avoid the search being limited to a subspace, while still being small enough to
be practical.

In n dimensions, n points are bound to be in at most an n− 1-dimensional space (e.g. in
3 dimensions, three points define a plane, or possibly only a line). Since in PSO, the particles
tend to more towards or away from each other, if we have n (or fewer) points, the particles will
tend to be in the n−1-dimensional subspace defined by the initial set of n points. It could be
argued that n+1 points only define a simplex (generalised tetrahedron), whose volume will be
small compared with the whole space, but fixing this problem fully would require 2n points,
which is infeasible. In practice n+ 1 has seemed satisfactory, though again more research
would be useful.
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With a swarm this size, it does not make sense to have more worker processes than there
are particles. OptSearch would most likely not scale beyond the number of flags being
searched as some workers would be starved of work. A small future improvement might be to
use: max(number of MPI ranks,n+1), however there were practical limits during testing and
development that meant this could not be explored.

Boundary conditions

As explained in section 7.1.2, particles tend to leave the search space rapidly and are not
guaranteed to re-enter it, so performance is highly dependent on the strategy employed at the
boundaries and the velocity update function chosen. This is well documented by Clerc in [30].
There are also potential problems in getting stuck in a subspace or on a boundary [31], and
these need to be avoided.

Dampening is still required, for the same reason as for the bouncing approach; it lessens
the likelihood of leaving the search space repeatedly each time the position and velocity are
corrected. In this design, the dampening factor is required to be large, and it is still possible
that the particle will loop around the space for a significantly long time that it is necessary to
intervene.

After some thought and mild experimentation, this dampening factor, d, was calculated
thus:

Algorithm 2 Calculation of the dampening factor for particle movement

1: d← rand/(INT MAX +0.1)

Stopping criteria

It is important to know when to stop searching, as otherwise the search may continue on indef-
initely without any improvement. This would be a waste of valuable compute time and benefit
no one.

Since one cannot know in advance what answer is being sought, the usual practice in this
type of search is to declare convergence when “not moving much”.

In addition to being used to determine how much variation may be tolerated within a par-
ticular benchmark run, the value for epsilon (ε) in the configuration file supplied by the user
to the tuner is used to determine whether the swarm is no longer moving very much.

In the case of our tuner, “not moving very much” is defined as being when improvements
in the current global best fitness recorded for the current search are not larger than ε × ε for
200 iterations. 200 is a limit that was settled on after testing with this and higher limits as it
seemed to give the best result without waiting too long. In practice this limit is encountered
infrequently, with searches ending due to the limit in less than one fifth of tuning attempts.

Algorithm 3 describes the actions of the master process in deciding whether the search
should stop.

Note that if the stop flag is true, then any further requests for work from workers are
responded to with a value that indicates they are to exit cleanly.

7.2.6 Fitness evaluation

The obvious way to evaluate the fitness of a specific point in the search space is to time an
appropriate benchmark. Provided the benchmark runs for a sufficiently long time, this should
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Algorithm 3 Checking if the search has converged
Receive fitness (and position) from worker
if fitness < current best fitness then

current best fitness← fitness
current best position← position

end if
ω ← current best fitness× ε

if ω×ω > |(previous best fitness− current best fitness)| then
if no-movement counter≥ 200 then

stop flag← true
else

no-movement counter← no movement counter+1
end if

end if

side-step the problems discussed in [176] that require such careful cache treatment and other
steps to obtain an honest (representative of real codes) result.

For this to work, the benchmark chosen must be representative of a real code, and must
run for long enough to be meaningful. As discussed in chapter 6, it is necessary to run the
same performance test or benchmark, more than once. Otherwise it cannot be shown that
a particular result is valid and neither a freak occurrence, nor subject to a higher degree of
variation in performance than is acceptable. Further detail on the need to repeat the benchmark
multiple times is given in section 7.2.7.

7.2.7 Repeated runs of the benchmark

As explained in section 7.1.3, it is necessary to run the benchmark a number of times. In this
design, the fitness is determined by running accuracy tests first, and then, if those pass, the
benchmark is run multiple times. This repetition of the benchmark should be configurable, to
an extent, by the user.

Ideally, since there seems to be no established method for choosing the number, there
would be a strategy chosen that is sensible. Several immediately present themselves:

• Best of n runs (n to be chosen by the user or set to a sensible default).

• Mean over n runs (n chosen by user or set to sensible default).

• Search for convergence over a maximum of n runs (n set by user or set to sensible
default). This would require more input from the user so that a judgement can be made
of whether or not convergence has been achieved.

The final choice made was a combination of all three. The user sets a threshold for the
maximum number of runs, and supplies an expected deviation (standard error) from the mean.

The benchmark is run repeatedly. If n is less than 3, then the mean of n runs is returned.
If n is equal to or greater than 3, the arithmetic mean and standard deviation are computed for
the number of runs at each iteration.

In the early prototypes, validation of benchmark results was performed by curve fitting
against ax+ b (using a least squares approach). This was computationally intensive, and, al-
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though the required time was dwarfed by the runtime of the benchmark, as it had to happen
multiple times per point in the search space, the additional time was significant.

Experimentation suggested that a highly simplified approach of comparing standard devi-
ation of the results to a percentage of observed mean would suffice. This requires the user to
specify the expected standard deviation as a percentage of arithmetic mean, but greatly reduces
the amount of time required to assess the benchmark results for unacceptable variation and
reject them if necessary.

In the final implementation, the user supplied value epsilon (ε) is treated as a percentage
of the arithmetic mean, representative of the acceptable maximum value for standard deviation
at any valid point in the search space.

In short, if over n runs, the benchmark results have a standard deviation greater than ε ×
arithmetic mean, it is assumed that the result is a failure as the performance varies too greatly.

In addition, each attempt to run the benchmark must terminate correctly (return value of 0)
and within the period of time set by the user as an acceptable timeout for the benchmark.

Similar timeouts are given and used for the build and test cycles. If any overrun, or are
deemed to terminate improperly (non-zero exit value), then the fitness assessment does not
progress further.

If these conditions are satisfied, the arithmetic mean of the wall-clock time of the bench-
mark runs so far is returned as the fitness value of that point, and no further attempts to run the
benchmark are made. This can save considerable time if each run of the benchmark is rela-
tively long, as is usually the case if it is representative of user code. Note that at least 3 results
from the benchmark are required for this assessment to be made. This can be overridden by
the user.

In the failure case, the fitness value returned is DBL MAX.
Algorithm 4 shows a simple approximation of the algorithm employed within the worker

processes of the task farm. The master process performs all I/O and uses the search algorithm
to populate the work queue.

7.2.8 Choice of PRNG

PSO has also been shown to be sensitive to the choice of PRNG algorithm [32]. This is hardly
a surprise, as the PRNG is used to guide many of the updates during its run, as well as govern
the choice of starting positions of the particles.

The vast majority of implementations of PSO available appear to rely on a Mersenne
Twister [120]. Cryptographic randomness is not required, and often reproducibility is de-
sirable, so this is not a bad choice. There have been some improvements since 1998 however,
and so the PRNG chosen for this project was WELL512a [132]4. This algorithm comes with a
good test suite, and has received good reviews since it debuted in 2005.

With kind permission of the original author of the algorithm, the WELL512a code was
modified slightly to supply integer values, rather than double precision floating point. This
could be done without great risk (on current architectures), as the implementation uses uint32 t
and the only required modification to the original is to avoid the conversion of the generated
uint32 t value to double.

As the PRNG is used as part of the optimizer, which runs only in the (single-threaded)
master MPI process, the problems of distributed or multi-threaded PRNGs are entirely avoided.

4On the advice of JHD, who knows more about these things than the author
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Algorithm 4 A simplified description of the fitness evaluation performed by a worker process
1: START
2: Receive work item (string of flags) from master process
3: if work item corresponds to STOP value then
4: EXIT
5: end if
6: Run clean command
7: if exitcode == 0 then
8: Run build command, using flags to set FLAGS environment variable
9: if exitcode == 0 then

10: for i = 0; i < n; i++ do
11: Run benchmark; record execution time {Note that the benchmark execution will be

terminated if it overruns the user-supplied timeout. This is interpreted in the same
manner as the failure exit code.}

12: if exitcode! = 0 then
13: fitness← DBL MAX
14: Return fitness value to master process
15: Goto START
16: else if i > 3 then
17: Compute arithmetic mean of recorded times so far
18: Compute standard deviation of times recorded so far
19: if standard deviation > (ε×mean) then
20: if i < n then
21: continue
22: else
23: fitness← DBL MAX {This point in the search space is too unstable}
24: Return fitness value to master process
25: Goto START
26: end if
27: else
28: f itness←mean
29: end if
30: end if
31: end for
32: else
33: fitness← DBL MAX
34: end if
35: else
36: fitness← DBL MAX
37: end if
38: Return fitness value to master process
39: Goto START
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7.3 Robustness

Any design for use in real world conditions needs to be robust in the face of a number of
problems that cannot be avoided in software, such as compiler bugs and hardware errors.

7.3.1 Recording progress and resuming after termination

In the target use case, the software is expected to run under the control of a workload manager
or scheduler, and so must also be able to exit cleanly when the allocated wall clock time comes
to an end. It is highly desirable to be in a position to stop and restart the search using different
numbers of nodes between each run, without adverse effects on the results of the search.

The design of OptSearch records the results of each fitness evaluation in a SQLite
[82] database updated only by the master MPI process. OptSearch, if restarted using this
database file, will resume the search from the last point at which a fitness result was recorded.
It is not necessary to use the same number of MPI ranks each time, as only the task farm is
affected by the number of available workers, and no part of the search depends on the number
remaining the same throughout.

This is useful for systems administrators who may be using a strategy known as backfilling
for their own work. While not truly elastic as OptSearch does not allow for changing the
number of available MPI ranks while the search is running, it can be stopped and restarted
many times with different numbers of nodes available each time.

The minimum number of MPI ranks required is 2.

7.3.2 Terminating cleanly

In order to end the search cleanly, it is necessary to do two things:

• Listen to and respond appropriately to process signals sent by the workload manager or
scheduler daemon to the OptSearch processes.

• Have the master be in a position to inform workers that the search is stopping, whether
due to converging or due to receiving a corresponding signal.

Signal handling functions are available as part of the Linux system libraries, so it is rela-
tively straightforward to write something that should be portable across all Linux distributions
(and most POSIX-compliant systems) and that can satisfy the first of these requirements.

The second is a little more difficult if the workload manager does not send the signal to all
the MPI ranks. In such circumstances, it may be necessary to wait for each worker to finish their
current work items before the processes can properly terminate. At present, the most commonly
used workload managers, SLURM and PBS do signal all processes, and additionally allow the
user to specify what signal they wish to send to the running program at when the wall clock
time or walltime expires.

For OptSearch, the signal is set by the user in the configuration file, although to work
around a bug in some versions of SLURM, another signal must be listened to regardless of
what the user chooses, as it SLURM does not always heed this. This was the case on Balena.

7.3.3 Robustness against compiler bugs

Several problems were uncovered by prototyping. Firstly, there are some flags on which a
compiler, say GCC, will simply error even though they appear in the documentation, the
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source and the output of the various informational flags to the compiler (for example, gcc
--help=optimizers). Secondly, it was rapidly apparent that some combinations of flags
will cause the compiler to throw a variety of errors. One such combination caused GCC to
throw a floating point exception while attempting to compile a simple “Hello, world” program.
More commonly, the compiler will suffer a segmentation fault. Thirdly, some combinations
may cause an unusable executable to be produced. This happens less commonly, and was in
fact seen more often with the IBM compiler than with GCC, although it happened with all
compilers experimented with.

Another serious problem that had to be worked around was flaws in the documentation.
These were usually omissions. This applied not only to GCC but also to commercial compilers
such as those from Intel.

In addition to checking the value of the return code when a command is executed, the
following techniques were employed.

Execution timeouts

As was discovered early in prototyping, some combinations of compiler flags can cause the
compiler to error in a variety of ways, but most can be grouped into one of two types:

1. Sudden failure (both segmentation faults and floating point exceptions have been seen)

2. Failure to terminate (deadlock or infinite loop)

It is also possible for the compiler to generate invalid code, resulting in one of the two types
of outcomes given above (numerical errors and related problems are addressed in section 7.3.3
and section 7.3.3).

The first is not a problem, beyond the failure needing to be detected. Fortunately, on Linux
and other *NIXes, the POSIX standard [142] has ensured that there is already a defined way to
detect execution failure or success by examining the code passed on exit to the parent process.
This is not guaranteed, as it requires software developers to adhere to the standard, but it should
be sufficient for this use case.

Detecting a failure to terminate, either of the compiler or the compiled code, is more dif-
ficult. This requires a timeout to be set, the length of which should be set by the user in the
configuration file. A different timeout is needed for the different phases of the fitness evaluation
cycle.

Each worker is running a series of commands for cleaning up the build environment, the
build or compilation itself, and then the accuracy and benchmark tests. Any one of these stages
could fail to terminate, so a timeout needs to be enforced.

The benchmark is not expected to take the same amount of time to run as compilation, so
at least two timeouts should be specified by the user in the configuration file and enforced by
OptSearch during each fitness evaluation.

