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ABSTRACT 

Cassava is the sixth most important food crop in the world, where it is the staple food 

for over 500 million people. Its ability to grow on marginal soil conditions and under 

minimal care makes cassava a vital ‗food security‘ crop for resource-poor farmers. 

However, cassava production is constrained by post-harvest physiological 

deterioration (PPD), a storage root disorder characterised by vascular streaking and 

discolouration of parenchymal tissue. PPD, which renders the roots unpalatable and 

unmarketable, leads to significant yield loss in global cassava production. 

The cause of PPD is not yet fully understood but accumulation of reactive oxygen 

species (ROS) has been observed in the harvested storage root. It is hypothesised 

that the ROS, which is triggered by wounding during harvesting, is not modulated due 

to deficiencies in the ROS-detoxifying system in cassava roots, causing oxidative 

stress to occur, which then leads to symptom formation. To investigate this, 

transgenic cassavas containing five separate anti-oxidant genes were studied– 

superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), gamma 

glutamyl cysteine synthetase (GCS) and galacturonic acid reductase (GAR). Each 

gene was controlled by a root-specific promoter, Patatin, which is also wound-

inducible.  

A high percentage of single-insert lines were recovered, which retained the outward 

phenotype of WT cassava. While this enabled comparative PPD assessment between 

the transgenics and the WT, this was complicated by the challenge of reproducibly 

measuring PPD in greenhouse-grown plants. Therefore, a reliable assay to measure 

PPD in greenhouse-grown samples was developed and a robust method to assess 

the symptoms with high confidence was devised. Scopoletin, a fluorescent compound 

was initially tested as an alternative PPD marker but was dismissed as it did not 

correlate well with PPD symptom development. 

Overexpression of anti-oxidant genes was observed in selected lines – between 4- to 

5-fold increase of relative transcriptional level was achieved in fresh roots and up to 

20-fold was achieved in transgenic roots that had been harvested after 24 hours. 

However, as the increase did not alter the activity of anti-oxidant enzymes, the 

transgenic cassava plants generally exhibited similar levels of tolerance to oxidative 

stress and PPD as the WT plants. This result may be partly due to the difficulty of 

producing sufficient numbers of replicates for analysis, the behaviour of the Patatin 

promoter in cassava, and the complexity of anti-oxidant responses. Hence, while this 

thesis has clarified aspects of the PPD response in cassava and the role of anti-

oxidant genes in it, it has not been able to identify definitive means to control the 

problem through altering the expression of individual genes. 
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CHAPTER 1 

 

Introduction 

 

1.1  Cassava– History and distribution 

Cassava (Manihot esculenta Crantz) is a member of Manihot genus, which consists of 

98 different species. The other names for cassava include tapioca (Asia), mandioca 

(Brazil), manioc (French-speaking) and yuca (Spanish-speaking). This plant belongs to 

the wide-ranging Euphorbiacea family, sharing it with other crops like castor bean and 

rubber plant. Archaeological evidence suggest that cassava was domesticated 

between 2000-4000 BC (Fauquet and Fargette, 1990) in South American region. The 

modern cassava that exists today is thought to be originated from its wild ancestors M. 

esculenta subsp. Flabellifolia and M. esculenta subsp. Peruviana (Allem, 1999, Roa et 

al., 2000) but the exact location of its domestication was a topic of dispute. A number of 

places including Mexico and Peru were suggested but analyses based on molecular 

markers such as SNPs (single nucleotide polymorphisms) and SSR (simple sequence 

repeat) concluded that cassava was likely to have been domesticated in the southern 

Amazon basin in Brazil (Olsen, 2004, Leotard et al., 2009). 

Expansion of cassava began in 16th century when the Portuguese sailors brought 

cassava to the West Africa through the Congo basin. There it was accepted as a 

valuable subsistence crop, but cassava only spread throughout Africa two centuries 

later after it was separately introduced in the east coast of Africa. Cassava was 

transported to India in the 17th century, marking its establishment in Asia. However, its 

dissemination to the rest of the continent was not clear because cassava was already 

found in the Philippines and Indonesia by that time, to which it had possibly been 

brought by the Mexicans and the Portuguese, respectively (Cock, 1982).  

Cassava distribution is restricted to the tropics due to its adaptation to warm climate. 

Although it can tolerate up to 38°C, growth is favoured under an annual mean 

temperature of 25-29°C. Temperature of 10°C and below sufficiently inhibits cassava 

growth, which explains why it is not found in the temperate zones. It also favours 

lowlands but can occur at 1500 m above sea level. The approximate geographical 

limitations for naturally occurring cassava are 30°N and 30°S, but cultivation is normally 

located in between 20°N and 20°S (Cock, 1985). 



2 
 

1.2 Morphology and growth of cassava plants 

Cassava is a diploid plant with chromosome number n=36. It has diverse morphology 

between cultivars which indicates the occurrence of high interspecific hybridisation. In 

general, cassava can grow either as a shrub or a small tree with stem height between 

2-4 meters (Figure 1.1). The stem grows either singly or by forming sympodial 

branches. Primary branching occurs di-, tri- or tetrachotomously while secondary 

branching is most likely induced by flowering (Cock et al., 1979). Surrounding the stem 

or branch are palminate-shaped leaves consisting of uneven numbers of lobes. The 

leaves are connected to the stem by petioles which also vary from dark purple to light 

green. 

 

Figure 1.1 Cassava plant morphology (a) One year old cassava plants grown in a trial 

farm in Uganda (b) A close-up of cassava leaf (b) Typical healthy cassava storage 

roots. 

As the cassava plant matures it develops starch-filled storage roots. Depending on 

cultivars and agricultural practices, one cassava plant can produce 5-10 vertical roots 

weighing up to 3 kg FW per root. Generally the roots are cylindrical with lengths up to 1 

meter and diameter reaching 10 cm (Jansson et al., 2009). 

 

 

 



3 
 

 

Figure 1.2 Diagram of cassava storage root labelled according to its section. 

Anatomically, the storage root is not a true tuber but either taproot or adventitious root 

thickened with starch which functions as carbohydrate reserve (Lebot, 2009). 

Therefore, unlike yam or potato, it lacks propagative function. The root largely consists 

of xylem-dispersed storage parenchyma which is the edible part of the root (Figure 

1.2). The colour of the parenchyma tissue, which varies from white, light yellow and 

light pink, is an important morphological descriptor. The storage parenchyma is 

protected by a peel layer consisting of cortical parenchyma, sclerenchyma and 

periderm. The centre of the root is filled with tough xylem vessels which often are 

discarded prior to processing. Some cultivars have cortical parenchyma layer that can 

be easily removed so peeling can be done by hand.  

Cassava is grown primarily for the storage root. It is propagated using stem cuttings (or 

stakes) rather than by seeds. The stakes, which is normally obtained from the 

preceding harvest are cut to 25–30 cm long and buried in the ground vertically to 

induce sprouting. Under optimum growth conditions emergence takes place about 14 

days after planting (DAP) while conversion of fibrous to storage roots occurs from 60- 

90 DAP. This is followed by dry matter accumulation which occurs at the highest rate 

between 180 and 300 DAP promoting thickening of storage roots (Alves, 2002). Within 

this time frame cassava is best harvested. Although mechanisation has been 

introduced, traditional harvesting is still practiced which involve loosening the soil with 

hoe and manually pulling off the roots from the ground. 
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1.3 Cassava as crop 

The cassava root is rich in carbohydrate, of which starch is a major constituent. The 

carbohydrate content in cassava is approximately twice that of other staples, with 38 g 

per 100 g FW edible portion against 17 and 23 g in potato and rice respectively 

(Source: USDA). Today, more than 500 million people in the tropics depend on 

cassava as a source of calorie intake making it the fifth most important crop in the 

world. Its production is low compared to other food crops, but has been steadily 

increased in the past 20 years (Figure 1.3). In 2012, the cassava total world production 

was 269 metric tonnes, an increase of approximately 25% from 2006. Currently, the 

leading producers of cassava are African countries, contributing 55% of the total 

production, of which 35% is produced in Nigeria. The other important cassava 

producers are Asia (33%) and South America (10%) (Source: FAOSTAT). 

 

Figure 1.3 Trends in global production of the world‘s important food crops. Graph 

constructed based on data collected from FAOSTAT.  
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For centuries, cassava played an important role in ensuring food security in Africa. It 

can withstand a long periods of drought and grow on nutrient-deficient soil that may no 

longer suitable for other crops. Fertilisation is required but not necessary if grown on a 

freshly cleared forest soil (Jorge, 2008). Generally, after the formation of storage roots, 

cassava is relatively strong and can survive with minimal husbandry. Interestingly, 

cassava can be kept unharvested for up to several years making it a suitable famine 

reserve crop. However, prolonged growth leads to lignifications that turn the roots 

tough and woody. The hardiness features of cassava are attractive to the third world 

countries where modern agriculture is too expensive to practice. Generally, yield 

depends on cultivars, soil and agricultural practice. Between 5 to 20 tonnes/ha is 

commonly achieved under poor cultivation, while 60 tonnes/ha is achievable under the 

best cultivation methods (Zhang et al., 2003a). 

Cassava, particularly in the processed form has an important role in the world trade 

with Thailand as the leading exporter. Cassava-based animal feed in the form of dried 

chips and pellets are exported to European countries while flour and starch are 

exported to Japan, Taiwan and China. Fresh cassava trade remains in Africa but it is 

currently expanding to developed countries due to migration of cassava consumers 

(Rees, 2012). 

Recently, cassava is being promoted for bioethanol production due its high starch 

content, especially in China. Cassava conversion rate to bioethanol (L/tonne) is low 

when compared to other crops like maize, wheat and rice but it has the highest annual 

bioethanol yield (L/ha/year), mainly because more yield is obtained per cultivation area 

(Wang, 2002). Cassava bioethanol yield is comparable to a high-sugar crop like 

sugarcane yet more economical as it requires 6.6 tonne cassava storage root but 13.5 

tonne sugarcane to produce 1 tonne of bioethanol (Jansson et al., 2009). The potential 

benefits of cassava as the new bioethanol crop are not only economic, but also 

environmental as high-quality arable land is not essential for its production, this quality 

land can then be reserved for high-quality food crops. 
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1.4 Cassava as food 

Although the storage root is an excellent caloric source, its consumption is associated 

with two major problems; malnutrition and cyanide toxicity. Cassava is deficient in 

protein, vitamins and minerals. The typical composition is presented in Table 1.1. Other 

than that, it contains anti-nutrients such as phytic acid that bind to minerals reducing 

their absorption (Marfo et al., 1990).  

Table 1.1 The average composition of cassava roots and leaf in g/100 g dry matter 

(DM). The root and leaf composition is adapted from Rees et al. (2012) and Wobeto et 

al. (2006). Asterisk indicates composition in mg/kg DM. 

Composition Whole roots Leaf 

Carbohydrate 89 15.9 

Lipid 1.0 19.4 

Protein 2.5 35.90 

Fibre 4.5 23.63 

Calcium 0.125 0.98 

Zinc 0.0034 52.4* 

Manganese 0.0038 157.97* 

Phosphorus 0.1 0.33 

Iron 0.0022 225.60* 

Ascorbate 0.39 0.14** 

 

Consumption of cassava is strongly associated with high incidences of vision 

impairment and weakened immune system, especially in children. To address this, 

tremendous effort is being taken to fortify the cassava roots with precursor of vitamin A 

and other micronutrients (Njoku et al., 2011). In many African countries, cassava leaf is 

consumed as a side dish to fulfil the dietary requirement. The leaf is not only an 

excellent protein substitute but also is high in minerals like zinc, iron, manganese, and 

calcium.  

Apart from the seeds, all cassava plant organs contain cyanogens. Cyanogens can 

exist as cyanogenic glycosides (linamarin), cyanohydrins and free cyanide. Based on 

the content of cyanogens deposited in the storage roots, cassava is divided into ‗sweet‘ 

and ‗bitter‘ cultivars. Those contain between 100-500 mg/kg fresh weight (FW) 

cyanogens are considered as bitter cassava while those contain less 100 mg/kg FW 

cyanogens are considered as sweet cassava. Sweet cassava, as a crop, is more 

common in its place of origin (South America) while the bitter cassava became more 

adaptable in Africa where predators are more prevalent. The concentration of 

cyanogens in raw cassava roots is lethal to most predators and toxic to humans. 
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According to the Food and Agriculture Organization (FAO) cyanogens above 10 mg/kg 

DW is not safe for human consumption, thus processing to remove the cyanide prior to 

consumption is a must.  

For generations the cyanide released from cyanogens has been removed through 

various methods including chopping, vigorous washing, soaking, pounding, boiling, 

drying and fermenting or combination of these methods. For example ‗fufu‘ which is a 

common staple in West Africa is prepared by cutting cassava root into small pieces 

before soaking in water. The root is then dried and pounded into a dough-like 

consistency and it is boiled prior to consumption. Fufu prepared from bitter cassava 

may require additional treatment including 3-5 days fermentation to facilitate removal of 

cyanide. Another cassava-based dish called ‗garri‘ is granular flour made from 

gelatinised fresh cassava. This dish is most popular in Ghana, Sierra Leon and Nigeria. 

A similar product to garri called ‗farinha‘ is consumed in South America particularly in 

Brazil. To make garri, cassava root is grated and fermented in a jute sack. After a few 

days the sack is pressed to remove excess fluid before the resultant product is toasted 

to promote gelatinisation. 

Each step employed in the preparation of ‗edible‘ cassava product serves to remove 

considerable amounts of cyanogenic compound. Soaking in large volumes of water 

solubilise cyanogens while pounding rupture plant cells releasing linamarase, an 

enzyme that breaks down linamarin to glucose and acetocyanohydrin (Oke, 1994). 

Drying inactivates linamarase which prevent the accumulation of acetocyanohydrin 

(Mlingi and Bainbridge, 1994), while fermentation further removes cyanogens through 

the hydrolysis of linamarin by certain lactic acid bacteria (Giraud et al., 1992). By 

comparison, garri has more total cyanogens removed than fufu and this associated 

with volatilisation of free cyanide when cassava is toasted at high temperature at the 

end of the process. 
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1.5 Constraints in cassava production 

1.5.1  Pests and diseases 

The potential of cassava is recognised but its production is hindered by many factors. 

Insects including cassava mealy bug (Phanacoccus manihoti), whitefly (Bemisia 

tabaci), green and red spider mites (Mononychellus tanajoa, Tetranychus telarius), 

African grasshopper (Zonocerus variegatus) and burrower bug (Cyrtomenus bergi) are 

important pests of cassava (Bellotti et al., 1999). However, two major threats for 

growing cassava which have been given major emphasis by cassava research 

community are cassava mosaic disease (CMD) and cassava brown streak disease 

(CBSD).  

CMD which has caused serious losses in many parts of Africa, India and Sri Lanka is 

caused by Begomovirus from the Geminiviridae family. The virus is also known as 

cassava mosaic virus (CMV). Being characterised by its geographical occurrence, 

currently, there are several distinct species of CMV. Some known examples include 

Africa Cassava Mosaic Virus (ACMV), East Africa Cassava Mosaic Virus (EACMV) and 

South Africa Cassava Mosaic Virus (SACMV) (Fauquet and Fargette 1990). The 

disease can be transmitted to healthy cassava plants by a whitefly vector (Bemisia 

tabaci) or through infected stem cuttings. In general, cassava plant affected by CMD 

has stunted growth with chlorotic mosaic symptoms in the leaf lamina. There are two 

types of mosaic namely ‗green mosaic‘ and ‗yellow mosaic‘ where the latter is more 

severe and easily identified than the former. Although both exhibit mottling of the 

leaves, severe chlorosis in the case of yellow mosaic often causes leaf tissue damage 

and leaf falling, which then leads to plant stunting due to reduced photosynthetic 

activity. Nevertheless, CMD is not characterised by stem or root symptoms though 

reduction in yield is common. The overall loss caused by CMD was estimated to be 19 

million tonnes costing 1.9-2.7 billion dollars annually (Legg and Fauquet, 2004). 

Another virus-related disease detrimental to cassava is cassava brown streak disease 

(CBSD). The causal agents of CBSD are Ipomovirus from the Potyviridae family and 

the Ugandan Cassava Brown Streak Virus (UCBSV) which recently claimed to be a 

distinct virus species (Mbanzibwa et al., 2011). CBSD mainly occurs in the East African 

countries like Tanzania and Mozambique. It has caused substantial yield losses, yet is 

less studied because it is less widespread (Hillocks and Jennings, 2003). Unlike CMD, 

CBSD-affected plants exhibit lesion/streak of stem and necrosis of storage roots with 

little leaf intervenal chlorosis. Therefore, it is not easily detectable unless the storage 

roots are harvested or the brown streak on the stem becomes apparent. Moreover, 
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CBSD rarely causes growth distortion and the leaf symptoms only appear when it 

matures. Necrosis of the storage roots is characterised by formation of hard, yellow or 

brown rot surrounding xylem vessels fibre which render the roots unfit for consumption.  

Progress has been made in tackling the diseases to ensure production of the best 

quality cassava roots, including generating transgenic cassava with low susceptibilities 

to the diseases (Vanderschuren et al., 2007) but this does not guarantee delivery of the 

same quality roots. The healthiest cassava root, as harvested, is prone to a 

physiological disorder which affects its storability. It is known as post-harvest 

physiological deterioration (PPD).  

 

1.5.2 Post-harvest physiological deterioration (PPD) 

PPD is spoilage of storage roots characterised by browning of the parenchyma tissue 

and vascular streaking (Figure 1.4). Depending on cultivar, PPD can occur as early as 

24 hours after harvest rendering the roots unpalatable and unmarketable. Rapid 

occurrence of PPD presents a major constraint for commercialisation of cassava, 

especially as the distance and time between production and market is increasing due 

to the expansion cassava cultivation area and increased urbanisation (Beeching, 

2001). 

 

Figure 1.4 Discoloration of parenchyma tissue in cassava undergoing PPD. Cross 

section of (a) fresh cassava root and (b) deteriorated cassava root 72 hours after 

harvest. Roots were obtained from local supermarket. 

Early understanding of PPD relied upon observation of the conditions that prevent its 

occurrence. For example, PPD was suggested to be enzymatic in nature as treatment 

of roots with high temperature (53°C) prior to storage inactivated PPD, while 

refrigeration (0-5°C) inhibited the development of PPD (Averre, 1967). The role of 

oxygen was proposed based on the observation that storage roots left covered in 
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plastic bags deteriorated slower than those uncovered (Hirose and Data, 1984) 

because of lower concentrations of oxygen. Supporting this is the observation that PPD 

was delayed in roots immersed in water and that roots with an intact periderm were 

less discoloured than those that had been peeled (Marriott et al., 1978). 

PPD is a high energy-requiring process involving synthesis of proteins and enzymes. 

This was demonstrated when the application of protein synthesis inhibitor 

cycloheximide to wounded cassava tissue prevented the occurrence of PPD to a 

certain extent (Uritani et al., 1984). Correspondingly, a number of independent studies 

reported apparent increase in peroxidases, polyphenol oxidase, catalase, beta-1-3-

glucanase and pectin methyl esterase (Rickard and Gahan, 1983, Isamah et al., 2003, 

Owiti, 2009). Also observed was high activity of acid invertase catalysing sucrose 

breakdown and ATPase (Isamah, 2004, Uritani et al., 1984). 

The biochemical process of PPD is not fully understood but presumably is the 

consequence of cell damage due to wounding because the site damaged by wounding 

normally exhibits greater PPD symptom. Interestingly, although wounded tissue 

promotes the entry of pathogens and PPD often is followed by microbial spoilage, PPD 

itself is not pathological in nature. This is concluded based on the failure to isolate 

microbes from roots already showing PPD symptoms (Hirose et al., 1983) and inability 

to prevent PPD using fungicides and bactericides (Noon and Booth, 1977). Generally, 

spoilage by microbes is readily distinguishable from PPD, as the former is 

accompanied by decay and an unpleasant smell. Because PPD takes place before 

microbial spoilage it is also termed as primary deterioration while microbial spoilage is 

termed as secondary deterioration. 

Study of the biochemical and enzyme profiles of deteriorating root samples facilitates 

further understanding about PPD. Roots that had been harvested for 24 hours have an 

increased ethene concentration, which is a characteristic signal in transduction 

pathway leading from injury. Especially in the site where injury is introduced, the 

increase is remarkable (Hirose et al., 1984). Parallel to this, there is an increase in 

respiration (Marriott et al., 1978) and activity of the entry enzyme for formation of 

various stress metabolites in the phenylpropanoid pathway, phenylalanine ammonia 

lyase (PAL) (Uritani, 1999). Such responses are expected as they are the typical 

wound response in plants. Ethene is a phytohormone that is commonly released, it has 

diverse signalling functions including in wounding, while the increase of respiration 

could be a result of blockage of xylem vessels due to formation of phenolic compounds 

resulted from increased PAL activities (Yokotani et al., 2004). However, comparison of 
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metabolic changes of wounded cassava to sweet potato revealed some distinctive 

features of cassava deterioration. For example, although both root tissues showed 

noticeable increases in PAL, a lesser amount of polyphenols were measured in 

cassava than in sweet potato. Similarly, lignin (for wound sealing) did not adequately 

form in wounded cassava even though peroxidase which is involved in the formation of 

lignin had enhanced activity in both roots (Uritani, 1999, Rickard and Coursey, 1981). 

Due to the lack of wound repair PPD appears, at least in part, to be due to incomplete 

wound healing (Beeching et al., 1998). 

A striking feature of PPD is the accumulation of hydroxycoumarins, such as scopoletin, 

scopolin, esculetin and esculin, which are products of the phenylpropanoid pathway. 

Scopolin and esculin are the glycoside of scopoletin and esculetin, respectively. The 

importance of these compounds is suggested because they cannot be detected in 

fresh cassava roots but can be found in extremely high concentrations in deteriorated 

roots. Greater attention is drawn to scopoletin as it peaks within 24 hours after 

harvesting while others tend to accumulate later (Tanaka et al., 1983). Furthermore, 

exogenous application of scopoletin (1000 g/dm) to fresh root tissue, but not other 

hydroxycoumarins accelerates discoloration producing intense symptoms similar to 

naturally occurring PPD (Wheatley and Schwabe, 1985). Importantly, unlike other 

hydroxycoumarins, scopoletin accumulation is visually evident due to its ability to 

fluoresce under UV light, hence making it a useful PPD marker. Whilst the full 

biosynthetic pathway of scopoletin in cassava is not complete, the major steps have 

been determined (Bayoumi et al., 2008), also, homologous genes to those involved in 

Arabidopsis scopoletin biosynthesis have been identified in cassava. A project 

exploiting the pathway is currently in progress to elucidate the role of scopoletin in PPD 

(S. Liu, pers. comm.). 

Nevertheless, although wounding has been long recognised as the root cause for PPD, 

the early events following wounding that may explain the occurrence of PPD was only 

intensely studied in the recent years. There is accumulating evidence that implicates 

oxidative stress plays a major role in PPD. Upon wounding, reactive oxygen species 

form triggering an oxidative burst that leads to the subsequent reactions observed as 

PPD. 
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1.5.2.1 Reactive oxygen species 

ROS is the unavoidable product of normal metabolism generated mostly in 

photosynthetic components, mitochondria and peroxisomes. Triplet dioxygen, which is 

the ground state oxygen, can be converted to more reactive species such as singlet 

oxygen (1O2), superoxide (O2
-), hydrogen peroxide (H2O2) and hydroxyl free radicals 

(•OH).The chemically reactive oxygen known as reactive oxygen species or ROS 

generally are perceived as harmful to biological systems (Apel and Hirt, 2004).This can 

occur through either energy or electron transfer. 

1O2 is created in the chloroplast via photo-activation of chlorophyll that transfers its 

excitation energy to triplet dioxygen (Holt et al., 2005). It is short-lived but capable of 

transferring this energy to other significant biological molecules including the lipid 

bilayer in cell membranes and a number of amino acids (Davies, 2004) making it the 

main source for photo-oxidative damage in plant leaves (Triantaphylidès et al., 2008).  

 

 

Figure 1.5 Generation of reactive oxygen species (ROS) from dioxygen. Important 

ROS are highlighted. Figure adapted from Apel and Hirt (2004). 

O2
- is formed as a result of electron transfer rather than energy transfer. In green cells, 

it forms when triplet oxygen receives leaked electron from photosystem complexes 

during photosynthesis. Whereas, in most tissues, O2
- is formed when a small 

percentage of oxygen molecules entering the mitochondrial respiratory chain are 

converted to O2
- by NADPH dehydrogenase in the electron transport chain (ETC) 

(Navrot et al., 2007). Although it is regarded as precursor of ROS, the deleterious effect 

of O2
- is restricted to its production sites as it cannot permeate the cell membrane. 

Having an unpaired electron, O2
- is highly prone to pairing to metal-containing 

enzymes, which eventually destroys them. Also, this promotes protonation of 

polyunsaturated fatty acid, which then oxidises phospholipids.  
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O2
- can be dismutated spontaneously or by superoxide dismutase enzymes to form 

H2O2, which is also destructive to cell components. H2O2 is stable with a longer 

lifespan, and in cells it attacks thiol-containing compounds such as glutathione and 

protein cysteine residues (Zeida et al., 2012). Unlike O2
-, it has the ability to diffuse 

across biological membrane and travel to some distance. Therefore, it is not surprising 

that the enzymes that detoxify H2O2 are multi-compartmentalised (Moller et al., 2007). 

These enzymes are ascorbate peroxidase and catalase (discussed in Chapter 3). 

Through the Fenton reaction H2O2 can give rise to a more powerful oxidant, •OH. The 

effects of •OH are pervasive. It can effectively breakdown mitochondrial proteins, DNA, 

and lipids leading to cellular damage (Orrenius, 2007). Plant cell wall polysaccharides 

also are susceptible to •OH as it capable of oxidizing carbohydrates, polyols and 

sugars (Fry, 1998). 

 

1.5.2.2  Oxidative stress and PPD 

ROS is produced in response to physiological stimuli such as growth and development 

as well as biotic and abiotic stress like pathogen invasion and environmental 

fluctuations (Apel and Hirt, 2004). O2
- and H2O2 in particular, are important messengers 

in oxidative signalling of higher plant cells (Foyer and Noctor, 2005). Under normal 

physiological states, excess ROS is effectively inactivated to form harmless products 

keeping them at their basal concentration. However, when there is a serious imbalance 

between ROS production and inactivation, oxidative stress occurs causing the above-

mentioned damages (Wojtaszek, 1997). 

During PPD, accumulation of O2
- and H2O2 in vivo has been observed by staining in a 

range of cultivars with different susceptibility to PPD (Reilly, 2001). Shortly after 

harvest, O2
- was detected with accumulation at 15 minutes after wounding. The 

accumulation, though rapid, was temporary as O2
- could no longer be detected after 6-7 

hours in some cultivars or 10 hours in others. Intense staining was seen especially in 

the cell wall junctions of storage parenchyma and cambium than in other parts of the 

roots. Conversion of O2
- to H2O2 was confirmed as H2O2 tended to accumulate later with 

the highest abundance observed one day post-injury. Given that lipid peroxidation is a 

characteristic of PPD (Isamah et al., 2003) it is also possible that translocation of H2O2 

had occurred during this process as staining was strong both in the cortical 

parenchyma and xylem vessels of the storage parenchyma. 
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The relationship between ROS and PPD has been suggested in a number studies. 

