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Abstract 

Intermittent fasting may be an effective strategy for managing obesity and the 

associated dysfunction. It involves punctuating typical patterns of nutritional intake 

with scheduled periods of abstinence from all energy-providing nutrients. The few 

prior studies of this approach have yielded promising insights; yet there remains a 

dearth of knowledge regarding how intermittent fasting affects energy metabolism and 

health in humans, which this research sought to address. Initially, diurnal variations in 

subjective appetite ratings were established as a robust foundation upon which to 

design temporal nutritional interventions (Chapter 4). Specifically, appetite increased 

throughout the day to a peak in the evening, despite the apparent inversion of the 

accompanying rhythm in key regulatory peptides. This led to the development of a 

novel intermittent fasting intervention in which a complete fast was applied in 

alternating 24-hour periods for 20 days, with transitions from fasting to feeding 

occurring at 15:00 each day. In separate lean and overweight/obese cohorts, the impact 

of this diet, both eucaloric (i.e. complete refeeding in fed periods) and with a 25% 

calorie restriction (i.e. 50% refeeding during fed periods), was contrasted against a 

standard 25% calorie restriction. The experiments featured measures of postprandial 

metabolic responses and free-living physical activity (combined heart 

rate/accelerometry). In lean adults (Chapter 5), combining intermittent fasting with 

calorie restriction decreased physical activity thermogenesis relative to intermittent 

fasting or calorie restriction in isolation, largely due to reduced spontaneous activity 

during fasting. However, there were no improvements in metabolic health, whilst 

intermittent fasting also resulted in smaller declines in fat mass than daily calorie 

restriction. A similar pattern was seen for body composition in overweight/obese 

individuals (Chapter 6) but none of the interventions caused adaptive changes in 

energy expenditure. Instead, combining intermittent fasting with calorie restriction 

reduced postprandial insulinaemia and improved fasted and postprandial plasma lipid 

concentrations. Collectively, this suggests that the amount and timing of energy intake 

exert interactive effects on metabolism and health, with baseline adiposity being an 

important determinant of responses. 

Tags: intermittent fasting, energy metabolism, physical activity, metabolic health, 

body composition, obesity, diurnal, circadian rhythms, insulin, feeding. 



 

2 

  

Acknowledgements 

First and foremost, I would like to thank Dr James Betts for affording me the 

opportunity to undertake this programme of research. You have had an immeasurable 

influence on both my academic and personal development throughout my time at Bath, 

being both a good friend and supervisor. Your passion for science, work ethic and 

values have been a source of inspiration, but I still haven’t forgiven you for my “bland 

meal” on our flight to ACSM. As such, I would also like to take this opportunity to 

highlight, in writing, my token win against you in one-on-one. 

I would also like to extend my gratitude to Professor Dylan Thompson, Dr Javier 

Gonzalez, Dr Jean-Philippe Walhin, Dr Sue Reeves and Dr Johnathan Johnston for 

their support throughout this process. Your contributions have been integral in 

allowing me to make it to this point and I feel very fortunate to have had the 

opportunity to benefit from your collective skills and wisdom. 

To my wonderful participants, I would like to say thank you for giving up your time, 

food and various tissues to help me achieve this goal. Getting to know you all has been 

a great experience and none of this would have been possible without you. In a similar 

vein, I would also like to acknowledge the contributions of the University of Bath, who 

have funded and hosted this research for the past 4 years. 

On a more personal note, I would also like to take this opportunity to thank my family 

and my partner Rachel, whose contributions to getting me here are beyond measure. I 

hope that my future accomplishments will stand as some small testament of my 

appreciation for the time and faith you have invested in me. 

Lastly, to all the friends I have made here at Bath, all I can say is that it has been a 

privilege to share this experience with you. That isn’t just because I’m trying to keep 

this to one page but because your contributions are far too varied and numerous to 

summarise. I would nonetheless like to give special mention to Harriet, Will, Pippa, 

Stanley, Alex and Harry, who have both supported me and my research.  



 

3 

  

Publications 

Aspects of this thesis have been published in the following works: 

 

Loizides-Mangold, U., Perrin, L., Vandereycken, B., Betts, J.A., Walhin, J-P., 

Templeman, I., Chanon, S., Weger, B.D., Durand, C., Robert, M., Paz Montoya, J., 

Moniatte, M., Karagounis, L.G., Johnston, J.D., Gachon, F., Lefai, E., Riezman, H. 

and Dibner, C. (2017). Lipidomics reveals diurnal lipid oscillations in human skeletal 

muscle persisting in cellular myotubes cultured in vitro. Proceedings of the National 

Academy of Sciences of the United States of America, 114(41), E8565-E8574. 

 

Templeman, I., Thompson, D., Gonzalez, J.T., Walhin, J-P., Reeves, S., Rogers, P.J., 

Brunstrom, J.M., Karagounis, L.G., Tsintzas, K. and Betts, J.A. (2018). Intermittent 

fasting, energy balance and associated health outcomes in adults: Study protocol for a 

randomised controlled trial. Trials, 19(1), 86. 

 

Perrin, L., Loizides-Mangold, U., Chanon,S., Gobet, C., Hulo, N., Isenegger, 

L., Weger, B.D.,  Migliavacca, E., Charpagne, A., Betts, J.A., Walhin, J-P., 

Templeman, I., Stokes, K., Thompson, D., Tsintzas, K., Robert, M., Howald, C., 

Riezman, H., Feige, J.N., Karagounis, L.G., Johnston, J.D., Dermitzakis, E.T., 

Gachon, F., Lefai, E. and Dibner, C. (2018). Transcriptomic analyses reveal rhythmic 

and CLOCK-driven pathways in human skeletal muscle. eLife, 7, e34114. 

 

  



 

4 

  

Contents 

Abstract .............................................................................................................. 1 

Acknowledgements............................................................................................. 2 

Publications ........................................................................................................ 3 

Contents .............................................................................................................. 4 

List of Figures ...................................................................................................13 

List of Tables .....................................................................................................15 

List of Abbreviations.........................................................................................16 

Chapter 1: Lay Summary ...............................................................................18 

Chapter 2: Literature Review.........................................................................21 

2.0 – Obesity ...........................................................................................................21 

2.0.1 – Definition ................................................................................................21 

2.0.2 – Prevalence ...............................................................................................21 

2.0.3 – Obesity-Associated Chronic Diseases ......................................................22 

2.1 – Energy Balance ..............................................................................................24 

2.1.1 – Hypothalamic Energy Homeostasis .........................................................25 

2.1.2 – Energy Intake ..........................................................................................26 

2.1.2.1 – Regulation of Energy Intake .............................................................27 



 

5 

  

2.1.2.2 – Measuring Energy Intake ..................................................................30 

2.1.3 – Energy Expenditure .................................................................................34 

2.1.3.1 – Regulation of Energy Expenditure ....................................................36 

2.1.3.2 – Measuring Energy Expenditure .........................................................37 

2.1.4 – Energy Storage ........................................................................................43 

2.1.4.1 - Carbohydrate .....................................................................................43 

2.1.4.2 - Protein ...............................................................................................45 

2.1.4.3 - Fat .....................................................................................................46 

2.1.4.4 – Nutrient Balance ...............................................................................47 

2.1.5 – Metabolic Consequences of Obesity ........................................................50 

2.1.5.1 – Adipose Tissue Expansion ................................................................50 

2.1.5.2 – Adipocyte Dysfunction .....................................................................51 

2.1.5.3 – Adipose Tissue Dysfunction and Chronic Diseases ...........................52 

2.2 – Current Interventions ......................................................................................53 

2.2.1 – Daily Energy Restriction .........................................................................54 

2.2.2 – Macronutrient Manipulation ....................................................................57 

2.2.3 – Exercise and Physical Activity.................................................................60 

2.2.4 – Energy Restriction in the Long-Term .......................................................61 



 

6 

  

2.2.4.1 – Weight Maintenance .........................................................................62 

2.2.4.2 – Metabolic and Behavioural Adaptation .............................................63 

2.2.4.3 – Persistence of Adaptation ..................................................................65 

2.2.5 – Evolutionary Discordance ........................................................................67 

2.3 – Nutrition and Time .........................................................................................69 

2.3.1 – Circadian Rhythms ..................................................................................69 

2.3.1.1 – The Molecular Clock ........................................................................70 

2.3.1.2 – The Master Synchroniser ..................................................................70 

2.3.1.3 – Signalling Pathways ..........................................................................71 

2.3.1.4 – The Local Clock ...............................................................................72 

2.3.1.5 – Feeding Behaviour as a Zeitgeiber ....................................................73 

2.3.2 – Rhythms in Energy Metabolism ...............................................................73 

2.3.2.1 – Observational Data ...........................................................................75 

2.3.2.2 – Misaligned Feeding and Postprandial Metabolism ............................76 

2.3.2.3 – Eating Frequency ..............................................................................77 

2.3.2.4 – Daily Plasma Metabolite Profiles ......................................................78 

2.4 - Intermittent Fasting .........................................................................................81 

2.4.1 – The 5:2 Diet ............................................................................................83 



 

7 

  

2.4.2 – Alternate-Day Fasting..............................................................................85 

2.4.3 – Time-Restricted Feeding..........................................................................88 

2.4.4 – Complete Alternate-Day Fasting ..............................................................92 

2.4.5 – Outstanding Questions in the Literature ...................................................96 

2.4.5.1 – Intervention Design ..........................................................................97 

2.4.5.2 – Changes in Energy Expenditure ........................................................98 

2.4.5.3 – Postprandial Nutrient Metabolism .....................................................99 

2.4.5.4 – Comparative Designs ...................................................................... 100 

2.4.5.5 – Fasting-Dependent Effects .............................................................. 100 

2.5 – Thesis Objectives ......................................................................................... 102 

Chapter 3: General Methods ........................................................................ 104 

3.1 – Sampling/Recruitment .................................................................................. 104 

3.1.1 – Questionnaires ....................................................................................... 105 

3.1.1.1 – Morningness–Eveningness Questionnaire ....................................... 105 

3.1.1.2 – Pittsburgh Sleep Quality Index ........................................................ 105 

3.1.1.3 – Munich Chronotype Questionnaire.................................................. 106 

3.2 – Ambient Conditions ..................................................................................... 106 

3.3 – Body Composition ....................................................................................... 106 



 

8 

  

3.3.1 – Height ................................................................................................... 106 

3.3.2 – Body Mass ............................................................................................ 107 

3.3.3 – Dual-energy X-ray Absorptiometry ....................................................... 107 

3.4 – Laboratory Measurements ............................................................................ 108 

3.4.1 – Hydration Status .................................................................................... 108 

3.4.2 – Indirect Calorimetry .............................................................................. 109 

3.4.2.1 – Principles of Indirect Calorimetry ................................................... 109 

3.4.2.2 – Expired Gas Collection and Analysis .............................................. 111 

3.4.3 – Nitrogen Excretion ................................................................................ 112 

3.4.4 – Blood Sampling ..................................................................................... 112 

3.4.4.1 – Venepuncture.................................................................................. 112 

3.4.4.2 – Cannulation .................................................................................... 113 

3.4.4.3 – Arterialised-Venous Sampling ........................................................ 113 

3.4.5 – Visual Analogue Scales (VAS) .............................................................. 114 

3.5 – Biochemical Assays ..................................................................................... 115 

3.5.1 – Spectrophotometry ................................................................................ 115 

3.5.2 – Enzyme-Linked Immunosorbent Assay (ELISA) ................................... 115 

3.5.3 – Radioimmunoassay (RIA) ..................................................................... 115 



 

9 

  

3.5.4 – Assay Performance ................................................................................ 116 

3.6 – Free-Living Measurements ........................................................................... 116 

3.6.1 – Energy and Macronutrient Intake ........................................................... 116 

3.6.2 – Physical Activity Energy Expenditure ................................................... 118 

Chapter 4: Diurnal rhythms in appetite under conditions of semi-constant 

routine. ..................................................................................................... 122 

4.1 – Introduction .............................................................................................. 122 

4.2 – Methods ................................................................................................... 125 

4.2.1 – Participants ........................................................................................ 125 

4.2.2 – Experimental Protocol ....................................................................... 126 

4.2.3 – Outcome Measures ............................................................................ 128 

4.2.4 – Statistical Analysis ............................................................................ 128 

4.3 – Results ..................................................................................................... 130 

4.3.1 – Melatonin .......................................................................................... 130 

4.3.2 – Subjective Ratings of Appetite ........................................................... 131 

4.3.3 – Unacylated Ghrelin ............................................................................ 137 

4.3.4 – Leptin Profile..................................................................................... 138 

4.4 – Discussion ................................................................................................ 139 



 

10 

  

Chapter 5: Impact of intermittent fasting on energy balance and associated 

health outcomes in lean adults. ........................................................................... 143 

5.1 – Introduction .............................................................................................. 143 

5.2 – Methods ................................................................................................... 146 

5.2.1 – Participants ........................................................................................ 146 

5.2.2 – Experimental Protocol ....................................................................... 147 

5.2.3 – Outcome Measures ............................................................................ 151 

5.2.4 – Statistical Analysis ............................................................................ 153 

5.3 – Results ..................................................................................................... 154 

5.3.1 – Participants ........................................................................................ 154 

5.3.2 – Body Composition ............................................................................. 155 

5.3.3 – Energy Intake .................................................................................... 157 

5.3.4 – Energy Expenditure ........................................................................... 159 

5.3.5 – Energy Balance.................................................................................. 161 

5.3.6 – Metabolic Rate .................................................................................. 162 

5.3.7 – Diet-Induced Thermogenesis ............................................................. 165 

5.3.8 – Physical Activity Thermogenesis ....................................................... 167 

5.3.9 – Fasting Biochemistry ......................................................................... 170 

5.3.10 – Postprandial Glucose ....................................................................... 173 



 

11 

  

5.3.11 – Postprandial Insulin ......................................................................... 173 

5.3.12 – Postprandial Triacylglycerol ............................................................ 176 

5.3.13 – Postprandial NEFA .......................................................................... 176 

5.3.14 – Postprandial Glycerol ...................................................................... 176 

5.4 – Discussion ................................................................................................ 179 

Chapter 6: Impact of intermittent fasting on energy balance and associated 

health outcomes in overweight and obese adults. .............................................. 187 

6.1 – Introduction .............................................................................................. 187 

6.2 – Methods ................................................................................................... 190 

6.3 – Results ..................................................................................................... 191 

6.3.1 – Participants ........................................................................................ 191 

6.3.2 – Body Composition ............................................................................. 192 

6.3.3 – Energy Intake .................................................................................... 194 

6.3.4 – Energy Expenditure ........................................................................... 196 

6.3.5 – Energy Balance.................................................................................. 198 

6.3.6 – Metabolic Rate .................................................................................. 199 

6.3.7 – Diet-Induced Thermogenesis ............................................................. 202 

6.3.8 – Physical Activity Thermogenesis ....................................................... 204 

6.3.9 – Fasting Biochemistry ......................................................................... 207 



 

12 

  

6.3.10 – Postprandial Glucose ....................................................................... 210 

6.3.11 – Postprandial Insulin ......................................................................... 210 

6.3.12 – Postprandial Triacylglycerol ............................................................ 213 

6.3.13 – Postprandial NEFA .......................................................................... 213 

6.3.14 – Postprandial Glycerol ...................................................................... 213 

6.4 – Discussion ................................................................................................ 216 

Chapter 7: General Discussion ..................................................................... 223 

References ........................................................................................................... 239 

 

  



 

13 

  

List of Figures 

Chapter 4 

4.1 24-hour profile of plasma melatonin concentration 

4.2 24-hour profile of subjective ratings of hunger 

4.3 24-hour profile of subjective ratings of prospective consumption 

4.4 
24-hour profile of subjective ratings for the desire to consume savoury 

foods 

4.5 24-hour profile of subjective ratings of fullness 

4.6 
24-hour profile of subjective ratings for the desire to consume sweet 

foods 

4.7 Normalised 24-hour profile of unacylated plasma ghrelin concentration 

4.8 Normalised 24-hour profile of plasma leptin concentration 

  

Chapter 5 

5.1 Schematic of the 8-week study design 

5.2 Components of energy intake and energy expenditure in lean adults 

5.3 Energy and macronutrient intake in lean adults 

5.4 Total daily energy expenditure in lean adults  

5.5 Fasting substrate oxidation rates in lean adults 

5.6 Average postprandial substrate oxidation rates in lean adults 

5.7 Diet-induced thermogenesis and composition in lean adults 

5.8 
Physical activity thermogenesis in lean adults as a sum of the kilocalories 

expended at differing intensities of activity 

5.9 
Change in physical activity thermogenesis in lean adults during fed and 

fasted periods 

5.10 Postprandial plasma glucose profiles in lean adults 

5.11 Postprandial plasma insulin profiles in lean adults 

5.12 Postprandial plasma triacylglycerol profiles in lean adults 

5.13 Postprandial plasma non-esterified fatty acid profiles in lean adults  

  

Chapter 6 

6.1 Schematic of the 8-week study design 

6.2 
Components of energy intake and energy expenditure in 

overweight/obese adults 

6.3 Energy and macronutrient intake in overweight/obese adults 

6.4 Total daily energy expenditure in overweight/obese adults  



 

14 

  

6.5 Fasting substrate oxidation rates in overweight/obese adults 

6.6 Average postprandial substrate oxidation rates in overweight/obese adults 

6.7 Diet-induced thermogenesis and composition in overweight/obese adults 

6.8 
Physical activity thermogenesis in overweight/obese adults as a sum of 

the kilocalories expended at differing intensities of activity 

6.9 
Change in physical activity thermogenesis in overweight/obese adults 

during fed and fasted periods 

6.10 Postprandial plasma glucose profiles in overweight/obese adults 

6.11 Postprandial plasma insulin profiles in overweight/obese adults 

6.12 Postprandial plasma triacylglycerol profiles in overweight/obese adults 

6.13 
Postprandial plasma non-esterified fatty acid profiles in overweight/obese 

adults  

 

  



 

15 

  

List of Tables 

Chapter 2 

2.1 Characteristics of common approaches to intermittent fasting 

  

Chapter 3 

3.1 Performance characteristics of biochemical analytical techniques 

  

Chapter 4 

4.1 Participant characteristics of the study cohort 

4.2 Mesor, amplitude and acrophase for diurnal rhythms in appetite ratings 

  

Chapter 5 

5.1 Intervention arms employed in the study protocol 

5.2 
Baseline participant characteristics for the three intervention arms in the 

lean cohort 

5.3 Changes in body mass and body composition in the lean cohort 

5.4 Changes in fasting and postprandial health markers in the lean cohort 

  

Chapter 6 

6.1 Intervention arms employed in the study protocol 

6.2 
Baseline participant characteristics for the three intervention arms in the 

overweight/obese cohort 

6.3 
Changes in body mass and body composition in the overweight/obese 

cohort 

6.4 
Changes in fasting and postprandial health markers in the overweight/obese 

cohort 

  

Chapter 7 

7.1 
Determinants of protein balance in the daily calorie restriction groups in 

lean and overweight/obese cohorts 

 

  



 

16 

  

List of Abbreviations 

Abbreviation 
 

Full Term 
 

AgRP Agouti-related Peptide 

AHEAD Action for Health in Diabetes 

ANOVA Analysis of Variance 

ATGL Adipose Triglyceride Lipase 

ATP Adenosine Triphosphate 

AUC Area Under Curve 

BMAL1 Brain and Muscle ARNT-Like 1 

BMI Body Mass Index 

CALERIE 
Comprehensive Assessment of the Long-term Effects of 

Reducing Intake of Energy 

CART Cocaine- and Amphetamine-regulated Transcript  

CD36 Cluster of Differentiation 36 

CHO Carbohydrate 

CI Confidence Interval 

CK1 Casein Kinase 1 

CLOCK Circadian Locomotor Output Cycles Kaput 

CO2 Carbon Dioxide 

Con Control 

COX Carbohydrate Oxidation 

CPT1 Carnitine Palmitoyltransferase 1 

CRY Cryptochrome 

DEXA Dual-energy X-ray Absorptiometry 

DIT Diet-Induced Thermogenesis 

DLMO Dim Light Melatonin Onset  

EDE-Q Eating Disorder Examination Questionnaire 

EDTA Ethylenediaminetetraacetic Acid  

ELISA Enzyme-linked Immunosorbent Assay 

EtOH Alcohol 

FAT Lipid 

FMI Fat Mass Index 

GLUT Glucose Transporter 

H2O Water 

HDL High-Density Lipoprotein 

HOMA-IR Homeostatic Model Assessment for Insulin Resistance 

HSL Hormone Sensitive Lipase  

iAUC Incremental Area Under Curve 



 

17 

  

Abbreviation Full Term 
  

JNK c-Jun N-terminal Kinase 

LDL Low-density Lipoprotein 

LOX Lipid Oxidation 

METs Metabolic Equivalents 

mTOR mammalian Target of Rapamycin 

NEFA Non-esterified Fatty Acids 

NHANES National Health and Nutrition Examination Survey 

NHS National Health Service 

NPY Neuropeptide Y 

O2 Oxygen 

PAL Physical Activity Level 

PAT Physical Activity Thermogenesis 

PER Period 

POMC Preopiomelanocortin 

POX Protein Oxidation 

PRO Protein 

RER Respiratory Exchange Ratio 

RIA Radioimmunoassay 

RMR Resting Metabolic Rate 

SCN Suprachiasmatic Nucleus 

SD Standard Deviation 

SEM Standard Error of the Mean 

SIRT1 Sirtuin 1 

tAUC Total Area Under Curve 

TNF Tumour Necrosis Factor 

UK United Kingdom 

V.Vigorous Very Vigorous 

VAS Visual Analogue Scales 

VCO2 Carbon Dioxide Production  

VLDL Very Low-density Lipoprotein 

VO2 Oxygen Uptake 

V̇O2 max Maximal Oxygen Uptake  

75:75 Daily Calorie Restiction Intervention 

0:150 Intermittent Fasting with Calorie Restriction Intervention 

0:200 Intermittent Fasting without Calorie Restriction Intervention 



Chapter 1 

18 

  

Chapter 1: Lay Summary 

Obesity is a prevalent health concern due to its association with conditions such as 

type 2 diabetes and cardiovascular disease. Despite efforts to address this in recent 

decades, the incidence of obesity has proved resilient to a host of evidence-based 

solutions. The scale of this issue is well-characterised by Ng et al. (2014), who 

highlight that at a population level, there have been no successful reductions in obesity 

prevalence in 33 years. Part of this may lie in the shortcomings of conventional 

strategies to treat obesity and the associated dysfunction, which target reductions in 

energy intake via restrictions on the type and/or amount of foods consumed (i.e. typical 

dieting), increases in energy expenditure (i.e. being more physically active), or a 

combination of the two. Although effective initially, these strategies struggle to deliver 

sustainable weight losses and health improvement in the long-term. This is often 

ascribed to the difficulty of sustaining such strategies, whilst there are also 

compensatory changes in both physiology and behaviour which seemingly counter 

weight loss efforts. 

In recent years, there has been growing public interest in time-related approaches to 

dieting. These methods restrict calories within defined time periods, as opposed to 

applying a continuous restriction every day. Collectively, such strategies are 

commonly referred to as intermittent fasting, with the popular 5:2 diet being but one 

example. A number of arguments have been put forward to justify such an approach, 

including reduced motivational demands, ease relative to alternative methods, no 

requirements for any knowledge of nutrition or foods, and possibly offering better 

alignment with the dietary conditions which shaped human physiology over several 

millennia. However, the rise in the popularity of these approaches to dieting has vastly 

outpaced the research to support or refute their application in an obesity management 

context. Although the results emerging from the few scientific studies that have been 

undertaken are promising, several potential attributes of intermittent fasting have been 

largely overlooked, which could be vital in ascertaining the utility of these strategies. 

Of particular interest is the extent to which intermittent fasting may elicit 

compensatory changes in energy use, either at rest or through physical activity. Even 

at an intuitive level, it seems reasonable to speculate that short but intense periods of 
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energy restriction would be less likely to induce a persistent reduction in energy use 

than a continuous restriction. If this is indeed the case, it would be a key strength of 

these intermittent approaches relative to the continuous dietary alternatives. 

Furthermore, the reduced number of eating occasions may also offer health benefits 

that are independent of weight loss. In most Western cultures, consuming at least three 

meals per day is considered a societal norm. This typically takes the form of breakfast, 

lunch and dinner, which are ordinarily separated by a matter of hours. Each of these 

eating occasions results in an influx of energy from varying amounts of carbohydrate, 

fat and protein, which the body handles by utilising what is required and storing the 

excess. This process takes a number of hours to resolve, meaning that an ensuing meal 

is usually consumed shortly after this initial influx of nutrients has been buffered, if 

not before. Consequently, there are but a few hours each day where nutrient and 

hormone levels are at basal values, which has been implicated in some of the 

dysfunction that accompanies obesity. Therefore, in providing these extended fasting 

periods, intermittent approaches may hold another advantage over continuous 

methods, wherein the frequency of meals is usually preserved. 

The studies described in this thesis explored these potential facets to provide a more 

thorough appraisal of the utility of intermittent fasting as a strategy for managing 

obesity and the associated dysfunction. In an initial step, Chapter 4 measured rhythms 

in appetite and related regulatory hormones over 24-hours, to help establish how an 

intermittent fasting diet might best be designed to maximise therapeutic potential 

whilst minimising motivational demands. The resulting intervention used a complete 

alternate-day approach to intermittent fasting, where 24-hour periods of feeding were 

alternated with 24-hour periods of fasting, in which energy intake was not permitted 

whatsoever. Although extreme, this duration of uninterrupted fasting had previously 

been associated with improvements in health even in the absence of weight loss, 

making it the best choice considering the aims of the research. This particular design 

was also novel in so far as the transition from feeding to fasting and vice versa occurred 

at 15:00 each day. This was better aligned with the observed rhythms in hunger in 

Chapter 4 than previous formats, whilst enabling some form of feeding behaviour 

within each sleep-wake cycle to facilitate adherence to the diet. 
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In Chapter 5, this novel intermittent fasting intervention was combined with a net 25% 

reduction in energy intake and applied to a randomly allocated group of lean adults for 

20 days. At the same time, two further groups of lean adults were randomly prescribed 

either a daily energy restriction of 25% or the same intermittent fasting strategy 

without any energy restriction. All three interventions were accompanied by 

comprehensive assessments of energy balance and metabolic health. Consequently, in 

comparing these three groups, it was possible to answer two key questions. Firstly, is 

intermittent fasting a better approach to weight loss and improving metabolic health 

than restricting calories every day? Secondly, are the effects of intermittent fasting a 

product of weight loss or the routine extension of fasting periods? In Chapter 6, the 

same method was then applied to a group of overweight/obese adults to address the 

same questions within the context of a pre-existing energy surplus. 

Collectively, this thesis yields fascinating and original insights as to how intermittent 

fasting impacts upon energy expenditure and metabolic health, impacts which were 

seemingly dependent on body fat levels. In Chapter 7, the potential underpinnings of 

these observed effects are discussed, spanning the broad areas of body composition, 

physical activity and metabolic health. The conclusions drawn in the collective light 

of these studies not only carry implications for the utility of intermittent fasting and 

future research on the topic, but perhaps our understanding of the causes of obesity as 

well.
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Chapter 2: Literature Review 

2.0 – Obesity 

2.0.1 – Definition 

Obesity broadly describes a metabolic state characterised by excessive fat 

accumulation to an extent that can present a risk to health (World Health Organization, 

2000; Abdelaal, le Roux and Docherty, 2017). In clinical terms, this is commonly 

established through a calculation of body mass index (BMI); body mass (kg) divided 

by height (m) squared (Keys et al., 1972). Values of 30 kg∙m-2 and above are 

considered indicative of obesity in most humans and do typically associate with 

deteriorations in health, which is in accordance with the aforementioned definition 

(Flegal et al., 2013). Although this relies upon the assumption that elevated body mass 

is a consequence of increases in adiposity alone, which is incorrect (Romero-Corral et 

al., 2008), these associations with adverse health outcomes persist across a range of 

direct and indirect adiposity measures (Janssen, Katzmarzyk and Ross, 2004; Flegal et 

al., 2009; Ashwell, Gunn and Gibson, 2012; Rohan et al., 2013; Qi et al., 2015; Kim 

and Park, 2018). Therefore, courtesy of its relative ease of application (Adab, Pallan 

and Whincup, 2018), BMI remains at the centre of most statistics on obesity 

prevalence (Ranasinghe et al., 2013). 

2.0.2 – Prevalence 

The scale of the issue that obesity presents is perhaps best illustrated by the systematic 

review of Ng et al. (2014), which summarised the prevalence statistics from 183 

countries between 1980 and 2013. This provides a clear appraisal of the progression 

of obesity as a global epidemic, the cost of which is suggested to account for 2.8% of 

global spending (McKinsey Global Institute, 2014). The findings of this review 

suggest that 2.1 billion people are currently considered overweight or obese, with the 

prevalence continuing to rise in both developed and developing countries. In-part, this 

can be attributed to the ageing population in several developed countries, such as the 

UK, given the typical accumulation of adipose tissue over adulthood in Westernised 
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countries (Wang et al., 2011). However, these increases in prevalence were reflected 

across all age groups, including both children and adolescents, with the most rapid 

rises seen between 20 and 40 years of age (Ng et al., 2014). Although it is worth noting 

that the rate of increase was greatest from 1992 to 2002, and that in the last 10 years 

there has been a slowing of the rise in developed countries, globally there have been 

no reductions in obesity prevalence in 33 years (Ng et al., 2014). This highlights the 

need for improved strategies for treating obesity. 

2.0.3 – Obesity-Associated Chronic Diseases 

Obesity has been acknowledged as a globally epidemic condition for almost two 

decades, which is due in no small part to its association with a number of chronic health 

conditions (World Health Organization, 2000). For instance, increasing BMI 

increments have been associated with a higher risk of type 2 diabetes (Abdullah et al., 

2010), cardiovascular disease (Liu et al., 2014) and several cancers (Dobbins, Decorby 

and Choi, 2013). This notion is also reinforced by a recent meta-analysis from The 

Global BMI Mortality Collaboration (Di Angelantonio et al., 2016). In a pooled cohort 

of over 10 million participants, the risk of all-cause mortality was found to be 45% 

greater in those with class I obesity (30.0-34.9 kg∙m-2) relative to those with a normal 

BMI, increasing to 176% greater with class III obesity (40.0-59.9 kg∙m-2).  

Naturally, despite evidence using Mendelian randomisation that BMI may be causally 

related to disease (Nordestgaard et al., 2012), the above observational studies can only 

identify such associations, and do not establish obesity per se as the causal factor. 

However, the proposed mechanistic underpinnings of such associations, as discussed 

later in Section 2.1.5, do lend credence to obesity having a direct role in numerous 

health conditions (Van Gaal, Mertens and De Block, 2006; Frayn et al., 2012; Gilbert 

and Slingerland, 2013; Louie, Roberts and Nomura, 2013; Al-Goblan, Al-Alfi and 

Khan, 2014; Saltiel and Olefsky, 2017). Furthermore, reductions in the prevalence of 

a range of these associated conditions have been consistently reported following 

bariatric surgery (Pontiroli and Morabito, 2011; Cardoso et al., 2017). These surgical 

treatments target larger and more sustainable weight losses compared to non-surgical 

alternatives and are often accompanied by remission of type 2 diabetes and resolution 

of hyperlipidaemia (Courcoulas et al., 2014; Welbourn et al., 2016). Unfortunately, 
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the upfront cost of these treatment strategies and the associated risk means that they 

are reserved for the most extreme cases, limiting their utility in resolving the burden 

of obesity at the population level (Welbourn et al., 2016). 

All the above collectively illustrate that obesity is a prevalent health concern, as 

evidenced by the inclusion of halting the rise in obesity as one of the nine targets in 

the ‘Global Action Plan for the Prevention and Control of Non-Communicable 

Diseases: 2013-2020’ from the World Health Organization (2013). Projections suggest 

that should current trends in obesity continue there will be a further 11 million obese 

adults in the UK by 2030, accompanied by an additional 600,000 cases of diabetes, 

400,000 cases of coronary heart disease and stroke, and 110,000 cases of cancer (Wang 

et al., 2011).  Coupling this with a £2 billion increase in the cost to the National Health 

Service (NHS) (Wang et al., 2011) and further losses of disability-adjusted life years 

(World Health Organization, 2009), finding more effective solutions to address the 

rising prevalence of obesity and the accompanying dysfunction remains paramount. 
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2.1 – Energy Balance 

Fundamentally speaking, the aetiology of obesity distils down to conformity with the 

first law of thermodynamics; if energy stores within the body remain constant then the 

amount of energy entering the system must equal the amount of energy exiting the 

system (Hall et al., 2012; Hill, Wyatt and Peters, 2012). Extending this premise, the 

chronic storage of energy which leads to obesity must reflect a sustained increase in 

intake, a sustained decrease in expenditure, or both (Wells and Siervo, 2011). 

However, whilst this reductionist view explains the central principle under 

examination, it ignores the complex interplay between these two facets of energy 

balance and the plethora of regulatory pathways which determine them (Spiegelman 

and Flier, 2001; Pan and Myers, 2018). Furthermore, when balance is not achieved, 

the change in stored energy in response to a surplus or a deficit is not as predictable as 

thermodynamic principles might suggest (Rosen and Spiegelman, 2006), as 

emphasised by the consistent observation that the regulatory system involved is 

seemingly biased toward weight gain (Schwartz et al., 2003; Hill, Wyatt and Peters, 

2012). Naturally, such disparities do not call the laws of thermodynamics in to 

question, but rather illustrate the complexity of the system when discussed in the 

context of human physiology.  

The extent to which increases in fat mass are a result of increased intake or reduced 

expenditure remains a matter of debate, with the arguments to support both 

perspectives summarised by Hall et al. (2012). Of particular relevance here is where 

the locus of control lies for a given parameter. There can be no doubt that energy intake 

is a critical factor in terms of human physiology (Spiegelman and Flier, 2001), and 

whilst a physiological drive to procure food does exist in most organisms, the 

availability of energy to an organism is largely contingent upon the environment 

(Breslin, 2013). As such, beyond extreme or natural changes in either the physical 

capacity to ingest food (e.g. gastric bypass) or digestive/absorptive efficiency (Rosen 

and Spiegelman, 2006), energy intake is subject to an external locus of control, which 

is relatively unpredictable from a physiological perspective. Conversely, the other 

components of the equation, energy storage and energy expenditure, have a greater 

capacity to be modified intrinsically (Müller and Geisler, 2017) and thus anticipated. 

Only the need for activity arising from food procurement and other essential activities 
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of survival (e.g. evading predation) reside externally (Waterson and Horvath, 2015), 

but even this can be made more efficient (Muller et al., 2015). As such, although the 

first law of thermodynamics clearly applies, the principal components of the equation 

are not static; energy use is typically modified to align with energy intake in a way that 

would be conducive to survival (Zera and Harshman, 2001; Hall et al., 2012; 

Westerterp, 2017; Pan and Myers, 2018). 

This principle is exemplified by Muller et al. (2015). In response to a chronic shortfall 

in energy supply, resting energy expenditure and sympathetic activity decrease whilst 

muscular work becomes more efficient, changes which seem to arise after just three 

days of energy restriction. Interestingly, in this study the restriction phase was 

preceded by one week of overfeeding with a 50% energy surplus, which was not 

accompanied by adaptive increases in any indicator of energy use (Muller et al., 2015). 

This illustrates the disparity that exists between intake and expenditure, which most 

likely reflects that energy expenditure is predominantly dictated at the level of the 

organism, whilst intake is far more contingent on the environment, particularly in the 

evolutionary context in which many physiological processes developed (Konner and 

Eaton, 2010). Clearly, upon placing this regulatory bias in the energy-abundant 

environment of many Western societies, the likelihood of over consumption and 

energy storage is increased, whilst the adaptive changes to prevent declines in fat mass 

remain unaltered.  

2.1.1 – Hypothalamic Energy Homeostasis 

Numerous factors influence energy intake, storage and expenditure, which are 

coordinated by neuroendocrine pathways in the hypothalamus, the proposed hub of 

energy homeostasis (Waterson and Horvath, 2015; Timper and Brüning, 2017; Kim, 

Seeley and Sandoval, 2018). The hypothalamus benefits from selective permeability 

of the blood-brain-barrier at the medial eminence, meaning it can receive peripheral 

signals pertaining to energy homeostasis within the system (Rodríguez, Blázquez and 

Guerra, 2010; Schaeffer et al., 2013). This includes key hormones implicated in the 

regulation of energy balance such as ghrelin, peptide YY, leptin and insulin 

(Rodríguez, Blázquez and Guerra, 2010; Schaeffer et al., 2013). Within the arcuate 

nucleus of the hypothalamus are distinct neuronal clusters which are characterised 
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according to the neuropeptides they release. Neuropeptide Y- (NPY) and agouti-

related peptide- (AgRP) secreting neurons are associated with anabolic effects, whilst 

preopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript 

(CART) neurons stimulate predominantly catabolic pathways (Lanfray and Richard, 

2017). The latter primarily achieve these effects by secreting isoforms of the 

melanocyte-stimulating hormone, which can stimulate melanocortin receptors to exert 

their effects (Wilson and Enriori, 2015; Lanfray and Richard, 2017). Comparatively, 

NPY and AgRP neurons exert their effects by antagonising these signalling pathways 

(Lanfray and Richard, 2017; Kim, Seeley and Sandoval, 2018). The activity of these 

neurons therefore stimulates or suppresses the hypothalamic-melanocortin system in 

the paraventricular nucleus (Kim, Seeley and Sandoval, 2018), which projects to the 

brainstem and other regions to modify sympathetic and parasympathetic outflow 

(Rabasa and Dickson, 2016). 

2.1.2 – Energy Intake 

Determining the role of energy intake in the aetiology of obesity is less straightforward 

than is often anticipated (Butland et al., 2007). Such complexities are alluded to when 

discussing energy intake from a purely physiological perspective. For instance, energy 

intake is typically described as the chemical energy contained within food and drink 

items that are ingested by an individual within a given timeframe, which in humans is 

primarily accounted for by carbohydrate, fat, protein and alcohol (Hall et al., 2012). 

However, within this there will be a small fraction of each macronutrient that may be 

indigestible or metabolically unavailable, and as such the energy contained within it is 

excreted rather than absorbed (Krajmalnik-Brown et al., 2012). The study of Southgate 

and Durnin (1970) observed across different dietary conditions that 4.5% and 3.6% of 

ingested energy consumed by healthy adults was lost through faecal and urinary 

excretion, respectively. Upon manipulating dietary composition to increase the energy 

contribution from plant polysaccharides, an indigestible carbohydrate, the faecal losses 

increased by approximately 2%, whilst urinary excretion remained largely unchanged. 

Similar effects of high fibre diets have been reported by others, in that a higher fraction 

of consumed energy is not absorbed from the gastrointestinal tract (Jumpertz et al., 

2011). 
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Further to this, absorption of ingested energy can also be influenced by other factors 

such as food preparation. This notion is well-illustrated by Burton and Lightowler 

(2008), who examined glycaemic responses to ingestion of white bread exposed to 

different storage and cooking methods. Specifically, freezing and toasting of bread 

were found to reduce the incremental area under the blood glucose curve, both alone 

and in combination. This was attributed to these processes enhancing the 

recrystallisation of resistant starch, which reduces the fraction of available 

carbohydrate within the food and therefore the amount of glucose (i.e. energy) that 

could be liberated to enter the circulation (Robertson, 2012; Sullivan et al., 2017). 

Similar observations have also been made in the context of protein digestion, with 

consumption of beef mince resulting in greater systemic amino acid availability than 

beef steak (Pennings et al., 2013).   

Adding an extra layer to the complexity, recent advances in the understanding of the 

gut microbiome have also begun to uncover inherent differences between lean and 

obese individuals. Such differences could modify the energy harvesting capacity of the 

gastrointestinal tract and therefore influence energy balance (Turnbaugh et al., 2006; 

Krajmalnik-Brown et al., 2012). However, whether this is a cause or consequence of 

obesity remains a matter of debate, as the differences in the microbiome could instead 

be a biomarker of diet quality (Bäckhed, 2009; Menni et al., 2017). Therefore, while 

the term energy intake will be used throughout this work to describe the energy 

contained within the consumed food and drink items that constitute the diet of a group 

or individual, it is important to note that research in to energy balance is far from a 

perfect science in this regard. This is reflected by recent suggestions that attempts to 

measure free-living energy intake using current methods may be entirely futile (Hall 

et al., 2012; Dhurandhar et al., 2015; Romieu et al., 2017). 

2.1.2.1 – Regulation of Energy Intake 

While energy intake can primarily be thought of as an environmentally determined 

factor, it is also subject to regulation at a physiological level. Across numerous 

mammalian species, including humans, consuming discrete meals is a characteristic 

feeding behaviour even in the face of continuous energy availability (Baile and Forbes, 

1974; Green, Pollak and Smith, 1987; Martire et al., 2013). These discrete 

consumption patterns are a consequence of numerous interacting neuronal and 
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humoral factors, which drive sensations of hunger and satiety that broadly align with 

meal initiation and termination (Spiegelman and Flier, 2001; de Graaf et al., 2004). 

Many of these transient regulatory processes arise from the gastrointestinal tract in 

response to the presence or absence of substance and nutrients (Delzenne et al., 2010). 

Afferents from this organ are innervated by both mechanical and chemical stimuli to 

relay information to the central nervous system on feeding state, particularly the 

hypothalamus (Wilson and Enriori, 2015). Mechanical distension of the stomach by 

any substance has been shown reduce appetite independent of nutrient intake 

(Geliebter, 1988), most likely operating via innervation of the vagus nerve (De 

Lartigue, 2016). However, these effects are potentiated by humoral signals released in 

response to nutrients entering various parts of the gastrointestinal lumen (Kissileff et 

al., 2003). In the pre-prandial state, ghrelin is the principle hormone in question and is 

broadly described as an orexigenic peptide which plays a prominent role in meal 

initiation by acting on the hypothalamus (Cummings et al., 2001; Austin and Marks, 

2009). In agreement with this proposition, during a 24-hour fast Natalucci et al. (2005) 

observed pulsatile patterns of ghrelin secretion, with marked peaks that aligned with 

habitual meal times. Furthermore, exogenous administration of ghrelin has been 

shown to increase food intake in ensuing meals across a diverse range of human 

populations, as first demonstrated by Wren et al. (2001) and more recently verified by 

Garin et al. (2013). 

Comparatively, several anorexogenic peptides have been identified which are also 

secreted from various sections of the gastrointestinal tract, regulating aspects of the 

digestive process and fostering appetite suppression via the hypothalamus (Delzenne 

et al., 2010). A full discussion of these hormones is beyond the scope of this work, yet 

cholecystokinin, glucagon-like peptide 1, peptide YY, pancreatic polypeptide and 

oxyntomodulin are worthy of note due to their proposed role in modifying energy 

intake (Chaudhri, Small and Bloom, 2006). They are typically secreted in response to 

specific nutrients entering the small intestine (Crespo et al., 2014), which – along with 

differences in energy density and rates of gastric emptying (Thomas, 1957) – is part of 

the reason why certain nutrients are cited as have a greater satiating effect than others 

(Karhunen et al., 2008; Brennan et al., 2012; Chambers, McCrickerd and Yeomans, 

2015). To unravel their respective impacts on energy intake, several studies have 
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employed an approach in which the anorexigenic peptides are administered 

exogenously and indices of consumption are measured at an ensuing ad libitum meal. 

Employing such a method, reductions in energy intake have been reported with 

infusion of pancreatic polypeptide (Batterham et al., 2003; Jesudason et al., 2007), 

oxyntomodulin (Cohen et al., 2003; Bagger et al., 2015), glucagon-like peptide 1 (Flint 

et al., 1998; Gutzwiller et al., 1999; Näslund et al., 1999; Bagger et al., 2015), peptide 

YY (Degen et al., 2005) and cholecystokinin (Brennan et al., 2008), with the latter two 

exhibiting a dose-response association. However, it should be noted that some 

conflicting findings have been observed, particularly for glucagon-like peptide 1 (Flint 

et al., 2001; Steinert et al., 2014). This may be due to the use of supra-physiological 

concentrations by some of the aforementioned studies, or perhaps the infusion of 

several gut hormones simultaneously which has been proposed to elicit synergistic 

effects (Tan et al., 2017). This shows that although energy intake is often a product of 

environmental influences, human physiology is able to drive this process by 

integrating a complex array of endocrine cues to control the initiation, rate and 

termination eating, thereby regulating energy intake on a short-term basis. 

Shifting to focus on the long-term regulation of energy intake, leptin is often cited as 

being the key hormonal regulator of chronic energy balance (Rosenbaum and Leibel, 

2014). Contrary to the appetite-related gut hormones described previously, leptin is 

secreted primarily from white adipose tissue, and as such the circulating concentration 

typically correlates with various indices of fat mass (Lean and Malkova, 2016). 

Current understanding suggests that leptin acts centrally by binding to receptors on 

neurons in the hypothalamus to regulate numerous functions (Seufert, 2004; Pan and 

Myers, 2018). These functions include suppression of appetite, as shown by studies of 

human leptin deficiency, which presents with obesity and hyperphagia. However, 

restoration of leptin levels within the physiological range through chronic exogenous 

administration has been shown to lower energy intake (Licinio et al., 2004). Further 

work has revealed that this may be due to inhibition of brain regions relating to hunger 

and stimulation of those related to satiety, as measured by functional magnetic 

resonance imaging (Baicy et al., 2007). Although these studies are lacking in statistical 

power due to the rare nature of the condition (Blüher, Shah and Mantzoros, 2009), the 

conclusions drawn are reinforced by animal models (Zhang et al., 2007; Ottaway et 

al., 2015). Interestingly, leptin can also bind neurons in the brainstem, which animal 
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models have shown may mediate sensitivity to the shorter-term regulatory pathways 

discussed previously, in a way that could facilitate meal termination (Morton et al., 

2005; Huo et al., 2007). Unfortunately, whilst low leptin can serve as a signal to 

stimulate appetite, hopes of treating common obesity by elevating leptin above the 

normal range have not successfully suppressed appetite (Flier and Maratos-Flier, 

2017), possibly indicating that leptin functions as a negative feedback signal more in 

relation to negative than positive energy balance.  

2.1.2.2 – Measuring Energy Intake 

Despite the plethora of regulatory elements, measuring energy intake may be 

considered the most challenging aspect of energy balance research in human 

participants (Romieu et al., 2017). In fact, it has been described previously as one of 

the most challenging measures in human physiology (Garrow, 1978). This is because 

almost all validated methods rely on self-report data, which is confounded by 

misreporting due to observational, reporting and recall biases (Stubbs et al., 2014). 

These methods can be broadly grouped in to prospective methods, which reside in the 

present and are therefore more likely to represent future intake, whilst others provide 

retrospective data, in so far as they collect information on prior intake (Stubbs et al., 

2014). 

a) Retrospective Methods 

The food frequency questionnaire is one such retrospective method and involves 

answering questions to provide frequency and portion size data for a predetermined 

list of foods over a given time period (Thompson et al., 2010). However, it should be 

noted that this name encompasses a huge number of variants, with differences in the 

number and range of foods, as well as timescales (Hackett, 2011; Stubbs et al., 2014). 

Courtesy of its low burden to participants, this method is frequently employed in large 

cohort epidemiological studies, such as the National Health and Nutrition Examination 

Survey (NHANES) (Ahluwalia et al., 2016). However, there are widespread critiques 

of this approach, with a limited list of foods and low resolution of data, particularly at 

the individual level (Tucker, 2007; Shim, Oh and Kim, 2014). Other methods involve 

direct interaction with an interviewer, an approach that is characteristic of the diet 

history method and the 24-hour recall. In the former, the interviewer asks participants 
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to describe their habitual food intake over a defined period (e.g. 1 week), whilst in the 

latter information on consumption over the last 24 hours is gathered (Shim, Oh and 

Kim, 2014). It is common practice for a multiple pass approach to be employed in 

which layers of enquiry are structured to capture finer details, such as cooking method 

and beverages (Moshfegh et al., 2008). These methods do hold certain advantages over 

the food frequency questionnaire in that they introduce a trained individual into the 

process (Shim, Oh and Kim, 2014). However, as with all retrospective methods, they 

are undermined by recall bias and they rely on estimated portion sizes, which can be a 

substantial source of error in of themselves (Almiron-Roig et al., 2013). 

b) Prospective Methods 

To overcome the issue of recall bias and portion size estimation, weighed records of 

food and fluid intake ask participants to list all food and drink items consumed 

alongside a weighed portion size over a given time frame (Livingstone, Prentice, 

Strain, et al., 1990). The timescale most often cited as the reference standard is 7 days, 

as this accommodates day-to-day variability in intake across the week (Ortega, Pérez-

Rodrigo and López-Sobaler, 2015; Fuller et al., 2017). However, the associated 

participant burden can lead to under-reporting or under-eating, therefore a 3-day record 

is frequently utilised to ease this demand (Trabulsi and Schoeller, 2001; Whybrow, 

Horgan and Stubbs, 2008; Fyfe et al., 2010). Although such methods overcome the 

issue of recall bias, it is likely that some modification of intake will occur in order to 

ease the burden as far as possible (Ortega, Pérez-Rodrigo and López-Sobaler, 2015). 

For instance, participants may choose to consume more pre-prepared food due to the 

ease compared against weighing individual ingredients. The same is also true of the 

duplicate diet method, in which a duplicate portion of each food and drink item 

consumed is retained to be analysed for energy and nutrient parameters using 

laboratory tests (Abdulla et al., 1981). However, this is accompanied by high costs and 

is still prone to the same risk of dietary modification. Observation bias is also a 

substantial consideration for all these measures, as participants may modify their 

responses based on perceived social desirability (Hebert et al., 1995). 
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c) Validity 

Courtesy of these various confounding factors, even validating these approaches 

remains a challenge, as there is no measure that can provide a value for energy and 

macronutrient intake without some form of observational or recall bias (Livingstone 

and Black, 2003). Perhaps the best attempt to assess the validity of these differing 

approaches to measuring energy intake undertaken thus far was that of Stubbs et al. 

(2014). This study employed a direct observation method as their reference standard 

and compared four widely used methodologies against it, namely weighed records, 

diet history, 24-hour recall and food frequency questionnaires. To achieve this, the 

researchers used a bespoke suite which was designed to allow covert but precise 

monitoring of energy and macronutrient intake throughout a period of 12 days. This 

time was separated in to covert phases in which participants were asked not to monitor 

their intake, and overt phases, in which participants completed 3-day weighed records 

and a series of 24-hour recalls whilst researchers continued with their covert 

monitoring. To confirm the validity of estimates obtained from the covert observation 

method, energy balance was monitored through daily measurements of body mass and 

doubly-labelled water was used to determine energy expenditure throughout all 12 

days. The energy balance equation dictates that any change in energy intake should be 

reflected by changes in the amount of energy either stored or expended (Hill, Wyatt 

and Peters, 2012). As such, if measured energy intake is found to be above or below 

energy expenditure with no change in stored energy (i.e. body mass), it can be 

considered invalid. Naturally, the subjects were not informed of the purpose of the 

study due to the bias this would have introduced.  

Over the 12 days, no change in body weight was observed and there was no difference 

between covertly-measured energy intake and energy expenditure, affirming the 

observed method as a valid approach. In comparing these observed values between the 

covert and overt windows, researchers identified a significant 5.3% reduction in intake, 

which can be considered as the observation effect. A similar observation effect has 

been reported under laboratory conditions as well (Robinson et al., 2015, 2016). In 

comparing the overt observed intake with the self-reported methods during the same 

periods, the effect of reporting and assessment method can be isolated. This was -5.1% 

for the weighed dietary records and -10.1% for the 24-hour recalls, whilst the 7-day 
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diet history collected at the outset and the food frequency questionnaire completed at 

the end both under-estimated by approximately 15%. Therefore, the best self-report 

measure of those widely practiced is still likely to be under-reported by approximately 

10%. Employing a similar method of covert observation, Whybrow et al. (2016) 

suggest that weighed dietary records underestimate energy intake by at least 5%, whilst 

Poppitt et al. (1998) observed significant under-reporting of energy intake through the 

24-hour recall relative to covert observation in the order of 12.5%, both of which show 

good agreement with the findings of Stubbs et al. (2014). Interestingly, this deficit was 

accounted for almost entirely by under-reporting of snacks rather than meals. Other 

studies employing concomitant measurement of all three aspects of the energy balance 

equation have also established under-reporting as an issue across most self-report 

methods, with the scale varying based on numerous factors including adiposity, dietary 

restraint and socioeconomic status (Cook, Pryer and Shetty, 2000; Hill and Davies, 

2001; Trabulsi and Schoeller, 2001; Singh et al., 2009). 

Drawing from the validation method deployed by Stubbs et al. (2014), there is a 

growing trend for biomarkers, which are less prone to these sources of bias, to be 

employed as a means of estimating energy intake and more recently the intake of 

specific food items (Yin et al., 2017). The former is based on a rearrangement of the 

energy balance equation, wherein the sum of energy expenditure and any changes in 

energy stores must equal energy intake (Shook et al., 2018). Although they do not 

stand alone as a means of dietary intake, providing no information on macronutrient 

consumption, they do provide an indication of the degree of error in traditional 

methods (Hedrick et al., 2012). This frequently takes the form of the Goldberg Cut-

off, which establishes the 95% confidence intervals within which discrepancies 

between intake and expenditure are attributable to chance, as opposed to misreporting 

in a state of energy balance (Livingstone and Black, 2003). Although several 

approaches have been developed for quantifying energy needs in this scenario, 

including estimation of basal metabolic rate and physical activity level, doubly-

labelled water remains the reference standard (Livingstone and Black, 2003; Shook et 

al., 2018). However, a recent study by Shook et al. (2018) utilised more accessible 

metrics to evaluate energy expenditure in this context and found comparable results to 

doubly-labelled water derived estimates with just 3 kcal∙day-1 between them, which 

makes such approaches more viable at the population level. 
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Due to the widely accepted role of diet in the aetiology of numerous prevalent health 

conditions, developing more valid measures of dietary intake remains a core objective 

in nutrition research. Technological advances within fields such as wearable sensors 

(Fontana et al., 2015) and image recognition, together with the uptake of smartphones, 

do offer some promising avenues for at least reducing the associated burden for 

participants and the confounding effects that this incurs. However, a biochemical 

marker of energy and nutrient intakes remains the elusive Holy Grail (Hedrick et al., 

2012), as emphasised by the inclusion of improving methodology for robust 

measurement in the field of human nutrition within the remit of the Global Challenges 

Research Fund (Medical Research Council, 2017). Objective measurements of energy 

expenditure and changes in stored energy are currently the closest attempt, however, 

these metrics in of themselves are prone to error. 