Any timeout triggered during the fitness evaluation cycle is treated as a failure, and the
worker informs the master process by sending an appropriate value, DBL MAX. If there is a
failure in an earlier part of the fitness evaluation cycle, there is no point continuing with the
evaluation and the worker will abort the cycle for that position in the search space, moving on
to request the next work item.
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Avoiding invalid or inappropriate results

As mentioned in section 2.1, performance can vary between processors that are thought to
be identical (same manufacturer, part number, stepping, etc). Differences in performance can
also be brought about through the operating system configuration, link order and seemingly
innocuous features of the environment within which a benchmark is run [125], in addition to
the benchmark itself, and the way it is timed [19] [176], particularly if the benchmark has a
very short duration.

Aside from careful choice of the benchmark, it is vital to treat the results with care and rely
upon statistical methods to determine their validity before using them to make performance
comparisons and decisions.

Further work must be done by the operator prior to running the tuner, similar to that de-
scribed in chapter 6. Where individual compute nodes differ greatly, either the value for ε

(epsilon in the configuration file) must be large enough to reflect that, or the nodes used for
tuning must be a subset of the available compute nodes that exhibit greater uniformity between
them than observed across the complete set.

Too large a value for ε could result in an invalid result from the tuner.

Optimization correctness

Compiler optimizations, by their nature, require a certain amount of license in rewriting and
translating the instructions of the programmer. This can be particularly problematic where
numerical operations are involved, such as in the scientific software libraries that this project
is targeting.

To ensure that software is not modified in a detrimental way, it is necessary to rely upon
tests provided by the user of the tuner. These must be thorough and have full coverage of the
software being tuned if they are to be useful.

The user of the tuner is also responsible for providing the set of compiler flags that comprise
the search space. This cannot be done entirely blindly. Although it is common (for example,
in the examples provided in [8]) to search over the entire set of flags produced by the union
of the lists given by gcc --help=optimizers and gcc --help=params, it should
be noted that this set includes all flags that affect optimization and almost entirely consists
of machine-independent optimizations. The result of this is that several compiler flags that
are intended for instrumentation, along with flags that alter the way numbers are treated, are
included in this set: Their use has consequences for the optimization passes of the compiler,
potentially altering the semantics of the generated code, in addition to the resulting speed of
the executable. The set of flags that GCC provides when gcc --help=target consists
of machine-dependent optimization flags, but it does not make sense to search through all of
these. They are more clearly a mixture of optimizations that may not always be appropriate,
with some applying to TLS instructions or the generation of 32 or 64-bit code (in the case of
x86), while others enable or disable different widths of SIMD instructions and are clearly of
interest when tuning many types of scientific code. As with the other flags, it would appear
that these must also be pruned to a more sensible subset before any meaningful search can be
carried out.

Some compilers, notably GCC, do not object to conflicting flags being passed to them on
the command line. It is usually stated within the documentation that either the flag listed first
or that listed last overrides all others. They also disable certain instrumentation flags at some
pre-defined optimization levels (such as -O2) that are enabled by default at lower levels. In
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the case of GCC, one such flag is -fwrapv, which is disabled at -O2 and higher.
It is possible that a developer may be relying on certain kinds of behaviour from the com-

piler, wisely or not, and that these may be affected by the choice of compiler flags used. This
is not something that the tuner of this project can be expected to deal with, and it is neces-
sary for the user to take care in choosing the flags to search over, and to have familiarity with
the software being tuned. The aforementioned -fwrapv, for example, changes the way that
signed integer overflow is defined, which may have serious consequences depending on what
behaviour the programmer has assumed.

Compensating for poor choice in input is extremely difficult, and outside the scope of this
project.

This leaves us with another question: Is it possible to surpass the work of those who blindly
search over all optimization-affecting flags, who do not make any attempt to check correctness5

of the resulting binaries or that the benchmarks are providing a reliable measure of perfor-
mance? This seems unlikely, though it could be argued that any results gathered under such
circumstances are of questionable utility. Any checking would have to be performed by the
user after tuning is conducted, which presents difficulties in compensating for any problems
that might be discovered.

A more interesting question, which is dealt with later in this work, is whether or not it is
possible, with the described restrictions imposed on the search, to best the flags chosen by the
compiler developers to correspond to -O3 (or the more conservative -O2)?

7.3.4 Fault tolerance

As with any large and complicated piece of machinery, supercomputers suffer the occasional
hardware or software failure. The most common types of failures differ by machine, its cost,
the limitations placed on its administrators and the experience of the users and type of usage.

The most common types of non-hardware failure seen tend to be either network congestion,
often caused by badly written software, or nodes going down due to Out Of Memory (OOM)
conditions. The former can sometimes be remedied by user education, and its impact lessened
by good interconnect design and tuning. There are mechanisms for dealing with the latter,
but these are not always implemented for a variety of reasons; lack of knowledge or time on
the part of the administrators, or limitations imposed by local politics, being the biggest. This
tends to be a problem only on smaller, less well resourced systems, especially those with a high
rate of change of users (and unexpected, less typical usage) as is seen at universities.

The damage caused by temporary loss of individual nodes is generally limited to those jobs
running on those nodes. This is relevant to a distributed tuner because it is possible that, if a
bug is discovered during the compilation stage, a node may be lost and that fitness evaluation
result (which should be reported to the tuner as a failure) will be lost also.

It could be argued that OOM should trigger the Linux oom-killer if the nodes are
correctly configured. Without doing a large-scale survey of HPC systems, it is impossible to
know whether it is unreasonable to assume sensible behaviour of the oom-killer. Such a
survey is outside the scope of this project. Fortunately, it is also not required. Linux allows the
setting of various resource limits on child processes via the setrlimit() system call, and
GNU has extended this with prlimit(). Similarly, time limits can be set on the execution
length of such processes, which should help offset the problem of a compiler bug that results
in a deadlock or infinite loop being triggered by a particular choice of flags.

5in the sense of compilation
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Hardware errors are a fact of life on a large machine. Components have known failure
rates, so administrators can approximate the number of failures to expect during any particular
month or year. Higher quality, and thus more expensive, components generally have lower
rates of failure, so it is the users of lower-end machines who bear the brunt of the problems.
Similarly, new and emerging hardware is liable to errors in design or manufacture that may
make soft errors more likely.

These failures cannot be predicted before the errors are reported, and on production sys-
tems there will be set thresholds for replacement of each type of component. Only when these
thresholds are met are components replaced, as to do otherwise is both impractical and unaf-
fordable, especially on very large systems.

Any software running on these systems must therefore be able to cope with a small number
of soft errors occurring in components such as DIMMs. More serious errors are likely to be
unrecoverable, making checkpointing or a similar method of storing and restoring state such
that any processing can restart with minimal loss of progress highly desirable.

7.3.5 Non-homogeneity

The working assumption of this project is that nodes within a supercomputer or cluster are
homogeneous. Unfortunately, some soft errors, such as processor bugs that cause the CPU to
be stuck in a particular P-state, can seriously undermine this assumption. A distributed tuner
could easily discard the “correct” result because its performance was affected by such a bug.

Fortunately, these problems occur infrequently, once a system has been baselined and a
homogeneous set of nodes selected. However, in future it is likely that this process will become
more difficult, as it can be seen that recent errata published by chip manufacturers, particularly
Intel, have continued to grow in size, with individual issues increasing in severity from the
point of view of the programmer or HPC centre manager. The recent specification update
for Intel ® Skylake [93], for example, lists several instances where a processor may suddenly
suffer from very slow execution of AVX instructions, or become stuck in a particular P-state.

In such circumstances there is no warning, and there is no operating system support avail-
able to detect these types of errors. Most systems administrators are limited to waiting for users
to alert them to the sudden occurrence of unexplained performance issues.

The old method of timing by cycle counting is not accurate enough in these cases, as the
numbers of cycles are affected and hardware counters have been observed to count too many
or not at all. This makes it worse than useless, and unlikely to be representative of what a user
might see. Timing by wall-clock time is crude, but, provided the benchmark is long enough,
should avoid the worst of the issues while maintaining some semblance of reality.

7.4 Conclusion

The process of prototyping has highlighted a number of practical challenges that will have to
be addressed in the final design. The first is the choice of a language that will be well supported
on emerging hardware: The final design will be implemented in C, the language used for the
most commonly used operating system in supercomputing. The workload will be distributed
across multiple nodes of the supercomputer being targeted using a simple task farm.

After experimenting with several alternatives, the optimization algorithm chosen for this
project will be SPSO [33], using periodic boundary conditions to deal with particles moving
beyond the edges of the search space. This will be supported by WELL512a [132], as SPSO
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is highly sensitive to the PRNG used with it. The swarm size will be set to one greater than
the number of dimensions being searched (a future improvement of max(MPI ranks,n+1) has
been suggested).

The benchmark being used for tuning of the targeted library will be run at least 3 times, up
to a maximum set by the user, with convergence being judged to have happened if the results do
not differ by more than 2 standard deviations. That is, they will be within 1 standard deviation
of mean. If this does not happen, the fitness evaluation result will be deemed invalid as the
variation at that point in the search space is too high.

Results from each fitness evaluation within the search space will be recorded in a SQLite
database, such that any completed valuations are not lost when the tuning application termi-
nates before the search has converged. The tuner, when restarted, will initialise the SPSO
particles from the stored data, so that the search may continue from the last recorded point.

It must be assumed that the user of the tuner will know to provide a valid set of tests for
the library being tuned, and to provide a benchmark that exercises at least those parts of the
library that are expected to be most heavily used on the target hardware. Checking such things
computationally is outside the scope of this project.

It is also clear that to fully meet the requirements, a number of assumptions have to be made
about the target machine and the way in which that machine is managed. These have been
set out in this chapter, and draw heavily on the author’s own experience in managing similar
systems. The main two assumptions are that the nodes used for tuning are homogeneous, and
that the system administrators have already checked for soft errors and other problems that may
compromise the homogeneity of these nodes. These nodes are expected to be representative of
the compute region of the supercomputer where the applications using the tuned libraries will
be run by users.
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CHAPTER 8

DESIGN IMPLEMENTATION

Unlike the early prototypes, the final implementation does not read directly from GCC’s output
or parse its source, nor does it assume any particular compiler or target language. Instead it
relies upon the user to specify all flags and options for the compiler for the search. Due to time
constraints and the difficulties of doing such things in C, there is minimal error checking on
the inputs, so the user must ensure that the compiler flags supplied are valid before proceeding.
Failure to do so is likely to result in the search converging very rapidly with a less than useful
result, as the various attempts at recompilation fail to show any improvement in performance.

For ease of use, on those systems where Python has suitable support, a script has been
written to programmatically determine these when the target compiler is GCC. This script
will also attempt a binary search for the limits of any valid values where such flags are of
the type that requires an integer value within a fixed range. For GCC, one file from the
source is required, params.def (for GCC 4.9.3 this is found within the source tree at
gcc-4.9.2/gcc/params.def). This supplies, where available (not all are set), the max-
imum and minimum or set of values, along with a default for each parameter (flags that take
the form --param foo=X). For other flags, the output of the appropriate section of the help,
such as --help=optimizers or --help=target, is used. The author intends to reim-
plement this in C in future, to avoid the portability problems that have been seen on emerging
architectures when using Python.

Unfortunately compilers other than GCC, particularly commercial compilers, tend not to
be so easy to query. There is no standard way to provide this information programmatically, so
it is necessary to construct the input file by hand, which can be a tedious and time-consuming
process.

The OptSearch application is started using mpirun or mpiexec, or whichever mech-
anism is in use for starting MPI programs on the target machine. I/O, other than debug infor-
mation, is handled in rank 0, which is designated the master MPI process. This process reads
in the configuration file, and performs queries and operations on the SQLite database. This
database is created if it does not exist, and contains a record of every position the PSO swarm
has visited and its fitness score, if one has been determined. This is in addition to storing the
current best position and several other parameters required to restart the search with the swarm
initialised to the positions the particles were last in.

As shown in the high level sequence diagram given in figure 7-1 in section 7.2, the worker
processes, ranks 1..n, wait for instructions. These processes make up the workers of the task
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farm, and do little more than the fitness evaluation cycle, the result of which is passed back to
the master process and stored in the SQLite database. When it is determined that the search
has converged, or an appropriate signal is received, the workers will stop any running child
processes, receive the STOP signal from the master process (since it is not always possible for
all processes to be informed through other means), and exit cleanly. The master exits after all
workers have been told to stop work, and the database has been updated with the latest results.

For increased robustness, the SQLite database uses the Write-Ahead Logging (WAL) jour-
nal mode [83], with auto-checkpointing and the “synchronous” flag set to 3 or “extra”. This
has allowed the database to survive even a fatal segmentation fault from within SQLite itself
(see section 8.5.2).

8.1 Component break-down and encapsulation

To aid in debugging, unit testing and to facilitate rapid development, the various parts of the
software is divided into separate areas, each with its own API. This allows for some parts of
the software to be worked on while others are waiting for attention, and may be “stubbed out”,
or implemented to a very minimal level. Each component can be tested in isolation, which has
proven instrumental in finding and fixing bugs (and verifying that they are, and remain, fixed).