Such localisation of H2O2, though slightly variable has been observed before. H2O2 has 

also been measured in roots undergoing PPD, showing high point in roots that had 

been harvested for 24 hours (Buschmann et al., 2000a). Indirect evidence supporting 

the involvement of H2O2 is available including increases of transcript levels of ascorbate 

peroxidase (APX) and catalase (CAT). Significant upregulation of these enzymes 

during PPD was confirmed by microarray data prepared from fresh and deteriorating 

cassava roots (Reilly et al., 2007). However, it is interesting that the superoxide 

dismutase (SOD) enzyme, which functions to quench O2
-, was not enhanced at any 

point during the process; thereby, supporting the hypothesis that the oxidative burst of 

O2
- is responsible for causing oxidative stress and initiating PPD (Reilly, 2001). The 

importance of oxidative stress in causing PPD is further supported as roots with 

enhanced beta carotene have been shown to exhibit less PPD symptoms, probably 

due its ability to scavenge ROS (Sanchez et al., 2006). Moreover, recently, 

simultaneous expression of SOD and CAT gene was proved to delay PPD (Xu et al., 

2013b). 

 

1.6 Inhibition of PPD 

About 20% of cassava production in Africa is lost to PPD (Nassar and Ortiz, 2010). 

Therefore, delaying PPD could make a significant contribution to both food security and 

the livelihoods of resource-poor farmers in that continent. 

1.6.1 Conventional methods 

Various methods have been practiced to prevent or reduces losses due to PPD. 

Generally they can be divided into pre-harvest and post-harvest methods. 

Due to its perishability, it is common that cassava is only harvested when needed. This 

in-ground storage method is the most practical pre-harvest method in small-scale 

production where there is low demand of soil utilisation and rare occurrence of pests 

and diseases. However, this method may reduce the quality of the roots as starch is 

lost through metabolism and the roots tend to become fibrous and woody. As PPD 

usually is more severe in the end close to the peduncle (distal) of the roots, it has been 

claimed harvesting cassava roots while keeping 2-3 cm stem attached reduces the 

occurrence of PPD (Diop and Calverley, 1998). Removing green parts of the plant or 

pruning before harvest is another effective pre-harvest method to prevent PPD. It was 
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shown in numerous field works that cassava pruned between 20-30 days before 

harvest minimised the occurrence of PPD for up to 80%. However, counteracting to this 

is reduction of starch and dry matter content as well as changes in organoleptic 

properties of the roots (Kato et al., 1991, Data et al., 1984, van Oirschot et al., 2000). 

While these methods are effective to reduce PPD, it is rare for farmers to invest the 

care and effort necessary to ensure that the roots are harvested undamaged on such a 

low value commodity. 

The traditional post-harvest methods also lengthen the storage time of the cassava 

roots and minimise the occurrence of PPD. For example, re-burying harvested roots in 

soil pit enable the roots to last for up to a few months. Large scale underground 

storage in trench silos which allow storage hundreds of kg cassava roots at a time is 

claimed as the most successful (Rees, 2012). Alternatively, as widely practiced in West 

Africa and India, cassava roots are stored in heaps on the ground and they are kept 

moist by regular watering. This method of storage takes advantage of curing that 

successfully delays the onset of deterioration in other root crops by promoting wound 

healing (Booth, 1976). Limiting oxygen by loam paste coating also is effective to delay 

PPD by 4-6 days but it is possibly most suitable for small-scale production (Westby, 

2002). More modern methods such as freezing, wax-dipping and vacuum-packing are 

used for roots intended for exports to America and European countries. While these 

prolong the shelf-life for months or more they are considered too expensive for 

domestic markets. 

 

1.6.2 Breeding and biotechnology approach 

Cassava breeding is relatively new when compared to other food crops. It only begins 

in the 1970s after the establishment International Centre for Tropical Agriculture (CIAT) 

and International Institute of Tropical Agriculture (IITA). In general, breeding of cassava 

is challenging because of its low fertility. Cassava is monoecious with staminate 

flowers that only open two weeks after openings of pistillate flowers, thus, formation of 

seeds rarely occurs (Wenham, 1995). In average, only 0.6 viable seed per pollination is 

produced so obtaining sufficient numbers of seeds for breeding experiments is 

laborious. While this largely prevents selfing it encourages outcrossing, hence cassava 

is highly heterozygous. Due to the high heterozygosity, backcrossing are time-

consuming and complex making selection of particular elite trait and hybridisation to 

obtain superior clones become difficult (Ceballos et al., 2004). Generally, cultivars with 

reduced PPD responses have low dry matter content, which is an undesirable 

agronomic trait (Salcedo and Siritunga, 2011). Separation of these linked traits may be 
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possible, but it is likely to be a tedious and lengthy process. Further limits the use of 

conventional breeding in resolving PPD is lack of genetic variability for PPD tolerance 

(Ceballos et al., 2004). 

In general, the main advantage of genetic engineering or biotechnology over classic 

plant breeding is that it targets a specific trait without altering others. It is also versatile 

and the outcome is relatively easier to predict (Ulukan, 2009). The success of 

exploiting biotechnology relies on modification of the right target genes, either by 

suppression or overexpression of the genes. Success has been achieved in creating 

CMD-resistant transgenic cassava using antisense RNA technology (Zhang et al., 

2005). Additionally, the knowledge and genes obtained and identified through 

molecular approaches can facilitate and accelerate breeding strategies through marker 

assisted selection. For example, gene expression and proteomics analysis can be 

exploited to obtain reliable molecular markers for PPD (Reilly et al., 2007, Owiti, 2009). 

With the completion of cassava genome sequencing (Cassava Genome Project, 

www.phytozome.net/cassava) and the ongoing annotation of the sequences, 

biotechnology is seen as the most appropriate tool to create PPD-tolerant cassava 

clones. The genes encoding enzymes and intermediates in biochemical pathways 

associated with PPD can be manipulated for the purpose of delaying PPD. For 

example, an RNAi experiment using the homologue of the key gene involved in 

Arabidopsis scopoletin biosynthesis, a member of the 2-oxoglutarate-dependent 

dioxygenase (2OGD) family, is currently explored. A range of approaches have 

identified genes that are differentially expressed during PPD, which include those 

involved in ROS turnover, stress response, metabolism of carbohydrate and protein 

synthesis (Reilly et al., 2007, Owiti, 2009). These findings are invaluable as not only do 

they increase our understanding of PPD but can provide target genes whose 

manipulation may ultimately prevent it. 

 

 

 

 

 

 

http://www.phytozome.net/cassava
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1.7 Research strategy 

The evidence reviewed about implicates oxidative stress as being at the heart of the 

PPD response in cassava. To investigate this, transformed cassava plants designed to 

have an enhanced anti-oxidant status through enzymatic and non-enzymatic 

approaches were created. These plants which contain one of the target genes 

encoding ROS-scavenging enzyme or the biosynthesis of anti-oxidant molecules are 

predicted to have enhanced anti-oxidant capacity in the roots and considerable 

tolerance to PPD because they are driven by a root-specific promoter. The aim of this 

research was to confirm if PPD is a ROS-mediated process through overexpression of 

these genes. To achieve this, several objectives were set out. 

1. Preliminarily characterise the genotype and the phenotype of the transformed plants 

in order to select single-insert independent lines for production of storage root suitable 

for PPD assay. 

2. Critically evaluate the existing methods to assay PPD particularly for storage roots 

grown in the greenhouse and to score the roots based on the PPD symptoms that 

develop. 

 3. Determine the expression pattern of the target genes by patatin promoter by 

examining the expression pattern of transgenic cassava lines carrying the reporter 

expression plasmid.  

4. Assess PPD and changes of biochemical activities in selected single-insert 

independent lines. 
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CHAPTER 2 

 

Materials & Method 

 

2.1 Materials 

 

2.1.1 Plant material 

The transgenic cassava lines were made by Bull (2011). They consist of seven 

transgenic groups. The transgenic lines according to group are as follow: 

Pat:SOD;A1, A2, B1- B3, C1,C2, C3, C4, C6, C7, C9, C10, D1, D3 -D10, D12, D13 

Pat:APX;A1-A15, B1-B7, C1-C5, D1-D3, E1 

Pat:CAT; A1-A10, B1-B10, C1-C5, C7, C9, C10, D1-D13 

Pat:GCS; A1-A8, B1-B5, C1-C17 

Pat:GAR;A1-A15, B5-B8, B16-B33, C1-C12 

Pat:Gus; A1-A20, B1-B6 

Pat(-):Gus; A1-A37 

 

Wild type (WT) used in this thesis refers to cassava cultivar TMS60444. Wild type 

Arabidopsis (Col-0) and transgenic Arabidopsis StPAT::GusP 7-1 were provided by 

Page (2009). 

 

2.1.2 Software and programs 

Primers were designed using Primer3 online software (http://primer3.ut.ee/). PPD 

scoring was done using PPD Symptom Score Software developed by the cassava 

team at Swiss Federal Institute of Technology (ETH, Zurich) (Vanderschuren et al., 

2014). Measurement of root lengths from photographs employed ImageJ software 

(Schneider et al., 2012). Analysis of sequenced DNA fragment was performed using 

Geneious software (Drummond et al., 2009). Identification cis-regulatory motifs were 

done by submitting promoter sequence to PLACE (http://www.dna.affrc.go.jp/PLACE/) 

and PlantCARE (http://bioinformatics.psb.ugent.be/webtools/PlantCARE/html/) online 

database. All statistical analysis was carried out using PASW Statistics18. qPCR data 

was collected using LightCycler 3.5.3 software. 

 

 

 

 

http://primer3.ut.ee/
http://www.dna.affrc.go.jp/PLACE/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/


19 
 

2.2 Methods - Management of plant materials 

2.2.1 Propagation of cassava plants in vitro 

Stems from parent plantlets were cut using sterile blade and tweezers. Bigger leaves 

were removed to avoid transpiration and stems were grown on fresh cassava basic 

media (CBM). The plantlets were kept in a controlled environment chamber at 26–

28°C, under relative humidity 40-80% with a 14-hour photoperiod. Propagation was 

done every six months or when necessary. 

 

2.2.2 Growing cassava plants in greenhouse 

One month old cassava plantlets were carefully cleaned with warm, running tap water 

to remove adhering soil. The plantlets were grown in 9 cm x 9 cm growing pots 

containing M2 Levington compost and kept in the same growth room used to maintain 

the in vitro plantlets for at least four weeks for acclimatisation. After that, the plants 

were transferred into a greenhouse with a temperature 26-30°C under relative humidity 

40-80% for six months or until required. 

 

2.2.3 Harvesting of cassava 

The height of the plants was taken by measuring the length of the stem from the border 

of the container to the top of the main plant stem. The plants were then removed from 

compost and the storage roots were cleaned under warm running tap water and dried. 

The roots were cut from the main stem and weighed immediately. 

 

2.2.4 Arabidopsis seeds sterilisation 

Arabidopsis seeds were immersed in 30% bleach and 0.1% Triton X-100 for 5 to 10 

mins and thoroughly rinsed with sterile water. The seeds were stratified at 4°C for 1 or 

2 days. 

 

2.2.5 Seed germination (in vitro) 

Stratified Arabidopsis seed was germinated in Petri dish containing Filter paper wetted 

with sterile water until 5 days after growth (DAG) under a 14-hour photoperiod at room 

temperature. 
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2.3 Methods - DNA manipulations 

2.3.1 Cassava leaf genomic DNA extraction 

Three leaves from an in vitro plantlet were crushed into a 1.5 ml tube containing 2-3 g 1 

mm borosilicate glass beads and quickly frozen in liquid nitrogen. The tissue was 

homogenised to a fine powder using triturator (Silamat ® S5) for 6 seconds and 1 ml 

extraction buffer was added to the homogenised tissue. To ensure thorough mixing the 

tube was placed in a shaker at room temperature for 15 mins. The tube was 

centrifuged in a bench-top centrifuge at 16,000 x g, 4°C for 15 mins. 700 μl of the 

supernatant was transferred to a fresh 2.0 ml tube. Another 500 μl extraction buffer 

was added to the previously extracted tissue and centrifuged again at 16,000 x g, 4°C 

for 10 mins. 300 μl of the supernatant was transferred to the tube containing 700 μl 

supernatant to make up 1000 μl volume and 5 μl of a 20 mg/ml RNAse A was added to 

get a final concentration 20 μg/ml. The tube was incubated at 37°C for at least 30 mins 

to 1 hour. 1 ml phenol (pH 8.0) was added and the mixture was vortexed and 

centrifuged at 16,000 x g for 5 mins. The resulting upper phase was placed in a new 2 

ml tube containing 1 ml phenol:chloroform (1:1) and extracted by vortexing and 

centrifuge at16,000 x g for 5 mins. The upper phase was removed and placed in a new 

2 ml tube containing 1 ml phenol:chloroform:isoamyl (25:24:1) and extracted by 

vortexing and centrifuge at 16,000 x g for 5 mins. Again, the upper phase was removed 

and placed in a new 2 ml tube containing 1 ml phenol:chloroform:isoamyl (25:24:1) and 

extracted by vortexing and centrifuged at 16,000 x g for 5 mins. The upper phase was 

removed and placed in a new 2 ml tube containing ¼ volume of 10 M ammonium 

acetate. Two volumes of cold (-20°C) absolute ethanol was added and the tube was 

inverted several times. The tube was incubated at -20°C for 30 mins to allow 

precipitation. It was then centrifuged at 16,000 x g 4°C for 25 mins in a bench-op 

centrifuge. The pellet was dissolved in 750 μl miliQ water and added with 750 μl 

phenol:chloroform:isoamyl (25:24:1). The solution was mixed by shaking and centrifuge 

at 16,000 x g for 5 mins. The upper phase was removed and placed in a new 1.5 ml 

tube containing ¼ volume of 10 M ammonium acetate. Two volumes of cold (-20°C) 

absolute ethanol was added and the tube was inverted several times. The tube was 

incubated at room temperature for 5 mins to allow a second precipitation. The mixture 

was centrifuged at 16,000 x g, 4°C for 15 mins. The pellet was washed with room 

temperature 70% ethanol by inverting the tubes several times and the tube was 

centrifuged at 16,000 x g for 10 mins at room temperature. Finally the pellet was dried 

and dissolved in 50 μl sterile water. The DNA was stored at -20°C.  

 



21 
 

2.3.2 Quantification of DNA 

DNA concentration was determined using a spectrophotometer by taking reading at 

wavelength of 260 nm. 1 O.D. at 260 nm is equal to 50 ng/ul double-stranded DNA. 

 

2.3.3 Polymerase chain reaction (PCR) for target sequence amplification 

A total volume of 20 µl solution mix contains approximately 100 ng DNA template, 1X 

Thermopol buffer (New England Biolabs), 0.5 µM forward and reverse primers, 200 µM 

dNTPs and 1U Taq polymerase was prepared in a thin-walled PCR tube. Cycling was 

performed in a Peltier Thermal Cycler PTC-200 by using the following program: 3 mins 

at 94°C, followed by 34 cycles of 1 min at 94°C, variable min at stated annealing 

temperature (Table 2.1), and 1 min at 72°C. The program finished with an additional 10 

mins extension step at 72°C. 
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2.3.4 Primers 

Primers were designed using Primer3 (Untergasser et al., 2012) and are as listed in 

Table 2.1. The conditions of PCR are as in Table 2.2. 

 

Table 2.1 Primers used in this thesis 

Name Sequence (5‘→3‘) 
Tm 

(C°) 

HygF CCA CTA TCG GCG AGT ACT TCT ACA CAG C 61.6 

HygR GCC TGA ACT CAC CGC GAC GTC TGT 65.1 

Hyg II F TCT CGA TGA GCT GAT GCT TTG 55.0 

Hyg II R AGT ACT TCT ACA CAG CCA TCG 54.0 

DESTSeqF1 CAT CAC TAA TGA CAG TTG CGG TGC 58.5 

DESTSeqR1 GCACATACAAATGGACGAACGG  55.0 

CATR1 GAA AGC TGG GTC TCA TAT ATT TGG CCT CAC G 61.9 

SODR1 AGA AAG CTG GGT CCT ATC CTT GCA AAC CA 63.2 

APXR1 AAG CTG GGT GTT ACG CCT CAG CAA ATC C 64.4 

GCSR1 GAA AGC TGG GTG TTA GTA CAG CAG CTC TTC 61.0 

GARR1 GAA AGC TGG GTC TCA TAA TTC TTC GTC AAC TTC C 61.0 

18sFor ATGATAACTCGACGGATCGC  52.0 

18sRev CTTGGATGTGGTAGCCGT  51.6 

Pat-PDESTF TTGTAGTTAATGCGTATTAGTTTTAGC  50.9 

Pat-PDESTR CAAGCATGGTATATATAGGCACG  51.2 

PatSeqF TGTGGAATTGTGAGCGGATA  51.1 

PatSeqR CAGTCCTTTCCCGTAGTCCA  52.8 

GusIntF TGGGAACCACTGAACACGTA  53.0 

GusIntR CCGAACGGCTCTTCATAGAC  52.5 

TransgeneR GTCACCAATTCACACATCACCAC  54.4 

CATintR CAG CAA ACC AGT TAT CGA TGT TCC  54.6 

GusFWD CAACAACTCGCTGCGTGATGGC  59.5 

GusIntR2 CCGAACGGCTCTTCATAGAC  52.5 

GCStf AAC AGG AGT TACG CCT GCG GA  58.1 

SODtf GAC GACA TTC GTC ATG CTG GTG ATC T  59.2 

SODtr GTG AAC AAC GAC TGC CCT TCC TAC  58.0 

CATtf1 TCGCAGTATCTGGGTCTCTTACTG  55.5 

CATtr TGGCCTCACGTTGAGACGAGAAG  58.6 

 



23 
 

Table 2.2 Primer combinations and amplification conditions in PCR 

Name Template 
PCR product 
size (bp) 

Extension 
time (s) 

Annealing 
temperature 
(C°) 

HygF 
HygR 

pDESTs 1000 60 61.0  

Hyg II F 
Hyg II R 

pCAMB 400 30 55.0 

DESTSeqF1 
CATR? 

pDEST:CAT 1680 60 60.0 

DESTSeqF1 
SODR1 

pDEST:SOD 661 60 60.0 

DESTSeqF1 
APXR1 

pDEST:APX 952 60 54.0 

DESTSeqF1 
GCSR1 

pDEST:GCS 1761 90 60.0 

DESTSeqF1 
GARR1 

pDEST:GAR 1152 60 60.0 

PatSeqF 
PatSeqR 

pDEST: 
GusPlus 

1248 60 55.0 

DESTSeqF1 
GusIntR 

pDEST: 
GusPlus 

1285 60 55.0 

DESTSeqF1 
DESTSeqR1 

pDEST: 
GusPlus 

2485 120 58.0 

GusIntF 
TransgeneR 

pDEST: 
GusPlus 

1793 90 54.0 

PatSeqF 
PatPDESTR 

pDEST: 
GusPlus 

1149 60 55.0 

DESTSeqF1 
TransgeneR 

pDEST: 
GusPlus 

2087 120 58.0 

DESTSeqF1 
CATIntR 

pDEST:CAT 1141 60 60.0 

CATtf1 
CATtr 

pDEST:CAT/ 
gDNA 

82/179 30 58.0 

PatSeqF 
GusIntR2 

pDEST: 
GusPlus(-Pat) 

1207 60 53.0 

GusFWD 
TransgeneR 

pDEST: 
GusPlus(-Pat) 

1530 90 58.0 
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GCStf 
TransgeneR 

pDEST:GCS 138 30 60.0 

SODtf 
SODtr 

pDEST:SOD/ 
gDNA 

135/325 30 60.0 

 

 

2.3.5 Agarose gel electrophoresis  

To estimate the size of PCR product and total RNA, they were run on agarose gels. 

The concentration of the gel varied between 0.8%-1.5%, depending on the size of 

nucleic acid sample. Agarose gel was dissolved in 1X TAE buffer and melted in a 

microwave oven. The gel was allowed to slightly cool before ethidium bromide was 

added at a final concentration 0.5 µg/ml. It was then poured into a gel cast attached 

with an appropriate comb to make a gel slab. The solidified gel was covered with 1X 

TAE buffer which serves as the running buffer. Samples were diluted (if necessary) 

with MilliQ water and mixed with loading buffer in 1.0 ml tube. Either 1 kb or 100 bp 

DNA markers were loaded in the first well and this was followed by samples. 

Electrophoresis was run at a voltage between 85-90 V for 1-2 hours. The gel was 

visualised under ultraviolet light and the image was documented. 

 

2.3.6 Nucleotide sequencing of DNA 

DNA sequencing was performed by Eurofin Genomics (UK). 

 

2.3.7 Southern Hybridisation 

2.3.7.1  Preparation of DIG-labelled probe for hybridisation 

A total volume of 50 µl solution mix contains 50 ng plasmid pCAMBIA 1305.1, 1X 

Thermopol buffer (New England Biolabs), 0.5 µM Hyg II F and Hyg II R primers, 1X 

DIG labelled-dNTPs and 1U Taq polymerase was prepared in a thin-walled PCR tube. 

Cycling was performed in a Peltier Thermal Cycler PTC-200 by using the following 

program: 3 mins at 94°C, followed by 34 cycles of 1 min at 94°C, 1 min at 55°C and 1 

min at 72°C. The program finished with an additional 10 mins extension step at 

72°C.The PCR product was purified from the agarose gel with QIAquick Gel Extraction 

Kit (Qiagen) according to the steps recommended by the manufacturer. 
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2.3.7.2  Restriction digestion of genomic DNA 

The components and concentrations used are as shown in Table 2.3 and digestion was 

carried out overnight at 37°C. 

Table 2.3: Contents of a genomic DNA restriction digestion reaction 

Reaction component Volume (µl) Final concentration 
/Amount 

DNA 70 ~20 µg 

Hind III buffer 20 1x 

0.1 M spermidine 4 2 mM 

Hind III (20,000 U/ml)  4 80 U 

Sterile water 101.8 - 

RNase (20mg/ml) 0.2 0.02 mg/ml 

Total 200 - 

 

2.3.7.3  Precipitation of digested genomic DNA 

The digested genomic DNA was precipitated by adding 1/4 volumes of ammonium 

acetate and 2.5 volumes of cold ethanol at -20°C for 2-3 hours. The mixture was 

centrifuged at 16,000 g to obtain the pellet. The pellet was allowed to dry and 

solubilised in 25 µl sterile water. 

 

2.3.7.4  Electrophoresis of digested DNA 

Loading dye was added to the DNA at the final concentration of 3X to facilitate 

visualisation in a long run. Electrophoresis was carried out on 0.7% agarose gel 

(without ethidium bromide) in a fresh TAE buffer at 80 V for 10 mins. Then the voltage 

was reduced to 20 V and the electrophoresis was run for 24 hours. A DIG-labelled, 

DNA molecular weight Marker III, 0.12-21.2 kbp (Roche) was used as DNA marker. 1.5 

µl DNA ladder was mixed with 18.5 µl sterile distilled water and 6 µl 5X loading dye. 

 

2.3.7.5  Southern blot preparation 

The gel was placed in a clean tray containing sufficient amount of 0.25 N HCl to 

immerse the gel and shaken for 30 mins. In the same tank, the gel was rinsed with 

miliQ water and then immersed in Denaturing solution with shaking for 30 mins. In the 

meantime, the blot apparatus was set up. A thick glass plate was placed on a clean 

tank half-filled with 20X SSC (running buffer) and 2 sheets of Whatmann 3 mm paper 

soaked in 20X SSC were placed over the glass plate with both ends of the sheets 

immersed in the 20X SSC. Any air bubbles were removed by carefully rolling the 

sheets with a clean glass rod. The gel was placed inverted on the wet paper and a 
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nylon membrane (N+ Hybond) of the same size as the gel was placed on top. Two 

pieces of wet Whatmann 3mm paper of the size of the gel was placed above the 

membrane and each time and air bubbles were removed by gentle rolling. A stack of 

tissue paper was placed onto the paper and a weigh (~500 g) was added on top to 

maximize the contact between the membrane and the gel. A piece of cling film was 

used to wrap around the gel extending to the tray to avoid evaporation. This was 

allowed to take place overnight. 

 

2.3.7.6  DNA fixation to nylon membrane 

The Nylon membrane was placed on a Whatmann paper and the DNA was allowed to 

permanently link to the membrane by a UV linker.  

 

2.3.7.7  Digoxigenin (DIG) hybridisation 

The membrane was placed in a long glass cylinder that had been previously rinsed 

with distilled water. 10 ml DIG Easy Hyb (Roche) was added and the cylinder was 

placed in hybridisation chamber set to 43°C for 1 hour for pre-hybridisation. In the 

mean time 10 ml DIG Easy Hyb was pre-warmed in the chamber. 10 μl (~500ng) 

hygromycin probe was diluted in 40 μl and heat-denatured at 99°C for 10 mins and 

added to the pre-warmed hybridisation solution. The cylinder was emptied and the 

solution replaced with the probe and hybridisation was allowed to take place in the 

chamber overnight. 

 

2.3.7.8  Washing off unbound DNA 

The membrane was taken out and laid in a tray containing W1 and gently shaken for 5 

mins at room temperature. This step was repeated. The membrane was moved into a 

new tray containing 200 ml pre-warmed W2 (70°C) and shaken in a water bath set to 

temperature 70°C for 15 mins. The membrane was then washed with W3 at the same 

condition as W2 and with WB at room temperature for 3 mins. The tray was emptied 

and replaced with B2 and shaken at room temperature for 30 mins. 

 

2.3.7.9  Antibody and CDP star binding 

B2 was discarded and replaced with antibody solution (6 μl antibody in 15 ml B2) 

shaken for 30 mins. The membrane was then washed in WB solution for 15 mins three 

times, each time in a new tray and fresh WB. Final washing step was carried out in WB 

for at least 30 mins. The membrane was shaken in 145 ml B3 for 5 mins and the B3 

was discarded. The membrane was wetted with enzyme solution (50 μl CDP Star in 5 
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ml B3) by repetitive pipetting for at least 5 mins. All steps were performed at room 

temperature. 

 

2.3.7.10 Visualisation 

The membrane was placed on Whatmann paper cut to the size of film cassette to 

remove excess buffer and the membrane was covered with a piece of cling paper. In a 

dark room, apiece of film (Kodak Biomax Light) was placed onto the membrane and the 

cassette was incubated at 37°C overnight. The image was developed in an image 

developer in the darkroom. 