2.1.3 – Energy Expenditure 

The other side of the energy balance equation is energy expenditure, which can be 

thought of as the chemical energy utilised to perform integral biological processes and 

physical work (Hall et al., 2012). In much the same way as energy intake is accounted 

for by the main macronutrients, total daily energy expenditure is typically ascribed to 

the summation of three components, namely basal metabolic rate, physical activity 

energy expenditure and diet induced thermogenesis (Hills, Mokhtar and Byrne, 2014; 

Lam and Ravussin, 2016). Beyond these three core components, the concept of 

adaptive thermogenesis describes the potential for these dimensions of energy use to 

be adjusted in order to maintain homeostasis in response to various stimuli. This 

includes extreme models of starvation or overfeeding, changes in ambient temperature 

(e.g. cold-induced thermogenesis) or, more commonly, sustained weight loss (Camps, 

Verhoef and Westerterp, 2013; Muller et al., 2015). 

Basal metabolic rate reflects the chemical energy required to fuel the fundamental 

biological processes necessary for the survival of an organism (Hills, Mokhtar and 

Byrne, 2014). This includes the energy required to fuel the sodium/potassium pumps 

that allow neuronal firing in the brain (Forrest, 2014), the chemical energy used to 

permit contraction of the cardiac tissue (Tuomainen and Tavi, 2017), and the energy 

used to fuel integral processes within each cell (Lynch and Marinov, 2015). The energy 
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cost associated with these will also vary throughout the lifecycle of the organism, 

during adolescence or pregnancy for instance (Müller and Geisler, 2017), and as such 

there is capacity for variation in basal energy use both between and within individuals 

(Hills, Mokhtar and Byrne, 2014). In a review of 197 studies, McMurray et al. (2014) 

propose a mean value of 0.863 kcal∙kg-1∙h-1, but that this varied in accordance with 

numerous factors such as sex, BMI and age. As the units reflect, a key determinant of 

this resting component is body size, with fat-free mass associating closely (Johnstone 

et al., 2005; Hopkins et al., 2016; Lam and Ravussin, 2016), and more specifically 

skeletal muscle metabolism (Zurlo et al., 1990; Illner et al., 2000; Wang et al., 2010). 

Physical activity energy expenditure on the other hand describes the energy invested 

to perform voluntary muscular work, from maintaining posture to formal exercise 

sessions (Lam and Ravussin, 2016). This can be primarily considered as a function of 

behavioural and environmental determinants, although changes in the ratio of 

glycolytic to oxidative enzymes have been shown to modify the efficiency of muscle 

metabolism, which shows that the same physical work could have differing energy 

costs (Goldsmith et al., 2010). Similarly, both human and animal models have noted 

that decreases in the energy cost of low-to-moderate intensity activity may also stem 

from reductions in sympathetic outflow, which also improves efficiency (Muller et al., 

2015; Almundarij, Gavini and Novak, 2017). As such, while physical activity 

thermogenesis is primarily accounted for by behavioural factors, there appears to be 

some capacity for intrinsic regulation as well. 

Lastly, diet-induced thermogenesis is the energy invested to digest, absorb and 

metabolise nutrients contained within the foods and fluids an organism consumes. This 

is often approximated to 10% of energy intake for Western diets (Westerterp, 2004), 

however, there is substantial variability across the four macronutrients. The energy 

invested to digest and absorb fats, carbohydrates, alcohol and proteins is suggested to 

be 0-3%, 5-10%, 15-27% and 20-30%, respectively (Tappy, 1996). In addition to the 

impact of dietary composition on this parameter, there also seems to be differences 

with time of day, as the thermogenic effect of feeding appears to be greater in the 

morning relative to the evening despite matching meals for energy and macronutrient 

content (Bo et al., 2015). 
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2.1.3.1 – Regulation of Energy Expenditure 

Given the number of components that contribute to total daily energy expenditure, and 

the capacity for variation within each of these, the question of how energy expenditure 

is regulated is imperative in understanding how energy balance is regulated. Numerous 

authors suggest that a regulatory system operates within human physiology, which 

seeks to align energy intake and energy expenditure (Spiegelman and Flier, 2001; 

Wilson and Enriori, 2015; Pan and Myers, 2018). In keeping with this notion, the brain 

regions that are implicated in the regulation of energy intake are also implicated in the 

regulation of energy expenditure. In animal models, lesions of the hypothalamus have 

been shown result in obesity, even under conditions of consistent energy intake, which 

points to a regulatory role in energy expenditure (Vilberg and Keesey, 1984). This 

appears to be coordinated through signalling to metabolic tissues via endocrine factors 

and outflow to the sympathetic and parasympathetic nervous systems (Schwartz and 

Seeley, 1997; Münzberg et al., 2016). 

Focusing on the hypothalamic-pituitary-thyroid axis, in response to changes in energy 

needs there are changes in the activity of neurons controlling the secretion of the 

neuropeptide thyrotropin-releasing hormone. Specifically, leptin stimulates these 

neurons whilst fasting inhibits them, leading to changes in the secretion of thyroid 

hormone isoforms which positively regulate resting metabolic rate (RMR) (Mullur, 

Liu and Brent, 2014). This is achieved through binding to receptors on peripheral 

tissues, including skeletal muscle, to stimulate metabolism and energy expenditure 

(Münzberg et al., 2016). This is reinforced by strong positive correlations between 

basal metabolic rate, to which skeletal muscle is a major contributor, and thyroid 

hormone levels (López et al., 2013). In response to prolonged fasting, increases in 

acylated ghrelin and decreases in leptin reduce the activity of thyrotropin-releasing 

hormone releasing neurons, which provides an avenue through which the two sides of 

the energy balance equation could be coupled (Kluge et al., 2010; Mullur, Liu and 

Brent, 2014). 

The hypothalamic-pituitary-adrenal axis has also been implicated in humoral 

regulatory pathways, which aim to modify energy use as part of a reactive or 

anticipatory response (Herman et al., 2016). In response to stressors, corticotropin-

releasing hormone is secreted from hypothalamic neurons at the medial eminence 
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(Rabasa and Dickson, 2016). This increases the release of adrenocorticotropic 

hormone from the pituitary gland, which in turn stimulates synthesis and secretion of 

cortisol from the adrenal cortex (Nieuwenhuizen and Rutters, 2008; Rabasa and 

Dickson, 2016). This is part of the stress response which elicits a catabolic state to 

mobilise energy stores and leads to increases in energy expenditure (Rabasa and 

Dickson, 2016). Infusion studies, and supplementary withdrawal in cases of 

adrenocortical failure, suggest that cortisol increases energy expenditure in agreement 

with this proposition (Brillon et al., 1995; Christiansen et al., 2007). Interestingly, 

cortisol also acts in a negative feedback loop to suppress the hypothalamic-pituitary-

adrenal axis, which may explain some of the conflicting associations between cortisol 

and energy expenditure, with acute administration showing effects whilst more chronic 

exposure shows no effect (Nieuwenhuizen and Rutters, 2008). Nonetheless, this 

pathway is suggested to be regulated to some extent by energy balance, with hormones 

such as insulin and leptin acting to suppress the activity of this axis (Heiman et al., 

1997; Schwartz and Seeley, 1997; Morton et al., 2015). 

2.1.3.2 – Measuring Energy Expenditure 

Compared to energy intake, there are a multitude of objective measurement techniques 

that are available for measuring energy expenditure (Galgani and Ravussin, 2008), 

each of which carries its own strengths and weaknesses. Many techniques adopt the 

approach of measuring aspects, be they reactants or products, of the chemical reactions 

that lie at the heart of energy metabolism (Levine, 2005). These fundamental processes 

are shown in equations 1-3, which are adapted from Frayn (1983), and reflect the 

chemical reactions that proceed during metabolism of a single unit of carbohydrate, 

fat and protein: 

1 𝑔 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 0.746 𝐿 𝑂2 → 0.746 𝐿 𝐶𝑂2 + 0.6 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                       (1) 

1 𝑔 𝐿𝑖𝑝𝑖𝑑 + 2.029 𝐿 𝑂2 → 1.430 𝐿 𝐶𝑂2 + 1.09 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                          (2) 

1 𝑔 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 + 0.966 𝐿 𝑂2 → 0.782 𝐿 𝐶𝑂2 + 0.45 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                     (3) 
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a) Direct Calorimetry 

Direct calorimetry measures the thermogenic effect of metabolic processes (Kenny, 

Notley and Gagnon, 2017). This is because the oxidation reactions shown in equations 

1-3 are not 100% efficient, in so far as approximately a third of the energy liberated is 

lost as heat rather than being transferred to the intermediary adenosine triphosphate 

(ATP) (Ferrannini, 1988), with net efficiency estimated to be in the region of 50% 

(Nath, 2016). As such, the heat lost by an organism to its environment is directly 

proportional to the energy expended by the organism (Kenny, Notley and Gagnon, 

2017). The challenge in this approach lies in reliably capturing the principle in 

question. 

Direct calorimeters use a closed system which allows heat exchange to occur freely 

within it, but not between it and the environment in which it is placed (Snellen, Chang 

and Smith, 1983). Building upon the original work of Lavoisier and Leplace, discussed 

by Lodwig and Smeaton (1974), water and air are used as mediums for heat transfer. 

The known specific heat capacity of each allows changes in temperature to be equated 

to an energy parameter (Kenny, Notley and Gagnon, 2017). One such system is 

extensively described by Webster et al. (1986), however, direct calorimetry is scarcely 

used due to the operational challenges it presents relative to the alternatives (Kenny, 

Notley and Gagnon, 2017). A key limitation in this regard is the constraints it places 

on physical activity. Although larger chambers have been devised to allow 

measurements in more diverse and representative scenarios, they are not free-living 

and therefore exert confounding influences on behaviours (Webster et al., 1986; 

Kenny, Notley and Gagnon, 2017). 

b) Indirect Calorimetry 

A more widely practiced technique based around a similar principle is indirect 

calorimetry. Oxidation of a given mass of glucose, fat or protein will consume a known 

quantity of oxygen and produce a known quantity of carbon dioxide (Frayn, 1983; 

Ferrannini, 1988), as shown in equations 1-3. As such, the oxygen uptake of an 

organism reflects the oxygen required to oxidise the three substrates in sufficient 

quantities to fulfil the energy needs of said organism. The same is also true of carbon 
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dioxide production, in that it reflects the amount of carbon dioxide produced as a sum 

of all these oxidative processes. Therefore, by measuring rates of oxygen uptake and 

carbon dioxide production, it is possible to derive estimates of energy metabolism from 

expired gas samples (Douglas, 1911; Weir, 1949; Frayn, 1983; Lam and Ravussin, 

2016), as described in Section 3.4.2.  

Although this holds the advantage of not only estimating energy expenditure but also 

providing indications of substrate metabolism, it relies on a number of assumptions. 

Of particular note is the assumption that all oxygen and carbon dioxide kinetics reflect 

oxidation reactions in that timescale (Weir, 1949; Frayn, 1983; Ferrannini, 1988). This 

means that non-metabolic processes which consume or produce oxygen and carbon 

dioxide, including the interconversion of different substrates, introduce a degree of 

error (Jéquier and Felber, 1987; Schutz, 1995). Nonetheless, there are a number of 

methods utilised to capture the necessary data for this technique. Respiratory chambers 

allow oxygen uptake and carbon dioxide production to be measured with a high degree 

of accuracy over prolonged periods, however, the confined space limits their use to 

predominantly resting tasks (Levine, 2005; Schoffelen and Plasqui, 2018). Douglas 

bags offer a similar level of data without the impracticalities of cost and space 

(Douglas, 1911; Levine, 2005), but this is better suited to short periods and still 

constrains the type of activity that can be undertaken. This is overcome to some extent 

by automated and portable systems, which employ continuous monitoring of oxygen 

and carbon dioxide concentration alongside an inline flow sensor to equate this to a 

volume (Kenny, Notley and Gagnon, 2017). However, while this works well in 

permitting a greater variety of tasks, it is still constrained to laboratory and field-based 

simulations, as opposed to prolonged monitoring of free-living scenarios (Levine, 

2005). 

c) Doubly-Labelled Water 

As discussed above, what these measures offer in terms of precision and resolution, 

they lack in terms of introducing confounding influences on behaviour (Levine, 2005). 

Whilst this is not a problem when quantifying RMR and diet-induced thermogenesis, 

in so far as the equipment available allows these measurements to be captured in 

representative scenarios, it does hinder free-living assessments of physical activity 
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energy expenditure. The criterion method in this regard is doubly-labelled water 

(Westerterp, 2017), which uses isotope tracing to estimate carbon dioxide production 

as an indicator of cellular respiration (Schoeller and van Santen, 1982). When 

combined with a value for respiratory exchange ratio (RER), which is usually assumed 

to be 0.85, this can then be used to quantify energy use over several days (Schoeller 

and van Santen, 1982). 

Following the ingestion of water composed of hydrogen and oxygen isotopes, several 

hours are allowed for the isotopes to reach equilibrium in the body water pool before 

a sample is obtained to provide a starting value (Speakman, 1990). Over time, 

hydrogen isotopes are lost predominantly through water excretion, and while the same 

is also true of the isotopic oxygen atoms, a fraction will also be incorporated into 

carbon dioxide molecules that are produced during cellular respiration (Westerterp, 

2017). As such, the oxygen isotope is depleted at a faster rate than the hydrogen isotope 

and this difference is proportional to the amount of carbon dioxide that has been 

produced, an indicator of the amount of cellular respiration that has taken place 

(Speakman, 1990). As such, measuring the rate of depletion of the two isotopes in 

subsequent samples of the body water pool allows energy expenditure to be estimated 

for the interval between samples (Westerterp, 2017). 

Although this is both a precise and non-invasive approach to measuring energy 

expenditure across multiple scenarios, there are a number of assumptions within the 

method which can compromise the accuracy under certain scenarios (Speakman, 1990; 

Butler et al., 2004). For instance, the method does not account for the incorporation of 

isotopes into molecules other than water and carbon dioxide (Speakman and Hambly, 

2016), and nor does it consider changes in enrichment arising from dietary 

modification (Bhutani et al., 2015). Furthermore, the accuracy of measurements at the 

individual level is questionable, the acquisition of isotopes remains costly, and without 

sampling at frequent intervals the resolution of data is low, thereby overlooking key 

components of physically active behaviours, such as temporal distribution and timing 

(Butler et al., 2004; Brage et al., 2005; Westerterp, 2017). Perhaps most importantly 

however, is that any intervention that may impact substrate selection (e.g. fasting, 

exercise and/or adjusting dietary macronutrient balance) could shift RER from the 

assumed value of 0.85. This would systematically bias calculated values for total 
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energy expenditure between treatments. For example, a higher rate of fat metabolism 

relative to carbohydrate metabolism (i.e. a decrease in RER) would underestimate 

energy expenditure. 

d) Wearable Sensors 

Owing to the various logistical challenges associated with doubly-labelled water, 

wearable sensors are often employed to measure physical activity using surrogate 

indices. Such approaches offer dynamic temporal free-living data over extended 

periods for a lower cost, but this must be weighed against the accuracy of the 

measurement. 

Accelerometry – Accelerometers are often utilised to quantify physical activity 

energy expenditure, as evidenced by their widespread incorporation into commercial 

devices (Chowdhury et al., 2017). In measuring accelerative forces across different 

movement planes, they provide an indication of the duration, frequency and intensity 

of bodily movements, and in doing so begin to capture some key facets of physically 

active behaviours (Troiano et al., 2014). However, upon comparing accelerometers 

against the free-living reference standard of doubly-labelled water, only 40% of the 

variance in overall physical activity energy expenditure is explained in most instances 

(Plasqui and Westerterp, 2007; Jeran, Steinbrecher and Pischon, 2016). Although the 

authors highlight that this could be improved with advancements in technology, some 

variance is likely to reside outside of the measurement technique given that such 

devices only capture data on movement, when energy expenditure incorporates a 

plethora of physiological determinants as well (Tudor-Locke et al., 2002). 

Heart Rate – To bridge the gap between measuring indices of movement (such as 

those gleaned from pedometers and accelerometers) and physiological measures (such 

as heat production and respiratory gas exchange) heart rate is often employed. The 

advantage here is that heart rate shows a linear relationship with oxygen uptake under 

diverse scenarios (Bot and Hollander, 2000; Freedson and Miller, 2000), which is 

inherently linked to energy expenditure (Section 2.1.3). Although there is substantial 

inter-individual variation in the relationship owing to factors such movement 

efficiency, age and fitness (Brage et al., 2007), an individual calibration procedure can 
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be employed to accommodate such factors more effectively (Hills, Mokhtar and 

Byrne, 2014). When calibrated, heart rate shows good agreement with doubly-labelled 

water, particularly when using a defined threshold to differentiate between rest and 

activity (Livingstone, Prentice, Coward, et al., 1990; Brage et al., 2004). However, 

heart rate is prone to various confounding influences, with temperature, hydration 

status and stress amongst the most prominent (Turner and Carroll, 1985; Achten and 

Jeukendrup, 2003). In these scenarios heart rate is modified without a proportionate 

change in oxygen uptake, which is likely to lead to under- or over-estimation of energy 

expenditure in certain situations. 

Combined Heart Rate and Accelerometry – Although the above two approaches are 

often adopted separately due to offering a reasonable estimate without the logistical 

challenges and low resolution of doubly-labelled water, their accuracy limits their 

application, particularly under the myriad influences that exist in free-living scenarios 

(Brage et al., 2004). In a novel approach, researchers began to overcome these 

shortfalls by combining outcomes from these wearable sensors. Coupling data 

obtained from accelerometry with that of heart rate allows differentiation between a 

broader range of scenarios (Haskell et al., 1993; Luke et al., 1997; Rennie et al., 2000). 

This is usually achieved through branched-equation modelling, as described by Brage 

et al. (2004). This system uses quantitative thresholds to classify each minute of 

activity in to one of four categories: low movement/low heart rate, low movement/high 

heart rate, high movement/low heart rate and high movement/high heart rate. The 

allocation across the different branches determines the weighting that is applied to 

each of the sub-metrics in the estimation of physical activity energy expenditure 

(Brage et al., 2004). In applying this method, estimates were closer to energy 

expenditure determined via whole-body calorimetry than either metric in isolation, and 

even the combined metric without the branched-equation system (Brage et al., 2004). 

This led to the development of Actiheart™ monitors, which feature a chest-worn heart 

rate sensor and accelerometer, coupled with in-built memory and a rechargeable 

battery for long-term monitoring (Brage et al., 2005). 

In an initial validation step, both the movement and heart rate sensors showed strong 

correlations with mechanical and electrical simulations (Brage et al., 2005). 

Subsequently, estimates of physical activity intensity during treadmill walking and 
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running using the Actiheart™ devices were compared against estimates derived from 

concurrent indirect calorimetry. The combined heart rate and movement model 

(standard error of the estimate = 65.7 j∙min-1∙kg-1) performed better than the movement 

and heart rate models in isolation and improved further when a basic individual 

calibration was included to accommodate differences in the relationship between heart 

rate and physical activity intensity (standard error of the estimate = 57.7 j∙min-1∙kg-1) 

(Brage et al., 2005). Employing more sophisticated calibration procedures has lowered 

the standard error of the estimate further to 26 j∙min-1∙kg-1 (Brage et al., 2007). Upon 

contrasting against doubly-labelled water, calibrated measurements using these 

combined sensors did not differ significantly from estimates obtained from reference 

standards (Brage et al., 2015).  This suggests that the ActiheartTM provides similar 

precision and variability in measuring physical activity energy expenditure relative to 

the reference standard, offering improvements over heart rate and accelerometry in 

isolation. However, this method also adds valuable information about the dynamic 

patterns through which energy is expended in terms of time and intensity. Ultimately, 

the use of one or a combination of these metrics will depend on the objectives of the 

study and a consideration of the logistical challenges they present. 

2.1.4 – Energy Storage 

In scenarios where energy intake and energy expenditure are not aligned, the 

imbalance is reflected by changes in stored energy within the body. Even small, 

sustained discrepancies in the order of 24 kcal∙day-1, the equivalent of one square of 

chocolate, have been suggested to amount to a kilogram of weight gain over a year, 

even after accounting for the accompanying increases in energy requirements (Hall et 

al., 2011). However, given that excess energy can be stored in the form of 

carbohydrate, fat or protein, which vary markedly in their impacts on metabolic health, 

it is important to explore how the partitioning of surplus energy into energy stores is 

regulated.  

2.1.4.1 - Carbohydrate 

Carbohydrate is primarily stored in the form of glycogen, a polysaccharide featuring 

branched chains of α-1,4- and α-1,6-linked glucose residues (Adeva-Andany et al., 

2016). The human body can typically store 500-1000 grams in total, with 
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approximately 80% localised to skeletal muscle reserves and a further 20% residing in 

the liver, with just small depots in the brain, heart, kidneys and adipose tissue (Acheson 

et al., 1988; Flatt, 1995; Wasserman, 2009; Jensen et al., 2011; Ørtenblad, Westerblad 

and Nielsen, 2013; Adeva-Andany et al., 2016). These reservoirs primarily serve to 

maintain blood glucose concentrations, which collectively amount to approximately 4 

grams in a 70 kg individual and are vital to numerous organs, not least the brain 

(Wasserman, 2009). 

In the post-absorptive state, glucagon is secreted from the pancreas and the resultant 

balance between elevated glucagon and fasted (i.e. low) insulin encourages the 

degradation of glycogen stores, a reaction catalysed by glycogen phosphorylase 

(Adeva-Andany et al., 2016; Röder et al., 2016). In the liver, the glucose is secreted 

into the portal circulation to help match oxidation rates by various tissues, whilst in 

skeletal muscle it is phosphorylated to glucose-6-phosphate by hexokinase II, which 

creates a negative feedback loop that lowers rates of glucose uptake into skeletal 

muscle (Wasserman, 2009; Adeva-Andany et al., 2016). In the postprandial state, 

appearance of glucose from the gastrointestinal tract increases circulating glucose 

concentrations. Glucose transporter (GLUT) 2 proteins spanning the membrane of 

hepatocytes allow facilitated uptake of glucose from the portal circulation independent 

of insulin (Adeva-Andany et al., 2016). Similarly, GLUT2-facilitated uptake by 

pancreatic beta cells stimulates secretion of insulin (Thorens, 2015; Röder et al., 2016). 

Upon binding of insulin to receptors on skeletal muscle and adipocytes, an intracellular 

signalling cascade initiates GLUT4 translocation to the plasma membrane (Shepherd 

and Kahn, 1999; Karim, Adams and Lalor, 2012; Adeva-Andany et al., 2016). These 

transporters are rate limiting for glucose uptake, and insulin stimulation has been 

proposed to increase the membrane content of these proteins by up to 40 times the 

fasted level (Brewer et al., 2014). Whilst GLUT2 is not insulin sensitive, hepatic 

glucose metabolism is nonetheless regulated by insulin at the level of phosphorylation 

and glycogen synthesis (Adeva-Andany et al., 2016). Consequently, post-prandial 

insulin secretion helps to buffer the influx of ingested glucose by stimulating uptake 

and/or storage across tissues including liver, muscle and adipose. This buffering 

therefore maintains euglycaemia to avoid toxicity, whilst simultaneously replenishing 

glycogen reserves through insulin-stimulated activity of glycogen synthase 

(Wasserman, 2009; Han et al., 2016). 
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2.1.4.2 - Protein 

Comparatively, protein stores have been suggested to account for up to a third of stored 

energy in a lean male (Galgani and Ravussin, 2008). Synthesised from varying 

combinations of amino acids, proteins fulfil a wide variety of functional roles, which 

include being the principle component of enzymes, hormones and antibodies (Frayn, 

2010). Storage is predominantly in the form of skeletal muscle tissue, which accounts 

for up to half of whole-body protein content (Milan et al., 2015; Abdulla et al., 2016). 

Under conditions of protein balance, wherein skeletal muscle mass remains 

unchanged, muscle protein turnover is approximately 350 grams per day (i.e. 1-2%), 

which means that protein balance itself reflects a constant interaction between 

synthesis and breakdown (Rostom and Shine, 2018). Atherton and Smith (2012) refer 

to this as a dynamic equilibrium, wherein synthesis exceeds breakdown in the fed state 

whilst the converse is true in the fasted state, resolving itself to balance over a 24-hour 

period. 

In structural terms, skeletal muscle can be sequentially broken down in to fascicles, 

muscle fibres, myofibrils and sarcomeres, the latter of which are composed of 

overlapping filaments of actin and myosin which primarily constitute the contractile 

apparatus (Meyers et al., 2008; Gillies and Lieber, 2011). High-throughput proteomics 

methods suggest that much of the protein turnover in muscle tissue is in the contractile 

proteins (Shani et al., 1981; Uhlen et al., 2015; Uhlen et al., 2010), which is supported 

by a decrease in myosin and actin protein concentration following bed-rest induced 

atrophy (Borina et al., 2010). Although the precise mechanisms regulating synthesis 

and breakdown remain elusive and are beyond the scope of this review, mammalian 

target of rapamycin (mTOR) and the fork head box O isoforms are believed to be 

central to synthesis and breakdown, respectively (Atherton and Smith, 2012; Milan et 

al., 2015). 

Amino acid availability and exercise have also been consistently implicated in 

determining rates of muscle protein synthesis and breakdown (Atherton and Smith, 

2012; Sanchez, Candau and Bernardi, 2014). This is because increases in extracellular 

amino acid concentration are sensed by membrane-bound proteins, such as sodium-

coupled neutral amino acid transporter 2, which traffic them in to the cell and prompt 

the activation of mTOR (Dickinson and Rasmussen, 2013). This signalling path also 
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upregulates the production of amino acid transporters, further enhancing intracellular 

delivery of amino acids for use in protein synthesis during times of abundance 

(Dickinson and Rasmussen, 2013). Interestingly, resistance exercise can also elicit 

prolonged upregulation of these transporter proteins relative to amino acid ingestion, 

giving an enhanced sensitivity to nutrient availability in the post-exercise period and 

fostering an anabolic state (Drummond et al., 2011; Dickinson and Rasmussen, 2013). 

Achieving a long-term positive protein balance therefore requires adequate intake of 

dietary amino acids together with a growth stimulus, such as exercise or an increase in 

sex hormones (Dideriksen, Reitelseder and Holm, 2013). In times of shortage 

however, the constant pattern of synthesis and breakdown will shift in favour of 

catabolic pathways, allowing energy to be liberated from muscle proteins in the form 

of glucose and ketone bodies to provide a vital auxiliary fuel (Grabacka et al., 2016; 

Luo and Liu, 2016; Rostom and Shine, 2018). 

2.1.4.3 - Fat 

Lastly, fat stores account for the largest fraction of stored energy in most individuals 

(Galgani and Ravussin, 2008). This predominantly takes the form of adipose tissue, 

which is composed of cells known as adipocytes, housed within a matrix of blood 

vessels, immune cells, collagen and fibroblasts (Ahima and Flier, 2000). Fat is 

deposited in lipid droplets within adipocytes in the form of triglycerides; a glycerol 

base bound to three fatty acid molecules (Frayn et al., 2003). The delivery of fatty 

acids is achieved via chylomicrons from the intestine and very low-density 

lipoproteins (VLDL) from the liver, both of which are hydrolysed by lipoprotein lipase 

(LPL) (Mead, Irvine and Ramji, 2002). The glycerol base on the other hand can be 

obtained in the form of glycerol-3-phosphate via glycolysis, or from oxaloacetate via 

glycerolneogenesis (Nye et al., 2008). 

The uptake and storage of fatty acids within adipose tissue is primarily controlled by 

insulin. Insulin stimulates the enzyme LPL, which extracts fatty acids from circulating 

chylomicrons and low-density lipoproteins (LDL) for use in triglyceride synthesis 

(Dimitriadis et al., 2011). These extracted fatty acids are then trafficked in to cells by 

CD36 (Cluster of Differentiation 36), a protein that facilitates cellular uptake of fatty 

acids in multiple tissues (Goldberg, Eckel and Abumrad, 2009). In addition, insulin is 

also believed to stimulate enzymes implicated in the esterification of these fatty acids 
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to the glycerol base, including glycerol-3-phosphate acyltransferase, via effects on 

sterol regulatory element binding protein-1c, which catalyses the proposed rate 

limiting step in triglyceride synthesis in adipose tissue (Horton, Goldstein and Brown, 

2002; Coleman and Lee, 2004; Palou et al., 2008; Wendel, Lewin and Coleman, 2009). 

Comparatively, in the lower plasma insulin concentrations associated with the post-

absorptive state, these lipogenic pathways are suppressed by the absence of insulin 

(Saltiel and Kahn, 2001). Instead, Adipose Triglyceride Lipase (ATGL) and Hormone 

Sensitive Lipase (HSL), which are usually suppressed by insulin, stimulate lipolysis 

to liberate fatty acids from the glycerol base, thereby allowing them to be secreted into 

the circulation (Coleman and Mashek, 2011; Thompson et al., 2012). Overall, this 

suggests that insulin acts to encourage energy storage in the postprandial period but 

drops in the post-absorptive period to allow stored energy to be liberated and utilised 

(Birsoy, Festuccia and Laplante, 2013). 

It is also worthy of note that small triglyceride depots have been identified in the 

pancreas, heart, liver and skeletal muscle tissue, which have been implicated in the 

metabolic syndrome which accompanies obesity (van Herpen and Schrauwen-

Hinderling, 2008). Intramuscular triglycerides seem to localise around the 

mitochondria in healthy individuals, suggesting a functional role in substrate 

metabolism, perhaps buffering the shortfall in fatty acid uptake early in exercise (van 

Loon, 2004; Roepstorff, Vistisen and Kiens, 2005). By comparison, the role of 

intrahepatic triglycerides is less clear, with some suggesting that it is simply a 

consequence of high rates of lipid trafficking (van Herpen and Schrauwen-Hinderling, 

2008). However, it also seems plausible that these intrahepatic reserves fulfil the same 

role as intramuscular pools in offering a more proximal supply of substrate, only in 

this instance it would be for use in ketogenic and gluconeogenic pathways 

(Wasserman, 2009; Grabacka et al., 2016; Luo and Liu, 2016). 

2.1.4.4 – Nutrient Balance 

Given the parallels between the main macronutrients ingested in the diet and their 

corresponding storage depots, it would be reasonable to suspect that overfeeding of 

each macronutrient is associated with a proportional increase in the size of that energy 

reserve. However, this is not the case. In a landmark study, Abbott et al. (1988) 

explored the relationship between energy balance and carbohydrate, protein and fat 
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balance using 24-hour indirect calorimetry in a respiratory chamber. Participants were 

prescribed a weight maintenance diet and were required to abstain from vigorous 

exercise, but differences in energy homeostasis arising from factors such as body 

composition and low-level physical activity provided a spectrum of energy balance 

values, spanning approximately 1200 kcal∙day-1. Simple correlations revealed that 

changes in energy balance were positively associated with fat balance in both sexes, 

whereas no correlation was observed with either carbohydrate or protein balance. This 

suggests that fat buffers energy imbalance, being oxidised during energy shortage and 

stored during energy surplus (Galgani and Ravussin, 2008).  

A popular misconception is that this increase in fat mass despite protein or 

carbohydrate overfeeding is courtesy of de novo lipogenesis, wherein triglycerides are 

synthesised from non-lipid substrates (Hellerstein, 1999; Solinas, Borén and Dulloo, 

2015). Although this capacity is one that human physiology retains, it is only seen 

under exceptional circumstances. This is well illustrated by Acheson et al. (1988), who 

depleted glycogen stores via dietary restriction before prescribing a 7-day 

carbohydrate overfeeding regimen. This required a daily 1500 kcal overfeed alongside 

a progressive increase in carbohydrate delivery from 737 to 981 grams∙day-1. The onset 

of carbohydrate overfeeding was initially accommodated by increases in carbohydrate 

oxidation and glycogen storage. However, as carbohydrate intake continued to 

increase, oxidation plateaued at approximately 500 grams∙day-1, whilst partitioning 

into glycogen stores progressively decreased as they became saturated. The imbalance 

that resulted between intake and disposal in the latter days of the overfeed was instead 

accommodated primarily by an increase in de novo lipogenesis; this only commenced 

once glycogen stores had increased above basal levels by approximately 500 grams. 

Consequently, under normal conditions, the contribution of this pathway is likely to 

be minimal, whilst any de novo lipogenesis that does occur would actually help to 

buffer the net gain in fat mass. This is due to the relative inefficiency of this pathway 

as a means carbohydrate disposal (i.e. incorporation of glucose into glycogen requires 

just 2 mol or 5% of the 36 ATP available, whereas de novo lipogensis would result in 

25-30% of the available energy being lost from the system) (Solinas, Borén and 

Dulloo, 2015). 
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In agreement with the observations of Acheson et al. (1988), de novo lipogenesis is 

suggested to only make a meaningful contribution to whole-body energy homeostasis 

when the energy intake fraction derived from carbohydrate exceeds total energy 

expenditure under conditions of inactivity (Hellerstein, 1999). As such, this is unlikely 

to contribute substantially to the positive fat balance seen with overfeeding in the 

typical Western diet (Hellerstein, 1999). This has been further reinforced by the 

application of tracer techniques, such as mass isotopomer distribution analysis, which 

directly measures lipogenesis within specific tissues by scaling the incorporation of 

labelled compounds (Hellerstein, Schwarz and Neese, 1996). As such, this pathway is 

sometimes referred to as a last resort in conditions of chronic carbohydrate over-

feeding (Hellerstein, 2001). Nonetheless, whilst de novo lipogenesis is unlikely to play 

a quantitatively important role in fat balance, it does appear to play an important role 

in metabolic regulation and can contribute to hypertriglyceridaemia (Vedala et al., 

2006). 

The reason as to why discrepancies in energy balance are mirrored by changes in fat 

balance are essentially two-fold. First is the immense plasticity in this storage medium 

relative to other energy stores; both carbohydrate and protein stores are tightly 

regulated, meaning that once the respective storage capacity has been saturated any 

surplus is utilised (Cuthbertson et al., 2017). Fat stores, however, are large and have a 

much more flexible capacity (McArdle et al., 2013; Rutkowski, Stern and Scherer, 

2015). As such they serve as an energy buffer with the excess being stored rather than 

oxidised, so even minimal caloric excess or deficit is reflected in body fat content 

(Abbott et al., 1988; Galgani and Ravussin, 2008). Second is the unidirectionality of 

any inter-conversion of macronutrients; humans have the capacity to convert 

carbohydrates and proteins into lipids but lack the enzymes necessary to achieve the 

reverse, so fatty acids can only be oxidised or stored. Therefore, in cases of positive 

energy balance, the preferential oxidation of carbohydrate and protein reduces the 

contribution of fat to whole body energy metabolism, directing more fatty acids to 

storage in adipose tissue (Flatt, 1995; Horton et al., 1995; Hellerstein, 1999; Galgani 

and Ravussin, 2008; Cuthbertson et al., 2017). 

Work by various authors has verified this finding through the use of an overfeeding 

model. When energy ingested in the form of proteins exceeds the anabolic 
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requirements of the body there appears to be an accompanying increase in protein 

oxidation to achieve protein balance (Abbott et al., 1988; Westerterp-Plantenga et al., 

2006; Moore et al., 2008; Frayn, 2010). Similarly, once glycogen stores are saturated, 

carbohydrate overfeeding results in enhanced carbohydrate oxidation to maintain 

substrate balance within the body (Abbott et al., 1988; Shulman et al., 1990; Flatt, 

1995; Minehira et al., 2004). The same is also true for alcohol, wherein approximately 

97% of the ingested fraction is suggested to be oxidised, reducing fat oxidation by up 

to 87% whilst carbohydrate and protein oxidation remain largely unaltered (Shelmet 

et al., 1988; Suter, Schutz and Jequier, 1992; Siler, Neese and Hellerstein, 1999). 

However, with high fat overfeeding there is little change in fat oxidation, leading to 

greater storage of the ingested fraction (Horton et al., 1995; Galgani and Ravussin, 

2008). Consequently, to create a state of negative fat balance and mobilise the stored 

fraction, a state of negative energy balance must be created. 

2.1.5 – Metabolic Consequences of Obesity 

As discussed previously, obesity reflects a state of chronic positive energy balance, 

wherein energy intake exceeds energy expenditure resulting in lipid deposition within 

adipocytes, assuming the saturation of glycogen stores and protein synthesis (Galgani 

and Ravussin, 2008). This is of importance because, in addition to its historical role as 

a storage medium for surplus energy (Coelho, Oliveira and Fernandes, 2013), adipose 

tissue is also recognised as an endocrine organ capable of synthesising and secreting a 

number of compounds (Frayn et al., 2003). Current understanding suggests that it is 

disturbances to this secretory profile that arise as a result of increased adiposity, which 

may link obesity to the associated co-morbidities, courtesy of a collective influence on 

energy balance, insulin sensitivity and inflammation (Frayn et al., 2003; McArdle et 

al., 2013; Rutkowski, Stern and Scherer, 2015; Wensveen et al., 2015). 

2.1.5.1 – Adipose Tissue Expansion 

When excess energy is stored within adipose tissue there are two means of 

accommodating it (de Ferranti and Mozaffarian, 2008). The first of these is 

hyperplasia, which requires the coordinated action of several pathways to recruit 

adipocyte precursors, thereby increasing the number of specialised cells in which 

surplus lipids can be deposited (Arner et al., 2010; Choe et al., 2016). This is also 
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accompanied by remodelling and vascularisation to minimise cellular stress within the 

tissue (Sun, Kusminski and Scherer, 2011; Rutkowski, Stern and Scherer, 2015). The 

second expansion method is adipocyte hypertrophy, in which triglycerides are 

incorporated into pre-existing mature adipocytes to increase adipocyte size (Arner et 

al., 2010). Although the exact pathways regulating these two scenarios are largely 

unknown, adipocyte hypertrophy seems to respond primarily to nutrient load, lending 

credence to the suggestion that it constitutes the predominant expansion method in 

obesity (Sun, Kusminski and Scherer, 2011). 

Within this increase in adipocyte size, there is so-called “healthy” and “unhealthy” 

expansion (Rutkowski, Stern and Scherer, 2015), giving rise to the concepts of 

metabolically healthy obesity and metabolically unhealthy normal weight (Sun, 

Kusminski and Scherer, 2011; Huang, Loos and Kilpeläinen, 2018; Stefan, Häring and 

Schulze, 2018). Although the determinants of these phenotypes remain elusive, 

evidence suggests that there may be a genetically or developmentally determined limit 

of adipocyte expandability (Huang, Loos and Kilpeläinen, 2018; Nedelec et al., 2018), 

which leads to the onset of insulin resistance and the accompanying dysfunction at 

different levels of absolute adiposity (Vukovic et al., 2015). In support of this, the 

notion of adipocyte lipid content surpassing a threshold to trigger the onset of 

dysfunction is a consistent theme throughout the literature (Dali-Youcef et al., 2013; 

Wensveen et al., 2015; Cuthbertson et al., 2017; Stefanowicz et al., 2018). 

2.1.5.2 – Adipocyte Dysfunction 

Hypertrophic adipocytes are suggested to lie at the heart of the metabolic dysfunction 

that accompanies obesity. With increases in adipocyte size and the continued influx of 

metabolites in states of chronic overnutrition (Cho and Lumeng, 2011; Stefanowicz et 

al., 2018), cellular stress signals are presented on the surface of the adipocyte 

(Wensveen et al., 2015). These stress signals initiate a pro-inflammatory signalling 

cascade, which disrupts insulin signalling within adipocytes in partnership with an 

accumulation of lipid intermediaries, resulting in reduced cellular insulin sensitivity 

(McArdle et al., 2013; Wensveen et al., 2015). Courtesy of this impaired insulin 

signalling, lipid metabolism in hypertrophic adipocytes becomes dysregulated 

(McArdle et al., 2013; Wensveen et al., 2015). The net effect of this is reduced lipid 

retention, resulting in a steady efflux of non-esterified fatty acids (NEFA) from 
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adipose tissue (Rutkowski, Stern and Scherer, 2015). As seen in the fasted state, these 

compounds can readily enter non-adipose tissues, leading to ectopic lipid deposition 

and lipotoxicity, which lowers insulin sensitivity in these peripheral tissues as well 

(Rutkowski, Stern and Scherer, 2015; Spalding et al., 2017).  

In partnership with this dysregulation of lipid metabolism and storage, the initiation of 

pro-inflammatory signalling cascades by adipocytes also fosters increases in local and 

systemic inflammation (Maachi et al., 2004; Berg and Scherer, 2005). Not only does 

this further disrupt insulin signalling within the aforementioned peripheral tissues 

(Trujillo et al., 2004; Plomgaard et al., 2005; Ahima, Qi and Singhal, 2006; Eder et 

al., 2009; Kwon and Pessin, 2013), but it also alters the adipose tissue secretome 

(Frayn et al., 2003; Fuster et al., 2016). For instance, this pro-inflammatory 

environment has been suggested to suppress adiponectin secretion (Fasshauer and 

Paschke, 2003; Trujillo and Scherer, 2006), which under normal conditions acts as an 

insulin sensitising agent for several metabolic tissues (Esmaili, Xu and George, 2014; 

Lee and Shao, 2014). In part, this is ascribed to its ability to suppress hepatic glucose 

production and stimulate fatty acid oxidation, thereby helping to rectify peripheral 

lipotoxicity and preserve glucose and lipid homeostasis (Ruan and Dong, 2016). 

Consequently, the insulin resistance and inflammatory response which accompanies 

obesity can contribute substantially to the development of a hyperglycaemic and 

hyperlipidaemic environment (Martyn, Kaneki and Yasuhara, 2008; Jung and Choi, 

2014). 

2.1.5.3 – Adipose Tissue Dysfunction and Chronic Diseases 

High circulating glucose concentrations and insulin resistance are both symptomatic 

of type 2 diabetes (Alberti and Zimmet, 1998), the treatment of which accounts for 

approximately 10% of NHS spending (McKinsey Global Institute, 2014). However, in 

addition to these issues, inflammatory factors are also suggested to play a role in 

atherosclerosis formation (Rocha and Libby, 2009). This is a key characteristic of 

coronary heart disease, a condition which accounted for 13% of deaths in the UK in 

2012 (Townsend et al., 2014). Consequently, although obesity is rarely in of itself the 

cause of ill-health and premature mortality (Duncan et al., 2010), it contributes heavily 

to the emergence of two of the most prevalent health concerns in the UK, making 

weight loss a potent therapeutic target (Hamman et al., 2006; Wing et al., 2011).  
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2.2 – Current Interventions 

In order to lower rates of obesity and redress the accompanying dysfunction, it is 

necessary to return to the energy balance equation. As discussed previously, obesity 

occurs as a result of a chronic energy surplus, resulting in fat accretion in adipose tissue 

and ectopic depots which leads to disturbances in metabolism. As such, creating a state 

of negative energy balance, in which energy expenditure exceeds energy intake, draws 

upon energy stores to fill the energy shortfall that results (Hill, Wyatt and Peters, 

2012). This is most commonly achieved via lipolysis of adipose tissue, wherein stored 

triglycerides are broken down to glycerol and NEFA which are secreted in to the 

circulation (Coleman and Mashek, 2011), an ability suggested to only be possessed by 

adipocytes (Kolditz and Langin, 2010). This is predominantly driven by ATGL, HSL 

and monoglyceride lipase, a pathway which is activated in response to falling insulin 

levels during fasting, coupled with increases in the secretion of glucagon and 

sympathetic catecholamines (Saltiel and Kahn, 2001; Nielsen et al., 2014; Luo and 

Liu, 2016). 

Upon entering the circulation, glycerol is of particular relevance in the liver where it 

can be converted to glucose via gluconeogenesis to help maintain glucose homeostasis 

(Wasserman, 2009; Luo and Liu, 2016). Fatty acids on the other hand can be oxidised 

by various tissues to provide energy, including skeletal muscle (Luo and Liu, 2016). 

During prolonged fasting, the influx of fatty acids to hepatocytes can also saturate the 

tricarboxylic acid cycle, which allows surplus acetyl coenzyme A to be channelled into 

the ketogenic pathway, which is regulated by peroxisome proliferator-activated 

receptor-α and fibroblast growth factor 21 (Grabacka et al., 2016). This process of 

ketogenesis forms ketone bodies such as acetone, acetoacetate and beta-

hydroxybutyrate, which can serve as auxiliary fuels for both peripheral and central 

tissues, with uptake facilitated by monocarboxylate transporter 1 (Grabacka et al., 

2016; Luo and Liu, 2016). However, even following an overnight fast, ketone bodies 

are only suggested to account for 4-6% of energy requirements, meaning beta 

oxidation remains the primary fate of lipolytic products.  
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2.2.1 – Daily Energy Restriction 

Reducing energy intake is the primary nutritional intervention for managing obesity 

and type 2 diabetes (Bray et al., 2016; Most, Tosti and Redman, 2017). Such 

reductions generally take the form of daily calorie restriction, wherein energy intake 

is reduced by 15-40% without malnutrition (Klempel et al., 2010; Smith et al., 2018). 

A wealth of literature reflects the benefits of this approach in terms of improving 

markers of metabolic health, which has recently been extensively reviewed elsewhere 

(Most, Tosti and Redman, 2017). However, a discussion of how these interventions 

operate in the context of human metabolism is warranted, in order to highlight the 

complex challenge that tackling obesity presents. 

The CALERIE study (Comprehensive Assessment of the Long-term Effects of 

Reducing Intake of Energy) was set up as a two-phase, multi-site intervention to 

explore the long-term impacts of daily calorie restriction on human health. The first 

phase of the trial, referred to as CALERIE-1, served as pilot work to establish the 

short-term effects of daily energy restriction and identify the most efficacious 

approach for the ensuing long-term study, known as CALERIE-2 (Rochon et al., 

2011). The second phase of the study randomised 220 non-obese volunteers to receive 

either 25% calorie restriction or an ad libitum control for two years (Rickman et al., 

2011; Rochon et al., 2011). Energy requirements were determined from measurements 

of daily energy expenditure by doubly-labelled water, and adherence to the 

intervention arm was encouraged by a myriad of strategies. These included counselling 

sessions with qualified dieticians and psychologists, meal provision for the first four 

weeks, and portion size training, all of which have been shown to be efficacious in 

their own right (Jeffery et al., 1993; Wadden, Butryn and Byrne, 2004; Rolls, 2014) 

The outcomes of this trial were reported by Ravussin et al. (2015). Interestingly, 

despite the rigorous approach taken in the design of the intervention, energy intake 

was only reduced by 11.7% on average in the calorie restriction condition, peaking at 

19.5% in the initial 6 months before receding to 9.1% in the ensuing 18 months. 

Nonetheless, this restriction translated to significant weight losses of 7.1 (± 0.2) kg, 

8.3 (± 0.3) kg and 7.6 (± 0.3) kg at 6, 12 and 24 months, respectively. Approximately 

70% of the observed weight losses were attributed to declines in fat mass, with 
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decreases in lean mass reaching a peak of 2.0 (± 0.2) kg at 24 months. A key 

determinant of lean mass retention was physical activity (Das et al., 2017). 

Comparatively, the control condition succeeded in maintaining their habitual energy 

intake, with no change seen in body mass or composition. This pattern was mirrored 

by significant improvements in all components of the cholesterol profile with calorie 

restriction relative to controls, as well as improvements in insulin sensitivity, glucose 

control, tumour necrosis factor (TNF) -α concentration and c-reactive protein 

concentration (Ravussin et al., 2015). Interestingly, this improvement in insulin 

sensitivity was also associated with reductions in urinary markers of systemic 

oxidative stress, which suggests that weight loss through calorie restriction may be an 

effective means of alleviating both obesity and the accompanying adipocyte 

dysfunction (Il’yasova et al., 2018).  

A series of ancillary studies have attempted to further such mechanistic insights. In a 

subset of 53 participants from the CALERIE-2 cohort, Most et al. (2018) assessed 

cardiometabolic risk alongside indices of hepatic and intramyocellular lipid content. 

Those assigned to the calorie restriction condition averaged a 14.8% reduction in 

intake over 2 years, which yielded significant reductions in weight, visceral adiposity 

and subcutaneous abdominal adiposity, relative to controls. Improvements in blood 

pressure and cholesterol profile were also seen to a degree consistent with a 30% 

reduction in cardiovascular disease risk. Perhaps most interestingly however, were the 

observed decreases in intrahepatic (~50%) and intramuscular lipid content (~15%) at 

12 and 24 months, respectively. This was accompanied by reductions in insulin 

resistance, as assessed by the homeostasis model, which agrees with the mechanistic 

view of metabolic dysfunction discussed earlier. However, it should be noted that this 

reduction in insulin resistance was only present during weight loss, which plateaued 

after 12 months. In a separate study, Sparks et al. (2017) obtained in vivo 

measurements of intramuscular lipid content and mitochondrial function from 51 

participants after 12 months of calorie restriction. The reductions in weight and 

improvements in body composition seen with calorie restriction were not accompanied 

by improvements lipid content or mitochondrial function, however, it should be noted 

that a time effect in the control group and baseline differences did confound these 

associations. The authors also argue that the largely healthy nature of the participants 
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at baseline may have made improvements more difficult to observe, particularly given 

the outcome in question. 

As such, another interesting study in this context is the look AHEAD (Action for 

Health in Diabetes) trial, which explored the impact of calorie restriction and physical 

activity on cardiovascular disease risk amongst adults with type 2 diabetes (Pi-Sunyer 

et al., 2007). A total of 5,145 overweight and obese participants with type 2 diabetes 

were randomised to receive either an intensive lifestyle intervention aimed at 

decreasing energy intake through calorie restriction, or a control group of standard 

diabetes support and education. Specifically, the lifestyle intervention employed meal 

provision to decrease portion size and improve macronutrient composition, together 

with both individual and group counselling sessions to enhance adherence. This was 

also supplemented by a surrogate goal of increasing physical activity levels to align 

with current recommendations. Over one year this resulted in mean weight losses of 

8.6% and reductions in waist circumference of over 6 cm on average, alongside an 

improved blood lipid profile and decreases in glycated haemoglobin concentration. 

This latter outcome was particularly impressive considering the decreased use of 

glucose-lowering medications in the experimental group. As such, this study lends 

further support to the use of energy restriction as a strategy for lowering rates of obesity 

and managing the accompanying dysfunction. However, although the physical activity 

dimension of the intervention only targeted increases in walking, improvements in 

fitness were seen which is likely to have contributed to these favourable outcomes. 

Furthermore, the precise degree of caloric restriction attained in the two groups was 

not quantified. 

Lastly, in a randomised controlled trial of 20 obese, sedentary participants, Johnson et 

al. (2016) explored the impact of 16 weeks of caloric restriction on insulin sensitivity. 

The calorie restriction intervention targeted a reduction in energy intake of 1000 kcal 

per day through reducing carbohydrate and fat consumption, with meal provision and 

support from dieticians to maximise compliance. The control condition by comparison 

were asked to maintain their habitual dietary patterns. In agreement with prior studies, 

calorie restriction resulted in average weight losses of 10.5 kg, which were 

predominantly accounted for by decreases in fat mass. These improvements were 

partnered by increases in glucose infusion rate during a euglycaemic-
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hyperinsulinaemic clamp, reflecting enhanced insulin sensitivity with calorie 

restriction relative to controls. 

Collectively, these studies suggest that calorie restriction is an effective strategy for 

reducing fat mass and improving metabolic health across a broad range of metabolic 

phenotypes. In non-obese cohorts, calorie restriction has resulted in weight loss and 

has produced improvements in a number of parameters implicated in the metabolic 

disturbances associated with obesity, including the potential for reduced oxidative 

stress. Whilst such mechanistic perspectives are lacking in obese populations, calorie 

restriction has been shown to induce weight loss and improve symptoms of type 2 

diabetes, although studies reporting longer-term effects are still necessary. 

2.2.2 – Macronutrient Manipulation 

Other nutritional approaches to managing obesity and the associated dysfunction have 

focused upon manipulating dietary composition, which differs from calorie restriction 

by adjusting the balance of specific macronutrients. Although this is typically coupled 

with a reduction in energy intake (Stubbs et al., 1995, 1998), eucaloric dietary 

restriction studies have also been undertaken by compensating for reduced 

contributions to intake from one nutrient with increases from another (Trepanowski et 

al., 2011). The rationale for this stems primarily from the subtleties of nutrient and 

energy balance described earlier (Section 2.1.4), as well as the proposed role of insulin 

in obesity aetiology. Insulin is a hormone that is most readily secreted in response to 

dietary carbohydrate, with only some forms of protein eliciting an insulinotropic effect 

and fat in particular only negligibly increasing circulating insulin (Kahn and Flier, 

2000; Acheson et al., 2011; Röder et al., 2016).  

A short-term study conducted by Hall et al. (2015) compared the impact of six days of 

30% calorie restriction when achieved via reductions in either carbohydrate or fat 

intake. The impact on overall fat balance was the primary focus as assessed by 

differences between intake and oxidation, but this was supplemented by fasting 

measures of blood-based metabolic parameters. The diets were matched for energy, 

sugar and protein content, and were consumed by obese participants in a randomised 

crossover design. Carbohydrate restriction resulted in decreased insulin secretion and 
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enhanced fat oxidation, culminating in an overall fat balance of -53 (± 6) grams per 

day. However, with fat restriction this reached -89 (± 6) grams per day, with the 

discrepancy accounted for by a degree of negative carbohydrate balance in the 

carbohydrate restricted trial. This highlights the rationale for this approach as changes 

in macronutrient balance appear to induce differential metabolic outcomes, even when 

matched for calorie content. However, whilst these insights are useful, their relevance 

to the long-term regulation of energy balance is less clear, particularly given the 

logistical challenges associated with such restrictions in free-living scenarios (Hall et 

al., 2015). 