The dependency graph shown in figure 8-1 gives some indication of how this has been
done. The task farm, for example, is encapsulated within the file taskfarm.c, with its
accompanying header file defining the API through which the other parts of OptSearch may
interact with it. This approach has been utilised throughout the design.

In the call graph (figure 8-2), it can be seen that most of the implementation details are
found within optimizer.c. This makes a number of calls to the APIs defined for each
of the components of the software, as might be expected, but there are few calls between the
components.

Some components, those with functionality provided by third-parties, such as the PRNG,
are hidden from the rest of the application by small wrapper programs (e.g. random.c).
This encapsulation is intended to allow the rapid replacement of such components if a better
implementation is found later. It also allows unit tests to remain untouched if such a change is
made.

8.1.1 Unit testing

Each part of the application was designed so that it could be tested in isolation, or replaced
without tests needing to be rewritten to remain effective.

Very simple unit tests have been used to ensure the functionality of each component re-
mains unchanged after refactoring and bug-fixing. Each time a feature has been added, a simple
test has be added at the same time. Equally, when bugs are uncovered, a test has been created
to reproduce that bug, so that it can be ensured that bugs are fixed and are not re-introduced.
Through this simple, well-established (in software engineering circles) process, considerable
time and effort has been saved during each stage of development.
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Figure 8-2: OptSearch call graph
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8.2 Alterations to target software

As might be hoped, few alterations are required to be made to the target software in order for
it to be tuned. Those made for the experiments detailed in chapter 6 and chapter 9 are explained
here. Most were made in order to simplify the process of automating the clean,build,test,benchmark
cycle.

1. To avoid building the benchmark every time, dynamic linking was used. This required
mildly altering the build system of the reference BLAS to ensure a shared library was
created.

2. By default, the LAPACK build system, which also builds and runs the BLAS tests, will
rebuild its own copy of the BLAS library and test that. This had to be altered so that the
test programs would link against and use the shared library created in 1.

3. The benchmark, HPL, was built to link dynamically against the shared BLAS library.
This benchmark was not rebuilt at each search point, as it is only optimization of the
BLAS library that should be being tested.

To avoid introducing a bias into the results, all comparisons to default optimization levels
are based on data obtained using exactly the same software and wrapper scripts (wrapper scripts
are not a requirement to use this software, but were used for convenience).

8.3 Wrapper scripts

As is the established practice on many systems, software on Balena is provided through the
use of modules [63]. While this approach is extremely useful in allowing several versions of
the same software to co-exist and be switched between by users at whim, it presents a problem
when executing commands that depend on particular software versions being available. It is
difficult to ensure that the environment is retained, and it is also possible that the benchmark
may be built differently, e.g. using a different MPI implementation, to OptSearch.

The simplest workaround to this problem is to enclose each command in a wrapper script,
which sets up the environment prior to issuing the command of interest. A word of caution: The
wrapper script must preserve the return code of the command it is wrapping around. Without
this, the tuner cannot determine whether or not a particular command has executed successfully.

Unfortunately, this means that, when execution is timed, the script is timed too, and any
overheads incurred are counted as part of the fitness value of the benchmark. For this reason,
the wrapper scripts must be kept as simple and clean as possible. Those used for this project
introduced a consistent overhead of 0.8 seconds, which is far shorter than the runtime of even
the fastest execution of the benchmark.

In the case of HPL, this approach (of timing the entire runtime) is interesting, since it will
always give a slightly larger (in the order of a few seconds) result than is reported by HPL
itself, regardless of whether a wrapper script is used or not. This is because HPL times only
part of its execution, the additional set up time varying slightly depending on the machine
on which it is running. That said, provided that the overheads are small, constant and apply to
every benchmark run consistently, this should not prevent the tuner from making its assessment
with enough accuracy to produce a useful result. In this case, although the compilation options
do affect this part of the benchmark, the overall runtime of the HPL is substantially longer
and the impact of compilation choices on the set up/tear down sections is extremely small by

96



Chapter 8. Design Implementation

comparison (around 0.5s of variation at most, versus hundreds of seconds for the benchmark
itself), thus having little influence on the tuner.

8.4 Signal handling

All processes listen for signals telling them to exit cleanly. This was less simple to implement
than expected, due to a problem in the version of SLURM on Balena, and other quirks of
the operating system. Some of the quirks that apply to OpenMPI do not apply to MVAPICH,
and vice versa. In order to be MPI-implementation agnostic (assuming that OpenMPI is usable
with applications of this type in future, given the problems discussed in section 8.5.1), is is
necessary to implement workarounds that will work in all of these situations.

• SIGUSR1 will usually kill a bash script

• SIGSTP and SIGCONT signals are consumed by OpenMPI’s mpirun, unless the ap-
propriate MCA parameter is supplied

The MCA parameter required for signals to be properly forwarded by OpenMPI is --mca
orte forward job control 1.

In addition to these issues, there are signal-handling quirks that depend on the scheduler
or workload manager in use on the machine being tuned on. On Balena, SLURM was found
to be accepting but ignoring the --signal directive. This is thought to be due to a com-
bination of the SLURM version and the way it has been configured. To work around this, it
was necessary to hard-code listening for two signals that were always sent by SLURM when
the job was either cancelled or the walltime limit was reached. Those signals are SIGINT and
SIGCONT. The SIGINT signal is also useful during testing, since the application then behaves
as expected when the user issues a Ctrl-C.

8.5 Difficulties encountered in third-party software

While Python-based prototypes had many problems (see section 7.1.1), implementing the final
version in C was not without issue. In part this was due to the extra functionality in this version,
and the difficulties in writing and debugging parallel applications. However, some difficulties
were caused by issues with third party libraries.

Despite efforts to keep the number of third-party libraries used by OptSearch to a mini-
mum to aid portability, it was necessary to make use of the work of others for MPI and for the
database used to store information about the search.

8.5.1 Overly-helpful libraries

Early on in development, OpenMPI [161] was used on Balena, but this ran into difficulties.
OptSearch must call vfork() followed immediately by execve(), to start a child pro-
cess for each stage of the fitness evaluation cycle (clean, build, test, benchmark) in the worker
MPI ranks. It must also record the exit code of the child process each time, while ensuring that
the child process does not overrun the user-defined timeout.

OpenMPI uses posix atfork() to register a fork() handler and thus detect the call
to vfork() (or fork() if that is used instead). If detected, OpenMPI will not allow the
code to continue, issuing an error message. Later versions of OpenMPI can be made to issue
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a warning instead [162], but, if the child process also uses OpenMPI, the exec() fails due to
the way memory is used by OpenMPI in both processes.

Switching to a simpler MPI implementation, MVAPICH [71], solved the problems and
allowed OptSearch to run correctly regardless of whether the invoked process (HPL in this
case) was using MVAPICH, OpenMPI or something else.

The appeal of OpenMPI is the extent to which its performance can be changed at runtime
depending on the selection of the parameters passed to it through parameters, environment
variables or config files. The amount of effort that the developers have gone to is clear, but they
also have very specific use cases in mind, better suited to codes that are not spawning child
processes.

OpenMPI does a great deal of checking for mistakes and misuses of the library by its
users. OpenMPI actively detects the spawning of child processes, and the comments from
the developers of the library imply that they consider this to be a case of user stupidity (or
old code), rather than an unusual yet legitimate use case [153]. It seems likely, given the
memory corruption that results when trying to use child processes within OpenMPI, that design
decisions have been made early in the development process for this library that do not allow
for this type of usage.

8.5.2 Bugs in SQLite

A bug in SQLite caused some jobs to be curtailed. This appears to be a segmentation fault
caused by invalid memory access within the query parser, particularly within the query ‘walker’.
Unfortunately there was not time available to track it down further once it became clear that
producing a fix would be very time consuming. The tuner was able to resume cleanly once
restarted, especially since the queries that caused problems were always those that checked
whether a position had already been visited. Due to the number of columns (one per dimen-
sion), this led to a very long query, although executed by hand and, most of the time, by the
tuner, it did not cause any errors. It was encountered whether or not SQLite was compiled with
thread-safety turned on, something that should have been unnecessary with only one MPI rank
(itself single-threaded) performing all SQL and file I/O operations.

Fortunately, with the database configured to be as resilient as possible, data is not lost due
to this and jobs merely terminate prematurely. The frequency of occurrence is high enough to
be irritating, with approximately 10% of each tuner invocation (via job submission) ending in
this way. Simply resubmitting the job is enough for the search to resume where it had stopped,
and so in practice the author was able to work around this by automating re-submitting. The
user need only check the output (or exit code) to determine whether the short runtime means
that the search has already converged or if the SQLite bug has reappeared. No changes are
required to the input to re-submit.

8.6 Conclusion

The final design was broken down into components, so that it could be both implemented and
tested piecewise. This and comprehensive unit tests allowed implementation to proceed more
rapidly, and with less difficulty, that it might otherwise have done.

Some changes were made to the target software to allow it to be tuned within a shorter
time frame, necessary where local policy places limits on the available computation time. This
was achieved by avoiding unnecessary repeating of build steps of the benchmark and test exe-

98



Chapter 8. Design Implementation

cutables, which would not themselves be targeted for tuning. These would normally use static
linking and thus require at least re-linking with the library for every fitness evaluation within
the search space.

To achieve this, the Makefile of the BLAS library was adjusted to build a shared rather
than static library. Similarly, the Makefile building the LAPACK tests was altered to link the
resulting executables dynamically with a shared library, and the HPL benchmark was simi-
larly altered to link dynamically against the shared BLAS library. This was not necessary for
OptSearch to work, but saved considerable time in the tuning cycle.

For the invocation of the build, test and benchmarking steps, short, simple wrapper scripts
were written to facilitate use of the module [63] system. This provides access to software
on many modern supercomputers, including Balena. These scripts were kept as simple as
possible to minimise overheads, which were checked to be both very small (a few milliseconds)
and, so far as possible, non-variable.

It should be noted that even when wrapper scripts are not used, OptSearchwill still show
a runtime longer than that reported by HPL by a few seconds, because HPL reports the time for
only a part of its execution (omitting, for example, the allocation of memory for the matrices
or the reading of its input file). In contrast, OptSearch will time the entire execution period,
which has been seen to be as much as 4 seconds longer on Balena, and longer on systems with
slower memory access. Without making the tuner benchmark-specific (and so target-specific),
it is not possible to avoid this, but so long as these set up and tear down times are consistent, it
should not make any difference to the efficacy of the tuning.

Unfortunately, some problems with third-party software were encountered that caused
failures. These were easily worked around due to the robust, standards-compliant design of
OptSearch, but their diagnosis was time consuming.

One was a design decision by the authors of OpenMPI not to support calls to fork() or
vfork(). This was a relatively minor problem given that OptSearch could be built against
any MPI implementation compliant with the MPI-3.1 standard

The second, an obscure bug in SQLite, will need to be tracked down and reported to the
SQLite project team in the near future. Fortunately the design of OptSearch, in being robust
to premature termination, is able to work around this problem. It can simply resume from the
last recorded step in the search. Using the WAL journal mode, along with autocheckpointing
and increasing the “synchronous” setting of SQLite to 3, helps to support this.

A third problem was encountered in SLURM, the workload manager on Balena. OptSearch
will always terminate cleanly when it receives a SIGINT or SIGCONT signal, in addition to
whatever signal the user requests is used within the OptSearch configuration file. This en-
sures correct behaviour at the end of a job on any system using the SLURM workload manager,
where some versions ignore the --signal parameter.
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Most results were obtained from Bath’s Balena (appendix A.2.6). The first attempted search
(that did not end in a failure due to human error) targeted GCC 7.3.0. This was the latest
version at the time, and was built with all the required libraries to enable all possible optimiza-
tions, especially those for loops. As stated previously, the compilation target was the reference
BLAS [117], using HPL [136] to provide a fitness evaluation and LAPACK [112] to check for
correctness of compilation.

Restrictions in the scheduling policy on Balena meant that the job was limited to 4 nodes
for each run, and could run for no longer than 6 hours. Later, access was granted temporarily
to a higher priority queue that allowed the experiment to be repeated on larger numbers of
nodes. This made it possible to verify that the tuner successfully scales at least to 16 nodes on
Balena, and that this substantially shortens the time taken to complete the search, changing it
from around 100 minutes to 20-30 minutes for the 255 flags used in section 9.1.2. It is believed
that the tuner will scale substantially beyond 16 nodes, but further testing on one machine
seemed of limited utility with this test case. A longer-running benchmark might benefit more
from greater numbers of nodes being utilised.

The same scripts for building, testing (via the BLAS tests included with LAPACK [112]),
benchmarking and cleaning up between each run of the experiment were used for all experi-
ments. The only change was to the flags passed to the compiler in each case, and the environ-
ment was ensured to be identical every time aside from these flags.

Results were obtained using HPL with N=9600, NB=100, P=Q=4 (WR00R2R2). The exact
HPL.dat can be found in appendix C. This problem size was chosen after initial experimen-
tation to discover the largest problem that could deliver meaningful results while still being
practical within the restrictions imposed on users of Balena and within the time available for
this project. For the larger problem size referred to later, only N was changed.