 

2.4 Methods - RNA manipulations 

 

2.4.1 Cassava root RNA extraction 

The extraction method was adopted from protocol of pine tree RNA extraction method 

(Chang et al., 1993). Root sample (without periderm cortex) was grated using a 

domestic cheese grater and ground into a fine powder in liquid nitrogen in a mortar and 

pestle. Aliquots of liquid nitrogen were continuously added during grinding to prevent 

thawing and consequent degradation by RNases in the sample. The powder was kept 

in 15 ml Falcon tube and stored in -80°C to minimize RNA degradation. Prior to use 2% 

beta-mercaptoethanol was added to extraction buffer and heated to 50°C. A 0.5 g 

sample was weighed and put in a 15 ml Falcon tube and 5 ml extraction buffer mixed 

with beta-mercaptoethanol was quickly added and further heated at 50°C for 10-15 

mins. Once in a while the mixture was homogenized by inverting the tube to allow 

maximum extraction. After 15 mins, 5 ml chilled chloroform: isoamyl alcohol (24:1) was 

added, mixed and centrifuged at 16,000 x g in a bench-top centrifuge at 4°C for 10 

mins. Supernatant from the upper layer was transferred into a new tube, to which was 

added an equal volume of chloroform: isoamyl alcohol (24:1) and centrifuged again at 

16,000 x g at 4°C for 10 mins. The supernatant from the upper layer of this second 

centrifugation was transferred into new tubes and an equal volume of isopropanol 

added to it. LiCl solution was then added to 2 M final concentration before the solution 

was incubated overnight at 4°C. It was then centrifuged at 16,000 x g, 4°C for 30 mins 

and supernatant was decanted at this stage. The pellet was re-suspended in 1 ml 

Sterile water and 250 µl 10 M LiCl solution was added, this was incubated on ice for 2-

3 hours and centrifuged at 16,000 x g at 4°C to obtain a pellet. The resulted pellet was 

re-suspended with 250 µl sterile water, 25 µl 3M sodium acetate (pH 5.2) and 1 ml 

absolute molecular grade ethanol, and allowed to incubate at -20°C for 2 to 3 hours. 

The mixture was centrifuged again at 16,000 x g at 4°C for 30 mins. The supernatant 
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was decanted and the final pellet was solubilised with 50 μl sterile water and stored at -

80°C for future use. 

 

2.4.2 DNase treatment of RNA 

The total RNA was treated with DNase to remove contaminating DNA in the sample 

using Ambion® TURBO DNA-free™ DNase Treatment Kit. The kit consists of 10X 

TURBO DNase buffer and TURBO DNase (2 U). Samples with more than 200 μg 

nucleic acid per ml concentration were diluted to 10 μg nucleic acid per 50 μL. 0.1 

volume 10X TURBO DNase Buffer and 1 μL TURBO DNase were added to the RNA 

and mixed gently. This was followed by incubation at 37°C for 30 mins. Finally, 1.5 µl 

EDTA (0.5 M, pH 8) was added and the solution was heated at 75°C for 10 mins to 

deactivate the DNase. 

 

2.4.3 RNA quantification 

Experion™ RNA StdSens Analysis Kit (Biorad) was used to measure total RNA. This 

system consists of Experion electrophoresis station, Experion priming station and 

Experion vortex station, RNA chip and electrophoresis reagents. The protocol used 

was as recommended by manufacturer. 

 

2.4.4 cDNA synthesis 

cDNA was synthesised using SuperScript™III First-Strand Synthesis SuperMix 

(Invitrogen), oligo(dT) and 1 μg of RNA and as suggested by the manufacturer. cDNA 

was stored at -20°C until used. 

 

2.4.5 Quantitative real-time PCR (qPCR) 

qPCR was performed using LightCycler® System (Roche Diagnostics) based on the 

SYBR green detection method. A total volume of 25 µl solution mix contains cDNA 

template, 1X Takara SYBR® Premix ExTaq, 0.2 µM forward and reverse primers and 

sterile distilled water was prepared in a 0.2 ml tube. The mix was prepared on ice 

before it was transferred into a capillary tube. The tube was centrifuged at 400 g for 5 s 

and quickly placed in the LightCycler® machine. Cycling was performed by using the 

following program: 30 s at 95°C, followed by 39 cycles of 20 s at 94°C, 20 s at 

annealing temperature, and 20 s at 72°C. This was followed by a melting cycle at 95°C 

for 15 s and finished by a cooling cycle at 40°C for 2 mins.  
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2.4.6 Quantification of transcriptional levels using qPCR 

The transcriptional level of a transgene was calculated according to the Pfaffl method 

which measures fold increase in the transgene as a ratio to fold increase in the 

reference gene (Pfaffl, 2001). The equation is shown below 

 

Ratio = (AEtrans)∆CT trans (control-treated) 

 (AEref) ∆CT ref(control-treated) 

 

AE = amplification efficiency 

trans = transgene 

ref = reference gene 

CT = threshold value 

 

 

2.5  Methods- Biochemical assays 

2.5.1 Total protein extraction 1 

Cassava root tissue was ground into fine powder in liquid nitrogen using a pre-cooled 

mortar and pestle. 1 ml of 50 mM MES/KOH buffer (pH 6.0), containing 40 mM KCl, 2 

mM CaCl2 was added to 0.25 g powder in a 1.5 ml tube and the tube was centrifuged 

twice at 16,000 x g in a bench-top centrifuge at 4°C for 10 mins. Supernatant/protein 

extract was stored at -20°C until further use. 

 

2.5.2 Total protein extraction 2 

Total protein was extracted from cassava tissue with 50 mM HEPES buffer containing 

2 mM metabisulfite. 1 ml of cold extraction buffer was added to 0.1 g frozen plant tissue 

and vortexed to mix. The slurry was centrifuged at 10,000 g at 4°C for 30 mins and 

supernatant was collected. 

 

2.5.3 Bradford protein assay 

5 µl protein extract was added to 250 µl Bradford Reagent (Sigma-Aldrich) in a 

microplate well and incubated at room temperature in the dark for 30 mins. It was then 

read at 595 nm against an assay blank containing buffer and Bradford reagent. The 

concentration of the protein extract was converted to mg/ml by comparing it to a BSA 

standard curve. 
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2.5.4 Ascorbate peroxidase (APX) assay 

APX activity was determined according to the method of Murshed et al. (2008) which 

measured the rate of ascorbate decomposition. The reaction buffer (185 μl/well) 

consisting of 50 mM potassium phosphate buffer (pH 7.0) and 0.25 mM ascorbic acid 

was dispensed into all microplate wells. Then 10 μl of protein extract or extraction 

buffer was placed in each microplate well. The microplate was shaken for 10 s by 

programming the microplate reader and the absorbance of the reaction was measured 

at 290 nm for 3 mins. The APX reaction was started by the addition of 5 μl of 200 mM 

H2O2 (5 mM) to all wells using an 8-channel pipette. The microplate was shaken again 

on the plate reader and activity was determined by measuring the decrease in the 

reaction rate at 290 nm for 5 mins. Specific activity was calculated using the 

2.8 mM−1 cm−1 extinction coefficient. A correction was carried out for the nonspecific 

oxidation of ascorbate in the sample (first reading) and by H2O2 in the absence of the 

enzyme sample (blank). Total protein in this assay was extracted using Total protein 

extraction 1 method. 

 

2.5.5 Superoxide dismutase (SOD) assay 

Since the assay was intended to specifically measure CuZnSOD activity, 400 µl ice-

cold ethanol/chloroform 62.5/37.5 (v/v) was added to 250 µl total protein and vortexed 

for 30 s. The mixture was centrifuged at 3000 g at 4°C for 5 mins and the upper 

aqueous layer was collected. CuZnSOD enzyme activity was determined according to 

the method of Beauchamp & Fridovich (1971) which measured the photoreduction of 

nitro blue tetrazolium (NBT) at 560 nm. 10 μl protein extract, 164 μl assay buffer (50 

mM potassium phosphate buffer pH 7.8, 100 μM EDTA and 13 mM methionine), 10 μl 

1.5 mM NBT and 16 μl 0.044 mg/ml riboflavin was mixed in a microplate well. The 

microplate was placed in a light box fitted with a 15 W fluorescent bulb (Prolite) for 5 

mins, then in the dark for 5 mins and the reading was taken. The assay was repeated 

with pure enzyme with known amounts of SOD to generate a standard curve. Total 

protein in this assay was extracted using Total protein extraction 2 method. 

 

2.5.6 Catalase assay 

Catalase assay was determined according to the method described by Li and 

Schellhorn (2007) based on the H2O2 decomposition at 240 nm (Beers and Sizer, 

1952). 20 μl enzyme extract was mixed with 230 μl H2O2 in a microplate well and 

immediately scanned in a microplate reader at 240 nm for 8 mins at 25°C. Total protein 

in this assay was extracted using Total protein extraction 1 method. 
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2.5.7 Gus staining assay 

The Gus staining assay was performed by incubating plant tissue in Gus buffer at 37°C 

for one hour. The plant tissue was rinsed with distilled water before being de-stained in 

70% alcohol.  

 

2.5.8 Oxygen Radical Absorbance Capacity (ORAC) assay 

20 mg frozen root tissues were extracted in 2 ml 50% acetone in a microfuge tube 

containing glass beads. The tube was vortexed for 30 s and centrifuged for 3 mins at 

4°C. The supernatant was diluted to 100x dilutions in 50 mM potassium phosphate 

buffer (pH 7). 25 µl of diluted supernatant was added to a microplate well containing 

150 µl 0.08 µM fluorescein. The plate was covered and incubated at 37°C for 10 mins 

before adding 25 µl 2,2′-Azobis (2-methylpropionamidine) dihydrochloride (AAPH) to 

the well. As AAPH was added, the fluorescence kinetic was immediately read with an 

excitation wavelength of 485 nm and an emission wavelength of 530 nm for 1 hour at 

37°C. A standard curve was generated by replacing the tissue sample with 6-Hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) with a concentration range of 2.5 

– 20 µM. The oxygen radical absorbance was calculated based on the area under 

curve (AUC) of the standards and samples against blanks. 

 

2.5.9 Superoxide in situ detection 

Superoxide production was determined by NBT staining, performed using the method 

described by Reilly (2001). Root tissue sections of 1 mm thickness were vacuum 

infiltrated in 0.05% NBT dissolved in 10 ml 10 mM potassium phosphate pH 7.8 buffer 

for 2 mins before incubating at room temperature for 15 mins under lights. The reaction 

was stopped with 4 mg/ml chloral hydrate and the root tissue immediately 

photographed. A control for each root was prepared by vacuum infiltration with buffer 

only. Leaf samples were treated with the same steps except the chlorophyll was 

removed with 90% ethanol at the end. 

 

2.5.10 Determination of superoxide concentration 

Cassava root tissue that was used for NBT staining was ground with 5 ml 2 M KOH-

DMSO using a mortar and pestle. The mixture was centrifuged at 16,000 g for 10 mins 

at 16 °C and the resultant supernatant was measured at 630 nm against a KOH-DMSO 

blank. The level of superoxide was determined from a standard curve prepared with 

known amounts of NBT. 
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2.5.11 Hydrogen peroxide in situ detection 

Hydrogen peroxide accumulation in the plant tissue was detected by DAB staining. A 

thin slice (1 mm) of root tissue was vacuum-infiltrated with1mg/ml DAB solution for 2 

mins and incubated at room temperature for 3 hours in the dark. The reaction was 

stopped with 4 mg/ml chloral hydrate and a photograph was taken immediately.  

 

2.5.12 Determination of hydrogen peroxide concentration 

H2O2 was determined according to (Velikova et al., 2000) with some modifications. 

Root tissue (100 mg) was homogenised in 2 ml 0.1% TCA in an ice bath. The 

homogenate was centrifuged at 12,000 g for 15 mins and the supernatant was 

collected. 0.5 ml of the supernatant was added to 10 mM potassium phosphate buffer 

(pH 7.0) and 1 ml potassium iodide. The absorbance at 390 nm was measured in a 

spectrophotometer. H2O2 content in the samples were obtained from a standard curve 

generated with 20 – 100 µM H2O2. 

 

2.6 Reagents and solutions 

 

2.6.1 Cassava Basic Medium (CBM) 

One litre CBM consist of 

Sucrose      20 g  

Murashige and Skoog (including vitamins)  4.4g 

CuSO4       0.002 mM 

Gelrite        3 g 

 

The culture medium was adjusted to pH 5.8 and autoclaved to sterilize. It was then 

poured to the height of 1.0-1.5 cm in a 330 ml sterile container and left to cool in the 

laminar flow hood. CBM was stored at room temperature. 

 

2.6.2 DNA extraction reagents 

The DNA extraction buffer contains 

Tris-HCl pH 8   0.5 M 

EDTA pH 8   0.01 M 

SDS    2% 

LiCl    0.1 M 

 

Before use, 50 µl of 20 mg/ml Proteinase K was added to a final concentration 10 

µg/ml 
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2.6.3 RNA extraction reagents 

The RNA extraction buffer consists of: 

 

CTAB     2% (w/v) 

PVP K-30 (soluble)    2% (w/v) 

TrisHCl pH 8    100 mM 

EDTA     25 mM 

NaCl     2M 

spermidine (free acid)   0.5 g/l 

∗β-mercaptoethanol   2% (v/v) 

 

Spatulas, magnetic stirrers and all glassware used in preparation were sterilized. The 

reagents were dissolved in double-sterilized DEPC-treated water and sterilized once 

again in an autoclave. A magnetic stirrer was left in the solution because prior to use 

the buffer must be homogenized.  

* Added just before use. 

 

2.6.4 Southern Blotting Reagents 

(i) B1 

Maleic acid   100 mM 

NaCl    150 mM 

 

Adjusted to pH 7.5. For 1L 11.6 g maleic acid and 8.766 g NaCl were dissolved in 

sterile distilled water. The pH was adjusted with 10M HCl and the solution was 

sterilized by autoclave. 

 

(ii) B2 

B2 or blocking buffer was made by adding 1 g blocking reagent (Roche) to 100 ml B1 

in two 50 ml Falcon tubes. The tubes were heated to 70°C in a water bath and vortexed 

several times to facilitate dissolution. It was cooled to room temperature before use. 

B3 (equilibrating buffer) 

TrisHCl (pH 9.5)  100 mM  

NaCl    100 mM 

MgCl2    50 mM  
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The 1 M stock of each solution was prepared separately and autoclaved to sterilize. 50 

ml B3 was prepared by mixing 5 ml of 1 M Tris-HCl, 5 ml 1 M NaCl and 2.5 ml 1 M 

MgCl2 and made up to the final volume with sterile distilled water. Fresh preparation 

was required and the final pH was checked before use. 

 

(iii) Wash buffer (WB) 

Wash buffer was prepared by adding 3 ml Tween 20 to 1 litre B1. This was stored at 

room temperature. 

 

(iv) 20X SSC 

Sodium citrate   300mM 

NaCl    3 M  

 

To prepare 1 litre of this solution 88.23 g of sodium citrate and 175.32 g of NaCl were 

mixed in sterile distilled water. The pH was adjusted to 7.6 before autoclaving.  

 

(v) Depurinating solution 

1 litre depurinating solution was prepared by adding 25 ml HCl (37%) to 975ml sterile 

distilled water. The final concentration of this solution is 250 mM HCl. Stored at room 

temperature. 

 

(vi) Denaturing solution 

NaOH    500 mM 

NaCl    1.5 M  

 

It was prepared by mixing 20 g NaOH and 87.66 g NaCl in a final volume of 1 litre 

sterile distilled water. It was then autoclaved and stored at room temperature. 

 

(vii) Neutralisation solution 

Tris    500 mM 

NaCl    1.5 M NaCl 

EDTA    1 mM 

 

For 1 litre preparation, 60.57 g Tris, 87.66 g NaCl and 0.3724 g EDTA were dissolved 

in sterile distilled water and made up to 1 litre. 
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(viii) W1 solution 

SSC    2X 

SDS    0.1% 

This solution was prepared by slowly adding 10 ml 10% SDS to 100 ml 20X SSC in a 

sterile bottle and making up to 1 litre. Shaking must be avoided to prevent bubble 

formation.  

 

(ix) W2 solution 

SSC    0.2X 

SDS    0.1% 

This solution was prepared by slowly adding 10 ml 10% SDS to 10 ml 20X SSC in a 

sterile bottle and making up to 1 litre. Shaking must be avoided to prevent bubbles 

formation.  

 

(x) W3 solution 

SSC    0.1X 

SDS    0.1% 

This solution was prepared by slowly adding 10 ml 10% SDS to 5 ml 20X SSC in a 

sterile bottle and making up to 1 litre. Shaking must be avoided to prevent bubbles 

formation.  
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CHAPTER 3 

  

Characterisation of transgenic cassava 

 

3.1  Introduction 

 

3.1.1 Strategy for cassava transformation 

It is generally accepted that plant transformation is a difficult task. With exception of 

Arabidopsis and tobacco, transformation of some plant species remains a challenge. 

Identification of target genes is difficult since the number of full sequences of plant 

genomes is limited compared to those from other kingdoms. Depending on life cycle of 

a plant, transformation can take over a year before the product of transformation can 

be evaluated. The choices of cultivar, cloning strategy, transformation method, 

selectable marker, as well as gene promoter to drive expression of target genes are 

key in determining the success of transformation.  

Cassava was believed to be recalcitrant to transformation until the mid 1990s. The 

initial effort towards developing efficient transformation focused on gene transfer at the 

tissue level (Franche et al., 1991, Luong et al., 1995). The first successful 

transformation that resulted in fully developed cassava plant was achieved in 1995 

(Sarria et al.) and afterwards more transformations of cassavas were attempted. 

Various modifications were also made in the gene transfer method aiming to improve 

regeneration of transgenic cassava (Gonzalez et al., 1998, Raemakers et al., 1996, 

Schopke et al., 1997) and to achieve higher transformation frequencies. The use of 

selectable marker has also extended from antibiotic and herbicide-resistance (Arango 

et al., 2010, Gonzalez et al., 1998, Siritunga and Sayre, 2004, Siritunga and Sayre, 

2003) to positive selection using mannose (Zhang et al., 2000) and morphological 

markers (Saelim et al., 2009). Due to the need for the expression of target genes in 

certain cell types, the use of tissue-specific promoters from other plant system was 

explored (Arango et al., 2010, Narayanan et al., 2011, Siritunga and Sayre, 2003). 

Additionally, promoters from cassava itself have also been identified and characterised 

(Zhang et al., 2003b) but their regulatory functions were relatively weaker than the 

conventional cauliflower mosaic virus CaMV35S promoter (Arango et al., 2010) making 

them less favoured in transformation of cassava. 
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3.1.2 Target genes and promoter used in this study 

Previous studies showed oxidative stress is associated with development of PPD 

symptoms in cassava roots but little is known about the mechanisms. It is thought that 

wounding sites introduced during harvest expose cassava roots to oxygen and rapidly 

generate reactive oxygen species (ROS) (Beeching et al., 1998). In an efficient ROS 

detoxification system, excessive ROS are converted to harmless products to bring 

down ROS to a safe level but this is not observed in cassava root system. 

 

Figure 3.1 The cellular pathways for ROS removal in plants. Superoxide dismutase 

(SOD) detoxifies superoxide radicals (O-
2) to generate hydrogen peroxide (H2O2) and 

oxygen. In this form, it is transformed into harmless products by catalase (CAT) and 

ascorbate peroxidase (APX). Reduction of ascorbate (AA) by APX produces 

monodehydroascorbate (MDHA) while non-enzymatic cleavage produces 

dehydroascorbate (DHA). MDHA and DHA are reduced back to AA by 

monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase 

(DHAR), respectively, in which the latter utilises reduced glutathione (GSH) as 

substrate and simultaneous reduction of glutathione disulfide (GSSG) by glutathione 

reductase (GR). Galacturonic acid reductase (GAR) and ɣ-glutamyl cysteine 

synthetase (GCS) are the main enzymes involved in biosynthesis of ascorbate and 

glutathione, respectively. Highlighted in blue fonts are enzymes involved in this study. 

Serrated arrow indicates multiple reactions. 

In harvested cassava storage roots, ROS detoxification is either delayed or insufficient, 

causing excessive ROS generation which lead to oxidative stress and eventually 

irreversible cellular damage (Reilly et al., 2003). As wounding during harvest often is 
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unavoidable, enhancement of ROS detoxification machinery in developing roots was 

conceived as a feasible strategy to increase resistance against oxidative stress. To 

achieve that, five main genes in the common plant cellular pathway of ROS 

detoxification were selected as the target genes in transformation of cassava 

TMS60444. 

 

3.1.2.1  Superoxide dismutase 

Superoxide dismutase (SOD) is a metalloenzyme (SOD; EC 1.15.1.1) ubiquitous in 

plant cells. SOD is highly abundant in ROS-generating cellular compartments, thus it is 

claimed to be the first line of defence against ROS. This enzyme is classified into three 

groups based on the metal ion co-cofactors required in active sites. MnSOD (co-factor 

with manganese) is abundant in the mitochondrion where ROS are generated as by-

products in the electron transport chain. FeSOD (co-factor with iron) is mostly found in 

the chloroplast, where it functions to maintain ROS homeostasis in photosystem-II. 

CuZnSOD (co factor with copper-zinc complex) is known to be the most ubiquitous as it 

is found in cytosol, chloroplast and peroxisomes (Alscher et al., 2002). Regardless of 

metal co-factor used, all SODs catalyse the dismutation of superoxide radicals to H2O2 

and oxygen. All three classes of SOD are present in A. thaliana and rice (Schomburg et 

al., 2013) but to date only two SOD genes have been isolated and characterised from 

cassava, MecSOD1 (Lee et al., 1999) and MecSOD2 (Shin et al., 2005). Both SOD 

genes in cassava are CuZn type, cytosolic, highly expressed in cassava stems and 

lowly expressed in leaves (Lee et al., 1999, Shin et al., 2005).  

It appears that SOD confers resistance to abiotic stresses in non-specific ways. For 

example, overexpression of MnSOD (Gusta et al., 2009) and CuZnSOD  (Tang et al., 

2006) equally showed resistance to heat stress. On the other hand, expression of pea 

MnSOD in rice plants showed resistance mainly to drought (Wang et al., 2005) while 

cedar MnSOD expression in poplar plants showed resistance to salt stress (Wang et 

al., 2010).  However, the magnitude of expression may vary; for example, CuZnSOD1 

and CuZnSOD2 in sunflower responded to heat, chilling and wounding stress 

differently in that the latter was expressed higher (Fernández-Ocaña et al., 2011). 

Despite its unspecific expression, SOD has been an attractive target for increasing 

oxidative stress resistance and has shown a degree of success in crops like rice 

(Prashanth et al., 2008), sugarbeet (Tertivanidis et al., 2004) and canola (Gusta et al., 

2009).  

In cassava, MecSOD2 is expressed at low level in storage roots compared to 

MecSOD1 (Lee et al, 1999: Shin et al 2005) but responding to wounding more 
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substantially than MecSOD1. In situ detection of ROS in cassava roots revealed 

accumulation of superoxide radicals within 15 minutes after wounding; therefore, 

increasing MecSOD2 expression with an aim to complement MecSOD1 expression is 

seen as a good strategy for enhanced protection against superoxide. Nonetheless, it is 

important to keep in mind that the by-products of SOD reactions might also accumulate 

rapidly as a result of over expression, and that these are also potentially damaging to 

the cell. This accounts for the increasing attempts to co-express SOD with other 

antioxidative genes to overcome H2O2 toxicity in the cells (Melchiorre et al., 2009, 

Srinivasan et al., 2009, Tang et al., 2006, Xu et al., 2013a). 

 

3.1.2.2  Catalase 

Catalase (CAT; EC 1.11.1.6). is a common enzyme found in both plant and animal 

tissues. In fact, CAT is one of the first enzymes discovered (Loew, 1900).  

CAT exists in three forms – the heme-binding catalase, Mn-catalase and peroxidase 

catalase. The first form is commonly referred to as typical CAT which requires heme 

(iron) at its active sites. Although CAT has lower affinities for H2O2 than APX, it is 

known as one of the most efficient enzyme found in cells. The difference in affinities 

suggests that APX functions to modulate ROS for signalling while CAT functions to 

remove excess ROS  (Noctor and Foyer, 1998). In tobacco plants, application of the 

CAT inhibitor aminotriazole caused CAT deficiency and this led to severe oxidative 

stress symptoms despite high APX activity (Gechev et al., 2002). This implies that CAT 

functions as a sink for H2O2 in plants (Willekens et al., 1997). 

In cassava, one CAT gene named MecCAT1 has been isolated and characterised so 

far, but Southern analysis predicted more CAT sequences in the cassava genome 

(Reilly et al., 2001). Measurement of MecCAT1 transcript accumulation in cassava 

roots showed stronger CAT expression in the low-PPD cultivar (TMS 30572) than in 

high-PPD cultivar (MCol 22), suggesting its antioxidative role. In the same microarray 

data mentioned above, MecCAT1 showed an increase in expression during PPD, being 

identified as one of the highly upregulated genes in ROS turnover category (Reilly et 

al., 2007). 
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3.1.2.3  Ascorbate peroxidase 

An alternative scavenging pathway for H2O2 is decomposition is by ascorbate 

peroxidase. Ascorbate peroxidase (APX; EC 1.11.1.11) is a heme-containing 

peroxidase present in most organisms. H2O2 formed as a by-product of SOD reactions 

is scavenged by APX and its substrate, ascorbate (Asada, 1992). APX has been found 

in various cellular compartments but its role in ascorbate metabolism is mostly studied 

in the chloroplasts. Foyer and Halliwell (1976) proposed the redox cycling of ascorbate 

in the chloroplast called ascorbate-glutathione pathway (later known as Halliwell-Asada 

pathway) and highlighted APX as the major enzyme in the pathway.  

 

Figure 3.2 Halliwell-Asada pathway as described by May et al. (1998). Reduction of 

ascorbate (AA) by APX produces monodehydroascorbate (MDHA), while non-

enzymatic cleavage produces dehydroascorbate (DHA). MDHA and DHA are reduced 

back to AA by monodehydroascorbate reductase (MDHAR) and dehydroascorbate 

reductase (DHAR), respectively, in which the latter utilises glutathione (GSH) as 

substrate and simultaneously performs NADPH-mediated reduction of glutathione 

disulfide (GSSG) by glutathione reductase (GR). 

To date only one APX gene has been identified in cassava (Reilly et al., 2007) but in 

the Genbank database there are two accessions of the gene available; MecAPX2 

(AY973622) and MecAPX3 (AY973623). However, they appear to be referring to the 

same sequence and are used interchangeably in many studies. Even so, MecAPX3 is 

preferred over MecAPX2 in the present study as it is also used in other database 

including PeroxiBase (Fawal et al., 2013). 