A study addressing these issues was undertaken as part of the first phase of the 

CALERIE study, which aimed to isolate the most effective approach to calorie 

restriction. Specifically, 34 overweight adults were randomised to receive one of two 

daily calorie restriction diets, as reported by Das et al. (2007). Both interventions 

provided all foods for the study duration and targeted a 30% reduction in energy intake 

for 6 months but coupled this with either a high glycaemic load (60% carbohydrate, 

20% fat, 20% protein) or a low glycaemic load (40% carbohydrate, 30% fat, 30% 

protein). Time effects from pre- to post-intervention were established for both groups, 

indicating improvements in body mass, body fat percentage, insulin concentration and 

cholesterol profile, yet no trial or interaction effects emerged. The changes observed 

were consistent with an improved metabolic phenotype which was conditional upon 

the imposition of calorie restriction, not modifications in macronutrient balance. 

Extending the timescale further, Sacks et al. (2009) randomised 811 overweight adults 

to one of four dietary conditions for two years. Briefly, the four diets targeted a 750 

kcal∙day-1 reduction in energy intake from baseline requirements but derived differing 

fractions of total energy intake from carbohydrate (35%, 45%, 55% or 65%), fat (40% 

and 20%) and protein (15% or 25%). As in previous studies, regular counselling 

sessions, meal plans, and self-monitoring were employed throughout to maximise 

compliance. After six months, body mass was reduced but did not differ across the 

four groups. Over the following 18 months, there was some regression toward baseline 

values but once again this did not vary across levels of carbohydrate, fat or protein 

consumption. Some subtle differences did emerge when examining markers of 

cardiometabolic risk, with low fat diets resulting in improved cholesterol profile and 
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lower carbohydrate levels decreasing insulin concentration. However, despite these 

discrepancies, the overall prevalence of metabolic syndrome was reduced to a similar 

extent across the groups. Whilst this study does offer several strengths in terms of the 

number of participants and the range of manipulations attempted, it should be noted 

that the energy restriction achieved was only 225 kcal∙day-1 on average. More 

concerningly, the range of macronutrient balances achieved was around half of those 

targeted, with energy contributions of 43-58%, 26-35% and 17-23% achieved for 

carbohydrate, fat and protein, respectively. This therefore can be considered to 

highlight the logistical challenges associated with maintaining macronutrient 

manipulation in the long term, as it seems the tendency is to regress towards habitual 

levels whilst sustaining weight loss. This issue is also compounded by, or perhaps a 

reflection of, the need for knowledge of the macronutrient composition of different 

foods in order to deploy it effectively outside a research setting. 

Numerous studies of macronutrient manipulation have drawn similar conclusions in 

that there do not seem to be any additional benefits beyond those arising from calorie 

restriction (Hession et al., 2009; Trepanowski et al., 2011; de Souza et al., 2012). 

Whilst in some instances this pattern can be ascribed to a failure to achieve the desired 

macronutrient balance, the study of Song et al. (2016) compared eucaloric diets which 

differed in their macronutrient balance but provided all foods to ensure compliance. 

Briefly, the diets prescribed were a moderate-fat diet (46% carbohydrate, 36% fat and 

18% protein) and a low-fat/high-carbohydrate diet (64% carbohydrate, 18% fat and 

18% protein). Once again, after 6 weeks there were no differences in weight or fat 

mass between the groups, which extended to a range of biochemical parameters, 

including leptin and inflammatory markers. 

Collectively, current understanding of macronutrient manipulation in terms of obesity 

and metabolic health is well summarised by Hall and Chung (2018). They stipulate 

that while low-carbohydrate diets can be equally effective for weight loss as other 

approaches, findings for further gains in terms of glycaemic control and lipid profiles 

are inconsistent.  
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2.2.3 – Exercise and Physical Activity 

Other conventional approaches to obesity management centre upon the other side of 

the energy balance equation, increasing energy expenditure through physical activity 

and exercise to encourage the deficit needed to mobilise lipid stores. Returning once 

again to the first phase of the CALERIE study, Racette et al. (2006) compared the 

efficacy of reducing fat mass via calorie restriction relative to endurance exercise over 

12 months. This study recruited both lean and overweight individuals, with 48 

randomised to either 20% calorie restriction, a control group who received information 

on healthy diets, or an endurance exercise programme tailored to increase energy 

expenditure by 20%. In broad agreement with prior studies, the accompanying 

decreases in body mass were approximately 10.7% for calorie restriction, 8.4% with 

exercise, and 1.7% for controls. This was accompanied by similar reductions in fat 

mass and visceral adipose tissue mass with both calorie restriction and exercise relative 

to controls. However, once again, the attained energy deficit fell below the target, with 

11.5% calorie restriction in the diet condition and only a 12.6% increase in expenditure 

in the exercise condition. 

At the Pennington Biomedical Research Centre (Heilbronn et al., 2006), 48 overweight 

participants were randomly assigned to one of four treatment groups for six months: a 

control group (100% of weight maintenance requirements), a 25% calorie restriction 

group (75% of weight maintenance requirements), a very low-energy diet group (890 

kcal∙day-1 until 15% weight loss followed by weight maintenance diet), and a calorie 

restriction with exercise group (87.5% of weight maintenance requirements with 

12.5% increase in energy expenditure through prescribed exercise). Decreases in body 

mass, fat mass, visceral fat mass and fat-free mass were observed across all three 

intervention groups relative to controls, which were accompanied by reductions in 

fasting insulin concentration, fat cell size and hepatic lipid content, suggesting that 

daily calorie restriction could reverse the insulin resistance and ectopic lipid 

accumulation associated with adipocyte hypertrophy (Heilbronn et al., 2006; Larson-

Meyer et al., 2006; Redman et al., 2007). However, beyond improving fitness, there 

were no detectable benefits to the combined diet and exercise intervention relative to 

calorie restriction alone (Redman et al., 2007). 
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A wealth of research supports this notion. Coker et al. (2009) compared the effects of 

exercise with and without weight loss as a means of improving obesity-related health 

outcomes over 12 weeks. Sedentary, overweight and obese adults were recruited for 

the study and undertook 4-5 supervised aerobic exercise sessions per week on a cycle 

ergometer at 50% of maximal oxygen uptake (V̇O2max). However, the exercise 

without weight loss group were prescribed caloric compensation for the exercise to 

maintain a stable weight. Weight losses and reductions in body fat were seen in the 

exercise with weight loss group only, indicating the compensation was adequate. 

Despite this, both groups experienced a reduction in glucose appearance and an 

increase in glucose disposal during a multistage insulin infusion test, however, these 

changes were two-fold greater in the weight loss group. Cumulatively therefore, this 

study suggests that weight loss through exercise is feasible and can provide 

improvements in insulin action over and above those resulting from exercise alone. 

Tsukui et al. (2000) employed a 5-month exercise protocol to examine the effects of 

exercise on body weight and the associated health markers. The exercise protocol 

employed involved completing instructional sessions of brisk walking or swimming 

on a weekly basis together with a supervised, home-based program. The goal was to 

perform 30-45 minutes of exercise at 40-50% V̇O2max on 4-5 days a week and the 

sample was composed of healthy females.  Following the exercise intervention, both 

body mass and body fat percentage decreased by 1.0% and 0.7%, respectively. This 

was accompanied by reductions in TNF-α concentration which correlated with 

improvements in diabetes risk, as evaluated by glycated haemoglobin concentration. 

This reinforces the findings of Coker et al. (2009), highlighting that exercise training 

is a viable means of losing weight and may also help to improve associated markers 

of disease risk. 

2.2.4 – Energy Restriction in the Long-Term 

These studies serve to highlight that creating a state of negative energy balance, either 

through calorie restriction or exercise, is an effective strategy for managing the 

metabolic dysfunction that accompanies obesity. Although there are arguments 

pertaining to the cost-effectiveness of these various approaches (World Health 

Organization, 2009), in principle it does suggest that disrupting the energy balance 
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equation to create an energy deficit can lower obesity rates and improve metabolic 

health. Yet if this is the case, why have there been no reductions in obesity prevalence 

over the last 15 years (Ng et al., 2014)? Numerous societal changes have been 

implemented to encourage states of negative energy balance, which have been 

identified as effective in terms of both cost and health outcomes (World Health 

Organization, 2009; Gortmaker et al., 2011), yet the prevalence of obesity remains 

largely unperturbed (Swinburn et al., 2011). 

This could be explained by the conventional reductionist view of obesity as a simple 

case of energy imbalance, which overlooks the myriad factors that conspire to foster 

this state. Butland et al. (2007) identified over 100 variables which influence the 

presence of obesity and associated disorders, including evolutionary, physiological, 

psychological, environmental, and societal dimensions. 

2.2.4.1 – Weight Maintenance 

A key critique of these approaches is that the aforementioned weight losses and 

improvements in metabolic outcomes are not sustainable in the long term. If we return 

to the two randomised-controlled trials discussed for daily calorie restriction, the look-

AHEAD trial conducted a follow-up after a mean interval of 9.6 years. Although 

weight remained lower in the intervention condition relative to controls, the difference 

was only 2.6%, as opposed to the 7.9% reduction observed at the initial 1-year follow-

up (The Look AHEAD Research Group, 2014). This pattern of regression to baseline 

was also seen for several other variables, including improvements in glycated 

haemoglobin, high-density lipoprotein (HDL) cholesterol and triglycerides (The Look 

AHEAD Research Group, 2013). Similarly, Marlatt et al. (2017) conducted a follow-

up of participants in the CALERIE-2 study from the Pennington Biomedical Research 

Centre, two years after the intervention had concluded. Of those eligible, 39 

participants opted to enrol which represented 60% of the original Pennington cohort. 

Much alike the look AHEAD trial, weight loss in the intervention group remained 

higher relative to ad libitum controls, yet the absolute level decreased from 9.0 kg at 

the end of the intervention to 4.1 kg after two years of follow-up. 

Interestingly, ratings of cognitive restraint and hunger remained similarly enhanced 

throughout the intervention and follow-up periods, which suggests that this is not 
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simply a case of regression to pre-intervention dietary practices (Marlatt et al., 2017). 

Conversely, during the initial intervention period, sleeping energy expenditure was 

reduced by 7% with calorie restriction relative to controls, which was associated with 

changes in leptin concentration and thyroid activity (Redman et al., 2018). Sleeping 

energy expenditure also remained reduced relative to baseline values in the 

intervention group throughout follow-up, although the between-group difference 

subsided, implying that an adaptive decline in energy use may play a role in the 

regressive pattern seen. This is in keeping with the proposed hypothalamic regulation 

of energy expenditure discussed in Section 2.1.3, with falling leptin levels reducing 

sympathetic outflow and the activity of the hypothalamic-pituitary-thyroid axis to 

elicit modifications in energy metabolism in peripheral tissues. 

2.2.4.2 – Metabolic and Behavioural Adaptation 

One of the challenges in weight loss studies, either through diet or exercise, is 

compensatory adaptations. As discussed earlier in Section 2.1, the physiology of 

obesity involves tightly controlled regulation of energy intake and expenditure in 

accordance with body fat levels. From a dietary perspective, reductions in energy 

intake decrease levels of fat mass which by extension reduce circulating leptin 

concentrations (Reseland et al., 2001). This reduction then drives appetite and reduces 

expenditure when losses of fat mass occur, which collectively hinder sustainability. 

For example, before and following weight loss, Rosenbaum, Sy, et al. (2008) 

examined neural activity in response to visual food cues in obese subjects. They 

observed changes in brain regions linked to the regulatory, emotional and cognitive 

control of appetite consistent with increased desire to eat, however, these changes were 

ameliorated with exogenous leptin administration. This is reinforced by Morton et al. 

(2006), who propose that the lower levels of leptin that accompany weight loss 

enhance food reward and diminish perceptions of satiety to boost energy intake. 

Focusing instead on energy expenditure, Rosenbaum et al. (2005) examined a range 

of parameters related to energy expenditure before and after a period of weight loss 

and a period of weight loss with exogenous leptin administration. Weight loss was 

sufficient to reduce circulating plasma leptin concentrations, which was accompanied 

by significant increases in skeletal muscle work efficiency and resultant reductions in 

energy expenditure. However, when leptin was replaced to physiological levels in 
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these weight-reduced subjects, these changes were ameliorated. In line with this 

proposed function of leptin, in studying 10 obese participants, Kissileff et al. (2012) 

suggest that energy expenditure per kilogram of lean mass is significantly reduced 

following weight loss. Furthermore, perceptions of satiety, as measured by visual 

analogue scales following a prescribed test meal, were also reduced, both of which 

were ameliorated with exogenous leptin administration. Lastly, prolonged fasting that 

exceeds 12 hours (Kolaczynski et al., 1996) appears to initiate a decline in leptin 

concentrations which precedes a decline in fat mass (Boden et al., 1996). When energy 

restriction continues leading to weight loss, the decline in leptin levels is 

disproportionately large compared to the loss of mass (Weigle et al., 1997). Following 

adjustment for changes in body composition, the reductions in RMR which partner 

these changes are suggested to be in the region of 100-200 kcal∙day-1 (Leibel, 

Rosenbaum and Hirsch, 1995; Rosenbaum, Hirsch, et al., 2008; Müller and Bosy-

Westphal, 2013; Muller et al., 2015). 

These observations suggest the role of leptin is to defend against losses of body fat 

(Weigle et al., 1997), which is reinforced by the finding that leptin administration 

during fasting ameliorates some of the accompanying hormonal changes which are 

implicated in energy conservation (Chan et al., 2003; Boelen, Wiersinga and Fliers, 

2008). Furthermore, in the context of energy expenditure there is also evidence to 

suggest that these adaptations extend beyond metabolic factors and into behavioural 

measures. It is frequently documented that physical activity levels decline in response 

to caloric restriction. In a review of the three pilot studies that formed the first phase 

of the CALERIE study, Martin et al. (2011) examined the effect of varying degrees of 

caloric restriction on physical activity energy expenditure, as measured using doubly-

labelled water. Across all three trials, despite vast differences in the approach to caloric 

restriction, there was a significant reduction in activity energy expenditure of up to 

500 kcal per day, which they argue could be due to enhanced skeletal muscle work 

efficiency or reduced fidgeting behaviour.  

Such compensatory changes have also been reported in response to exercise-induced 

weight loss. This is best demonstrated by Turner et al. (2010), who randomised a group 

of sedentary men to receive either a 24-week, individually-tailored exercise program 

with adherence monitoring, or a control condition which required the continuation of 
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a sedentary lifestyle. A mean adherence rate of 94% was achieved in the exercise 

group, which was accompanied by significant reductions in body mass and 

proportionate decreases in leptin concentration, without a compensatory reduction in 

non-prescribed physical activity. However, the resultant weight losses only reflected 

approximately 40% of those predicted by the prescribed exercise, which was attributed 

to a compensatory increase in energy intake. In agreement with this, Martins et al. 

(2010) observed increases in appetite following exercise-induced weight loss, as 

measured by changes in the concentrations of several appetite hormones in both the 

fasted and postprandial state. Cumulatively, this suggests that in cases of weight loss 

through both diet and exercise there are compensatory mechanisms operating to 

preserve body fat levels (Schwartz et al., 2003). In light of these suggestions, the trends 

in obesity prevalence are not surprising, as attempts to reduce fat mass and the 

associated dysfunction are hampered by this adaptive response in both behaviour and 

metabolism. 

2.2.4.3 – Persistence of Adaptation 

Perhaps more concerning is that these adaptations to reduced levels of body fat are not 

a short-term phenomenon. This is highlighted by studies such as that of Rosenbaum, 

Hirsch, et al. (2008), which used indirect calorimetry to examine the energy 

expenditure of those maintaining their body weight, those who recently reduced their 

body weight, and those who had maintained a weight reduction for over a year. 

Decreases in energy expenditure were seen in the recent weight loss group over and 

above those predicted by the changes in body composition, and they remained 

similarly low even after a year of weight loss maintenance. In support of this, 

Sumithran et al. (2011) examined appetite related measures before and immediately 

after a 10-week weight loss program in 50 overweight and obese participants. Weight 

losses of 13.5 kg were accompanied by reductions in the satiety hormone peptide YY 

and increases in the hunger hormone ghrelin, which was reflected by an increase in 

subjective appetite. In accordance with the findings of Rosenbaum, Hirsch, et al., 

(2008), these changes remained even after a year of weight maintenance. 

Consequently, these metabolic adaptations to weight loss not only hamper the initial 

efforts to lose weight but may also affect the long-term success of those overcoming 

them. 
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A meta-analysis by Franz et al. (2007) suggests that, in most conventional weight loss 

studies, improvements plateau after approximately six months before regressing 

toward baseline over the ensuing years, although some degree of weight loss is usually 

retained. Another meta-analysis of 22 interventions in healthy and overweight 

participants suggests a similar trend, with approximately 50% of the losses being 

regained after 1 year of unsupervised follow-up (Barte et al., 2010). It is generally 

reported that those who succeed in maintaining weight loss engage in high levels of 

physical activity, consume a low-calorie, low-fat diet, and continue to monitor their 

weight (Wing and Phelan, 2005). Similarities can be drawn with the study of Elfhag 

and Rössner (2005), who also suggest that a physically active lifestyle and continued 

self-monitoring are key, together with intrinsic motivation for weight management. 

Thomas et al. (2014) also highlight the importance of continued application of dietary 

restraint, physical activity, macronutrient modification and self-monitoring in 

successful weight maintenance. Lastly, Hall et al. (2012) highlight that while an 

adaptive decline in metabolic rate does contribute to the plateau in weight loss that 

typically follows an initially successful period of dieting, modelling studies based on 

this alone suggest that it would occur after years of restriction, not months. 

Consequently, poor compliance and behavioural adaptation to continuous dietary 

restriction are likely to drive this earlier plateau. 

This proposition is supported by studies which suggest that adherence to conventional 

dietary programs over one year is in the region of 65%, with commonly cited drop-out 

reasons focusing on difficulty and dissatisfaction with weight losses (Dansinger et al., 

2005). However, Ahern et al. (2011) highlight that when taken outside of a research 

setting adherence rates are generally lower. In an analysis of the NHS weight watchers 

referral scheme, even when commercial weight management services are subsidised 

by the NHS on a large scale, attendance is only 54% to a three month course, with only 

one third achieving a clinically meaningful weight loss of 5% or more (Ahern et al., 

2011).  

Del Corral et al. (2011) looked at weight-regain following a calorie restricted weight 

loss protocol which elicited 12.2 kg of weight loss after which they were followed up 

for several years. Those with low adherence to the initial weight loss protocol regained 

virtually all of the lost weight over the two-year follow up, while those with high 
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adherence regained approximately 50% of the initial losses. In both cases there is 

plainly some recovery toward baseline values. This finding is emphasised by 

Pekkarinen, Kaukua and Mustajoki (2015), who randomised 201 overweight and 

obese adults to receive a 17-week weight loss program involving behaviour change 

strategies and a low calorie diet, or the same but with a one-year maintenance program. 

After the one year of weight maintenance, 52% of participants were still at their weight 

loss goal with the maintenance program compared to 44% without. However, one year 

following the completion of the maintenance program, only a third of participants had 

maintained their weight loss in both groups. 

Cumulatively therefore, while in principle the conventional approaches to obesity 

management are effective, the resultant weight losses and health benefits are hampered 

by compensatory reductions in energy expenditure and poor long-term compliance. 

These adaptations are shown to persist at least one year into the weight maintenance 

phase, and together with the poor long-term adherence rates may explain why weight 

regain is generally seen. Overall, these findings suggest that human physiology acts to 

defend an energy surplus and maintain a set body weight, even if this is to the detriment 

of health. Although this seems paradoxical in the present context and the energy-

abundant environment of Western cultures, when considered in an evolutionary setting 

it is not overly surprising that our physiology functions in this manner (Chakravarthy 

and Booth, 2004; Cordain et al., 2005; Prentice, Hennig and Fulford, 2008). 

2.2.5 – Evolutionary Discordance 

The evolutionary discordance hypothesis (Cordain et al., 2005) postulates that the 

reason for the growing prevalence of obesity and its comorbidities is the disparity 

between the patterns of intake and expenditure throughout human evolutionary history 

and current energy-abundant environments. Such suggestions were initially presented 

by the ‘Thrifty Genotype Hypothesis’ (Neel, 1962), which proposes that the reason for 

the growing prevalence of obesity and type 2 diabetes is the hunter-gatherer 

subsistence that shaped human evolution, a lifestyle characterised by cyclic periods of 

plenty and shortage. Consequently, genetic variations which permitted the 

enhancement of energy storage during times of abundance, and energy conservation 
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during times of shortage, would have favoured survival and been propagated 

throughout the human genome.  

However, given the impact of Western cultures on our patterns of intake and 

expenditure, these genes are now maladaptive, as periods of shortage are rare and the 

periods of abundance are approaching perpetual, while physical activity thermogenesis 

is in decline (Chakravarthy and Booth, 2004). This provides an explanation for the 

shortcomings of the conventional approaches to obesity management and the tendency 

to regain lost weight which is reinforced by several other authors (Eaton, Konner and 

Shostak, 1988; Chakravarthy and Booth, 2004; Cordain et al., 2005; Prentice, Hennig 

and Fulford, 2008; Konner and Eaton, 2010). Furthermore, as the detriment to 

metabolic health rarely undermines genetic propagation, there is no selective 

advantage to favourable genotypes, meaning that such issues are unlikely to resolve 

naturally (Budnik and Henneberg, 2017). As such, there is a need to explore novel 

approaches to managing obesity and the accompanying dysfunction in order to tackle 

the issue more effectively. 
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2.3 – Nutrition and Time 

In an evolutionary setting, activity and feeding were behaviours confined 

predominantly to daylight hours, whilst rest and fasting were synonymous with the 

night (Gerhart-Hines and Lazar, 2015). This represents a considerable challenge to 

energy homeostasis, yet endogenous circadian rhythms offer a means of anticipating 

these cyclical states and martialling energy reserves accordingly (Longo and Panda, 

2016; McGinnis and Young, 2016). Although the potential of these rhythms in 

managing obesity and the accompanying dysfunction has been overshadowed by 

manipulation of the principle components of the energy balance equation (Arble et al., 

2009), in recent years research has begun to reveal the extent to which human 

physiology is contingent on time (Dibner and Schibler, 2018), be that in terms of clock 

time or the frequency and consistency of key behaviours (Ekmekcioglu and Touitou, 

2011). To understand how this temporal regulation of physiology may impact upon 

obesity and its comorbidities, an exploration of the underpinning physiology is 

necessitated. 

2.3.1 – Circadian Rhythms 

Circadian rhythms refer to the oscillations in mammalian behaviour and physiology 

seen throughout the solar day (Johnston, 2014; Hirano, Fu and Ptáček, 2016). With up 

to 10% of the human transcriptome suggested to characterise such undulations 

(Mohawk, Green and Takahashi, 2012; Buhr and Takahashi, 2013; Archer et al., 2014; 

Brown, 2014) they span a diverse range of processes, from respiration (Spengler, 

Czeisler and Shea, 2000) and wound healing (Cable, Onishi and Prendergast, 2017; 

Hoyle et al., 2017), to the cell cycle itself (Brown, 2014). Given the preservation of 

such rhythms across species (Eckel-Mahan and Sassone-Corsi, 2013; Albrecht, 2017), 

it is likely that they confer an evolutionary advantage, which fits with the hypothesis 

that they serve to align physiological processes with anticipated environmental cues to 

optimise the response (Mohawk, Green and Takahashi, 2012; Brown, 2014). Such 

rhythms have also been established in key metabolic tissues using animal models 

(Mohawk, Green and Takahashi, 2012). It seems that, in this context, such rhythms 

exist to anticipate energy availability and modify physiological processes to maintain 

homeostasis (McGinnis and Young, 2016). 
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2.3.1.1 – The Molecular Clock 

The importance of circadian rhythms to human physiology is illustrated by the 

expression of the core clock machinery in almost all cell types (Albrecht, 2017; 

Dierickx, Van Laake and Geijsen, 2018). The foundation of this intricate system is 

composed of a transcription-translation feedback loop involving roughly 10 genes, one 

cycle of which takes approximately 24 hours and therefore broadly corresponds to a 

single solar period (McGinnis and Young, 2016). The positive limb of this loop 

involves the proteins CLOCK (Circadian Locomotor Output Cycles Kaput) and 

BMAL1 (Brain and Muscle ARNT-Like 1), which dimerise and bind to the promoter 

region of target genes to initiate transcription (Kwon et al., 2006; Hirano, Fu and 

Ptáček, 2016). These target genes include clock-controlled output genes, which 

contribute to myriad physiological processes, as well as the principal components of 

the negative limb of the feedback loop (Mohawk, Green and Takahashi, 2012). 

The negative limb involves the PER (Period) and CRY (Cryptochrome) isoforms 

(Mohawk, Green and Takahashi, 2012). Once transcribed, these proteins can then 

dimerise themselves to create a second heterodimer, which must accumulate in 

sufficient quantities in order to localise to the nucleus (Schmutz et al., 2010; St John 

et al., 2014; Hirano, Fu and Ptáček, 2016). Once this threshold is exceeded and nuclear 

localisation occurs, the CRY protein can bind the CLOCK:BMAL1 heterodimer to 

shut down further transcription of the negative proponents (Ye et al., 2014), and that 

of the other clock-controlled genes (Chiou et al., 2016). Degradation of the 

components of the negative limb is then required to terminate the repression phase and 

restart the loop (Sahar and Sassone-Corsi, 2012; Buhr and Takahashi, 2013; St John et 

al., 2014). 

2.3.1.2 – The Master Synchroniser 

As discussed previously, the function of circadian rhythms is to align physiological 

processes and behaviours with anticipated events in light/dark cycles (Mohawk, Green 

and Takahashi, 2012; Brown, 2014). A key feature of this therefore is the ability to 

sense photic stimuli, a property that most cells throughout the body lack (Kwon et al., 

2011). As such, circadian rhythms are organised in a hierarchical manner, wherein a 

master clock which resides in the brain receives photic input and translates this into 
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the molecular rhythm described previously, before disseminating this information to 

all other clocks throughout the body (LeGates, Fernandez and Hattar, 2014). In recent 

years, the term ‘master clock’ has been called in to question, as this implies an intrinsic 

rhythm which is misleading (Buhr and Takahashi, 2013). Arguably, the rotation of the 

Earth upon its axis represents the master clock, in producing the cycling of light and 

dark around which everything is arranged, with this central clock adopting the role of 

a master synchroniser (Kwon et al., 2011). Nonetheless, the suprachiasmatic nucleus 

(SCN) of the hypothalamus is widely acknowledged as fulfilling this role, as 

reinforced by its position just above the optic chiasma and its proximity to the retina 

(Dibner, Schibler and Albrecht, 2010). 

2.3.1.3 – Signalling Pathways 

Circadian rhythms have been established in most major tissues and organs (Mohawk, 

Green and Takahashi, 2012; Eckel-Mahan and Sassone-Corsi, 2013). However, in 

order to synchronise their actions with the 24-hour photoperiod across which 

physiology is coordinated, pathways are needed to relay the central circadian clock in 

the SCN to these peripheral tissues (Albrecht, 2012). This is achieved via 

modifications in body temperature, endocrine actions and autonomic stimulation, 

thereby entraining a broad spectrum of metabolic processes to the light/dark cycle 

(Albrecht, 2012; Mohawk, Green and Takahashi, 2012). For instance, Cailotto et al. 

(2005) used an animal model to show that severing the sympathetic pathways between 

the SCN and the liver disrupts circadian oscillations in glucose concentration, leading 

to higher average glycaemia throughout a solar day. Similarly, the impacts of 

temperature are well-demonstrated by in vitro studies, wherein the circadian rhythms 

of cultured fibroblasts are blunted when temperature is held constant at 37oC, as 

opposed to oscillating between 35-38oC, as would be expected in vivo (Saini et al., 

2012).  

The hormone melatonin is also worthy of mention in this regard, as it is often 

characterised as a key humoral entraining factor for peripheral tissues, including 

pancreatic islets and the gastrointestinal tract (Slominski et al., 2012). It is not only 

synthesised and secreted from the pineal gland in response to direct autonomic 

stimulation by the SCN (Reiter, 1991), but it also acts as a sleep-inducing agent to 

produce key behavioural rhythms, which can be an entraining agent in of themselves 
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(Cipolla-Neto et al., 2014). Owing to this direct central entrainment and systemic 

secretion, melatonin acts as a useful marker of circadian rhythms (Wyatt et al., 1999), 

and disturbances in melatonin have been implicated in the development of metabolic 

syndrome (Maury, Ramsey and Bass, 2010; Richards and Gumz, 2012; Cipolla-Neto 

et al., 2014). 

2.3.1.4 – The Local Clock 

The molecular clock has been characterised in a several metabolic protagonists, 

including the liver, pancreas, skeletal muscle and white adipose tissue (Mohawk, 

Green and Takahashi, 2012; Eckel-Mahan and Sassone-Corsi, 2013). Although, much 

of what we know about the resultant rhythms is extrapolated from animal models. For 

example, Coomans et al. (2013) used an SCN ablation model in mice which resulted 

in severe hepatic insulin resistance, whilst Zhang et al. (2014) developed a liver-

specific BMAL1 knockout model in which lipogenesis was impaired. However, in 

vitro studies have begun to address this by utilising culture techniques to identify cell-

autonomous rhythms in various human tissues. Perrin et al. (2015) were the first to 

show a cell-autonomous clock operating in human skeletal muscle tissue, finding that 

these rhythms were necessary for basal secretion of myokines, such as interleukin-6. 

A similar approach was employed by Pulimeno et al. (2013), isolating human 

pancreatic beta cells to establish the presence of a cell autonomous clock. Further work 

by Saini et al. (2016) revealed that disruption of this particular peripheral clock 

suppressed the basal rhythm seen in insulin secretion, as well as hindering glucose-

stimulated insulin secretion, highlighting the importance of circadian rhythms in 

glucose homeostasis (Wasserman, 2009). 

While these studies of isolated human cells provide compelling evidence for a role of 

timing in good health, they remove the complex regulation seen in vivo and as such 

should be applied cautiously (Gotlieb et al., 2015). Due primarily to the logistical 

challenges associated with obtaining serial tissue biopsies from human donors (Otway 

et al., 2011), very little translational work has been undertaken. One exception to this 

is the study of Otway et al. (2011), which examined oscillations in gene expression 

using adipose tissue biopsies collected at 6-hour intervals over 24 hours. In accordance 

with the findings from animal models, rhythms were established in the expression of 

core clock elements and metabolic interfaces. Recently, we have shown similar 
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rhythms human skeletal muscle via transcriptomics and lipidomics approaches 

(Loizides-Mangold et al., 2017; Perrin et al., 2018). Moreover, the regulation of 

GLUT4 and membrane lipids in vitro was altered by disruption of the core clock genes, 

which suggests a functional role for these peripheral clocks in regulating tissue insulin 

sensitivity and glucose uptake (Loizides-Mangold et al., 2017; Perrin et al., 2018).  

2.3.1.5 – Feeding Behaviour as a Zeitgeiber 

Whilst understanding of these clocks will continue to advance, research is also 

beginning to shed light upon the interplay between these endogenous rhythms and 

behavioural cues. Amongst the most cited studies in this regard is that of Damiola et 

al. (2000), which employed a time-restricted feeding approach to modify peripheral 

rhythms in a mouse model. Mice were fed within a 12-hour window for nine days, 

which aligned with either the dark phase (control) or the light phase (misaligned). 

Upon re-examination of rhythmic patterns of expression it was found that the 

molecular clock in peripheral tissues, including the liver and pancreas, had undergone 

a 12-hour phase shift to accommodate the revised feeding opportunity. Interestingly, 

however, this phase shift was seen in the periphery only, with the light-entrained 

oscillation in the SCN being unaffected. The authors argue that this shift represents an 

uncoupling of the periphery from the central rhythm. However, the pattern is more 

consistent with a realignment of the two clocks, as feeding behaviour can still be 

anticipated by light/dark transitions in this model. Nonetheless, what this study does 

show is that changes in feeding pattern can shift rhythms in peripheral clocks and a 

plethora of metabolic processes as a result. Of particular interest, Dang et al. (2016) 

suggest that BMAL1 can be regulated at a post-translational level by insulin in mouse 

models, which provides a clear avenue through which nutrient timing could impact 

upon obesity. 

2.3.2 – Rhythms in Energy Metabolism 

In terms of energy balance, circadian rhythms are suggested to accommodate the 

variability in energy flux throughout a single 24-hour period (McGinnis and Young, 

2016). In an evolutionary context, this arises due to diurnal variations in behaviour, 

with feeding and activity being synonymous with the light cycle, whilst rest and fasting 

are usually confined to the dark cycle (Longo and Panda, 2016). As such, human 
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physiology evolved rhythms that would drive energy acquisition and consumption 

primarily during daylight hours to an extent that would fulfil the energy demands of 

the active phase, whilst also allowing partitioning into energy stores to sustain the 

metabolic demands associated with the rest phase (Mattson et al., 2014; Longo and 

Panda, 2016).  

The intake of nutrients triggers increased systemic concentrations of glucose, lipids 

and amino acids. This fosters an anabolic state by encouraging the uptake and storage 

of nutrients (Section 2.1.4), whilst also stemming the degradation of pre-existing 

endogenous substrate stores (Saltiel and Kahn, 2001; Dimitriadis et al., 2011). In 

myocytes, insulin encourages the uptake of glucose and triglycerides; glycolytic 

pathways predominate in energy metabolism whilst glycogen and triglyceride 

synthesis are upregulated (Dimitriadis et al., 2011). Although insulin also affects 

protein kinetics in skeletal muscle, uptake and storage are dictated primarily by amino 

acid availability and sensitivity (Fujita et al., 2006; Dickinson and Rasmussen, 2013). 

In hepatocytes, facilitated uptake of exogenous glucose by GLUT2, coupled with 

increased insulin concentrations, suppresses hepatic glucose output and increases 

glycogen synthase activity (Agius, 2015). Furthermore, glycolytic products are 

channelled into de novo lipogenesis, the products of which are either stored within the 

liver itself or packaged into lipoproteins alongside exogenous triglycerides 

(Dimitriadis et al., 2011; Rui, 2014). Lastly, in adipocytes, insulin and raised 

triglyceride concentrations drive lipid uptake, increasing triglyceride deposition whilst 

also inhibiting lipolysis, leading to adipose tissue expansion (Samra et al., 1998; 

Evans, Clark and Frayn, 1999; Czech et al., 2013). 

Conversely, as the post-prandial period concludes, circulating concentrations of 

insulin and metabolites return to fasting levels while glucagon concentration increases; 

lipolytic pathways begin to predominate in adipocytes leading to net efflux of NEFA 

into the circulation (Duncan et al., 2007). These secreted lipids can then be taken up 

into skeletal muscle to fuel ATP production via beta oxidation, alongside NEFA 

sourced from intramuscular triglyceride pools (Halberg et al., 2005). Hepatocytes on 

the other hand will more readily degrade stored glycogen to maintain blood glucose 

levels. This is essential to meet the energetic requirements of the brain, which accounts 

for up to 60% of glucose disposal in the fasted state (Wasserman, 2009). If the fasting 
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period extends and glycogen stores become depleted then adipose-derived NEFA are 

used to saturate the tricarboxylic acid cycle, thereby opening up ketogenic pathways 

to provide ketone bodies as an auxiliary substrate for energy metabolism (Rui, 2014). 

However, even after an overnight fast, this pathway is estimated to account for just 4-

6% of total energy requirements (Laffel, 1999). 

Consequently, during fasting the body relies predominantly upon endogenous 

triglyceride stores to meet energy demands, whilst in the fed state metabolism shifts to 

buffer the exogenous influx of nutrients through either oxidative or anabolic pathways 

(Lambert and Parks, 2012). This diurnal pattern of substrate metabolism under 

conditions of energy balance is reflected by a rhythm in RER, with a nadir in the rest 

phase and a peak in the active phase to reflect predominant fat and carbohydrate 

oxidation, respectively (van Moorsel et al., 2016). This also suggests that in states of 

energy balance, bodily energy stores still oscillate over a 24-hour period, with positive 

energy balance in the active phase and negative energy balance in the rest phase, which 

is supported by the diurnal variation in leptin concentration (Dallongeville et al., 1998; 

Scheer et al., 2009; Lecoultre, Ravussin and Redman, 2011). However, with the advent 

of artificial light, food procurement and preparation are now less confined by the solar 

day in humans, meaning that energy intake is similarly unconfined, which can lead to 

disordered rhythms in energy metabolism (Eckel-Mahan and Sassone-Corsi, 2013).  

2.3.2.1 – Observational Data 

Observational studies have consistently indicated a link between nutrient timing and 

metabolism, with a higher prevalence of metabolic disorders seen amongst those with 

temporally disordered eating (Johnston, 2014). For instance, workers who frequently 

undertake night shifts are consistently shown to be at a higher risk of type 2 diabetes 

than their day shift colleagues (Skene et al., 2018). Drawing data from two cohort 

studies which collectively surveyed in excess of 175,000 women, Pan et al. (2011) 

explored the relationship between working rotating night shifts (≥3 nights per month) 

at baseline and the incidence of type 2 diabetes over 18-20 years of follow up. Pooled 

hazard ratios showed a 5% increase in the risk of developing type 2 diabetes amongst 

those who had worked rotating nightshifts for 1-2 years, increasing up to 58% in those 

working rotating night shifts for at least 20 years. Although such designs clearly show 

some interplay between inconsistencies in daily rhythms and metabolic health, it is 
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impossible to isolate disturbances in behaviours (i.e. fasting/feeding, rest/activity, 

sleep/wake) as the cause, due to myriad confounding influences (Health and Social 

Care Information Centre, 2013). However, experimental studies in which simulated 

shift-work is imposed on acute basis highlight how such temporal disturbances may 

adversely affect energy metabolism (Skene et al., 2018). 

2.3.2.2 – Misaligned Feeding and Postprandial Metabolism 

Adverse metabolic responses have been consistently observed in response to 

misaligned feeding using models of simulated shift-work, which may underpin the 

observational findings discussed previously. For instance, Al-Naimi et al. (2004) 

exposed eight lean males to a randomised crossover design, which compared the 

metabolic responses to meals and snacks consumed during simulated day- and night-

shift work. All meals and snacks were provided to ensure the two arms were matched 

for energy and macronutrient intake, whilst pre-trial intake was also standardised. 

During the day shift arm (12:00-20:00), meals were consumed at 13:00 and 19:00, 

with a snack at 16:00. Conversely, during the night shift condition (00:00-08:00), 

meals were consumed at 01:00 and 07:00, with the snack falling at 04:00. Over the 8-

hour measurement window, the night shift condition elicited greater increases in 

postprandial triglyceride concentration relative to the day shift condition. This became 

apparent after peak values were reached following the first meal, alluding to an 

impaired ability to clear triglycerides and/or increased hepatic VLDL secretion. This 

discrepancy was then amplified following the snack before returning toward daytime 

values around habitual waking time. A similar pattern emerged for post-prandial 

glucose and insulin concentrations, whilst NEFA remained unaltered, reflecting the 

profound suppression of lipolysis. This pattern is consistent with a nocturnal reduction 

in insulin sensitivity, which has been attributed to the anticipation of fasting by 

endogenous clocks (Carrasco-Benso et al., 2016). 

The above demonstrates a causal role of nutrient timing in the metabolic disturbance 

that arises with temporally disordered eating. Although a nocturnal reduction in insulin 

sensitivity may appear favourable by dampening the lipogenic environment, infusion 

studies have shown that high circulating triglycerides can suppress lipolysis even in 

the absence of insulin (Samra et al., 1998; Evans, Clark and Frayn, 1999). 

Consequently, eating out of phase with anticipated rhythms in feeding and fasting 
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results in an exaggerated postprandial response that enhances fat retention via 

suppressed lipolysis, thereby contributing to obesity. This notion is well illustrated by 

the study of Bray et al. (2010), which acclimated mice to a 12-hour light/dark cycle 

and restricted food intake to the first and last 4 hours of the active phase for 12 weeks. 

In the experimental condition, mice received a normal chow diet in the first 4 hours 

followed by a high fat diet in the final 4 hours, whilst the control group received the 

diets in the opposing order. Despite consuming identical quantities of both fat and 

calories, high fat feeding at the end of the active phase resulted in increased RER, body 

mass and adiposity, together with hyperinsulinemia and hypertriglyceridemia, relative 

to controls. Although longer-term human trials are lacking, in a study of 52 healthy 

adults, Dattilo et al. (2011) explored the relationship between temporal characteristics 

of nutrient consumption, as assessed by 3-day food records, and body composition. In 

agreement with rodent models, higher adiposity associated positively with 

consumption of a higher fraction of daily calories in the evening. 

Consequently, in states of temporally disordered eating, there appears to be a greater 

risk of obesity and the associated comorbidities. Studies of simulated shift work 

highlight that such effects may be mediated through the induction of an exaggerated 

postprandial response when calories are consumed out of phase with anticipated 

rhythms in feeding and fasting. Such an exaggerated response results in prolonged 

elevations in insulin and triglycerides, which suppress lipolysis and reduce 

opportunities for lipid-derived substrates to predominate in energy metabolism, 

thereby encouraging adipose tissue retention. This suggests that modifications in 

nutrient timing could be used to extend the fasting window and induce a more 

favourable balance between energy influx and efflux in adipose tissue. 

2.3.2.3 – Eating Frequency 

Perhaps the most widely researched dimension of nutrient timing in the context of 

obesity in humans is eating frequency. Early work by Fabry et al. (1964) deployed a 

cross-sectional approach to explore the relationship between intake frequency and 

metabolic health. Interestingly, in a group of 440 men, higher eating frequency broadly 

corresponded to lower body weight, improved cholesterol levels and enhanced 

glycaemia. Contrary to this, employing data from the NHANES cohort, Murakami and 

Livingstone (2015) found that those eating on more than four occasions per day were 
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approximately 50% more likely to be overweight or obese by BMI relative to those 

eating on less than three occasions per day. Such discrepancies are a consistent theme 

throughout these cross-sectional studies; a recent systematic review by Canuto et al. 

(2017) analysed data from 31 such studies containing a collective sample of over 

130,000 participants. Of these 31 studies, 14 established an inverse association, 10 

showed no association, and 7 revealed a positive association, which the authors ascribe 

to the spectrum of approaches employed.    

Upon shifting to prospective methodologies, the pattern appears to be largely the same; 

two recent systematic reviews conclude that the majority of studies show no 

association between eating frequency and obesity (Raynor et al., 2015; St-Onge et al., 

2017). The review of Raynor et al. (2015) makes a particularly strong case, given that 

only human studies in which food was provided or intake monitored in a laboratory 

setting were included, thereby reducing the confounding influence of misreporting 

(Leech et al., 2017). However, of the studies analysed, most evaluated the impact of 

increased meal frequency on metabolic health, using three meals per day as the 

reference for reduced intake, which does not necessarily increase the fasting period 

relative to more frequent meals. 

2.3.2.4 – Daily Plasma Metabolite Profiles  

In Western cultures, a pattern of three meals per day is generally accepted as a societal 

norm (Lhuissier et al., 2013; Yates and Warde, 2015). However, upon considering the 

time-course of the resultant postprandial glycaemic, lipaemic and insulinaemic 

responses, this is likely to lead to an anabolic state predominating over the course of 

each day (Frayn, 2016). 

The typical postprandial response to a mixed-macronutrient meal in healthy subjects 

is characterised by a spike in blood glucose within the first hour followed by a steady 

return to fasted glycaemia over the ensuing two hours (Coppack et al., 1990; Frayn et 

al., 1993). This is paralleled by an accompanying spike in insulin secretion within the 

first hour followed by a decrease over the ensuing 4 hours (Frayn et al., 1993). In a 

more gradual response, plasma triglyceride concentrations rise steadily to a peak after 

4 hours and remain 50% higher than baseline even after 6 hours (Coppack et al., 1990). 

When a subsequent meal is ingested, approximately five hours later as is common in 
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Western diets, glucose peaks at a similar time after feeding, albeit an attenuated 

absolute peak (Gonzalez, 2014), but takes slightly longer to return to baseline as the 

day progresses, a pattern that is largely mirrored by insulin (Ahmed, Gannon and 

Nuttall, 1976). Plasma triglycerides on the other hand reach their first meal peak 

shortly after the second meal is ingested, fall rapidly due to the effect of the 

insulinaemic response to the second meal on LPL, before peaking again around five 

hours after the second meal (Ahmed, Gannon and Nuttall, 1976).  

Based on these postprandial responses, consuming just two meals per day could be 

sufficient to elevate plasma triglyceride concentrations for over 12 hours. Given that 

such increases can stimulate lipid uptake and suppress lipolysis in adipose tissue, even 

in the absence of accompanying surges in glucose and insulin concentration (Samra et 

al., 1998; Evans, Clark and Frayn, 1999), this means that in temporal terms there are 

more opportunities for fat storage and fewer opportunities for fat mobilisation within 

each 24-hour period. This imbalance is then amplified when a third meal is consumed 

several hours after the second (Ruge et al., 2009). In fact, the findings of McQuaid et 

al. (2011) suggest that the uptake of triglycerides into adipose tissue is elevated for 

over 16 hours by Western feeding schedules. Consequently, the majority of each day 

is spent in a postprandial and lipogenic state, which is conducive to positive fat balance 

(Frayn, 2016; Travers et al., 2017). This may therefore explain the conflicting results 

emerging from meal frequency studies; as they centre upon exploring the effects of 

increasing meal frequency from 3 meals per day, they are unlikely to have overcome 

the underlying bias toward fat storage. Consequently, reducing meal frequency from 

3 meals per day could prove to be a more efficacious strategy for improving metabolic 

health, by offering more opportunities for energy efflux from adipose tissue and the 

predominance of lipid-derived substrates in energy metabolism (Anton et al., 2018). 

Of the studies reviewed by by Raynor et al. (2015) and St-Onge et al. (2017), only one 

reduced meal frequency below two meals per day. This was the study of Stote et al. 

(2007), which explored the impact of reducing meal frequency to 1 meal per day under 

conditions of energy balance. Briefly, 15 normal-weight subjects completed two 8-

week intervention periods in a randomised crossover design with an 11-week washout 

interval. In one treatment, all calories were consumed in a single meal between 17:00 

and 21:00, whilst the other treatment separated the same foods into three meals as a 
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conventional breakfast, lunch and dinner format. To facilitate compliance, the dinner 

in both conditions was consumed under supervision and all foods were provided. The 

diets were matched for both energy and macronutrient content and targeted weight 

maintenance, with daily adjustment of prescribed intake based on body weight 

measurements, which were then mirrored in the opposing trial. 

No differences in body mass, body composition or health markers were apparent at the 

outset of each treatment, suggesting that the washout period was sufficient. 

Furthermore, no differences in energy intake, macronutrient balance or physical 

activity were noted between the two conditions.  The result of this was an isocaloric 

comparison of repeated exposure to either a typical overnight fast or an extended fast 

of 20 hours per day. Interestingly, weight and fat mass were both lower following the 

one meal per day condition relative to the three meals per day condition, suggesting 

favourable effects on fat balance. However, this was not accompanied by 

improvements in lipid profile or fasting glycaemic control; on the contrary, oral 

glucose tolerance tests completed before and after the respective conditions showed 

an exaggerated glycaemic response following the one meal per day arm (Carlson et 

al., 2007). Yet it should be noted that the glucose tolerance test was completed in the 

morning, which is likely to have negatively impacted upon the one meal per day format 

due to circadian misalignment with the revised feeding schedule (Scheer et al., 2009). 

This suggests that, in much the same way as extending the lipogenic window is 

conducive to energy surplus, prolonged fasting on a routine basis, even in an energy 

balance context, could be an effective strategy to counter fat accretion by encouraging 

net efflux of lipids from adipocytes and a shift toward fat metabolism (Mattson et al., 

2014). In addition, it has been argued that the increased reliance on lipid-derived 

substrates from endogenous stores, which usually only occurs after 12-14 hours of 

uninterrupted fasting, acts as a potent metabolic signal that induces several benefits, 

which may be independent of net energy balance (Anton et al., 2018). Beyond these 

mechanistic points, it has also been postulated that temporal restrictions in energy 

intake may be easier to implement and maintain than continuous alternatives (Varady, 

Bhutani, et al., 2009; Scheer, Morris and Shea, 2013). Johnstone (2015) argues that 

such a strategy is implicitly associated with lower motivational demands, as well as 

being a simpler concept by negating the need to continually quantify energy intake.  
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2.4 - Intermittent Fasting 

This notion that routine extension of fasting intervals may be beneficial in the context 

of managing obesity and the associated morbidities has given rise to several 

therapeutic interventions (Table 2.1). The umbrella term used to describe these 

approaches is intermittent fasting (Patterson and Sears, 2017), which involves 

complete or partial restriction of energy intake during defined time intervals. The 

rationale behind this stems in-part from the impact of fasting on energy metabolism, 

but arguments also centre upon the proposed ease relative to the demands of 

continuous energy restriction (Heilbronn, Smith, et al., 2005; Varady, Bhutani, et al., 

2009; Klempel et al., 2010) and better alignment with patterns of fasting and feeding 

that are believed to have shaped metabolic regulation in humans (Halberg et al., 2005). 

Irrespective of the rationale, such approaches have been subject to growing popularity 

in recent years, yet experimental data to support their application is comparatively 

sparse (Johnstone, 2015; Patterson and Sears, 2017). 
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Table 2.1: Intermittent fasting modalities and the typical characteristics of each 

Name Nominal Definition 

5:2 Diet 

 

- Fasting on two days per week 

- 400-600 kcal permitted during fasted 

periods, typically consumed in a single 

meal at lunch 

- Ad libitum intake maintained on the other 

five days 

 

Modified Alternate-Day Fasting 

 

- Fasting on every other day from midnight 

- 300-800 kcal (~20-25% of energy needs) 

permitted during fasted periods as a single 

meal 

- Habitual intake on non-fasting days 

 

Time-Restricted Feeding 

 

- Daily fasting for at least 12-14 consecutive 

hours 

- Complete fasting during defined periods 

(i.e. unsweetened energy-free drinks only) 

- Ad libitum consumption during designated 

feeding windows 

 

Complete Alternate-Day Fasting 

 

- Fasting on every other day 

- Complete fasting during defined periods 

(i.e. unsweetened energy-free drinks only) 

- Ad libitum consumption during non-fasting 

periods 
 

Adapted from (Patterson and Sears, 2017) 
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2.4.1 – The 5:2 Diet 

Amongst the most coveted forms of intermittent fasting in the public domain is the 5:2 

diet, wherein severe energy restriction is imposed on two days per week with ad 

libitum consumption on the remaining five. In a study of 24 obese men, Conley et al. 

(2018) compared such an approach to daily calorie restriction over 6 months. 

Participants were randomly allocated to reduce their energy intake to 600 kcal per day 

for two days a week, or to reduce their energy intake by 500 kcal every day. 

Accordingly, energy and macronutrient intake were reduced in both groups from 

baseline at 3 and 6 months. This resulted in a similar degree of weight loss between 

the intermittent and continuous groups, 5.5% and 5.4% respectively, whilst fasting 

levels of glucose and lipids were unaffected. 

A similar study was conducted by Carter, Clifton and Keogh (2016), who randomised 

63 overweight and obese adults with type 2 diabetes to 12 weeks of either daily calorie 

restriction or a 5:2 approach. The 5:2 group were required to reduce their intake to 

400-600 kcal for two days per week and follow their habitual diet on the remaining 

five, whilst the daily restriction group reduced their daily intake to 1200-1550 kcal per 

day. Although the attained restriction was not reported for either group, in agreement 

with Conley et al. (2018) main effects of time but not group were seen for reductions 

in body mass, fat mass and fat-free mass. Improvements were also seen in both mean 

glycated haemoglobin concentration and the use of diabetic medications, suggesting 

improved glycaemic control in response to both conditions. Similar conclusions were 

also drawn by the study of Sundfør, Svendsen and Tonstad (2018), which compared 

this 5:2 approach (i.e. 400-600 kcal∙day-1 on two non-consecutive days) against daily 

restriction over 6 months. 

This would appear to suggest a broad equivalency between the metabolic impacts of 

the 5:2 diet and daily calorie restriction. However, in a randomised controlled trial of 

107 overweight and obese women, Harvie et al. (2011) observed differential changes 

in fasting insulin and insulin resistance when comparing the two approaches. For six 

months, participants undertook two consecutive days of 75% calorie restriction per 

week or continuously restricted calories by 25% daily. Once again, the resultant 

decrease in body mass was not different between groups. A similar pattern also 
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emerged for decreases in fat mass, fat-free mass, inflammatory markers and fasting 

leptin concentration, as well as improvements in lipid profile. Both interventions also 

resulted in modest reductions in fasting insulin concentration and insulin resistance, as 

assessed by the homeostasis model. However, these were significantly greater with the 

5:2 method when compared to continuous restriction. Although this may reflect a more 

potent influence of using two consecutive days of severe energy restriction, as opposed 

to non-consecutive, there were also greater reductions in energy and carbohydrate 

intake in this group which confound this observation.  

Using a broadly comparable approach, Antoni, Johnston, et al. (2018) sought to 

compare the effects of intermittent energy restriction against daily calorie restriction 

when matched for weight losses, to minimise the confounding influence of such factors 

on metabolic health outcomes. Furthermore, this study featured dynamic indices of 

nutrient metabolism, building upon the prior studies which only featured fasted 

measures. Briefly, 27 overweight and obese participants were randomised to undertake 

either an intermittent or a continuous energy restriction diet. The intermittent diet 

followed a 5:2 format, restricting participants to ~630 kcal per day for two consecutive 

days each week with a self-selected eucaloric diet on the remaining five. 

Comparatively, the continuous restriction implemented a self-selected diet which 

aimed to reduce energy intake by 600 kcal every day. 

As opposed to returning to the lab after a fixed period, participants were instead 

reassessed upon achieving a 5% weight loss. These post-intervention measurements 

also followed a week free from energy restriction, thereby matching for weight loss 

and eliminating any acute effects of the dietary modifications. Despite larger 

reductions in energy intake in the intermittent group, the design meant that changes in 

body mass were similar between groups. Body composition and fasting biochemical 

outcomes were also similarly affected by the two diets, showing good agreement with 

previous studies. However, the intermittent diet resulted in significant reductions in 

postprandial triglyceride concentration relative to daily calorie restriction. 

Furthermore, postprandial C-peptide concentration followed a similar pattern, 

suggesting reduced insulin secretion following intermittent but not continuous 

restriction.  The authors concluded that this highlights a potential superiority of 

intermittent energy restriction relative to continuous.  
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However, while these latter observations do suggest some benefit to shorter and more 

intense periods of calorie restriction when applied on an intermittent basis, the 

interventions do not confine the permitted intake to a specific time window. 