9.1 Current Intel®IvyBridge

As we saw in the study in chapter 6, which used the same scripts and benchmark (and problem
size), there is a lot of variation between groups of nodes within Balena. For the purposes
of this section, a sub-set of nodes was chosen to ensure true homogeneity; all had the same
memory type and processor stepping. These nodes were the 80 nodes within the partition
“batch-128gb”, which are fitted with 128GB RAM (DDR3 1866 MHz) in single-rank DIMMS,
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Number of flags Best result Mean Mean time to convergence Number of samples1

254 87.4s 92.2s 00:32:28 3

Table 9.1: Results for GCC 7.3.0, searching over machine-independent flags and parameters only

without including the first 22 nodes (delivered early in the machine’s life) that were fitted with
memory by a different manufacturer (Micron). That left nodes node-sw-[023-080]; 58
nodes in all.

The results of benchmarking these nodes also provided a useful figure for epsilon so that
the tuner, optsearch, could discard any points in the search space exhibiting unusually high
variation in performance. That is, results with a standard deviation higher than epsilon% of
mean at that point in the search space (on that node).

The tables in the following sections should be compared to the figures in table 9.4, which
includes baseline figures for -O3 and other compiler-defined optimization levels.

9.1.1 Results without -O flags

The tuner was first configured using lists of flags from the GCC 7.3.0 manual, and from gcc
--help=optimizers combined with gcc --help=params. This did not include any
architecture-specific flags, as the first list includes only machine-independent optimizations.
Some of these optimizations, having been deemed unsafe for scientific libraries, were omitted
from the configuration even though they may affect performance.

This list was pruned further when it was found that many flags that increase the search
space considerably (having valid values within a large range) are not required for performance.
This reduced the search time and, as an unanticipated side-effect, reduced the number of local
minima encountered by SPSO.

The second list consists of flags, all of which take the form --param name=value,
that control various parts of the compiler’s optimization machinery. They make it more or less
effective depending on the targeted code and architecture.

Results are shown in table 9.1 and were obtained using 4 nodes (64 cores; one MPI rank
per core). Although only three data points are presented, further results that were obtained
during development suggest this behaviour is typical and that it is not greatly influenced by
choice of PSO parameters.

Note that all of the results in these tables are reported times from OptSearch itself, rather
than from HPL. This means they include the entire runtime of HPL, not just the section that is
usually timed by the benchmark.

9.1.2 Results with -O flag

The tuner configuration from section 9.1.1 was re-used, with the addition of the -O flag, which
takes values 0 through 3, fast and s. This produced a faster result, while not increasing
the search space greatly. As before, it was found that a more aggressive pruning of the flags
supplied to optsearch resulted in convergence on a better result.

Results are shown in table 9.2, and were obtained using both 4 and 8 nodes. One of the
results used 4 nodes initially and then 8 nodes when re-started. Increasing the number of MPI
ranks did not reliably shorten time to convergence.

1Number of times OptSearch could be used to search for the best flag combination in the time allowed.
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Number of flags Best result Mean Mean time to convergence Number of samples
255 12.3s 19.8s 01:26:59 4

Table 9.2: Results for GCC 7.3.0, searching over machine-independent flags and parameters, with the
addition of the -O flag

Number of flags Best result Mean Mean time to convergence Number of samples
431 94.4s 96.4s 02:06:08 2

Table 9.3: Results for GCC 7.3.0, searching over both machine-independent and -dependent flags and
parameters, with the addition of the -O flag

The best result found used 175 flags (see appendix B), of which 39 required a value to be
supplied, 33 of which were numeric values chosen from within a large range.

9.1.3 Results with -O and machine-dependent flags

The configuration from section 9.1.2 was augmented to include a sub-set of the flags produced
by gcc --help=target. Not all of these flags are relevant to dense linear algebra, and
some apply to older processors than IvyBridge. As it extended the required time for searching,
there was also a desire to keep the search space as small as possible. Most of those flags chosen
were related to SIMD instructions. Results are shown in table 9.3. 4 nodes (64 MPI ranks) were
used.

9.1.4 Other techniques

The existing methods of obtaining a higher performing library are demonstrated here. The
most obvious, using one someone has already written, is possible now that Intel®IvyBridge
is a well-established microarchitecture. Results are given for ATLAS [178], and it should be
noted that it took more than 2 working days and almost as many CPU hours to produce the
library that was used for this.

The next most obvious method involves simply choosing the right -O and letting the com-
piler work it out, or taking the time to look through the compiler manual and attempting to
choose the best flags, depending on the library, target architecture and compiler being used.

Table 9.4 uses the reported runtime (in seconds) from HPL. OptSearch’s best result is
included for comparison (note that the result here will look shorter, as it is the performance
reported by HPL, rather than the total wall clock time). It should also be noted that ATLAS
gains a small advantage by being statically linked, but this cannot account for the scale of the
difference in performance seen.

1. . . and several years of experience
2Once the library author has gained access to the hardware, and had time to add support for it
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Method Mean runtime (s) Standard deviation Number of samples Library build time (approximate)
-O0 95.40s 0.06s 56 <1 hour
-O1 26.74s 0.02s 174 <1 hour
-O2 17.10s 0.02s 180 <1 hour
-O3 13.08s 0.03s 177 <1 hour

-Ofast 13.06s 0.04s 175 <1 hour
Hand-picked flags 10.03s 0.03s 60 1-2 hours1

Best from OptSearch 9.93s 0.04s 6 1-2 hours
ATLAS 2.99s 0.01s 241 50 hours2

Table 9.4: Results for -O flags, ATLAS, and hand-picked flags

9.2 Intel®Ivybridge as it would have been

As explained in section 4.3, the target for this work is not established, well-supported archi-
tectures. This means that the numbers thus far supplied are not necessarily representative of
the results that might be obtained if the tuner is used in the intended situation: That of having
access to a machine for which there are not yet any high-performance libraries.

In order to attempt to replicate something of the intended target situation, the same ex-
periment was repeated with an earlier version of the compiler, GCC 4.4.7. This version was
supplied with the operating system when the machine was installed, and its change log shows
that no support specific to IvyBridge had yet been added. Results are shown in table 9.5, with
the search space consisting of both machine dependent and independent flags, with the addi-
tion of -O. This is not quite equivalent to the experiment that produced the result in table 9.2
as a greater number of flags was included in the search and there are several flags which have
either been removed from or added to the set for the later version of the compiler. This makes
it impossible to compose an equivalent search space.

This result of 21.3 seconds, which HPL reports as 19.48s, is not impressive, because using
-O3 alone produces a runtime reported by HPL as 13.78s. Unfortunately, due to time limita-
tions, it was not possible to investigate whether a smaller search space might have resulted in
a better result as it did for GCC 7.3.0.

It should be noted that IvyBridge, being of the x86 family, is not as unsupported as the
ARM chips mentioned in section 4.3. Despite lacking support for the microarchitecture, GCC
4.4.7 produces reasonably optimised code due to its similarities with other Intel family chips.

Number of flags Best result Mean Mean time to convergence Number of samples
289 21.3s 36.5s 01:06:22 6

Table 9.5: Results for GCC 4.4.7, searching over machine-independent flags and parameters, and a
subset of machine-dependent flags, with the addition of the -O flag
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9.3 Discussion

Despite the only difference being the addition of the -O flag, adding only one dimension to
the search (complicated in that, depending on the value taken, this flag activates or deactivates
several flags), the results in table 9.1 and table 9.2 are surprisingly different. The addition of
this “hyperflag”, if it may be so-called, appears to have had the effect of lifting the search out
of the local minimum it has previously become stuck within, preventing it from becoming pre-
maturely stuck. In early experiments, before settling on what seemed to be the best parameters
for PSO in this search space, it was already clear that PSO could be highly temperamental, at
times appearing to alter its behaviour depending on the ordering of the dimensions.

It is interesting to see that the hand-picked flags and the best result found by OptSearch
deliver very similar performance, yet on examination, use very different sets of flags. A crude
count of the number of generated instructions with references to xmm and ymm registers, to give
some indication of the extent of vectorisation, immediately shows that the hand-tuned binary
is more highly vectorised. Looking only at DGEMM, which is the only part of the BLAS that
is really exercised by HPL, the hand-picked flags generate 513 SIMD instructions referencing
both types of register, 233 of them referring to ymm registers used in AVX instructions. In
contrast, -O3 generates no AVX instructions and only 140 SIMD instructions that refer to
xmm registers, while OptSearch’s best results generate around 859 SIMD instructions, all of
which refer to xmm registers only.

In addition to these numbers, table 9.6 includes the second best point found by OptSearch,
which is comparable in performance with the hand-picked flags (mean runtime of 10.1s). This
is particularly interesting as this provides 3 unique points within the search space that give
similar results for this problem size. Two of these points, both of those found by OptSearch,
do not make use of the widest vector instructions. This is true even when the problem size is
increased to 12800, where OptSearch manages to deliver a mean runtime of 130s, vs the
hand-picked flags’ runtime of 128s (for GCC 7.3.0).

In spite of the differences in vector instructions, all three of these (the two results from
OptSearch and the result from hand-picking the flags) rely on loop optimization flags and
produce results noticeably better than -O3 alone for both N=9600 and N=12800. Even so, it
is clear from table 9.4 on page 103 that it is not time for Whaley, author of ATLAS, to retire
yet. Whether hand-tuning of flag choices is used, or automated tuning with an approach such
as that described here, the gap between the unoptimized performance of the reference BLAS
and ATLAS can only be narrowed by 30% at most.

Larger problems than N=12800 could not be investigated due to constraints on job run-
times and the need for a single fitness evaluation to complete in order to record its result. It is
not possible to checkpoint the benchmark during its run, and interrupting the compilation and
testing phases is not possible without substantial further work.

Flags XMM instructions: YMM instructions: total SIMD instructions:
-O3 140 0 140

-O3 -mfpmath=sse -mavx 174 23 192
Hand-picked 285 233 513

OptSearch 2nd best 398 0 389
OptSearch best 859 0 859

Table 9.6: Comparison of numbers of SIMD instructions generated by GCC 7.3.0 when compiling
DGEMM
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9.3.1 Reproducibility

An additional experiment was run, this time with the compiler flags in the input file mildly
shuffled, to see whether the result obtained previously could be reproduced independently of
the ordering of the search dimensions. This initially failed to run to completion.

In this case, the search seemed to get stuck after approximately 7 hours, with particles
bouncing between a subset of positions in the search space. In total, 1573 visits had been made
to 532 unique positions within the search space. This is a tiny amount given its size and the
time spent searching.

With the options again shuffled slightly, and a different allocation of nodes (access having
been granted to a higher priority queue), the experiment was re-run.

The behaviour was little changed whether the job requested 2, 3, 4 or 8 nodes. On examin-
ing the SPSO algorithm in more detail, it was determined that, in a discrete search space such
as this, the geometric algorithm used to compute a new velocity and position for each particle
was not moving the particles efficiently, and they are instead inclined to revisit the same point
repeatedly. A small modification was made, using a threshold for the number of visits to each
position in the search space. When this is exceeded, the particle will instead be moved to a
random position and given a random velocity with a probability of 50%. Initially, the threshold
was set to a static number (200 visits). This solved the problem of SPSO fixating on one posi-
tion, but did not show much of a progression through the search space. Instead, the additional
random jumps ensured that the search was more likely to accidentally chance upon the “right”
answer. The result is clear in the global best history table in SQLite, where the current
global best answer is at DBL MAX until it jumps to the final result and stops after SPSO decides
that the search has converged (see table 9.7 for an example of this).

After some thought, and discussion with James Davenport, The threshold was altered to be
dynamic, its value dependent on the number of positions already visited. It is calculated using
a suggestion from James (see algorithm 5 on page 105).

Algorithm 5 Calculation of the threshold for movement to a random position (and velocity) in
the search space. This happens 50% of the time that this threshold is reached.

1: if times this position has been visited <2 × max(1, times this position has been visited
÷total visits to all positions ) then

2: Move particle to a random position in the search space
3: end if

With this alteration, the behaviour of SPSO was much improved, showing a steady pro-
gression towards the best answer, and avoiding becoming stuck. This can be seen in table 9.8
and the corresponding figure 9-1 (note that “search iteration” is not strictly valid, as the search
is not iterative but driven by results returned by the task farm).

Perturbing the compiler options within the input file twice more and re-running the exper-
iment showed OptSearch finding the ‘best’ result of approximately 10.0s in 50% of tuning

timestamp positionID fitness visits
2018-05-30 12:52:13 6 DBL MAX 2
2018-05-30 12:49:14 512 131.601115 3

Table 9.7: Table showing search progression for one search on Balena, where only two points are
visited.
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timestamp positionID fitness visits
2018-05-30 18:09:53 3 DBL MAX 48
2018-05-30 18:12:55 98 26.296122 5
2018-05-30 18:12:55 99 23.292912 17
2018-05-30 18:15:26 124 12.28193 221

Table 9.8: Table showing search progression for one search on Balena

attempts (the worst result found was 33s), although the time to find it varied from 16 minutes to
1 hour 10 minutes on 16 nodes. This is thought to be due to the random nature of asynchronous
SPSO and the distribution of ‘good’ results within the search space.