Early biochemical studies revealed PPD-related peroxidase activity in cassava storage 

roots (Tanaka et al., 1983) and its localisation in the epidermis, cortex and xylem 

tissues (Reilly et al., 2004). Northern blot analysis showed increased of peroxidase 

mRNA transcript 2-4 days after harvest (Reilly et al., 2004). Consistent with these 

findings microarray data prepared from deteriorating storage roots showed 1.7- and 

1.5-fold increase of MecAPX3 and a secretory peroxidase transcript, respectively, 1 



41 
 

day after harvest (Reilly et al., 2007). While there is no specific evidence indicating that 

APX could delay post harvest damage in cassava storage roots, overexpression of 

APX in some plants has led to high resistance to various oxidative-related stresses 

including salinity and drought (Badawi et al., 2004), heat (Srivastava et al., 2012), 

pathogen invasion (Sarowar et al., 2005) and high light intensities (Murgia et al., 2004). 

These findings justify further analyses of APX expression profiles and their roles in 

cassava in relation to PPD. Besides, overexpression of APX is encouraging as it has 

higher affinity for H2O2 than catalase.  

 

3.1.2.4  Galacturonic acid reductase 

H2O2 degradation by APX in the Halliwell-Asada pathway involves ascorbate (AA) 

which serves as a reducing agent. The structure of AA was described in 1933 yet its 

biosynthetic pathway remains unclear. It has been established that AA in animals and 

plants is derived from D-glucose, but there are multiple, continuously revised pathways 

proposed for plants (Figure 3.3). 

The L-galactose pathway is considered the predominant pathway in green tissue of 

higher plants where all the genes involved are already characterised (Oller et al., 

2009). In this pathway, AA is synthesised from GDP-D-mannose via GDP-L-galactose, 

L-galactose, and L-galactono-1,4-lactone (Wheeler et al., 1998). The alternative 

pathways for AA biosynthesis are the L-gulose and the Salvage pathway. The L-gulose 

pathway, was proposed based on the evidence that GDP-D-mannose could be 

converted not only to GDP-L-galactose, but also to GDP-L-gulose, which subsequently 

converted to L-gulono-1,4-lactone, a structure equivalent to L-galactono-1,4-lactone 

(Wolucka and Van Montagu, 2003, Wolucka and Van Montagu, 2007). The full set of 

enzymes converting intermediates in this pathway is largely unknown. The other 

pathway called the Salvage or ―galacturonate‖ pathway also is poorly studied. Only one 

enzyme called galacturonic acid reductase (GAR; EC 1.1.1.19) catalysing D-

galacturonate to L-galactono-1,4-lactone has been elucidated in this pathway (Linster 

and Clarke, 2008, Xu et al., 2013c). 
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Figure 3.3 Biosynthetic pathways of ascorbate in plant. Serrated arrow indicates 

multiple reactions, ? indicates unknown enzyme. GME = GDP-D-mannose-3‘,5‘-

epimerase, LGalDH = L-galactose dehydrogenase, GLDH = L-galactono-1,4-lactone 

dehydrogenase, GAR = galacturonic acid reductase 

 

It is curious that if the alternative pathways for AA biosynthesis cause its accumulation 

in other tissues. For example, overexpression of gene encoding GAR (Genbank 

accession AF039182) under the control of the CaMV35s promoter in strawberry 

caused increase in the corresponding mRNA transcript that reflected changes of fruit 

AA content during ripening, suggesting its function in AA biosynthesis. Heterologous 

expression of the same gene in A. thaliana that resulted in 2- to 3-fold increase of AA 

content supported this interpretation (Agius et al., 2003). An attempt to manipulate AA 

in cassava using this gene seems promising. A higher AA content was also achieved 

through the overexpression of this gene in potato tubers. Additionally, the transgenic 

potatoes showed enhanced tolerance towards various stress conditions compared to 

the untransformed plants (Hemavathi et al., 2009). 
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3.1.2.5  ɣ-glutamylcysteine synthetase  

Apart from ascorbate, the Haliwell-Asada pathway contains another non-enzymatic 

component which is glutathione. Reduced glutathione (GSH) and its oxidised form 

(GSSG) is a major anti-oxidant that primarily functions to protect the photosynthetic 

apparatus though its ubiquity in non-photosynthetic cells suggests its wide-ranging 

functions in plant cells including embryo survival (Cairns et al., 2006). 

 

 

Figure 3.4 Biosynthesis of glutathione (GSH) in Arabidopsis. Abbreviations; Glu = L-

glutamic acid, Cys = L-cysteine, Gly = glycine, γ‐EC = γ‐glutamylcysteine, GR = 

glutathione reductase, GSSG = glutathione disulphide, ASA = ascorbic acid, DHA = 

dehydroascorbate, DHAR = dehydroascorbate reductase. Figure adapted from 

Creissen et al. (1999). 

GSH which is a tripeptide consisting of L-cysteine, L-glutamic acid, and glycine is 

synthesised by two ATP-dependent steps in the chloroplast and cytosol. In the first 

step, gshI or ɣ-glutamylcysteine synthetase (GCS; EC 6.3.2.2) catalyses the formation 

of ɣ-glutamylcysteine (ɣ-EC) from L-cysteine and L-glutamic acid. In the second step 

glycine is added to the intermediate product ɣ-EC by gshII or glutathione synthetase 

(GSH-S) (EC 6.3.2.3) (Figure 3.4). 

 

The antioxidative role of GSH is widely accepted but its function is not fully understood. 

It is proposed that this is associated with the dynamic ratio of GSH to GSSG. In 
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unstressed plant cells, GSH/GSSG ratio is 9:1 where it is considered in its best redox 

potential to effectively scavenge ROS. The GSH/GSSG ratio changes in response to 

various environmental stress including photo-oxidative stress (Melchiorre et al., 2009), 

heavy metal (Li et al., 2006), high temperature and herbicides (Song et al., 2005). 

Under the stressed conditions GSH is reduced to glutathione disulfide (GSSG) causing 

simultaneous reduction of DHA by DHAR to form ascorbate (ASA) in the ascorbate-

glutathione pathway. Alternatively GSH is reduced to GSSG by detoxification of H2O2 

by glutathione peroxidase (GPX), but this occurs at a very low rate compared to that in 

animals cells due to the predominance of the ascorbate-glutathione cycle in plants 

(Foyer and Noctor, 2000). GSH is replenished by glutathione reductase (GR).  

GSH biosynthesis is primarily controlled by GCS activity and cysteine availability 

(Noctor et al., 2002), although increasing evidence shows possible regulation by 

several factors. A GCS1 (gshI) knockout in Arabidopsis resulted in GSH deficiency 

(Cairns et al., 2006), and co-expression of GCS1 and GCS2 in maize caused a 4-fold 

increase of GSH content (Gómez et al., 2004). Unsurprisingly, wheat protoplasts over-

expressing GR showed an increased in GSH and in the GSH/GSSG ratio when 

subjected to light stress (Melchiorre et al., 2009). In the same work, GSH content 

decreased as result of H2O2 build up. In contrast to this finding, GSH level was 

increased by H2O2 in CAT-deficient plants and accompanying this was upregulation of 

genes for enzymes involved in the formation cysteine and other amino acids (Queval et 

al., 2009). The conflicting findings about the regulation of GSH suggest its complex 

interactions with other components of the ROS scavenging machinery as well as the 

influence of environmental factors, which requires further experimental effort in the 

future. However, the curiosity to elucidate GSH modulation is not the objective of this 

research, but rather to explore the role of GSH in the PPD of cassava using the key 

enzyme GCS. Since GCS has not been characterised in cassava, Arabidopsis GCS 

(gshI) was selected as the target gene. 

 

3.1.2.6 Patatin promoter 

The choice of promoter is as equally important as is the choice of the target genes. 

Since the aim of the target genes expression was to improve anti-oxidant status of 

cassava storage root the ability of the promoter to drive high expression in the target 

tissue is crucial. Meanwhile, the responsiveness to PPD–related stresses would be an 

added advantage. 
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A number of root-specific promoters have been identified in cassava and a few meet 

the criteria for our promoter. p15 isolated from cassava root cDNAs was shown to have 

related functions to cytochrome P450 proteins and found to be highly expressed in the 

starch-rich parenchyma cells from roots and xylem vessels of vascular tissues from 

leaves (Zhang et al., 2003b). Curiously, expression of uidA gene using this promoter in 

a carrot root system showed the lowest level of Gus when compared to other 

promoters including the constitutive promoter CaMV35s (Arango et al., 2010). Other 

tissue-specific promoters are p54 and its homologue Mec1 coding for glutamic acid-rich 

proteins (Pt2L4), also shown to highly expressed in root tissue systems of cassava and 

Arabidopsis (de Souza et al., 2009, de Souza et al., 2006, Zhang et al., 2003b). Fairly 

recently, a light- and sucrose-inducible promoter containing the cassava granule-bound 

starch synthase (GBSS) was isolated and showed a remarkable increase of gene 

marker activities in the storage roots compared to other tissues (Koehorst-van Putten 

et al., 2012). These promoters are interesting and have potential; however, when this 

work was started they were insufficiently characterised to be considered as strong 

candidates. In order to achieve optimal expression of the target genes and to allow 

straightforward assessment of their performance an established tuber-specific 

promoter patatin was chosen.  

Patatin is a storage protein found in potato (Solanum tuberosum) that unusually 

possesses lipid acyl hydrolase (LAH) activities. This enzyme functions to catalyse the 

cleavage of fatty acids from membrane lipids (Andrews et al., 1988, Macrae et al., 

1998) suggesting a dual function against pathogens in potato tubers. Patatin 

sequences are retrievable from many online databases and the related information has 

been documented. The organ specificity is confirmed where up to 20 times more 

activity was reported in potato tubers compared to the roots and leaf, stem and roots 

(Rocha-Sosa et al., 1989, Naumkina et al., 2007). In cyanogen-reduced transgenic 

cassava patatin has driven 2-20 fold increase of hydroxynitrilelyase (HNL) mRNA 

transcript relative to untransformed plants and 5-6 fold increase relative to those driven 

by the CaMV35s promoter (Narayanan et al., 2011). Heterologous patatin-driven Gus 

and anti-oxidant gene expression in non-storage roots like those of Arabidopsis has 

been achieved and reported, including with the expression cassette used in this study 

(Page, 2009). The utilisation of patatin is also intriguing since it has been found to be 

resistant to ROS in vitro (Liu et al., 2003). 
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3.1.3 Construction of expression plasmids and generation of transformants 

This section will briefly introduce the expression plasmids, their creation, as well as 

development of transgenics that were produced previously by Page (2009) and formed 

the basis of much of the work in this thesis.  

a  

 
 

b  

 

Figure 3.5 (a) A simplified map of unmodified pCAMBIA 1305.1 showing T Borders 

(blue thick lines), GusPlus reporter gene, CaMV35S promoter, multiple cloning site 

(MCS), hygromycin resistance gene (hptII) and neomycin phosphotransferase (nptII). 

The positions of restriction enzymes PstI and PmlI used for removal of CaMV35S. 

GusPlus are indicated (b) The removed fragment was replaced by a patatin:target 

gene fragment to generate a modified expression plasmid (pDEST). The positions of 

PstI and NcoI used to remove Patatin sequence are shown (b). Figure reproduced from 

Page (2009).  



47 
 

Following identification and isolation of the potential target genes, a Gateway-

compatible plasmid was created from pCAMBIA 1305.1 cloning vector. Digestion of the 

plasmid with restriction enzyme PstI and PmlI excised CaMV35S promoter and 

GusPlus sequence from the vector allowing incorporation of the Patatin promoter 

(Page, 2009). Addition of Gateway cassette with partial att sites upstream Patatin 

sequence converted it to be Gateway compatible enabling attB-containing target 

sequences to be inserted (Figure 3.5).  

 

Table 3.1 Target sequences used in expression plasmids. Target sequences are 

coding region of genes encoding the five enzymes that are involved in the main cellular 

pathways for ROS removal in plants. 

 

Expression plasmid Target gene Source of 

organism 

Genbank 

accession  

cDNA 

length 

(bp) 

pDEST:SOD MecSOD2 M.esculenta AY642137 459 

pDEST:APX MecAPX3 M.esculenta AY973623 753 

pDEST:CAT MecCAT1 M.esculenta AF170272 1479 

pDEST:GCS gshI A.thaliana AF419576 1569 

pDEST:GAR FaGAR F.ananassa AF039182 960 

pDEST:GusPlus GusPlus Saccharomyces AF354045 2078 

pDEST:GusPlus (-

Pat) 

GusPlus Saccharomyces AF354045 2078 

 

 

The final version of expression plasmid containing target gene (Table 3.1) was 

independently introduced into cassava cultivar TMS60444 via Agrobacterium-mediated 

transformation of friable embryogenic callus (FEC). In order to evaluate the expression 

pattern and performance of the Patatin promoter, two Gus reporter plasmids were 

crafted and transformed in cassava. pDEST:GusPlus was constructed by simple 

replacement of target sequence with GusPlus sequence whereas pDEST:GusPlus (-

Pat) was created by digestion of pDEST:GusPlus with restriction enzymes PstI and 

NcoI to remove Patatin (Figure 3.5). Cassava transformation was carried out by Bull 

(2011). 
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3.1.4 Management of samples 

Transformations of TMS60444 with the seven constructs described above produced 

284 in vitro plantlets (Bull, 2011). Each of which was a putative independent transgenic 

line carrying separate target genes; these were labelled as Pat:target gene (for 

example Pat:SOD). All lines were indexed by Pat:target gene, transformation group 

and plantlet number. Transformation group either represents separate transformation 

event or FEC used. For example Pat:SOD C2 is the second plantlet generated from the 

third transformation event with pDEST:SOD.  

 

Table 3.2 Transgenic plants used in this research. Number of surviving plants was 

recorded at the beginning of research being conducted 

Transgenic  Expression plasmid No of 
groups 

No of 
plantlets 
regenerated 

No of 
surviving 
plantlet 

% of 
surviving 
plantlet  

Pat:SOD pDEST:MecSOD2 4 32 24 75 

Pat:APX pDEST:MecAPX2 5 31 31 100 

Pat:CAT pDEST:MecCAT1 4 56 41 73 

Pat:GCS pDEST:AtGCS 3 30 30 100 

Pat:GAR pDEST:FaGAR 3 72 49 68 

Pat:Gus pDEST:GusPlus 2 26 26 100 

Pat (-): 
Gus 

pDEST:GusPlus 
(-Pat) 

1 37 37 100 

 

All the regenerated lines showed normal phenotypic characteristics upon early sub-

culturing. However, repeated sub-culturing occasionally led to loss of plantlets due to 

contamination, which is an ever-present risk in tissue culture maintenance. This 

explains how one putative line which had been selected could not be subjected to 

further analysis because of the loss of parent line.  
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3.2 Research aim 

This chapter is concerned with the preliminary characterisation of the previously 

transformed cassava plants. The genetic content of the plants will be assessed for 

successful T-DNA integration with an aim to identify single-insert independent lines. 

These lines will be grown to mature cassava plants to produce storage roots and to 

enable full characterisation of their phenotypes. The detailed effects of the various 

gene-constructs will be fully explored in subsequent chapters.  
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3.3 Results 

3.3.1 Stable integration of the gene construct in the cassava genome 

Prior to going on to detailed analyses of the putative transgenic lines it was essential to 

confirm their transgenic nature and identify independent single-insert lines. Therefore, 

the transgenic cassava plants were subjected to molecular assays to verify 

transformation using genomic DNA extracted from cassava leaf tissue. The transgenics 

are as listed in Section 2.1.1 but for simplification only selected transgenic lines are 

presented.  

 

 

Figure 3.6 Composition of T-DNA region of pDEST:APX. hptII encodes gene for 

hygromycin resistance. The positions of primers for amplification of hptII and transgene 

MecAPX3 are indicated.  

 

The plants were checked for presence of foreign genes in the genome to distinguish 

transformed plants from the non-transformed and then to confirm the integration of the 

correct Pat:target gene fragment. This involved a two-step screening through 

amplification of genomic DNA by PCR. The first screening was amplification of the hptII 

and the second screening was amplification of the respective target gene. Since both 

constitute the T-DNA region of the expression plasmid, they should only be detected in 

transformed plants. Unlike GCS- and GAR-transformants which contain exogenous 

target gene, SOD-, CAT- and APX-transformants contain targets gene that were 

derived from cassava itself. Therefore, with these transformants it is crucial to 

discriminate from endogenous genes to avoid false positive amplification. For that 

reason, the sequence flanking the 180 bp downstream patatin promoter region was 

used for creation of the forward primer DESTSeqF1, whereas nucleotides flanking 

target gene‘s stop codon and attB2 were designed as the reverse primer. The locations 

of these primers in Pat:APX are shown in Figure 3.6. This strategy was established as 

a rapid screening method for all transgenic lines. The results of PCR genotyping with 

hptII and individual target gene (now termed as transgene) are shown below. 

Identification of Pat:Gus and Pat(-):Gus will be described in Chapter 5. 
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Transgenic lines which amplified both the hptII and the correct transgene were referred 

to as ‗positive transformants‘ to indicate successful uptake of Pat:target gene fragment. 

PCR analysis of Pat:SOD using hptII- and transgene-specific primers resulted in 

amplification of 1 kb and 0.7 kb fragments respectively. All 24 of Pat:SOD lines 

amplified hptII gene while only 23 amplified MecSOD2, this corresponds to 96% 

positive transfomants (Figure 3.7). 

 

 

Figure 3.7 Amplification of hptII gene (upper panel) with HygF and HygR and 

MecSOD2 (lower panel) with DESTSeqF1 and SODR1 primers. Genomic DNA 

extracted from cassava leaf tissue of Pat:SOD A1-D8. DNA marker (M) size, wild type 

TMS60444 (WT) and no template control (C) shown.  

 

 

In Pat:APX, 29 out of 31 putative transgenics amplified hptII, 27 amplified transgene 

MecAPX2. Since only 26 plants amplified both genes, this reduced the percentage of 

positive transfomants to 84% (Figure 3.8). 

 

 

Figure 3.8 Amplification of hptII gene (upper panel) with HygF and HygR and 

MecAPX3 (lower panel) with DESTSeqF1 and APXR1 from genomic DNA extracted 

from cassava leaf tissue of Pat:APX A1-A15. DNA marker (M) size, wild type 

TMS60444 (WT) and no template control (C) shown.  
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Figure 3.9 Amplification of hptII gene with HygF and HygR from genomic DNA 

extracted from cassava leaf tissue of Pat:CAT A1-D5. Amplification with DESTSeqR1 

and CATR1 did not produce amplicons. DNA marker (M) size, wild type TMS60444 

(WT) and no template control (C) shown.  

 

Transformation of Pat:CAT was obviously not successful. Although nearly all putative 

CAT trangenic lines amplified hptII but disappointingly none amplified the 1400 bp 

MecCAT1 transgene (Figure 3.9). Later in this thesis I return to these transgenics in 

order to identify what may have occurred. 

 

 

Figure 3.10 Amplification of hptII gene (upper panel) with HygF and HygR and gshI 

(lower panel) DESTSeqF1 and GCSR1 from genomic DNA extracted from cassava leaf 

tissue of Pat:GCS C1-C16. DNA marker (M) size, wild type TMS60444 (WT) and no 

template control (C) shown.  

 

All Pat:GCS putative transgenic lines analysed amplified hptII gene but 3 lack the 1749 

bp GCS transgene PCR product reducing the percentage of positive transformants to 

87% (two shown in Figure 3.10). Pat:GAR had the highest number of faulty expression 

cassettes as 10 putative transgenic lines failed to amplify the GAR transgene despite 

amplifying the hptII gene. This brought down the percentage of positive transformants 

to only 75% (three shown in Figure 3.11). 
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Figure 3.11 Amplification of hptII gene (upper panel) with HygF and HygR and FaGAR 

(lower panel) DESTSeqF1 and GARR1 from genomic DNA extracted from cassava leaf 

tissue of Pat:GAR A13-C12. DNA marker (M) size, wild type TMS60444 (WT) and no 

template control (C) shown.  

 

The result of PCR genotyping is summarised in Table 3.3. It appears that Pat:SOD had 

the highest percentage of positive transformants despite having the least number of 

surviving lines. In contrast, Pat:GAR which had the highest number of surviving lines 

had the lowest percentage of positive transformants (excluding the unexpected 

Pat:CAT lines). Due to the work involved it was decided to reduce the number of the 

Pat:GAR lines to be analysed closer to the other transgenics. 

 

Table 3.3 Analysis of transgenic lines with PCR. Positive transformants are lines 

amplified both the hptII and the correct transgene. 

Transgenic Total no of 

lines 

hptII 

present 

Transgene 

present 

No of positive 

transformants 

Positive 

transformants (%) 

Pat:SOD 24 24 23 23 96 

Pat:APX 31 27 29 26 84 

Pat:CAT 41 40 0 0 0 

Pat:GCS 30 30 26 26 87 

Pat:GAR 49 47 39 37 75 

 

 

In order to get a manageable number of transformants, only lines positive for both the 

hptII and the respective transgene were used for further screening. Next, the 

transgenics were analysed by Southern blot to determine copy number and to identify 

independent transgenic lines. Only 15 or 16 lines per transgene were subjected to 

Southern blot analysis. Genomic DNA extracted from cassava leaf tissue, digested with 

HindIII and hybridised with a DIG-labelled probe. For convenience, all Southern 

hybridisation reactions were performed with a hptII-annealing probe prepared as 

described in Section 2.3.7. Although this kind of probe may possibly reduce specificity 

through hybridising to the selectable marker rather than to the transgene of interest, it 
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is preferred over a transgene probe to eliminate the possibility of hybridising to a gene 

family. The probe and restriction enzyme were chosen to give only a single, but of 

variable size, band per insert event; thus the number of hybridising bands reflects the 

number of inserts per genome, while band size indicates different insertion sites. 

Therefore, lines with single bands of different size indicate different independent single-

insert lines; one of each was selected for further analysis. 

 

 

Figure 3.12 Southern hybridisation of HindIII-digested cassava genomic DNA of 

Pat:SOD transgenics with hygromycin probe. Underlined are independent single-insert 

transgenic lines. DNA (M) marker is shown. 

11 out of 16 Pat:SODs examined had a single insertion but only 7 were identified as 

single-insert independent lines. This represents the majority (69%) of the 

transformation events. The rest of the lines include a three-insert lines and several 

poorly hybridising lines (Figure 3.12).   

 

Figure 3.13 Southern hybridisation of HindIII-digested cassava genomic DNA of 

Pat:APX transgenics with hygromycin probe. Underlined are independent single-insert 

transgenic lines. DNA marker (M) is shown. 
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Pat:APX had the highest percentage of single insertions as 14 out of 16 or 88% had 

one insert in their genome. From this, half of them were identified as independent lines 

(Figure 3.13). The other two lines had two inserts each in the plant genome. 

 

Figure 3.14 Southern hybridisation of Hind III-digested cassava genomic DNA of 

Pat:CAT transgenics with hygromycin probe. Underlined are independent single-insert 

transgenic lines. DNA marker (M) is shown. 

On the other hand, Pat:CAT had the lowest percentage of single inserts among the 

transgenic analysed in which only 10 out 15 or 67% of the lines were identified as 

single-inserts. Three of the lines or 20% of the transgenic had 2 inserts while the 

remaining one line had 3 inserts. Approximately 9 independent lines were identified 

from this (Figure 3.14). Of course it is important to remember, that in the case of the 

Pat:CAT lines, the PCR results shown earlier in this chapter suggest that the CAT 

gene, or at least one of the primer sites is defective or absent. The number of single-

insert independent lines is summarised in Table 3.4.  

Table 3.4 Plasmid insertion frequency in transgenic cassava. Percentage of single 

insertion is shown as single insertion often is desired in transformation. 

Transgenic Line 

tested 

Single 

insertions 

Two 

insertions 

Three 

insertions 

% Single 

insertions 

Independ

ent lines 

Pat:SOD 16 11 2 1 69 7 

Pat:APX 16 14 2 0 88 7 

Pat:CAT 15 10 3 1 67 9 

 

Pat:GCS and Pat:GAR transgenics copy number had been checked and reported 

previously, using similar methods (Bull, 2011); hence the lists of independent lines 

instead of hybridisation pictures are presented here. Approximately 10 independent 

lines were identified from Pat:GCS and 9 from Pat:GAR. Pat:GCS independent lines 

consist of Pat:GCS C2, C5, C6, C10, C11, C12, C13, C16, C19 and Pat:GCS B4. 

Pat:GAR independent lines include Pat:GAR A13, A15, B16, B27, B29, B30, B33, C8 
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and C12. Characterisation of transgenic cassava has identified a total of 42 

independent transgenic cassava lines. All lines were grown in the greenhouse 

according to method in Section 2.2.2. 

 

3.3.2 Characterisation of mature transgenic cassava plants 

 

3.3.2.1 Mature transgenic plants exhibited phenotypes of WT plants 

Wild type in vitro plantlets grown on MS medium pH 5.8 have green leaf foliage, pale 

green stem and petiole. New green tissue cuttings required approximately one week to 

develop fully formed shoots and roots and the growing plantlets could be maintained in 

the same culture medium for a maximum of six months. Contamination with fungi was 

always a risk but avoided at any cost. Essentially all transgenic plantlets provided at 

the beginning of this research exhibited normal or wild type-like phenotype.  

 

Figure 3.15 Size comparisons of storage roots at different growth period. (a) Storage 

roots harvested at 4, (b) 6 months and (c) 12 months after planting. 

Due to time constraints and logistic issues, transgenics were grown at different times of 

the year. Modification of post-harvest experiments required different number of 

replicates per line but all plants were grown in the same way using a standard 

procedure. Generally one month old in vitro plantlets were removed from the sterile 

environment, transferred onto soil medium in 9 x 9 cm containers, kept in the growth 

room for 4 weeks and finally transferred to a horticulture setting in the greenhouse. All 

plants were harvested at approximately 6 months and this appeared to be the optimal 

age for the size of the greenhouse and the pots in which they were grown. At 3 or 4 

months cassava plants produced storage roots too small to be manipulated for PPD 

assay while at 12 months the roots were too bulky and often woody. The growth 

duration had allowed plants to grow to just about one metre tall or less ensuring equal 

provision of light. Furthermore, restricting plant development in small containers 
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beneficially promoted storage root formation to the size suitable for use in laboratory 

(Figure 3.15). 

 

Figure 3.16 Example of greenhouse cassava plants at various growth period. 

Abbreviation: mo = months old. 

After 6 months the majority of plants became fully developed and produced storage 

roots of average length 10 cm. Observation of the physical characteristics of a mature 

transgenic plant and its roots revealed similar features to a WT including the form and 

the volume of leaf foliage, the colour of leaves and the petioles as well as the form of 

the storage roots (Figure 3.16). All measurements were recorded at time of harvest; for 

example, plant height was measured immediately before being removed from soil and 

fresh storage roots were weighed when the stems were detached from the shoots to 

avoid loss of moisture. Harvesting could be the most labour-intensive activity, as it 

often involved a lot of plants and occasionally many post-harvest treatments. 

Depending on the design of experiment the number of plants varied, but importantly all 

post-harvest treatments were precisely timed to ensure correct interpretation of results. 
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3.3.2.2 Transgenic cassava plants exhibited variable growth 

The growth parameters of the transgenics and WT cassava were taken during harvest. 

The height of the plant was measured from the base to the top of the main plant stem 

while the roots were weighed after cutting them from stems. The height reflects plant 

size while storage root weight indicates yield which is an important agronomic trait of 

cassava. 