Consequently, they do not necessarily extend the fasting interval relative to continuous 

restriction, and as such may not fully capture the therapeutic potential of intermittent 

fasting (Section 2.3.2).  

2.4.2 – Alternate-Day Fasting 

The majority of human studies which examine intermittent fasting have centred upon 

a strategy referred to as alternate-day fasting (Patterson and Sears, 2017). It differs 

from the 5:2 diet in two key ways; the severe restriction is generally applied during 

alternating periods of 24 hours and the permitted calories during fasting are provided 

as a single meal, thereby ensuring an extension of the typical overnight fast. Johnson 

et al. (2007) were amongst the first to apply this approach in a single group design, 

prescribing 8 weeks of alternate-day fasting to 9 obese participants. The intervention 

involved alternating between 24-hour periods of fasting and ad libitum feeding, with 

only a single 320-380 kcal meal replacement shake permitted during the ‘fasting’ 

period (80% energy restriction). Body mass decreased steadily throughout the 

intervention, resulting in an 8% reduction at follow-up. Although there was no effect 

of this on fasting levels of glucose and insulin, the weight loss was accompanied by 

improvements in fasting lipid profile, reductions in inflammatory markers and 

reductions in markers of oxidative stress. Furthermore, blood samples collected during 

fasting cycles characterised 4-fold increases in serum concentrations of beta-

hydroxybutyrate relative to fed cycles. This is a ketone body which increases with 

prolonged fasting, reflecting that such an approach exerts a profound impact on energy 

metabolism. 

Much of the work undertaken in this field originates from the studies of Varady and 

colleagues, utilising a strategy which is commonly referred to as modified alternate-

day fasting (Patterson and Sears, 2017). This is similar to the intervention employed 

by Johnson et al. (2007), except that during ‘fasted’ periods participants are permitted 

to consume a single 600-800 kcal meal between 12:00 and 14:00 (75% energy 

restriction). The impacts of this approach on weight were initially explored by Varady, 
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Bhutani, et al. (2009) in a single-arm trial. A sample of 12 obese participants 

completed the 10-week study consisting of three components: a two-week control 

phase; a four-week controlled modified alternate-day fasting phase; and a four-week 

self-selected modified alternate-day fasting phase. The control phase effectively 

served to establish stability of body mass before commencing the intervention, whilst 

the latter two phases differed in that the fasting day meal was provided by the research 

team during the controlled phase. 

Adherence to the fasting protocol remained similarly high throughout the intervention 

weeks, with energy intake averaging 26% of habitual (Varady, Bhutani, et al., 2009; 

Klempel et al., 2010). Comparatively, intake on feeding days reached 95% of the 

habitual level, resulting in a 37% calorie restriction on average. This led to weight 

losses of 5.6 kg, 5.4 kg of which was accounted for by decreases in fat mass (Varady, 

Bhutani, et al., 2009). Total cholesterol, LDL cholesterol and triglycerides were also 

reduced by at least 20%, effects which were associated with improvements in 

adipokine profile (Bhutani et al., 2010). Subsequent work by the same group has 

shown that these effects are similar when applied to cohorts of overweight adults 

(Varady et al., 2013), and that meal timing on the fasting day can be varied (Hoddy et 

al., 2014). Furthermore, concurrent macronutrient manipulation does not appear to 

have additive effects, with high-fat and low-fat forms being equally effective in 

lowering body mass and the risk of coronary heart disease (Klempel, Kroeger and 

Varady, 2013). 

Collectively, this suggests that modified alternate-day fasting is a viable means of 

improving cardiometabolic health in overweight and obese adults, which is 

comparable to daily calorie restriction. However, much alike the 5:2 approach and the 

studies of meal frequency (Section 2.3.2), this equivalency between intermittent and 

continuous approaches may actually reflect an inadequate fasting interval. In modified 

alternate-day fasting, the designated ‘fasting’ period is interrupted by the consumption 

of the permitted meal. Consequently, it remains to be seen whether omitting this meal 

and extending the fasting interval beyond ~12 hours may reveal further benefits to 

intermittent fasting. This highlights the fundamental asymmetry of feeding and fasting 

in eliciting a metabolic response; feeding disrupts the fasted state within a matter of 

minutes, which then does not return for a number of hours (Section 2.3.2.4).   
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This issue is compounded by the single-arm nature of the modified alternate-day 

fasting diets discussed so far, as without a comparative daily calorie restriction group 

it is difficult to isolate the effects the fasting periods are having. This was addressed 

recently by a comparison of the two methods under isocaloric conditions with a no 

intervention control group (Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, 

Hoddy, Gabel, et al., 2017; Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, 

Hoddy, Rood, et al., 2017). Briefly, 69 obese adults were randomised to undertake one 

year of modified alternate-day fasting or daily calorie restriction, consisting of a 6-

month weight loss phase and a 6-month weight maintenance phase. Prior to the diets, 

energy requirements were determined using measurements of energy expenditure from 

doubly-labelled water. The alternate day fasting diet restricted participants to a single 

meal between 12:00 and 14:00 during fasting periods as described previously but 

prescribed 125% of energy requirements on feeding days which was spread across 

three meals. The daily calorie restriction diet prescribed a 25% reduction in energy 

intake every day, resulting in an equivalent reduction in energy intake of 25% over the 

first six months in both groups. All foods in the two intervention groups were provided 

for the first three months followed by dietary counselling thereafter to support self-

selected adherence.  

In the first 6 months, macronutrient balance was preserved in both groups and the 

achieved calorie restriction when averaged per group was 21% and 24% for alternate-

day fasting and daily calorie restriction, respectively. Body mass loss was also similar 

between the two groups at 6.8%, a pattern which was paralleled by changes in both fat 

mass and lean mass. Fasted markers of metabolic health were largely unaffected by 

either intervention, including lipid profile, inflammatory markers, adipokines, fasting 

glucose concentration and insulin resistance, as assessed by the homeostasis model 

(Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Gabel, et al., 2017; 

Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Rood, et al., 2017). The 

only exception to this was HDL cholesterol concentration, which was increased with 

modified alternate-day fasting relative to both the daily calorie restriction and control 

conditions.   

For the latter 6 months, energy requirements were reassessed and dietary prescriptions 

were adjusted to maintain body mass whilst continuing with the respective modalities. 
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In the alternate-day fasting group this was achieved by consuming 50% of energy 

needs during the single fasting meal and 150% of energy needs during feeding cycles, 

whilst the continuous group consumed 100% of their measured energy requirements 

each day. As in the first phase, no differences emerged between the intervention groups 

with regard to body mass. Slight regain was seen in both groups but it remained 

reduced relative to controls by -6.0% and -5.3% for alternate-day fasting and daily 

calorie restriction, respectively. This reflected partial regressions of both fat mass and 

lean mass toward baseline values, but once again there was no difference between 

groups. Furthermore, there was no change in most fasting markers of metabolic health, 

although the augmented HDL concentration seen with alternate-day fasting was 

ameliorated at month 12 and LDL cholesterol was increased instead.  

The above study indicates that modified alternate-day fasting and daily calorie 

restriction are equally effective in improving most relevant health outcomes, as 

concluded previously for the 5:2 approach. However, during the modified alternate-

day fasting intervention, participants consistently over-consumed on fasting days and 

under-consumed on fed days, in what the authors describe as de facto calorie restriction 

(Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Gabel, et al., 2017). 

Consequently, over 12 months, the difference in reported energy intake between 

feeding and fasting days was less than 500 kcal on average (Kroeger et al., 2018). 

Upon stratifying the 34 participants that undertook alternate-day fasting into those who 

lost more or less than 5% body mass, those closest to the prescribed intake targets 

showed larger decreases in body mass despite consuming more calories overall 

(Kroeger et al., 2018). Unfortunately, the mechanisms underpinning this are unclear, 

it could reflect a more favourable balance of energy flux within adipose tissue or lower 

levels of adaptive thermogenesis with intermittent methods, or on the other hand it 

may simply reflect poorer dietary reporting by those with lower adherence. 

2.4.3 – Time-Restricted Feeding 

The adherence issues in these modified alternate-day approaches may lie in the 

imposition of a severe restriction as opposed to a complete fast, which in being an 

absolute could facilitate adherence (Varady, Bhutani, et al., 2009; Scheer, Morris and 

Shea, 2013; Johnstone, 2015). Drawing from this premise, time-restricted feeding is 
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another method of intermittent fasting which has emerged recently (Patterson and 

Sears, 2017) and requires no knowledge of food composition or restraint at eating 

occasions, only awareness of the time at which eating occasions are permitted. It aims 

to restrict food intake to a window of 10 hours or less in the waking phase, thereby 

reducing feeding opportunities and extending the overnight fasting period to at least 

14 hours every day (Sutton et al., 2018). In a study by Gabel et al. (2018), 23 obese 

subjects undertook a 12-week time-restricted feeding protocol in which ad libitum 

energy intake was permitted daily between 10:00 and 18:00, with the remaining 16 

hours spent fasting. This represented a 3-hour decrease in feeding time on average 

across the group. Both body mass and energy intake decreased relative to a matched 

control group by 2.6 ± 0.5% and 341 ± 53 kcal∙day-1, respectively, highlighting that 

fasting may alleviate the associated burdens of conventional approaches to calorie 

restriction and offer greater compliance. 

Similarly, the work of Betts and colleagues, which explored the impact of extending 

the overnight fast on energy balance and nutrient metabolism, has direct applications 

in this regard. This is because the intervention randomised 33 lean adults to either 

consume breakfast, defined as over 700 kcal before 11:00 (with half consumed within 

2 hours of waking), or to continue fasting up until 12:00 (Betts et al., 2014). 

Interestingly, improvements in anthropometric parameters and fasting health markers 

were not meaningfully different between interventions. In agreement, a panel of 

hormones implicated in the regulation of energy balance showed little change 

following the two interventions, along with measures of adipose tissue insulin 

sensitivity. However, analysis of subcutaneous adipose tissue biopsies taken before 

and after the intervention did reveal upregulation of genes involved in lipid turnover 

and insulin signalling with extended fasting (Gonzalez et al., 2018). 

These largely null findings relative to prior research could be explained by the non-

prescriptive approach taken to dietary intake and physical activity outside the 

imposition of breakfast or extended fasting. The breakfast group consumed more 

calories than the fasting group when averaged throughout a 24-hour period, but this 

was compensated for by increases in physical activity. Upon applying this protocol to 

a cohort of obese adults (Chowdhury et al., 2016), extended fasting resulted in a 

compensatory increase in energy intake following fasting, whilst regular breakfast 
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consumption was associated with greater physical activity energy expenditure in the 

morning, although this did not result in meaningful changes in body mass or 

composition between groups. However, breakfast did result in improved insulinemic 

responses during an oral glucose tolerance test relative to the fasting condition, which 

is in accordance with the findings of Carlson et al. (2007). Unfortunately, as this test 

was also aligned for circadian cycle rather than feeding cycle, it could simply be a 

reflection of better alignment with anticipated events in the breakfast condition. 

More recent work has explored this proposition by applying time-restricted feeding 

under eucaloric conditions, much alike the study of Stote et al. (2007). Focusing on 

energy metabolism, Moro et al. (2016) randomised 34 men to eight-weeks of time-

restricted feeding or a control diet. Diets were matched for energy and macronutrient 

content and aimed to provide 100% of energy requirements across three meals in both 

conditions. In the control condition, meals were consumed at 08:00, 13:00 and 20:00, 

whilst in the experimental condition meals were consumed at 13:00, 16:00 and 20:00 

to give a 16-hour fast. The time-restricted approach resulted in reductions in fat mass 

relative to controls, which were partnered by decreases in RER, indicating a shift 

toward fat oxidation. Interestingly however, despite accompanying reductions in leptin 

and hypothalamic-pituitary-thyroid signalling, resting energy expenditure was 

maintained. This reinforces the notion that nutrient timing affects energy metabolism, 

given that a more negative fat balance was seen in response to time-restricted feeding 

despite similar dietary intake. Considering this in light of the typical postprandial 

nutrient profile discussed previously, the increase in fasting duration may be restoring 

a more balanced ratio of adipose tissue influx to efflux and providing more 

opportunities for utilisation lipid-derived substrates. This again points to the possibility 

that routine extension of the fasting period beyond 12 hours may be key to these 

benefits, which was not necessarily achieved by the 5:2 or modified alternate-day 

methods discussed thus far. The pivotal question is whether these improvements are 

enhanced with even longer durations of complete fasting. 

This possibility was recently examined by Sutton et al. (2018), who argue that 

circadian rhythms in energy metabolism mean time-restricted feeding could be 

potentiated when feeding windows are confined to earlier stages of the waking phase, 

in what the authors describe as ‘early time-restricted feeding’. This also overcomes the 
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confounding influence of circadian alignment on key outcomes, as it is the termination 

of daily eating that differs between conditions rather than the onset. To test this 

hypothesis, eight pre-diabetic men completed two trial arms of 5 weeks each in a 

randomised crossover design with a 7-week washout. In the control arm participants 

consumed their prescribed calories in three meals spread across a 12-hour window to 

give a 12-hour fast, whilst the experimental condition required the consumption of the 

same meals within a 6-hour window to give an 18-hour fast. The diets were prescribed 

based on energy requirements to maintain energy balance and were also matched for 

energy and macronutrient content. Furthermore, participants standardised the timing 

of the breakfast meal, which defined the start of the feeding period, across trials. 

Compliance to the two conditions was very high and this was mirrored in stable 

measures of body mass during both trial arms. Glycaemic parameters were unaffected 

whilst fasted triglyceride concentrations increased with time-restricted feeding relative 

to controls. However, improvements in fasting insulin were also seen with time-

restricted feeding, together with reductions in peak insulin and insulin resistance 

during an oral glucose tolerance test. Unfortunately, these impacts on insulinaemia 

(i.e. incremental response above baseline) were driven by baseline differences arising 

from a trial order effect, which may explain the contrasts with the observed stability 

in triglyceride levels and deteriorations in postprandial glycaemia seen with routine 

20-hour fasts (Carlson et al., 2007). Furthermore, the fasting duration preceding post-

intervention measurements was not standardised across the trials, which is likely to 

have acutely impacted upon both glucose and lipid metabolism. Although the authors 

argue that these issues are likely to have compromised these beneficial effects as 

opposed to enhancing them, doubt is nonetheless cast, necessitating further research 

with more robust designs. 

Based on these findings, evidence does point to an effect of extended fasting intervals 

on fat mass independent of energy balance, particularly when the fasting interval is 

extended to at least 16 hours, as shown by Stote et al. (2007) and Moro et al. (2016). 

In both cases, this produced significant reductions in fat mass relative to a routine 12 

hour fast, which implicates extended fasting beyond 12 hours as a key factor. However, 

the importance of such changes for metabolic health are less clear due to a series of 

confounding influences.  
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2.4.4 – Complete Alternate-Day Fasting 

Thus far, the intermittent fasting strategies discussed typically permit the consumption 

of calories within each 24-hour cycle to some degree, meaning that the fasting interval 

is only extended by a few hours (Gabel et al., 2018). This is primarily to facilitate 

adherence (Heilbronn, Smith, et al., 2005; Varady, Bhutani, et al., 2009), but the 

disruption of energy efflux from adipose tissue is undermined nonetheless and is 

profoundly asymmetrical, in that even a short feeding bout would suppress lipolytic 

activity for several hours (Coppack et al., 1990; Frayn et al., 1993). Comparatively, 

the 20-hour fasting interval used by Stote et al. (2007) is likely to have led to a lipolytic 

state predominating over the course of 24 hours, which may explain the reduction in 

fat mass despite eucaloric intake. 

Building upon this suggestion, the study of Halberg et al. (2005) applied a 20-hour fast 

on alternate days from 22:00 to 18:00, representing an integration of the strategies 

employed by Stote et al. (2007) and Varady, Bhutani, et al. (2009). Fasting prohibited 

all intake with the exception of water to ensure no disruption of the lipolytic state, 

whilst during the intervening feeding periods participants were told to double their 

habitual intake to maintain weight. Although intake was not monitored, blood samples 

collected in a subset of fasting periods confirmed compliance with the fasting protocol, 

with corresponding changes in glucose, NEFA, glycerol, adiponectin and leptin 

concentration. Although both body mass and fat mass remained unchanged, the 

glucose infusion rate during a euglycaemic-hyperinsulinemic clamp increased 

significantly in the final 30 minutes of the sampling period, suggesting enhanced 

insulin sensitivity. Accordingly, this was accompanied by more rapid suppression of 

adipose tissue lipolysis during the insulin infusion. The lack of an effect on body mass 

and fat mass relative to prior studies may represent the disparity in cumulative fasting 

time, with Stote et al. (2007) and Halberg et al. (2005) imposing 20-hour fasts on 48 

and 7 occasions, respectively. Nonetheless, the authors conclude that this approach to 

intermittent fasting improves metabolic health even in the absence of changes in body 

mass. 

Employing a similar approach, Soeters et al. (2009) sought to explore the associated 

mechanisms more closely using a counterbalanced crossover design. Once again, eight 
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healthy males were recruited and subjected to two weeks of a standard weight 

maintenance diet and two weeks of intermittent fasting, using the same format as 

described previously for the study of Halberg et al. (2005), with a washout period of 

four weeks between the two arms. In this instance, a more prescriptive approach was 

adopted to the feeding cycles, with liquid meals used to bolster intake and adjustment 

of prescription in the event of a meaningful weight change. Accordingly, body mass 

and composition were unaltered, yet there were no significant changes in glucose, lipid 

or protein kinetics in the basal state, or during a two-stage euglycaemic-

hyperinsulinemic clamp. In actuality, the only difference was a slight decrease in 

resting energy expenditure following intermittent fasting, although these values were 

not normalised to body mass or fat-free mass and as such should be treated with 

caution. 

To the contrary of Halberg et al. (2005) and Stote et al. (2007), the above findings 

suggest that recurrent extension of the fasting period exerts no influence on energy or 

nutrient metabolism. The only exception to this was a possible decline in resting 

energy use. Whilst there are some discrepancies in terms of the approach to feeding 

cycles and the method employed to assess nutrient metabolism under dynamic 

conditions, attributing to such factors would suggest the effect is unlikely to be 

clinically meaningful, particularly outside a research context. However, work by 

Heilbronn and colleagues provides some interesting insights that could explain such 

stark contrasts between similar approaches (Heilbronn, Civitarese, et al., 2005; 

Heilbronn, Smith, et al., 2005). The study applied an intermittent fasting intervention 

to a cohort of 16 non-obese adults. This involved fasting from midnight to midnight 

on alternating days for 3 weeks, with fasting periods only permitting energy-free 

drinks and sugar-free gum. Although, it should be noted that chewing has been 

suggested to stimulate insulin secretion (Suzuki et al., 2005). On the intervening days, 

food consumption was ad libitum. Participants were informed that eating twice as 

much as normal would be required to maintain body mass, although it is unclear 

exactly how this information was used as energy intake was not reported. Assessments 

of body composition, a mixed-meal test and muscle biopsies were carried out at 

baseline and follow-up, with an additional set of measurements collected after a 36 

hour fast to explore the physiological impact of individual fasting periods on energy 

metabolism. 
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The intervention reduced body mass by 2.5% on average, approximately two thirds of 

which was accounted for by reduced fat mass. However, the majority of fasting 

parameters, including plasma glucose concentration, RMR, substrate oxidation and 

muscle GLUT4 content showed no notable change (Heilbronn, Civitarese, et al., 2005; 

Heilbronn, Smith, et al., 2005). Key exceptions were sex-specific alterations in 

cholesterol profile, with women experiencing an increase in HDL cholesterol 

concentration and men exhibiting reductions in fasting triglycerides. Values collected 

after 36 hours of fasting confirmed increased fatty acid oxidation, raising the key 

question of why the routine upregulation of fat metabolism combined with body mass 

losses resulted in no consistent changes in metabolic health. However, this pattern of 

sexual dimorphism continued into postprandial outcomes following a mixed-meal test, 

with increases in glucose area under curve for females and reductions in insulin area 

under curve for males (Heilbronn, Civitarese, et al., 2005). Although, it is important 

to note that the pre-trial fasting duration was not standardised across the pre-

intervention and post-intervention meal tests. 

This would appear to suggest that males and females respond differently to this form 

of alternate-day fasting. However, there were a number of baseline differences 

between men and women which should be considered in this interpretation, with men 

exhibiting higher glucose, insulin and triglyceride concentrations in the fasted state 

(Heilbronn, Smith, et al., 2005). Upon contextualising this in the physiology of insulin 

resistance discussed previously (Section 2.1.5), it seems plausible that the metabolic 

state of male participants at baseline would stand to benefit more from the routine 

extension of fasting, introducing some possibility of statistical regression. In these 

individuals, the shift toward fat oxidation seen in response to prolonged fasting could 

help to clear lipid intermediaries from non-adipose tissues, thereby enhancing insulin 

sensitivity. This is supported by the reported increase in CPT1 (Carnitine 

Palmitoyltransferase 1) protein content in muscle tissue after the intervention 

(Heilbronn, Civitarese, et al., 2005), which is rate limiting in shuttling long chain fatty 

acids to the inner mitochondrial membrane for beta-oxidation (Henique et al., 2010). 

Extending this premise to the studies of Halberg et al. (2005) and Soeters et al. (2009), 

the average body fat percentage of their cohorts was 20.1% and 14.8%, respectively. 

This may fit with the notion that those with lower levels of adiposity may not stand to 
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benefit as much from such interventions, with the lower resting energy expenditure 

reported by Soeters et al. (2009) reflecting a more profound adaptive response courtesy 

of the already low levels of body fat. Consequently, it is imperative to consider the 

seemingly distinct responses seen between leaner and more overweight cohorts when 

interpreting the results of such intervention studies. This is not only because the 

potential for weight loss and health gain may vary, but also because the presentation 

as either lean or obese at baseline may be symptomatic of a natural predisposition 

towards various compensatory adjustments that can predict responsiveness to 

treatment.    

Furthering this line of enquiry, Catenacci et al. (2016) undertook a randomised 

controlled trial of complete alternate-day fasting in a sample of obese adults. Briefly, 

26 participants were randomised to undertake 8 weeks of either daily calorie 

restriction, requiring a reduction in energy intake of 400 kcal per day, or a complete 

alternate-day fast. The intermittent fasting condition imposed a fast on every other day 

and provided a diet to meet estimated energy requirements on feeding days, with a 

series of 200 kcal optional food modules to permit ad libitum intake. All foods were 

provided by the study team; however, the diets were only matched for macronutrient 

balance, not energy intake. Consequently, energy intake across the 8-week 

intervention was lower with the intermittent fasting approach, averaging 53% of 

weight maintenance requirements compared to 72% for daily calorie restriction. This 

was accompanied by a trend for greater reductions in body mass with intermittent 

fasting relative to calorie restriction, with 8.8% and 6.2% reductions seen in the 

respective conditions. Despite this, fat mass and lean mass decreased to a similar 

degree in both groups, a pattern mirrored by improvements in fasted lipid profile. Only 

intermittent fasting produced improvements in fasted glucose concentration from 

baseline to follow-up, yet responses to a dynamic test of insulin sensitivity were 

unaltered. Conversely, RMR was reduced by daily calorie restriction only, following 

correction for body composition changes, with a trend for a between-group difference. 

Unfortunately, the discrepancy in energy intake means the effect of this on weight 

change cannot be ascertained. 

Following the intervention, participants were also assessed after 24 weeks of 

unsupervised follow-up to establish the persistence of these changes. Although daily 
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calorie restriction and intermittent fasting characterised a similar degree of weight re-

gain, +2.8% and +1.9% of baseline weight, respectively, the composition of this 

differed between groups. The regain seen with daily calorie restriction was accounted 

for by similar increases in both fat and lean mass, whilst with intermittent fasting only 

lean mass increased. The pattern for RMR also continued, with the adaptive decline in 

energy use following daily calorie restriction remaining throughout the unsupervised 

follow-up period, in agreement with prior studies (Franz et al., 2007). 

This once again suggests that intermittent fasting and daily calorie restriction may 

exert differing effects on energy metabolism, but that extending the fasting period 

beyond 14-16 hours is key. This is well-illustrated by the study of Catenacci et al. 

(2016), as the weight loss and energy restriction were greater with intermittent fasting, 

yet there was no accompanying decline in energy use. However, between-group 

comparisons were compromised by baseline differences, with those in the daily calorie 

restriction group presenting with higher body mass, fat mass and fasting insulin 

concentrations on average.   

2.4.5 – Outstanding Questions in the Literature 

Consistent with the above, intermittent fasting clearly encompasses a broad spectrum 

of dietary interventions. The defining characteristic is the confinement of calorie 

restriction to a specified temporal window, be that 16 hours each day (Moro et al., 

2016), every other day (Heilbronn, Smith, et al., 2005; Varady, Bhutani, et al., 2009), 

or just two days per week (Harvie et al., 2011; Antoni, Johnston, et al., 2018). Across 

these various models, intermittent fasting has been shown to elicit reductions in body 

mass and improvements in metabolic health, effects which appear to be broadly 

comparable to daily calorie restriction interventions (Barnosky et al., 2014). However, 

as the therapeutic potential of these strategies may lie in extending catabolic periods, 

these similarities could instead reflect a failure to actually extend the post-absorptive 

period with several forms of intermittent fasting, particularly the 5:2 diet and modified 

alternate-day fasting. These designs do not give due consideration to the time-course 

of postprandial responses to acute feeding episodes (Coppack et al., 1990; Frayn et al., 

1993).  
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Time-restricted feeding and complete alternate-day fasting overcome this by routinely 

applying a fasting duration of 14 hours or more and will be the focus of this review 

henceforth. This represents a more tangible distinction from typical feeding patterns 

(Moro et al., 2016; Gabel et al., 2018) and has been associated with reduced fat 

accretion and enhanced insulin sensitivity (Heilbronn, Civitarese, et al., 2005; Stote et 

al., 2007; Moro et al., 2016). However, studies deploying these prolonged periods of 

fasting are relatively scarce, and the true effects are difficult to isolate due to order 

effects, metabolically diverse samples, and the use of single-arm trials. 

Identifying more effective strategies for managing obesity and the accompanying 

dysfunction is imperative, and intermittent fasting may represent a potent therapeutic 

tool which capitalises upon circadian rhythms in energy metabolism (Patterson and 

Sears, 2017). However, the research to support this is scarce whilst a number of 

potential facets have been largely overlooked, which will be considered in the 

following sub-sections. Addressing these issues is vital in order to establish whether 

intermittent fasting is simply an alternative means of achieving calorie restriction 

(Gabel et al., 2018), or a dietary strategy which is better aligned with proposed 

evolutionary norms (Halberg et al., 2005). 

2.4.5.1 – Intervention Design 

Firstly, despite the diversity of fasting protocols employed in previous studies, there is 

no robust rationale given for the use of any particular format. The initial study of 

Heilbronn, Smith, et al. (2005) utilised a protocol in which participants fasted on every 

other day from midnight to midnight for 3 weeks. Although this provided the longest 

fasting duration of any such study to date, the use of a night-time transition point may 

have encouraged nocturnal eating, which has been associated with adverse metabolic 

responses (Al-Naimi et al., 2004; Scheer et al., 2009). Halberg et al. (2005) addressed 

this by employing a fast which started at 22:00 and ended at 18:00 the following 

evening, giving a 20-hour duration while encouraging the consumption of food at 

normal waking times. However, the selection of this particular format still lacks a clear 

rationale and gives a reduced fasting opportunity relative to other alternatives.  

In most cases, the structure of interventions employed in intermittent fasting studies 

seems to have been carried over from trials of daily calorie restriction. In doing so they 
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fail to capitalise on the versatility an intermittent approach can provide; while in 

continuous restriction the only variables are the intensity of restriction and the duration 

of the intervention, intermittent approaches can also manipulate the frequency, timing 

and duration of individual restriction periods. Given that a common rationale for 

intermittent fasting is reduced motivational demands (Heilbronn, Smith, et al., 2005; 

Klempel et al., 2010), the arbitrary designs included in most studies to date may fail 

to truly capture the practical potential of intermittent fasting and could actually 

undermine improvements in metabolic health. 

2.4.5.2 – Changes in Energy Expenditure 

Secondly, a key issue with conventional obesity management approaches is 

compensatory changes in other dimensions of energy balance, particularly decreased 

energy expenditure with daily calorie restriction (Section 2.2.4). Yet it is not clear from 

the pre-existing body of intermittent fasting research whether these same 

compensatory changes are invoked. It can certainly be argued that the short-term and 

discontinuous nature of energy restriction in these trials minimises adaptation (Byrne 

et al., 2018); however, if leptin is indeed the key signalling compound in this response, 

then any decline in adipose tissue mass is likely to induce modifications in energy 

expenditure (Rosenbaum et al., 2005; Rosenbaum, Hirsch, et al., 2008). 

The findings of prior research have been relatively inconsistent in this regard. The 

initial work by Heilbronn, Smith, et al. (2005) reported no decrease in RMR following 

3 weeks of intermittent fasting despite reductions in fat mass. Similarly, Catenacci et 

al. (2016) observed that, following adjustment for body composition, RMR decreased 

by 110 kcal∙day-1 in response to 8-weeks of daily calorie restriction, but only by 16 

kcal∙day-1 with intermittent fasting. Moreover, these effects persisted throughout 24 

weeks of unsupervised follow-up. Conversely, Soeters et al. (2009) observed a decline 

in resting energy use of 59 kcal∙day-1 following 2 weeks of eucaloric intermittent 

fasting. However, as discussed earlier, this may reflect the leaner nature of the 

participants in the latter study and the lack of adjustment for body composition. 

Nonetheless, RMR is but one component of total daily energy expenditure. Physical 

activity energy expenditure has scarcely been examined in response to such 

interventions. The study of Klempel et al. (2010) observed no changes in daily step 
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counts during 8-weeks of modified alternate-day fasting, despite clinically meaningful 

weight losses. Whilst it can be argued that pedometers lack the precision to detect such 

effects (Crouter et al., 2003; Corder, Brage and Ekelund, 2007), ensuing studies 

employing accelerometers have verified this outcome (Klempel et al., 2012; Varady 

et al., 2016). However, it should be noted that both of these studies also employed a 

modified alternate-day fasting approach as well, which may have differ in its effects 

relative to complete alternate-day approaches, as discussed previously. 

Although Sutton et al. (2018) also argue that the stability (or at least lack of detectable 

significant differences) of body mass in their eucaloric time-restricted feeding study 

suggests that energy expenditure is not affected by temporal restrictions of energy 

intake, this is not necessarily the case. Dhurandhar et al. (2015) highlight that accurate 

determination of energy balance necessitates measurement of all aspects of the 

equation. Cumulatively therefore, it can be argued that although there are promising 

indications that the compensatory mechanisms reported for daily calorie restriction 

may be blunted by intermittent fasting, the degree of weight loss, the precise form of 

fasting employed and the examination of isolated dimensions of energy expenditure 

prevent reliable conclusions being drawn. There remains a definite need to examine 

the cumulative impact of intermittent fasting on the components of energy expenditure. 

2.4.5.3 – Postprandial Nutrient Metabolism 

The third issue arising from the pre-existing literature is that the majority of studies 

have focused on fasting measures of glucose, insulin and triglycerides, with very few 

studies employing dynamic tests to assess post-prandial responses, which typically 

predominate throughout waking hours. The issue this presents is well-illustrated by the 

impact of intermittent fasting on insulin; improvements in fasting insulin have been 

consistently shown in a number of studies of intermittent fasting, as reviewed by 

Barnosky et al. (2014). They also show that in a subset of these studies fasting indices 

of insulin resistance such as the homeostasis model generally improve following a 

period of intermittent fasting. However, it is important to note that while these fasting 

indices are useful in easing experimental demands, there are several limitations. 

Specifically, Borai et al. (2011) suggest it is possible for a participant to be insulin 

resistant without demonstrating fasting hyperinsulinaemia. 
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The same problems emerge when discussing postprandial glycaemia, whilst 

postprandial lipaemia has been largely ignored. This latter oversight is particularly 

pertinent in light of the potential impact of postprandial lipaemia in the aetiology of 

obesity (Section 2.3.2). On an acute basis, Antoni et al. (2017) demonstrate that a day 

of 100% caloric restriction results in enhanced suppression of postprandial triglyceride 

and NEFA concentrations, relative to habitual intake and partial energy restriction. 

Extending this to the 5:2 approach, a similar pattern emerged with improvements in 

postprandial triglyceride levels with the intermittent condition relative to continuous 

restriction (Antoni, Johnston, et al., 2018). Such effects are also in keeping with the 

enhanced suppression of adipose tissue lipolysis reported by Halberg et al. (2005). 

Given the importance of these outcomes in the context of obesity and the associated 

comorbidities, closer examination is warranted. 

2.4.5.4 – Comparative Designs 

Despite being proposed as an alternative approach to weight loss, few human trials to 

date have directly compared complete alternate-day fasting against daily calorie 

restriction. Although it is generally reported that the outcomes are similar, the broad 

spectrum of cohorts and experimental protocols employed confounds reliable 

comparisons against the pre-existing literature (Varady, 2011). The study of Catenacci 

et al. (2016) is certainly an exception to this pattern, in so far as it directly compared 

complete alternate-day fasting and daily calorie restriction; however, the two 

conditions were not matched for the degree of calorie restriction imposed.  For this 

reason, reaching a consensus on the relative merits of complete alternate-day fasting 

is not possible at this time. 

2.4.5.5 – Fasting-Dependent Effects 

Evidence suggests that fasting may exert independent effects on health outcomes over 

and above those resulting from weight loss. This is supported by Halberg et al. (2005), 

who elicited significant improvements in insulin sensitivity. However, the failure of 

Soeters et al. (2009) to replicate this finding with a near identical fasting protocol calls 

this attribute into question. This conflict may be driven by methodological contrasts in 

baseline adiposity and the refeeding protocol employed, but it leaves a pertinent 

question nonetheless. If fasting-dependent effects on health are established, it may be 
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that conventional meal patterns are contributing to metabolic disturbances irrespective 

of calorie content. This would mean that changes in feeding times could constitute a 

novel dimension of what is considered a healthy diet, as opposed to simply being a 

vehicle for calorie restriction. 
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2.5 – Thesis Objectives 

Collectively, the literature review in this chapter highlights that obesity is a prevalent 

health challenge, which arises due to chronic positive energy balance. The energy 

surplus is deposited as triglycerides within adipose tissue leading to expansion, 

predominantly as a result of adipocyte hypertrophy. If sustained over time, these 

hypertrophic adipocytes become dysfunctional, culminating in chronic low-grade 

inflammation, insulin resistance, hyperglycaemia and hyperlipidaemia, thereby 

fostering comorbidities such as type 2 diabetes and cardiovascular disease. To remedy 

this metabolic dysfunction, interventions look to redress the imbalance by reducing 

energy intake or increasing expenditure, which does typically improve health 

outcomes. However, these improvements are hampered by compensatory changes in 

appetite and energy use, as well as poor adherence, resulting in low long-term success 

rates. 

Thus far, the therapeutic potential of nutrient timing in improving metabolic health has 

been largely overshadowed by the manipulation of the principal components of the 

energy balance equation. However, advances in the understanding of circadian 

rhythms suggest that this could be a particularly potent strategy, given that current 

societal norms result in a lipogenic state predominating in energy metabolism for all 

but a few hours each day. Not only could interventions that manipulate nutrient timing 

help to restore diurnal rhythms in substrate metabolism and encourage lipolysis of 

surplus triglycerides, but these approaches may also be more acceptable in practice 

than conventional alternatives. 

Building upon this premise, several therapeutic interventions have emerged which 

confine energy restriction to designated temporal windows. However, in many cases 

these diets do not increase the opportunity for lipolysis as the fasting period is 

interrupted prematurely by the provision of a small meal to aid motivation and 

adherence. A subset of these strategies have routinely applied fasting durations of 16 

hours and over, which offer promising insights on the potential of this approach. 

However, these studies are relatively sparse, methodologically inconsistent, and 

overlook several potentially key facets of intermittent fasting as a strategy for 

managing obesity and the accompanying dysfunction. Consequently, this thesis will 
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aim to address the following six objectives, thereby providing greater clarity on the 

safety and efficacy of these dietary approaches: 

1. Establish daily rhythms in subjective hunger and appetite under the influence 

of diurnal stimuli to inform the design of an intermittent fasting intervention. 

2. Clarify how intermittent fasting impacts postprandial glycaemic and 

insulinaemic responses using a mixed-meal tolerance test. 

3. Provide a novel exploration of how intermittent fasting affects the three 

components of total daily energy expenditure. 

4. Compare metabolic impacts of intermittent fasting against an isocaloric daily 

calorie restriction intervention. 

5. Isolate the respective contributions of routine fasting and negative energy 

balance to any measured changes in metabolism or health. 

6. To explore the differential responses to intermittent fasting in independent lean 

and overweight/obese cohorts. 
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Chapter 3: General Methods 

This Chapter elaborates upon the methodological techniques employed in the ensuing 

experimental chapters that constitute this thesis. All research activities were conducted 

in accordance with the principles set out by the Declaration of Helsinki (World 

Medical Association, 2013). Ethics approval was obtained from the NHS Research 

Ethics Committee prior to participant recruitment in all cases. The methodology in 

Chapter 4 was authorised under reference number 14/SW/0123 by the Cornwall and 

Plymouth delegation, whilst the protocol for Chapters 5 and 6 was approved under 

reference number 15/SW/0007 by the South West Frenchay committee. In accordance 

with the terms of this approval, site management permission for both protocols was 

obtained from the Research Ethics Approval Committee for Health at the University 

of Bath. In all cases, the University of Bath acted as the research sponsor. 

3.1 – Sampling/Recruitment 

Recruitment for both studies was achieved by means of advertising at the University 

of Bath and the surrounding area in South West England. Interested parties were 

encouraged to contact the research team for more information and were subsequently 

briefed on what the respective protocols would involve, both verbally and in writing. 

Those who expressed both a willingness and ability to undertake the protocol were 

then invited to provide written informed consent for their participation, if deemed 

eligible according to the criteria specified in each chapter. At all times, participant 

consent was voluntary and as such could be withdrawn at any time without justification 

if they so wished. Eligibility was confirmed with a compulsory health screening 

questionnaire and a battery of validated scales to quantify characteristics, such as 

chronotype, physical activity readiness and disordered eating, as necessitated by the 

two studies. To ensure confidentiality, all participants were assigned a unique code 

which was used on all data collection documentation in place of identifiable 

information. 
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3.1.1 – Questionnaires 

In Chapter 4, a series of questionnaires were used to assess participant eligibility and 

characterise the study cohort, including the Morningness–Eveningness Questionnaire 

(Horne and Ostberg, 1976), the Pittsburgh Sleep Quality Index (Buysse et al., 1989) 

and the Munich Chronotype Questionnaire (Roenneberg, Wirz-Justice and Merrow, 

2003). Whilst full descriptions of these questionnaires are available in the original 

citations, an overview of each questionnaire and their key outcomes are provided in 

the ensuing subsections for clarity. 

3.1.1.1 – Morningness–Eveningness Questionnaire 

The premise of this questionnaire is that differences within circadian rhythmicity can 

broadly classify an individual as a ‘morning type’ or an ‘evening type’ (Horne and 

Ostberg, 1976). These differences in diurnal preference lead to distinct patterns of 

energy intake, physical activity and sleep, patterns which need to be considered when 

examining circadian rhythms in vivo (Mota et al., 2016; Maukonen et al., 2017). To 

this end, the questionnaire posits a number of questions pertaining to factors such as 

preferred sleep-wake times, diurnal alertness and optimal performance. Respondants 

are required to provide an answer in all instances, with responses that are consistent 

with morning preference receiving higher scores and those that are consistent with 

evening preference receiving lower scores. Once all the questions have been scored, 

they are summed together to provide a Horne-Ostberg Score, which will fall into one 

of the following categories: definite evening type (score = 16-30), moderate evening 

type (score = 31-41), neither type (score = 42-58), moderate morning type (score = 59-

69) or definite morning type (score = 70-86). 

3.1.1.2 – Pittsburgh Sleep Quality Index 

This questionnaire was developed in order to quantify sleep quality over the previous 

month (Buysse et al., 1989). It poses a series of questions that aim to evaluate seven 

dimensions of global sleep quality: subjective sleep quality, sleep latency, sleep 

duration, sleep efficiency, sleep disturbance, sleeping medication use and daytime 

dysfunction. In this instance, responses that are consistent with higher sleep quality 
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equate to lower scores, with the cumulative total ranging from 0 (no difficulty) to 21 

(severe difficulty in all areas). 

3.1.1.3 – Munich Chronotype Questionnaire 

Much alike the Morningness–Eveningness Questionnaire, discussed previously, the 

Munich Chronotype Questionnaire seeks to assess interindividual variation in the 

temporal organisation of behaviour, particularly the timing of sleep within each day 

(Roenneberg, Wirz-Justice and Merrow, 2003). The questions centre upon establishing 

the clock time at which certain sleep-related events occur, which is done separately for 

work days and free days. These times are then used to establish sleep phase, otherwise 

known as chronotype, which can be used as a reference point for comparisons between 

individuals. Specifically, the midpoint between sleep onset and wake up is typically 

used. Although there are no nominal categories into which individuals can be classified 

in this instance, earlier midsleep times are consistent with morning preference and later 

midsleep times are consistent with evening preference. 

3.2 – Ambient Conditions 

With the exception of free-living measurements (Section 3.6), all further data was 

collected in the Human Physiology Laboratories at the University of Bath. The 

ambient conditions were carefully controlled to ensure consistency of metabolic 

variables both within and between laboratory sessions. Temperature was monitored 

using a thermometer to maintain it within a range of 20-25oC in accordance with best 

practice guidelines for key metabolic outcomes (Compher et al., 2006). Ambient 

lighting in the laboratory was set at an intensity of 800 lux at all times, unless otherwise 

stated.  

3.3 – Body Composition 

3.3.1 – Height 

Height was measured to the nearest 0.1 cm using a wall-mounted stadiometer (Seca; 

Hamburg, Germany) with a working range of 5-230 cm. For all measurements, 
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participants were required to remove their shoes and stand with their heels in contact 

with the baseplate. Researchers ensured that the buttocks, scapula and head were in 

contact with the stadiometer before lowering the scale to meet the participant’s head 

at the most superior point during deep inspiration. 

3.3.2 – Body Mass 

For all measurements of body mass participants were required to wear lightweight 

clothing; where this guidance was not followed, appropriate clothing was provided. 

All measurements were taken immediately post-void and participants removed their 

shoes along with any additional layers, heavy items and jewellery. Measurements were 

taken using a sliding balance scale (424, Weylux; UK) to the nearest 0.1 kg whilst 

participants stood in a relaxed position with their weight evenly distributed between 

their feet. For repeated measurements, as in Chapters 5 and 6, participants were 

required to wear the same lightweight clothing for each session to ensure consistency 

across observations. Body mass and height measurements were then used to determine 

body mass index by dividing body mass (kg) by height (m) squared (Keys et al., 1972). 

3.3.3 – Dual-energy X-ray Absorptiometry 

In Chapters 5 and 6, body composition was assessed using the Dual-energy X-ray 

Absorptiometry (DEXA) method. The principle of this approach is well described by 

Andreoli et al. (2009), wherein the distribution of bone, fat and other (i.e. lean) tissues 

can be established by their propensity for radiographic attenuation at two frequencies, 

hence, ‘dual-energy’. This produces a planar image in which each pixel can be 

classified as either bone, fat, or bone- and fat-free (i.e. lean) (Pietrobelli et al., 1996). 

This is then extrapolated to provide whole-body measurements of bone mineral 

density, lean tissue mass and fat tissue mass. However, while this offers a direct 

measurement and permits the exploration of regional distribution, thereby improving 

upon indirect methods such as circumferences, BMI and bioelectrical impedance, it 

makes a number of assumptions which should be considered (Wells and Fewtrell, 

2006). For instance, the composition of lean mass is assumed to be constant despite 

the capacity for substantial variability, particularly with changes in hydration status, 

although this only impacts toward the extremes of the physiological range (Andreoli 
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et al., 2009). More concerning, is that the scanner cannot adequately compensate for 

changes in trunk thickness in the sagittal plane, as the image obtained only provides a 

cross-section in the frontal plane (Lee and Gallagher, 2008). Consequently, scans are 

best supplemented by indices of trunk thickness to account for changes that may arise 

in longitudinal designs (Williams et al., 2006). 

Scans were obtained at the end of data collection sessions to provide greater control 

over hydration status. For the purpose of the scans, participants voided, wore the same 

lightweight clothing and removed their shoes along with any additional layers, heavy 

items and jewellery. They were then positioned centrally within the scanning frame 

(QDR Discovery W, Hologic; MA, USA) in a supine position with the legs slightly 

abducted and feet inverted (Lorente Ramos et al., 2012). The arms were also slightly 

abducted and placed equidistant to the trunk (Nightingale et al., 2016). In line with the 

recommendations of the manufacturer, prior to each exposure a quality control 

procedure was executed in which a spine phantom with known radiographic 

attenuation properties was scanned to ensure adequate performance. This was 

accompanied by a background radiographic uniformity test at regular intervals, in 

which a whole-body scan was completed whilst the scanning table was empty to ensure 

proper functioning and monitor changes in background radiation levels. 

3.4 – Laboratory Measurements 

3.4.1 – Hydration Status 

Hydration status was assessed at the outset of each lab session in Chapters 5 and 6. 

The objective of this was to ensure consistency across the three visits, as even mild 

dehydration can result in reduced body mass relative to euhydration (Armstrong, 

2005). To this end, participants were required to provide a mid-stream urine sample 

when voiding ahead of the body mass measurement. Samples were then analysed 

immediately for urine specific gravity using an optical refractometer (SUR-NE 

Clinical, Atago; Tokyo, Japan) with a working range of 1.000 to 1.030. This technique 

scales the density of the sample relative to a calibration standard of ultrapure water, 

with greater degrees of solute relative to solution increasing the density, and therefore 

refraction of light, which characterises higher levels of dehydration (Armstrong, 
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2005). To this end, five drops of urine were placed on the stage which was gently 

closed to ensure there were no air pockets within the confines of the refractory 

window. This was then held directly below an ambient light source emitting at 1000 

lux and a reading was taken to the nearest 0.001. Values greater than or equal to 1.020 

were considered indicative of inadequate hydration (Oppliger et al., 2005). 

3.4.2 – Indirect Calorimetry 

Expired gas samples were collected and analysed throughout the experimental work 

that constitutes this thesis to quantify rates of energy production and substrate 

oxidation via indirect calorimetry. The principles underpinning this technique are well 

described by Frayn (1983) and Weir (1949), from which the ensuing descriptions and 

equations have been derived, unless otherwise cited. 

3.4.2.1 – Principles of Indirect Calorimetry 

In basic chemistry, oxidation of a given mass of glucose, fat or protein will consume 

a known quantity of oxygen and produce a known quantity of carbon dioxide 

(equations 1-3). As the amount of energy released per unit of oxygen consumed and 

carbon dioxide released varies by substrate, the cumulative totals of the respective 

gases alone is not sufficient to determine energy needs. Instead, these values must be 

used to determine the grams of each substrate that have been oxidised, which can then 

be used to estimate how many units of energy have been released. However, as the 

oxygen uptake and carbon dioxide of an organism are each the product of three 

unknowns (i.e. the amount of glucose, fat and protein consumed), this remains 

somewhat problematic. 

1 𝑔 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 0.746 𝐿 𝑂2 → 0.746 𝐿 𝐶𝑂2 + 0.6 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                       (1) 

1 𝑔 𝐿𝑖𝑝𝑖𝑑 + 2.029 𝐿 𝑂2 → 1.430 𝐿 𝐶𝑂2 + 1.09 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                          (2) 

1 𝑔 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 + 0.966 𝐿 𝑂2 → 0.782 𝐿 𝐶𝑂2 + 0.45 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                     (3) 
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Focusing initially on protein metabolism, in addition to carbon dioxide being released 

as a waste product, nitrogen is also excreted through urine, predominantly in the form 

of urea (Skogerboe et al., 1990). As nitrogen accounts for approximately 16% of 

protein by weight, measurement of urinary nitrogen excretion (Section 3.4.3) can be 

used to estimate protein breakdown (equation 4), along with the accompanying amount 

of oxygen consumed and carbon dioxide produced via modification of equation 3 

(equation 5), thereby removing one of the unknowns. 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 = 6.25 𝑥 𝑢𝑟𝑖𝑛𝑎𝑟𝑦 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 (𝑁)                                                (4) 

1 𝑔 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 + 6.038 𝐿 𝑂2 → 4.888 𝐿 𝐶𝑂2 + 2.81 𝑔 𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                 (5) 

Although no similar method can be adopted for carbohydrate or fat, the ratio of carbon 

dioxide produced to oxygen consumed during carbohydrate oxidation is 1:1. This 

means that if urinary nitrogen excretion is known, any discrepancy between oxygen 

uptake and carbon dioxide production can only be explained by oxidation of fat, which 

has a ratio 0.695. In knowing this, the amount of oxidised lipid can be determined as 

a function of oxygen consumption, carbon dioxide production and urinary nitrogen 

excretion (equation 9), before itself being used to determine the rate of carbohydrate 

metabolism (equation 11). This is shown mathematically in equations 6-11, wherein 

equation 7 is subtracted from equation 6 to give equation 8, which is then rearranged 

for equation 9. Equation 9 is subsequently substituted back in to equation 6 to give 

equation 10, before rearranging to give equation 11.  

�̇�𝑂2 = (0.746 𝑥 𝑔𝑙𝑢𝑐𝑜𝑠𝑒) + (2.029 𝑥 𝑙𝑖𝑝𝑖𝑑) + (6.038 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                      (6) 

�̇�𝐶𝑂2 = (0.746 𝑥 𝑔𝑙𝑢𝑐𝑜𝑠𝑒) + (1.430 𝑥 𝑙𝑖𝑝𝑖𝑑) + (4.888 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                   (7) 

�̇�𝑂2 −  �̇�𝐶𝑂2 = (0.599 𝑥 𝑙𝑖𝑝𝑖𝑑) + (1.150 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                                             (8) 

𝐿𝑖𝑝𝑖𝑑 = 1.67 (�̇�𝑂2 −  �̇�𝐶𝑂2) − (1.92 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                                                    (9) 

�̇�𝑂2 = (0.746 𝑥 𝑔𝑙𝑢𝑐𝑜𝑠𝑒) + (3.388 𝑥 �̇�𝑂2) − (3.388 𝑥 �̇�𝐶𝑂2) −

(2.144 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                                                                                                            (10) 
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𝐺𝑙𝑢𝑐𝑜𝑠𝑒 = (4.542 𝑥 �̇�𝐶𝑂2) − (3.201 𝑥 �̇�𝑂2) + (2.874 𝑥 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)                 (11) 

Once the amount of each substrate that has been oxidised is determined, multiplying 

them by their respective caloric equivalents and summing the outcomes will yield a 

value for energy expenditure over the specific time frame.  

3.4.2.2 – Expired Gas Collection and Analysis 

In accordance with best practice guidelines for resting samples (Compher et al., 2006), 

participants were required to rest in a semi-supine position for 20 minutes prior to 

sample collection. A nose clip was then applied to eliminate nasal breathing and a 

mouthpiece inserted which was attached to a one-way respiratory valve (Hans 

Rudolph; MO, USA). This was connected to a fully evacuated 200 L Douglas Bag via 

falconia tubing, thereby creating a closed system from the point of expiration to allow 

a sample of expired air to be collected within a desired timeframe, five minutes in the 

case of a resting sample. The mouthpiece and noseclip were placed at least 30 seconds 

prior to the collection period to clear ambient air from the system (Compher et al., 

2006). During sampling, ambient temperature and barometric pressure were recorded, 

alongside ambient oxygen and carbon dioxide concentrations via paramagnetic and 

infrared sensors (MiniMP 5200, Servomex; Sussex, UK), respectively. These sensors 

were calibrated using a two-point method at the outset of each trial using gases of 

known concentration (British Oxygen Company; Guildford, UK). Following 

collection, expired samples were also analysed for oxygen and carbon dioxide fraction, 

with the flow rate recorded for correction of expired volume. The temperature and 

remaining volume of the expired gas were then obtained using an in-line thermistor 

probe (Checktemp 1, Hanna Instruments; Bedfordshire, UK) and a dry gas meter 

(Harvard Apparatus; Cambridge, UK), respectively. All volumes were then 

standardised for pressure (760 mmHg) and temperature (0oC) of a dry gas. Using these 

parameters, oxygen uptake (V̇O2) and carbon dioxide production (V̇CO2), the principal 

components of the ensuing calculations (Weir, 1949; Frayn, 1983), were determined 

using the Haldane Transformation (Haldane, 1912; McArdle, Katch and Katch, 2015). 

In situations where a sample of expired air was required during exercise, as in Chapters 

5 and 6, a facemask (Hans Rudolph; MO, USA) was attached to the one-way 
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respiratory valve in place of the mouthpiece. Elasticated straps were fastened around 

the head and adjusted to ensure an air-tight seal. This was for the purposes of 

participant comfort when collecting samples during treadmill locomotion. 

3.4.3 – Nitrogen Excretion 

During Chapters 5 and 6, resting values of energy and substrate metabolism are also 

corrected for rates of protein oxidation. Throughout the postprandial period, this 

required collection of total urine output into 500 ml containers prepared with 5 ml of 

a 10% thymol–isopropanol solution, which acted as a preservative. Following the 

conclusion of the 3-hour measurement window, the samples were combined to 

determine urinary volume, and a homogenous 1 ml sample was aliquoted and frozen 

for subsequent analysis of urinary urea concentration (Section 3.5.1), which is assumed 

to represent approximately 90% of urinary nitrogen excretion (Skogerboe et al., 1990). 

The first and last blood samples collected during the measurement window were also 

analysed for plasma urea concentration (Section 3.5.1). Upon obtaining these 

parameters, it was then possible to estimate the rate of protein oxidation using the 

method described by Jéquier and Felber (1987), thereby allowing measurements of 

energy expenditure and substrate oxidation to be corrected for protein oxidation.  

3.4.4 – Blood Sampling 

3.4.4.1 – Venepuncture 

Venepuncture was used to obtain a blood sample when only a single sample was 

required in a given laboratory session. To this end, a suitable vein in the antecubital 

fossa was identified and the surrounding skin sterilised with an alcohol swab. 