While usually very similar, the chosen “best” flags were not identical in each case. Some
flags, such as --param predictable-branch-outcome=15 might take a different
value, such as 21, in one set of found flags, while others, such as -fstack-reuse=named vars
appear in only one result. Aside from these few, the vast majority are identical, suggesting that
the few that deviate have little influence on the performance obtained.

Interestingly, increasing the search space to the full list of possible flags, as might be done
by a naive user, appeared to have a detrimental effect. OptSearch returned to finding “good”
points in only 5-15% of attempts to search for them. Perturbing the flag list did not appear to
make any difference, although this is not conclusive as not many experiments of this nature
were run. Those that were suggest that PSO may be not only highly variable and potentially
affected by the flag ordering, but that this variability may increase as the search space increases.

It is worth noting that [33, Figure 3.1] considered at most 44 dimensions, and says “there
is still a lack of theoretical analysis” for the optimal swarm size, never mind other SPSO
parameters. In this thesis, up to 250 dimensions have been typically considered, with best
results at 175. Hence it is not clear whether the difficulties encountered with a greater number
of flags are generic to SPSO, or a characteristic of our particular problem. The reader is referred
to Clerc’s comment about a lack of theoretical analysis.
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CHAPTER 10

EVALUATION

As could be seen in table 9.4 on page 103, the commonly used -O3 can be improved upon in
a way that is significant: Using OptSearch performance improved by 24%.

This is consistent with the best improvements found in [6] with their own compiler. Un-
like OptSearch, Almagor et al do not restrict the search to avoid numerically unstable or
highly variable results. Although the compiler is their own and not GCC, it performs similar
optimizations.

Gains such as those achieved by a purpose-designed and built library such as ATLAS can-
not be achieved. However, this optimization can be done by someone with limited knowledge
of the target library, provided that adequate tests are provided, and unlike ATLAS has the
potential to deliver performance gains with other libraries than the BLAS.

Unfortunately, the approach chosen is not without its problems. Most of these appear to be
a result of the nature of the search space and its effect on the search algorithm being used. This
is perhaps unsurprising, given the complexity of this type of optimization [28].

10.1 Observations of compiler performance

Despite the high expectations of improvements when moving from GCC 4.4.7 to 7.3.0, -O3
resulted in an average runtime for HPL (as reported by that benchmark) moving from 13.78s
to 13.08s, an improvement of only 5%.

Large hardware manufacturers, such as Intel, are known to contribute to compilers (and
others, such as GNU binutils, libraries such as libxsmm [76], and the Linux kernel [50]) as
much as a year in advance of a new microarchitecture appearing on the market. A simple look
at the change log in many projects makes this clear.

In binutils [66] 2.30, a project that includes the gold linker and various other tools required
for the building of software on many, mainly open source, platforms, email addresses of con-
tributors give an idea of the scale of these contributions. From 2000 onwards, of 1499 entries,
40 are from intel.com email addresses. This may not sound like many, but is huge compared
to the 11 from AMD, 4 from ARM and 4 from Samsung. Others are from Linux distribution
maintainers, a number of enthusiastic open source developers, and here and there a contribu-
tion from those who may also be interested in specific language support (adacore.com appears
3 or 4 times).
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A similar distribution is seen in the GCC change log. It is thought likely that other chip
manufacturers are less able to prepare the ground in such ways, as they cannot match the level
of investment of the larger companies.

It is very disappointing that the improvements in performance are so small, despite this
investment.

10.2 Observations of the search space

The progress of the search within the space shows obvious striations, as might be expected.
Larger jumps in performance are thought to be due to turning on/off significant optimizations,
while smaller variations around each point are due to tuning that optimization. This can be
seen in figure 9-1 on page 107.

The tables of positions in the search space and their fitness values, generated during the
search, show that the majority of points visited are failures, and many that are not failures
return a fitness that is somewhere between the performance of -O0 (no optimization) and -O1.
This is consistent with what was observed during prototyping, described in section 5.2.2: The
search space is very similar to that described in [6], in which the authors explain that, for their
compiler:

“80% of the local minima in the space are within 5 to 10% of the optimal solution.”

Although their search space is significantly smaller, the author believes the search space for
all compilers will be very similar, due to the way that compiler optimizations are performed.

10.3 Behaviour of search algorithm

The SPSO algorithm is very variable, as also observed in [14], who saw PSO finding a “good”
result in only approximately 15% of searches. This is consistent with what was seen during
OptSearch development.

With later improvements, the “best” result was found only in 50% of searches. Less if the
search space was left at its largest (as it might be if a novice is using OptSearch to tune a
library they know little about).

The dimensionality of this search space is far higher than is usually used with this search
algorithm. For example, in [77] 40 dimensions is considered a large number, whereas, even
ignoring machine-dependent flags, in tuning the options of GCC 7.3.0 there are 413 options to
consider; 292 for GCC 4.4.71.

The initial search cut down (by hand) the number of options to search to 254 for GCC
7.3.0 (288 for 4.4.7) on Balena. Many are instrumentation flags irrelevant to the search,
while some others are unsafe for numerical code.

In addition, SPSO is usually used to search within a continuous space in R. When tuning
compiler options, many of the dimensions are very short (within the interval [−1,1]), and all
(in the case of GCC) are within Z.

With these differences, it was difficult to know whether this search method would be the
best approach. SPSO is not guaranteed to find the best answer, and the asynchronous version
used in this project is not guaranteed to take the same path to the “answer” (or one of them,

1This is the RedHat packaged GCC and it appears to be missing some optional components, so the figure may
be higher if built with all options
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if there are several) each time. In practice, it often takes a similar, though not identical, path,
presumably due to the homogeneous architecture and resulting similar times to compile, test
and benchmark the target library.

10.4 Environmental considerations

This project began as a small hobby interest, and although it became a more serious research
undertaking in 2007, has suffered from the difficulties of being limited in scale due to the
availability of hardware combined with the policies chosen by those overseeing the university
HPC resources. This has made it impossible to do more than plan for and guess at how well it
might scale in practice.

In addition to these problems, the nature of part-time study and the lack of understanding
or support at UK institutions for those studying in this way has made it increasingly difficult
to make progress of any kind. Part-time students are liable to be overtaken by their full-time
peers, who can donate more time to their work and tend not to have many commitments outside
of their studies. This project had to be suspended several times, often for many months on each
occasion, due to life events. In retrospect this is not a mode of study that the author would
recommend to anyone. Younger students studying full-time can easily begin their PhD project
later and finish sooner, rendering one’s work obsolete in the process. Maintaining motivation
in the face of such enthusiastic competition and university policies that seek to punish anyone
who is not progressing “fast enough” is a constant struggle, even with extremely supportive
supervisors.
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CHAPTER 11
FURTHER WORK

While tuning the compilation process in this way has been shown to be of value, there are
clear gains that can be made by improving the implementation. This is especially true where
the search algorithm is concerned, now that a better understanding of the nature of the search
space has been obtained.

11.1 Investigate behaviour of OptSearch at scale

Only very limited opportunities to investigate the behaviour of the tuner with larger numbers of
nodes presented themselves. The limit on Balena was a mere 16 nodes, which could not give
a good indication of how much faster the search might progress if more worker processes are
available. In practice, we would expect this auto-tuning work to be carried out by the system
staff during the early days of the machine’s deployment, when the majority of compute nodes
are available.

One avenue for further work would be to investigate the potential time saving that may
be had on a very new machine where the system administrator could make use of more of
the compute nodes. If this approach shows potential, that could open up further avenues for
improvements to the software.

11.2 Other compilers

Obvious areas for expansion are to extend this work to other compilers than GCC. While GCC
is currently the dominant compiler in this area, it is not the only compiler. Further improve-
ments might be possible with one of its competitors, such as clang or flang from the LLVM
project. These appear to be gaining in popularity due to their more modular architecture, and
have been used as the basis for several commercially available compilers.

11.3 Other architectures

At the start of this project, it had been expected that some results could be obtained on other
architectures than x86, but unfortunately access to these systems was lost and could not be
reinstated in time to provide any meaningful results. ARM presents a particularly interesting
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target, as it appears to be slowly gaining in popularity in HPC and has not been subject to
the same level of care and attention from compiler and library authors as x86. Such emerging
architectures (in the HPC space) were always the real target of this work, and it is hoped that
they might benefit more than the incumbent architecture, x86, does.

Indeed, early work on Amber (appendix A.2.4) indicated that the gains might be substan-
tially higher than for x86, emphasized by the poor performance of even auto-tuning libraries
(no others were available) such as ATLAS at the time that it was brought into service. At
that time, the tuning of parameterised kernels done by ATLAS, which took around 48 hours to
complete, could result in achieving only around 20% of Rpeak. In contrast, hand-selection of
the GCC compiler flags for the reference BLAS was able to deliver performance that was very
slightly better than this. (More if the compilation of the benchmark was tuned also.)

11.4 Other libraries

Targeting other libraries in the list of Dwarves [34] was always an intended extension of this
work. Dense linear algebra may not be the best test subject, due to the amount of work that has
gone into producing good results for the TOP500 [122] list.

It is anticipated that greater gains may be had where libraries have not been so heavily
targeted for optimization by compiler writers, whose software now recognises the GEMM,
especially DGEMM, and optimizes it accordingly.

For this reason, sparse linear algebra (eg Sparse Basic Linear Algebra Subprograms (SBLAS)
[48] and ScaLAPACK [18]), and graph algorithms (particularly in light of the recent focus on
the Graph500 [70]) may present a more interesting target.

11.5 From libraries to applications

There is nothing in the design of OptSearch that would prevent its use for applications or
benchmarks. Only further experimentation can tell what the correct balance is between tuning
libraries and tuning applications, but by targeting libraries, one can at least know that a broad
range of applications will benefit, and to know what those applications may be before choosing
a target library.

It could be argued, as [17] do, that one should target applications. One problem here is
that applications such as DL POLY in fact have many computational kernels, for different user
calculations, and it is not obvious that the same choice of compiler options will work for a
range of different user calculations. However, it might be possible to take a group of users
using the application for similar calculations and produce an optimised version for them, with
no guarantee that it was optimised for other uses. Thus, one may have to supply multiple
versions of an application, each optimised for one of the most common uses of it; an approach
that is probably not practical for an academic machine where use varies considerably and is apt
to change during the typical lifetime of the machine.

Artificial benchmarks are a different matter. During acceptance testing of Balena (the
Bath supercomputer listed in appendix A.2.6), the author was asked about improvements to
the results of the HPL benchmark [136]. Initially, the results were around 20% lower than
the acceptance tests required. The missing 20% was recovered by choosing more appropriate
compiler flags for the benchmark itself, an approach the administrators had not considered
initially.
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This was in addition to the use of a tuned library, and for a benchmarking exercise, very
significant (in this case, the machine could not have passed acceptance without it). Auto-
tuning a benchmark (as well as the libraries on which it depends) has obvious advantages if
one is competing for a position in a list such as the TOP500, but, as discussed in section 3.1,
could be considered controversial.

11.6 Exploration of the search space

A study of the search space of widely used compilers, such as GCC, would be useful as it could
inform work on improved search algorithms. Such a study would likely require the search to be
performed on a subspace, perhaps selected to be representative of the search space as a whole,
in order to be feasible.

11.7 Behaviour of PSO in similar search spaces

The behaviour of PSO, as discussed in section 10.3, has been shown to be highly variable.
Further research into search spaces of a similar nature (via an appropriate objective function)
would be beneficial, as it could inform work on further improvements to the PSO algorithm.

11.8 Alternative search algorithms

Since SPSO does not perform so well in high dimensionality spaces with short dimensions,
another algorithm, at least as robust, should be sought. Before beginning this project, it was
thought that the search might be approached as a graph problem, but it was quickly found that
most compilers, and certainly GCC, do not have enough dependencies between flags to make
this approach viable. (Or if they do, they do not document it.)

Further improvements may be gained by dividing the search space up into separate areas,
where a machine learning approach could be used. Dividing the search space in this way may
also provide a better method for attacking larger problems, which will be necessary as the
numbers of flags for each compiler increases. In addition, this could provide a possible method
for better scaling on future (exascale) systems.

Supervised learning approaches were originally deemed unsuitable by the author due to the
additional complexity in ensuring that the final tuner produced by the project would be both
portable and easy to use. The constraints on implementation time were also a significant factor
in deciding against this type of approach. Since that decision was made, others have made
progress using a variety of machine learning techniques [11].

As it will not be known how many “good” answers may exist, an algorithm that does not
require this knowledge at the start would be best. One possible approach might be to use
Dirichlet processes [55], if the distribution is known to be appropriate (this would require an
exploration of the search space, as suggested in section 11.6) and there is suitable training
data. A limitation of this type of approach is that it requires data from hand-picking flags.
Availability of training data may make it impractical if this data does not already exist or cannot
be easily generated. Additionally, reducing the number of dimensions required to search is
likely to be beneficial regardless of the search algorithm chosen.

Another, simpler approach, which may work with GCC and similar compilers, might be
to use a cost function for combinations of flags and parameters. This could be problematic
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given the likelihood of encountering local minima. Such an approach would probably work
best when combined with hill climbing, or another appropriate method, to find the best values
(and combinations) of flags that take a value from within a (large) range.