Pat:SOD transgenics were grown three times and they were all harvested at similar 

period after planting. Table 3.5 shows the growth data of the first planting of Pat:SOD 

transgenic plants. Nearly all plants were significantly taller than the WT, except for B2. 

Measurement of fresh storage root weight showed that Pat:SOD, in general, produced 

significantly greater yield than the WT except C1 and D7. 

Table 3.5 Mean height of cassava plants and storage root mean weight of the first 

planting of Pat:SOD. Asterisk (*) denotes significant differences at the 95% level using 

the Student‘s t-test. na= not applicable. 

Plant lines Height 
(cm) 

Height 
(SD) 

t-test 
height 

Weight 
(g) 

Weight 
(SD) 

t-test 
weight 

Pat:SOD A2 61.7 2.4 0.01* 45.4 1.6 0.01* 
Pat:SOD B2 56.2 7.0 0.08 42.7 4.2 0.01* 
Pat:SOD C1 55.7 1.9 0.01* 33.9 2.9 0.27 
Pat:SOD C2 58.2 0.5 0.01* 49.6 4.3 0.00* 
Pat:SOD C4 63.7 4.1 0.01* 42.1 4.2 0.04* 
Pat:SOD D3 62.7 7.6 0.01* 42.5 1.4 0.01* 
Pat:SOD D7 66.2 3.1 0.00* 33.9 6.8 0.39 
WT 43.0 4.3 na 29.6 3.7 na 

 

However, data collected from the second planting suggests that the differences in size 

and yield exhibited by Pat:SOD transgenics was not consistent. Pat:SOD transgenic 

plants appeared to grow more variably in the second planting and not significantly 

different from the WT (Table 3.6). In terms of yield, no significant difference was found 

between the transgenics and the WT except in one line (D7).  
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Table 3.6 Mean height of cassava plants and storage root mean weight of the second 

planting of Pat:SOD. Asterisk (*) denotes significant differences at the 95% level using 

the Student‘s t-test. na= not applicable. 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight 

(g) 

Weight 

(SD) 

t-test 

weight 

Pat:SOD A2 76.3 17.1 0.40 63.5 11.6 0.56 

Pat:SOD B2 75.1 10.4 0.11 63.7 19.6 0.59 

Pat:SOD C1 69.9 6.7 0.77 49.8 7.0 0.06 

Pat:SOD C2 66.0 6.6 0.75 63.0 8.4 0.36 

Pat:SOD C4 75.7 8.5 0.24 55.3 4.9 0.19 

Pat:SOD D3 73.8 8.0 0.40 61.7 7.8 0.62 

Pat:SOD D7 77.1 9.2 0.20 40.9 8.7 0.01* 

WT 69.7 12.2 na 59.7 10.0 na 

 

 

The third planting confirmed the inconsistency in Pat:SOD growth (Table 3.7). 

Transgenic cassava plants showed no significant difference in height as they grew 

comparably with the WT. The plants also showed no significant differences in yield 

except in C1 which produced significantly low-weight storage roots. 

Table 3.7 Mean height of cassava plants and storage root mean weight of the third 

planting of Pat:SOD. Asterisk (*) denotes significant differences at the 95% level using 

the Student‘s t-test. na= not applicable. 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight 

(g) 

Weight 

(SD) 

t-test 

weight 

Pat:SOD B2 98.7 10.8 0.85 46.7 4.5 0.44 

Pat:SOD C1 84.3 5.5 0.24 18.9 10.0 0.04* 

Pat:SOD C4 102.3 13.7 0.10 74.0 20.4 0.64 

Pat:SOD D7 103.7 13.6 0.63 47.1 8.6 0.29 

WT 96.3 12.7 na 61.7 23.2 na 

 

 

To explain the inconsistencies, data from all plantings were compared. Since the third 

planting involved only four transgenic lines, the other lines were excluded from the 

analysis. Table 3.8 shows that taller plants were produced in the subsequent planting 

than in the first. There was no significant difference shown by the transgenics in these 

plantings because all plants grew at similar rate in these plantings. The significant 
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difference shown by the transgenics in the first planting appeared to be caused by 

unusually shorter WT plants.  

Table 3.8 Mean height of Pat:SOD plants as compared to WT plants from three 

independent plantings and harvests. Plants significantly taller than the WT are marked 

by asterisk. 

Line 1st planting 2nd planting 3rd planting 

Pat:SOD B2 56.3 ± 7.0 75.1 ± 10.4 98.7 ± 10.8 

Pat:SOD C1 61.8 ± 2.4* 76.3 ± 17.1 84.3 ± 5.5 

Pat:SOD C4 63.8 ± 4.1* 75.7 ± 8.5 102.3 ± 13.7 

Pat:SOD D7 66.3± 3.1*  77.1± 9.2 103.7 ± 13.6 

WT 43.0 ± 4.3 69.7 ± 12.2 96.3 ± 12.7 

 

Table 3.9 Mean weight of Pat:SOD roots as compared to WT roots from three 

independent plantings and harvests. Plants produced significantly lower/higher storage 

root weights are marked by asterisk. 

Line 1st planting 2nd planting 3rd planting 

Pat:SOD B2 42.7 ± 4.2* 63.7 ± 19.6 46.7 ± 4.5 

Pat:SOD C1 45.4 ± 1.6* 63.5 ± 11.6 18.9 ± 10.0* 

Pat:SOD C4 63.8 ± 4.2* 55.3 ± 4.9 74.0 ± 20.4 

Pat:SOD D7 33.9 ± 6.8 40.9 ± 8.7* 47.1 ± 8.6 

WT 29.6 ± 3.7 59.7 ± 10.0 61.7 ± 23.2 

 

 

Also most of the transgenics appeared to have significantly greater yield because, in 

the first planting the WT produced extremely low yield. Similarly, in the subsequent 

plantings, some of the transgenics had significantly lower yield than the WT because 

they produced unusually lower weight of storage roots (Table 3.9). 

Pat:CAT, Pat:GAR, Pat:GCS and Pat:Gus transgenic plants were highly variable in 

terms of heights and storage roots weights they produced. (See Appendix Table 9.1, 

9.2, 9.3 and 9.4 for the growth data of Pat:CAT, Pat:GAR, Pat:GCS and Pat:Gus 

transgenic plants respectively). Nevertheless, the growth data for Pat:APX could not be 

analysed because the WT plants in this transgenic group were lost to contamination 

while the growth data for Pat(-):Gus was insufficient for statistical analysis so it was 

dismissed. 
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The growth of all transgenic cassavas in this study is summarised, data from all 

transgenics including those from Pat:APX and Pat:Gus are gathered (Table 3.10 ). 

Overall, there was high variation in the height of the plants and the weight of roots they 

produced. Correlation test between plant height and yield found no association 

between these two parameters (R2= 0.011). The tallest group of plants grown was the 

Pat:SOD from the third planting with an overall height nearly 100 cm while the shortest 

group was Pat:SOD from the first planting with average height approximately 60 cm. In 

terms of yield, the highest was produced by the Pat:Gus while the lowest was produced 

by the Pat:SOD in the first planting.  

Table 3.10 Summary of the overall growth measurement of cassava plants including 

WT and transgenics harvested at different time of year.   

Transgenics n Mean 

height (cm) 

Mean 

weight (g) 

Root: 

shoot 

Plant/Harvest time 

Pat:SOD (1) 4 61.1 ± 8.5 40.5 ± 6.4 1: 1.5 Sep 2010/Feb 2011 

Pat:SOD (2) 9 73.8 ± 4.6 58.0 ± 8.0 1: 1.3 Aug 2011/Jan 2012 

Pat:SOD (3) 3 97.1 ± 7.7 49.7 ± 20.6 1: 1.9 Nov 2012/Apr 2013 

Pat:CAT 9 69.7 ± 4.4 49.0 ± 11.9 1: 1.4 Aug 2011/Jan 2012 

Pat:APX 9 80.2 ± 5.3 43.1 ± 4.5 1: 1.9 Oct 2011/Mar 2012 

Pat:GAR 3 85.8 ± 7.2 90.5 ± 17.7 1: 1 July 2011/Dec 2012 

Pat:GCS 12 63.1 ± 5.4 60.7 ± 10.2 1: 1 Mar 2012/Aug 2012 

Pat:Gus 3 70.0 ± 3.7 98.2 ± 14.4 1: 0.7 Apr 2011/Sep 2011 

 

The variation showed here was investigated by assessing the root:shoot ratio (which 

also serves as a plant health indicator) and the season which the plants were 

harvested. It was found that the ratio was the highest in Pat:Gus which was harvested 

in the end of summer. The ratio was smaller (1:1) in Pat:GCS which was harvested in 

the mid summer and also in Pat:GAR which was harvested during the coldest winter 

season. The ratio was even smaller in Pat:CAT, (1:1.4) as well as in the first (1:1.5) 

and the second planting of Pat:SOD (1:1.3) and these three groups were harvested in 

the beginning of the year or during winter. The ratio was the lowest (1:1.9) in the third 

batch of Pat:SOD and Pat:APX which also were harvested around the same time of 

year. The data gathered suggest that the ratio was not influenced by season or hours 

of daylight the plants were exposed to. The second batch of Pat: SOD, Pat:CAT and 
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Pat:GAR plants were equally exposed to decreasing daylight over their growth period 

as they were planted in summer and harvested in winter had distinct root:shoot ratio. 

Similarly, Pat: GCS and Pat:Gus plants which escaped the cold season and were 

exposed to longer daylight over their growth period also had different root:shoot ratio.  

 

3.4 Discussion 

The success of transgenic identification relies on two major factors; 1) the use of a 

suitable gene to discriminate the WT lines; 2) the use of a reliable probe to confirm T-

DNA integration in the genome. Transformation often generates many transgenics lines 

transformed with the same construct as uptake of external genetic material is rare and 

difficult especially in higher organisms. To increase the chance of obtaining lines that 

acquire the construct it is necessary to create, screen and verify a huge number of 

transgenic lines. In this study, verification was done by amplification of hptII gene and 

transgene which proved to be relatively efficient and rapid as many samples can be 

analysed at one time. Importantly the use of more than one gene (hptII and transgene) 

has discriminated between the WT and many untransformed and suspicious lines such 

as the Pat:CAT lines. The use of the hptII probe in Southern blots to differentiate 

between complex and simple transformation events was also successful, leading to the 

identification of several single-inserts independent lines including from Pat:CAT 

transformations, though whether these contain the catalase gene remains to be seen. 

The percentage of independent single-insert lines in this work was high (60-90%) 

where only 30-40% is expected in most cassava research (Ihemere et al., 2006, Zhang 

et al., 2003b). It is worth mentioning that the work presented here was not completed in 

linear fashion but rather done concurrently. This explains why Pat:CAT lines were 

subjected to Southern blot and subsequently grown to mature plants despite ongoing 

investigation on the MecCAT1 constructs. 

The main purpose of growing the selected transgenics to fully-developed plants was to 

obtain storage roots so the role of target genes in reference to PPD can be assessed. 

Phenotype observations showed that all transgenic lines maintained the normal 

features of a healthy cassava plant. Maintaining the features of untransformed plants is 

particularly important in analysis like the PPD assay that can be difficult if the 

transgenics produced abnormal storage roots. Morphology determination was done by 

comparing the height of the plants and the weight of storage roots they produced to the 

WT. Pat:GCS and Pat:SOD, respectively, had 4 and 6 lines that were significantly taller 

than the WT suggesting transformation with these genes may modify the size of the 
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plants. However, this was not observed in the subsequent harvests, as none of the 

Pat:SOD lines showed a significant height difference from the WT. Likewise, the role of 

SOD gene in storage root formation was unclear as some of the lines showed a 

significant increase of yield in one harvest but showed non-significant increase in the 

following harvest. This phenomenon partly resulted from inconsistencies in the WT 

growth itself. The WT plant height varied from 40 to over 80 cm while the roots weighed 

from 30 to 100 g. Essentially, there were many factors determining the growth of plants 

in the greenhouse. Although it was designed to maintain a certain temperature, 

humidity and light provision, these could vary with the outside environment (J. Watling, 

pers. comm.). Being known as a cold-sensitive tropical plant growing cassava in non-

tropical environment might also affect its growth (An et al., 2012). However, precise 

control of the growth conditions was not possible. In a condition that allows large scale 

planting, plants could be randomly selected but this was not possible in this work.  

The change in plant height is not a great concern because it is not an agronomic trait 

for cassava but the root weight is. Therefore, the decrease in yield observed in 

Pat:GCS must be investigated with more replicates and several rounds of plantings. 

The discrepancies demonstrated in the growth and the yield of cassava transgenic 

lines; however, were unlikely to influence PPD-related experiments. What was 

observed was natural variation in plant height and root weight that was not affected by 

the presence of any of the transgenes under investigation. In conclusion, the aim to 

select single-insert independent lines for production of storage root suitable for PPD 

assay was successfully achieved. 
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CHAPTER 4 

 

Assessment of PPD 

 

 

4.1 Introduction 

 

Primarily, PPD consists of biochemical and physiological changes in the cassava 

storage root, some of which are manifested as visual symptoms, that can render them 

unacceptable as food or as input to processing (Beeching, 2001). According to the 

FAO, delaying PPD up to two weeks would significantly improve the value of cassava, 

particularly its potential as an export commodity (Wenham, 1995). In view of this, 

extensive studies have been conducted to understand the biochemical activities and 

pathways involved in PPD. To evaluate the result of the studies measuring of PPD 

symptoms is often necessary, which is usually based on a visual scoring system.  

 

The main PPD symptom is vascular streaking, but typically it is accompanied by 

browning of parenchymatic tissue (Hirose et al., 1983). The streaks or occlusions which 

tend to initiate at the root periderm are formed from pigment accumulation in the xylem 

vessels, which then spread to the adjacent parenchymatic xylem. Browning of 

parenchymatic tissue, which is initiated as a bluish pigmentation occurs when the 

pigments finally spread to parenchyma cells. In general, vascular occlusion is a 

response to environmental stress or pathogen infection. In a living plant tissue, the 

occlusions block transport of water causing increased respiration and wilting. Vascular 

occlusion is well-studied in grapevine (Sun et al., 2008) and cut flowers (da Silva Vieira 

et al., 2013), and in these plants its occurrence mostly is associated with tylose 

formation. In the cassava storage root, tylose formation is related to PPD but it was 

found in the pigmented and non-pigmented xylem vessels. Microscopy and 

cytochemical tests confirmed that the streaks contain lipids, carbohydrate and phenolic 

compounds (Rickard et al., 1979). Interestingly, although Penicillium, Aspergillus, 

Fusarium,Cladosporium, Bacillus and Xanthomonas species have been routinely 

isolated from fresh cassava root surfaces, vascular streaking is not pathological in 

nature due to the failure to isolate microorganisms from the occlusions (Noon and 

Booth, 1977, Averre, 1967). However, physiological deterioration is always followed by 

microbial deterioration in which various fungi like Aspergillus flavus, Botryodiplodia 

theobromae, Fusarium solani, Trichoderma harizianum and saprophytic bacteria are 
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involved (Booth, 1976). This normally occurs from 5 days of harvest onwards and the 

typical signs include softening of the root and an unpleasant smell. Microbial 

deterioration, especially initially, is not easily distinguished from physiological 

deterioration as existing vascular streaking may mask its presence. To avoid this, the 

evaluation of PPD symptoms often is done prior to 5 days after harvest. 

 

CIAT has proposed a standard procedure for assaying cassava roots for PPD and a 

standard method to score the symptoms the roots develop. According to the CIAT 

method, mature cassava roots of commercial size are cut at both ends to 

approximately 15 cm length. The distal end of the root is covered with PVC film to 

maintain moisture content and to promote initiation of deterioration from the proximal 

end. These roots are stored at ambient temperature and away from sunlight and pests 

for 3 days or more. To estimate PPD, the roots are cut transversely to make seven root 

sections of approximately 2 cm thickness. To determine the roots susceptibility to PPD 

each root section is scored from 0 to 10 based on the percentage of discoloration as 

shown in a reference picture (Figure 4.1). The final score of an individual root is the 

highest score among the root sections. This assay and scoring method is published in 

Wheatley et al.(1985). 

 

 

Figure 4.1 CIAT PPD scoring reference picture consisting cassava root sections 

showing a range of PPD symptoms. These root sections were obtained from highly 

susceptible cultivar that was stored at 21-28°C and 70-80% relative humidity for 3 

days. Picture is courtesy of CIAT. 

 

The CIAT PPD assay is commonly practiced but the scoring method and the reference 

picture tend to vary with research group preference. Figure 4.2 shows the reference 

used by the Philippine Root Crop and Research Training Centre (PRCRTC) to score 

their roots where the degree of discolorations were divided into 5 scale according to 

percentage (Hirose et al., 1983). With this reference picture, the roots were scored 

from 1 to 5. Note that the symptomless roots were given score 1 while in the CIAT 
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method it is assigned as 0. For PPD estimation, 11 sections of 1 cm thick were used as 

oppose to 7 sections of 2 cm thick in the CIAT method. Misinterpretation of PPD 

symptoms are likely to arise from this when an equivalent root sample is compared, for 

example score of 1.5 for a root sample is equivalent to 15% deterioration if one is using 

the CIAT reference picture but this score indicates no PPD symptoms with the 

PRCRTC reference picture. Modifications are also made in the calculation the final 

score of a root sample, for example, Morante et al. (2010) who followed the CIAT 

method use the average score of the root section rather than the highest score among 

the root section as the final score, despite working at CIAT. At another extreme, Booth 

(1976) scored deteriorated roots on a scale of 0 to 4 without a reference picture. 

Scores were assigned as based on individual judgement; 0 = no deterioration, 1 = 

slight deterioration, 2 = up to half of root deteriorated, 3 = half to three quarters of root 

deteriorated, 4= three quarters to complete root deterioration. From these scores the 

percentage or the index of deterioration was established. 

 

 

Figure 4.2 PPD symptoms reference picture used in PRCRTC to estimate PPD. The 

roots were given score based on the percentage of deterioration and classified into 5 

categories. Score 1 is designated for fresh and symptomless root section whereas 
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score 5 is for deteriorated root section that includes both the physiological and 

microbial deterioration symptoms. No details were given on the PPD assay used on the 

roots to produce the scores (Hirose et al., 1983). 

 

During PPD, a range of secondary metabolites accumulate, including the 

hydroxycoumarins, scopoletin, scopolin, esculetin and esculin; it is the oxidation of 

some of these that leads to the blue-black vascular streaking symptoms (Wheatley and 

Schwabe, 1985). These compounds are suitable as an alternative visual assessment 

mainly because they fluoresce under ultra-violet (UV) light. Amongst these compounds 

scopoletin fluoresces most intensely. Scopoletin and the other hydroxycoumarins 

derive from general phenylpropanoid metabolism, the key entry enzyme to which is 

phenylalanine ammonia-lyase (PAL) (Vogt, 2010), which increases in activity during the 

early response of PPD (Tanaka et al., 1983). In freshly harvested cassava roots 

scopoletin is barely detectable but its abundance increased rapidly after one day of 

harvest. It is unclear to what extent the increase of scopoletin abundance during PPD 

is due to its de novo synthesis or to the de-glycosylation of its glycone, scopolin.  

 

Quantification of hydrocoumarins in storage period over 6 days at 2-day intervals 

revealed high differences between varieties. However, it can be generalised that 

scopoletin concentration peaked at day 2 and gradually decreased by day 4 and 6 in 

highly susceptible cultivars while in less susceptible cultivars it peaked at day 6 

(Buschmann et al., 2000b). On the other hand, scopolin, esculetin and esculin 

concentrations fluctuated with storage time but generally were found in lower 

concentrations than scopoletin making them less reliable as potential markers of PPD 

(Buschmann et al., 2000b). Scopoletin also lends itself as a preferred biochemical 

marker over other alternatives because its distribution across along the root length is 

more homogenous. Measurement of fluorescence from the proximal to distal end from 

25 different cultivars showed high consistency of scopoletin than the PPD symptoms 

(Salcedo et al., 2010). 
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4.2 Research aim 

Development of PPD assays and scoring methods has been centred in countries 

where cassava is cultivated and materials for PPD assessment are plentiful. However, 

in the past 15 years an increasing number of PPD research teams are based in 

countries where field cassava cultivation is not suitable. As an alternative, cassava is 

grown under greenhouse conditions on a smaller scale. Under such conditions space is 

at a premium, which leads to lower numbers of plants being grown, the use of small 

pots to encourage early rooting, and limiting the growth period of the plants to a few 

months. As a result the storage roots tend to be small and often distorted by the 

cramped space in which they are grown; thereby rendering them rather different from 

field grown roots. This makes the implementation of the above-mentioned PPD 

assessment method a challenge. The need to develop a reliable PPD scoring method 

or modify the existing method is urgent, especially as the generation of reliable data 

that can be shared or compared between institutions is desirable. Therefore, the aim of 

this chapter is to find a reliable method to assay PPD particularly for storage roots 

grown in the greenhouse and to score the roots based on the PPD symptoms that 

develop. The PPD symptoms will be assessed by an image processing software and a 

subjective rating method where appropriate. The criteria to be evaluated include the 

length of the assay, the intensity of the PPD symptoms, microbial infection risks as well 

as dehydration state. The role of hydrocoumarins as a PPD marker will also be 

examined in the later sections. 
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4.3 Results 

In all PPD assays, storage roots produced from 6 months old cassava plants grown in 

a greenhouse were used (Section 2.2.2). 

4.3.1 PPD Assay 1: Intact cassava storage roots deteriorate with high variations 

in PPD symptoms 

Six Pat:SOD lines and the WT roots were examined at 0, 1 and 3 days after harvest 

(DAH). For each line, 9 average size storage roots from 9 plant replicates were 

harvested. As shown in Figure 4.3, the plants produced various sizes and forms of 

roots. Therefore selecting roots with a standard parameter for PPD assessment could 

not be applied rigorously. Instead, selection was made by human judgement. 

 

Figure 4.3 The forms and sizes of storage roots commonly produced by plants grown 

in a greenhouse including in this assay. The plants either produced (a) a massive and 

straight storage root (b) or two roots of different sizes (c) or smaller roots of identical 

lengths. Long storage roots tend to be distorted because of growth restriction in a small 

container as seen in b. Bar represents 2 cm. 

The roots were assayed according to the CIAT assay method with some modifications. 

The roots were removed from the stem by cutting off peduncle but were not cut in the 

distal ends. Instead, to ensure deterioration would only initiate in the proximal ends 

unharmed roots were used. Except for the 0 DAH root samples, all roots were placed 

on an open Petri dish lined with a dry filter paper and stored in a growth room at 25-

27°C until analysed. At each time point, the roots were sliced into approximately 1 cm 

cross sections and photographed under white light. The 0 DAH root sections were 

photographed immediately after harvest. All roots were scored by visual rating using a 

reference picture (Figure 4.4). Each root section was assigned a score in percentage 

which reflects the percentage of discoloration or PPD symptoms. The sum of the 

scores was divided by the number of the root sections to obtain the mean PPD score of 

the root. 
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Figure 4.4 Reference picture used in the present study. The degree of root 

discoloration or PPD symptoms on parenchymatic tissue are indicated in percentage. 

The picture was prepared from root sections stored in a growth room at 25-27°C. 

Figure 4.5 shows the photographs of the roots and Table 4.1 shows the scores 

assigned to the individual root samples. As expected, none of the roots showed visible 

PPD symptoms at 0 DAH and so were given a 0% score. The PPD symptoms were 

also not visible in the majority of the roots at 1 DAH but only became obvious in some 

of the roots at 3 DAH. Intense PPD symptoms were observed in Pat:SOD A2, B2, C1 

and D7 causing dramatic increase in PPD scores.  



71 
 

 

Figure 4.5 Representatives of Pat:SOD roots following harvest. The root sections were 

laid from the proximal (injured site) to the distal ends (from right to left). The sections 

were approximately 1 cm thick and the numbers of sections varied with the length of 

the roots.  
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Table 4.1 Pat:SOD group root samples PPD scores scored by visual assessment. The 

roots were assayed with PPD Assay 1 which was the modified CIAT assay method. 

The number of root sections generated from the individual root samples and their score 

are shown. These scores were obtained by comparing PPD symptoms in reference 

pictures (Figure 4.4) to PPD score showed by the roots. At 0 and 1 DAH most of the 

roots seemed fresh; PPD symptoms did not appear until 3 DAH. SD value indicates the 

variation between root sections. 

Cassava lines No of 
root 
sections 

0 DAH No of 
root 
sections 

1 DAH No of 
root 
sections 

3 DAH 

Pat:SOD 
A2 

P1 5 0.0 6 0.8 ± 2.0 7 25.7 ± 14.0 
P2 6 0.0 6 0.0 - - 
P3 5 0.0 7 0.0 - - 

Pat:SOD 
B2 

P1 5 0.0 8 5.0 ± 0 10 46.0 ± 15.1 
P2 5 0.0 8 0.0 8 42.5 ± 16.7 
P3 5 0.0 5 1.0 ± 2.2 - - 

Pat:SOD 
C1 

P1 6 0.0 6 0.0 6 41.7 ± 14.7 
P2 4 0.0 6 0.0 5 32.0 ± 8.4 
P3 5 0.0 5 0.0 - - 

Pat:SOD 
C4 

P1 5 0.0 5 0.0 5 0.0 
P2 5 0.0 5 0.0 10 0.0 
P3 4 0.0 5 0.0 8 0.6 ± 1.8 

Pat:SOD 
D3 

P1 5 0.0 6 0.0 9 2.2 ± 2.6 
P2 5 0.0 6 0.0 8 0.0 
P3 5 0.0 7 0.0 6 0.0 

Pat:SOD 
D7 

P1 7 0.0 5 0.0 5 42.0 ± 4.5 
P2 5 0.0 4 0.0 4 35.0 ± 5.8 
P3 5 0.0 4 0.0 7 34.3 ± 11.3 

WT P1 6 0.0 5 0.0 6 0.0 
P2 5 0.0 5 0.0 3 5.0 ± 5.0 
P3 5 0.0 5 0.0 5 1.0 ± 2.2 

 

Although some of the root samples showed deterioration symptoms at 1 DAH it was 

clear from the photographs and the PPD scores that PPD symptoms only appear after 

3 days of harvest. The change at 3 DAH was statistically significant as tested (p=0.05). 

However, the PPD scores of the roots at this time point were lower than expected and 

this mainly arose from high variations in the PPD score of root sections as shown by 

high SD in Table 4.1. For example, some of the root sections of Pat:SOD B2 showed 

up to 60% PPD symptoms but the individual root score was reduced to 42 to 47% as 

the other sections showed low or no PPD symptoms. Variations between root sections 

were higher in the low scored roots such as Pat:SOD C4 P3 and Pat:SOD D3 P1 as 

well as the WT P2 and WT P3 but this plausibly was caused by random deterioration of 

the roots. By following the Morante et al. (2010) approach, the scores in Table 4.1 were 

averaged to get mean scores of individual lines (Table 4.2) where the SD value were 
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smaller at 3 DAH than those observed in Table 4.1 suggesting low variations between 

plant replicates. However this might only be true in high-scored lines (Pat:SOD A2, B2, 

C1 and D7) rather than the low-scored lines which were thought had develop arbitrary 

PPD symptoms. Nonetheless this is questionable as among the high-scored lines only 

Pat:SOD D7 had sufficient number of replicates. 