Following a 30 second pause for evaporation, a 21G needle (BD; NJ, USA) was then 

inserted into the lumen of the vessel and the desired volume of venous blood was 

drawn into a 10 ml syringe. The needle was then withdrawn and disposed of 

accordingly whilst pressure was applied to the sampling site. The sample was 

dispensed immediately across 5 ml sample tubes coated with 

ethylenediaminetetraacetic acid (EDTA) and centrifuged to separate the supernatant. 

Unless otherwise stated hereafter, all blood samples were centrifuged (Biofuge Primo 
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R, Heraeus, Germany) at 3466 x g for 10 minutes at 4oC, before being aliquoted and 

frozen at -80oC pending subsequent analysis. 

3.4.4.2 – Cannulation 

Where recurrent blood samples were required in the same laboratory session, an 

indwelling intravenous cannula was used. As before, a suitable vein was identified in 

the antecubital fossa and sterilised. Following evaporation, a 20G intravenous cannula 

(Venflon, BD; NJ, USA) was inserted into the lumen and attached to a sampling valve 

(Octopus Biovalve, Vygon; Swindon, UK) before the cannula was secured with a 

dressing (Veca-C, BD; NJ, USA). Blood samples were then drawn at the desired 

intervals into a 5 ml or 10 ml syringe and immediately dispensed into an appropriate 

sample tube before being centrifuged as described previously. After each draw the 

cannula was flushed with a matched volume of a 0.9% sodium chloride solution (B. 

Braun; Hessen, Germany) to keep it patent throughout the trial. Consequently, with 

the exception of the first draw, the first 3 ml of blood at each sampling interval was 

discarded to avoid the confounding influence of saline dilution on the outcomes of 

interest.  

3.4.4.3 – Arterialised-Venous Sampling 

To glean insights on the exposure of peripheral tissues to plasma metabolites, arterial 

concentrations are necessary (Copeland, Kenney and Nair, 1992). Owing to the 

associated risks these methods are scarcely used, causing many to default to venous 

samples from the antecubital fossa (Edinburgh et al., 2017). However, this assumes 

that venous concentrations are directly proportional to those in the artery. The 

arteriovenous difference in glucose concentration varies with tissue sensitivity and 

hormone concentrations, meaning that venous samples alone provide an incomplete 

picture of peripheral glucose kinetics (Liu et al., 1992). This is particularly problematic 

in intervention studies such as those discussed in Chapters 5 and 6, because tissue 

sensitivity and hormone concentrations can be affected by dietary modification 

(Johnson et al., 2016). 
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To overcome this, a heated-air box was used to permit the sampling of arterialised-

venous blood, which closely approximates arterial samples for concentrations of 

oxygen, glucose and lipids (McGuire et al., 1976; Jensen and Heiling, 1991; Liu et al., 

1992). The degree of arterialisation has also been shown to be superior to alternative 

methods of heating, including the heating pad approach (Jensen and Heiling, 1991), in 

addition to being more practical (Zello et al., 1990).  This technique was used in 

Chapters 5 and 6 in line with the method described by Edinburgh et al. (2017). 

Specifically, for 10 minutes prior to arterialised-venous sampling intervals, 

participants were asked to place the hand of their cannulated arm into a heated-air box 

(University of Vermont; VT, USA), the internal environment of which was held steady 

at 55oC. This method has been shown to be sufficient for arterialisation, with oxygen 

saturation increasing from 67% to 96% (Kurpad, Khan and Elia, 1994). Following this 

10-minute interval, the blood sample was drawn from the cannula and handled as 

previously described. 

3.4.5 – Visual Analogue Scales (VAS) 

VAS were employed within Chapter 4 to evaluate subjective ratings of motivation to 

eat (Stubbs et al., 2000). At the desired measurement intervals, participants were 

provided with an A4 sheet featuring eight visual scales. Each scale posed a question 

relating to a specific dimension of appetite (e.g. “how hungry do you feel?”), before 

presenting a 100 mm horizontal scale with defined extremes (e.g. “not at all hungry” 

and “as hungry as I have ever been”). Participants were asked to place a vertical line 

that intersected the scale to denote their respective sensations relative to the two 

extremes at the time of asking. The scales encompassed, hunger, fullness, prospective 

consumption, thirst and desire to eat specific food types (sweet, salty, savoury, fatty). 

The horizontal distance between the start of the scale and the intersecting line was 

measured to the nearest millimetre. 
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3.5 – Biochemical Assays 

3.5.1 – Spectrophotometry 

Concentrations of plasma glucose, cholesterol, low-density lipoprotein cholesterol, 

high-density lipoprotein cholesterol, triglycerides, non-esterified fatty acids, glycerol 

and urea were determined using an automated clinical chemistry analyser (RX 

Daytona, Randox Laboratories; Country Antrim, Northern Ireland). All necessary 

reagents were obtained from the manufacturer (Randox Laboratories; Country Antrim, 

Northern Ireland) and the analyser was calibrated using commercially-available 

standards of known concentration (Randox Laboratories; Country Antrim, Northern 

Ireland). Furthermore, daily quality controls were performed to ensure consistent 

performance of the machine (Acusera, Randox Laboratories; Country Antrim, 

Northern Ireland). Urinary urea concentration was determined using the same 

approach and assay as for plasma urea concentration, however, samples were diluted 

using ultrapure water (1+10 ratio) in accordance with the manufacturer’s instructions. 

3.5.2 – Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA techniques were employed to determine concentrations of insulin (Mercodia; 

Uppsala, Sweden), leptin (R&D Systems; MN, USA) and unacylated ghrelin (SPI Bio; 

Yvelines, France). The principles of these techniques have been described previously 

by Aydin (2015). The absorbance of the final solution was measured using a 

microplate reader (Spectrostar Nano, BMG Labtech; Buckinghamshire, UK) at the 

wavelength specified by the assay manufacturer. 

3.5.3 – Radioimmunoassay (RIA) 

RIA techniques were employed in the quantitation of plasma melatonin concentration 

in Chapter 4, the underpinning principles of which were recently summarised by 

Grange, Thompson and Lambert (2014). Specifically, a commercially-available assay 

was employed (Surrey Assays Ltd., University of Surrey; Guildford, UK), which has 

been previously described by Fraser et al. (1983).  
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3.5.4 – Assay Performance 

The inter- and intra-assay coefficient of variation for each test is shown in Table 3.1. 

Table 3.1: Performance characteristics of biochemical analytical techniques (mean ± SD) 

Analyte Method 
Coefficient of Variation (%) 

Intra-assay Inter-assay 

Glucose Photometric 3.0 ± 0.7 3.3 ± 0.3 

Cholesterol Photometric 4.0 ± 0.9 3.8 ± 1.1 

HDL Cholesterol Photometric 4.2 ± 1.8 5.3 ± 0.4 

LDL Cholesterol Photometric 2.1 ± 0.5 2.3 ± 0.5 

Triglycerides Photometric 4.4 ± 1.9 4.9 ± 2.2 

NEFA Photometric 5.6 ± 2.0 8.8 ± 3.9 

Glycerol Photometric 12.4 ± 5.0 17.7 ± 6.1 

Urea Photometric 3.0 ± 0.4 2.9 ± 1.1 

Insulin ELISA 5.5 ± 7.4 10.6 ± 6.1 

Leptin ELISA 3.2 ± 0.2 4.4 ± 1.0 

Unacylated Ghrelin ELISA 5.7 ± 1.0 15.7 ± 2.6 

Melatonin RIA 9.7 ± 4.9 16.5 ± 8.7 

Abbreviations: HDL = High Density Lipoprotein; LDL = Low Density Lipoprotein; 

NEFA = Non-Esterified Fatty Acids. 

 

3.6 – Free-Living Measurements 

3.6.1 – Energy and Macronutrient Intake 

The merits of differing approaches to dietary monitoring were discussed previously in 

Section 2.1.2, and as such this discussion will focus only on the methods employed in 

this programme of research. 

Throughout these studies, a weighed inventory of food and fluid consumption was 

employed as the primary medium for quantifying energy and macronutrient intake. For 

all measurements, participants were provided with an A5 record booklet and a set of 

digital scales to create their record. The booklet provided details of how to record their 

diet accurately, including a worked example and a frequently asked questions section 

which was explained thoroughly by the researcher. Two sides of A4 were provided per 

day of monitoring, featuring a recording table and a comments section for recipes and 

other information participants deemed relevant. Participants were asked to specify the 
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time of consumption, the brand or restaurant, a full description of the item and a 

serving size. Where possible, participants were asked to record the cooking method 

and cooked weight of the item, providing the weights of raw ingredients and recipes 

in the comments section. In scenarios where a weighed portion size was not possible, 

participants were asked to provide an approximation based on perception (e.g. small 

portion) or UK household equivalents (e.g. 3 tablespoons). Spare record tables were 

provided at the back of the booklet in the event further space was required. 

Furthermore, where packaged foods were consumed, participants were encouraged to 

retain the packaging for more precise analysis of energy and macronutrient content. 

All records were analysed using NutriticsTM Research Edition (version 5.031; Dublin, 

Ireland). Where specified, energy and macronutrient content were sourced directly 

from manufacturers and added to a custom foods database. In situations where the food 

was fresh, the manufacturer was not given, or the composition was unavailable, a series 

of databases were used to provide standard vales, including composition of foods 

integrated dataset which is based on the work of McCance and Widdowson (Public 

Health England, 2015; Roe et al., 2015). All records for a given participant were 

analysed by the same researcher to ensure consistency. Total energy intake and the 

fractions contributed by each of the four main macronutrients were determined and 

carried forward to subsequent analysis. 

Although the weighed inventory is prone to threats such as observational and recording 

bias relative to the reference standard of covert observation, the logistical challenges 

associated with the latter limit its utility to validation scenarios (Stubbs et al., 2014). 

Given that diet records tend to perform better than other free-living metrics, including 

the food frequency questionnaire, 24-hour recall and diet history methods (Black, 

Welch and Bingham, 2000; Prentice et al., 2011; Stubbs et al., 2014), this was the 

most appropriate choice considering the objectives of the research. The decision to 

utilise a weighed record as opposed to portion size estimates was predicated on the 

variability in subject capacity to accurately estimate portion size (Williamson et al., 

2003; Gibson et al., 2016).  

The primary flaw of the weighed inventory method is participant burden (Shim, Oh 

and Kim, 2014). This can lead to reporting fatigue and greater inaccuracy with longer 
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durations, yet shorter periods fail to capture the variability in day-to-day intake across 

the week (Trabulsi and Schoeller, 2001; Whybrow, Horgan and Stubbs, 2008; Fyfe et 

al., 2010; Ortega, Pérez-Rodrigo and López-Sobaler, 2015; Fuller et al., 2017). 

Consequently, the duration of recording windows was carefully considered depending 

on the purpose of the resulting data. In Chapters 5 and 6, wherein habitual intake was 

evaluated for use in dietary prescription, repeated 3-day diet records were utilised. 

Participants were instructed to include a representative balance of working and non-

working days (where relevant) and to separate each period by at least two days, thereby 

retaining accuracy whilst minimising the associated burden of continuous monitoring. 

In the latter stages of the protocol, the purpose of monitoring shifted from establishing 

intake to monitoring compliance. Consequently, 6-day dietary records were applied at 

the start and end of all three interventions, with the extended duration serving to 

capture a representative sample of fasting and feeding cycles across the week in the 

case of intermittent fasting groups. In Chapter 4, the diet records were used simply to 

characterise intake and establish compliance with standardisation procedures across 

the group. 

3.6.2 – Physical Activity Energy Expenditure 

Data pertaining to physical activity energy expenditure was captured using combined 

heart rate and accelerometry methods. ActiheartTM monitors (Cambridge 

Neurotechnology; Cambridge, UK) were worn continuously by participants during 

periods of dietary recording; they were only removed during these times for activities 

in which the monitor would be directly exposed to water. Such activities were recorded 

in an activity log and adjusted for when analysing the data, using information from the 

Compendium of Physical Activities (Ainsworth et al., 2011) and measurements of 

resting metabolic rate. The monitors were positioned above the heart at the level of the 

Xyphoid process, as described by Brage et al. (2007), and were secured using either 

adhesive pads (3M, UK) or a chest-strap (Cambridge Neurotechnology; Cambridge, 

UK) depending on participant preference. 

Upon analysing the data, estimates of physical activity energy expenditure are made 

using a group calibration setting by default. In this instance, the relationship between 

heart rate and physical activity intensity, from which estimates are interpolated, is 
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based on data obtained from a sample of 51 adults (Brage et al., 2007). However, the 

authors highlight that an individual-calibration procedure can account for over 95% of 

the variance in the relationship between heart rate and physical activity intensity, 

providing more precise measurements at the individual level. Consequently, an 

adapted version of the treadmill protocol employed by Brage et al. (2007) was used to 

calibrate the ActiheartTM monitors on a participant-by-participant basis in Chapters 5 

and 6. 

To this end, participants were led through an exercise test on a treadmill (Valiant, 

Lode; Groningen, Netherlands), which involved four incremental stages of 3 minutes 

each; level walking (3.2 km∙h-1 +0% gradient), brisk level walking (5.2 km∙h-1 +0% 

gradient), brisk uphill walking (5.8 km∙h-1 +10% gradient) and level running at a self-

selected pace (9.0-12.0 km∙h-1 +0% gradient). During each stage, the first two minutes 

were designed to elicit a steady state before measurements of heart rate and energy 

expenditure were taken in the final minute. In situations where steady state was not 

achieved in the designated window, as evidenced by progressive increases in heart 

rate, the sampling period was delayed until heart rate stabilised. Heart rate was 

measured using a heart rate sensor mounted on an ECG chest strap (H7, Polar Electro; 

Kempele, Finland) which was connected via Bluetooth to a watch (RS400, Polar; 

Electro; Kempele, Finland). Energy expenditure was determined simultaneously using 

indirect calorimetry, as previously described in Section 3.4.2.  The test was ended 

prematurely if heart rate exceeded 90% of age-predicted maximum or if participants 

asked to stop. 

The relationship between heart rate and energy expenditure in sequential stages was 

then plotted as a segmental linear regression. As the manufacturer software only 

permitted entry of energy expenditure values at increments of 10 bpm, average heart 

rate readings were rounded accordingly to the nearest increment, and the associated 

energy expenditure parameter was interpolated using the equation from the relevant 

segment of the regression. The software classifies the heart rate data from each 1-

minute epoch as one of four states; “lost”, “interpolated”, “recovered” or “OK”. Data 

is considered to be lost or OK depending on the physiological plausibility of the value. 

The manufacturer defines implausible as a value less than 30 bpm, a change of over 

100 bpm relative to the previous epoch, or a 75% increase relative to the average heart 
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rate from the last four epochs. In these instances, the raw value is replaced with zero 

and labelled as lost, with activity estimates relying solely on accelerometry data, if 

available. Recovered data then takes each of these zero points and uses the inter-beat 

interval to estimate heart rate instead; if this is within 30 bpm of the last valid epoch 

then the estimated value supplants the lost data point and is labelled as recovered. At 

this stage, any gaps of less than five sequential epochs are interpolated from the epochs 

at either side and categorised as interpolated. 

Although no guidance is available from the manufacturer or the wider literature on the 

acceptability of differing degrees of data loss and recovery, the merit of this approach 

lies in the combination of the two data types (Haskell et al., 1993; Luke et al., 1997; 

Rennie et al., 2000; Brage et al., 2004). Consequently, in cases where over 10% of the 

data on a given monitoring day was lost, excluding any missing data arising from 

water-based activities, that day was removed from further analysis (Farooqi et al., 

2013). Inevitably, most days featured a fraction of lost data as the device was removed 

for routine activities such as bathing. This acceptable fraction of lost data was handled 

by adjusting daily values for the fraction of missing data in accordance with the 

recommendations of Catellier et al. (2005). Although recovered data was less of a 

threat to accuracy, given that both heart rate and accelerometery data were available, 

visual inspection of the trace revealed a tendency to underestimate actual heart rate in 

most cases. Consequently, a conservative threshold of 25% was set on recovered data, 

to ensure that this tendency did not lead to excessive underestimation. 

The measurement of physical activity in Chapters 5 and 6 served to quantify changes 

in physical activity energy expenditure in response to the interventions, as well as 

changes in the manner in which this was accrued. Although the free-living reference 

standard of doubly-labelled water is well-supported for the former, it lacks the 

resolution to explore the subtle modifications in the various dimensions of physically 

active behaviours previously reported in response to dietary modification (Betts et al., 

2014; Chowdhury et al., 2016). Furthermore, the assumed respiratory exchange ratio 

of 0.85 is prone to violation by the extreme dietary patterns applied in Chapters 5 and 

6 (Halberg et al., 2005; Heilbronn, Smith, et al., 2005; Schmidt et al., 2013). 
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Comparatively, ActiheartTM monitors have been shown to provide valid and reliable 

measurements of both heart rate and activity counts, whilst estimates of physical 

activity energy expenditure derived from this data show good performance relative to 

doubly-labelled water (Brage et al., 2015). This is further enhanced with the inclusion 

of an individual calibration, as was the case in Chapters 5 and 6. Furthermore, 

ActiheartTM monitors provide data over long periods at 1-minute epochs, providing the 

necessary resolution to explore the temporal shifts in physically active behaviours that 

may accompany intermittent fasting. 
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Chapter 4: Diurnal rhythms in appetite under 

conditions of semi-constant routine. 

4.1 – Introduction 

Circadian rhythms describe the rhythmic fluctuations in mammalian physiology and 

behaviour which occur with approximate 24-hour periodicity across most species (Van 

Gelder and Buhr, 2016). Such rhythms seek to align physiological processes with 

anticipated environmental events to optimise the outcome (Johnston, 2014), thereby 

enhancing survival in an evolutionary context (Panda, Hogenesch and Kay, 2002). As 

understanding of circadian rhythms has continued to advance, nutritional interventions 

are beginning to explore their therapeutic potential in treating conditions such as 

obesity (Mattson et al., 2014; Patterson and Sears, 2017). Given the motivational 

demands associated with continuous energy restriction (Dansinger et al., 2005; 

Klempel et al., 2010; Ahern et al., 2011), it has been suggested that structuring 

interventions around circadian rhythms in appetite could be beneficial (Varady, 

Bhutani, et al., 2009; Scheer, Morris and Shea, 2013; Carnell et al., 2018). 

Scheer, Morris and Shea (2013) were the first to explore circadian rhythms in 

subjective appetite ratings. The study employed a forced desynchrony protocol in 

which participants were exposed to a recurring 20-hour behavioural cycle for 13 days. 

As this temporal rhythm of environmental cues lies outside the entrainable range 

(Scheer, Morris and Shea, 2013), it uncouples them from the endogenous clock and 

allows the underlying rhythm to be isolated, as the environmental cues are distributed 

evenly throughout the endogenous period (Pagani et al., 2010). This revealed that 

subjective ratings of hunger derived from visual analogue scales (VAS) did indeed 

characterise a circadian rhythm, peaking in the biological evening at 19:50 and 

reaching their nadir shortly after waking. This pattern was mirrored in ratings of 

prospective consumption and food preference, with the only exceptions being fullness 

and the desire to consume vegetables and dairy products. Comparable rhythms have 

also been observed by Sargent et al. (2016) and Wehrens et al. (2017), using similar 

approaches in order to isolate the underlying oscillations (Duffy and Dijk, 2002).  
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However, whilst these constant routine and forced desynchrony protocols are useful in 

unmasking such endogenous rhythms, the utility of these rhythms in intervention 

design is less clear. This is because they remove the diurnal rhythm of behavioural 

cues, such as sleep and feeding, which could alter or even subvert this rhythm in an 

ecologically valid setting (Scheer, Morris and Shea, 2013; McHill et al., 2018). 

Consequently, if such rhythms are to be effectively applied in intervention design, 

there is a definite need to establish 24-hour rhythms in subjective appetite ratings under 

diurnal conditions, which no study has examined to date. 

The potential impact of these diurnal behaviours is well-characterised when discussing 

rhythms in ghrelin, an orexigenic peptide which contributes to sensations of hunger by 

acting on the hypothalamus (Cummings et al., 2001; Austin and Marks, 2009). To 

date, only one study has concurrently measured circadian rhythmicity in subjective 

appetite ratings and ghrelin concentrations, which revealed similarly phased rhythms 

(McHill et al., 2018). In combination with the wider literature on the role of ghrelin in 

appetite regulation (Cummings et al., 2001; Garin et al., 2013; Gibbons et al., 2013), 

this would therefore appear to suggest that the endogenous rhythm in hunger is driven 

to an extent by endogenous rhythms in ghrelin. 

In light of this broad concordance, an interesting observation is that these rhythms in 

ghrelin concentration have been shown to change in response to diurnal environmental 

influences. For instance, the observations of Dzaja et al. (2004) suggest that sleep 

modifies the endogenous rhythm in plasma ghrelin concentration by exerting a 

suppressive effect. Focusing instead on the role of feeding, the findings of Cummings 

et al. (2001) implicate decreasing postprandial suppression of ghrelin secretion with 

successive meals as the driving factor behind diurnal rhythms in ghrelin concentration. 

This is also reinforced by the consistent observation that ghrelin concentrations 

decrease over time in response to prolonged fasting (Espelund et al., 2005; Natalucci 

et al., 2005). As such, it can be argued that the diurnal rhythm of ghrelin secretion is 

capable of being modified by both feeding and sleeping, effects which may be able to 

modify the aforementioned rhythms in subjective appetite as well. 

Insights as to how these diurnal and circadian aspects of appetite regulation might 

interact can be gleaned from the study of  Stratton, Stubbs and Elia (2003). This 
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examined waking profiles of subjective appetite ratings during a typical meal pattern 

(i.e. breakfast, lunch and dinner) either in the presence or absence of diurnal enteral 

tube feeding. This showed that the addition of enteral tube feeding, and the resulting 

steady influx of nutrients, did not reduce subjective ratings of appetite or ad libitum 

consumption throughout the day. Whilst this does support the notion that rhythms in 

subjective appetite could be robust to changes in feeding pattern, the unphysiological 

nature of tube feeding means that the possibility that subjective appetite is responsive 

to the cephalic phase of appetite regulation cannot be ruled out (Stratton and Elia, 

1999). More importantly though, no rhythmic analyses were performed, meaning it 

cannot be ascertained whether there were differences in how acute responses to feeding 

changed throughout the day. 

Consequently, the present study aimed to quantify 24-hour rhythms in subjective 

appetite under diurnal conditions (i.e. feeding/fasting, waking/sleeping). This was 

done using hourly isocaloric feedings throughout waking hours in an attempt to 

suppress the postprandial ghrelin rebound, which may drive previously reported 

rhythms (Cummings et al., 2001; Spiegel et al., 2011). Collectively, this will establish 

the utility of rhythms in subjective appetite as a concept around which time-related 

dietary interventions can be structured. Based on the findings of Stratton, Stubbs and 

Elia (2003), it was hypothesised that subjective appetite ratings would continue follow 

the circadian rhythm reported by Scheer, Morris and Shea (2013), despite the revised 

feeding schedule.  
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4.2 – Methods 

Using a single-group design, rhythms in subjective appetite ratings were quantified 

under conditions of semi-constant routine, as previously described by Mäntele et al. 

(2012). Briefly, participants were monitored over 24 hours in a laboratory setting, with 

a designated sleeping opportunity and hourly isocaloric feedings during waking 

periods to preserve diurnal inflences, as necessitated by the study objectives. VAS 

were completed hourly during waking periods to measure subjective appetite ratings, 

whilst hourly blood samples were collected throughout to monitor accompanying 

rhythms in unacylated ghrelin, leptin and melatonin concentration. Ethics approval for 

the experimental protocol (detailed below) was obtained from the NHS research ethics 

committee (reference: 14/SW/0123). It should also be noted that these data were 

collected within a larger study exploring diurnal rhythms in skeletal muscle lipidomics, 

gene expression and activity, which has been described elsewhere (Loizides-Mangold 

et al., 2017; Perrin et al., 2018). 

4.2.1 – Participants 

A cohort consisting of 9 men and 1 woman (Table 4.1) was recruited via local 

advertising. Participants were screened for any disorder of, or medication known to 

influence, sleep, circadian timing, metabolism or inflammation. Furthermore, those 

reporting irregular sleep/wake cycles, extreme diurnal preference, 

psychiatric/neurological disease, drug/alcohol abuse, smoking, excessive caffeine 

intake (>4 daily servings), shift-work, or recent travel across two or more time-zones 

(<3 weeks prior) were excluded. These data were obtained via the completion of a 

general health questionnaire and validated questionnaires to assess habitual sleep 

patterns and diurnal preferences (Horne and Ostberg, 1976; Buysse et al., 1989; 

Roenneberg, Wirz-Justice and Merrow, 2003). All volunteers were fully briefed on the 

requirements of the study and provided written informed consent for their 

involvement. 
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Table 4.1: Participant characteristics of the study cohort. Data are presented 

as mean ± SD. 

Characteristic Values 

Age (years) 30 ± 10 
Height (m) 1.808 ± 0.060 

Body Mass (kg) 78.7 ± 7.0 
Body Mass Index (kg·m-2) 24.1 ± 2.7 
Resting Metabolic Rate (kcal·day-1) 1724 ± 314 
Chronotype 1 03:42 ± 01:13 
Horne-Östberg Score 57 ± 11 
Pittsburgh Sleep Quality Index 3 ± 2 
1 determined from Munich Chronotype Questionnaire 

 

4.2.2 – Experimental Protocol 

In the week leading-up to the data collection participants adhered to a strict routine of 

feeding and sleeping. Specifically, they were required to wake between 06:00 and 

07:00 and go to bed between 22:00 and 23:00, which was confirmed using time-

stamped voicemails. Furthermore, each day participants were required to expose 

themselves to at least 15 minutes of natural light within 1.5 hours of waking, 

compliance with which was affirmed by wrist actigraphy (ActiwatchTM, Cambridge 

Neurotechnology; Cambridge, UK). Self-selected meals were also scheduled at 08:00, 

12:00 and 18:00, with designated snacking opportunities at 10:00, 15:00 and 20:00. 

For the final two days of this standardisation period, participants were required to 

complete a weighed record of their food and fluid intake. 

Following this, participants reported to the laboratory the evening prior to the 

scheduled 24-hour measurement window to acclimatise to the laboratory environment. 

All laboratory conditions were standardised for the duration of their stay, with blackout 

blinds to prevent the penetration of natural light and room temperature maintained at 

20-25oC. Artificial lighting was set at 800 lux in the direction of gaze during waking 

hours (07:00-22:00) and turned off (0 lux) during sleeping hours (22:00-07:00), for 

which participants were asked to wear an eye mask. Participants remained in a semi-

recumbent position throughout. Upon arrival, participants were shown to their bed and 

provided with a prescribed meal composed of a baked potato with butter and cheese, 

steamed vegetables and a bowl of fresh mixed berries (1245 kcal; 31% carbohydrate, 

50% fat, 19% protein). A snack of instant hot chocolate made with whole milk was 

then provided at 21:30 (242 kcal; 56% carbohydrate, 24% fat, 20% protein) before 

lights out at 22:00. 
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Participants were woken at 07:00 and resting metabolic rate was immediately 

measured over 15 minutes via indirect calorimetry before an intravenous cannula was 

fitted. From 08:00 onwards, at hourly intervals throughout waking periods participants 

completed a set of VAS and a 10 ml blood sample was drawn. After each set of 

measurements, an hourly feeding was also ingested in the form of a nutritionally-

balanced meal-replacement shake (1.25 kcal·ml-1, 45% carbohydrate, 25% fat, 30% 

protein; Resource Protein, Nestlé; Vevey, Switzerland). Hourly doses were prescribed 

to give 6.66% of measured resting metabolic rate, thus resulting in energy balance for 

the 24-hour sampling period.  Water was consumed ad libitum and participants had 

access to mobile devices, on-demand entertainment, music and reading material 

throughout waking hours only. Toilet and shower breaks were permitted in the first 

half of each hour as required. 

At 21:15, participants were asked to ready themselves for bed before the final set of 

waking measurements were collected at 22:00 along with ingestion of the final 

prescribed feed. Following this, the lights were switched off and participants were 

asked to sleep with the eye mask on. Blood samples continued throughout the night at 

hourly intervals using a portable lamp as the participant slept. At 07:00, participants 

were once again awoken and immediately completed a set of VAS before a blood 

sample was drawn. They were then permitted a bathroom break to prepare for the day 

with the final set of measurements following at 08:00. 

It should be noted that, in accordance with the wider objectives of the study (Loizides-

Mangold et al., 2017; Perrin et al., 2018), muscle biopsies were collected at 4-hourly 

intervals from 12:00 until 08:00 (i.e. 6 in total). These were taken under local 

anaesthetic from the vastus lateralis using the Bergström method (Bergström, 1962; 

Tarnopolsky et al., 2011). For both night-time samples (i.e. 00:00 and 04:00) 

participants were woken and dim lighting (200 lux) was permitted but participants 

continued to wear the eye mask. Each biopsy took ~10 minutes and was taken 

following the VAS and blood sample but before the prescribed feed in all cases. 
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4.2.3 – Outcome Measures 

Subjective Appetite Ratings – VAS were obtained every hour, on the hour during 

waking periods to assess subjective appetite ratings. They featured eight scales to 

assess hunger, desire to eat, fullness, thirst and food preference (sugary, salty, savoury 

and fatty). Each scale presented a question (e.g. how hungry do you feel?), which 

participants answered by placing a vertical line on a 100 mm scale to denote their 

perception relative to the extremes, which were defined as ‘not at all/very low’ to 

‘extremely/very high’.  

Blood Sampling and Analysis – Blood samples were drawn every hour on the hour 

throughout both the waking and sleeping periods. On each occasion, 10 ml was drawn 

and distributed between lithium heparin, serum, and EDTA-coated tubes. The lithium 

heparin and EDTA tubes were both immediately centrifuged for 10 minutes (3466 x 

g, 4oC), after which the supernatants were removed and stored at -80oC. The serum 

tube was left to stand for 30 minutes at room temperature before being centrifuged and 

stored in the same way. 

Plasma melatonin concentration was measured at hourly intervals in the heparinised 

samples using a radioimmunoassay (Surrey Assays Ltd). Unacylated ghrelin (SPI-Bio) 

and leptin concentration (R&D Systems) were quantified throughout the protocol at 4-

hourly intervals starting at 08:00 (i.e. 7 samples total) using the EDTA plasma samples 

and commercially-available assays. 

4.2.4 – Statistical Analysis 

Analysis of rhythmicity in all outcome measures was conducted using the cosine 

method (Prism 7, Graphpad; CA, USA). In this approach a cosine wave is applied to 

the dataset with the optimal fit established and compared against a horizontal line 

through the mean values (null). If a significant difference in amplitude is detected 

between the cosine and horizontal lines then the dataset characterises circadian 

rhythmicity, with the mesor (rhythm-adjusted mean), amplitude (magnitude of the 

difference between mesor and peak/trough values) and acrophase (timing of rhythmic 

peak) all identified and reported (Refinetti, Lissen and Halberg, 2007; Cornelissen, 
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2014). Due to the high inter-individual variability in leptin and ghrelin concentration, 

values were normalised to give a percentage of the 24-hour mean for each participant 

(Spiegel et al., 2011; Mäntele et al., 2012). The threshold for determining dim light 

melatonin onset (DLMO) was set at 25% of peak concentration (Benloucif et al., 2008; 

Sletten et al., 2009), with the precise crossing point within hourly time bins 

interpolated from linear regression. Where a comparison of two means was required, 

a paired t-test or a Wilcoxon signed rank test was performed depending on an 

assessment of normality (SPSS Statistics 23.0, IBM; NY, USA). Significance was 

accepted at p≤0.05. All data are presented as mean ± SD unless otherwise stated. 
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4.3 – Results 

4.3.1 – Melatonin 

The plasma melatonin rhythm throughout the 24-hour measurement period is shown 

in Figure 4.1. Concentrations remain low throughout waking hours but increase 

rapidly following lights-out at 22:00. The DLMO when averaged across participants 

occurred at 23:09 ± 00:43, providing a marker of the circadian cycle. The 24-hour 

rhythm characterised diurnal variations as verified by cosinor analysis (p<0.01), with 

the acrophase occurring at 03:59 ± 00:54 and an amplitude of 26.6 ± 6.3 pg·ml-1. 

Figure 4.1 – 24-hour profile for plasma melatonin under conditions of semi-constant 

routine. Values are presented as mean ± SEM. The shaded area represents the 9-hour 

sleep window (0 lux), the black triangles denote hourly feedings, and the dotted line 

on the x-axis represents the DLMO. 
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4.3.2 – Subjective Ratings of Appetite  

As shown in Table 4.2, diurnal rhythms were established in all dimensions of 

subjective appetite except for sweet preference. Interestingly, hunger and prospective 

consumption both oscillated around the centre of the scale, whilst ratings of fullness 

tended to be lower throughout the 24-hour period. Conversely, rhythms in desire to eat 

savoury foods returned both the highest mesor and amplitude. 

Table 4.2: Mesor, amplitude and acrophase for diurnal rhythms in subjective appetite ratings. Data are 

shown as mean ± SD. 

Scale Mesor (mm) Amplitude (mm) 
Acrophase 

(hh:mm) 
p-value 

Hunger 50 ± 6 6 ± 6 20:44 ± 05:47 <0.01 

Fullness 30 ± 5 7 ± 8 12:05 ± 03:26 0.01 

Prospective Consumption 55 ± 6 5 ± 6 19:34 ± 07:19 0.03 

Sweet Preference 48 ± 6 N/A N/A 0.33 

Salty Preference 45 ± 7 7 ± 6 19:45 ± 05:35 <0.01 

Savoury Preference 63 ± 7 9 ± 7 20:37 ± 04:31 <0.01 

Fatty Preference 44 ± 8 8 ± 8 21:13 ± 06:07 0.01 

p-values denote the statistical comparison of amplitude between null and cosinor waves 

Shifting to focus on the temporal rhythms in these subjective ratings, both hunger and 

prospective consumption characterised similar phase relationships, reaching their peak 

in the evening before falling to their nadirs shortly after waking (Figures 4.2 and 4.3). 

This pattern was mirrored in the desire to eat certain food types, with salty, savoury 

(Figure 4.4) and fatty preference all peaking within a 2-hour window shortly before 

lights out. Accordingly, fullness characterised a broadly antiphasic rhythm (Figure 

4.5), peaking shortly after midday and falling to a trough after sleep onset, whilst sweet 

preference was not rhythmic (Figure 4.6) 

It is also interesting to note that the 08:00 ratings of appetite were all higher at the end 

of the 24-hour period relative to the beginning, whilst fullness tended to be lower. 

These differences were significant for hunger (p=0.04), prospective consumption 

(p=0.03) and desire to eat savoury foods (p=0.03), approached significance for desire 

to eat fatty (p=0.06), sweet (p=0.08) and salty (p=0.08) foods, and were not significant 

for fullness (p=0.12). This may be related to the apparent suppression of appetite seen 

from 08:00-12:00 in Figures 4.2 to 4.6. 
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Figure 4.2: 24-hour profile for subjective ratings of hunger, as measured by VAS 

throughout waking periods. Values are presented as mean ± SEM. The solid line 

denotes the regression that best fits the data and the dotted horizontal line shows the 

24-hour mean concentration used for the null comparison. The black triangles denote 

hourly feedings and the shaded area represents the 9-hour sleep window (0 lux). 
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Figure 4.3: 24-hour profile for subjective ratings of prospective consumption, as 

measured by VAS throughout waking periods. Values are presented as mean ± SEM. 

The solid line denotes the regression that best fits the data and the dotted horizontal 

line shows the 24-hour mean concentration used for the null comparison. The black 

triangles denote hourly feedings and the shaded area represents the 9-hour sleep 

window (0 lux). 
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Figure 4.4: 24-hour profile for subjective ratings of desire to consume savoury foods, 

as measured by VAS throughout waking periods. Values are presented as mean ± 

SEM. The solid line denotes the regression that best fits the data and the dotted 

horizontal line shows the 24-hour mean concentration used for the null comparison. 

The black triangles denote hourly feedings and the shaded area represents the 9-hour 

sleep window (0 lux). 
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Figure 4.5: 24-hour profile for subjective ratings of fullness, as measured by VAS 

throughout waking periods. Values are presented as mean ± SEM. The solid line 

denotes the regression that best fits the data and the dotted horizontal line shows the 

24-hour mean concentration used for the null comparison. The black triangles denote 

hourly feedings and the shaded area represents the 9-hour sleep window (0 lux). 
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Figure 4.6: 24-hour profile for subjective ratings of desire to consume sweet foods, as 

measured by VAS throughout waking periods. Values are presented as mean ± SEM. 

The solid line denotes the regression that best fits the data and the dotted horizontal 

line shows the 24-hour mean concentration used for the null comparison. The black 

triangles denote hourly feedings and the shaded area represents the 9-hour sleep 

window (0 lux).  
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4.3.3 – Unacylated Ghrelin 

A diurnal rhythm in unacylated ghrelin concentration emerged (p<0.01), as shown in 

Figure 4.7. The acrophase occurred shortly after waking at 08:26 ± 03:51 and fell to 

the nadir in the evening with a peak-to-trough amplitude of 12 ± 11%. This provided 

group-averaged maximum and minimum concentrations of 41.1 ± 17.8 pg·ml-1 and 

28.8 ± 12.2 pg·ml-1, respectively. Concentrations were also lower at the end of the 

measurement window when compared to the beginning (start = 41.1 ± 17.8 pg·ml-1, 

end = 35.7 ± 13.2 pg·ml-1; p=0.05). 

Figure 4.7: Normalised 24-hour unacylated ghrelin profile under semi-constant 

conditions. Values are presented as mean ± SEM. The solid line denotes the regression 

that best fits the data. The black triangles denote hourly feedings and the shaded area 

represents the 9-hour sleep window (0 lux). 
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4.3.4 – Leptin Profile 

Plasma leptin concentration characterised a diurnal rhythm (p<0.01), as shown in 

Figure 4.8. The acrophase occurred shortly after lights out (00:35 ± 01:20) and 

concentrations were at their lowest at midday. The peak-to-trough amplitude for this 

rhythm was 25 ± 9%, with a peak concentration of 175.4 ± 277.1 pg·ml-1 and a 

minimum concentration of 127.2 ± 201.2 pg·ml-1 when averaged across the group. 

Concentrations were not different between the two 08:00 measurements (start = 163.2 

± 241.8 pg·ml-1, end = 147.2 ± 215.9 pg·ml-1; p=0.58). 

Figure 4.8: Normalised 24-hour plasma leptin profile under semi-constant conditions. 

Values are presented as mean ± SEM. The solid line denotes the regression that best 

fits the data. The black triangles denote hourly feedings and the shaded area represents 

the 9-hour sleep window (0 lux). 
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4.4 – Discussion 

The aim of this study was to quantify diurnal rhythms in subjective appetite over 24-

hours in response to a feeding protocol designed to suppress the associated rhythm in 

ghrelin concentration. With the exception of desire to consume sweet foods, all 

measured dimensions of subjective appetite characterised a diurnal rhythm. Hunger, 

prospective consumption and desire to eat savoury, salty and fatty foods all increased 

during waking hours to a peak in the evening, before declining overnight to a trough 

shortly after waking. However, there was also a tendency for these ratings to increase 

throughout the 24-hour measurement period, which was unexpected. Although a 

diurnal rhythm was also identified for unacylated ghrelin concentration, this ran in 

antiphase to subjective ratings of appetite, contrary to its proposed regulatory effects. 

Similarly, subjective ratings of fullness peaked at midday and fell to their lowest levels 

during sleep, despite leptin oscillating in an antiphasic manner. 

This is the first study to show a 24-hour rhythm in subjective appetite in the context of 

diurnal behavioural influences. Ratings of hunger increased throughout the day to a 

peak at 20:44 before declining overnight. Despite the diurnal influences of feeding and 

sleep, this shows excellent agreement with the original study of Scheer, Morris and 

Shea (2013), wherein a circadian rhythm in hunger was established that peaked at 

19:50 before falling to a trough in the biological morning. Comparable peaks in the 

biological evening were also apparent for prospective consumption and the desire to 

consume salty foods (19:10-20:30). Contrary to this, Scheer, Morris and Shea (2013) 

also identified an endogenous rhythm in the desire to consume sweet foods. This 

rhythm was not seen in the present study but this disparity is likely to reflect the sweet 

taste of the meal-replacement supplement used, which may have masked the 

underlying rhythm. A further contrast relates to subjective ratings of fullness, which 

Scheer, Morris and Shea (2013) suggest are not rhythmic under conditions of forced 

desynchrony. Although it could be argued that the diurnal rhythm in fullness in the 

present study is therefore a product of the behavioural cycle, Sargent et al. (2016) 

observed similarly phased rhythms in hunger, prospective consumption and fullness 

to the present study when using a 28-hour forced desynchrony protocol, which casts 

doubt over this suggestion. 
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Interestingly, these diurnal rhythms in subjective appetite were apparent despite an 

antiphasic rhythm in unacylated ghrelin concentration, in which the acrophase was 

identified at 08:26 before declining throughout waking hours. This is contrary to 

studies of continuous fasting, in which total ghrelin concentrations have been shown 

to increase at habitual meal times before decreasing spontaneously within 1-2 hours 

(Espelund et al., 2005; Natalucci et al., 2005). Similarly contrasting rhythms have also 

been observed under diurnal and forced desynchrony conditions, with the zenith and 

nadir reported to be in the region of 23:00-01:00 and 09:00-11:00, respectively 

(Cummings et al., 2001; Dzaja et al., 2004; McHill et al., 2018). Although inadequate 

sample preparation meant accurate determination of acylated ghrelin concentration 

was not possible (Chandarana et al., 2009), the 24-hour profiles of acylated and 

unacylated ghrelin do broadly align with one another (Spiegel et al., 2011; Nass et al., 

2014), meaning that this is unlikely to fully explain the observed antiphasic rhythm. 

Consequently, this suggests that the feeding protocol was effective in modifying 

rhythmic ghrelin concentrations in accordance with the aims of the study. 

To the knowledge of the authors, 24-hour ghrelin concentrations have not been 

measured under conditions of constant routine with hourly isocaloric feedings, making 

affirmation of this effect of feeding patterns difficult. In this sense, the study would 

have benefitted from the inclusion of a control trial, wherein feeding could have 

followed a conventional meal pattern as opposed to hourly feeds. This would have 

allowed a direct evaluation of how the present feeding strategy influenced key 

outcomes and should therefore be incorporated in ensuing studies. However, given that 

decreasing postprandial suppression of ghrelin is believed to drive diurnal rhythms 

(Cummings et al., 2001), it is conceivable that a steadier influx of nutrients throughout 

the day could lead to continued suppression of ghrelin secretion by providing sustained 

increases in plasma metabolites known to inhibit its release (Möhlig et al., 2002; 

Greenman et al., 2004; Sato et al., 2012). Whilst this is speculative, experimental data 

emerging from studies of meal frequency do lend credence to this notion. For instance, 

over an 11-hour period, Leidy et al. (2010) observed that when energy-matched diets 

were consumed as either six or three equally spaced meals, more frequent feeding 

eliminated the eating-related oscillations in acylated ghrelin. Similarly, Solomon et al. 

(2008) showed that consuming an isocaloric diet through two large meals resulted in 
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more profound peaks and troughs in ghrelin concentration when compared to 

consuming the same diet as 12 equally spaced boluses (Leidy and Campbell, 2011). 

Leptin was also found to exhibit a diurnal oscillation in the present study, peaking at 

00:35 and declining to its lowest levels at midday. Once again, this is seemingly 

misaligned with diurnal rhythms in hunger and fullness considering its proposed role 

in inducing satiety (Baicy et al., 2007; Klok, Jakobsdottir and Drent, 2007), but the 

observed rhythm is well-supported by the prior literature (Simon et al., 1998; 

Westerterp-Plantenga et al., 2016). Under conditions of forced desynchrony, Scheer 

et al. (2009) established that leptin rhythms track the behavioural rather than the 

circadian phase, rising throughout waking hours from a trough prior to breakfast to a 

peak at the onset of sleep, several hours after the final meal. This was also affirmed by 

a constant routine protocol from the same group (Shea et al., 2005), in which leptin 

concentrations rose systematically throughout 38 hours of constant wakefulness with 

hourly isocaloric feedings. The study of Schoeller et al. (1997) suggests that this 

rhythm is primarily driven by meal timing, with a 6-hour phase shift in the leptin 

rhythm occurring in response to a 6.5-hour delay in meal times. Collectively, the 

present study therefore affirms the conclusions of Poggiogalle, Jamshed and Peterson 

(2018), who argue that hormones implicated in energy balance track feeding 

behaviour, whilst subjective ratings of appetite are regulated by the SCN. 

An intriguing contrast with these studies however, is the slight delay in the timing of 

the nadir in the leptin rhythm in the present study, which occurred at midday rather 

than breakfast. This is particularly surprising when comparing against the study of 

Mäntele et al. (2012), who employed in an essentially identical schedule of sleeping 

and feeding, as emphasised by the similar DLMO. However, this discrepancy may be 

explained by residual effects of the meal provided during the acclimatisation period. 

This is likely to have been larger than average for most participants (~1500 kcal) and 

came following a day of habitual intake, which may have led to an energy surplus at 

sleep onset given that physical activity was constrained. If the rhythm in leptin reflects 

energy balance, as suggested by Schoeller et al. (1997) and the abolition of the leptin 

rhythm during short-term fasting (Dallongeville et al., 1998), then this surplus at sleep 

onset could have led to a phase delay in the nocturnal peak and the morning nadir. This 

may also explain why ratings of appetite appeared to increase during the 24-hour 
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measurement period, with the residual effects of this large meal lowering the initial 

ratings when compared to the 300-600 kcal consumed within the same timeframe the 

following night. Although this is an important consideration, such a carryover effect 

is not likely to have caused the observed rhythms in subjective appetite given the 

concordance with prior literature. Furthermore, such an effect was also equally 

apparent in ratings of sweet preference, which remained non-rhythmic despite this 

influence. 

Taken together, these findings show that subjective appetite characterises a 24-hour 

rhythm in the context of diurnal behavioural influences, being lower in the morning 

and higher in the evening. Moreover, sensations of hunger do not appear to be modified 

by acute changes in feeding pattern, despite apparent inversion of the rhythm in key 

regulatory peptides. This reinforces the proposed rhythm in, and central regulation of, 

subjective hunger reported by Scheer, Morris and Shea (2013), and argues that these 

rhythms in perceived appetite provide a robust foundation upon which time-related 

dietary interventions can be structured. However, there remains a definite need to 

explore the interplay between subjective ratings of appetite and a broader range of 

proposed regulatory peptides under different feeding conditions, to better understand 

the regulatory processes. 
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Chapter 5: Impact of intermittent fasting on energy 

balance and associated health outcomes in 

lean adults. 

5.1 – Introduction 

Intermittent fasting is a dietary strategy in which typical patterns of food and drink 

consumption are punctuated by scheduled periods of energy restriction or abstinence 

from all energy-providing nutrients. The objective of this is often to create a net 

reduction in energy intake, and work from various laboratories consistently shows that 

such approaches are associated with reductions in body mass and improvements in a 

range of fasted health markers (Johnson et al., 2007; Varady, Bhutani, et al., 2009; 

Varady, Hudak and Hellerstein, 2009; Bhutani et al., 2010). These responses are 

usually similar in magnitude to those observed when simply restricting calorie intake 

across all eating occasions, wherein a typical eating pattern is largely maintained 

(Larson-Meyer et al., 2006; Pi-Sunyer et al., 2007; Harvie et al., 2011; Varady, 2011; 

Barnosky et al., 2014; Ravussin et al., 2015; Catenacci et al., 2016; Headland et al., 

2016; Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Gabel, et al., 

2017). However, current understanding of precisely how intermittent fasting may 

affect human health and metabolism is far from complete. 

While the reductions in body mass reported in prior studies of intermittent fasting 

reflect a state of negative energy balance, the changes that occur within the 

components of energy balance have not been well-characterised. This is of importance 

because prolonged periods of daily calorie restriction can elicit compensatory 

reductions in energy expenditure that undermine the resultant weight loss (Heilbronn 

et al., 2006; Rosenbaum, Sy, et al., 2008; Redman et al., 2009; Martin et al., 2011; 

Kissileff et al., 2012). However, there is currently no evidence to suggest that this 

adaptive response is invoked by intermittent fasting strategies. Reductions in leptin 

concentration, a proposed hormonal regulator of energy balance (Mantzoros et al., 

2011), have been shown to be similar with intermittent fasting and daily calorie 

restriction (Johnson et al., 2007; Bhutani et al., 2010; Harvie et al., 2011; Varady et 

al., 2013). However, this does not seem to translate into measurable changes within 
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the specific components of energy expenditure, with studies failing to detect 

corresponding reductions in resting metabolic rate (Heilbronn, Smith, et al., 2005) and 

physical activity (Klempel et al., 2010, 2012; Varady et al., 2016). Although 

promising, these studies have focused on isolated aspects of energy expenditure, which 

miss the additive effect of metabolic and behavioural adaptations to energy restriction 

(Spiegelman and Flier, 2001; Redman et al., 2009; Hill, Wyatt and Peters, 2012; 

Muller et al., 2015). Furthermore, physical activity has generally been quantified using 

pedometers and accelerometers, which may lack the sensitivity to detect the subtle 

modifications in activity that accompany changes in feeding patterns (Crouter et al., 

2003; Plasqui and Westerterp, 2007; Betts et al., 2016; Jeran, Steinbrecher and 

Pischon, 2016).  

Beyond this, reductions in fasted insulin concentration have been consistently 

observed in response to various intermittent fasting interventions, as reviewed by 

Barnosky et al. (2014). The authors also highlight that a subset of the studies reviewed 

report that fasted indices of insulin sensitivity generally increase following a period of 

intermittent fasting. However, it is important to note that these fasted measurements 

can overlook changes in glucose metabolism under dynamic conditions (Borai et al., 

2011). To date, few studies have examined postprandial effects, and those that have 

reveal equivocal findings: with some showing favourable effects (Halberg et al., 2005; 

Antoni, Johnston, et al., 2018), others no effect (Soeters et al., 2009), and others a 

sexual dimorphism (Heilbronn, Civitarese, et al., 2005). Consequently, the effects of 

intermittent fasting on postprandial metabolism remain unclear, which is important 

given that individuals in Western cultures typically spend the majority of their waking 

time in a postprandial state (Travers et al., 2017). Further to this, there has been little 

exploration of how such diets interact with the second-meal effect, which compounds 

the issue (Silva et al., 2005; Gonzalez, 2014; Antoni, Johnston, et al., 2018). 

In addition, isolating the distinct effects of fasting relative to negative energy balance 

or weight-loss per se is a key question to address. It has been suggested that temporal 

modifications in energy intake exert direct influences on metabolic health, which are 

independent of any net effect on energy balance (Johnston, 2014; Mattson et al., 2014; 

Bandín et al., 2015; St-Onge et al., 2017; Anton et al., 2018). This means that feeding 

times could constitute a novel dimension of what is considered a healthy diet. 
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Therefore, although the limited body of prior literature offers promising insights as to 

the efficacy of intermittent fasting in improving metabolic health, numerous 

uncertainties remain. For this reason, the present study will employ a complete 

alternate-day fasting intervention, as defined by Patterson and Sears (2017), to explore 

the therapeutic potential of intermittent fasting by addressing three core objectives: 

1. To establish whether hypocaloric intermittent fasting elicits compensatory 

changes in the components of energy balance, and to compare these against the 

changes arising from an energy-matched daily calorie restriction intervention. 

2. To examine the effect of hypocaloric intermittent fasting on postprandial 

metabolism relative to an energy-matched daily calorie restriction intervention. 

3. To explore whether hypocaloric intermittent fasting affects the components of 

energy balance or postprandial metabolism independently from chronic energy 

imbalance, by contrasting against a eucaloric intermittent fasting intervention. 

Focusing initially upon energy expenditure, it was hypothesised that resting metabolic 

rate and postprandial thermogenesis would be unaffected by the two intermittent 

fasting conditions (Heilbronn, Smith, et al., 2005; Byrne et al., 2018) but reduced by 

the daily calorie restriction diet (Rosenbaum, Hirsch, et al., 2008; Muller et al., 2015). 

Conversely, based on the observations of Betts and colleagues, it was anticipated that 

the intermittent fasting conditions would reduce physical activity thermogenesis to a 

similar extent as the daily calorie restriction treatment (Martin et al., 2011; Betts et al., 

2016). In terms of the effects upon postprandial metabolism, with the enhanced 

opportunity for metabolism of lipid-derived substrates offered by intermittent fasting 

(Soeters et al., 2012; Anton et al., 2018), it was expected that this would result in 

greater reductions in insulinaemia and glycaemia in the hypocaloric intermittent 

fasting group when compared to the other two groups (Halberg et al., 2005; Heilbronn, 

Civitarese, et al., 2005). 
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5.2 – Methods 

This randomised–controlled trial sought to establish the effects of intermittent fasting 

on energy expenditure and postprandial metabolism in a cohort of lean adults, utilising 

a complete alternate-day approach. Briefly, participants completed a four-week control 

phase to provide data on habitual dietary intake and activity patterns. Once completed, 

they were then randomised to one of three conditions for 20 days: daily calorie 

restriction (75% of habitual intake daily), intermittent fasting with calorie restriction 

(alternating 24-hour periods of fasting and feeding to 150% of habitual intake) or 

intermittent fasting without calorie restriction (alternating 24-hour periods of fasting 

and feeding to 200% of habitual intake). Monitoring of dietary intake and physical 

activity continued throughout the intervention, whilst laboratory visits before and after 

evaluated body composition, metabolic rate and postprandial responses to sequential 

meals. The protocol for this study (detailed below) was approved by the NHS Research 

Ethics Committee (reference: 15/SW/0007). 

5.2.1 – Participants 

To address the objectives if this study, 36 lean adults were recruited including both 

men and women. Participants were initially classified as lean based on body mass 

index (BMI; 20.5-25.0 kg·m-2), which was subsequently confirmed using fat mass 

index (FMI) obtained from a dual-energy x-ray absorptiometry (DEXA) scan. Values 

of ≤7.5 kg·m-2 and ≤11.0 kg·m-2 were classified as lean for males and females, 

respectively. Further eligibility criteria for this study are listed below.  

Inclusion: 1. Aged 18-65 years; 2. Stable body mass (±3 kg) for at least 6 months; 3. 