11.9 Improvements for high-end supercomputers

On some high-end systems, particularly those within commercial environments, compilation
can take place only on the login and service nodes, the compute nodes being reserved, as the
name implies, for pure computation. (The choice of whether or not to allow compilation on
compute nodes varies depending on the decisions made by those responsible for that particular
system.)

This presents a problem for the current model of working, and due to the limits on CPU
cycle usage on many login nodes (to try to enforce more friendly behaviour between the many
users) it may be necessary to be careful about how compute-intensive the optimizer is. A multi-
threaded approach could be highly desirable, with batches of compilations running at any one
time (numbers concurrently running to be chosen by the user) with separate directories for all
files generated. Then the fitness function would need to be capable of dispatching of a job to
the work load manager, and then waiting for it to return with the fitness for that point in the
search space.

This is likely to be very slow, and, with the intended audience being the system adminis-
trators, it may be worth considering cycle-stealing approaches. However, most systems admin-
istrators are likely to be capable of formulating a strategy using the workload manager on their
systems that fits in with the local workflow. As there is much variation between supercomput-
ing centres, such tasks are probably best left largely to them.
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CHAPTER 12
CONCLUSION

This project has demonstrated that it is possible to tune the options of the most commonly used
compiler to increase the performance of a commonly used library, in this case the reference
BLAS, by 24%. This closes the gap between the performance such a library usually delivers
when compiled simply (with -O3) and that provided by using a special-purpose high perfor-
mance library, such as ATLAS [178]. It is also almost 5 times the 5% used by Biscof et al [17]
to justify the comparatively high investment of a performance expert’s time.

12.1 Answers to Questions

In addition, this project has provided answers to the key questions raised in section 1.2, given
below.

RQ1 How necessary is machine code?
If ultimate performance, or anything close to it, is to be achieved, then machine code
is still necessary for dense linear algebra. Even with a well-developed compiler (GCC
7.3.0), we have only been able to obtain 10.0s by hand-tuning the compiler’s flags, still
significantly slower than ATLAS’s 2.9 seconds. However, it should be noted that it was
more than a year before ATLAS reached this level of performance even on Intel®Ivy
Bridge. This process often takes significantly longer on other architectures, such as the
APM X-Gene 1 machine Amber (see appendix A.2.4) mentioned in section 4.3.

RQ2 Is performance-portable code achievable?
While it is not possible to match the performance of a carefully hand-crafted library, it
is clearly possible to close the gap between the performance of these and the mediocre
performance of the default optimization levels provided by the compiler by auto-tuning
the choice of compiler options. Further, it can be done with little specialist knowledge,
within an acceptable amount of time (<2 hours in the example used in this project).

The maintenance overheads of a high performance library, such as ATLAS or Goto-
BLAS [68] (or its descendent, OpenBLAS [180]), are much higher than for naive code.
As explained in section 1.3, it takes some time, often in the order of several months,
for the authors of libraries such as these to catch up with the release of new hardware
architectures.
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Naive code is easier to maintain and to debug. It takes less time for a developer, newly
introduced to the code, to get to the level of familiarity required to maintain or expand
it. These are highly desirable features of any software project that is likely to have a
long lifespan. It is perhaps worth reminding the reader at this point that the BLAS first
debuted in 1979, and, though more subprograms may have since been added to it, it
shows no sign of declining in popularity.

RQ3 What is the economic value?
The lifetime of the typical supercomputer is now about 5 years, depending on the chosen
refresh cycle of its supercomputing centre. If a high performance version of a library
cannot be obtained for the first 1-2 years, that is a significant portion of the life of that
machine.

Increasing the speed of computation of general purpose libraries used by the commonly
run programs on that supercomputer will have a noticeable, and cumulative, effect on
throughput over that period. This project shows that, for a small (1-2 hours on 4 nodes)
cost in compute time, a significant improvement in performance can be obtained that
would increase throughput for those applications that might otherwise be dependent on
the unoptimized BLAS library.

Using the results given in chapter 9, and an estimate of the proportion (27.5%) of top ap-
plications that might benefit (using the figures given in [7]), we can adjust the calculation
from [17, page 3] accordingly:

% performance improvement×% of applications using BLAS×TCO of the machine =
0.24×0.275×TCO of the machine = 0.066×TCO

Using the total cost of ownership (TCO) figure for RWTH Aachen calculated by Bischof
et al, this comes to around 363,000e1 for tuning only the BLAS library.

This very naive calculation assumes that the tuning itself has no cost. For a single li-
brary it is very small relative to the lifetime of the machine. Full workings are given in
appendix F on page 136, where the calculation is also given in CPU hours.

Even if the cost in CPU-hours is negligeable (which it is), there is also the cost in person-
hours, which depends critically on the person’s skill level. [17] assumed 2 person months
per application and a 5% improvement: This thesis proposes a methodology which is
almost certainly less expensive than a full tuning and delivers a 24% improvement, so is
certainly more cost-effective than the already impressive method of [17].

12.2 Implications for Dense Linear Algebra

The community measures HPC machines by their HPL figure. Even for dense linear algebra,
the relevance of this is being increasingly questioned (see, for example, [47, slide 16]), and
the High Performance Conjugate Gradients (HPCG) benchmark [45] [46] is proposed as a
replacement. Whatever the merits of HPCG (and the tuning of HPCG would require more
attention to MPI parameters etc.), it is likely that HPL figures will be quoted for many years
[47, slide 20].

16 person-years by their costings!
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12.3 Implications for wider HPC

Bischof et al justified the high investment of hand-optimizing codes with only a 5% improve-
ment in performance. This project has demonstrated that a greater improvement is possible at
a far lower cost and shorter lead time.

It is expected that this work will translate to other libraries, such as FFT and sparse BLAS,
although it has not yet been tested. It has also been designed to be largely language (and
compiler) agnostic. In contrast ATLAS can only provide a BLAS implementation and support
for compilers is largely limited to the GCC [174].

If this type of approach is used more widely, and authors of scientific software are careful
in their choice of libraries, it should be possible to make emerging hardware more widely ac-
cessible to the scientific community. The end-users of these systems could benefit by avoiding
the costly, non-portable performance tuning that they have so far been engaged in and that
cause them so many difficulties when migrating from one system to another, and yet still be
assured of reasonable performance early in the machine’s production lifespan.

12.3.1 Suggestions for Application Authors

Authors of scientific applications should expect their code to last beyond the time they are
likely to be using or working on it. Careful documentation, the use of well documented and
established libraries, along with suitable tests for routines in those libraries that are critical
to the code, would help those who come after them and also allow their code to benefit from
auto-tuned libraries.

If the most performance-critical part of the code is not a call to a library, for a sufficiently
complicated application it may be worth considering making a separate library for such rou-
tines. That way a naive, easy to maintain version can be created and kept separately from any
version with machine-specific optimizations. This would provide a target for auto-tuning by
OptSearch, and is likely to be helpful when testing (and if it is to be tuned, it must have
suitable tests provided for it).

12.3.2 Suggestions for Compiler Writers

It is, perhaps, surprising that GCC 7.3.0, which is capable of generating AVX instructions,
doesn’t do so even with -O3. However, as discussed in section 2.6.2, this is understandable in
light of the developers’ main use case. This use case is not obvious to the casual user, so the
advice to authors of compilers is to add some information about it in their documentation.

Further improvements to documentation, and more reliable ways to query the available
flags, are recommended if users are to be in a position to choose appropriate flags for their
target software. It would also aid approaches similar to that taken in this work.

12.3.3 Suggestions for Library Developers

Projects of this type would be assisted by libraries that provide simply written reference ver-
sions, in addition to a well defined API, as is the case with the BLAS. The provision of suit-
able tests, so that numerical stability can be checked, would help not only projects such as
OptSearch, but those writing high performance versions of libraries in assembler. It would
also benefit the users of such libraries, who could check that their chosen implementation is
sound.
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12.4 Implications for universities

In light of the problems hinted at in section 10.4, universities should evaluate their policies with
regards to part-time students. These policies, usually written with full-time students in mind
and then applied to both, tend to be unnecessarily hostile towards the part-time student. This is
almost certainly due to a lack of understanding, as part-time study is uncommon enough that
few who have experienced it are likely to be making policy regarding it. Policies that take into
account the many challenges of part-time study, combined with appropriately designed support,
would make the journey a much less stressful one and increase the likelihood of success.
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APPENDIX A
INFRASTRUCTURE

It is worth considering that this work cannot have escaped influence from the environment
in which it was conducted. Therefore, it is necessary to describe that environment, which
itself changed during the course of the work. Nevertheless, the environment has always been
considered to be typical of that provided to researchers at academic institutions, and not so
dissimilar to those elsewhere.

Also noteworthy is the prevalence of machines based on the x86 64 architecture, all of
Intel’s design and manufacture. This is not an ideal target, as it is well established, and it
is well known that Intel ensure the success of (the majority1) of their chips by preparing the
ground before they arrive. This is done by contributing to, for example, the GCC collection
and the Linux kernel, ensuring that the hardware is supported from the moment it goes on
sale. Before, in fact. Such behaviours ensure that reasonable, if not good, performance can
be expected on all their chips from the beginning, although the high performance libraries,
including the BLAS implementations, still take time to catch up.

This level of preparation is not something many can afford to do, and gives a significant
advantage to Intel over their competitors. Ideally, in a project of this type, experiments would
be run on the “real” target of the work: An architecture that is so new that support for it is
limited.

A.1 Software

The GNU Compiler Collection (GCC) has been the primary target of this work in part because
of its widespread availability. This has also meant that, for the libraries targeted for tuning, it
has already been long established as the recommended and most tested compiler. In addition,
it is the compiler used for the operating system and system libraries, which makes it especially
suitable.

Other compilers were considered where licenses were available, but did not receive so
much attention as their use is not so widespread, with several available on only a subset of
machine architectures. For example, if looking at the Intel compilers, support for ARM is
lacking.

1They weren’t so well prepared for the first Xeon Phi processors
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The Cray compilers, while available towards the end of this project, require a different
approach to tuning to that taken in this work. Their key design consideration is to make the
life of the programmer easier, and so a lot of work is done that would otherwise be done by
the developer within the software’s build system. For example, software may be statically
analysed and the correct libraries linked in automatically for a range of scientific libraries as
well as MPI. The compilers also statically link by default, in contrast with GCC and most other
widely used compilers, and may cross-compile where the machine is heterogeneous, which is
not an approach taken on the lower-end clusters used at the majority of academic institutions.

A.2 Hardware

Several different machines were used during this project, in particular during the early stages.
Due to the period of time over which this work was conducted, some machines that were
available at the beginning were taken out of service and replaced before the work was finished.

Although Balena A.2.6 was used to produce the results presented in chapter 9, the other
machines listed here were all used during the development of one or more of the prototypes.

A.2.1 Aquila

Bath’s first production cluster, based on SuperMicro hardware provided by ClusterVision. The
installed operating system was Scientific Linux 5.

• 100 nodes;

• 2 sockets per node;

• Intel ®E5462 (Harpertown/Penryn); 4 cores per socket at 2.8GHz

• 16GB RAM per node

• NFS file system;

• DDR InfiniBand 3D torus

Installed in 2006, this system was retired in 2015 and replaced by Balena.

A.2.2 Iridis 3

An IBM iDataplex system at the University of Southampton. The operating system installed
was RHEL 5.

• More than 11760 Intel ®Nehalem and (later) Westmere processor-cores, providing over
105 TFLOPS Rpeak;

• Slightly more than 1000 nodes, with a total of 22.4 TB RAM;

• DDR & QDR (Mellanox ConnectX) InfiniBand fat tree network;

• IBM General Parallel File System (GPFS), providing approximately 240 TB of usable
storage;

• Two 6-core 2.4 GHz Intel ®E5645 (Westmere) processors per node;
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• Approximately 22 GB of usable memory per node (the remaining memory is used to
store the OS as the nodes are stateless);

• 32 high-memory compute nodes, each with two 4-core 2.27 GHz Intel Nehalem proces-
sors and 45 GB of memory available to the users;

• 15 GPU nodes, each with two NVidia Tesla 20-series, M2050, GPU processors (15
TFlops);

This system was installed in 2010 and (mostly) retired in 2016. Access was lost fully in
January 2017 when the author changed employer.

A.2.3 Iridis 4

A later IBM iDataplex system, again at the University of Southampton and successor to Iridis
3, it was installed with RHEL 6.

• 12320 Cores (250 TFLOPS);

• Two 8-core 2.6 GHz Intel SandyBridge processors per node;

• 4 GB of memory per core;

• 4 high-memory nodes with 32 cores and 256 GB of RAM;

• 24 Intel ®Xeon Phi (5110P) Accelerators (25 TfLOPS) across 12 nodes;

• 1.04 PB of usable storage (GPFS);

• FDR & EDR fat tree (Mellanox) InfiniBand network;

Access to this was lost in January 2017.

A.2.4 Iridis ARM (AKA Amber)

A small cluster comprised of Applied Micro ARMv8a development-board based systems, cus-
tom built by/for E4 Systems, who called it the ARKA Server RK004. It was installed in 2014,
and consists of:

• 4 nodes (one acting as head node);

• APM X-Gene 1;

• Single socket per node;

• 256GB SSD per node;

• QDR InfiniBand;

• NVidia M40 GPU (though unusable on ARMv8 due to a lack of drivers);

Initially, it was installed with Ubuntu, but later RHEL 7 when aarch64 support became
available. There was a steep learning curve for staff at Southampton, both in using and main-
taining it. The differences between this and a now standard x86_64 machine were greater
than expected and often took people by surprise. Few researchers were interested enough to
make the high investment of time required to port their software.