Table 4.2 Mean PPD scores of all Pat:SOD lines and the WT assayed with PPD Assay 

1 in percentage. SD value indicates variations between plant lines. 

Cassava lines 0 DAH 1 DAH 3 DAH 

Pat:SOD A2 0.0 0.3 ± 0.5 25.7 
Pat:SOD B2 0.0 2.0 ± 2.6 44.3 ± 2.5 
Pat:SOD C1 0.0 0.0 36.8 ± 6.8 
Pat:SOD C4 0.0 0.0 0.2 ± 0.4 
Pat:SOD D3 0.0 0.0 0.7 ± 1.3 
Pat:SOD D7 0.0 0.0 37.1 ± 4.3 
WT 0.0 0.0 2.0 ± 2.6 

 

Visual examination of the PPD symptoms revealed two types of discolorations that 

were commonly observed in deteriorated cassava roots. The first type was vascular 

streaking, which is indicated by a blue-black precipitate and the second type was a 

brown staining. In this assay the deteriorated roots showed either one or both types of 

discolorations as depicted in Figure 4.6. It was expected that development of 

deterioration symptoms would be highest in the proximal end and lowest in the distal 

end as the former was exposed while the latter was sealed, but this was not observed. 

The pattern of discoloration extending from the injury sites or proximal ends varied 

between roots. There were roots showing brown staining in the proximal ends and 

vascular streaking in the distal ends while others showed the opposite. Additionally, the 

symptoms were also found to be scattered on the root surfaces and not evenly 

distributed on the periphery of the roots as illustrated in the CIAT and PRCRTC 

reference picture. The irregularities in symptoms development observed in this PPD 

assay was the rationale of choosing Morante‘s approach rather than Wheatley‘s 

approach that take the highest score as the final individual root score. 
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Figure 4.6 The variations in the development of PPD symptoms in cassava roots 

examined at 3 DAH. Both roots were injured at proximal ends during harvest and 

stored at 25-27°C room. (a) Some of the roots developed brown staining at the 

proximal ends and blue-black discoloration towards the distal ends. (b) However some 

of them showed the opposite where blue-black discoloration developed at the proximal 

ends and brown staining was prominent at the distal ends. 

The scores at 0 DAH or during harvest are crucial for accurate comparison of PPD 

symptoms of the subsequent PPD times. They serve as background scores to 

accurately calculate the actual PPD symptoms of the later PPD times. With the 

assumption that all the 0 DAH roots were non-deteriorated; they were given the score 

of 0% although there could be minor differences between them that were not visible to 

the human eye. To investigate this, the root samples were subjected to computer-

based scoring using image processing software created by a research team at ETH-

Zurich called PPD Symptom Score Software. This software specifically converts 

images to greyscales and use the grey value of a selected area as the intensity of root 

discoloration. Each root section was measured and the average score of a whole root 

was obtained by dividing the sum score by the number of root sections. The actual 

PPD score for each line at each PPD times was calculated as the percentage of PPD 

symptoms in relative to scores at 0 DAH. The examples of roots that were converted to 

greyscale are shown in Figure 4.7. 
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Figure 4.7 Computer-scoring of root sections of Pat:SOD D7 at (a) 0 DAH and (b) 3 

DAH. Scores were given based on the Colourbar scale shown on right side of the 

picture. The 0 DAH root sections were scored between 106 and 164 and the whole root 

was given an average score of 25.4%. The 7 DAH root sections were scored between 

91 and 157 and the whole was given an average score of 34.4%.  

Since the photographs were taken under automatic mode, the greyness scores were 

normalised against the filter paper on which the roots were photographed. Scoring of 0 

DAH by this method could be used to determine a base line reference for scoring at 

later time points. At all PPD times, there were minor variations detected (indicated by 

SD values) but they were generally small. In the visual rating method, the variation or 

SD values were high in the 3 DAH root but the values were severely much reduced in 

the computer scoring. This is mainly because computer scoring reduces human bias as 

the vascular streaking and browning symptoms were treated as a single parameter in 

which only the intensities of the symptoms were computed. 
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Table 4.3 Greyness scores of all Pat:SOD group root samples at all PPD time points 

generated by computer scoring method. These scores were obtained by converting the 

photographs to greyscale and measuring the greyness intensities on the surface of the 

roots. The representation of these scores shows the accuracy of computer scoring 

method due to its ability to detect minor differences. 

Cassava lines 0 DAH 1 DAH 3 DAH 

Pat:SOD 
A2 

P1 20.6 ± 5.1 16.0 ± 7.5 24.1 ± 3.9 

P2 20.9 ± 3.0 15.8 ± 2.6 - 

P3 16.4 ± 4.2 19.2 ± 3.6 - 
Pat:SOD 
B2 

P1 18.3 ± 2.9 18.7 ± 2.5 30.2 ± 4.4 
P2 16.2 ± 4.7 15.3 ± 3.6 24.5 ± 2.5 
P3 15.3 ± 2.9 16.1 ± 2.1 - 

Pat:SOD 
C1 

P1 18.6 ± 7.2  15.5 ± 2.8 18.7 ± 5.2 
P2 10.4 ± 0.6 16.7 ± 2.7 25.7 ± 3.1 
P3 14.6 ± 1.5  13.4 ± 3.1 - 

Pat:SOD 
C4 

P1 14.6 ± 2.7 14.3 ± 1.8 16.3 ± 4.4 
P2 15.8 ± 3.3 17.4 ± 1.7 15.4 ± 2.7 
P3 13.1 ± 2.2 15.5 ± 3.6 14.0 ± 2.2 

Pat:SOD 
D3 

P1 18.7 ± 2.8 14.8 ± 3.5 19.9 ± 5.9 
P2 17.8 ± 2.1 14.1 ± 3.9 16.8 ± 1.8 
P3 16.2± 2.0 17.9 ± 4.8 14.7 ± 1.4 

Pat:SOD 
D7 

P1 19.1 ± 4.3 18.3 ± 3.7 26.4 ± 3.9 
P2 17.4 ± 1.7 18.6 ± 2.8 24.2 ± 1.7 
P3 18.8 ± 3.6 20.3 ± 2.6 26.3 ± 2.2 

WT P1 19.1 ± 3.6 14.8 ± 3.8 18.2 ± 2.2 

P2 17.6 ± 4.0 14.5 ± 3.2 17.3 ± 1.8 

P3 14.9 ± 3.4 16.8± 1.7 24.3 ± 1.5 

 

They mean greyness scores of individual lines were obtained from 3 plant replicates 

(Table 4.4). For calculation of PPD scores, the mean greyness score at the later PPD 

times were normalised against the mean greyness score 0 DAH by using equation 

below. To get PPD score at 3 DAH, the equation used is 

 

 

PPD score = ((Mean Greyness Score 3 DAH – Mean Greyness Score at 0 DAH)/ 

Mean Greyness Score at 3 DAH)) x 100% 
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Table 4.4 Mean greyness scores of all Pat:SOD group root samples at all PPD time 

points generated by computer scoring method Student t-test was performed at p =0.05, 

two-tailed level of significance to test the hypothesis that the PPD scores after storage 

were higher than PPD scores at harvest. na = not applicable. SD value indicates 

variations between plant lines. 

Cassava lines 0 DAH 1 DAH 3 DAH 

Pat:SOD A2 19.3 ± 2.6 17.0 ± 1.9 24.1  
Pat:SOD B2 16.6 ± 1.5 16.7 ± 1.8 27.3 ± 4.0 
Pat:SOD C1 14.5 ± 4.1 15.2 ± 1.7 22.2 ± 4.9 
Pat:SOD C4 14.5 ± 1.4 15.7 ± 1.5 15.3 ± 1.2 
Pat:SOD D3 17.5 ± 1.3 15.6 ± 2.0 17.1 ± 2.6 
Pat:SOD D7 18.4 ± 0.9 19.0 ± 1.1 25.7 ± 1.2 
WT 17.2 ± 2.1 15.4 ± 1.3 17.0 ± 1.3 

Max 19.3 19.0 27.3 
Min 14.5 15.2 15.3 
Mean 16.9 ± 1.8 16.4 ± 1.4 21.3 ± 4.8 
t-test (p value) na 0.58 0.02 

 

 

Table 4.5 PPD scores of Pat:SOD root samples at 3 DAH determined by visual scoring 

(Vis.) and computer scoring (Comp.). In the visual scoring, the PPD symptoms 

represent the PPD scores, while in computer based scoring PPD scores were 

calculated by normalising greyness scores of roots at harvest. 

 

Cassava 
lines 

PPD Score 
(Vis.) 

PPD score 
(Comp.) 

Pat:SOD A2 25.7 24.9 

Pat:SOD B2 44.3 64.9 

Pat:SOD C1 36.8 52.9 

Pat:SOD C4 0.2 5.3 

Pat:SOD D3 0.7 -2.3 

Pat:SOD D7 37.1 39.2 

WT 2.0 -0.9 

 
 

The change of greyness score at 1 DAH was only statistically significant at 3 DAH (p 

<0.05) thus PPD scores at this time point were calculated and compared with the visual 

rating scores. It is shown that the computer scoring method produced PPD scores 

approximately similar to those obtained from visual rating method. The root replicates 

with minimal or no PPD symptoms were scored low both with visual rating and the 

computer scoring method and vice versa. However, two lines (Pat:SOD B2 and 

Pat:SOD C1) showed higher scores using the computer scoring than the visual rating 

method and these scores matched the symptoms. It was difficult to claim if one of the 
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scoring methods could effectively score PPD with high certainties and this mainly due 

to small sample size. However, storing cassava roots as a whole for 3 days for PPD 

assessment as practiced by CIAT was proved ineffective with our root samples. Under 

this condition, PPD symptom developed too slowly that it appeared randomly across 

the root length. This has led to alternative PPD assay methods that aim to speed up 

the process.  

 

4.3.2 PPD Assay 2: Using root sections to measure the development of PPD 

symptoms 

The PPD response starts when harvesting injuries expose root tissue to oxygen and an 

oxidative burst is initiated that spreads through the root due to inadequate wound 

healing. The slow rate of deterioration observed in the entire greenhouse-grown roots 

evaluated in the preceding sections may be due to the exposure of a small surface 

area to air which then slowed down the development of PPD. Thus to increase the 

surface area, the roots were set to deteriorate in the form of root sections.  

Five Pat:GCS lines and a WT line were used in this method and each line was 

analysed in triplicate. For this assay a pair of root sections of approximately 2 cm 

thickness was prepared from a storage root of each plant replicate. Since this method 

does not require evaluation of the whole sample, storage roots of a diameter 1.5–2.0 

cm were selected. The root sections were placed in an open Petri dish lined with a dry 

filter paper and were stored in the same conditions (25-27°C) as the intact roots in PPD 

Assay 1. The pictures of the same root sample were taken at 0, 1 and 4 DAH to 

observe the change in PPD symptoms. As the surface are of the root dried out under 

these conditions a thin layer of the root sections surface was cut prior to 

photographing. Computer scoring was used to determine PPD scores in this assay to 

avoid scoring bias. Similar to PPD Assay 1, the greyness scores were normalised 

against the filter paper used to support the roots during photographing. Accordingly, 

PPD scores were calculated using the same approach.  

Figure 4.8 shows PPD symptoms in cassava root sections over the storage times and 

Table 4.6 shows the greyness scores of all root replicates. It is clear that deterioration 

occurred rapidly in this assay as PPD symptoms were visible even in 1 DAH root 

samples which then intensified at 4 DAH. Nevertheless, 60% of the roots at 4 DAH 

were severely dehydrated and the rest showed the common PPD symptoms but were 

slightly dried out.  
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Figure 4.8 Pat:GCS lines and the WT root sections photographed following storage in 

a warm room at 25-27°C. Photographs were taken by removing dried out layers at 

each PPD times. Pictures are representative from three biological replicates. 

A small number of the roots showed microbial infection symptoms. This was indicated 

by soft and spongy texture in the centre while the dehydrated roots turned to dry and 

hardened structure. Surface dehydration had severely affected the calculation of PPD 

score because it masked the true greyness scores. It also caused a high variation of 

the greyness score when only one of the root sections was dehydrated, as indicated by 

high SD value (Table 4.6) which then led to high variations between root replicates. 
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Table 4.6 Greyness scores of all Pat:GCS group root samples at all PPD time points 

generated by computer scoring method. ¥ indicates both root sections were severely 

dehydrated, ᴽ indicates one of the root section was dehydrated, * indicates only one of 

the root section pair was available due to damage, na indicates root sample not 

available due to inadequate size for PPD assay. 

Cassava lines 0 DAH 1 DAH 4 DAH 

Pat:GCS C5 P1 18.0 ± 3.8 21.1 ± 6.2 24.8 ± 1.9¥ 

P2 18.5 ± 2.3 21.5 ± 5.4 32.9 ±5.6¥ 

P3 16.2 ± 0.1 29.1 ± 4.0 19.7 ± 3.3¥ 
Pat:GCS C6 P1 19.6 ± 4.4 17.7 ± 2.9 26.1¥ * 

P2 20.3 ± 1.6 21.9 ±1.9 30.4 ± 0.43¥ 
P3 19.4 ± 0.5 23.2 ± 0.6 27.3 ±2.28¥ 

Pat:GCS C11 P1 15.0 ± 1.6 18.9 ± 0.3 64.8 ± 26.5 
P2 21.7 ± 0.1 20.8 ± 2.1 38.3 ± 11.3 
P3 na na na 

Pat:GCS C16 P1 15.1 ± 1.5 20.8 ±0.4 38.7 ± 8.28ᴽ 

P2 15.2 ± 2.5 19.3 ± 2.1 51.1 ± 1.59 
P3 9.6 ± 2.5 13.3 ± 1.5 53.5 ± 9.28ᴽ 

Pat:GCS C19 P1 11.9 ± 2.2 22.3 ± 3.0 62.2 ± 2.0 
P2 17.8 ± 4.5 24.1 ±6.1 60.6 ± 4.0 
P3 18.0 ± 0.7 22.3 ± 2.1 71.8 ± 5.9 

WT P1 11.4 ± 0.1 21.5 ± 10.4 36.5 ± 18.2ᴽ 

P2 18.6 ± 1.6 23.4 ± 6.6 26.7 ± 3.2¥ 

P3 18.8 ± 2.7 20.7 ± 1.3 68.4 ± 3.9 

 

The same PPD assay was applied to Pat:SOD roots except the roots were 

photographed at 3 DAH instead of 4 DAH (Figure 4.9). Compared to the Pat:GCS 

roots, the Pat:SOD root samples became dehydrated much earlier in which some of 

the roots turned white and chalky at 1 DAH. At 3 DAH most of the roots were 

completely hardened due to loss of water although some developed PPD symptoms at 

certain extent. PPD scores for the roots were not scored. Removal of dried out layers 

prior photographing caused introduction of new wound response, made the root 

sections became thinner and eventually causing the roots sections more prone to 

dehydration.  
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Figure 4.9 Pat:SOD lines and the WT root sections photographed following storage in 

a warm room at 25-27°C. Photographs were taken by removing dried out layers at 

each PPD times. Pictures are representative from three biological replicates. 

Ultimately, the high frequencies of dehydration in the 3 and 4 DAH roots prevented an 

accurate calculation of PPD scores. This was evident when the majority of the roots at 

this time-point were scored more than 100% and up to 300% which did not match their 

actual PPD symptoms (data not shown). Although this method was proved to speed up 

PPD, dehydration issue clearly was its main weakness. The occurrence of microbial 

deterioration was another reason to dismiss this method.  
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4.3.3  PPD Assay 3: Overcoming the dehydration and microbial deterioration 

problem 

The main advantage of using root sections in PPD Assay 2 was formation of clearly 

visible PPD symptoms which manifested on the surface of the roots. Cutting cassava 

roots into sections caused greater exposure of the surface area to the air compared to 

using it as a whole as it accelerated deterioration through oxidative damage. However, 

apart from becoming more receptive to oxidative damage, high surface area promotes 

moisture loss which eventually causes dehydration. At each time point the roots were 

wounded to remove the dried out surface and this was thought to exacerbate 

dehydration problem. To overcome this, some changes were made to PPD Assay 2. 

Instead of using the same root sections for analyses at separate PPD times, a pair of 

root sections was assigned to a single time-point. Selection of root samples followed 

the criterion mentioned in PPD Assay 2 (1.5-2 cm diameter). To minimise surface 

dehydration the root sections were placed in a covered Petri dish. A dry filter paper was 

used to support the base of Petri dish to avoid excessive transpiration. To reduce the 

probability of microbial infection the Petri dishes were kept in an incubator at 27°C 

instead of the common warm room.  

Photographs were taken at 0, 1, 3 and 4 DAH. The 3 DAH time-points was introduced 

to track changes in PPD symptoms more carefully and to obtain PPD symptoms 

optimum for scoring. All photographs were taken using PENTAX K20D camera under 

the following settings; relative aperture f/2.8, exposure time 1/45 seconds, ISO 400. At 

each PPD time, the root sections were photographed and the pictures were used to 

find their greyness scores with a computer scoring method. For each PPD time-point 

the roots were analysed in triplicates, this required a total of 72 root sections pair in 

which 5 Pat:GCS lines and the WT line involved. 
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Figure 4.10 Pat:GCS lines and the WT root sections after harvest. Each root section 

was derived from a single cassava plant. The roots were incubated in a 27°C incubator. 

Pictures are representative of three biological replicates. 

Compilation of root sections taken over the storage period revealed an unexpected 

result (Figure 4.10). None of the samples showed any PPD symptoms until at 4 DAH 

and this have made calculation of PPD scores unfeasible. Relatively the root sections 

at this time course appeared moist compared to those observed in PPD Assay 1 and 2 

and only a small percentage of them appeared slightly discoloured. Although this assay 

method effectively resolved dehydration problem by reducing water loss from the root 

sections it inadvertently delayed the development of PPD symptoms. Failure to induce 

PPD symptoms in the recommended storage period was identified as the main 

disadvantage of this method.  
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4.3.4 PPD Assay 4: Controlled moisture loss and multiple wounding of root 

sections are essentials to a successful PPD assay  

The rationale for assigning an individual pair for a PPD time in PPD Assay 3 was to 

allow the roots to deteriorate without excessive dehydration and to avoid multiple 

wounding, which proved to be the case. However, this also slowed down PPD 

considerably, so that it was very difficult to examine the development of PPD 

symptoms even at 4 DAH. Covering the Petri dish also found to delay PPD as it 

prevented water loss. At this point, wounds and sufficient water loss during storage 

were recognised as important aspects in deterioration. This eventually led to revision of 

PPD Assay 2 which had shown encouraging outcomes.  

Selection of root samples followed the criterion described in PPD Assay 2 and 3 (1.5 - 

2 cm diameter). Two root sections were prepared from each plant replicate and placed 

on a Petri dish lined with a dry filter paper. The Petri dishes were kept covered to 

prevent microbial contamination and stored in a 27°C incubator instead of the warm 

room. Humidity was provided by distributing approximately 100 ml distilled water in two 

Petri dishes which were left uncovered. All roots were analysed in triplicate, where 15 

pairs of root sections were prepared from Pat:SODs and the WT root. The surface of 

the root sections were photographed at 0 DAH after harvest and the same root 

samples were photographed again at 1, 2, 3 and 4 DAH. Prior to photographing a thin 

layer of dried out surface was removed. All photographs were taken using PENTAX 

K20D camera under uniform lighting and with the following settings; relative aperture 

f/5.6, exposure time 1/200 seconds, ISO 400. The photographs were then used for 

estimation of greyness score using the computer scoring method (Figure 4.11). Since 

all samples were taken under fixed camera settings, normalisation against the 

photographs background was not required. PPD scores at each time points were 

calculated by normalising the greyness scores obtained at harvest. 
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Figure 4.11 Pat:SOD lines and the WT root sections photographed at harvest,1,2,3 

and 4 DAH. The roots were assayed with PPD Assay 4. Pictures are representative of 

three biological replicates. 

 

Table 4.7 Greyness scores of Pat:SOD root samples measured by PPD Symptom 

Score software following harvest. SD values indicate PPD symptoms variation between 

two root sections. na indicates root sample not available due to inadequate size for 

PPD assay. 

Cassava lines 0 DAH 1 DAH 2 DAH 3 DAH 4 DAH 

Pat:SOD 
B2 

P1 17.5 ± 0.7 22.6 ± 0.4 22.6 ± 1.5 31.7 ± 3.1 34.9 ± 0.9 

P2 18.2 ± 0.1 24.6 ± 1.7 26.9 ± 1.5 34.4 ± 0.7 34.9 ± 3.1 

P3 na na na na na 
Pat:SOD 
C1 

P1 18.0 ± 1.2 21.1 ± 0.1  20.8 ± 0.4 28.1 ± 1.5 37.1 ± 3.2 

P2 17.2 ± 0.2 20.7 ± 0.1 23.2 ± 0.9 26.2 ± 1.8 32.3 ± 2.8 
P3 18.0 ± 1.3 19.9 ± 0.5 25.9 ± 2.2 26.3 ± 1.2 25.5 ± 1.2 

Pat:SOD 
C4 

P1 18.1 ± 0.8  19.7 ± 0.8 23.8 ± 2.7 34.7±6.6 33.5±3.3 

P2 17.0 ± 1.3 15.8 ± 0.4 19.3 ± 0.8 25.7 ±0.6 36.4±0.3 
P3 18.3 ± 0.9  23.8 ± 0.1 26.8 ± 1.2 28.9 ±1.0 38.3±3.7 

Pat:SOD 
D7 

P1  18.2± 1.1  18.5±0.1 18.4 ±1.2 21.7±2.6 24.3±3.0 

P2  17.1±1.1  19.7±0.1  21.8±1.8 28.1±1.8 34.4±2.5 
P3  17.5±0.1  18.0±0.9  26.8±0.1 28.4± 0.9 32.7± 0.4 

WT P1 19.8 ±1.2  18.0±0.2  24.4± 0.0 30.1±1.7 33.3±3.6 

P2 19.4 ±1.1  26.7±2.8  25.2±1.3 28.1±5.2 38.8±3.8 

P3 19.2 ±0.8 18.3±0.8  19.8±2.2 25.1±1.3 43.5±1.5 
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Figure 4.12 Mean greyness scores of Pat:SOD root sections over storage times. SD 

represents biological replicate variations, n=3.  

The greyness score of individual root sections pair is presented in Table 4.7. These 

values were used to calculate mean greyness score and to see the change of PPD 

symptoms by plotting the scores over storage time. Figure 4.12 clearly shows a steady 

increase of PPD symptoms over storage period with highly visible symptoms observed 

at 3 and 4 DAH. Interestingly, the changes in PPD symptoms from 0 DAH were 

significant at all PPD times (t-test, p < 0.05) except for at 2 DAH.  

The PPD symptoms developed in this PPD assay were the usual types, the root 

sections either showed brown staining or blue-black discoloration or both symptoms. 

Importantly, none of the root sections showed either microbial deterioration or 

excessive dehydration until at 4 DAH. Supplying water in the incubator chamber had 

resolved dehydration problem by maintaining high humidity during the course of 

deterioration. The absence of dehydrated samples had enabled measurement of 

greyness scores even at late storage times, to be done with greater accuracy. 

Additionally, in this assay the root sections deteriorated more homogenously compared 

to those observed in PPD Assay 2, as indicated by lower SD values (Table 4.7). 

Despite this, variations between root replicates were still high in both the transgenic 

lines and the WT line as can be seen from 2 DAH onwards.  
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This PPD assay also was applied to the Pat:GAR transgenic group with more root 

samples. A total of 24 pairs of root sections were prepared from 24 transgenics and the 

WT. These root samples were assayed in the same conditions as Pat:SOD roots. The 

root samples were also treated and photographed similarly except that photographing 

at 2 DAH was omitted. Photographing was also done with the camera settings and the 

photographs were used for computation of greyness scores which then were used for 

calculation of PPD scores. Again, normalisation was not required because all 

photographs were taken under fixed camera settings. 

 

Figure 4.13 Pat:GAR lines and the WT line root sections photographed at harvest,1,3 

and 4 DAH. The roots were assayed with PPD Assay 4. Pictures are representative of 

three biological replicates. 

All roots deteriorated as anticipated as none were found severely dehydrated or 

attacked by microbes. Figure 4.13 shows root samples photographed over PPD times 

from which greyness scores were computed. PPD symptoms were clearly visible at 3 

DAH and became more intense at 4 DAH with brown staining being noticeably more 

prominent than the vascular streaking.  
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In PPD Assay 2, it was assumed that high SD values would be obtained when one of 

the root sections of a root sample was dehydrated as this caused unequal rate of 

deterioration. This was supported by data gathered from Pat:SOD group samples using 

PPD Assay 4 where none the root samples were dehydrated and variations between 

root sections were remarkably reduced. However, this assumption might not be true as 

high variation was still be observed in Pat:GAR especially at 4 DAH even though none 

of the samples dehydrated (Table 4.8) 

Table 4.8 Greyness scores of Pat:GAR root sample replicates measured by ETH 

software following harvest. SD values indicate PPD symptoms variation between two 

root sections.  