Able and willing to comply with study procedures; 4. Willing to undertake required 

fasting durations; 5. Have the capacity to provide informed consent. 

Exclusion: 1. Body mass >120 kg; 2. Recent or planned engagement in fasting 

practices (within 3 months of start date); 3. Recent or planned change in diet/physical 

activity habits; 4. Suffering from an eating disorder as assessed using the EDE-Q 6.0 

(Fairburn, 2008); 5. Have been diagnosed with diabetes or other metabolic health 

disturbances; 6. Ongoing medical condition or treatment which may interfere with 
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study variables; 7. Menopausal; 8. Pregnant, recently pregnant, planning to become 

pregnant (within 3 months) or currently breastfeeding; 9. Having donated blood within 

the last 3 months; 10. Lack of capacity/language skills to independently follow the 

protocol; 11. Unable to consume test meals due to intolerances/dietary preferences (i.e. 

vegan, gluten, milk proteins); 12. Any other behaviour or condition which introduces 

bias to the experiment or poses undue personal risk. 

Power Calculation – The sample size for this study was estimated using a priori 

power analysis of studies employing similar durations of daily calorie restriction and 

considered a range of the outcome measures in question. Specifically, Friedlander et 

al. (2005) observed a decline in resting metabolic rate following 21 days of daily 

calorie restriction (pre = 1898 ± 262 kcal·day-1, post = 1670 ± 203 kcal·day-1). 

Applying a two-tailed t-test to these data suggested that 11 participants would be 

required to achieve 80% power when detecting such an effect at an alpha level of 0.05. 

Focusing instead on changes in postprandial glucose metabolism, Molfino et al. (2010) 

reported a reduction in 2-hour post-bolus plasma glucose concentrations during an oral 

glucose tolerance test following 10 days of daily calorie restriction (pre = 10.72 ± 3.56 

mmol·l-1, post = 7.10 ± 2.96 mmol·l-1). In this instance 9 participants were deemed 

necessary to detect a comparable within-treatment effect with 80% power at an alpha 

level of 0.05. Collectively, this suggested that 9-11 participants were required per 

group to establish within–treatment effects in the primary outcomes. However, given 

the potential for variability in the outcomes of interest, a more conservative 

requirement of 12 per group was decided upon. Recruitment proceeded on a rolling 

basis until the desired sample size was attained. To minimise loss to follow-up, 

emphasis was placed on considering the demands of the study before enrolling. In 

cases of withdrawal, additional participants were sought to maintain statistical power. 

5.2.2 – Experimental Protocol 

Overview – Following the provision of written informed consent, eligibility was 

assessed using a series of self–report questionnaires together with a BMI calculation. 

Eligible participants then undertook the 8-week protocol shown in Figure 5.1a. For 

all laboratory sessions, participants were required to avoid caffeine, alcohol, smoking 

and strenuous exercise throughout the preceding 24 hours, whilst also standardising 
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their dietary intake on a within-participant basis. Following an overnight fast 

(minimum 10 hours), participants reported to the laboratory at 07:30 ± 01:00 having 

consumed 500 ml of water upon waking. For female participants, laboratory sessions 

were scheduled to coincide with the follicular phase of their menstrual cycle (i.e. 3-10 

days after onset of menses) to account for the associated changes. 

 

Figure 5.1: Schematic of the 8-week study design (A) and the sampling intervals for 

laboratory sessions 2 and 3 (B). Abbreviations: DEXA = Dual Energy X-ray 

Absorptiometry. 

LAB 1 (Baseline) – The initial lab session provided a reference point for examining 

the stability of body mass, as an indicator of overall energy balance, throughout the 

ensuing 4-week control phase in which habitual dietary intake and physical activity 

were quantified. In addition, this visit served to familiarise participants with key 

procedures to improve reliability over subsequent laboratory sessions, particularly 

measurements of resting metabolic rate (Soares et al., 1989; Alam et al., 2005). A 

urine sample was collected when voiding prior to measurements of height and body 

mass to ensure adequate hydration for these measurements (i.e. urine specific gravity 

<1.020). Following a 20-minute rest in a semi-recumbent position, resting metabolic 

rate and substrate oxidation were then measured via indirect calorimetry of expired air 

samples, after which a fasted blood sample was drawn.  To conclude this session, a 

submaximal treadmill protocol was undertaken to individually calibrate the physical 

activity monitors being used throughout the study (ActiheartTM, Cambridge 

Neurotechnology; Cambridge, UK). Before departing, participants were given the 

materials to capture free-living measurements of dietary intake and physical activity.  

A 

B 
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Control Phase – During this phase, both energy intake and physical activity energy 

expenditure were measured concurrently in four designated monitoring windows of 

three consecutive days each. Each of these windows was separated by at least two days 

from any other and the final window covered the three days leading up to LAB 2, to 

ensure compliance with standardisation procedures. Physical activity energy 

expenditure and intensity were measured using individually–calibrated ActiheartTM 

monitors (Brage et al., 2005, 2007), whilst energy intake was measured by means of a 

weighed record of food and fluid intake. To proceed into the intervention phase, 

participants were required to maintain energy balance throughout the control period 

and provide accompanying measurements of energy intake and expenditure. Energy 

balance was ascertained by maintaining a stable body weight (≤1.0 kg increase or 

decrease) between LAB 1 and LAB 2 (Betts et al., 2014; Chow and Hall, 2014). 

LAB 2 (Pre-Intervention) – Having completed the control phase, participants 

returned to the laboratory for measurement of a series of fasted and postprandial 

outcomes. Once again, adequate hydration status was ascertained prior to measuring 

body mass. Fasting measurements of resting metabolic rate and substrate oxidation 

were then obtained before an intravenous cannula was fitted. At this stage, a venous 

blood sample was also drawn to provide fasted concentrations of relevant metabolites 

and hormones. This was then followed by two sequential mixed-macronutrient meal 

tests: a homogenous porridge meal (meal 1) and a meal-replacement shake (meal 2). 

The first featured indirect calorimetry measurements from expired gases and venous 

blood samples, whereas the second only involved sampling of arterialised–venous 

blood. Figure 5.1b shows the sampling intervals for these measures. To conclude, a 

DEXA scan was used to quantify fat mass, lean mass and visceral adipose tissue mass. 

Diet Allocation – During a 6-day rest period following LAB 2, which was included to 

avoid prolonged periods of diet monitoring (Tucker, 2007) and maintain the 4-week 

testing interval, participants were randomised to one of three parallel intervention arms 

(Table 5.1) in a 1:1:1 allocation ratio using a stratified randomisation scheme. This 

featured a factor for objectively-measured physical activity level (PAL) to ensure an 

even distribution of lower activity (PAL: <1.75) and higher activity (PAL: ≥1.75) 

participants in each condition. In accordance with best practice recommendations, 

allocation concealment was employed to minimise bias (Clark, Fairhurst and 
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Torgerson, 2016). The randomisation scheme, including block sizes and sequences, 

was generated by a senior author who was not involved in participant management and 

was concealed from those that were (Schulz and Grimes, 2002; Schulz et al., 2002). 

Participant assignment was requested via email by providing the participant code, 

BMI/FMI and PAL. As only the delivery team knew which code corresponded to 

which participant, and only the senior author knew the block sizes and sequence, it 

was not possible for the allocation to be reliably predicted. 

 

Intervention Phase – The three diets listed in Table 5.1 each lasted for 20 days, with 

transitions between 24-hour cycles occurring at 15:00 each day. This transition point 

was identified as being optimal for the two intermittent fasting conditions based on the 

observed diurnal rhythms in subjective appetite established in Chapter 4. Specifically, 

it emerged that both hunger and prospective consumption were at their lowest in the 

morning and increased throughout the day to peak in the evening before falling 

overnight. Consequently, in bisecting the upward slope from nadir to zenith, a 

transition from fasting to feeding and vice versa at 15:00 ensured that food provision 

was proximal to periods of rhythmically increased hunger, whilst aligning the latter 

elements of the fast with periods of rhythmically reduced hunger. Furthermore, this 

transition allowed the consumption of at least one main meal per day to aid motivation, 

as advocated by Varady, Bhutani, et al. (2009), whilst also retaining a 24-hour fasting 

period. This is around double that achieved in most prior studies of intermittent fasting 

(Barnosky et al., 2014) and matches the longest reported in studies of complete 

alternate-day fasting (Heilbronn, Smith, et al., 2005). Lastly, this point also broadly 

aligns with the middle of the waking day, based on respective wake and sleep times of 

06:00-08:00 and 22:00-00:00 (Betts et al., 2014; Chowdhury et al., 2016). 

Table 5.1: Intervention arms employed in the study protocol 

Intervention Description 

Daily calorie restriction (75:75) Reduce normal intake by 25% every day 

Intermittent fasting with calorie 

restriction (0:150) 

 

Alternate between 24-hour periods of fasting and feeding 

(transitions at 15:00), with 150% of normal intake on fed days. 

 

Intermittent fasting without calorie 

restriction (0:200) 

Alternate between 24-hour periods of fasting and feeding, 

(transitions at 15:00), with 200% of normal intake on fed days. 



Chapter 5 

151 

  

For the intermittent fasting groups, during fasted cycles participants were only 

permitted water, herbal teas and black tea/coffee with no sugar (i.e. unsweetened 

energy-free drinks). During feeding cycles, and throughout the daily calorie restriction 

intervention, participants were asked to appropriately modify their normal diet to give 

75%, 150% or 200% of their control phase energy intake in accordance with their 

group assignment. Physical activity and energy intake were also monitored over the 

first and last 6 days of the intervention period. In the context of physical activity this 

was to examine behavioural adaptations to the different diets, whilst measurements of 

energy intake were used to monitor compliance with intake targets and provide 

feedback to maximise accuracy. It was anticipated that simply doubling their habitual 

diet to achieve the calorie target whilst maintaining macronutrient balance would not 

be feasible for some participants. In these circumstances, achieving the required 

caloric intake took precedence over maintaining macronutrient balance. The data 

reported in Section 5.3.3 show the minor variance that occurred due to these instances. 

LAB 3 (Post-Intervention) – Following the completion of 20 consecutive 24-hour 

dietary cycles and a wash-out day of diet and activity standardisation, as described 

previously, participants returned to the laboratory and repeated the protocol outlined 

earlier for LAB 2, thereby providing a pre-post comparison. 

5.2.3 – Outcome Measures 

Body Composition – Post-void body mass was measured to the nearest 0.1 kg 

(Weylux 424, UK) and height was measured to the nearest 0.1 cm (Seca Stadiometer, 

Germany). Body composition was assessed using a DEXA scan (QDR Discovery W, 

Hologic; MA, USA) conducted in accordance with the manufacturer’s instructions. 

Dietary Intake – Participants were provided with a set of compact kitchen scales 

(Pocket Pro 2000, Smart Weigh; NY, USA) and a log-book with which all food and 

drink items were to be recorded. A member of the research team discussed best practice 

with them and emphasised the level of detail required. Weighed records were analysed 

(NutriticsTM version 5.031; Ireland) to determine energy and macronutrient intake. 
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Physical Activity – Physical activity was measured using ActiheartTM monitors 

(Cambridge Neurotechnology; Cambridge, UK) (Brage et al., 2005). These monitors 

were individually calibrated using an adapted version of the treadmill protocol 

described by Brage et al. (2007). This involved completing four 3-minute stages of 

incremental treadmill locomotion with concurrent measurements of heart rate and 

energy expenditure (indirect calorimetry of expired air samples) to yield a heart rate–

physical activity intensity regression equation on which estimates were based. 

Meal Tests – Two successive meal tests were completed at pre- and post-intervention. 

Both meals were prescribed to provide one third of resting metabolic rate, as measured 

in the fasted state at pre-intervention. Meal 1 was a homogenous porridge meal (1.31 

kcal·g-1; 59% carbohydrate, 29% fat, 12% protein) composed of golden syrup flavour 

instant oats (Sainsbury’s, UK), whole milk (Tesco, UK) and white granulated sugar 

(Silver Spoon, UK). This was cooked in a microwave and cooled for 10 minutes before 

being consumed in its entirety within a 10-minute eating opportunity following a pre-

meal blood draw. Meal 2 took the form of a liquid meal-replacement supplement (1.50 

kcal·ml-1; 54% carbohydrate, 30% fat, 16% protein) (Ensure Plus; Abbott Nutrition, 

OH). This was consumed following a pre-meal arterialised-venous blood draw within 

a 5-minute feeding window commencing 3.5 hours after the consumption of meal 1.  

Indirect Calorimetry – Resting metabolic rate and substrate oxidation were measured 

using indirect calorimetry of expired air samples (Frayn, 1983). In each instance, three 

consecutive 5-minute samples were taken in accordance with best practice guidelines 

(Compher et al., 2006), with the values from two or more samples that agree to within 

100 kcal·day-1 averaged and used in further analysis (Nightingale et al., 2016).  

Blood Sampling and Analysis – At the pre-intervention and post-intervention visits 

all blood samples were procured by means of an intravenous cannula. Samples were 

drawn and dispensed into an EDTA-coated tube for processing before the cannula was 

flushed to keep it patent. Analysis of plasma samples for concentrations of metabolites 

was performed using an automated analyser (RX Daytona; Randox Laboratories, 

Northern Ireland) and commercially available reagents (Randox Laboratories, 

Northern Ireland). Plasma insulin and leptin concentrations were determined using 

commercially available ELISAs (Mercodia, Sweden). Where concentrations fell 
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below the limit of detection for the assay, values were supplanted by the limit of 

detection specified by the assay manufacturer. 

Urine Collection and Analysis – Urine samples collected at the outset of each lab 

session were analysed for specific gravity via refractometry (SUR-NE Clinical, Japan) 

and osmolality via the freeze-point depression method (Micro Osmometer 3300; 

Advanced Instruments, USA). Throughout the 3-hour postprandial period following 

meal 1, total urine output was also collected in order to correct rates of energy and 

substrate metabolism for protein oxidation. Urinary urea concentration was 

determined using an automated analyser, as described previously for plasma samples. 

5.2.4 – Statistical Analysis 

Analysis centred upon a two-way mixed model analysis of variance (ANOVA), 

featuring a between-subjects factor for diet allocation and a within-subjects factor for 

time. This examined the effect of each diet on the outcomes of interest (i.e. pre versus 

post, control phase versus intervention phase) and whether this effect varied between 

the three dietary conditions (i.e. group*time interaction). Where the time course of 

postprandial biochemical outcomes was examined, a three-way ANOVA was utilised 

due to the inclusion of timepoint (i.e. sampling interval) as a factor. Significant 

differences were followed up by appropriate post-hoc tests to isolate the source(s) of 

variance, and a Ryan-Holm-Bonferroni stepwise correction was used to adjust the 

resulting p-values for multiple comparisons (Ludbrook, 2000; Atkinson, 2002). All 

analysis was performed using SPSS 23.0 (IBM, USA). Statistical significance was 

accepted at p≤0.05 and all data are presented as mean ± SD unless otherwise stated. 

For clarity, p-values reflecting the interaction effect of an ANOVA are preceded by 

the notation ‘group*time’ or ‘group*time*timepoint’ to reflect the factors included 

(e.g. group*time, p=0.01), whilst time effects emerging from any ANOVA are noted 

accordingly (e.g. time, p=0.01). All post-hoc tests are noted in a similar fashion to 

highlight the comparison being made, for instance, ‘Δ-between, p=0.01’ denotes the 

p-value for a comparison of change scores between specific groups. Where the 

comparison being referred to is not clear from the preceding text, the contrasting group 

will also be provided in the notation (e.g. Δ-between, p=0.01 vs 75:75). 
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5.3 – Results 

5.3.1 – Participants 

The baseline characteristics of the participants in each intervention arm are shown in 

Table 5.2. In total, 42 participants provided informed consent for their participation 

and completed the baseline laboratory session. Of those completing this initial lab 

session, three withdrew during the control phase, with illness, work commitments and 

relocation cited as the reasons. Two participants were also excluded during the control 

phase, one due to changes in body mass that exceeded the permissible range and 

another for reporting implausibly low energy intake values. Post-randomisation, only 

one participant withdrew from the study; this was from the 0:150 condition and was 

attributed to difficulty fasting for the required durations. No baseline differences were 

apparent between the three groups prior to the intervention. 

Table 5.2: Participant characteristics for the three intervention arms. Data are presented as mean ± SD. 

Variable 
Diet Allocation 

75:75 0:150 0:200 

n 12 12 12 

Age (years) 45 ± 6 42 ± 11 41 ± 14 

Female (n) 7 5 9 

Height (m) 1.728 ± 0.075 1.737 ± 0.083 1.688 ± 0.055 

Body Mass (kg) 72.0 ± 10.2 72.1 ± 8.3 67.4 ± 7.8 

BMI (kg·m-2) 24.0 ± 1.9 23.9 ± 2.4 23.6 ± 2.1 

FMI (kg·m-2) 6.35 ± 1.54 5.62 ± 2.15 6.37 ± 2.54 

PAL 1 1.68 ± 0.17 1.74 ± 0.23 1.68 ± 0.23 

RMR (kcal·day-1) 1570 ± 305 1641 ± 301 1502 ± 251 

Fasting Plasma Glucose (mmol·l-1) 5.25 ± 0.39 5.54 ± 0.58 5.17 ± 0.54 

Fasting Plasma Insulin (pmol·l-1) 19.16 ± 10.48 18.16 ± 5.46 21.72 ± 8.93 

HOMA-IR 2 0.76 ± 0.45 0.74 ± 0.23 0.83 ± 0.33 

Plasma Total Cholesterol (mmol·l-1) 4.53 ± 1.10 4.84 ± 0.72 5.00 ± 1.18 

Plasma LDL Cholesterol (mmol·l-1) 2.77 ± 0.75 3.11 ± 0.90 2.95 ± 1.30 

Plasma HDL Cholesterol (mmol·l-1) 1.58 ± 0.48 1.50 ± 0.45 1.70 ± 0.46 

Fasting Plasma Triacylglycerol (mmol·l-1) 0.82 ± 0.31 0.95 ± 0.42 0.86 ± 0.32 
1 PAL = Total Daily Energy Expenditure/RMR 
2 HOMA-IR = (fasted insulin μIU·ml-1 * fasted glucose mmol·l-1)/22.5 

Abbreviations: BMI = Body Mass Index; FMI = Fat Mass Index; PAL = Physical Activity Level; RMR = 

Resting Metabolic Rate; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; LDL= Low-

Density Lipoprotein; HDL = High-Density Lipoprotein 
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5.3.2 – Body Composition 

Changes in body mass and composition are shown in Table 5.3. Body mass was stable 

throughout the control phase in all three groups in accordance with the requirements 

of the study (75:75 = +0.1±0.6 kg, 0:150 = +0.1±0.8 kg, 0:200 = +0.2±0.5 kg). 

However, the change in response to the intervention differed across groups 

(group*time, p=0.01); body mass in the 75:75 and 0:150 conditions decreased to a 

similar degree, which differed from the stability of body mass in the 0:200 group (Δ-

between, p=0.01 vs 75:75, p=0.04 vs. 0:150). No differences were apparent in the 

magnitude of this decrease between the 75:75 and 0:150 groups (Δ-between, p=0.46). 

This pattern was also mirrored by measures of BMI and waist circumference, although 

the latter did not reach significance for the interaction (group*time, p=0.08). 

The change in fat mass also differed between groups (group*time, p<0.01). The 

decrease seen in response to the 75:75 diet was greater than the decrease 

accompanying the 0:150 diet (Δ-between, p=0.01 vs 75:75), both of which differed 

from the stability seen in response to the 0:200 diet (Δ-between, p<0.01 vs 75:75, 

p=0.05 vs 0:150). The differences in fat mass in the 0:150 group relative to the 75:75 

group despite comparable reductions in body mass, appear to be driven by 

accompanying losses of lean mass from pre- to post-intervention in the 0:150 group. 

However, no interaction effect emerged for changes in lean mass (group*time, 

p=0.24), with only the time effect achieving significance (time, p=0.01).  

Consequently, FMI decreased in the 75:75 group to a greater extent than in the 0:150 

group (Δ-between, p=0.03 vs 75:75). This decrease also contrasted with the 0:200 

group (Δ-between, p<0.01 vs 75:75), in which FMI was unchanged. However, the 

difference in the change seen with the 0:150 and 0:200 conditions did not achieve 

significance (Δ-between, p=0.07).  Lastly, the change in visceral fat mass from pre- to 

post-intervention was not different between groups (group*time, p=0.30) despite 

decreases in both the 75:75 and 0:150 conditions, which is in accordance with the 

findings for waist circumference. 
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Table 5.3: Body composition outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within each group.  

Variable 
75:75 (n=12)      0:150 (n=12)      0:200 (n=12)      Two-way ANOVA      

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Body Mass (kg) 
72.1 

(10.2) 

70.2 

(9.9) 

-1.9 *C 

(-2.5, -1.4) 

72.3 

(8.2) 

70.7 

(8.2) 

-1.6 *C 

(-2.2, -1.0) 

67.7 

(7.8) 

67.2 

(7.4) 

-0.5 A,B 

(-1.1, 0.1) 
0.01 <0.01 0.46 

Body Mass Index (kg·m-2) 
24.0 

(1.9) 

23.4 

(1.8) 

-0.6 *C 

(-0.8, -0.5) 

24.0 

(2.3) 

23.4 

(2.3) 

-0.5 *C 

(-0.7, -0.3) 

23.7 

(2.1) 

23.5 

(1.9) 

-0.2 A,B 

(-0.4, 0.0) 
0.01 <0.01 0.99 

Waist Circumference (cm) 
84.0 

(7.1) 

81.5 

(6.8) 

-2.4 

(-3.5, -1.4) 

83.2 

(4.6) 

81.5 

(4.0) 

-1.7 

(-2.7, -0.6) 

80.0 

(7.9) 

79.4 

(7.6) 

-0.7 

(-1.8, 0.4) 
0.08 <0.01 0.46 

Fat Mass (kg) 
18.5 

(4.1) 

16.7 

(3.8) 

-1.8 *B,C 

(-2.2, -1.3) 

16.1 

(5.1) 

15.4 

(5.3) 

-0.8 *A,C 

(-1.3, -0.3) 

17.4 

(6.8) 

17.3 

(6.4) 

-0.1 A,B 

(-0.5, 0.3) 
<0.01 <0.01 0.66 

Fat Mass Index (kg·m-2) 
6.35 

(1.54) 

5.73 

(1.43) 

-0.62 *B,C 

(-0.78, -0.46) 

5.62 

(2.15) 

5.36 

(2.23) 

-0.26 *A 

(-0.47, -0.06) 

6.37 

(2.54) 

6.36 

(2.39) 

-0.01 A 

(-0.17, 0.15) 
<0.01 <0.01 0.61 

Lean Mass (kg) 
53.6 

(10.5) 

53.5 

(10.2) 

-0.1 

(-0.6, 0.3) 

56.1 

(10.1) 

55.3 

(10.0) 

-0.8 

(-1.5, -0.2) 

50.3 

(8.6) 

49.8 

(8.6) 

-0.4 

(-0.9, 0.0) 
0.24 0.01 0.39 

Visceral Fat Mass (g) 
382.6 

(163.5) 

351.3 

(159.7) 

-31.3 

(-48.6, -13.9) 

355.7 

(94.6) 

321.4 

(81.9) 

-34.3 

(-43.4, -15.2) 

311.4 

(161.5) 

304.0 

(145.8) 

-7.5 

(-43.7, 28.8) 
0.30 <0.01 0.57 

* denotes p≤0.05 for within-group effect (paired t-test)  
A denotes p≤0.05 for between-group change score vs. 75:75 (independent samples t-test) 
B denotes p≤0.05 for between-group change score vs. 0:150 (independent samples t-test) 
C denotes p≤0.05 for between-group change score vs. 0:200 (independent samples t-test) 
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5.3.3 – Energy Intake 

Energy intake, and the fraction of energy intake derived from each of the four 

macronutrients, is shown in Figure 5.2. During the intervention, the interaction effect 

(group*time, p<0.01) highlighted that the 75:75 and 0:150 groups reduced their energy 

intake to a similar degree (75:75 = -622±216 kcal·day-1, 0:150 = -503±264 kcal·day-1; 

Δ-between, p=0.24), reductions which differed to the 0:200 group in which energy 

intake was stable to within 15 kcal·day-1 (Δ-between, p<0.01 vs 75:75, p<0.01 vs 

0:150). This was accompanied by interaction effects for both carbohydrate 

(group*time, p=0.02) and fat (group*time, p<0.01) intake, which appear to drive these 

changes. In the 75:75 group, both carbohydrate (-54±26 g·day-1) and fat (-35±19 g·day-

1) intake decreased in response to the intervention, a pattern which was largely 

mirrored by the 0:150 group, with carbohydrate and fat intake decreasing by -45±40 

g·day-1 and -21±10 g·day-1, respectively. Comparatively, there were no meaningful 

changes in the consumption of any one macronutrient in the 0:200 group. 

Upon comparing these changes across groups, the change in carbohydrate intake was 

not different between 75:75 and 0:150 (Δ-between, p=0.52), nor 0:150 and 0:200 (Δ-

between, p=0.12), only achieving significance when comparing 75:75 against 0:200 

(Δ-between, p=0.04). Conversely, the disparate changes in fat intake highlighted a 

difference between the two energy-restricted diets, decreasing to a greater extent in the 

75:75 group when compared to the 0:150 group (Δ-between, p=0.03 vs 75:75), both 

of which contrasted with the 0:200 group (Δ-between, p<0.01 vs 75:75, p<0.01 vs 

0:150). The changes in protein (group*time, p=0.12) and alcohol intake (group*time, 

p=0.13) were not meaningful. 

The net effect of this in terms of macronutrient balance was a disproportionate change 

in the fraction of energy intake derived from fat between groups (group*time, p<0.01). 

A 4±4% decrease in fat-derived energy intake was observed in the 75:75 group, which 

diverged from the stability of the 0:150 group (+0±3%; Δ-between, p=0.04 vs 75:75) 

and an increase in the 0:200 group (+4±7%; Δ-between, p=0.01 vs 75:75), which 

tended to differ themselves (Δ-between, p=0.06, 0:150 vs 0:200). These changes were 

offset by between-group differences in the proportion of energy intake obtained from 

both protein (group*time, p=0.03) and alcohol (group*time, p=0.05). Specifically, the 
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75:75 group tended to increase the fraction of dietary energy derived from protein 

(+1±2%) and alcohol (+2±3%), whilst in the 0:200 group no meaningful changes in 

the contribution of any one macronutrient were apparent. 

 

 

Figure 5.2: Energy and macronutrient intake during the control and intervention 

phases in the daily calorie restriction (75:75), intermittent fasting with restriction 

(0:150) and intermittent fasting without restriction groups (0:200). Energy derived 

from the respective macronutrients was estimated by multiplying the reported intake 

in grams by the accompanying Atwater general factor. # denotes p≤0.05 for 

group*time interaction (two-way ANOVA). * denotes p≤0.05 for within-group time 

effect (paired t-test). a, b and c denote p≤0.05 for between-group change score vs. 

75:75, 0:150 and 0:200, respectively (independent t-test). Data are presented as mean 

and SEM. Abbreviations: Con = control; CHO = carbohydrate; FAT = lipids; PRO = 

protein; EtOH = alcohol. 
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5.3.4 – Energy Expenditure 

Total daily energy expenditure in the control and intervention phases in each of the 

three groups is shown in Figure 5.3 as a sum of resting metabolic rate, diet-induced 

thermogenesis and physical activity thermogenesis. The interaction effect 

(group*time, p<0.01) highlighted that the reduction in energy expenditure in the 0:150 

group (-230±166 kcal·day-1) differed to the stability of the 0:200 condition (+87±236 

kcal·day-1; Δ-between, p<0.01 vs 0:150). Although, energy expenditure was not 

meaningfully altered by the 75:75 diet either (-112±244 kcal·day-1), this change was 

not different from either the 0:150 or 0:200 diets (Δ-between, p=0.18 vs 0:150, p=0.11 

vs 0:200). 
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Figure 5.3: Total daily energy expenditure as a product of the three main components 

during the control and intervention phases in the daily calorie restriction (75:75), 

intermittent fasting with restriction (0:150) and intermittent fasting without restriction 

(0:200) groups. RMR was measured via indirect calorimetry during the pre- and post-

intervention laboratory sessions, DIT was estimated by multiplying reported intakes 

by the equivalents proposed by Westerterp (2004), and PAT was measured using 

ActiheartTM monitors. # denotes p≤0.05 for group*time interaction (two-way 

ANOVA). * denotes p≤0.05 for within-group time effect (paired t-test). a, b and c 

denote p≤0.05 for between-group change score vs. 75:75, 0:150 and 0:200, 

respectively (independent t-test). Data are presented as mean and SEM. Abbreviations: 

Con = control; RMR = resting metabolic rate; DIT = diet-induced thermogenesis; PAT 

= physical activity thermogenesis. 
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5.3.5 – Energy Balance 

For clarity, the energy balance data discussed thus far are summarised in Figure 5.4. 

This serves to better visualise the effect of the three interventions on energy intake and 

the resultant impacts upon the components of energy expenditure, which was a primary 

outcome in this study. However, direct comparisons between intake and expenditure 

data were deemed inappropriate in light of the different measurement techniques  

employed and the associated limitations (Hall et al., 2012). 
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Figure 5.4: Components of energy intake and energy expenditure measured during the 

control and intervention phases in the daily calorie restriction (75:75), intermittent 

fasting with restriction (0:150) and intermittent fasting without restriction groups 

(0:200). Data are presented as mean and SEM for each stacked-bar component. 

Abbreviations: Con = control; CHO = carbohydrate; FAT = lipids; PRO = protein; 

EtOH = alcohol; RMR = resting metabolic rate; DIT = diet-induced thermogenesis; 

PAT = physical activity thermogenesis. 
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5.3.6 – Metabolic Rate 

Following adjustment for changes in body mass, resting metabolic rate was unchanged 

by the three interventions (75:75 = -0.35±2.43 kcal·kg-1·day-1, 0:150 = -0.77±2.65 

kcal·kg-1·day-1, 0:200 = +0.80±2.38 kcal·kg-1·day-1), showing neither an interaction 

(group*time, p=0.30) nor a time effect (time, p=0.80). Furthermore, despite the 

seemingly large changes in carbohydrate and lipid oxidation shown in Figure 5.5, only 

time effects were apparent with no meaningful interactions (group*time, all p≥0.51). 

This pattern was also mirrored by the changes in respiratory exchange ratio (75:75 = -

0.03±0.07, 0:150 = -0.06±0.06, 0:200 = -0.02±0.06; group*time, p=0.42), with the 

time effect (time, p<0.01) being driven by the response to the 0:150 diet. 

In the postprandial state (i.e. the metabolic responses monitored over 3-hours 

following meal 1 at pre- and post-intervention), once again metabolic rate 

(group*time, p=0.55) and substrate oxidation (group*time, all p≥0.10) were not 

affected by the three diets (Figure 5.6). Only lipid oxidation achieved significance for 

a time effect (time, p=0.05), which was driven by a tendency to increase in the two 

intermittent fasting groups. This was mirrored by measurements of respiratory 

exchange ratio, which also characterised a time effect (75:75 = +0.00±0.05, 0:150 = -

0.04±0.05, 0:200 = -0.02±0.03; time, p=0.01) but no interaction (group*time, p=0.10).  
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Figure 5.5: Total fasting substrate oxidation as accounted for by each macronutrient 

at pre- and post-intervention in the daily calorie restriction (75:75), intermittent fasting 

with restriction (0:150) and intermittent fasting without restriction groups (0:200). # 

denotes p≤0.05 for group*time interaction (two-way ANOVA). * denotes p≤0.05 for 

within-group time effect (paired t-test). a, b and c denote p≤0.05 for between-group 

change score vs. 75:75, 0:150 and 0:200, respectively (independent t-test). Data are 

presented as mean and SEM. Abbreviations: COX = carbohydrate oxidation; LOX = 

lipid oxidation; POX = protein oxidation. 
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Figure 5.6: Average substrate oxidation throughout the 3-hour postprandial period 

presented as a sum of measured oxidation of specific macronutrients at pre- and post-

intervention in the daily calorie restriction (75:75), intermittent fasting with restriction 

(0:150) and intermittent fasting without restriction groups (0:200). # denotes p≤0.05 

for group*time interaction (two-way ANOVA). * denotes p≤0.05 for within-group 

time effect (paired t-test). a, b and c denote p≤0.05 for between-group change score 

vs. 75:75, 0:150 and 0:200, respectively (independent t-test). Data are presented as 

mean and SEM. Abbreviations: COX = carbohydrate oxidation; LOX = lipid 

oxidation; POX = protein oxidation. 
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5.3.7 – Diet-Induced Thermogenesis 

Given that diet-induced thermogenesis (Figure 5.7) was estimated from reported 

intakes of the four main macronutrients, the effects of the interventions on this 

outcome broadly align with those discussed previously for energy intake, with slight 

amplification in some cases due to the differing thermogenic effects of each 

macronutrient. Briefly, diet-induced thermogenesis (group*time, p<0.01) was 

similarly decreased in the 75:75 and 0:150 groups during the intervention (75:75 = -

39±12 kcal·day-1, 0:150 = -42±25 kcal·day-1; Δ-between, p=0.68). These reductions 

differed from the stability of the 0:200 group (-11±19 kcal·day-1; Δ-between, p<0.01 

vs 75:75, p=0.01 vs 0:150), capturing the energy-restricted nature of the two diets. 

Accordingly, the change in the thermogenic fraction accounted for by fat (group*time, 

p<0.01) and carbohydrate (group*time, p=0.02) was also different between groups, 

mirroring the divergent changes in macronutrient intake described previously.  
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Figure 5.7: Diet-induced thermogenesis as a product of the thermogenic fractions of 

the four main macronutrients during the monitoring and intervention phases for the 

daily calorie restriction (75:75), intermittent fasting with restriction (0:150) and 

intermittent fasting without restriction groups (0:200). Estimates were made by 

multiplying reported intakes in the respective phases by the equivalents proposed by 

Westerterp (2004). # denotes p≤0.05 for group*time interaction (two-way ANOVA). 

* denotes p≤0.05 for within-group time effect (paired t-test). a, b and c denote p≤0.05 

for between-group change score vs. 75:75, 0:150 and 0:200, respectively (independent 

t-test). Data are presented as mean and SEM. Abbreviations: Con = control; CHO = 

carbohydrate; FAT = lipid; PRO = protein; EtOH = alcohol. 
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5.3.8 – Physical Activity Thermogenesis 

Physical activity thermogenesis, as measured by individually-calibrated ActiheartTM 

monitors, is shown in Figure 5.8. The interaction effect (group*time, p=0.04) 

highlighted a trend for reduced physical activity thermogenesis in response to the 

0:150 diet when contrasted against the tendency to increase in response to the 0:200 

diet (0:150 = -98±169 kcal·day-1, 0:200 = +59±142 kcal·day-1; Δ-between, p=0.07); 

whereas physical activity thermogenesis in the 75:75 group was stable to within 1 

kcal·day-1, which did not differ meaningfully from the change in either the 0:150 or 

0:200 groups (Δ-between, p=0.24 vs 0:150, p=0.31 vs 0:200). Upon stratifying this by 

calories expended at differing intensity thresholds, as defined by metabolic 

equivalents, the only effect worthy of mention was a trend for between-group 

differences in the change in energy expended performing light activities (group*time, 

p=0.08). This seems to have been driven by the slight decrease in the 0:150 group 

relative to the other two conditions, as illustrated in Figure 5.8 (75:75 = +12±52 

kcal·day-1, 0:150 = -33±63 kcal·day-1, 0:200 = +21±68 kcal·day-1). 

To explore these changes further, the modifications in physical activity thermogenesis 

and intensity observed during the intervention (Figure 5.9a) were sub-divided 

according to cycles of fasting and feeding for the 0:150 and 0:200 groups (Figure 

5.9b). When expressed in this manner, the change in physical activity thermogenesis 

from fasted to fed days was not different between groups (group*time, p=0.37), and 

nor was this change different between groups when specific intensity thresholds were 

analysed. Only the change in vigorous activity approached significance for the 

interaction (group*time, p=0.07), which most likely reflects the decrease from fasted 

to fed days in the 0:150 group relative to the slight increase in the 0:200 group (0:150 

= -27±68 kcal·day-1, 0:200 = +21±58 kcal·day-1). It is interesting to note however, that 

time effects were established for calories expended in the sedentary (time, p<0.01) and 

light (time, p<0.01) intensity ranges, suggesting divergent activity patterns on fasted 

and fed days that were similar across the two intermittent fasting groups. Specifically, 

participants in both groups tended to reduce the calories expended through sedentary 

(0:150 = -34±31 kcal·day-1, 0:200 = -41±26 kcal·day-1) and light (0:150 = -38±43 

kcal·day-1, 0:200 = -45±53 kcal·day-1) intensity physical activities to a greater degree 
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on fasting days when compared to fed days. This resulted in a trend for lower physical 

activity thermogenesis on fasting days when compared to fed days (time, p=0.07). 

 

Figure 5.8: Physical activity thermogenesis presented as a sum of the kilocalories 

expended at differing intensities of activity during the monitoring and intervention 

phases for the daily calorie restriction (75:75), intermittent fasting with restriction 

(0:150) and intermittent fasting without restriction groups (0:200). Intensity thresholds 

were defined as multiples of resting metabolic rate (i.e. METs), as measured prior to 

the intervention, using the following ranges: sedentary = ≤1.5 METs, light = 1.5-2.9 

METs, moderate = 3.0-5.9 METs, vigorous = 6.0-10.1 METs, v.vigorous = ≥10.2 

METs. # denotes p≤0.05 for group*time interaction (two-way ANOVA). * denotes 

p≤0.05 for within-group time effect (paired t-test). a, b and c denote p≤0.05 for 

between-group change score vs. 75:75, 0:150 and 0:200, respectively (independent t-

test). Data are presented as mean and SEM. Abbreviations: Con = control; v. vigorous 

= very vigorous. 
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Figure 5.9: Change in physical activity thermogenesis during the intervention (A) as 

a sum of the kilocalories expended at differing intensities of activity during fasted and 

fed periods (B) for intermittent fasting with restriction (0:150) and intermittent fasting 

without restriction groups (0:200). Intensity thresholds were defined as multiples of 

resting metabolic rate (i.e. METs), as measured prior to the intervention, using the 

following ranges: sedentary = ≤1.5 METs, light = 1.5-2.9 METs, moderate = 3.0-5.9 

METs, vigorous = 6.0-10.1 METs, v.vigorous = ≥10.2 METs. # denotes p≤0.05 for 
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group*time interaction (two-way ANOVA). * denotes p≤0.05 for within-group time 

effect (paired t-test). a, b and c denote p≤0.05 for between-group change score vs. 

75:75, 0:150 and 0:200, respectively (independent t-test). Data are presented as mean 

and SEM. Abbreviations: Con = control; v.vigorous = very vigorous. 

5.3.9 – Fasting Biochemistry 

All fasting biochemistry outcomes are shown in Table 5.4. The only meaningful 

interaction effect that emerged was for plasma leptin concentration (group*time, 

p=0.04), which decreased following the 75:75 diet but not the 0:200 diet (∆-between, 

p=0.01). Although there was also a tendency for leptin to decrease following the 0:150 

intervention, this did not differ from the changes seen in response to the other two 

conditions (∆-between, p=0.58 vs 75:75, p=0.16 vs 0:200). Aside from this, there were 

minimal impacts of the three interventions on these outcomes, as emphasised by the 

accompanying dearth of time effects. The only time effect that even approached 

significance was the pre- to post-intervention change in LDL cholesterol, which was 

driven by a decrease in response to the 75:75 diet.
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Table 5.4: Fasting and postprandial biochemistry outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within each group.  

Outcome 
75:75 (n=12) 0:150 (n=12) 0:200 (n=12) Two-way ANOVA 

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Plasma Glucose             

 Fasted (mmol∙l-1) 
5.27 

(0.38) 

5.28 

(0.31) 

0.01 

(-0.13, 0.15) 

5.62 

(0.37) 

5.66 

(0.39) 

0.04 

(-0.29, 0.38) 

5.14 

(0.67) 

5.24 

(0.40) 

0.10 

(-0.20, 0.40) 
0.88 0.48 0.02 

 iAUC (mmol∙l-1∙330 min) 
332 (146) 360 

(228) 

28 

(-55, 111) 

267 

(107) 

268 

(140) 

1 

(-97,99) 

268 

(88) 

243 

(73) 

-24 

(-77, 28) 
0.60 0.94 0.17 

 Meal 1 Peak (mmol∙l-1) 
7.81 

(1.26) 

8.26 

(1.15) 

0.45 

(-0.15, 1.05) 

8.22 

(1.09) 

8.24 

(1.05) 

0.01 

(-0.79, 0.82) 

7.72 

(1.00) 

7.51 

(1.20) 

-0.21 

(-0.81, 0.38) 
0.31 0.64 0.31 

 Meal 2 Peak (mmol∙l-1) 
8.10 

(0.42) 

8.13 

(0.54) 

0.04 

(-0.25, 0.32) 

8.21 

(0.95) 

8.27 

(0.81) 

0.06 

(-0.41, 0.53) 

8.02 

(0.90) 

8.03 

(0.82) 

0.01 

(-0.43, 0.44) 
0.98 0.74 0.75 

 Meal 1 Time to Peak (min) 
35 

(17) 

34 

(9) 

-1 

(-14, 12) 

33 

(13) 

31 

(8) 

-1 

(-10, 7) 

33 

(9) 

34 

(11) 

1 

(-8, 11) 
0.91 0.88 0.75 

 Meal 2 Time to Peak (min) 
44 

(23) 

39 

(14) 

-5 

(-14, 4) 

41 

(27) 

39 

(19) 

-3 

(-24, 19) 

44 

(25) 

38 

(14) 

-6 

(-22, 10) 
0.94 0.30 0.98 

Plasma Insulin             

 Fasted (pmol∙l-1) 
20.63 

(8.19) 

17.18 

(12.13) 

-3.45 

(-7.94, 1.04) 

19.02 

(5.04) 

19.01 

(7.91) 

-0.01 

(-4.73, 4.71) 

18.50 

(5.78) 

21.21 

(8.33) 

2.70 

(-2.13, 7.54) 
0.14 0.84 0.94 

 iAUC (nmol∙l-1∙330 min) 
28.45 

(9.92) 

30.01 

(13.21) 

1.56 

(-5.32, 8.44) 

35.59 

(12.80) 

38.65 

(17.92) 

3.06 

(-4.28, 10.41) 

39.79 

(17.39) 

39.36 

(15.16) 

-0.43 

(-8.65, 7.79) 
0.77 0.48 0.16 

 Meal 1 Peak (pmol∙l-1) 
216.15 

(70.95) 

224.47 

(77.41) 

8.32 

(-45.61, 62.24) 

280.69 

(111.52) 

311.52 

(129.74) 

30.83 

(-27.58, 89.24) 

302.83 

(106.74) 

303.40 

(140.67) 

0.58 

(-75.11, 76.27) 
0.74 0.43 0.08 

 Meal 2 Peak (pmol∙l-1) 
271.73 

(118.89) 

288.50 

(155.84) 

16.78 

(-43.33, 76.89) 

281.26 

(78.13) 

289.73 

(99.56) 

8.47 

(-44.34, 61.27) 

339.10 

(185.98) 

382.93 

(212.22) 

43.83 

(-88.95, 176.61) 
0.81 0.33 0.26 

 Meal 1 Time to Peak (min) 
34 

(9) 

35 

(10) 

1 

(-6,9) 

41 

(16) 

50 

(12) 

9 

(1, 16) 

34 

(11) 

41 

(19) 

8 

(-7, 22) 
0.51 0.04 0.03 

 Meal 2 Time to Peak (min) 
35 

(10) 

35 

(13) 

0 

(-10, 10) 

38 

(15) 

43 

(20) 

5 

(-8, 18) 

38 

(21) 

41 

(13) 

4 

(-9, 16) 
0.79 0.35 0.58 

HOMA-IR1 
0.809 

(0.346) 

0.685 

(0.517) 

-0.124 

(-0.305, 0.057) 

0.788 

(0.210) 

0.795 

(0.320) 

0.007 

(-0.196, 0.211) 

0.683 

(0.154) 

0.815 

(0.302) 

0.132 

(-0.057, 0.321) 
0.13 0.92 0.92 

Plasma Total Cholesterol              

 Fasted (mmol∙l-1) 
4.75 

(0.97) 

4.46 

(0.92) 

-0.28 

(-0.48, -0.09) 

4.74 

(0.77) 

4.74 

(0.78) 

0.00 

(-0.23 ,0.23) 

4.68 

(0.96) 

4.69 

(0.80) 

0.01 

(-0.24, 0.27) 
0.09 0.15 0.93 
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Table 5.4 cont. Fasting and postprandial biochemistry outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within groups.   

Outcome 
75:75 (n=12) 0:150 (n=12) 0:200 (n=12) Two-way ANOVA 

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Plasma HDL Cholesterol             

 Fasted (mmol∙l-1) 
1.64 

(0.43) 

1.57 

(0.38) 

-0.07 

(-0.18, 0.03) 

1.53 

(0.43) 

1.58 

(0.39) 

0.05 

(-0.04, 0.14) 

1.60 

(0.41) 

1.65 

(0.38) 

0.04 

(-0.05, 0.13) 
0.10 0.82 0.90 

Plasma LDL Cholesterol             

 
Fasted (mmol∙l-1) 

2.96 

(0.93) 

2.72 

(0.79) 

-0.24 

(-0.41, -0.07) 

3.06 

(0.85) 

2.96 

(0.79) 

-0.10 

(-0.31, 0.12) 

2.82 

(1.18) 

2.80 

(1.07) 

-0.02 

(-0.31, 0.27) 
0.35 0.06 0.85 

Plasma Triacylglycerol             

 
Fasted (mmol∙l-1) 

0.87 

(0.32) 

0.83 

(0.20) 

-0.04 

(-0.21 ,0.13) 

1.02 

(0.33) 

0.89 

(0.22) 

-0.12 

(-0.27, 0.02) 

0.96 

(0.39) 

0.93 

(0.39) 

-0.03 

(-0.18, 0.13) 
0.59 0.13 0.64 

 
tAUC (mmol∙l-1∙330 min) 

291 (129) 280 

(71) 

-11 

(-59, 36) 

394 

(126) 

349 

(117) 

-45 

(-93,2) 

357 

(164) 

351 

(144) 

-6 

(-51, 40) 
0.37 0.10 0.21 

Plasma NEFA             

 
Fasted (mmol∙l-1) 

0.48 

(0.34) 

0.46 

(0.24) 

-0.02 

(-0.13, 0.08) 

0.33 

(0.09) 

0.34 

(0.14) 

0.01 

(-0.08, 0.09) 

0.34 

(0.18) 

0.31 

(0.13) 

-0.04 

(-0.16, 0.09) 
0.83 0.54 0.12 

 
tAUC (mmol∙l-1∙330 min) 

50 

(21) 

46 

(14) 

-4 

(-13,5) 

40 

(11) 

40 

(11) 

0 

(-7,7) 

41 

(18) 

39 

(18) 

-2 

(-13, 9) 
0.81 0.40 0.31 

Plasma Glycerol             

 
Fasted (mmol∙l-1) 

0.06 

(0.03) 

0.06 

(0.02) 

0.00 

(-0.02, 0.02) 

0.04 

(0.03) 

0.04 

(0.02) 

0.00 

(-0.02, 0.02) 

0.04 

(0.02) 

0.03 

(0.02) 

0.01 

(-0.02, 0.02) 
0.98 0.90 0.04 

 
tAUC (mmol∙l-1∙330 min) 

12.31 

(4.98) 

14.00 

(3.63) 

1.69 

(-0.80, 4.19) 

10.71 

(4.08) 

11.02 

(3.87) 

0.32 

(-1.07, 1.70) 

10.71 

(4.10) 

10.58 

(4.90) 

-0.13 

(-1.57, 1.31) 
0.29 0.20 0.26 

Plasma Leptin             

 
Fasted (ng∙ml-1) 

9.30 

(5.97) 

5.50 

(3.96) 

-3.60 *C 

(-6.07, -1.53) 

10.49 

(13.92) 

7.68 

(10.10) 

-2.81 

(-6.01, 0.39) 

16.43 

(15.89) 

16.61 

(16.60) 

0.18 A 

(-1.33, 1.69) 
0.04 <0.01 0.15 

1 HOMA-IR = (fasted insulin μIU·ml-1 * fasted glucose mmol·l-1)/22.5 
A denotes significantly different from 75:75 according to post-hoc independent samples t-test (p≤0.05) 
C denotes significantly different from 0:200 according to post-hoc independent samples t-test (p≤0.05) 

 

Abbreviations: AUC = Area Under Curve; iAUC = Incremental Area Under Curve; tAUC = Total Area Under Curve; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; LDL= Low-

Density Lipoprotein; HDL = High-Density Lipoprotein; NEFA = Non-Esterified Fatty Acids 
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5.3.10 – Postprandial Glucose 

The postprandial glucose response to the sequential meal tests ingested before and 

after the 20-day interventions is shown in Figure 5.10. No interaction effects emerged 

for any aspect of this profile, including incremental area under curve, peak 

concentration and time to peak concentration (Table 5.4). Furthermore, this was 

unaffected when these outcomes were determined separately for each meal. 

5.3.11 – Postprandial Insulin 

The postprandial insulin response to the sequential meal tests ingested before and after 

the 20-day interventions is shown in Figure 5.11. Once again, no interaction effects 

emerged for any aspect of this profile, including incremental area under curve, peak 

concentration and time to peak concentration (Table 5.4). Furthermore, this was 

unaffected when these outcomes were determined separately for each meal.
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Figure 5.10: Postprandial plasma glucose profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with restriction (0:150) and intermittent fasting without restriction (0:200) groups. The white box on 

the x-axis represents the 20-day intervention and the black boxes on the x-axis denote the timing of prescribed meals. No interaction effects were 

identified by a three-way ANOVA (group*time*timepoint; p=0.35). Data are presented as mean ± SEM.  
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Figure 5.11: Postprandial plasma insulin profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with restriction (0:150) and intermittent fasting without restriction (0:200) groups. The white box on 

the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction effects were 

identified by a three-way ANOVA (group*time*timepoint; p=0.61). Data are presented as mean ± SEM.
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5.3.12 – Postprandial Triacylglycerol 

The postprandial triacylglycerol response to the sequential meal tests ingested before 

and after the 20-day interventions is shown in Figure 5.12. Once again, no interaction 

effects emerged, although the total area under curve for triglyceride concentrations 

approached significance for a time effect when meal 2 was analysed separately (time, 

p=0.08). As shown in the figure, this seemed to be driven by reductions in postprandial 

triacylglycerol concentration in response to the 0:150 diet. 

5.3.13 – Postprandial NEFA 

The postprandial NEFA response to the sequential meal tests ingested before and after 

the 20-day interventions is shown in Figure 5.13. Once again, no interaction effects 

emerged for any aspect of this profile (Table 5.4) and this was unaffected when each 

meal was analysed separately.  

5.3.14 – Postprandial Glycerol 

No interaction effects emerged for any aspect of the postprandial glycerol response 

(Table 5.4) and this was unaffected when each meal was analysed separately. 

However, due to the variable performance of the glycerol assay the postprandial profile 

is not shown and any results should be treated with caution.  
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Figure 5.12: Postprandial plasma triacylglycerol profiles in response to two sequential meal tests conducted at pre- and post-intervention in the 

daily calorie restriction (75:75), intermittent fasting with restriction (0:150) and intermittent fasting without restriction (0:200) groups. The white 

box on the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction effects 

were identified by a three-way ANOVA (group*time*timepoint; p=0.85). Data are presented as mean ± SEM. 
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Figure 5.13: Postprandial plasma NEFA profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with restriction (0:150) and intermittent fasting without restriction (0:200) groups. The white box on 

the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction effects were 

identified by a three-way ANOVA (group*time*timepoint; p=0.68). Data are presented as mean ± SEM.
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5.4 – Discussion 

The present study established the effects of a diet combining intermittent fasting with 

calorie restriction on energy expenditure and metabolic health, compared to energy-

matched (i.e. hypocaloric) daily calorie restriction and intermittent fasting without 

calorie restriction. In accordance with these prescriptions, energy intake was 

necessarily reduced to a similar degree in the two energy-restricted diets but 

maintained in the intermittent fasting without calorie restriction group. This pattern 

was also mirrored by expected changes in body mass, although fat mass was reduced 

to a greater degree by daily calorie restriction when compared to intermittent fasting. 

Most interestingly, the primary outcome revealed a decrease in physical activity 

energy expenditure upon combining intermittent fasting with calorie restriction when 

compared to intermittent fasting without calorie restriction, whilst physical activity 

was remarkably stable in response to daily calorie restriction. However, despite these 

changes in body mass/composition and physical activity levels, health outcomes ware 

largely unaltered by the three interventions. 

The reduction in physical activity energy expenditure when combining intermittent 

fasting with calorie restriction is a key observation in this study. This differed from the 

slight increase seen when undertaking intermittent fasting without calorie restriction, 

whilst physical activity in the daily calorie restriction group was unperturbed. This is 

the first study to quantify changes in physical activity energy expenditure during 

complete alternate-day fasting, both alone and in combination with calorie restriction. 

Coupling this fasting model with the use of objective methods to quantify physical 

activity (i.e. combined heart rate/accelerometry), which show good agreement with 

free-living reference standards (Brage et al., 2015), most likely explains the 

contradiction of prior studies on this topic. Both Klempel et al. (2010) and Hoddy et 

al. (2016) suggest that physical activity is maintained during 8-weeks of intermittent 

fasting despite weight loss. However, both of these studies employed daily step counts 

as a proxy for physical activity, the limitations of which are well-known (Crouter et 

al., 2003; Corder, Brage and Ekelund, 2007). Although a similar conclusion was drawn 

by Klempel et al. (2012) based on accelerometry data from another 8-week 

intermittent fasting protocol, the intervention only required fasting on one day per 

week and recruited those reporting low levels of habitual activity at baseline. Instead, 
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the present results show good agreement with the findings of Betts et al. (2014), who 

observed reductions in physical activity energy expenditure in response to extended 

morning fasting in lean adults.  