Access to this was lost in January 2017.
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A.2.5 Iridis PowerPC (AKA black01/black02)

Two IBM POWER 8 machines, though not identical, which were bought for the research com-
munity of Southampton to use for porting software and comparisons with other machines. One
was equipped with two GPUs, the other with a Nallatech FPGA and supporting software. They
are installed with Ubuntu 15.04.

Access to this was also lost in January 2017.

A.2.6 Balena

Another commodity cluster, based on Dell hardware and provided by ClusterVision to the
University of Bath in 2015.

• 196 dual-socket (2x 8 cores) Intel®IvyBridge E5-2650 v2 2.60 GHz nodes;

• 17 dual-socket (2x 12 cores) Intel®Skylake (Xeon Gold 6126) 2.60 GHz nodes;

• A small number of nodes with Intel Xeon Phi and GPU (both AMD and NVidia) cards;

• A mixture of 64GB, 128GB or 512GB RAM per node (IvyBridge) or 192GB RAM per
node (Skylake);

• Intel Truescale QDR Infiniband configured as a fat tree;

• 630TB BeeGFS storage;

A.2.7 Isambard (Phase 1)

Isambard [164] is a more interesting creation. The result of a collaboration between several
universities in the UK and Cray Inc and the UK Met Office. The much anticipated ARMv8
component of this had not yet been delivered when this thesis was completed.

• Network: EDR Infiniband/100GbE

• Nvidia Pascal GPU Nodes (4 nodes)

– 2 x Intel Xeon E5-2695 v4 2.1 GHz 18 core Broadwell

– 8 x 16 GB DDR4-2400 MHz

• KNL Nodes (8 nodes)

– 1 x Intel KNL 7210 1.3 GHz 64 core processor

– 6 x 16 GB DDR4-2400 MHz
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APPENDIX B
THE BEST FLAGS FOUND BY OPTSEARCH

The best flags found by OptSearch v0.9.5 searching over a subset of flags of GCC 7.3.0,
targeting the reference BLAS on the Intel®IvyBridge nodes of Balena. This search included
some flags that may reduce floating point precision, although the LAPACK BLAS tests, used
during the search, passed and HPL reported low error. The precision loss may not be appropri-
ate in all situations, and it is necessary for the user to exercise caution in choice of flags when
setting up OptSearch.

Flag: Included in:
-funroll-all-loops
-fno-unroll-loops
-fauto-inc-dec -O0 -O1 -O2 -O3 -Ofast
-fbranch-count-reg -O1 -O2 -O3 -Ofast
-fno-branch-probabilities
-fbranch-target-load-optimize
-fno-branch-target-load-optimize2
-fbtr-bb-exclusive
-fno-caller-saves
-fno-compare-elim
-fno-conserve-stack
-fcprop-registers -O1 -O2 -O3 -Ofast
-fno-cse-follow-jumps
-fcx-fortran-rules
-fcx-limited-range -Ofast
-fdce
-fno-delayed-branch
-fdelete-dead-exceptions
-fdelete-null-pointer-checks -O0 -O1 -O2 -O3 -Ofast
-fdevirtualize -O2 -O3 -Ofast
-fdevirtualize-speculatively -O2 -O3 -Ofast
-fdse
-fno-expensive-optimizations
-fno-forward-propagate
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Flag: Included in:
-ffp-contract=off
-ffunction-cse -O0 -O1 -O2 -O3 -Ofast
-fno-gcse
-fgcse-after-reload -O3 -Ofast
-fgcse-las
-fno-gcse-lm
-fno-gcse-sm
-fgraphite
-fno-graphite-identity
-fguess-branch-probability -O1 -O2 -O3 -Ofast
-fno-if-conversion
-fno-indirect-inlining
-fno-inline
-fno-inline-functions
-fno-inline-small-functions
-fipa-bit-cp -O2 -O3 -Ofast
-fno-ipa-cp
-fipa-cp-alignment
-fno-ipa-cp-clone
-fipa-icf-functions -O2 -O3 -Ofast
-fipa-profile -O1 -O2 -O3 -Ofast
-fipa-pta
-fipa-ra -O2 -O3 -Ofast
-fipa-reference -O1 -O2 -O3 -Ofast
-fipa-sra -O2 -O3 -Ofast
-fira-algorithm=CB
-fno-ira-hoist-pressure
-fno-ira-loop-pressure
-fira-region=mixed
-fno-ira-share-save-slots
-fno-isolate-erroneous-paths-attribute
-fno-isolate-erroneous-paths-dereference
-fjump-tables
-fkeep-gc-roots-live
-flimit-function-alignment
-fno-live-range-shrinkage
-floop-parallelize-all
-fno-lra-remat
-fno-move-loop-invariants
-fnon-call-exceptions
-foptimize-sibling-calls -O2 -O3 -Ofast
-fpartial-inlining -O2 -O3 -Ofast
-fno-peel-loops
-fno-plt
-fprefetch-loop-arrays -O0 -O1 -O2 -O3 -Ofast
-fno-reciprocal-math
-freg-struct-return -O0 -O1 -O2 -O3 -Ofast
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Flag: Included in:
-fno-rename-registers
-fno-reorder-blocks
-freorder-blocks-algorithm=simple
-freorder-blocks-and-partition
-fno-reschedule-modulo-scheduled-loops
-frounding-math
-fno-sched-group-heuristic
-fno-sched-interblock
-fno-sched-last-insn-heuristic
-fno-sched-pressure
-fsched-rank-heuristic -O0 -O1 -O2 -O3 -Ofast
-fsched-spec -O0 -O1 -O2 -O3 -Ofast
-fno-sched-spec-load
-fsched-spec-load-dangerous
-fsched-stalled-insns=7904
-fsched-stalled-insns-dep=5526
-fno-sched2-use-superblocks
-fno-schedule-fusion
-fno-schedule-insns2
-fsection-anchors
-fsel-sched-pipelining
-fsel-sched-pipelining-outer-loops
-fno-short-enums
-fno-shrink-wrap
-fshrink-wrap-separate -O0 -O1 -O2 -O3 -Ofast
-fsignaling-nans
-fno-signed-zeros
-fsimd-cost-model=cheap
-fsingle-precision-constant
-fno-split-loops
-fno-split-paths
-fstrict-volatile-bitfields -O0 -O1 -O2 -O3 -Ofast
-fthread-jumps -O2 -O3 -Ofast
-fno-tree-bit-ccp
-ftree-builtin-call-dce -O1 -O2 -O3 -Ofast
-ftree-ch -O1 -O2 -O3 -Ofast
-fno-tree-cselim
-fno-tree-dce
-fno-tree-dominator-opts
-fno-tree-dse
-fno-tree-fre
-ftree-loop-distribute-patterns -O3 -Ofast
-fno-tree-loop-distribution
-fno-tree-loop-if-convert
-fno-tree-loop-if-convert-stores
-fno-tree-loop-ivcanon
-ftree-loop-optimize -O0 -O1 -O2 -O3 -Ofast
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Flag: Included in:
-fno-tree-lrs
-ftree-parallelize-loops=7761
-fno-tree-partial-pre
-fno-tree-pre
-ftree-pta -O1 -O2 -O3 -Ofast
-fno-tree-reassoc
-fno-tree-slsr
-ftree-switch-conversion -O2 -O3 -Ofast
-ftree-ter -O1 -O2 -O3 -Ofast
-fvar-tracking
-fvar-tracking-uninit
-fvariable-expansion-in-unroller
-fkeep-static-consts -O0 -O1 -O2 -O3 -Ofast
-fno-lto-odr-type-merging
-fmerge-debug-strings -O0 -O1 -O2 -O3 -Ofast
-fdwarf2-cfi-asm -O0 -O1 -O2 -O3 -Ofast
-feliminate-unused-debug-types -O0 -O1 -O2 -O3 -Ofast
-fshow-column -O0 -O1 -O2 -O3 -Ofast
-fno-sync-libcalls
-ftrapping-math -O0 -O1 -O2 -O3
-fexcess-precision=fast
-fno-align-labels
-faggressive-loop-optimizations -O0 -O1 -O2 -O3 -Ofast
-falign-functions
-fstore-merging -O2 -O3 -Ofast
-fssa-backprop -O0 -O1 -O2 -O3 -Ofast

Table B.1: Best flags found by OptSearch (v0.9.5) on Balena for GCC 7.3.0

B.1 Second best flags found by OptSearch, for comparison

The second best set of flags, giving similar results but with far fewer vector instructions. Many
of the flags are almost the same as those above.

Flag: Included in:
-ftree-vectorize
-fno-tree-vrp
-fno-unconstrained-commons
-fno-unroll-all-loops
-fno-unroll-loops
-funwind-tables -O0 -O1 -O2 -O3 -Ofast
-fauto-inc-dec -O0 -O1 -O2 -O3 -Ofast
-fbranch-count-reg -O1 -O2 -O3 -Ofast
-fno-branch-probabilities
-fno-branch-target-load-optimize
-fbranch-target-load-optimize2
-fno-btr-bb-exclusive
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B.1. Second best flags found by OptSearch, for comparison

Flag: Included in:
-fcode-hoisting -O2 -O3 -Ofast
-fno-combine-stack-adjustments
-fcprop-registers -O1 -O2 -O3 -Ofast
-fno-cse-follow-jumps
-fno-cx-fortran-rules
-fno-cx-limited-range
-fno-dce
-fdelayed-branch
-fno-delete-dead-exceptions
-fdelete-null-pointer-checks -O0 -O1 -O2 -O3 -Ofast
-fno-dse
-fno-exceptions
-ffast-math
-ffinite-math-only -Ofast
-fno-float-store
-fforward-propagate -O1 -O2 -O3 -Ofast
-ffp-contract=off
-ffp-int-builtin-inexact -O0 -O1 -O2 -O3 -Ofast
-fno-gcse
-fgcse-after-reload -O3 -Ofast
-fno-gcse-lm
-fgcse-sm
-fno-graphite
-fgraphite-identity
-fno-hoist-adjacent-loads
-fif-conversion -O1 -O2 -O3 -Ofast
-fno-inline
-finline-functions -O1 -O2 -O3 -Ofast
-fno-ipa-cp-alignment
-fno-ipa-icf
-fno-ipa-icf-variables
-fipa-profile -O1 -O2 -O3 -Ofast
-fno-ipa-pta
-fno-ipa-vrp
-fira-algorithm=priority
-fira-hoist-pressure -O0 -O1 -O2 -O3 -Ofast
-fno-ira-loop-pressure
-fira-region=one
-fno-ira-share-save-slots
-fno-ira-share-spill-slots
-fisolate-erroneous-paths-attribute
-fno-isolate-erroneous-paths-dereference
-fno-ivopts
-fjump-tables
-fno-keep-gc-roots-live
-fno-limit-function-alignment
-fno-loop-nest-optimize
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Appendix B. The best flags found by OptSearch

Flag: Included in:
-fno-loop-parallelize-all
-fno-modulo-sched
-fmodulo-sched-allow-regmoves
-fno-move-loop-invariants
-fno-non-call-exceptions
-fno-opt-info
-foptimize-sibling-calls -O2 -O3 -Ofast
-fno-partial-inlining
-fno-peel-loops
-fpeephole -O0 -O1 -O2 -O3 -Ofast
-fpeephole2 -O2 -O3 -Ofast
-fprefetch-loop-arrays -O0 -O1 -O2 -O3 -Ofast
-fno-reciprocal-math
-freg-struct-return -O0 -O1 -O2 -O3 -Ofast
-freorder-blocks -O1 -O2 -O3 -Ofast
-fno-reorder-functions
-fno-rerun-cse-after-loop
-fno-reschedule-modulo-scheduled-loops
-fno-rounding-math
-fsched-critical-path-heuristic -O0 -O1 -O2 -O3 -Ofast
-fsched-group-heuristic -O0 -O1 -O2 -O3 -Ofast
-fno-sched-interblock
-fno-sched-spec-load-dangerous
-fsched-stalled-insns=6756
-fsched-stalled-insns-dep=3230
-fno-schedule-fusion
-fschedule-insns -O2 -O3 -Ofast
-fschedule-insns2 -O2 -O3 -Ofast
-fno-sel-sched-pipelining-outer-loops
-fno-shrink-wrap-separate
-fsigned-zeros -O0 -O1 -O2 -O3
-fsimd-cost-model=dynamic
-fsplit-wide-types -O1 -O2 -O3 -Ofast
-fstrict-volatile-bitfields -O0 -O1 -O2 -O3 -Ofast
-fno-tracer
-ftree-ch -O1 -O2 -O3 -Ofast
-fno-tree-coalesce-vars
-fno-tree-copy-prop
-fno-tree-dce
-fno-tree-dominator-opts
-ftree-forwprop -O0 -O1 -O2 -O3 -Ofast
-fno-tree-fre
-ftree-loop-ivcanon -O0 -O1 -O2 -O3 -Ofast
-ftree-loop-optimize -O0 -O1 -O2 -O3 -Ofast
-ftree-loop-vectorize -O3 -Ofast
-ftree-lrs
-ftree-parallelize-loops=7141
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B.1. Second best flags found by OptSearch, for comparison