Cassava lines 0 DAH 1 DAH 3 DAH 4 DAH 

Pat:GAR 

A13 

P1 18.1 ± 3.5 18.0 ± 8.5 21.5 ± 12.8 30.3 ± 14.2 

P2 15.0 ± 4.4 16.0 ± 2.9 41.7 ± 4.3 52.5 ± 5.9 

P3 14.6 ± 2.9 19.3 ± 4.7 48.8 ± 0.4 43.4 ± 2.7 

Pat:GAR 

A15 

P1 15.7 ± 9.4 21.2 ± 2.4 36.3 ± 7.5 32.5 ± 14.3 

P2 17.7 ± 6.3 19.8 ± 2.7 45.2 ± 9.7 44.4 ±1.6 

P3 16.8 ± 2.3 16.8 ± 8.8 32.7 ± 2.6 30.7 ± 18.3 

Pat:GAR 

B27 

P1 14.7 ± 4.6 16.4 ± 4.9 36.8 ± 0.2 42.3 ± 0.2 

P2 15.4 ± 5.9 17.7 ± 3.1 37.9 ± 2.9 37.9 ± 6.9 

P3 15.0 ± 8.3 17.4 ±5.1 36.5 ± 8.7 17.2 ± 12.4 

Pat:GAR 

B29 

P1 15.1 ± 4.7 20.7 ± 10.6 34.3 ± 6.9 34.3 ± 14.2 

P2 14.4 ± 4.7 17.2 ± 3.6 31.2 ± 7.8 32.5 ± 1.0 

P3 18.5 ± 11.3 16.9 ± 7.0 34.0 ±4.4 43.8 ± 0.7 

Pat:GAR 

B33 

P1 17.4 ± 8.8 20.5 ±8.7 45.6 ±5.8 35.2 ±11.6 

P2 19.6 ± 3.3 22.7 ±4.2 43.8 ±1.1 53.3 ±19.1 

P3 15.7 ± 6.3 16.6 ±3.9 37.4 ±4.9 30.0 ±8.3 

Pat:GAR C8 P1 16.0 ±0.5 17.9 ±2.6 33.7 ±4.5 33.5 ±2.4 

P2 17.5 ±3.4 17.5 ±5.9 24.6 ±1.7 20.6 ±11.8 

P3 15.6 ±4.0 20.5 ±2.8 33.2 ±6.6 27.2 ±18.7 

Pat:GAR 

C12 

P1 14.8 ±5.9 17.2 ±5.1 30.6 ±0.9 32.2 ±0.1 

P2 18.4 ±2.3 21.2 ±7.5 49.4 ±11.4 38.0 ±7.3 

P3 16.6 ±3.3 18.1 ±3.0 30.6 ±12.0 21.6 ±15.4 

WT P1 17.9 ±4.0 20.8 ±2.7 29.5 ±4.9 29.7 ±9.6 

P2 16.4 ±6.6 18.5 ±10.2 33.8 ±2.0 30.1 ±16.6 

P3 12.4 ±7.1 15.2 ±6.0 37.0 ±3.4 44.8 ±5.1 
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The mean greyness scores were calculated from the plant/root sample replicates and 

were plotted against PPD times (Figure 4.14). It clearly shows a sharp increase of PPD 

symptoms occurred at 3 DAH and 4 DAH. The change in PPD symptoms from 0 to 1 

DAH was small but significant (t-test, p <0.05). On the other hand, as can be inferred 

from the root sections pictures, the changes in PPD symptoms at 3 and 4 DAH were 

considerable, but were only statistically significant at 3 DAH. This is because, at 4 DAH 

not only high variations were observed within the same root samples but also between 

the root sample replicates.  

 

Figure 4.14 Mean greyness scores of Pat:GAR root samples over storage times using 

computer scoring. SD represents biological replicate variations, n=3.  

 

4.3.5 Extensive variations of PPD symptoms between root samples and 

reproducibility of the computer scoring method 

High variations in PPD symptoms are undesirable but were consistently observed in all 

PPD assays trials except in PPD Assay 3. In PPD Assay 1, this was probably caused 

by the slow PPD response that meant that at 3 DAH the symptom development was 

still ongoing in some roots. On the other hand, in PPD Assay 2 high PPD symptoms 

variation was attributed to dehydrated root sections and to a too rapid PPD response. 

While these problems were effectively tackled in PPD Assay 4, variation in PPD 

symptoms was only reduced in one transgenic group but persisted in another. 
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It is not surprising if PPD symptoms in transgenic plant lines originated from the same 

transgenic group to vary but this is unexpected in the WT line. The WT is not 

genetically modified and served as a control line. In all PPD assays, 3 WT roots were 

used and pooled here are the WT root samples at ‗late‘ PPD times where the PPD 

symptoms were evident.  

Figure 4.15 clearly shows variation of PPD symptoms in PPD Assay 1 and PPD Assay 

2 respectively. In PPD Assay 1 only Root 2 was severely deteriorated after 3 days 

storage while others appeared undeteriorated despite being harvested at the same 

time and assayed in a similar way. Similarly, in PPD Assay 2 only Root 3 showed PPD 

symptoms as the other two were severely dried out. However, making a valid 

comparison was difficult in both cases as the assays themselves were defective in 

many aspects as previously discussed. 

 

 

Figure 4.15 Three WT root replicates at 3 DAH assayed with PPD Assay 1 and root 

replicates at 4 DAH assayed with PPD Assay 2. In both assays the roots were stored at 

25-27°C except that PPD Assay 1 involved incubating the whole storage roots while 

PPD Assay 2 utilised root sections. Each root was obtained from a single cassava 

plant. 
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Although PPD Assay 4 was not a significant improvement over the methods tested, it is 

justified to claim it as the best PPD assay attempted in this study. It succeeded in 

controlling two responses that interfered with measuring PPD symptoms, through 

reducing dehydration and preventing root decay caused by bacteria. Two transgenic 

groups were assayed with this method, the Pat:SOD and the Pat:GAR. Roots 1-3 

served as control in Pat:SOD group while roots 4-6 served as control in Pat:GAR group 

(Figure 4.16). The pictures of the roots at 3 and 4 DAH were presented here since only 

at these times PPD symptoms were clearly visible. At either PPD times no 

commonalities in PPD symptoms were detected among these roots, the intensities as 

well as the type of symptoms developed were variable. Variation in PPD symptoms 

was not only found between sample replicates but also apparent in root sections 

derived from a single a root. This is not unusual as it is equally observed in other 

transgenic groups and PPD assays. 

 

Figure 4.16 WT root samples assayed with PPD Assay 4 at 3 and 4 DAH. Root 1-3 

was the control samples in Pat:SOD group, Root 4-6 were the control samples in 

Pat:GAR group. All roots were obtained from different plants and captured with fixed 

camera settings. 
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In the present study, all the PPD assays were evaluated based on analysis by 

computer scoring. The reliability of the computer scoring method was tested by 

‗compare and contrast‘ of the PPD score calculated and the visual rating score. 

Regression analysis of all root sample pictures involved in PPD assay 4 proved that 

approximately 80% of the computer-generated score matched the visual scores. 

Pearson test confirms that these two scores are significantly correlated (r (74) = 0.88, p 

< 0.05). The remaining 20% mismatch scores is owing to variable type of PPD 

symptoms developed by the entire root samples which has made visual scoring that 

completely based on subjective decision become difficult. However, this is only true in 

root samples at 3 and 4 DAH as the earlier PPD time root sections tend to be scored 0 

by visual rating method. To demonstrate this, Figure 4.16 which consists of root 

sections of highly variable symptoms were used to compare the computer-generated 

scores and the visual scores. 

 

 

Figure 4.17 Comparison between PPD scores of root sections from Figure 4.15. 

(Comp.) refers to PPD scores calculated from the greyness scores generated by the 

ETH software and (Visual) refers to PPD scores assigned based on Reference picture 

(Figure 4.4). 

Figure 4.17 shows that the majority of the root samples had comparable scores. 

Essentially, the nature of these methods caused the computer-scoring method to 

generate slightly higher PPD score than the visual rating method. In the computer 
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scoring method, the software is incapable of differentiating vascular streaking and 

tissue browning thus scores them equally. On the other hand, in the visual method 

brown staining often is underestimated because this type of symptoms is not found in 

the reference picture. Therefore, the visual method is more appropriate for a study that 

aims to look for a general deterioration. For a study that requires rigorous evaluation of 

PPD and its symptoms, the computer scoring is highly recommended. Nevertheless, 

the aim to standardise the scoring method between labs could only be achieved with 

the computer scoring especially if the roots developed inconsistent and highly varied 

PPD symptoms. 
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4.3.6  Fluorescence and scopoletin accumulation as markers in PPD 

assessment 

Scopoletin can be visualised without any pre-treatment of the roots. It fluoresces under 

UV light, thus provision of a UV lamp is sufficient to see its production. The use of 

scopoletin-induced fluorescence as a PPD marker was tested in a preliminary 

experiment where root sections from the WT lines were monitored over a 7-day time 

course for fluoresce and by PPD Assay 4. This showed that there was no or minimal 

fluorescence in the root samples at 0 DAH but the fluorescence intensified a day after. 

At 3 and 5 DAH the fluorescence level were slightly different between the two sets of 

roots. However, it is interesting to note that at 5 DAH Root 2 sections that were 

microbially decayed stopped fluorescing under UV light while Root 1 that underwent 

the expected physiological deterioration continued to mildly fluoresce until at 7 DAH 

(Figure 4.18).  

 

 

Figure 4.18 Two root samples were tested for the relationship between PPD and 

scopoletin–induced fluorescence. Root 1 had undergone normal PPD response until at 

7 DAH and was showing scopoletin production while Root 2 was attacked by microbes 

at 5 DAH stopped producing scopoletin. Both roots were the WT roots and assayed 

with PPD Assay 4. 

 

4.3.7 Fluorescence accumulation and its association with PPD symptoms 

To investigate the potential of scopoletin, three different transgenic groups were used. 

Their root sections were photographed under UV light (in addition to the white light) in 

order to detect the accumulation of scopoletin-induced fluorescence and relate it to 

visible PPD symptoms. They were the Pat:SOD group, the Pat:GAR and the Pat:GCS 
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group. All UV photographs were taken in a dark room using PENTAX K20D camera 

with the following settings; relative aperture f/2.8, exposure time 0.7 seconds, ISO 400. 

The photographs were then used to estimate fluorescence accumulation over storage 

time by visually rating the percentage of fluorescence produced on the surface of the 

root sections. In this case, a visual rating method was applied because fluorescence 

could not be accurately computed with the same software used to measure PPD 

symptoms as converting UV captured pictures to greyscale pictures caused saturation 

of score. Besides, the software was also unable to differentiate between fluorescence 

and PPD symptoms which lead to a combined measure. To find the association 

between fluorescence score and PPD score, the correlation of these scores were 

computed with either Pearson Correlation at p = 0.05, two-tailed level of significance or 

the Spearman rank correlation test also at p = 0.05, two-tailed level of significance. 

The Pat:SOD roots were assayed with PPD Assay 4, in which pairs of root sections 

were observed over a time-course by removing successive layers of dried out root 

surface. Figure 4.19 shows the representative of Pat:SOD root samples photographed 

under UV light at various PPD times.  

 

Figure 4.19 The Pat:SOD lines and the WT root sections photographed under UV 

lights following. The roots were assayed with PPD Assay 4. Photographs are the same 

root samples taken under white light above (Figure 4.11). 

 



96 
 

Figure 4.20 shows Pat:GAR root samples that were assayed in parallel to the Pat:SOD 

roots were also viewed and photographed under UV light to observe fluorescence 

production.  

 

Figure 4.20 The Pat:GAR lines and the WT root sections photographed under UV 

lights. The roots were also assayed with PPD Assay 4. Photographs are the same root 

samples taken under white light (Figure 4.13). 
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The Pat:GCS roots were assayed with PPD Assay 3 in which individual root sections 

were assigned to each PPD times in order to avoid multiple wounding and excessive 

dehydration. They were also viewed and photographed under UV light as shown in 

Figure 4.20. 

 

Figure 4.21 The Pat:GCS lines and the WT root sections photographed under UV 

lights following. The roots were assayed with PPD Assay 3. Photographs are the same 

root samples taken under white light (Figure 4.10). 

Figure 4.19, 4.20 and 4.21 are the representatives of root samples of all lines in the 

respective transgenic groups. The fluorescence scores from these root samples were 

pooled and the mean fluorescence scores were calculated and plotted against PPD 

times along with PPD scores to see how they change over storage time (Figure 4.22). 

According to Figure 4.22, neither PPD symptoms nor fluorescence were detected at 0 

DAH. After 24 hours, both the PPD symptoms and fluorescence started to significantly 

(p < 0.05) accumulate except that fluorescence accumulated more rapidly than the 

PPD symptoms. At 3 DAH most PPD symptoms became more visible, causing 

significant (p < 0.05) increase in PPD scores, but on the contrary the fluorescence level 

decreased significantly (p < 0.05). At 4 DAH the scores showed an opposite trend as 

the PPD symptoms became more visible but the roots fluoresced significantly less than 

at 3 DAH. However, the increase in PPD scores from 3 to 4 DAH was not significant (p 

= 0.23).  



98 
 

 

Figure 4.22 Changes in PPD symptoms (PPD scores) and fluorescence (Fluorescence 

score) over storage time. The mean scores at each time point were derived from root 

samples in Pat:SOD, Pat:GAR and Pat:GCS transgenic group. 

The relationship between fluorescence score and PPD score was examined at all PPD 

times. This is depicted in Figure 4.23. In general, a non-linear correlation was exhibited 

at all storage times, so the Spearman test was chosen over the Pearson test. Overall 

analysis of fluorescence and PPD scores also revealed a poor relationship (R2 = 0.018) 

and little correlation between the two scores (r (216) = -0.32, p < 0.05). It is obvious 

that the correlation between the two scores was significant at 0 DAH as the roots did 

not either develop PPD symptoms or fluorescence shortly after harvest. Also, there 

was significant relationship between the two. However, as predicted from Figure 4.22, 

the relationship between two scores was found to be weak at 1 DAH (R2 = 0.004) and 

the Spearman test confirms that there was no correlation between scores (r (54) = 

0.07, p > 0.05) as visibly apparent. There was a very weak positive relationship 

between the fluorescence produced by the roots and the PPD symptoms they 

developed at 3 DAH (R2 = 0.070). But, despite the poor relationship of the scores they 

were significantly correlated (r (54) = 0.27, p < 0.05), showing consistency of 

fluorescence and PPD symptoms at this storage time. At 4 DAH, the opposite trend of 

the two scores suggest a poor relationship between them and this was confirmed (R2 = 

0.099). Also, the correlation at this storage time was significantly negative (r (54) = -

0.32, p < 0.05) as tested. 
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Figure 4.23 Association between PPD scores and fluorescence score at all PPD times and individual PPD times. PPD scores were determined using 

ETH software and the fluorescence scores were estimated by visual rating. These data were pooled from materials in Pat:SOD, Pat:GAR and 

Pat:SOD.
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In general, the above findings demonstrate an indirect association between the 

fluorescence produced by the roots and the PPD symptoms they developed. An 

alternative interpretation of this is the possible role of coumarin-induced fluorescence 

(mainly by scopoletin) as an early signal of PPD. On the other hand, the PPD 

symptoms which tend to appear later on might be accurately considered as a late PPD 

signal. To investigate this possibility, the association between fluorescence scores at 1 

DAH and PPD symptoms at 4 DAH were assessed. These data were chosen because 

fluorescence was emitted the highest at 1 DAH and the PPD symptoms were the most 

visible at 4 DAH. 

 

 

Figure 4.24 Association between fluorescence score at 1 DAH and PPD symptoms at 

4 DAH. Data analysed from Pat:SOD, Pat:GAR and Pat:GCS group. 

Figure 4.24 shows a medium positive relationship (R2 = 0.154) between fluorescence 

produced in the early harvest time and PPD symptoms exhibited by the storage roots 

later on. However, the two scores were significantly correlated (r (54) = -0.39, p < 0.05) 

supporting scopoletin-induced fluorescence as a candidate marker. An important point 

worth noting is PPD symptoms were not visible in most of Pat:GCS roots at 4 DAH and 

this may considerably weaken the statistical analysis. However, unless this is 

examined with a larger sample size, the claim that fluorescence level as an early 

marker of PPD is poorly justified.  
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4.4 Discussion 

PPD Assay 1 or the ‗whole root‘ method is based on the most commonly used assay in 

the cassava research community working with field-grown material. It offers a great 

advantage because it simulates the natural occurrence of deterioration in cassava 

(Morante et al., 2010). Unfortunately, employing this assay with our root samples 

caused PPD to take place too slowly, so that at 3 DAH the PPD symptoms had not fully 

established. This is probably due to the exposure of a small cut root surface to the 

atmospheric oxygen delaying the onset of PPD. Essentially, this contrasts with CIAT‘s 

practice that 3 days following harvest is sufficient for the roots to develop PPD 

symptoms ideal for scoring. However, it is perhaps not surprising because in contrast 

to the greenhouse-grown roots CIAT uses roots grown in the field.  

In this study, the reproducibility of the ‗whole root‘ method was challenged by several 

factors. They are size, form, and age of the roots used. Traditionally, the roots used for 

PPD assays are those harvested from field-grown plants and have an average size of 

30 to 40 cm. In this study, restricted greenhouse space limits the size of plants as well 

as the roots produced to 1/4. Simple size downscaling did not work perfectly as the 

roots physical shape was altered. As compared to the field-grown roots which tend to 

grow horizontally, the roots in this study were mostly distorted and their size varied as a 

result of growing in a small container. For example, one plant may grow a single bulky 

storage root where others grow several roots of smaller sizes. Variations in the forms 

have made selections of roots difficult as it affected the lengthwise measurement of the 

roots and the way they were cut into sections for photography. In many cases, starting 

the experiment with equal root lengths would not necessarily give equal numbers of 

root sections. Additionally, the roots produced in the greenhouse were grown for a 

limited period and were harvested at a younger age than the roots grown in the field. 

Plant age determines dry matter and water content of the roots, so that that mature 

roots are found to have high dry matter due to formations of woody substance (Ro and 

Douglas, 2004). High dry matter content is a desirable trait in cassava industry and has 

been reported to positively correlate with PPD (Sanchez et al., 2006, Benesi et al., 

2010). Although this was not measured, the roots used in this study probably had low 

dry matter because they were harvested at early growing period and because being 

grown in small pots, they were watered frequently to prevent drying out, which would 

lead a delayed development of PPD. More homogenous PPD symptoms would be 

expected if the roots were to be stored longer but this might not be a practical solution 

as this increased the risk of microbial contamination. At ETH, several attempts to assay 

greenhouse storage roots with the CIAT method were similarly found to be 
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unsuccessful, which led to some modifications being made. These include extending 

the length of storage time but microbial deterioration took place 4 days after harvest. 

Also, cutting the storage roots into two and storing them in a greenhouse under high 

humidity condition caused them not to develop PPD as most of the root suberised (I. 

Zainuddin, pers. comm.). 

To overcome the above-mentioned problems roots were cut into sections. Assessing 

PPD using root sections has been practiced in many laboratories that grow their 

cassava plants in greenhouse (Bull, 2011, Owiti, 2009, Page, 2009). It is more flexible 

because only a part of the roots are required. Root sections had successfully speeded 

up the development of PPD symptoms, but it also increased the risk of surface 

dehydration (PPD Assay 2) as a result of large surface area being exposed to the air. 

Surface dehydration had been recognised in the past and one of the solutions 

proposed to minimise it was using moist filter paper to support root sections and 

covering the Petri dish during storage time (Owiti, 2009). This strategy prevented 

dehydration effectively but the roots turned soggy and showed symptoms of microbial 

degradation at late PPD time points and in addition to developing PPD symptoms, 

which made it difficult to measure PPD in these roots (S. Bull and Owiti, pers. comm.). 

Bull (2011) also investigated the effect of moist filter paper using the same method and 

found that it caused the roots to undergo mixed PPD and microbial deterioration rather 

than just the former. In a separate experiment, Page (2009) found this method had 

increased the occurrence of microbial deterioration. These observations were the 

reason for not considering this specific PPD assay in this study. Instead, separate root 

samples were used in an attempt to minimise dehydration (PPD Assay 3). It was 

interesting that this assay revealed two important aspects in accelerating PPD that is 

minimal dehydration and wounding. Loss of water through evaporation is expected but 

severe dehydration could possibly affect the biochemical activities involved in the 

formation PPD symptoms, such as vascular streaking therefore must be avoided. On 

the other hand, wounding has been long recognised as important aspect to initiate the 

PPD response by triggering general wound responses including increasing root 

respiration (Marriott et al., 1978, Marriott et al., 1979) so including it in a PPD assay 

leads to a more rapid PPD response.  

The evaluation of these factors finally led to a more reliable PPD assay, PPD Assay 4. 

In this assay, both factors were considered; severe dehydration was prevented and the 

roots were repeatedly wounded. Consequently PPD symptoms and PPD scores 

increased with storage times, approximately in parallel with those observed in field-

grown material using the traditional CIAT method. Furthermore, microbial deterioration 
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was also prevented. The reproducibility of this assay method was confirmed, as the 

Pat:SOD and Pat:GAR root sample group yield similar results but ideally it would be 

best to extend this analysis with a larger sample. 

Curiously, none of the assay methods reduce the large variations measured in PPD 

symptoms. It was suggested that growing plants in a greenhouse for PPD evaluation 

would reduce inter-season and environmental effects as found in field-grown, roots but 

this proved not to be the case (Rodriguez, 2001).Variations were commonly found not 

only between roots produced from the same lines but also among root sections derived 

from the same plants. The main problem produced by this high variation in PPD 

symptoms was the level of noise in the data that reduced the quality of assessment. 

Only by using much larger sample sizes, not readily feasible when growing plants in 

the green house, would the detection of minor differences in PPD response between 

different cassava lines be feasible. This high variation occurred in all the plants 

assayed, transgenics as well as the WT roots, which would make measuring subtle 

effects of the transgenes on PPD challenging. 

The assessments on PPD assays were all made based on calculation of PPD scores 

using the computer-based scoring. Since the commercial image analysis software like 

ImageJ, Pixcavator have become available, subjective visual PPD scoring is getting 

less popular among the PPD research community (Xu et al., 2013b, Salcedo et al., 

2010). Although it was time-consuming compared to visually scoring the roots, it was 

found to be more objective and reliable. It eliminated scoring bias which could result 

from the two common PPD symptoms, vascular streaking and root discoloration 

(browning). In the most recent study, the use of image-based analysis using the PPD 

Symptom Score Software was proved effective in measuring the effects of glutathione 

peroxidase (GPX) gene overexpression. The transgenic roots showed less PPD 

symptoms than the control roots (Vanderschuren et al., 2014). In that particular study, 

they found that the analysis is only applicable to early stages of PPD (0-48 hours), as 

values from later time points caused saturation of PPD score. Such problem was not 

encountered in the present study probably because our PPD assay utilised root 

sections instead of thin slices which took longer to deteriorate. Computer scoring is 

seen as a major advance towards the improvement of PPD scoring. By employing a 

standard computer program and a PPD assay, cross comparison of experiments 

conducted in a separate laboratories become valid. However, it is essential that a 

standard approach to lighting and photographing the samples is used too.  
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The association between fluorescence measurements and the PPD scores generated 

from normal light photographs of the roots was also explored in the present study. To 

the best of our knowledge, this is the first report on the fluorescence profiles of 

greenhouse roots. In general, all freshly harvested root samples lacked fluorescent but 

after 24 hours they fluoresced to a high level (Hirose et al., 1983). However, this 

amount was not maintained, but slowly decreased with storage time and finally 

disappeared. This profile substantiates the results of many reports that measured the 

biochemical concentration of scopoletin and found that this fluorescing compounds 

peaked after 24 hours and gradually decrease with storage time (Rodriguez, 2001, 

Buschmann et al., 2000b, Wheatley and Schwabe, 1985). However, this might only be 

true in cassava with high susceptibility to PPD, as in the same work Rodriguez (2001) 

found that hydroxycoumarins concentration only increased dramatically after 5-7 days 

of harvest in the low susceptibility cassava. Besides, Buschmann (2000b) also found 

that hydroxycoumarins concentrations vary with cassava cultivar but were not 

necessarily associated with their susceptibilities towards PPD.  

The occurrence of intense fluorescence at 1 DAH was not accompanied by intense 

PPD symptoms. Fluorescence level declined when visible PPD symptoms developed. 

Reduction of fluorescence is probably associated with oxidation of scopoletin to 

unknown compounds that form coloured deposits visible as vascular streaking; this 

was corroborated by high peroxidase activities and increased peroxidase gene 

expression in the roots during the later storage period (Tanaka et al., 1983, 

Buschmann et al., 2000b, Reilly, 2001). However, the suggestion that root samples 

with high fluorescence tend to produce more PPD symptoms was weakly supported by 

the results in this chapter. Some of the root samples were found to continuously 

fluoresce by 4 DAH. It is possible that during the time course, scopolin (the 

glycosylated form of scopoletin) is deglycosylated back to scopoletin, hence producing 

fluorescence. Unless this is further investigated with larger samples using a reliable 

objective scoring method, the use of fluorescence or scopoletin as an alternative 

marker for PPD does not appear to be very useful, mainly because it does not parallel 

with most of the PPD symptom accumulation observed. Also, its use as an advance 

marker for PPD needs to be proved with extensive testing due to weak relationship 

between fluorescence scores and PPD symptoms.  

Overall, this chapter summarises the challenges in evaluating PPD using greenhouse-

grown roots and the measures taken to overcome them. As opposed to field-grown 

materials, the available material used in this study was limited in number, which meant 

that an assortment of transgenics plants had to be used in addition to wild type in 
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developing a reliable PPD assay. Additionally, inadequate and varying sample sizes 

were not ideal and reduced the quality and accuracy of analyses. Consequently, the 

results presented here, while useful, must be considered as preliminary and as a result 

are not definitive. However, based on the data presented in this chapter, PPD Assay 4 

is the best method to evaluate PPD for storage roots produced in the greenhouse and 

computer scoring method was shown to be a reliable tool to measure it. The usefulness 

of scopoletin as an alternative marker for PPD remains unconvincing and subjected to 

improvement. It is worth stressing that the investigation conducted here was a 

chronological effort in obtaining meaningful data for assessment of PPD. The 

awareness of the difficulty in assessing PPD emerged as more samples were 

harvested. Eventually, a failure of one assay method led to another. This chapter 

probably summarises the frustrations of many other researchers particularly those 

working with the greenhouse-grown materials.  
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CHAPTER 5 

 

Expression analyses of Patatin 

 

 

5.1 Introduction 

In transformation studies, it is a common to construct an expression plasmid carrying a 

reporter gene. The plasmid is usually introduced in the same way as the plasmid 

carrying the target gene. The reporter gene-construct is an excellent means to predict 

the probable expression profiles of target genes as well as to characterise the promoter 

driving the target genes. Additionally, it can serve as a useful confirmation of 

transformation. In the present study, the reporter lines carrying reporter gene GusPlus 

was utilised to study the expression profile of the patatin promoter in transgenic 

cassava. 

Patatin is a soluble storage protein found in potato tubers (Solanum tuberosum). It 

constitutes about 40% of the total soluble protein in potato tubers. Patatin genes from 

different potato cultivars and clones have been sequenced and found to be nearly 

identical, particularly in the coding region (Mignery et al., 1984). However, the genes 

tend to vary in the non-coding region; hence this is used as a basis for patatin 

classification. The promoter region comparison shows that Class I does not possess a 

22-bp insertion found in Class II. Apart from this insertion, nucleotides 87 bp upstream 

transcription site share high similarity in both classes (Mignery et al., 1988). 

In general, patatin is more abundantly expressed in the root than in other plant tissues, 

but class I is exclusively expressed in tubers while class II can be found in both roots 

and tubers. Expression of patatin in leaves can be induced by the addition of sucrose, 

a condition that is thought to promote starch accumulation in tubers (Wenzler et al., 

1989), but this is only observed in Class I patatins (Koster-Topfer et al., 1989). The 

sucrose inducibility characteristic is attributed to a conserved sequence motif known as 

the sucrose regulatory element (SURE), which is located towards the proximal end of 

the patatin promoter near the TATA box (Liu et al., 1990). This motif is often found 

together with a sequence motif related to tuber-specificity and this forms a 100 bp of 

highly conserved sequence called A+B repeats (Grierson et al., 1994). Fusion of three 

copies of the A+B repeats and a truncated CaMV35s promoter to a beta-glucuronidase 

gene (Gus) gene resulted in high Gus activity in potato tubers, whereas deletion of 

these repeats from a minimal wild type class I patatin promoter reduced Gus activity 
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(Grierson et al., 1994). The nuclear binding protein factors for both motifs have been 

proposed (Kim et al., 1994), and the one binding to B repeats was later identified as 

Storekeeper (Zourelidou et al., 2002). Patatin is developmentally regulated as its 

transcriptional activity is first detected during the transition from stolon to tuber, and 

maximum levels are detected in mature tubers (Stupar et al., 2006, Bachem et al., 

2000). 