Collectively, these findings therefore suggest that neither prolonged fasting intervals 

nor the imposed energy restriction in isolation were sufficient to meaningfully alter 

physical activity thermogenesis. Instead, their combined influence in the intermittent 

fasting with calorie restriction condition seems to be exerting an interactive effect to 

elicit a change despite relatively small decreases in body mass. The observed tendency 

for reduced physical activity thermogenesis on fast days compared to fed days in 

response to intermittent fasting would certainly be consistent with an 

adaptive/compensatory response to prolonged fasting, which is perhaps exacerbated 

by behavioural adaptations to the energy deficit, as is often seen with longer periods 

of daily calorie restriction (Martin et al., 2011). This would also be in keeping with 

the reduction being driven by decreases in sedentary and light activities, which is 

characteristic of a reduction in spontaneous physical activity rather than a conscious 

decision (Betts et al., 2016). However, there are two potential confounding influences 

which could also explain the apparent decrease in physical activity on fasted days 

when compared to fed.   

Firstly, instead of an adaptive response, these changes in activity between fasted and 

fed days may be capturing an effect of the intermittent fasting protocol. For instance, 

the reduction in light activity during fasting may reflect the reduction in food 

preparation time (Ainsworth et al., 2011), or perhaps an ability to get up later in the 

morning as no time needs to be allowed for breakfast consumption. However, such a 

decrease in response to fasting would be apparent in both the 0:150 and 0:200 groups, 

when light activity was largely stable during fasted periods in the 0:200 condition (-

1±69 kcal·day-1). A second possibility is that these divergent responses are instead 

capturing an acute effect of feeding on heart rate (Matsumoto et al., 2001; Walhin et 

al., 2013). The proposed increase in response to feeding could cause overestimation 

during overfeeding and perhaps underestimation in response to fasting, which does 

align with the patterns shown in Figure 5.9a. Although, if true, this effect would be 

expected to manifest as differences in moderate-vigorous intensity activity on fed and 

fasted days. This is because the branched-equation model from which these estimates 
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are derived assigns a larger weighting to heart rate data at these higher intensities, 

meaning this acute feeding effect would be amplified there (Brage et al., 2004). 

Consequently, this is difficult to reconcile with the present pattern in which lower 

intensity activities seem to be more responsive to acute feeding, as at these intensities 

the estimates are determined almost entirely by accelerometry data. 

This therefore proposes that imposing calorie restriction through complete alternate-

day fasting may lead to greater adaptive declines in physical activity thermogenesis 

than alternative methods. Consequently, such dietary strategies should place emphasis 

on maintaining levels of physical activity given its importance to long-term weight 

loss maintenance (Elfhag and Rossner, 2005; Thomas et al., 2014). The reduction 

incurred was equivalent to approximately 30 minutes of walking per day (Ainsworth 

et al., 2011), thereby providing a useful prescription which could be easily self-

monitored using wearable technologies (Chowdhury et al., 2017). Although the 

proposed confounding influences are difficult to align with the changes seen, they 

should nonetheless be kept in mind and highlight the need to replicate this finding 

using alternative methods. This is particularly pertinent in light of the findings of 

Muller et al. (2015); following 3 weeks of daily calorie restriction, they observed a 

reduction in the energetic cost of physical activity whilst physically active behaviours 

themselves were unchanged. If present here, such an adaptive increase in efficiency 

would not be captured by combined heart rate/accelerometry methods. The use of 

doubly-labelled water stands as the most obvious alternative for capturing such free-

living data (Brage et al., 2015), and this would overcome the influence of acute feeding 

state on heart rate to isolate a behavioural adaptation of some degree. However, this is 

instead prone to confounding influences arising from changes in substrate metabolism 

in such an extreme feeding model (Hall et al., 2018), and would not provide the 

resolution needed to examine temporal changes in activity patterns. 

Shifting to focus on changes in body composition, another key finding emerging from 

the present study is that fat mass was reduced to a greater degree by daily calorie 

restriction when compared to intermittent fasting, despite similar overall weight losses. 

In part, this is likely to be mediated by the larger reduction in fat intake with daily 

calorie restriction when compared to the two intermittent fasting conditions. This is 

supported by Hall et al. (2015), who observed that dietary fat restriction results in more 
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pronounced negative fat balance than dietary carbohydrate restriction, even when 

matched for energy intake. However, given that the discrepancy in the reduction in fat 

intake between the two energy-restricted groups was only was only 14 grams per day 

in absolute terms, this is unlikely to be the sole explanation (Galgani and Ravussin, 

2008). Instead, the explanation for this disparity may lie in the proposed regulatory 

pathways that underpin rates of muscle protein synthesis and breakdown, given that 

skeletal muscle mass constitutes a substantial fraction of whole-body protein stores 

(Milan et al., 2015; Abdulla et al., 2016). 

In response to prolonged fasting, reductions in muscle protein synthesis have been 

observed (Felig, 1975; Vendelbo et al., 2014), which shifts the dynamic equilibrium 

in which this tissue exists in favour of muscle protein breakdown (Atherton and Smith, 

2012; Dickinson and Rasmussen, 2013; Tipton, Hamilton and Gallagher, 2018). 

Consequently, the residual amino acids resulting from this imbalance can instead be 

utilised in gluconeogenesis, allowing protein to make a meaningful contribution to 

whole-body energy metabolism and reducing reliance on endogenous fat stores (Owen 

et al., 1979; Carlson, Snead and Campbell, 1994; Soeters et al., 2012). In contrast, the 

maintenance of typical meal patterns in the daily calorie restriction group is likely to 

have provided a regular influx of amino acids to stimulate muscle protein synthesis 

despite the imposed energy restriction (Areta et al., 2013), resulting in fewer amino 

acids being available for use in gluconeogenic pathways. 

Collectively, this reduction in protein synthesis and increased use of amino acids in 

energy-producing pathways when combining this approach to intermittent fasting with 

calorie restriction may also explain the contrasts with prior literature. Contrary to the 

present observation that fat mass decreases more readily in response to daily calorie 

restriction, in a systematic review of randomised-controlled trials, Varady (2011) 

concluded that intermittent and continuous approaches to calorie restriction are equally 

effective in reducing body mass and fat mass, but that intermittent calorie restriction 

may offer enhanced retention of lean mass. A similar conclusion was also drawn by a 

more recent review comparing intermittent approaches with very-low calorie dieting 

(Alhamdan et al., 2016). However, of the seven trials of intermittent approaches 

included in the Varady (2011) review, only two utilised the complete alternate-day 

approach as was employed in the current study. Instead, the majority of these studies 
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utilised a modified alternate-day approach (Patterson and Sears, 2017), in which 

participants were prescribed 15-25% of their habitual intake during fasting periods. 

Even a low dose of amino acids such as this can stimulate muscle protein synthesis 

(Areta et al., 2013), thereby encouraging the incorporation of amino acids into skeletal 

muscle tissue. The distinct effect of fasting observed in the present study may therefore 

depend on the imposition of fasting inferring a complete absence of such anabolic 

signals as opposed to a mere reduction. 

It is therefore understandable why the present data regarding changes in fat mass with 

intermittent fasting show better agreement with the findings of Heilbronn, Smith, et 

al. (2005), who applied a 24-hour complete fast on alternate days for 3 weeks. 

Specifically, fat mass decreased by 0.8 kg whilst lean mass decreased by 0.6 kg, which 

shows good agreement with the 0.8 kg decreases in both fat and lean mass seen in 

response to the intermittent fasting with calorie restriction diet in the present study. 

Unfortunately, that study did not feature a comparative daily restriction arm, but the 

review of Varady (2011) suggests that short-term continuous energy restriction 

typically decreases fat mass by ~10% and lean mass by ~1%, which contrasts well 

with the respective 9.7% and 0.2% reductions seen in response to the daily calorie 

restriction group in the present study. It is also worthy of note that the lack of change 

in body mass and composition in response to intermittent fasting without calorie 

restriction affirms the previous findings of both Halberg et al. (2005) and Soeters et 

al. (2009), who applied a 20-hour complete fast on alternate days for two weeks. 

The stability of resting metabolic rate in response to all three interventions when 

adjusted for changes in body mass was also unexpected, particularly in the daily calorie 

restriction group. This is because adjusting resting metabolic rate for changes in body 

mass aims to isolate adaptive responses, which have been consistently reported 

following daily calorie restriction of varying degrees and durations (Redman et al., 

2009; Rosenbaum and Leibel, 2010; Martin et al., 2011; Redman and Ravussin, 2011; 

Dhurandhar et al., 2015). Although it could be argued that the current intervention 

duration was insufficient to invoke such an adaptive response, Muller et al. (2015) 

observed adaptive declines in resting energy expenditure following just one week of 

50% calorie restriction, which remained significant after three weeks of calorie 

restriction following adjustment for changes in body composition. The scale of this 
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change was also similar to that observed by Friedlander et al. (2005) following 3 weeks 

of 40% calorie restriction, on which the power calculation for this study was based. 

This would appear to suggest that the relative stability of resting metabolic rate in the 

present study can therefore be ascribed to the lesser degree of calorie restriction 

imposed, reaching 27% in the daily restriction group. This is reflected by the smaller 

reductions in body mass, decreasing by 2.7% from pre-intervention values in the 

present study compared to the 5.4% and 4.8% reductions observed by Muller et al. 

(2015) and Friedlander et al. (2005), respectively. However, the observed changes in 

fat mass in the present study were also broadly paralleled by changes in leptin 

concentration, which decreased by 42% and 22% in the daily calorie restriction and 

intermittent fasting with calorie restriction groups, respectively. Given suggestions 

that the adipokine leptin plays a prominent role in initiating the adaptive changes in 

energy expenditure often seen with energy restriction (Rosenbaum et al., 2005; 

Rosenbaum, Hirsch, et al., 2008; Kluge et al., 2010; Mullur, Liu and Brent, 2014; 

Morton et al., 2015), it would be reasonable to expect that a change of this magnitude 

would invoke an adaptive response of some degree. 

Although this outcome therefore seems somewhat discordant with current 

understanding, a similar observation was made by Heilbronn et al. (2005) in response 

to their study of complete alternate-day fasting, which invoked similar changes in both 

body mass and composition. Consequently, this instead points to the notion of a leptin 

threshold, wherein circulating concentrations need to decrease below a critical level in 

order to activate specific responses (Dardeno et al., 2010; Rosenbaum et al., 2014). In 

light of this, the degree of weight loss achieved may need to be considered when 

examining these adaptive changes in future studies. However, whilst increasing the 

duration of the intervention could have potentially established meaningful effects on 

resting metabolic rate, this would not be advisable based on participant feedback. As 

such, if future studies were to explore this further, increasing the degree of caloric 

restriction imposed by the energy-restricted conditions would be the best course. 

Lastly, both fasting and postprandial health outcomes were unaffected by all three 

interventions. This stands in stark contrast to the few randomised–controlled trials 

conducted thus far, which identify improvements in fasted metabolic health outcomes 
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that are similar but not superior to those arising from daily calorie restriction 

(Barnosky et al., 2014; Carter, Clifton and Keogh, 2016; Conley et al., 2018). Two 

studies by Harvie et al. (2011, 2013) suggest that intermittent approaches may actually 

offer greater improvements in insulin resistance. Focusing instead on postprandial 

changes, Antoni, Johnston, et al. (2018) observed greater reductions in lipaemia and 

C-peptide concentration in response to intermittent energy restriction when compared 

to continuous. As discussed earlier for resting metabolic rate, upon considering the 

comparatively short duration and minimal weight losses in the present study, the lack 

of an effect on metabolic health is perhaps not surprising, given that weight losses of 

5% or more are believed to be necessary to improve biomarkers of disease risk 

(Williamson, Bray and Ryan, 2015). This possibility is reinforced by the agreement of 

the present findings with those of Heilbronn, Smith, et al. (2005) and Soeters et al. 

(2009), who employed similar durations of intermittent fasting and observed similarly 

null results. 

These recurrent issues of intervention duration and weight loss magnitude were not 

simple oversights. A key part of the rationale for this study was rooted in using 

prolonged fasting periods to provide more opportunities for clearance of surplus lipids 

implicated in hyperlipidaemia and insulin resistance, particularly those in ectopic 

stores (McArdle et al., 2013; Rutkowski, Stern and Scherer, 2015; Wensveen et al., 

2015; Spalding et al., 2017). As such, the study was designed to capture this 

therapeutic potential, in which intermittent fasting could reasonably be expected to 

offer improvements in health outcomes beyond those attributable to weight loss alone 

(Section 2.3.2). The lack of an effect on metabolic health therefore raises a different 

consideration: the capacity for improvement from baseline. Considering the relatively 

healthy metabolic profile of this lean cohort at baseline, it stands to reason that surplus 

lipids are unlikely to be compromising their metabolic health to a great degree, 

meaning that the benefits they stand to gain from this routine extension of fasting are 

constrained (Sparks et al., 2017).  

Collectively, this suggests that imposing an energy restriction through a complete 

alternate-day approach to intermittent fasting in lean individuals may attenuate the 

decline in fat mass and prompt more profound adaptive declines in physical activity 

thermogenesis. Coupling this with the lack of an effect on metabolic health outcomes 
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means that such approaches are unlikely to be beneficial in this population. However, 

there is a definite need to explore these facets of intermittent fasting in the context of 

more substantial energy deficits and clinical populations, to fully unmask the 

therapeutic potential of this particular format. 
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Chapter 6: Impact of intermittent fasting on energy 

balance and associated health outcomes in 

overweight and obese adults. 

6.1 – Introduction 

With over 50% of the UK population currently classified as overweight or obese (NHS 

Digital, 2017), finding more effective strategies to help manage the condition and the 

accompanying metabolic dysfunction remains imperative (Wang et al., 2011). 

Intermittent fasting is a dietary strategy in which typical patterns of food and drink 

consumption are punctuated by scheduled periods of energy restriction or abstinence 

from all energy-providing nutrients. Work by various groups has consistently shown 

that such an approach is associated with reductions in body mass and improvements 

in markers of metabolic health in obese participants (Johnson et al., 2007; Varady, 

Bhutani, et al., 2009; Bhutani et al., 2010; Varady, 2011; Harvie et al., 2011; Barnosky 

et al., 2014; Headland et al., 2016). However, the majority of studies conducted thus 

far utilise a modified approach, in which participants are permitted to consume 15-

25% of habitual energy intake during fasted periods (Patterson and Sears, 2017). This 

dramatically reduces the resulting uninterrupted fasting interval, meaning that these 

studies may not fully capture the therapeutic potential of these diets in resolving 

metabolic dysfunction (McQuaid et al., 2011; Soeters et al., 2012; Rutkowski, Stern 

and Scherer, 2015; Anton et al., 2018). Comparatively, with complete alternate-day 

fasting, the uninterrupted fasting period is extended to 20-24 hours on every other day 

(Patterson and Sears, 2017). In providing a protracted fasting opportunity, this latter 

format may constitute a more effecaious approach in this context (Anton et al., 2018), 

yet studies of complete alternate-day fasting are both scarce and contradictory. 

A particularly pertinent question relates to the impact of baseline adiposity and 

metabolic health, which may explain some of the disparate findings in the prior 

literature. The study of Heilbronn and colleagues applied a 3-week complete alternate-

day fasting intervention to a cohort of 16 non-obese adults and observed sexually-

dimorphic responses (Heilbronn, Civitarese, et al., 2005; Heilbronn, Smith, et al., 
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2005). Men experienced improvements in fasted triglyceride concentrations and 

postprandial insulin sensitivity, whilst women saw increases in HDL cholesterol 

concentration and reductions in postprandial glucose tolerance (Heilbronn, Civitarese, 

et al., 2005; Heilbronn, Smith, et al., 2005). However, beyond the difference in sex, 

women also had a more favourable metabolic profile at baseline, including better blood 

lipid profile and lower glucose concentrations (Heilbronn, Civitarese, et al., 2005; 

Heilbronn, Smith, et al., 2005). Consequently, it can be argued that the group with 

worse metabolic health benefitted more substantially from the intervention (Sparks et 

al., 2017). Such a proposition also helps to reconcile the conflicting results of Halberg 

et al. (2005) and Soeters et al. (2009), considering that the respective body fat 

percentages of their cohorts were 20.1% and 14.8%. Therefore, the lean nature of 

participants in most prior studies of complete alternate-day fasting may not have 

allowed the therapeutic potential of this dieting modality to be fully elucidated.    

To date, only Catenacci et al. (2016) have explored the effects of complete alternate-

day fasting in obese adults, contrasting it against daily calorie restriction in an 8-week 

randomised-controlled trial.  The two diets were matched for macronutrient balance 

but not energy intake, with both energy intake and body mass being reduced to a 

greater extent by the intermittent fasting condition. This was also accompanied by 

reductions in fasting glucose concentration following intermittent restriction, although 

fasting lipid profile was similarly improved by both interventions and dynamic tests 

of metabolic control were unaffected. However, comparisons were compromised by 

baseline differences, with those in the daily restriction group presenting with higher 

body mass and fasting insulin concentration, thus necessitating further investigation. 

Another intriguing consideration in overweight and obese populations is the adaptive 

changes in energy expenditure that may arise in response to intermittent fasting. 

Although Chapter 5 identified a reduction in physical activity energy expenditure upon 

combining intermittent fasting with calorie restriction, this may be unique to the lean 

cohort. For instance, Betts et al. (2014) established that extending the overnight fast to 

midday in lean adults resulted in adaptive declines in 24-hour physical activity energy 

expenditure. However, an ensuing study in obese adults revealed that 24-hour physical 

activity thermogenesis was not affected by extended morning fasting (Chowdhury et 

al., 2016). This notion is consistent with prior suggestions that obesity occurs as a 
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result of an inability to adequately align energy intake with energy expenditure, 

meaning that baseline adiposity may actually reflect a fundamental difference in how 

energy balance is regulated (Hill, Wyatt and Peters, 2012; Church and Martin, 2018). 

Consequently, establishing how intermittent fasting modifies energy use in overweight 

and obese adults also stands as a key question, which needs to be addressed. 

To build upon this limited understanding of how complete alternate-day fasting may 

impact upon energy balance and health in overweight and obese adults, the present 

study has three core objectives: 

1. To establish whether intermittent fasting elicits compensatory changes in the 

components of energy balance in overweight/obese adults, and to compare 

these against those arising from energy-matched daily calorie restriction. 

2. To examine the effect of intermittent fasting on postprandial metabolism in 

overweight/obese adults relative to energy-matched daily calorie restriction. 

3. To explore whether hypocaloric intermittent fasting affects the components of 

energy balance and postprandial metabolism independently from chronic 

energy imbalance in overweight/obese adults, by contrasting against eucaloric 

intermittent fasting. 

Based on the literature discussed thus far, it was hypothesised that postprandial 

metabolism (i.e. glycaemia, insulinaemia) would be improved to a greater extent by 

the condition combining intermittent fasting with calorie restriction. This was 

predicated on the interaction between the favourable effects of calorie restriction 

(Larson-Meyer et al., 2006; Ravussin et al., 2015) and the provision of more 

opportunities for clearance of deleterious excess lipids (McQuaid et al., 2011; Soeters 

et al., 2012; Rutkowski, Stern and Scherer, 2015; Anton et al., 2018). Focusing instead 

on energy expenditure, it was anticipated that resting metabolic rate, postprandial 

thermogenesis and physical activity energy expenditure would be unaffected by the 

two intermittent fasting conditions (Catenacci et al., 2016; Chowdhury et al., 2016), 

but reduced by the daily calorie restriction intervention (Rosenbaum, Hirsch, et al., 

2008; Martin et al., 2011; Muller et al., 2015).  
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6.2 – Methods 

The methodology employed in this experiment was identical to the randomised-

controlled trial detailed in Chapter 5 of this thesis. The only difference between the 

two resided in the inclusion criteria relating to body mass index (BMI) and fat mass 

index (FMI). In the present study, participants were initially classified as 

overweight/obese and recruited on the premise of a BMI value greater than 25.0 kg·m-

2. This was subsequently confirmed using FMI based on data emerging from the pre-

intervention dual energy x-ray absorptiometry (DEXA) scan, with values ≥7.5 kg·m-2 

and ≥11.0 kg·m-2 classified as overweight/obese for men and women, respectively. All 

other aspects of eligibility, the experimental protocol (Figure 6.1), the dietary 

interventions (Table 6.1) and the approach to statistical analysis were unchanged. The 

protocol for this study was approved by the NHS Research Ethics Committee 

(reference: 15/SW/0007) and all participants provided written informed consent prior 

to any data being collected.  

Figure 6.1: Schematic of the 8-week study design (A) and the sampling intervals for 

laboratory sessions 2 and 3 (B). Abbreviations: DEXA = Dual Energy X-ray 

Absorptiometry. 

  

Table 6.1: Intervention arms employed in the study protocol 

Intervention Description 

Daily calorie restriction (75:75) Reduce normal intake by 25% every day 

Intermittent fasting with calorie 

restriction (0:150) 

Alternate between 24-hour periods of fasting and feeding 

(transitioning at 15:00), with 150% of normal intake on fed days. 

Intermittent fasting without calorie 

restriction (0:200) 

Alternate between 24-hour periods of fasting and feeding 

(transitioning at 15:00), with 200% of normal intake on fed days. 

A 

B 
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6.3 – Results 

6.3.1 – Participants 

The baseline characteristics of the participants in each intervention arm are shown in 

Table 6.2. In total, 26 participants provided informed consent for their participation 

with two withdrawing prior to the baseline lab session due to scheduling conflicts and 

the possibility of allocation to the 0:200 condition. Of the 24 who completed the 

baseline lab session, a further four withdrew during the control phase. Cited reasons 

for withdrawal at this stage were, time pressures (2), medical issues deemed unrelated 

to the study (1) and a desire to change diet/exercise habits (1). Two participants were 

also excluded during the control period; one for changes in medication use and one 

due to changes in body mass that exceeded the permissible range. Post-randomisation, 

only one participant withdrew from the study. This was in the 0:150 intervention and 

was due to illness which was deemed unrelated to the study (i.e. flu-like symptoms). 

Unfortunately, cannulation difficulties meant that postprandial blood samples were 

only obtained from three of the five participants randomised to the 0:150 group, whilst 

fasted blood samples were only available for four. 

Table 6.2: Participant characteristics for the three intervention arms. Data are presented as mean ± SD. 

Variable 
Diet Allocation 

75:75 0:150 1 0:200 

n 6 5 6 

Age (years) 44 ± 8 48 ± 13 49 ± 13 

Female (n) 5 4 4 

Height (m) 1.714 ± 0.119 1.693 ± 0.066 1.703 ± 0.074 

Body Mass (kg) 98.7 ± 16.2 93.2 ± 7.0 85.4 ± 9.4 

BMI (kg·m-2) 33.6 ± 4.9 32.6 ± 3.7 29.4 ± 1.2 

FMI (kg·m-2) 14.13 ± 2.62 13.11 ± 3.17 11.06 ± 1.83 

PAL 2 1.51 ± 0.13 1.55 ± 0.16 1.61 ± 0.20 

RMR (kcal·day-1) 1711 ± 266 1671 ± 145 1500 ± 165 

Fasting Plasma Glucose (mmol·l-1) 5.45 ± 0.40 6.05 ± 1.14 5.37 ± 0.66 

Fasting Plasma Insulin (pmol·l-1) 42.61 ± 19.94 71.36 ± 19.22 40.72 ± 27.46 

HOMA-IR 3 1.74 ± 0.86 3.24 ± 1.09 1.57 ± 0.98 

Plasma Total Cholesterol (mmol·l-1) 4.75 ± 0.69 5.00 ± 1.22 4.92 ± 0.98 

Plasma LDL Cholesterol (mmol·l-1) 3.17 ± 0.71 3.35 ± 0.55 3.31 ± 1.14 

Plasma HDL Cholesterol (mmol·l-1) 1.39 ± 0.38 1.29 ± 0.30 1.32 ± 0.24 

Fasting Plasma Triacylglycerol (mmol·l-1) 1.37 ± 1.18 1.36 ± 0.59 1.19 ± 0.35 
1 FMI and fasting biochemistry parameters based on n = 4 for the 0:150 group. 
2 PAL = Total Daily Energy Expenditure/RMR 
3 HOMA-IR = (fasted insulin μIU·ml-1 * fasted glucose mmol·l-1)/22.5 

Abbreviations: BMI = Body Mass Index; FMI = Fat Mass Index; PAL = Physical Activity Level; RMR = Resting 

Metabolic Rate; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; LDL= Low-Density 

Lipoprotein; HDL = High-Density Lipoprotein 
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6.3.2 – Body Composition 

Changes in body mass and composition are shown in Table 6.3. Body mass was stable 

throughout the control phase in all three groups in accordance with the requirements 

of the study (75:75 = +0.1±0.5 kg, 0:150 = +0.0±0.5 kg, 0:200 = -0.1±0.7 kg). In 

response to the intervention, an interaction effect (group*time, p<0.01) was apparent 

for body mass, with the decreases seen in response to the 75:75 and 0:150 conditions 

differing from the 0:200 group (Δ-between, p=0.02 vs 75:75, p=0.01 vs 0:150), in 

which body mass was unchanged. However, the decreases in body mass seen within 

the two energy-restricted groups were not different from one another (Δ-between, 

p=0.60). This pattern was also mirrored by changes in BMI (group*time, p<0.01), 

whilst no meaningful changes were apparent in measurements of waist circumference 

(group*time, p=0.30). 

Interestingly, despite these changes in body mass, no group-level differences emerged 

for measures of fat mass (group*time, p=0.19) or lean mass (group*time, p=0.11), 

although time effects were evident for both. Based on the data shown in Table 6.3, the 

time effect for fat mass (time, p=0.01) appears to have been driven primarily by a 

decrease in the 75:75 group, whilst the time effect for lean mass (time, p<0.01) can be 

attributed to decreases seen in response to the two energy-restricted conditions. Both 

fat mass and lean mass were comparatively stable in the 0:200 group despite the lack 

of an interaction. A similar pattern for time but not interaction effects was also 

apparent for both FMI (time, p=0.01) and visceral fat mass (time, p=0.08). 
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Table 6.3: Body composition outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within each group.  

Outcome 
75:75 (n=6) 0:150 (n=5)1 0:200 (n=6) Two-way ANOVA 

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Body Mass (kg) 
98.8 

(16.3) 

96.0 

(15.9) 

-2.8 *C 

(-3.9, -1.7) 

93.2 

(6.8) 

90.7 

(7.0) 

-2.5 *C 

(-2.8, -2.1) 

85.4 

(8.9) 

84.9 

(8.3) 

-0.5 A,B 

(-1.2, 0.3) 
<0.01 <0.01 0.22 

Body Mass Index (kg·m-2) 
33.6 

(4.9) 

32.7 

(5.0) 

-0.9 *C 

(-1.3, -0.6) 

32.6 

(3.6) 

31.8 

(3.6) 

-0.9 *C 

(-1.0, -0.7) 

29.4 

(1.1) 

29.2 

(1.0) 

-0.1 A,B 

(-0.4, 0.1) 
<0.01 <0.01 0.19 

Waist Circumference (cm) 
103.7 

(12.4) 

104.3 

(11.6) 

0.6 

(-3.8, 5.0) 

105.2 

(8.7) 

102.5 

(8.2) 

-2.7 

(-4.2, -1.1) 

102.9 

(6.5) 

100.3 

(6.9) 

-2.6 

(-5.1, -0.1) 
0.30 0.12 0.88 

Fat Mass (kg) 
40.2 

(5.4) 

38.8 

(5.6) 

-1.4 

(-2.0, -0.7) 

37.1 

(6.8) 

36.4 

(7.4) 

-0.8 

(-1.9, 0.4) 

31.5 

(4.5) 

31.2 

(3.8) 

-0.2 

(-1.1, 0.6) 
0.19 0.01 0.06 

Fat Mass Index (kg·m-2) 
13.8 

(2.6) 

13.4 

(2.7) 

-0.5 

(-0.7, -0.2) 

12.8 

(3.1) 

12.6 

(3.2) 

-0.3 

(-0.7, 0.1) 

10.9 

(1.9) 

10.8 

(1.6) 

-0.1 

(-0.4, 0.2) 
0.21 0.01 0.19 

Lean Mass (kg) 
58.6 

(13.2) 

57.2 

(13.1) 

-1.4 

(-2.2, -0.6) 

56.5 

(3.9) 

54.7 

(3.1) 

-1.8 

(-2.8, -0.9) 

53.9 

(9.5) 

53.7 

(8.6) 

-0.2 

(-1.4, 1.0) 
0.11 <0.01 0.78 

Visceral Fat Mass (g) 
835.6 

(273.5) 

788.2 

(304.3) 

-47.4 

(-106.2, 11.5) 

688.6 

(264.7) 

679.0 

(243.3) 

-9.5 

(-67.2, 48.1) 

742.1 

(225.2) 

715.6 

(243.6) 

-26.6 

(-55.9, 2.8) 
0.60 0.08 0.73 

1 Dual-Energy X-ray Absorptiometry data based on n=4 due to data loss 

* denotes p≤0.05 for within-group time effect (paired t-test) 

 

A denotes p≤0.05 for between-group change score vs. 75:75 (independent samples t-test) 
B denotes p≤0.05 for between-group change score vs. 0:150 (independent samples t-test) 
C denotes p≤0.05 for between-group change score vs. 0:200 (independent samples t-test) 
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6.3.3 – Energy Intake 

Energy intake, and the contributions of the four macronutrients to this, is illustrated in 

Figure 6.2. The change in energy intake from the control to the intervention phase 

differed between groups (group*time, p<0.01). This highlighted a similar reduction in 

the 75:75 and 0:150 groups (75:75 = -573±184 kcal·day-1, 0:150 = -678±430 kcal·day-

1; Δ-between, p=0.63), which contrasted with the maintenance of energy intake in the 

0:200 group (+92±180 kcal·day-1; Δ-between, p<0.01 vs 75:75, p=0.03 vs 0:150).  

Upon examining the changes in macronutrient consumption driving these reductions, 

the change in absolute carbohydrate (group*time, p=0.01), fat (group*time, p<0.01) 

and protein intake (group*time, p=0.01) was considered meaningful. Focusing 

initially on the 75:75 group, carbohydrate and fat intake were reduced by 60±28 g·day-

1 and 31±8 g·day-1, respectively, whilst there was a trend for reduced protein intake (-

13±13 g·day-1). Conversely, the 0:150 group reduced both fat (-24±17 g·day-1) and 

protein consumption (-20±8 g·day-1), which was accompanied by a trend for reduced 

carbohydrate intake (-88±79 g·day-1). However, none of these reductions differed 

between the two energy-restricted conditions (Δ-between, all p≥0.31), with 

significance only established for comparisons against the 0:200 group in which 

macronutrient intake was unaltered. Specifically, fat intake was reduced in both groups 

relative to the 0:200 condition (Δ-between, p<0.01 vs 75:75, p=0.02 vs 0:150), whilst 

the decrease in carbohydrate and protein intake was only meaningfully different from 

the 0:200 group for the 75:75 (Δ-between, p<0.01 vs 0:200) and 0:150 (Δ-between, 

p=0.01 vs 0:200) groups, respectively. There were no time, group or interaction effects 

for alcohol intake. 

These changes in macronutrient intake resulted in between-group differences in 

macronutrient balance, with changes apparent for protein-derived energy intake 

(group*time, p=0.05) and fat-derived energy intake (group*time, p=0.06).  This 

reflected that the reduction in fat-derived energy intake in the 75:75 diet (-4±3%) 

tended to differ from the stability seen in response to the 0:150 diet (+2±4%; Δ-

between, p=0.06 vs 75:75). This was compensated for by an increase in protein-

derived energy intake in the 75:75 group (+2±1%), which contrasted with the stability 

of the 0:200 group (-1±2%; Δ-between, p=0.06 vs 75:75). Collectively, this suggests 
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that fat intake was decreased more readily in response to the 75:75 diet, whilst 

macronutrient balance was preserved in the two intermittent fasting interventions.   

 

 

Figure 6.2: Energy and macronutrient intake during the control and intervention 

phases in the daily calorie restriction (75:75), intermittent fasting with calorie 

restriction (0:150) and intermittent fasting without calorie restriction groups (0:200). 

Energy derived from the respective macronutrients was derived by multiplying the 

reported intake in grams by the accompanying Atwater general factor. # denotes 

p≤0.05 for group*time interaction (two-way ANOVA). * denotes p≤0.05 for within-

group time effect (paired t-test). a, b and c denote p≤0.05 for between-group change 

score vs. 75:75, 0:150 and 0:200, respectively (independent t-test). Data are presented 

as mean and SEM. Abbreviations: Con = control; CHO = carbohydrate; FAT = lipid; 

PRO = protein; EtOH = alcohol. 
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6.3.4 – Energy Expenditure 

Total daily energy expenditure during the control and intervention phases in each of 

the three groups is shown in Figure 6.3, as a sum of resting metabolic rate, diet-

induced thermogenesis and physical activity thermogenesis. No meaningful 

interaction effects were apparent (group*time, p=0.58), with only the time effect 

achieving significance (time, p=0.02). Although this seemed to be driven by a 

tendency for energy expenditure to decrease more readily in response to the 0:150 diet 

(-106±97 kcal·day-1), all three groups followed a similar pattern. 
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Figure 6.3: Total daily energy expenditure as a product of the three main components 

during the control and intervention phases in the daily calorie restriction (75:75), 

intermittent fasting with calorie restriction (0:150) and intermittent fasting without 

calorie restriction groups (0:200). RMR was measured via indirect calorimetry during 

the pre- and post-intervention lab sessions, DIT was estimated by multiplying reported 

intakes by the equivalents proposed by Westerterp (2004), and PAT was measured 

using ActiheartTM monitors. # denotes p≤0.05 for group*time interaction (two-way 

ANOVA). * denotes p≤0.05 for within-group time effect (paired t-test). a, b and c 

denote p≤0.05 for between-group change score vs. 75:75, 0:150 and 0:200, 

respectively (independent t-test). Data are presented as mean and SEM. Abbreviations: 

Con = control; RMR = resting metabolic rate; DIT = diet-induced thermogenesis; PAT 

= physical activity thermogenesis. 
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6.3.5 – Energy Balance 

For clarity, the energy balance data discussed thus far are summarised in Figure 6.4. 

This serves to better visualise the effect of the three interventions on energy intake and 

the resultant impacts upon the components of energy expenditure, which was a primary 

outcome in this study. However, direct comparisons between intake and expenditure 

data were deemed inappropriate in light of the different measurement techniques  

employed and the associated limitations (Hall et al., 2012). 
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Figure 6.4: Components of energy intake and energy expenditure measured during the 

control and intervention phases in the daily calorie restriction (75:75), intermittent 

fasting with calorie restriction (0:150) and intermittent fasting without calorie 

restriction groups (0:200). Data are presented as mean and SEM. Abbreviations: Con 

= control; CHO = carbohydrate; FAT = lipid, PRO = protein; EtOH = alcohol; RMR 

= resting metabolic rate; DIT = diet-induced thermogenesis; PAT = physical activity 

thermogenesis. 
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6.3.6 – Metabolic Rate 

Following adjustment for changes in body mass, resting metabolic rate was unchanged 

by the three interventions (75:75 = +0.49±1.49 kcal·kg-1·day-1, 0:150 = -0.14±1.29 

kcal·kg-1·day-1, 0:200 = +0.00±1.20 kcal·kg-1·day-1), characterising neither an 

interaction (group*time, p=0.69) nor a time effect (time, p=0.74). Furthermore, 

although cumulative substrate oxidation rate tended to differ between groups 

(group*time, p=0.07), this was not attributable to specific changes in either 

carbohydrate (group*time, p=0.09) or fat oxidation (group*time, p=0.09) in isolation. 

However, Figure 6.5 does suggest that the two energy-restricted conditions may be 

exerting differential effects on substrate oxidation, with the change in respiratory 

exchange ratio approaching significance for the interaction (75:75 = +0.05±0.10, 0:150 

= -0.06±0.08, 0:200 = +0.01±0.03; group*time, p=0.08). 

Conversely, in the postprandial state, the change in metabolic rate seen in response to 

the intervention tended to differ across diet allocations when averaged across the 3-

hour measurement window (group*time, p=0.06). This trend seemed to be driven 

primarily by an increase in the 0:150 group relative to a slight decrease in the 75:75 

group (75:75 = -0.19±0.78 kcal·kg-1·day-1, 0:150 = +1.34±1.14 kcal·kg-1·day-1, 0:200 

= +0.46±0.95 kcal·kg-1·day-1). However, no further differences were apparent upon 

examining changes in substrate oxidation (Figure 6.6), including total rates 

(group*time; p=0.86), as well as carbohydrate (group*time, p=0.95), fat (group*time, 

p=0.68) and protein (group*time, p=0.94) oxidation. The only effect worthy of 

mention was a time effect for postprandial carbohydrate oxidation (time, p=0.03), 

reflecting the increase seen in response to all three interventions.  
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F 

Figure 6.5: Total fasting substrate oxidation as accounted for by each macronutrient 

at pre- and post-intervention in the daily calorie restriction (75:75), intermittent fasting 

with calorie restriction (0:150) and intermittent fasting without calorie restriction 

groups (0:200). # denotes p≤0.05 for group*time interaction (two-way ANOVA). * 

denotes p≤0.05 for within-group time effect (paired t-test). a, b and c denote p≤0.05 

for between-group change score vs. 75:75, 0:150 and 0:200, respectively (independent 

t-test). Data are presented as mean and SEM. Abbreviations: COX = carbohydrate 

oxidation; LOX = lipid oxidation; POX = protein oxidation. 
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Figure 6.6: Average substrate oxidation throughout the 3-hour postprandial period 

presented as a sum of measured oxidation of specific macronutrients at pre- and post-

intervention in the daily calorie restriction (75:75), intermittent fasting with calorie 

restriction (0:150) and intermittent fasting without calorie restriction groups (0:200). 

# denotes p≤0.05 for group*time interaction (two-way ANOVA). * denotes p≤0.05 for 

within-group time effect (paired t-test). a, b and c denote p≤0.05 for between-group 

change score vs. 75:75, 0:150 and 0:200, respectively (independent t-test). Data are 

presented as mean and SEM. Abbreviations: COX = carbohydrate oxidation; LOX = 

lipid oxidation; POX = protein oxidation. 
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6.3.7 – Diet-Induced Thermogenesis 

Given that diet-induced thermogenesis (Figure 6.7) was estimated from reported 

intakes of the four main macronutrients, the effects of the interventions on this 

outcome broadly align with those discussed previously for energy intake (Section 

6.3.4). The interaction effect (group*time, p<0.01) revealed that there was a 

comparable decrease in diet-induced thermogenesis from the control to the 

intervention phase in both the 75:75 and 0:150 groups (75:75 = -38±17 kcal·day-1, 

0:150 = -53±28 kcal·day-1; Δ-between, p=0.31), both of which differed from the 0:200 

group (+3±24 kcal·day-1; Δ-between, p=0.02 vs 75:75, p=0.02 vs 0:150). 

Accordingly, this was accompanied by differential changes in the thermogenic fraction 

derived from carbohydrate (group*time, p=0.01), fat (group*time; p<0.01) and protein 

(group*time; p=0.01) across groups. Briefly, the thermogenic fractions derived from 

carbohydrate and fat decreased during the 75:75 diet compared to the 0:200 condition 

(Δ-between, all p<0.01), whilst for the 0:150 group these differences were apparent 

for the reduction in fat and protein thermogenesis relative to the 0:200 condition (Δ-

between, all p≤0.02 vs 0:200). 
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Figure 6.7: Diet induced thermogenesis as a product of the thermogenic fractions of 

the four main macronutrients during the control and intervention phases for the daily 

calorie restriction (75:75), intermittent fasting with calorie restriction (0:150) and 

intermittent fasting without calorie restriction groups (0:200). Estimates were made by 

multiplying reported intakes in the respective phases by the equivalents proposed by 

Westerterp (2004). # denotes p≤0.05 for group*time interaction (two-way ANOVA). 

* denotes p≤0.05 for within-group time effect (paired t-test). a, b and c denote p≤0.05 

for between-group change score vs. 75:75, 0:150 and 0:200, respectively (independent 

t-test). Data are presented as mean and SEM. Abbreviations: Con = control; CHO = 

carbohydrate; FAT = lipid; PRO = protein; EtOH = alcohol. 
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6.3.8 – Physical Activity Thermogenesis 

Physical activity thermogenesis, as measured by individually-calibrated ActiheartTM 

monitors, is shown in Figure 6.8. This clearly illustrates the largely stable nature of 

physical activity thermogenesis across the control and intervention phases in all 

groups, with no time or interaction effects for either the global value or the calories 

expended in specific intensity thresholds (all p≥0.12). The figure does appear to 

suggest a decrease in moderate activity energy expenditure during the 0:200 diet, but 

this was highly variable between participants (-58±78 kcal·day-1). 

When the changes in physical activity thermogenesis seen from the control to the 

intervention phase (Figure 6.9a) were plotted separately for fasted and fed cycles in 

the 0:150 and 0:200 groups (Figure 6.9b), once again no meaningful interactions 

emerged (group*time, all p≥0.30). Although a clear pattern is apparent upon visual 

inspection of the data, with physical activity decreasing during fasted periods and 

increasing during fed periods (Figure 6.9), no time effect was apparent. However, 

several time effects did approach significance for the calories expended at specific 

intensities of activity, which does allude to differential activity patterns on fasted and 

fed days. This was most apparent for the calories expended through vigorous activities 

(time, p<0.01) and sedentary activities (time, p=0.08), which tended to be lower on 

fasted days but preserved on fed days in both the 0:150 and 0:200 groups. The figure 

also suggests a similar pattern for light activity, but this did not achieve significance 

for a time effect (time, p=0.09).  
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Figure 6.8: Physical activity thermogenesis presented as a sum of the kilocalories 

expended at differing intensities of activity during the control and intervention phases 

for the daily calorie restriction (75:75), intermittent fasting with calorie restriction 

(0:150) and intermittent fasting without calorie restriction groups (0:200). Intensity 

thresholds were defined as multiples of resting metabolic rate (i.e. METs), as measured 

at pre-intervention, using the following ranges: sedentary = ≤1.5 METs, light = 1.5-

2.9 METs, moderate = 3.0-5.9 METs, vigorous = 6.0-10.1 METs, v.vigorous = ≥10.2 

METs. # denotes p≤0.05 for group*time interaction (two-way ANOVA). * denotes 

p≤0.05 for within-group time effect (paired t-test). a, b and c denote p≤0.05 for 

between-group change score vs. 75:75, 0:150 and 0:200, respectively (independent t-

test). Data are presented as mean and SEM. Abbreviations: Con = control; v.vigorous 

= very vigorous. 
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Figure 6.9: Change in physical activity thermogenesis from the control to the 

intervention phase (A) as a sum of the kilocalories expended at differing intensities of 

activity during fasted and fed periods (B) for intermittent fasting with calorie 

restriction (0:150) and intermittent fasting without calorie restriction groups (0:200). 

Intensity thresholds were defined as multiples of resting metabolic rate (i.e. METs), as 

measured prior to the intervention, using the following ranges: sedentary = ≤1.5 METs, 

light = 1.5-2.9 METs, moderate = 3.0-5.9 METs, vigorous = 6.0-10.1 METs, 

v.vigorous = ≥10.2 METs. # denotes p≤0.05 for group*time interaction (two-way 

ANOVA). * denotes p≤0.05 for within-group time effect (paired t-test). a, b and c 
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denote p≤0.05 for between-group change score vs. 75:75, 0:150 and 0:200, 

respectively (independent t-test). Data are presented as mean and SEM. Abbreviations: 

Con = control; v.vigorous = very vigorous. 

6.3.9 – Fasting Biochemistry 

All fasting biochemistry outcomes are shown in Table 6.4. Fasting blood lipids 

appeared to be more heavily impacted by the interventions than fasting glycaemia and 

insulinaemia, which were largely stable. Changes in total cholesterol neared 

significance for an interaction (group*time, p=0.08), which was mainly driven by a 

decrease in LDL cholesterol in response to the 0:150 diet. Plasma triacylglycerol 

concentrations were also differentially affected by the interventions (group*time, 

p=0.04), highlighting the increase in the 0:200 group relative to the other groups, 

although the specific within-group change in 0:200 was not different from either the 

75:75 or 0:150 groups.  The change in plasma glycerol concentration was also different 

across groups (group*time, p=0.05), specifically the 75:75 and 0:150 conditions (Δ-

between, p=0.03), but this should be viewed conservatively due to the variable 

performance of the assay in this cohort. Intrestingly, the change in plasma leptin 

concentration was  not different across groups (group*time, p=0.60), with only a time 

effect emerging (time, p=0.04), which was driven primarily by decreases in response 

to the two energy-restricted conditions.
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Table 6.4: Fasting and postprandial biochemistry outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within each group.  

Outcome 
75:75 (n=6) 0:150 (n=4)2 0:200 (n=6) Two-way ANOVA 

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Plasma Glucose             

 Fasted (mmol∙l-1) 
5.36 

(0.64) 

5.57 

(0.43) 

0.21 

(-0.14, 0.55) 

6.11 

(1.10) 

6.30 

(0.80) 

0.19 

(–0.44, 0.81) 

5.52 

(0.88) 

5.64 

(0.54) 

0.12 

(-0.30, 0.54) 
0.91 0.10 0.28 

 iAUC (mmol∙l-1∙330 min) 
269 

(67) 

250 

(81) 

-18 

(-93, 57) 

370 

(102) 

253 

(82) 

-118 

(-575, 339) 

337 

(143) 

309 

(196) 

-28 

(-175, 119) 
0.52 0.14 0.59 

 Meal 1 Peak (mmol∙l-1) 
8.17 B 

(1.31) 

7.93 

(1.18) 

-0.25 

(-0.59, 0.10) 

10.07 A 

(0.52) 

9.25 

(0.83) 

-0.82 

(-2.43, 0.79) 

8.56 

(1.32) 

8.82 

(1.36) 

0.26 

(-0.46, 0.98) 
0.05 0.10 0.20 

 Meal 2 Peak (mmol∙l-1) 
8.09 

(1.23) 

8.14 

(1.23) 

0.05 

(-0.90, 1.00) 

8.53 

(0.63) 

7.86 

(0.80) 

-0.67 

(-4.08, 2.75) 

8.15 

(1.08) 

8.15 

(1.36) 

0.00 

(-0.49, 0.48) 
0.48 0.39 0.99 

 Meal 1 Time to Peak (min) 
33 

(11) 

35 

(12) 

3 

(-16, 21) 

45 

(15) 

40 

(17) 

-5 

(-62, 52) 

38 

(13) 

30 

(9) 

-8 

(-27, 12) 
0.65 0.53 0.28 

 Meal 2 Time to Peak (min) 
20 

(8) 

33 

(6) 

13 

(1, 24) 

55 

(38) 

60 

(30) 

5 

(-17, 27) 

55 

(34) 

40 

(26) 

-15 

(-62, 32) 
0.30 0.92 0.08 

Plasma Insulin             

 Fasted (pmol∙l-1) 
34.03 

(22.47) 

43.82 

(24.74) 

9.79 

(-0.80, 20.38) 

69.14 

(26.58) 

66.76 

(38.86) 

-2.37 

(-29.99, 25.24) 

34.70 

(12.18) 

33.70 

(8.70) 

-1.01 

(-11.28, 9.27) 
0.23 0.50 0.08 

 iAUC (nmol∙l-1∙330 min) 
80.03 

(59.90) 

86.27 

(49.00) 

6.23 

(-17.63, 30.09) 

104.02 

(13.22) 

79.25 

(15.59) 

-24.78 C 

(-53.16, 3.60) 

68.44 

(36.63) 

76.07 

(42.58) 

7.62 B 

(-4.86, 20.11) 
0.04 0.45 0.81 

 Meal 1 Peak (pmol∙l-1) 
593.09 

(428.29) 

614.51 

(452.97) 

21.42 

(-67.95, 110.79) 

721.18 

(92.64) 

717.55 

(246.32) 

-3.63 

(-398.40, 391.15) 

554.80 

(298.73) 

555.83 

(259.28) 

1.03 

(-102.66, 104.72) 
0.92 0.83 0.80 

 Meal 2 Peak (pmol∙l-1) 
694.38 

(557.55) 

843.05 

(459.79) 

148.67 

(-158.59, 455.92) 

683.92 

(271.11) 

451.02 

(259.99) 

-232.90 

(-645.49, 179.69) 

425.15 

(199.60) 

527.22 

(203.75) 

102.07 

(53.89, 150.24) 
0.05 0.92 0.38 

 Meal 1 Time to Peak (min) 
33 

(15) 

35 

(8) 

3 

(-13, 18) 

55 

(9) 

50 

(9) 

-5 

(-27, 17) 

35 

(12) 

43 

(15) 

8 

(-6, 21) 
0.42 0.65 0.07 

 Meal 2 Time to Peak (min) 
30 

(16) 

30 

(9) 

0 

(-20, 20) 

35 

(17) 

25 

(9) 

-10 

(-67, 47) 

43 

(28) 

48 

(33) 

5 

(-28, 38) 
0.71 0.81 0.33 

HOMA-IR1 
1.42 

(1.02) 

1.84 

(1.10) 

0.42 

(-0.05, 0.90) 

3.28 

(1.61) 

3.27 

(2.02) 

-0.01 

(-1.53, 1.50) 

1.39 

(0.48) 

1.39 

(0.33) 

0.01 

(-0.44, 0.46) 
0.42 0.38 0.04 

Plasma Total Cholesterol             

 Fasted (mmol∙l-1) 
4.80 

(0.70) 

4.57 

(0.69) 

-0.24 

(-0.65, 0.18) 

4.74 

(0.59) 

4.11 

(0.56) 

-0.64 

(-1.01, -0.26) 

4.98 

(1.12) 

5.06 

(0.59) 

0.08 

(–0.51, 0.67) 
0.08 0.04 0.45 
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Table 6.4 cont.: Fasting and postprandial biochemistry outcomes. Data are mean (SD) at pre- and post-intervention, with delta change and 95% confidence intervals (CI) for the response within each group. 

Outcome 
75:75 (n=12) 0:150 (n=12) 0:200 (n=12) Two-way ANOVA 

PRE POST Δ from PRE PRE POST Δ from PRE PRE POST Δ from PRE Interaction Time Group 

Plasma HDL Cholesterol             

 
Fasted (mmol∙l-1) 

4.80 

(0.70) 

4.57 

(0.69) 

-0.24 

(-0.65, 0.18) 

4.74 

(0.59) 

4.11 

(0.56) 

-0.64 

(-1.01, -0.26) 

4.98 

(1.12) 

5.06 

(0.59) 

0.08 

(–0.51, 0.67) 
0.08 0.04 0.45 

Plasma LDL Cholesterol             

 
Fasted (mmol∙l-1) 

3.29 

(0.70) 

3.05 

(0.64) 

-0.24 

(-0.57, 0.09) 

3.57 

(0.40) 

2.96 

(0.33) 

-0.62 

(-1.00, -0.24) 

3.58 

(1.47) 

3.48 

(1.00) 

-0.10 

(-0.67, 0.47) 
0.17 0.01 0.76 

Plasma Triacylglycerol             

 
Fasted (mmol∙l-1) 

1.23 

(0.73) 

1.16 

(0.59) 

-0.07 

(-0.24, 0.10) 

1.16 

(0.48) 

0.97 

(0.31) 

-0.19 

(-0.57, 0.19) 

1.15 

(0.33) 

1.27 

(0.41) 

0.12 

(-0.02, 0.26) 
0.04 0.32 0.89 

 
Total AUC (mmol∙l-1∙330 min) 

497 

(301) 

507 

(238) 

10 

(-105, 125) 

497 

(285) 

367 

(153) 

-131 

(-653, 392) 

466 

(169) 

525 

(208) 

60 

(-18, 137) 
0.13 0.55 0.90 

Plasma NEFA             

 
Fasted (mmol∙l-1) 

0.34 

(0.18) 

0.35 

(0.14) 

0.02 

(-0.19, 0.22) 

0.49 

(0.19) 

0.53 

(0.18) 

0.04 

(-0.16, 0.24) 

0.36 

(0.17) 

0.40 

(0.22) 

0.04 

(-0.06, 0.13) 
0.95 0.44 0.38 

 
Total AUC (mmol∙l-1∙330 min) 

57 

(31) 

50 

(19) 

-6 

(-30, 18) 

47 

(27) 

50 

(25) 

3 

(-5, 11) 

44 

(9) 

40 

(9) 

-4 

(-17, 9) 
0.73 0.62 0.58 

Plasma Glycerol             

 
Fasted (mmol∙l-1) 

0.07 

(0.05) 

0.05 

(0.03) 

-0.02 B 

(-0.05,0.00) 

0.04 

(0.03) 

0.06 

(0.02) 

0.03 A 

(-0.01,0.06) 

0.05 

(0.03) 

0.04 

(0.02) 

-0.00 

(-0.02,0.02) 
0.05 0.85 0.50 

 
Total AUC (mmol∙l-1∙330 min) 

15.11 

(4.41) 

14.41 

(4.32) 

-0.70 

(-3.24, 1.84) 

15.76 

(5.00) 

15.62 

(8.97) 

-0.14 

(-10.11, 9.84) 

11.97 

(6.38) 

14.01 

(6.07) 

2.04 

(-0.50, 4.59) 
0.29 0.31 0.61 

Plasma Leptin             

 
Fasted (ng∙ml-1) 

41.71 

(16.61) 

37.22 

(16.66) 

-4.49 

(-9.59, 0.61) 

45.34 

(26.40) 

41.48 

(23.36) 

-3.87 

(-12.27, 4.54) 

34.90 

(19.96) 

33.60 

(20.27) 

-1.30 

(-7.93, 5.36) 
0.60 0.04 0.77 

1 HOMA-IR = (fasted insulin μIU·ml-1 * fasted glucose mmol·l-1)/22.5 
2 n=3 for all non-fasting measures 
A denotes significantly different from 75:75 according to post-hoc independent samples t-test (p≤0.05) 
B denotes significantly different from 0:150 according to post-hoc independent samples t-test (p≤0.05) 
C denotes significantly different from 0:200 according to post-hoc independent samples t-test (p≤0.05) 

 

Abbreviations: AUC = Area Under Curve; iAUC = Incremental Area Under Curve; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; LDL= Low-Density Lipoprotein; HDL = High-

Density Lipoprotein; NEFA = Non-Esterified Fatty Acids 
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6.3.10 – Postprandial Glucose 

The postprandial glucose response to the sequential meal tests ingested before and 

after the 20-day interventions is shown in Figure 6.10. Within this, only the change in 

peak concentration following meal 1 characterised an interaction (group*time, 

p=0.05), which was driven by baseline differences in pre-intervention values (75:75 = 

8.17±1.31 mmol∙l-1, 0:150 = 10.07±0.52 mmol∙l-1; Δ-between, p=0.05). This was also 

accompanied by a time effect for incremental area under the meal 1 glucose curve 

(time, p=0.03), which was primarily accounted for by decreases in response to both 

the 75:75 and 0:150 conditions (75:75 = -28±22 mmol·l-1·180min, 0:150 = -101±49 

mmol·l-1·180min). 