Flag: Included in:
-ftree-partial-pre -O3 -Ofast
-fno-tree-phiprop
-fno-tree-pre
-fno-tree-pta
-ftree-sink -O1 -O2 -O3 -Ofast
-ftree-slp-vectorize -O3 -Ofast
-fno-tree-slsr
-ftree-switch-conversion -O2 -O3 -Ofast
-fno-tree-tail-merge
-ftree-ter -O1 -O2 -O3 -Ofast
-fvar-tracking-assignments
-fno-var-tracking-assignments-toggle
-fno-variable-expansion-in-unroller
-fvect-cost-model=dynamic
-fno-keep-static-consts
-flto-odr-type-merging -O0 -O1 -O2 -O3 -Ofast
-fmerge-constants -O1 -O2 -O3 -Ofast
-fno-merge-debug-strings
-fno-semantic-interposition
-fno-show-column
-ftoplevel-reorder -O1 -O2 -O3 -Ofast
-fno-align-jumps
-fno-align-labels
-fno-aggressive-loop-optimizations
-fno-align-functions
-fstdarg-opt -O0 -O1 -O2 -O3 -Ofast
-fstore-merging -O2 -O3 -Ofast
-fssa-backprop -O0 -O1 -O2 -O3 -Ofast
-fno-ssa-phiopt

Table B.2: Second best flags found by OptSearch (v0.9.3) on Balena for GCC 7.3.0
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APPENDIX C
HPL INPUT DATA USED ON BALENA

HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
9600 Ns # N on one node
1 # of NBs
100 NBs # should really be 256 for this processor
0 PMAP process mapping (0=Row-,1=Column-major)
1 # of process grids (P x Q)
4 Ps
4 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
2 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
2 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
0 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
0 DEPTHs (>=0)
2 SWAP (0=bin-exch,1=long,2=mix)
64 swapping threshold
0 L1 in (0=transposed,1=no-transposed) form
0 U in (0=transposed,1=no-transposed) form
1 Equilibration (0=no,1=yes)
8 memory alignment in double (> 0)
##### This line (no. 32) is ignored (it serves as a separator). ######
0 Number of additional problem sizes for PTRANS
1200 10000 30000 values of N
0 number of additional blocking sizes for PTRANS
40 9 8 13 13 20 16 32 64 values of NB
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APPENDIX D

AN EMAIL FROM ONE OF THE USERS OF AQUILA

What follows is an email from Marco Molinari, a PGR in Chemistry at the University of Bath
at that time, since graduated. The author was tasked with looking after the production HPC sys-
tem, Aquila. This job included the building of scientific software applications and libraries
for those who required them. (The full software stack took more than 6 months to build, dur-
ing which time several new versions of applications and their supporting libraries would have
appeared, and the cycle would start all over again.)

Note that for brevity, the conversation history has been omitted. Molinari had requested
assistance in compiling DL POLY on Aquila, and after a few difficulties in understanding
what needed to be done, the author sent him a copy of the Makefile, edited already, and the
instruction to run make hpc. This is his email confirming that this new target had worked
better than expected.

The real difference was not supporting libraries he had chosen, or even the compiler ver-
sion. It was which flags were passed to the compiler, instructing it to perform optimizations
suitable for this particular application that it would not have done otherwise.

Date: Thu, 10 Nov 2011 13:23:21 +0000
From: "marco.molinari" <m.molinari@bath.ac.uk>
To: J Jones <j.jones@bath.ac.uk>
Subject: Re: DLPOLY

Hi Jess,

I compiled dlpoly 2 with your makefile! It is much faster than all the
compilation I have tried on Aquila! Thank you.

Marco

--

********************************************
Marco Molinari
Research Officer
Department of Chemistry
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Appendix D. An email from one of the users of Aquila

University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

Email: m.molinari@bath.ac.uk
Telephone: 0044 (0)1225 386523

********************************************
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APPENDIX E

AN EXAMPLE CONFIGURATION FILE FOR OPTSEARCH

---
## Main config file for optsearch
# These are simple scripts intended to make configuration slightly easier.
quit-signal: SIGUSR1 # see signal(7) manpage for the list of signals. By default slurm will send SIGTERM 30 seconds before SIGKILL
clean-script: ./balena/clean-blas.sh # Clean the build directory, etc, before beginning each run
build-script: ./balena/build-blas.sh # equiv to make; must use environment variable FLAGS, set by OptSearch, to then affect the compilation via CFLAGS or FFLAGS, etc depending on which language is being compiled.
accuracy-test: ./balena/test-blas.sh # Run some tests to check that numerical results are not adversely affected by compiler optimizations. This should return an integer. 0 is success.
performance-test: ./balena/run-hpl.sh # Run a benchmark. Return a measurement, such as run time, that can be used to assess fitness against other tests. Lower is better, but 0 is probably a failure or error.
timeout: 360 # How long to wait for commands to run before killing the spawned process, in seconds
epsilon: 3.0 # Allowed/expected experimental error (% of mean runtime)
benchmark-timeout: 3600 # A separate timeout for the benchmark
benchmark-repeats: 20 # Maximum number of times to repeat the benchmark
# Compiler specific settings:
compiler:
name: gfortran
version: 7.3.0
flags:
- name: predictable-branch-outcome
type: range
max: 50
min: 0
prefix: ’--param ’
separator: ’=’
- name: partial-inlining-entry-probability
type: range
max: 100
min: 0
prefix: ’--param ’
separator: ’=’
- name: hot-bb-count-ws-permille
type: range
max: 1000
min: 0
prefix: ’--param ’
separator: ’=’
- name: unlikely-bb-count-fraction
type: range
max: 10000
min: 1
prefix: ’--param ’
separator: ’=’
- name: stack-reuse
type: list
prefix: ’-f’
separator: ’=’
values: [ ’all’, ’named_vars’, ’none’ ]
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Appendix E. An example configuration file for OptSearch

- name: tree-vectorize
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: tree-vrp
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: code-hoisting
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: combine-stack-adjustments
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: compare-elim
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: conserve-stack
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: cprop-registers
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: crossjumping
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: cse-follow-jumps
type: on-off
on-prefix: ’-f’
off-prefix: ’-fno-’
- name: cx-fortran-rules
type: on-off
on-prefix: ’-f’
- name: sched-stalled-insns
type: range
prefix: ’-f’
separator: ’=’
min: 0
max: 8192
- name: sched-stalled-insns-dep
type: range
prefix: ’-f’
separator: ’=’
min: 0
max: 8192
off-prefix: ’-fno-’
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APPENDIX F

DETAILED WORKINGS FOR ESTIMATE OF ECONOMIC VALUE

In [17], the authors investigate the economic value of hand-optimizing, stating:

“In our study, we pessimistically assume improvements from 5% upwards, and
even at the low end, an investment in “brainware” for HPC pays off.”

In chapter 9, we demonstrated a performance improvement of 24% over -O3, which is
almost 5 times more.

Bischof et al additionally assume 2 months of work is required for a performance expert
to optimize each of their codes, and that these user applications will benefit for 2 years. This
makes their savings estimate pessimistic if the performance tuning work can be undertaken
when the machine is commissioned, since most HPCs at academic institutions are used running
production workloads for 5 years or more (as they admit in [17, page 2]). However, given the
usual time to availability of high performance BLAS libraries, 2 years seems fitting if only that
library is being considered. Once libraries delivering higher performance are available they
should be used instead.

They give the cost for tuning the top 18 projects, responsible for 50% of core hours, as
being equivalent to 1.5 years of one FTE. For an auto-tuner, this cost should be substantially
lower: The preparations described in sections 8.2 and 8.3 took approximately one working day
for one person familiar with OptSearch. The tuning itself took around 1-2 hours using 4
nodes of the system, which has little impact on production job throughput, and indicates that
a keen system administrator could potentially tune several libraries simultaneously when the
machine is newly installed and thus largely unoccupied by production jobs.

In [7], 50% of core hours are used by 20 applications. Of these top 20 applications, 11
use dense linear algebra, and so would likely benefit from an optimized BLAS library. Using
this to provide a ratio for the number of applications likely to be benefiting from auto-tuning
suggests (if all applications within that 20 are equally heavily used) that 27.5% of core hours
are used by such applications.

0.24×0.275×TCO of the machine = 0.066×TCO
Using the total cost of ownership (TCO) figure for RWTH Aachen calculated by Bischof

et al, this comes to around 363,000e (just over $471,000, using the December 2012 exchange
rate) for tuning only the BLAS library. However, this simplistic calculation assumes that the
auto-tuning has no cost. It therefore may be better considered in terms of CPU-hours.
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Appendix F. Detailed workings for estimate of economic value

The June 2012 TOP500 gives the details of the RWTH Aachen machine (78 in the list at
that time), a Bullx B500 cluster, thus:

Site: Universitaet Aachen/RWTH
Cores: 25,448
Processor: Intel ®Xeon X5675 6C 3.06GHz
Interconnect: Infiniband QDR
HPL Performance (Rmax): 219.838 TFLOP/s
Theoretical Peak (Rpeak): 270.538 TFLOP/s
Nmax: 2,145,920

Bischof et al give a very optimistic 24/7 availability for their machine, and do not give
any indication of how many nodes may be out of service, nor do they state the frequency or
duration of planned maintenance windows. It seems unrealistic to assume 100% availability
during a year.

Many supercomputing centres aim for 80% utilisation, and plan for a small amount of
planned down-time for maintenance. If it is assumed that 80% of the core hours are used for
360 days of the year (probably a slightly optimistic estimate, but possible), we can adjust the
calculation accordingly.

% performance improvement×% of top applications using BLAS× available CPU-hours
= 0.24×0.275× available CPU-hours
= 0.066× (25448×0.8×360×24)
= 11609174 CPU-hours

We can now subtract the tiny cost of auto-tuning on 4 nodes for 1.5 hours, to give a repre-
sentative figure for the number of CPU hours returned to the users of the system.

= 11609174− (4×12×1.5)
= 11609174−72
= 11609102 CPU-hours
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GLOSSARY

AI Artificial Intelligence. 24

API Application Programming Interface. 36, 93, 117

baselining The empirical discovery of the baseline performance of a benchmark on a par-
ticular supercomputer, used during performance tuning and commercial performance
evaluation prior to optimization work. 62

BLAS Basic Linear Algebra Subprograms. 18, 35–39, 43, 48–52, 65, 96, 100, 104, 108, 112,
115–117, 120, 124, 136

DGEMM Double-precision general matrix multiplication algorithm, part of the level 3 BLAS.
112

DMA direct memory access. 24

DTLB data translation look-aside buffer. 51

FFT fast Fourier transform. 38, 117

FLOPS floating-point operations per second. 24, 26

FMA Fused Multiply-Add. 22, 24

FPU Floating Point Unit. 26, 31

GCC GNU Compiler Collection. 10, 17, 34, 35, 44, 54–56, 60, 65, 75, 86–88, 92, 100, 101,
103, 104, 108, 109, 111, 113, 115, 117, 124, 127, 130

GEMM general matrix multiplication algorithm. 112

GPGPU General Purpose Graphics Processing Unit. 23

GPU Graphics Processing Unit. 22–24, 31

HPC High Performance Computer. 6, 14–17, 19, 22, 24, 27, 34, 41–43, 45, 48, 52–56, 58,
59, 75, 77, 89, 90, 110, 112, 116, 117, 136
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Glossary

HPCG High Performance Conjugate Gradients. 116

HPL High Performance LINPACK. 7, 13, 24, 36, 37, 39, 43, 48–51, 65, 66, 72, 96, 100–104,
108, 112, 116, 124, 131, 137

IB InfiniBand. 25

LAPACK Linear Algebra PACKage. 36, 96, 100, 124

LLC last level cache. 50

LLVM Low Level Virtual Machine. 34, 35, 44, 111

MAC Multiply-Accumulate. 22

MKL Math Kernel Library. 20, 47, 50

ML Machine Learning. 24, 42

MPI Message Passing Interface. 25, 39, 57, 59, 75, 77–79, 84, 86, 92, 96–99, 101, 102, 116

NUMA Non-Uniform Memory Access. 31

OOM Out Of Memory. 89

PRNG pseudo-random number generator. 5, 78, 84, 91, 93

PSO Particle Swarm Optimization. 6, 13, 76, 80, 81, 84, 92, 101, 104, 106, 109, 113

RSE Research Software Engineer. 15

SBLAS Sparse Basic Linear Algebra Subprograms. 112

SIMD Single Instruction, Multiple Data. 22, 23, 26, 35, 38, 88, 102, 104

SMP Symmetric Multi-Processor. 25, 30

SMT Simultaneous Multi-Threading. 31

SPSO Standard Particle Swarm Optimization. 58, 77, 78, 80, 81, 90, 91, 101, 105, 106, 109,
113

SSI Software Sustainability Institute. 15

TDP thermal design power. 27

TLB translation look-aside buffer. 5, 28–30, 50, 51

WAL Write-Ahead Logging. 93
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