6.3.11 – Postprandial Insulin 

The postprandial insulin response to the sequential meal tests ingested before and after 

the 20-day interventions is shown in Figure 6.11. The change in incremental area 

under curve for the 5.5-hour postprandial period was different between the three 

dietary conditions (group*time, p=0.04). This was due to a tendency to decrease in 

response to the 0:150 condition when contrasted against the slight increases in both 

the 75:75 (Δ-between, p=0.06 vs 0:150) and 0:200 conditions (Δ-between, p=0.05 vs 

0:150). However, this may reflect regression to the mean given that the incremental 

area under curve was highest in the 0:150 group prior to the intervention, despite not 

being significantly different (Table 6.4). It is also worthy of note that this effect was 

not apparent when the two meals were analysed separately. Beyond this, the change in 

peak insulin concentration following meal 2 was also different between groups 

(group*time, p=0.05). Although the source of this variance was not apparent upon 

exploring specific comparisons, the figure would suggest that this was driven by an 

increase in the 75:75 group and a decrease in the 0:150 group.
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Figure 6.10: Postprandial plasma glucose profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with calorie restriction (0:150) and intermittent fasting without calorie restriction (0:200) groups. 

The white box on the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction 

effects were identified by a three-way ANOVA (group*time*timepoint; p=0.47). Data are presented as mean ± SEM.  
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Figure 6.11: Postprandial plasma insulin profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with calorie restriction (0:150) and intermittent fasting without calorie restriction (0:200) groups. 

The white box on the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction 

effects were identified by a three-way ANOVA (group*time*timepoint; p=0.61). Data are presented as mean ± SEM.
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6.3.12 – Postprandial Triacylglycerol 

The postprandial triacylglycerol response to the sequential meal tests ingested before 

and after the 20-day interventions is shown in Figure 6.12. Although the graph would 

appear to suggest a decrease in postprandial concentrations following the 0:150 diet, 

no interaction, time or group effects emerged for any aspect of this profile (Table 6.4). 

When the two meals were analysed separately however, there was a trend for 

differences in total area under curve following meal 1 (group*time, p=0.06), which is 

most likely capturing the reduction in postprandial lipaemia following the 0:150 diet 

(75:75 = -14±22 mmol·l-1·180min, 0:150 = -36±53 mmol·l-1·180min, 0:200 = +24±34 

mmol·l-1·180min). 

6.3.13 – Postprandial NEFA 

The postprandial NEFA response to the sequential meal tests ingested before and after 

the 20-day interventions is shown in Figure 6.13. No interaction, time or group effects 

emerged for any aspect of this profile (Table 6.4) and this was unaffected when these 

outcomes were determined separately for each meal. 

6.3.14 – Postprandial Glycerol 

In terms of of the postprandial glycerol response to the sequential meal tests ingested 

before and after the 20-day interventions, the only meaningful effect was an interaction 

for meal 2 total area under curve (group*time, p=0.01). This highlighted a decrease in 

total area under curve following meal 2 in the 0:150 group (-2400±305 μmol·l-

1·120min), contrasting with both the 75:75 group (-438±1235 μmol·l-1·120min; 

p=0.02 vs 0:150) and the 0:200 group (+733±939 μmol·l-1·120min; p<0.01 vs 0:150). 

However, this may be a result of the variable performance of this particular assay and 

as such should be viewed cautiously.  



Chapter 6 

214 

  

0.0

0.6

1.0

1.4

1.8

2.2

2.6

Time (mins)

P
la

s
m

a
 T

ri
a
c
y
lg

ly
c
e
ro

l 
(m

m
o

l
l

-1
)

0 60 12
0

21
0

27
0

33
0

18
0 0 60 12

0
18

0
21

0
27

0
33

0

Pre-Intervention Post-Intervention

75:75

0:150

0:200

 

Figure 6.12: Postprandial plasma triacylglycerol profiles in response to two sequential meal tests conducted at pre- and post-intervention in the 

daily calorie restriction (75:75), intermittent fasting with calorie restriction (0:150) and intermittent fasting without calorie restriction (0:200) 

groups. The white box on the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No 

interaction effects were identified by a three-way ANOVA (group*time*timepoint; p=0.85). Data are presented as mean ± SEM. 
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Figure 6.13: Postprandial plasma NEFA profiles in response to two sequential meal tests conducted at pre- and post-intervention in the daily 

calorie restriction (75:75), intermittent fasting with calorie restriction (0:150) and intermittent fasting without calorie restriction (0:200) groups. 

The white box on the x-axis represents the 20-day intervention. The black boxes on the x-axis denote the timing of prescribed meals. No interaction 

effects were identified by a three-way ANOVA (group*time*timepoint; p=0.68). Data are presented as mean ± SEM.
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6.4 – Discussion 

The present study established the effects of a diet combining intermittent fasting with 

calorie restriction on energy expenditure and metabolic health in overweight and obese 

adults, compared to energy-matched (i.e. hypocaloric) daily calorie restriction and 

intermittent fasting without calorie restriction. In accordance with these prescriptions, 

energy intake was successfully reduced to a similarly meaningful degree in the two 

energy-restricted conditions but maintained in the intermittent fasting without calorie 

restriction group. This was mirrored by the resultant decreases in body mass in the two 

energy-restricted groups, although fat mass appeared to decrease more readily in 

response to daily calorie restriction than when combining fasting with calorie 

restriction. However, other than the decrease in diet-induced thermogenesis arising 

from the reductions in energy intake, energy expenditure was largely unaltered in all 

three groups. The only exception to this was a reduction in the calories expended 

through sedentary and vigorous activities on fasted days when compared to fed days 

in the two intermittent fasting conditions. Most interestingly however, participants in 

the condition combining intermittent fasting and calorie restriction experienced 

reductions in postprandial insulin area under curve, differing from both comparative 

groups which were largely unchanged. This was also accompanied by a more lipolytic 

profile following the intervention, with apparent reductions in fasted respiratory 

exchange ratio, fasted LDL cholesterol concentration and postprandial triacylglycerol 

concentration, coupled with increases in fasted glycerol concentration. However, these 

outcomes should be treated with caution considering the sample size, particularly in 

the intermittent fasting with calorie restriction group. 

The reduction in postprandial insulin concentrations seen following intermittent 

fasting with calorie restriction is a key finding emerging from the present study. This 

change is consistent with enhanced insulin sensitivity given the stability of glycaemic 

responses. This suggests that neither short-term calorie restriction nor routine 

extension of fasting is sufficient to modify insulin responses in isolation, but rather 

that the combined influence of fasting and calorie restriction is required for the effect. 

Furthermore, as analysing the two postprandial periods separately did not attribute this 

improvement to a specific meal, it seems that this response persists across sequential 

eating occasions and may therefore be extended or amplified with the inclusion of a 
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third meal. Although this finding should certainly be treated cautiously given the 

sample size for these postprandial biochemical outcomes, it was consistent across all 

participants in this group and shows reasonable agreement with the prior literature in 

non-obese adults (Halberg et al., 2005; Heilbronn, Civitarese, et al., 2005). Contrary 

to these observations, Catenacci et al. (2016) did not establish a meaningful change in 

insulin sensitivity following 8-weeks of complete alternate-day fasting in obese adults. 

However, Catenacci et al. (2016) also found no effect of daily calorie restriction on 

insulin sensitivity, which contradicts the majority of prior literature (Larson-Meyer et 

al., 2006; Weiss et al., 2006; Redman and Ravussin, 2011; Johnson et al., 2016), even 

when the intervention is of a comparable duration (Antoni, Johnston, et al., 2018). 

Consequently, this suggests that combining intermittent fasting with calorie restriction 

may more readily improve insulin sensitivity than either calorie restriction or routine 

fasting extension in isolation. This also highlights the need for dynamic tests of 

glycaemic and insulinaemic responses in future studies, given the stability of fasted 

measures of glucose and insulin concentration.   

As described earlier, a key part of the rationale for intermittent fasting is enhancing 

opportunities for surplus lipid clearance to alleviate the metabolic dysfunction arising 

from chronic overnutrition (Emberson et al., 2002; Mattson et al., 2014). In the present 

study, the reduction in postprandial insulin concentration seen following intermittent 

fasting with calorie restriction was also accompanied by reductions in LDL cholesterol 

and postprandial triacylglycerol concentrations. Furthermore, this group also 

characterised a tendency for reduced respiratory exchange ratio, changes which 

collectively point to the induction of an enhanced lipolytic environment. This may 

therefore provide a mechanistic underpinning for the apparent improvements in 

insulinaemia. Although speculative, prior reports of increased carnitine 

palmitoyltransferase (CPT) 1 and sirtuin (SIRT) 1 expression in skeletal muscle tissue 

following complete alternate-day fasting do support this notion (Halberg et al., 2005; 

Heilbronn, Civitarese, et al., 2005). This is in light of suggestions that CPT1 is rate-

limiting in mitochondrial beta-oxidation (Schreurs, Kuipers and van der Leij, 2010), 

whilst SIRT1 has been implicated in enhancing skeletal muscle insulin sensitivity 

(Hesselink, Schrauwen-Hinderling and Schrauwen, 2016). The study of Halberg et al. 

(2005) also observed increases in NEFA and glycerol concentrations during fasted 

periods, illustrating the onset of a lipolytic state with less than 20 hours of fasting. 
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Despite the contrary findings for insulin sensitivity, Catenacci et al. (2016) also 

observed a reduction in fasted triacylglycerol concentration with complete alternate-

day fasting, an effect that was not apparent in response to daily calorie restriction, 

lending further credence to the current observations. Although there is certainly a need 

to explore this proposition further, this study provides compelling support for the 

induction of an enhanced lipolytic environment and accompanying improvements in 

metabolic health upon combining intermittent fasting with calorie restriction on a 

short-term basis. 

Although body mass decreased similarly in response to both daily calorie restriction 

and intermittent fasting with calorie restriction, accompanying changes in fat mass and 

lean mass were not established by conventional hypothesis testing. This highlights the 

issue of sampling variance in the present study as opposed to a genuine lack of effect; 

upon querying the raw values, a pattern emerged in which fat mass appeared to 

decrease only in response to daily calorie restriction, whilst lean mass was reduced by 

both the energy-restricted conditions. In terms of fat mass, this conflicts with the 

observations of Catenacci et al. (2016), in which fat mass was reduced to a similar 

degree by complete alternate-day fasting and daily calorie restriction. However, better 

agreement is found upon contrasting against the results from lean adults described in 

Chapter 5, wherein fat mass was reduced to a greater degree by daily calorie restriction 

when compared to intermittent fasting. Conversely, the tendency for lean mass to be 

reduced by both energy-restricted conditions in the present study aligns with the 

findings of Catenacci et al. (2016), but not with the findings in lean adults in Chapter 

5, where only intermittent fasting combined with calorie restriction seemed to reduce 

lean mass. 

An explanation to reconcile these divergent outcomes for body composition is not 

immediately apparent, but it most likely reflects interactions within a broader range of 

lifestyle factors beyond the temporal and quantitative restrictions imposed on energy 

intake. For instance, physical activity and protein balance are also heavily implicated 

in the regulation of skeletal muscle mass (Dickinson and Rasmussen, 2013; Milan et 

al., 2015; Ravussin et al., 2015; Abdulla et al., 2016; Tipton, Hamilton and Gallagher, 

2018), whilst dietary fat restriction results in more negative fat balance overall when 

compared to restriction of other macronutrients (Hall et al., 2015). As such, to optimise 
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the changes in body composition arising from these interventions, due consideration 

should be given to these factors, particularly protein intake and physical activity during 

intermittent fasting given the reductions in lean mass observed. 

Focusing instead upon the components of energy expenditure, resting metabolic rate 

was not altered by any of the interventions, suggesting that neither short-term 

intermittent fasting nor short-term calorie restriction results in metabolic adaptation in 

overweight and obese adults. This is similar to the observations in lean adults described 

in Chapter 5, and as such is likely attributable to the relatively minor weight losses 

incurred. In this instance, the respective decreases in body mass amounted to 2.8% and 

2.6% of pre-intervention values for the daily calorie restriction and intermittent fasting 

with calorie restriction groups, with only the accompanying reduction in plasma leptin 

concentration in the daily calorie restriction group approaching a meaningful effect. In 

agreement with this hypothesis, Catenacci et al. (2016) did observe reductions in 

metabolic rate in response to 8 weeks of daily calorie restriction, reductions that were 

beyond those predicted by the 6.2% decline in body mass. Interestingly however, in 

their comparative complete alternate-day fasting group, Catenacci et al. (2016) found 

that the reduction in metabolic rate was explained fully by the accompanying change 

in body composition. This suggested that no metabolic adaptation had taken place 

despite the imposition of more severe caloric restriction and greater weight losses of 

8.8%. Consequently, this raises an interesting question concerning how these 

intermittent fasting interventions could be best applied.  

The apparent absence of metabolic adaptation in response to both short- and long-term 

complete alternate-day fasting certainly creates an argument for the use of such 

approaches in treating obesity (Rosenbaum and Leibel, 2010). However, participant 

feedback from the present study suggests that such an intense regimen would not be 

sustainable for more than a matter of weeks, particularly when taken outside a research 

setting. Instead, these findings point to the potential of an intermittent approach to 

intermittent fasting, wherein complete alternate-day fasting is implemented for short 

intervals as opposed to continuously. Such an approach was recently employed to good 

effect in the context of daily calorie restriction by Byrne et al. (2018), separating 2-

week periods of daily calorie restriction with 2-week periods in which energy balance 

was maintained. In a cohort of obese men, this resulted in enhanced loss of fat mass 



Chapter 6 

220 

  

and less than half the metabolic adaptation when compared to continuous calorie 

restriction, in what the authors describe as improved weight loss efficiency. 

Consequently, applying this intermittent approach to intermittent fasting may 

represent a long-term strategy which results in weight loss and improvements in 

metabolic health with minimal, if any, metabolic adaptation.  

In a similar vein, physical activity energy expenditure was remarkably stable from the 

control to the intervention phase in all three groups, suggesting that none of the diets 

elicited behavioural adaptations to the temporal or quantitative restrictions imposed on 

energy intake in overweight/obese adults. This is in agreement with prior studies of 

modified alternate-day fasting in obese adults, in which step counts were unaffected 

by 8 weeks of dieting (Klempel et al., 2010, 2012; Hoddy et al., 2016). However, these 

trials lacked a comparative arm, making it difficult to disentangle the role of the diet 

in this null result from the limitations of the measurement techniques employed 

(Crouter et al., 2003; Corder, Brage and Ekelund, 2007). The outcome in the present 

study is also contrary to the observed decline in physical activity energy expenditure 

seen upon combining intermittent fasting with calorie restriction in lean adults 

(Chapter 5). Although it could be argued that this is due to the lower sample size in 

the present study failing to isolate the effect in what is a highly variable measurement, 

it would still be reasonable to expect a quantitative decrease. Instead, in this 

overweight/obese cohort, physical activity energy expenditure was stable to within 3 

kcal·day-1 in the intermittent fasting with calorie restriction group, whilst the daily 

calorie restriction and intermittent fasting without calorie restriction groups were 

stable to within 4 kcal·day-1 and 54 kcal·day-1, respectively. Consequently, this 

disparity with the findings in lean adults instead suggests that behavioural adaptations 

to intermittent fasting when combined with calorie restriction may be influenced by 

baseline adiposity. A similar adiposity-dependent effect was observed by Chowdhury 

et al. (2016), where extended morning fasting in obese adults did not alter 24-hour 

physical activity energy expenditure, which was contrary to their prior findings in lean 

adults (Betts et al., 2014, 2016). Such an effect could simply be a reflection of lower 

activity levels in overweight/obese cohorts (Bakrania et al., 2017), meaning there is 

less capacity for an adaptive decline. Alternatively, overweight/obese individuals may 

be less responsive to signals of energy availability; for instance, varying degrees of 

leptin resistance are often seen in overweight/obese individuals (Myers et al., 2010).  
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It is also worthy of note that patterns of activity were found to differ between fasted 

and fed periods in the present study, with the energy expended performing sedentary 

and vigorous intensity activities being lower on fasted days when compared to fed days 

during intermittent fasting. This is once again concordant with the findings of 

Chowdhury et al. (2016), who found that physical activity thermogenesis was lower 

during fasted periods, but that this did not extend to the 24-hour measurement window. 

Given that the same tendency for physical activity to be lower during fasted periods 

was also apparent for lean individuals in Chapter 5, this may once again be due to an 

influence of acute feeding state on heart rate, a change in sleep patterns, or a reduction 

in activity arising from the absence of food preparation. Yet none of these factors 

would explain the reduction in vigorous activity during fasting in overweight/obese 

individuals but not in lean, which instead points to a conscious behavioural response 

in this cohort (i.e. obese participants felt less able to undertake more intense activities 

during fasting) (Betts et al., 2014). Nonetheless, the consistent observation that 

behavioural adaptation to fasting of various durations differs between lean and 

overweight/obese individuals is intriguing, particularly in light of suggestions that 

metabolic adaptation is not different in these cohorts (Leibel, Rosenbaum and Hirsch, 

1995). Such a trend is consistent with the aforementioned hypothesis of differences in 

how readily individuals might compensate for perturbations in energy balance, which 

could carry implications for both the onset and persistence of obesity, making this a 

key area for future research to explore. 

As alluded to throughout this discussion, the inflated risk of type II errors is an 

important consideration in the present study. In Section 5.2.1, a-priori power analysis 

was used to estimate the sample size needed to detect the anticipated effects within the 

primary outcomes. However, owing to the recruitment challenges faced in this study, 

the attained sample size was approximately half of what was originally targeted, falling 

as low as 25% for some postprandial outcomes due to cannulation issues. 

Consequently, this study was underpowered to detect some of the anticipated effects, 

meaning that several null hypotheses may have been falsely accepted. This therefore 

necessitates further research, however, the present data nonetheless provides a useful 

resource to help inform the design of these studies, as advocated by Hoenig and Heisey 

(2001). For instance, based on the observed change in total daily energy expenditure 

in the intermittent fasting with calorie restriction group, 9 participants would be 
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required to establish this as a meaningful within-group change with 80% power at an 

alpha level of 0.05. Alternatively, in order to discern meaningful between-group 

differences in this parameter between the two energy-restricted groups, 48 participants 

would be required to achieve 80% power when detecting such a difference at an alpha 

level of 0.05.  

Collectively, the data from this experiment reveal that combining intermittent fasting 

with calorie restriction (i.e. weight-loss) results in improved insulin sensitivity when 

compared to either intermittent fasting or calorie restriction alone. This may be a result 

of an enhanced lipolytic state under their combined influence, with accompanying 

improvements in markers of lipid metabolism. Despite this, fat mass does not seem to 

decrease as readily in response to intermittent fasting when compared to daily calorie 

restriction. However, this is likely to be influenced by factors such as protein intake 

and physical activity, which future studies should seek to manipulate in order to 

optimise the outcomes. Lastly, neither short-term calorie restriction nor short-term 

intermittent fasting elicited adaptive declines in energy expenditure. This lends 

credence to the notion that such short-term approaches could offer enhanced weight 

loss efficiency relative to the continuous alternatives, and that the behavioural 

responses to fasting may differ between lean and overweight/obese individuals. 

However, future work remains a necessity to in order clarify these findings given the 

inflated risk of error with such small sample sizes and the potential for statistical 

regression. 
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Chapter 7: General Discussion 

This programme of research set out to understand and evaluate the utility of 

intermittent fasting as a dietary strategy for improving metabolic health. Initially, this 

involved quantifying diurnal rhythms in subjective appetite and related regulatory 

outcomes (Chapter 4), which subsequently informed the design of two intervention 

studies. These centred upon the application of a short-term complete alternate-day 

fasting intervention to a cohort of lean adults (Chapter 5) and then a cohort of 

overweight/obese adults (Chapter 6). In doing so, this revealed the novel finding that 

lean individuals combining intermittent fasting with calorie restriction exhibit reduced 

energy expenditure relative to intermittent fasting or calorie restriction in isolation. 

This was largely attributable to reductions in lower intensity physical activities during 

fasted periods. Furthermore, intermittent fasting also resulted in less pronounced 

declines in fat mass than daily calorie restriction, whilst there were no improvements 

in any aspect of fasted or postprandial metabolic health. In overweight/obese 

individuals, a similar pattern was apparent in terms of body composition, yet none of 

the three interventions altered resting metabolic rate or physical activity 

thermogenesis. Instead, an attenuated postprandial insulin response was observed 

following the combined intermittent fasting and calorie restriction intervention, which 

was accompanied by improvements in fasted and postprandial lipid concentrations. 

Collectively, these observations yield insights spanning three broad domains worthy 

of further discussion, namely: body composition, physical activity thermogenesis and 

metabolic health. 

Amongst the most interesting contrasts emerging from these experiments was the 

observation that, under conditions of energy restriction, fat mass decreased more 

readily in response to daily calorie restriction than intermittent fasting. In the lean 

cohort, greater declines in fat mass were seen in the daily calorie restriction group 

relative to the intermittent fasting condition (75:75 = -1.8±0.8 kg, 0:150 = -0.8±0.9 kg, 

0:200 = -0.1±0.7 kg). Comparatively, in the overweight/obese cohort, fat mass was 

only meaningfully reduced by the daily calorie restriction condition (75:75 = -1.4±0.8 

kg, 0:150 = -0.8±1.2 kg, 0:200 = -0.2±1.0 kg). Although differences in fat balance will 

contribute to this variance, they cannot quantitively explain disparities of this 
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magnitude (Hall et al., 2015). Instead, the stark contrast with the outcomes of 

intermittent fasting studies employing a modified alternate-day approach implicates 

the extended fasting period as the driving factor (Varady, 2011; Alhamdan et al., 

2016). 

Considering that the rationale behind extending the fasting interval to 24-hours in the 

present experiments was to provide more opportunities for lipolysis and energy efflux 

from adipose tissue (Ruge et al., 2009; McQuaid et al., 2011; Frayn, 2016), this 

attenuated decline in fat mass seems somewhat discordant. There can be little doubt 

that the fasting durations employed in the current experiments were sufficient to induce 

meaningful increases in lipolysis. For instance, Halberg et al. (2005) noted increases 

in circulating concentrations of both non-esterified fatty acids and glycerol after 19 

hours of fasting when compared to those seen after a typical overnight fast. As such, 

it seems unlikely that the smaller reductions in fat mass seen with intermittent fasting 

are rooted in failure to stimulate lipolytic pathways. Instead, the smaller decline 

highlights that over the longer-term, substrate-specific metabolism is altered to 

regulate endogenous carbohydrate and protein stores in the first instance, which then 

changes as the fasting period extends beyond a certain point (Galgani and Ravussin, 

2008; Soeters et al., 2012). 

Protein stores within skeletal muscle are often cited as being more readily conserved 

than endogenous fat stores during acute periods of fasting courtesy of their functional 

role (Vendelbo et al., 2014), yet following an overnight fast there is an increase in 

amino acid efflux from muscle tissue (Felig, 1975). This suggests that when the low 

amino acid and insulin concentrations that accompany the fasted state persist for 8-12 

hours, the dynamic equilibrium in which skeletal muscle exists shifts in favour of net 

muscle protein breakdown (Atherton and Smith, 2012; Dickinson and Rasmussen, 

2013; Tipton, Hamilton and Gallagher, 2018). Although there are limited data to 

support an exaggeration of this catabolic state when the fasting duration is extended to 

24 hours, it seems reasonable to suspect so. A recent study by Vendelbo et al. (2014) 

showed that fasting for 72 hours doubled the rate of amino acid efflux from skeletal 

muscle when compared to a 10-hour fast; this was associated with reduced mTOR 

activity and protein synthesis, whilst muscle protein breakdown remained relatively 

constant. These liberated amino acids can subsequently be utilised in gluconeogenic 
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pathways to spare the comparatively limited glycogen stores within the body (Owen 

et al., 1979; Carlson, Snead and Campbell, 1994), thereby allowing protein to 

contribute to whole-body energy metabolism during prolonged periods of fasting.  

As a result of the above processes, the divergent effects of intermittent fasting on body 

composition are perhaps best explained by reframing the question, asking instead why 

daily calorie restriction resulted in maintenance of lean mass whilst intermittent fasting 

seemed to decrease it more readily. Both conditions led to a similar reduction in energy 

intake, which is overcome by the combined degradation of endogenous carbohydrate, 

fat and protein stores to varying extents (Galgani and Ravussin, 2008; Hill, Wyatt and 

Peters, 2012; Thompson et al., 2012; Birsoy, Festuccia and Laplante, 2013; Adeva-

Andany et al., 2016; Rostom and Shine, 2018). Carbohydrate and fat stores respond 

on a relatively acute basis to meet energy demands, whilst protein shows a more latent 

response which is proposed to be contingent on a degree of hepatic glycogen depletion 

(Owen et al., 1979; Carlson, Snead and Campbell, 1994). Given that habitual meal 

patterns are maintained with daily calorie restriction, it seems likely that this latent 

protein response is less often invoked, given that the fasting period is still regularly 

punctuated by nutrient influx and insulin secretion. This regular re-feeding not only 

permits the replenishment of glycogen stores, but also stimulates mTOR activity and 

the restoration of synthetic pathways in skeletal muscle tissue (Dickinson and 

Rasmussen, 2013; Adeva-Andany et al., 2016). In lay terms, the preservation of meal 

patterns with daily calorie restriction minimises the opportunities for protein to make 

a meaningful contribution to resolving the energy deficit, placing a greater onus on 

degradation of carbohydrate and fat stores which are involved in the acute response to 

fasting. The same effect may therefore be induced if the fasting period is punctuated 

by permitted intake, as in the modified alternate-day approaches employed by others 

(Varady, 2011; Barnosky et al., 2014; Patterson and Sears, 2017), thus also explaining 

the maintenance of lean mass in these instances. However, it seems that extending this 

fasting period to 24-hours allows the rate of muscle protein breakdown to exceed the 

rate of muscle protein synthesis. The resultant surplus of amino acids can therefore 

make a meaningful contribution to energy metabolism via gluconeogenesis instead, 

reducing the reliance upon endogenous fat stores within adipose tissue. 
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The above interpretation does, however, leave two unexplained observations: the 

retention of lean mass during intermittent fasting without calorie restriction and the 

apparent decrease in lean mass during daily calorie restriction in overweight/obese 

adults but not in lean. Given the above discussion of energy metabolism during 

prolonged fasting, it would be anticipated that the imposition of identical fasting 

durations in the intermittent fasting without calorie restriction groups would also lead 

to a loss of lean mass. Instead, this suggests that it is combining prolonged fasting 

intervals with a state of negative energy balance that fosters this state. Therefore, 

incorporating strategies that favour more positive protein balance may help to facilitate 

preferential decreases in fat mass as opposed to lean mass during such diets (e.g. 

increased protein intake, resistance training). In a similar vein, the reduction in lean 

mass in response to daily calorie restriction in overweight/obese adults but not in lean 

may be explained by the underpinning physiology of protein storage (Section 2.1.4). 

Specifically, differences in protein intake and physical activity are likely candidates to 

explain this contrast, rather than differential physiological regulation of energy 

metabolism in these two cohorts. Data from the daily calorie restriction group in the 

two cohorts pertaining to these parameters are shown in Table 7.1. 

Table 7.1: Determinants of protein balance in the daily calorie restriction group in lean and overweight/obese 

cohorts. Data are presented as mean ± SD. 

Outcome 
Lean Overweight/Obese 

Control Intervention Change Control Intervention Change 

Lean Mass (kg) 53.6 ± 10.5 53.5 ± 10.2 -0.1 ± 0.8 58.6 ± 13.2 57.2 ± 13.1 -1.4 ± 1.0 

Protein Intake (g·kg-1·day-1) 1.2 ± 0.3 0.9 ± 0.2 -0.3 ± 0.2 1.1 ± 0.3 0.9 ± 0.3 -0.2 ± 0.2 

PAT (kcal·day-1) 892 ± 301 893 ± 342 +1 ± 126 700 ± 250 695 ± 289 -5 ± 145 

Sedentary (kcal·day-1) 123 ± 32 119 ± 22 -5 ± 18 133 ± 46 117 ± 37 -16 ± 25 

Light (kcal·day-1) 282 ± 66 294 ± 91 +12 ± 52 272 ± 53 267 ± 39 -5 ± 55 

Moderate (kcal·day-1) 317 ± 161 331 ± 179 +14 ± 61 254 ± 169 250 ± 223 -4 ± 69 

Vigorous (kcal·day-1) 84 ± 57 73 ± 63 -11 ± 37 26 ± 28 46 ± 40 +20 ± 40 

Very Vigorous (kcal·day-1) 67 ± 83 53 ± 72 -14 ± 52 0 ± 0 0 ± 1 0 ± 1 

 

Although protein intake during the intervention phase was well below the 1.2 g·kg-

1·day-1 proposed to be necessary for accretion of muscle mass during calorie restriction 

(Santarpia, Contaldo and Pasanisi, 2017), this was similar across groups. Instead, the 

most obvious contrast emerging from these data is that physical activity thermogenesis 

was approximately 200 kcal·day-1 lower in both the control and intervention phases in 

the overweight/obese group when compared to the lean. Furthermore, only 37% of this 

daily expenditure was accumulated at moderate-vigorous intensities in 
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overweight/obese participants, which contrasts with the 48% seen in lean individuals. 

Given that physical activity thermogenesis is likely to play a role in lean mass retention 

(Ravussin et al., 2015), along with the role of more demanding exercise in enhancing 

muscle protein synthesis in response to feeding (Drummond et al., 2011; Dickinson 

and Rasmussen, 2013), these differences in physical activity may well be driving the 

differing effects of daily calorie restriction on lean mass between cohorts. This is 

further supported by the maintenance of lean mass during weight loss via calorie 

restriction when combined with resistance training (Clark, 2015).  

According to the above explanation, complete alternate-day fasting may result in more 

negative protein balance and less negative fat balance than daily calorie restriction, 

due primarily to the effects of extended fasting on muscle protein synthesis. However, 

the maintenance of lean mass in the eucaloric interventions and the disparate effects 

of daily calorie restriction on lean mass in the two cohorts suggests that these changes 

could be modified by key regulators of protein balance, particularly physical 

activity/exercise and protein intake. The question now stands as to whether these 

factors can be better utilised in the design of future interventions to bring about more 

favourable changes in body composition. Partnering complete alternate-day fasting 

with a resistance training programme could be one such strategy, although the training 

would need to be undertaken during fed periods to foster an acute anabolic state as 

opposed to accelerating post-exercise skeletal muscle catabolism (Tipton, Hamilton 

and Gallagher, 2018). Although no such studies have been undertaken as yet, some 

insights can be gleaned from the study of Tinsley et al. (2017). This applied a time-

restricted feeding protocol alongside a resistance-training programme in a cohort of 

lean adults over 8 weeks. Time-restricted feeding involved restricting ad libitum 

energy intake to a 4-hour window in the evening on four days per week, whilst on the 

remaining three days food intake was ad libitum all day. On these three days, 

participants also undertook a resistance training programme targeting muscle 

hypertrophy. The net effect of this was a reduction in energy intake of approximately 

370 kcal per day which was driven by reductions on time-restricted days, although no 

reductions in lean mass or fat mass were apparent. The maintenance of fat mass was 

surprising, but this may well reflect the relatively small calorie restriction imposed of 

~15%. Nonetheless, lean mass was also maintained despite the imposition of mild 

calorie restriction and 20-hour fasts on 3 days per week. Consequently, this suggests 
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that, if incorporated appropriately, resistance training does have the potential to offset 

the decrease in lean mass associated with prolonged fasting periods. 

An alternative solution to encourage lean mass retention is to introduce protein 

supplementation during fasted periods to stimulate muscle protein synthesis. However, 

it is currently unclear whether this effect of protein supplementation can be achieved 

without also disrupting the systemic lipolytic state that may drive improvements in 

health (Acheson et al., 2011). Insights can be gleaned from the study of Katsanos et 

al. (2009), which examined the effect of ingesting an amino acid bolus on plasma 

insulin concentrations and muscle protein synthesis. Three-fold increases in insulin 

were apparent at 15 and 30 minutes post-ingestion, which resolved to fasted values 

within 60 minutes, but this was also accompanied by increases in fractional synthetic 

rate. It seems likely that even this small insulin response will suppress lipolytic activity 

to some degree (Hickner et al., 1999; Stumvoll et al., 2000), but the accompanying 

increase in muscle protein synthesis may not be predicated on the insulinaemic 

response (Robinson et al., 2014). This means that in principle, this insulinaemic effect 

could be ameliorated whilst preserving the stimulatory effect on protein synthesis with 

ingestion of a more carefully selected set of amino acids (van Loon et al., 2000; 

Gannon and Nuttall, 2010; Dickinson and Rasmussen, 2013).  

Although the efficacy of these solutions will need to be explored by future research, 

they nonetheless highlight the important role that lifestyle factors such as 

macronutrient balance and physical activity have to play in modifying the effects of 

such nutritional interventions. In light of this, the effects that intermittent fasting 

exerted upon physical activity thermogenesis in Chapters 5 and 6 are pertinent points 

of discussion. Establishing whether intermittent fasting invokes the same behavioural 

adaptations that often accompany periods of daily calorie restriction (Martin et al., 

2011) was a core objective of this thesis, courtesy of their proposed importance to 

long-term weight loss maintenance (Elfhag and Rossner, 2005; Wing and Phelan, 

2005; Thomas et al., 2014). This line of enquiry yielded perhaps the most striking 

outcomes of this series of studies. 

In the lean cohort, combining intermittent fasting with calorie restriction (i.e. weight-

loss) reduced daily physical activity thermogenesis, an effect that was not apparent 
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with either calorie restriction or intermittent fasting in isolation. This pointed to an 

interactive effect of the two dimensions, suggesting that calorie restriction and 

intermittent fasting exert small but separate effects on physically active behaviours 

which amounted to a meaningful change when combined. When stratified into fed and 

fasted cycles, this decrease was attributable to a reduction in physical activity 

thermogenesis during fasted periods rather than fed periods, a pattern which was 

driven primarily by changes in the calories expended performing sedentary and light 

activities. This adds further confidence that the observation is real and is at least partly 

attributable to fasting. Conversely, in the overweight/obese cohort, physical activity 

thermogenesis was unresponsive to all three interventions, thus introducing the notion 

that such behavioural adaptations may either be influenced by baseline adiposity, or 

by some other factor that is also causally related to both physical activity and adiposity. 

However, reverse causality is unlikely given that a propensity to reduce activity levels 

to minimise the net deficit and preserve body mass should then be more not less evident 

amongst overweight/obese individuals. Although the same pattern emerged in lean and 

overweight/obese groups for physical activity to be lower during fasted cycles, the 

most apparent decline for overweight/obese participants was in the calories expended 

performing vigorous activities rather than light. Given that reductions in physical 

activity thermogenesis have been consistently observed in response to extended 

periods of daily calorie restriction (Weyer et al., 2000; Martin et al., 2011), the novel 

observation emerging from Chapters 5 and 6 is that combining this with prolonged 

fasting seems to exert an interactive effect on this outcome. This could be the product 

of three possible explanations: an adaptive decline in physical activity during 

prolonged fasting; a confounding influence of the intervention on physically active 

behaviours; or a confounding influence of the intervention on the measurement 

technique employed to quantify physical activity. 

Collectively, the evidence available does point to the induction of a genuine decline in 

physical activity during fasted periods in the current experiments, rather than an 

artefactual finding. Firstly, the distinct activity patterns on fasting periods when 

compared to fed periods suggest that the acute feeding state is driving this reduction, 

as if it was an accumulated physiological response it would affect fasted and fed cycles 

equally (Betts et al., 2014). Such an outcome may be reasonably expected given the 

understandably non-blinded trial design, perhaps simply reflecting a conscious 
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decision to avoid physical activity during periods of perceived energy insufficiency. 

However, were this the case, then it would arguably be more likely that the calories 

expended at moderate-vigorous intensities would be reduced, and that this effect would 

be consistent across the cohorts. In fact, this reduction in moderate-vigorous intensity 

activity could be anticipated to be more apparent in the lean cohort, as they expended 

a higher fraction of their daily calories through these more intense activities during the 

control phase (Table 7.1). Yet, in the lean cohort, the decrease in physical activity 

thermogenesis during fasting was driven by sedentary and light activities, a pattern 

which is consistent with a reduction in spontaneous rather than deliberate activity 

(Betts et al., 2014). Comparatively, in the overweight cohort, the reduction in vigorous 

activity was the driving factor, which might be more consistent with a conscious 

decision (Betts et al., 2014). 

It is this discrepancy between cohorts that lies at the heart of the justification for an 

adaptive response, as it suggests that the decline is influenced by adiposity, which is 

difficult to reconcile with the other two proposed explanations. It seems reasonable to 

expect that the onset of major challenges to energy homeostasis (i.e. prolonged fasting) 

would stimulate more pronounced adaptive changes in regulatory pathways in those 

with lower levels of stored energy. Certainly, such behavioural adaptations in 

spontaneous physical activity have been noted at the lower extremes of adiposity 

(Carrera et al., 2012), whilst these results also concur with the findings from studies 

of extended morning fasting (Betts et al., 2016). However, there is a definite need to 

explore this proposition further, particularly given that similar adiposity-dependent 

effects do not seem to be apparent for adaptive responses to daily calorie restriction 

(Leibel, Rosenbaum and Hirsch, 1995).  

An alternative explanation of these divergent activity patterns during fed and fasted 

cycles is that the intermittent fasting interventions encouraged behavioural 

modifications which led to the reduction in activity. At the most simplistic level, this 

might be considered in terms of the energetic cost of food preparation. The very act of 

fasting reduces the need for food preparation, which is ascribed an intensity of 2.0-2.5 

METs (Ainsworth et al., 2011). This therefore aligns with the light intensity range and 

fits with the reduction in light activity that drove the reductions in physical activity on 

fasted days in the lean intermittent fasting with calorie restriction group, which totalled 
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-54±71 kcal·day-1. By crude inference, a reduction in physical activity thermogenesis 

of this magnitude is equivalent to approximately 21 minutes of food preparation per 

day. The assumption this then makes is that these 21 minutes are instead spent being 

completely rested, given that the calories expended performing sedentary activities 

were also reduced and any activities at higher intensities would offset this reduction in 

activity more readily (Thompson, Peacock and Betts, 2014). This seems unlikely but, 

even if considered to be true, a comparable reduction in light activity would still be 

expected in the intermittent fasting without calorie restriction group, which was not 

apparent (-1±69 kcal·day-1). In a similar vein, the lack of breakfast during fasted 

periods could have allowed participants to get up later, thereby eliminating some low-

level activity. Whilst data on sleep patterns were not collected in the present study to 

support or refute this suggestion, such an effect was not observed by Betts et al. (2014) 

or Chowdhury et al. (2016) in their studies of extended morning fasting. Furthermore, 

this would once again be expected to exert a similar influence in the two intermittent 

fasting groups, which was not the case. However, it is worthy of note that, whether 

conscious or not, such changes in behaviour are nonetheless an adaptation to prolonged 

fasting. Therefore, there would still be a need to monitor and maintain physical activity 

levels in order to enhance the effects of such interventions. 

Another possibility to explain the difference in activity levels is that the interventions 

may have confounded the method used to quantify physical activity (i.e. combined 

heart rate/accelerometry). This is based on the observation that feeding affects heart 

rate; for instance, in response to the consumption of a mixed-meal containing 480 kcal, 

Matsumoto et al. (2001) observed an increase in heart rate of 4-5 bpm in the ensuing 

35-minute postprandial period. Consequently, the postprandial increase in heart rate 

during overfeeding may lead to small inaccuracies in the measurements on fed days 

(Walhin et al., 2013). This certainly fits with the pattern seen between fasting and 

feeding cycles in all the intermittent fasting groups, although the counterpoint once 

again rests in the intensity thresholds. The branched-equation model used to derive 

these estimates applies different weightings to the two data types (i.e. heart-rate versus 

accelerometry) at different intensities (Brage et al., 2004). At lower intensities, the 

model bases the estimates predominantly upon accelerometry data, whilst higher 

intensities rely more heavily upon heart rate (Brage et al., 2004). Consequently, if this 

impact of acute feeding state on heart rate was the driving factor behind these patterns, 
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it would be most apparent at the higher intensities of activity, not the lower as was 

typically seen. 

This also raises the question of whether combined heart/accelerometry was the most 

appropriate technique for quantifying these changes. For instance, Muller et al. (2015) 

used this approach to quantify adaptive changes in physical activity during 3 weeks of 

50% daily calorie restriction. Although no reductions were apparent in the resultant 

estimates of physical activity thermogenesis, a laboratory-based protocol revealed an 

adaptive increase in skeletal muscle work efficiency, meaning that the same physical 

activity had a lower energy cost following daily calorie restriction. As such, it is 

possible that the present experiments may underestimate the change in physical 

activity thermogenesis. In light of this, the most obvious alternative is the use of 

doubly-labelled water. This offers similarly free-living data, but in quantifying the rate 

of isotopic oxygen depletion it may better capture such reduced oxidative costs more 

effectively. This would also overcome the potentially confounding influence of 

feeding-induced increases in heart rate, thereby isolating behavioural adaptation of 

some nature as the cause. However, whilst these are certainly strengths, doubly-

labelled water is instead prone to inaccuracy in terms of changes in respiratory 

exchange ratio from fasted to fed cycles and in response to the intervention (Schmidt 

et al., 2013; Hall et al., 2018), whilst also missing important temporal fluctuations in 

the intensity and pattern of daily activities (Katzmarzyk, 2010). As such, it seems that 

there is no perfect approach to capture free-living data in this context, and the 

resolution of data offered by the ActiheartTM does at least permit closer scrutiny of 

these potential confounding influences.  

Ultimately, to conclude that these confounding influences are therefore not 

contributing to the observed changes in physical activity based on these arguments 

would be radical, but equally to conclude that they are driving these activity patterns 

is overtly conservative. Certainly, the divergent modifications in activity that emerged 

across both interventions and cohorts do make a strong case for the induction of an 

adaptive response to the acute feeding state. This is further supported by the similar 

conclusions drawn by the aforementioned studies on extended morning fasting, which 

implicated the postprandial rise in plasma glucose concentrations as the signal 

controlling the onset of spontaneous physical activity (Betts et al., 2016). Although 
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such a mechanism would certainly be invoked here, without continuous glucose 

monitoring it is difficult to support or refute this based on the available data. An 

alternative hypothesis is that hepatic carbohydrate status may dictate this response 

instead (Müller, Enderle and Bosy-Westphal, 2016). In the previous discussion of 

catabolic responses to fasting, the reduction in protein synthesis and resulting 

liberation of amino acids for use in energy metabolism following 10-12 hours of 

fasting was said to be initiated by a degree of hepatic glycogen depletion (Owen et al., 

1979; Carlson, Snead and Campbell, 1994). It stands to reason that such depletion may 

also initiate an adaptive response in energy expenditure to constrain further challenges 

to glucose homeostasis. However, without accompanying metrics of liver glycogen 

content, this is once again speculative. Nonetheless, the observation that prolonged 

fasting periods do elicit a reduction in physical activity thermogenesis is a valuable 

addition to current understanding, particularly following the prior discussion of the 

potential impact this can have on lean mass retention and weight loss maintenance. As 

such, future studies will need to explore this adaptive dimension further, using a 

combination of free-living and laboratory techniques to provide a more complete view 

of their scale and origin. 

Following on from this discussion, it seems sensible to highlight that while weight loss 

is often the goal when applying calorie restriction, from a scientific and economic 

perspective this is driven by the improvements in metabolic health that typically 

accompany reduced adiposity (Goldstein, 1992; Blackburn, 1995; Hamman et al., 

2006; Varady, Tussing, et al., 2009; Wing et al., 2011). Consequently, these adaptive 

changes in energy use and disparate effects on body composition are secondary 

considerations to the overall impacts on metabolic health. This is a particularly 

pertinent point in this case, as a key dimension of this investigation was exploring the 

potential for intermittent fasting to provide improvements in health that were 

independent of changes in energy balance (Halberg et al., 2005; Heilbronn, Civitarese, 

et al., 2005; McArdle et al., 2013; Rutkowski, Stern and Scherer, 2015; Wensveen et 

al., 2015; Spalding et al., 2017). 

In the lean cohort, both fasting and postprandial health outcomes were largely 

unresponsive to all the interventions. As discussed in Chapter 5, this is most likely to 

be a consequence of the relatively small weight losses (Varady, Tussing, et al., 2009), 
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coupled with the seemingly healthy metabolic profile of participants at baseline 

(Sparks et al., 2017). This suggestion is reinforced by the observed changes in the 

overweight/obese cohort, wherein LDL cholesterol levels were raised in all three 

groups prior to the intervention. Following the intermittent fasting with calorie 

restriction diet in this cohort, postprandial insulin concentrations were reduced when 

the combined postprandial period of the two meals was considered, suggesting a 

chronic effect of the intervention which persisted across meals. As was the case with 

physical activity, the absence of comparable effects in response to either calorie 

restriction or intermittent fasting in isolation points to interactive effects of these two 

dimensions, although this most certainly needs to be verified by future studies with 

greater statistical power. However, this observation also fits with the accompanying 

reductions in LDL cholesterol and triacylglycerol concentrations in this group who 

combined fasting with calorie restriction. Coupling these changes with the tendency 

for respiratory exchange ratio to decrease in this group collectively points to the 

upregulation of lipolytic pathways (Owen et al., 1979; Carlson, Snead and Campbell, 

1994; Soeters et al., 2012) and enhanced clearance of surplus lipids during 24-hour 

fasting (Emberson et al., 2002; Mattson et al., 2014). Although attributing 

improvements in insulinaemia to these modifications in fat metabolism would be 

highly speculative, it is worthy of note that the accumulation of certain lipid species 

has been implicated in insulin resistance (Rutkowski, Stern and Scherer, 2015; 

Spalding et al., 2017; Petersen and Shulman, 2018), which the predominance of lipid 

oxidation that fasting permits could help to clear. Consequently, future studies should 

seek to explore this proposition further, perhaps including skeletal muscle biopsies to 

assess changes in intramuscular lipid content. 

Do the findings considered thus far therefore mean that reducing energy intake through 

intermittent fasting is inadvisable unless a degree of metabolic dysfunction is already 

present? Certainly, the loss of lean mass and reduction in physical activity in the 

absence of health improvement in the lean cohort are strong arguments for such an 

advocation. However, there are reasons to suspect that the therapeutic potential of 

intermittent fasting may be under-estimated by the complete alternate-day approach 

used in Chapters 5 and 6. The rationale for this particular modality was maximising 

the uninterrupted fasting period to enhance lipid clearance as described above, but the 

drawback of this is that it cannot be applied consistently (i.e. on a daily basis). In light 
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of the understanding of circadian rhythms necessitated by Chapter 4, this is likely to 

have led to a degree of circadian misalignment. 

Shifting feeding behaviour from a 24-hour rhythm to a 48-hour rhythm moves it 

outside the entrainable range, much alike a forced desynchrony protocol (Pagani et al., 

2010; Scheer, Morris and Shea, 2013). Consequently, endogenous rhythms which are 

dictated by, or responsive to, nutrient influx (i.e. meal timing), are likely to have 

become disordered as feeding behaviour could not be anticipated. Although not fully 

elucidated, there is mounting evidence to suggest that such feeding dependent rhythms 

are present in various dimensions of metabolic control (Johnston, 2014; Johnston et 

al., 2016), as discussed at length in Section 2.3. For instance, Scheer et al. (2009) 

observed that under conditions of forced desynchrony, misalignment of circadian and 

behavioural rhythms resulted in deteriorations in glucose tolerance to a degree 

consistent with the onset of diabetes, despite higher circulating insulin concentrations. 

This is also supported by the work undertaken in fulfilment of the wider objectives of 

Chapter 4, wherein genes involved in glucose uptake were downregulated in skeletal 

muscle in response to circadian disruption, resulting in impaired insulin-stimulated 

glucose uptake (Perrin et al., 2018). Similar rhythms have also been proposed for lipid 

metabolism (Gooley, 2016), which it also seems reasonable to speculate are dictated 

by rhythms in feeding behaviour (Mattson et al., 2014; Longo and Panda, 2016; 

McGinnis and Young, 2016). Consequently, although the fasting period may well have 

permitted the predominance of lipolysis and lipid clearance, the inability of processes 

involved in glucose and lipid homeostasis to anticipate nutrient influx may well have 

resulted in exaggerated postprandial responses and deleterious lipid deposition. This 

may therefore represent an inherent weakness of these approaches, the impact of which 

needs to be established by future work. 

Considering this final point, and the wider discussions in this final chapter, it may be 

that other modalities of intermittent fasting will prove more effective in managing 

obesity and the accompanying dysfunction; specifically, time-restricted feeding stands 

as a particularly promising candidate. Although research to substantiate this claim is 

lacking as the concept remains in its infancy, time-restricted feeding certainly 

represents the best reconciliation of the various strengths and weaknesses established 

by these experiments. Firstly, in constraining the feeding window to 10 hours or less 
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(Patterson and Sears, 2017), this method offers enhanced opportunities for lipolytic 

predominance compared to typical meal patterns (Antoni, Robertson, et al., 2018; 

Gabel et al., 2018). Although this falls short of the 24-hour fast achieved in the present 

study, with time-restricted feeding the stated fasting duration can be applied daily, 

meaning that overall fasted time may actually be greater. Secondly, the ability to apply 

the restriction on a daily basis means that feeding behaviour can be anticipated by 24-

hour endogenous rhythms, thereby fostering circadian alignment and avoiding the 

deleterious effects of misalignment on energy metabolism and health. Thirdly, 

shortening the fasting window should also help to minimise the loss of lean mass, 

whilst also providing the exogenous influx of carbohydrate that may allow physical 

activity levels to be maintained (Betts et al., 2016; Müller, Enderle and Bosy-

Westphal, 2016). Although there are certainly questions as to how this approach might 

fit with modern lifestyles (Antoni, Robertson, et al., 2018), early studies of this method 

are promising, as laid out in Section 2.4.3, with improvements in fat oxidation, 

reductions in fat mass, and potential impacts on glycaemia (Stote et al., 2007; Moro et 

al., 2016; Antoni, Robertson, et al., 2018; Sutton et al., 2018). 

In a similar vein, it is worthy of note that metabolic control is but one dimension of 

overall health and wellbeing, so the conclusions drawn on the utility of complete 

alternate-day fasting may be entirely different if other outcomes and endpoints had 

been considered. For instance, intermittent fasting has been associated with reductions 

in inflammation and oxidative stress (Longo and Mattson, 2014). These processes have 

been implicated in cancer aetiology and the adipocyte dysfunction that precedes 

observable deteriorations in metabolic control (Reuter et al., 2010; Tripathi and 

Pandey, 2012; Wensveen et al., 2015; Engin, 2017). As a result, the therapeutic 

potential of routinely extending fasting intervals may instead lie in preventing obesity-

associated dysfunction as opposed to managing it, or perhaps slowing tumour 

development. The intention of such speculations is not to propose inadequate outcome 

selection in the present work, but rather to illustrate the dearth of knowledge pertaining 

to how acute periods of fasting affect human physiology and disease mechanisms. 

Much of what is currently known draws from studies of more extreme fasting 

durations, in the order of days rather than hours (Owen et al., 1979; Carlson, Snead 

and Campbell, 1994; Soeters et al., 2012; Vendelbo et al., 2014). Such durations are 
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far removed from the 12- to 24-hour periods that might be reasonably be applied by 

the general population for the purposes of cardiometabolic health improvement, and 

the current results relating to body composition eloquently demonstrate the profound 

impact that extending the fasting interval by a few hours can exert. As such, there 

needs to be a concerted effort by the research community to establish how acute 

periods of fasting in the order of 12-24 hours affect human physiology. This will 

answer fundamental questions, such as which mechanistic pathways are responsive, 

the optimal duration for enhancing metabolic health, how frequently fasting should be 

applied, and so on, which will ultimately dictate the most efficacious strategy, which 

can then be evaluated itself. 

In the collective light of the experiments undertaken and these ensuing discussions, it 

can be concluded that diurnal rhythms in subjective appetite can be employed 

effectively in the design of intermittent fasting interventions. When applied in the form 

of energy-restricted complete alternate-day fasting, such diets can elicit improvements 

in metabolic control in overweight and obese adults when compared to daily calorie 

restriction, without incurring adaptive declines in energy expenditure. However, in 

lean adults, these diets do not result in improvements in metabolic health, instead 

inducing adaptive declines in spontaneous physical activity during fasting. As none of 

these effects were apparent with either intermittent fasting or calorie restriction in 

isolation, it seems that the amount and timing of energy intake exert interactive effects 

on these outcomes. However, intermittent fasting did also result in less pronounced 

declines in fat mass than daily calorie restriction, an effect that is likely to be driven 

by reduced muscle protein synthesis during fasting. Therefore, from a practical 

perspective, short-term complete alternate-day fasting represents an effective dietary 

intervention for improving health in states where there is a pre-existing degree of 

metabolic disquiet, but in healthy individuals there seems to be little benefit to be 

gained. However, routinely extending the fasting interval to 24-hours does negatively 

impact on lean mass, so those undertaking such diets should place emphasis upon 

maintaining physical activity levels and possibly supplementing their protein intake. 

There is little doubt that temporal restrictions of feeding have potential as strategies 

for managing obesity and the accompanying dysfunction; after all, it is often said that 

time heals all wounds. They are likely to induce calorie restriction without the need to 



Chapter 7 

238 

  

actively monitor dietary intake and there is evidence to support beneficial effects of 

routine fasting extension. However, in light of the potential for: a) circadian 

misalignment; b) the loss of lean mass invoked by 24-hour fasting intervals; and c) the 

suppression of spontaneous physical activity during fasted periods, complete alternate-

day fasting seems unlikely to be the optimal format. 
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