Unlike other storage proteins, patatin exhibits non-specific lipid acyl hydrolase 

activities, which indicates an additional physiological role during pathogen invasion 

(Andrews et al., 1988). The dual function of patatin is unique and has been elucidated 

through its ability to hydrolyse various lipids (Strickland et al., 1995) as well as in its 

protein structure where an active site resembling that of human phospholipase has 

been found (Rydel et al., 2003, Hirschberg et al., 2001). 

 

5.2 Research Aim 

In the present study, two reporter lines called Pat:Gus and Pat(-):Gus lines were 

created as described in Chapter 3. The Pat:Gus line contains pDEST:GusPlus in which 

GusPlus gene is fused to Patatin and was designed to study Patatin promoter 

behaviour in cassava. Its pattern of expression would be compared to the 

‗promoterless-Gus‘ lines which lack the Patatin promoter, the Pat(-):Gus. The 

expression plasmid for the Pat(-):Gus is pDEST:GusPlus(-Pat). Both expression 

plasmids had been transformed in Arabidopsis previously and were reported not to 

cause any morphological changes (Page, 2009). The genetic map of both cassettes is 

represented in the schematic diagram below.  

  

Figure 5.1 The genetic map of pDEST:GusPlus expression plasmid modified from 

pCAMBIA 1305.1 in which CaMV35s was replaced by Patatin by performing a 

restriction digest with PstI and NcoI and fused to attB-tagged GusPlus. 

pDEST:GusPlus(-Pat) is a promoterless expression plasmid in which Patatin was 

removed from pDEST:GusPlus by performing a restriction digest with the same 

restriction enzymes. 
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5.3 Results 

 

5.3.1 Verification of transgenic plants 

Transformation of cassava with pDEST:GusPlus and pDEST:GusPlus(-Pat) had 

generated 26 Pat:Gus and 37 Pat(-):Gus putative cassava lines respectively. However, 

only 18 Pat:Gus and 34 Pat(-):Gus surviving lines were analysed. As with other 

putative transgenics, the transgenic nature of the plants was initially checked for 

amplification of hptII gene with HygF and HygR primers. To discriminate between the 

two reporter lines, the Patatin sequence was amplified instead of the GusPlus gene. 

The primers used were Pat-pDESTF and Pat-pDESTR which were designed to amplify 

GusPlus-driven Patatin. pDEST:GusPlus and pDEST:GusPlus (-Pat) plasmid was used 

as positive control for Pat:Gus and Pat(-):Gus respectively. 

 

 

 

Figure 5.2 Amplification of the hptII gene from the Pat:Gus lines DNA (upper panel) 

and the Patatin promoter (lower panel). M = DNA marker, PL = pDEST:GusPlus 

plasmid, WT = Wild type line, C = negative control. The expected size of the PCR 

product for both PCRs is 1kb. 

 

 

Figure 5.3 Amplification of the hptII gene from Pat(-):Gus lines DNA. M = DNA marker, 

PL = pDEST:GusPlus(-Pat) plasmid, WT = Wild type line, C = negative control. The 

expected size of the PCR product is 1 kb. 
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Figure 5.4 Amplification of the Patatin promoter from Pat(-):Gus lines DNA. M = DNA 

marker, PL = pDEST:GusPlus(-Pat) plasmid, WT = Wild type line, C = negative control. 

The expected size of the PCR product is 1 kb. 

 

Table 5.1 Analysis of transgenic cassava by PCR. Positive transformants in Pat:Gus 

are those lines amplified by both the hptII and Patatin, while positive transformants with 

Pat(-):Gus are those amplified hptII alone. 

 

Transgenic Total no of 
lines 

hptII 
present 

Patatin 
present 

No of positive 
transformants 

Positive 
transformants 
(%) 

Pat:Gus 18 17 15 14 78 

Pat(-):Gus 34 31 0 31 91 

 

In nearly all the Pat:Gus lines both fragments were amplified, except for one in which 

the hptII gene was not amplified, and three in which the Patatin sequence did not 

amplify (Figure 5.2). Also, only 3 out of 34 Pat(-):Gus lines did not amplify hptII gene 

but none amplified Patatin (Figure 5.3 and 5.4) as expected. This accounts for high 

percentage of positive transformants in both types of reporter line (Table 5.1). 
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5.3.2 Screening of transgenic cassava reporter lines by Gus histochemical 

staining 

5.3.2.1 Sucrose treatment and GusPlus expression in cassava leaves 

The Gus staining method used was as described in Section 2.5.7. All the 18 surviving 

putative Pat:Gus lines and 34 putative Pat(-):Gus were assayed for Gus activities. 

Initially, the in vitro plantlets were used to select the Gus-positive lines by staining leaf 

samples of one-month old plantlets. To test sucrose inducibility characteristic of 

Patatin, the samples were vacuum-infiltrated with 20% sucrose and stained for Gus 

activities afterwards. 

 

Figure 5.5 Gus staining of selected Pat:Gus and Pat(-):Gus leaf samples. The lines 

used are those confirmed as positive transformants (Section 5.3.1). Left panel shows 

Pat:Gus samples with and without sucrose treatment. Right panel shows Pat(-):Gus 

samples with and without sucrose treatment. –Suc = untreated, +Suc = sucrose-

infiltrated. 

 



111 
 

Gus assays conducted with the cassava Pat:Gus leaves found no samples with Gus 

activities as none of them were stained including those treated with sucrose. In 

contrast, the Pat(-):Gus samples showed GusPlus activities in the leaf tissue of three of 

the five lines tested both with and without the sucrose treatment (Figure 5.5). These 

data imply that these lines will need closer examination. Moreover, leaf staining might 

not be an efficient method to select the positive Pat:Gus samples as GusPlus gene 

were not readily expressed in leaf or sufficiently induced by sucrose. However, 

expression in leaf following wounding has been demonstrated previously (Page, 2009). 

Therefore, wounding was used as an alternative method to screen the positive Pat:Gus 

samples. 
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5.3.2.2 Wounding treatment and GusPlus expression in cassava leaves 

For wounding treatment, leaf samples were pricked with a sterile needle several times 

before being quickly incubated in Gus buffer. Figure 5.6 shows that no Pat:Gus leaves 

respond to wounding as indicated by unstained leaf tissues. On the other hand, the 

Pat(-):Gus lines shown to express Gus activity in Figure 5.5 were intensely stained not 

only at the pricked site but throughout the whole leaf tissue, while the ones lacking 

expression when unwounded remained unstained. However, because of the heavy 

staining in these samples, it was not clear if the wound increased GusPlus expression 

in the injured area compared to the unwounded leaves. 

 

 

Figure 5.6 Leaf samples from one-month old in vitro plantlets that were pricked with a 

needle and checked for Gus activities. The injured sites were not visible due to 

negative response with Gus buffer, while intense staining in three Pat(-):Gus lines 

prevented determining whether there was a response to wounding over and above that 

observed in the unwounded leaves for these lines. Colour differences showed by WT 

and Pat:Gus B4 were caused by incomplete de-staining. 

Negative results obtained from Gus staining of Pat:Gus leaves either untreated or 

treated with sucrose as well as when wounded led to assumption that expression might 

not be targeted to leaf but other tissues. To investigate this, the whole plantlets were 

assayed for Gus activities. 
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5.3.2.3 Localisation of GusPlus expression in in vitro cassava plantlets 

To determine the localisation of Gus expression and to screen for positive Pat:Gus 

samples, one-month old in vitro plantlets were incubated in Gus buffer. Using the whole 

plantlets, the effect of sucrose induction was explored by supplying sucrose in the 

growth medium.  

 

Figure 5.7 Staining of Pat:Gus plantlets grown on Cassava Basic Medium (CBM) of 

variable sucrose concentrations. The plantlets were incubated in Gus staining buffer for 

one hour at 37°C and de-stained with alcohol afterwards to remove chlorophyll. 

Cassava plantlets normally are propagated on Cassava Basic Medium (CBM) 

containing 2% sucrose. For the sucrose treatment, the cassava plantlets were 
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propagated on CBM containing 2X and 3X sucrose concentrations. The plantlets were 

grown for one month before being checked for Gus activities. Surprisingly, Gus 

activities were not detected in any part of the Pat:Gus plantlets, including their roots, 

whether or not they had been supplied with additional sucrose. The anticipated 

inductive effect of sucrose on the Patatin promoter failed to be observed as Gus 

staining failed to detect GusPlus expression in any tissues (Figure 5.7). On the other 

hand, except for the four lines not expressing GusPlus as mentioned earlier, staining of 

the Pat(-):Gus plantlets propagated on CBM containing 1X sucrose consistently 

revealed high GusPlus expression in the whole plantlet, in the same lines as previously 

(Figure 5.8). However, sucrose induction was not tested in Pat(-):Gus lines. Also, no-

sucrose experiment could be conducted due to failure of the growth medium to induce 

root formation in the absence of the basal level of sucrose in the medium. 

 

Figure 5.8 Staining of one-month old Pat(-):Gus cassava plantlets grown on Cassava 

Basic Medium (CBM) with 1X sucrose concentration. The plantlets were incubated in 

Gus staining buffer for one hour and de-stained with alcohol afterwards to remove 

chlorophyll.  

The main objective of staining the whole plantlets was to locate Gus expression in the 

cassava tissue. However, it was not achieved in this experiment and this possibly 

related to the natural expression of patatin which is in tubers or more broadly in storage 

roots. Moreover, other patatins have been shown to have higher expression in mature 

tubers including cassava (Abhary et al., 2011, Narayanan et al., 2011).Therefore, to 

test this, the Pat:Gus along with the Pat(-):Gus plants were grown to produce storage 

roots to be used for Gus staining.  

5.3.2.4 GusPlus expression in deteriorating cassava roots 

Gus activity was checked in mature cassava roots using three lines each of the 

Pat:Gus and Pat(-):Gus transgenic plants. The roots were harvested from 6 months old 

cassava plants, cut into thin sections and let to deteriorate at room temperature to 

induce PPD. By doing this, the expression pattern of Patatin following cassava roots 

harvesting could be simultaneously assessed. The root sections were checked for Gus 
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activities before being photographed. Figure 5.9 (A) showed staining of the 

representative root sections at 0, 1, 4 and 6 hours after harvest and Figure 5.9 (B) 

showed staining at 16, 24, 48 and 72 hours after harvest.  

 

 

Figure 5.9 Gus-staining of selected storage roots harvested from 6 months old 

cassava plants. The roots were cut into thin sections and stained at the indicated time 

points. 
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Overall, the root samples showed no PPD symptoms until 48 hours after harvest. 

Similar to the data presented above, in Pat:Gus, Gus activity was not observed in 

either the freshly harvested or in the deteriorating root samples. On the other hand, 

Pat(-):Gus A10 and Pat(-):Gus A14 which showed clear Gus activities in the in vitro 

samples consistently showed similar result in the mature storage roots. These samples 

maintained strong blue staining from harvesting until 6 hours after that but it gradually 

decreased as PPD symptoms became visible at 48 hours after harvest. The intensities 

of the staining were weaker in the storage roots than in in vitro samples, perhaps due 

to the high starch content.  

The results from the analyses of the Pat:Gus transgenic plants were unexpected as all 

the possible aspects regarding the behaviour of the Patatin promoter had been tested. 

The Gus staining was performed on various plant materials including the in vitro 

leaves, the whole plantlets as well as the storage roots. Then, the plant materials were 

subjected to wounding and sucrose treatment which was the conditions thought to 

induce GusPlus expression. Also, Gus activities were examined in deteriorating 

storage roots to see if expression was delayed. However, frustratingly, none of these 

were successful to produce Gus activities.  
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5.3.3 Re-confirmation of Pat:Gus plants transgenic nature 

Failure to see Gus activities in the Pat:Gus plants suggested the need to confirm the 

fine detail of the transformed DNA in order to determine whether any mutation, 

rearrangement or error had occurred that might affect either the activity of the Patatin 

promoter or of the GusPlus enzyme. This required sequencing of key components of 

the construct. To achieve this, the key components were amplified by PCR from 

genomic DNA extracted from leaf tissue of Pat:Gus plantlets. The primer pairs used are 

shown below.  

 

 

Figure 5.10 Primers PatSeqF/PatSeqR were designed to amplify and sequence 

Patatin. DESTSeqF1/DESTSeqR1 is a primer pair used to check the presence of the 

Patatin-driven GusPlus gene. Since the GusPlus gene is approximately 2 kb, two 

internal primers were created in order to get high quality reads. They were GusintF and 

GusintR which were paired with TransgeneR and DESTSeqF1 respectively. 

The PCR method used is described in Section 2.3.3. pDEST:GusPlus plasmid was 

used as positive control. Amongst the primer pairs described above, only 

PatSeqF/PatSeqR amplified the correct PCR product size (Figure 5.11). 

DESTSeqF1/DESTSeqR1, which had been used as a primer pair to amplify other 

Patatin-driven transgenes in other transgenic plants failed to produce any PCR product 

from Pat:Gus DNA. On the other hand, GusintF/TransgeneR and DESTSeqF1/GusintR 

primers pairs produced multiple unspecific bands. Amplifications of five selected lines 

with the primers are shown below. 
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Figure 5.11 Amplification of selected Pat:Gus DNA with various primer pairs. PL = 

pDEST:GusPlus plasmid as template or positive control, C = water as template or 

negative control. The predicted PCR product size for amplification with 

PatSeqF/PatSeqR was ~1.3 kb and this was obtained in PL but slightly smaller 

products were obtained from Pat:Gus samples. DESTSeqF1/GUSintR which targets 

the 5‘ end of Patatin promoter and internal sequence of GusPlus gene amplified the 

predicted ~1.3 kb product in PL but multiple PCR products in Pat:Gus sample. The 

same was observed in the amplification with GUSintR/TransgeneR, which targets an 

internal GusPlus sequence plus a region between attB2 and right T-border, as only PL 

produced the expected ~1.1 kb product. DESTSeqF1/DESTSeqR1, which was 

designed to amplify Patatin-driven GusPlus, did not generate any PCR products in the 

Pat:Gus samples but did amplify the predicted 2 kb fragment in PL. The Pat:Gus 

samples shown are the same lines as those shown in Gus staining data, above. 

The PCR products amplified by the PatSeqF/PatSeqR primers were sent for 

sequencing and the resulted DNA sequences were aligned with pDEST:GusPlus full 

sequence. Surprisingly, it was found that only the fragment amplified from plasmid DNA 

was Patatin while those amplified from Pat:Gus DNA was not. Instead, BLAST search 

suggested the fragment was a part of the constitutive promoter CaMV35s. To 

investigate if Pat:Gus was inadvertently confused with the Pat(-):Gus, the sequenced 

fragments were aligned with Pat(-):Gus sequence but no consensus was found from 

this alignment. The attB1 sequence which constitutes a part of Gateway cloning was 

not found within the fragment. This ultimately led to assumption that an unmodified 

plasmid was transformed in the Pat:Gus transgenic plants. To confirm this, the 

sequenced fragment was aligned with unmodified pCAMBIA 1305.1 sequence. 
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Figure 5.12 Sequence alignment of (1) pCAMBIA 1305.1 and (2) PCR product 

amplified from Pat:Gus by PatSeqF/PatSeqR primers. The positions of the primers and 

the restriction enzymes (PstI and NcoI) used to remove the CAMV35s promoter are 

shown. 

The alignment is shown Figure 5.12 where PatSeqF primer flanks the LacZ gene 

promoter (pLacZ) in PCAMBIA 1305.1 and PatSeqR flanks approximately 250th 

nucleotide of the GusPlus gene. While this initially suggested that Pat:Gus was 

transformed with an unmodified pCAMBIA 1305.1, confusingly, no Gus expression was 

observed in Pat:Gus plants (Section 5.3.2). It appears that some modification might 

have occurred to the GusPlus gene preventing its expression and this is supported by 

the failure of GusintF/TransgeneR and DESTSeqF1/GusintR to amplify the remaining 

GusPlus DNA sequence (Figure 5.11). From the data gathered, it was confirmed that 

Pat:Gus plants were transformed with a truncated pCAMBIA 1305.1. 
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5.3.4 Verification of other transgenic plants by DNA sequencing 

5.3.4.1 Verification of putative Pat:CAT lines 

The error in transformation of the supposedly Pat:Gus lines was frustratingly 

unfortunate, and it emphasises the need for a more rigorous checking though 

sequencing of all steps in the production of gene constructs and the generation of the 

transgenic lines. In the present study, amplification of hptII and transgene was used as 

a rapid screening method for the identification of transgenic lines. Using this method, 

transgenic plants were successfully discriminated from the untransformed plants, 

except those putatively transformed with the pDEST:CAT expression cassette (Section 

3.3.1). In these plants, only hptII was amplified but the transgene MecCAT1 remained 

undetected by PCR. This has raised an important question whether the correct 

expression cassette had been transformed. 

Several combinations of primers targeting various T-DNA regions in pDEST:CAT were 

used to investigate this (Figure 5.13). pDEST:MecCAT1 plasmid was used as a 

positive control. 

 

Figure 5.13 The primers used to amplify MeCAT1 sequence in pDEST:MecCAT1 

expression plasmid. The expected size of each PCR product is indicated. 

Genomic DNA from Pat:CAT leaf tissue was used as a template and PCR was 

conducted using method described in Section 2.3.3. Since the same expression 

plasmid had been transformed in Arabidopsis plant, it was also sequenced. The 

transgenic Arabidopsis lines used were At 2.3, At 3.8, At 9.2 (Page, 2009). 

PCR reaction with DESTSeqF1/CATR1 primers which flank a part of Patatin sequence 

and the 3‘ end of MecCAT1 spanning the attB2 Gateway tags did not amplify any PCR 

product from Pat:CAT DNA and the WT. However, the Arabidopsis line and the plasmid 

control amplified PCR products of the correct size (Figure 5.14). 
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Figure 5.14 PCR with DESTSeqF1/CATR1 primers amplified Patatin-driven MecCAT1 

in Arabidopsis DNAs (At 2.3, At 3.8, At 9.2) and a plasmid positive control. None of the 

putative Pat:CAT transgenic cassava DNA gave an amplified PCR product (A1-D13). 

The size of expected PCR product is approximately 1.7 kb. M is DNA marker, WT is 

wild type, PL is plasmid, C is negative control or sterile water template. 

Similarly, amplification with DESTSeqF1/CATintR also did not amplify any PCR product 

from the genomic DNA of Pat:CAT but amplified the correct PCR product size from the 

transgenic Arabidopsis genomic DNA and the plasmid (Figure 5.15). 

 

 

Figure 5.15 PCR with DESTSeqF1/CATintR primers amplified Patatin-driven 

MecCAT1 in Arabidopsis DNAs (At 2.3, At 3.8, At 9.2) and a plasmid positive control. 

None of the putative Pat:CAT DNA (A1-D13) amplified a PCR product from putative 

cassava transgenic lines (A1-D13). The size of expected PCR product is approximately 

1.1 kb. M= DNA marker, WT = wild type, PL = plasmid, C = negative control or sterile 

water template.  

Next, a primer pair was designed to differentiate genomic DNA and cDNA of MecCAT1. 

In theory, genomic DNA should produce a longer PCR product as it spans an intron, 

while the cDNA should produce a shorter one (Figure 5.16). Therefore, if an intact 
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MecCAT1 cDNA was present in the genome of putative transgenic cassava, two PCR 

products of different sizes should be produced.  

 

 

Figure 5.16 Primers designed to amplify MecCAT1. Primers designed span the intron 

(serrated line), so will produce a 179 bp PCR product if only MecCAT1 from genomic 

DNA was present. If the cDNA copy of MeCAT1 is present in the transformed gene 

construct, another PCR product of 82 bp would also show. This effectively verifies if 

cassava plants were correctly transformed with expression plasmid carrying MecCAT1 

of pDEST:CAT. 

However, these tests showed that only the genomic sequence of MecCAT1 amplified 

by the putative Pat:CAT lines. The Arabidopsis putative transgenics which lack 

MecCAT1 genomic fragment amplified the MecCAT1 cDNA (Figure 5.17). The hptII 

gene had been amplified in the putative Pat:CAT lines (Section 3.3.1) confirming the 

integration of the expression cassette. However, the key components of the cassette 

could not be verified as a range of primers combination failed to generate PCR 

products. The results gathered so far suggest numerous possibilities including the DNA 

sequence used to design those primers may have altered. However, to correctly 

resolve this sequencing was carried out. 
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Figure 5.17 PCR with CATtf1-CATtr primers for amplification of MecCAT1. The 

expected size of genomic and cDNA sequence (transgene) of MecCAT1 is 179 bp and 

82 bp respectively. Nearly all putative Pat:CAT lines (A1-D13) and the WT amplified 

the genomic fragment but none amplified the transgene fragment. On the other hand, 

Arabidopsis transgenics amplified the cDNA MecCAT1 fragment. M is DNA marker, 

WT is wild type, PL is pDEST:CAT plasmid, C is negative control or sterile water 

template. 

For sequencing of Pat:CAT key components, two primer pairs were created. They were 

PatSeqF/PatPDESTR to amplify the Patatin sequence and DESTSeqF1/TransgeneR 

to amplify Patatin-driven MecCAT1 (Figure 5.18). 

 

 

Figure 5.18 Diagrammatic presentation of primer pairs created for sequencing Patatin-

driven MecCAT1. PatSeqF/PatPDESTR was created to amplify Patatin. DESTSeqF1 

and TransgeneR should amplify MecCAT1 fused to Patatin. The expected size for 

Patatin amplification was 1366 bp while the expected size for MeCAT1 was 1704 bp. 
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Figure 5.19: Amplification of Pat:CAT DNA with PatSeqF/PatPDESTR which targets 

Patatin (upper panel) and DESTSeqF1/TransgeneR which targets the Patatin-driven 

MecCAT1 (lower panel). Cassava transgenic lines are indicated alphanumerically, At 

denotes the Arabidopsis transformed with the same expression cassette (At 3.8). M = 

DNA marker, PL = positive control (plasmid), C = negative control (water).  

Nine Pat:CAT lines and one Arabidopsis Pat:CAT (At 3.8) were used for amplification 

with these primers. PatSeqF/PatPDESTR amplified Patatin successfully in all the 

tested lines except in one line. Three of the PCR products (C2, C3, D1) and the At 3.8 

were sent for sequencing (Figure 5.19). As expected, the DNA sequence was from 

Patatin and it corresponded to that sequenced from the expression plasmid 

pDEST:CAT. However, MecCAT1 fragment using primer pair DESTSeqF1/TransgeneR 

only amplified in At 3.8 (Figure 5.19). No PCR product was obtained from the cassava 

Pat:CAT. Sequence analysis of the Patatin region amplified by PatSeqF/PatSeqR 

showed that DESTSeqF1 primer binding region was present in the sequence (Figure 

5.20) indicating failure to recover MecCAT1 through primer pairing CATR1 (Figure 

5.14) and CATintR (Figure 5.15) in the putative cassava Pat:CAT may be due to 

alterations to MecCAT1 and other DNA regions from it. On the other hand, sequencing 

of At 3.8 revealed the expected DNA fragment which is the MecCAT1 (See Appendix, 

Figure 9.1 for full sequence Pat:MecCAT1 fragment in At 3.8). 
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Figure 5.20 The DESTSeqF1 primer sequence was found within the sequenced 

Patatin fragment amplified by PatSeqF/PatPDESTR. DESTSeqF1 is the forward primer 

designed to amplify the target gene fragment, MecCAT1 in this case. 1 = sequenced 

fragment of Pat:CAT C3, 2 =.partial sequence of pDEST:CAT DNA. attB1 located 

upstream of the target gene MecCAT1, which is part of the Gateway cloning is also 

indicated.  

The Pat:CAT DNA was also amplified with DESTSeqF1 in combination with other 

transgene reverse primers designed from the other transgenes, to find out if it was 

mistakenly transformed with an expression plasmid other than pDEST:CAT, but 

nothing was amplified suggesting that this was not the case (data not shown).This was 

not unanticipated as the combination of DESTSeqF1 and TransgeneR primers should 

have produced a product with any of the transgene cassettes, though of different sizes, 

as the forward primer is located in the Patatin promoter while the reverse primer is 

located beyond the inserted cDNA, in other words the primer pair are outside the attB1 

and attB2 sites used for Gateway cloning. These data imply that the gene cassette 

used to produce the putative Pat:CAT lines in cassava has at some stage undergone 

significant changes from the original construct and from that which is found in the 

transgenic Arabidopsis containing the Pat:CAT cassette. This finding, although not 

expected has further highlighted the need to sequence the constructs of other putative 

transgenic lines.  
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5.3.4.2 Verification of other putative transgenic lines 

Similar primer pairs as were used to investigate Pat:CAT were used to sequence other 

Patatin-driven transgenes. They were PatSeqF/PatPDESTR and 

DESTSeqF1/TransgeneR to amplify the Patatin sequence and individual transgene 

respectively (Figure 5.21). In all the transgenics, PatSeqF/PatPDESTR should amplify 

approximately 1.3 kb PCR product, while the DESTSeqF1/TransgeneR product should 

vary with transgene size. Internal forward and reverse primers were also designed for 

transgene sequences greater than 1 kb length. For each transgenic group, at least 

three cassava lines, which had been confirmed to amplify the hptII gene, were 

checked. PDESTs containing the different individual expression cassettes served as 

positive controls. In addition, the Patatin-driven transgenes were also amplified from 

Arabidopsis transformed with the same expression cassette. 

 

 

Figure 5.21 Diagrammatic presentation of the sequencing strategy used to check 

expression cassettes transformed into cassava plants. PatSeqF/PatPDESTR targets 

Patatin and DESTSeqF1/TransgeneR targets Patatin-driven transgene. The expected 

size for Patatin amplification was 1366 bp while the expected sizes for transgene vary 

with the size of transgenes as indicated.  
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Figure 5.22 Amplification with PatSeqF/PatPDESTR which targets Patatin (upper 

panel) and DESTSeqF1/TransgeneR which targets the Patatin-driven transgene (lower 

panel). Cassava transgenic lines are indicated alphanumerically, At denotes the 

Arabidopsis transformed with the same expression cassette. M= DNA marker, PL = 

positive control (plasmid), C = negative control (water). Note: PL* in Pat(-):Gus is 

PDEST:GusPlus plasmid. 
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In Pat:SOD, the expected size of transgene amplification was 684 bp and the correct 

size of Patatin and MecSOD1 were amplified from all DNA samples. Sequence 

assembly showed these PCR products were MecSOD1 cDNA sequence coupled to 

Patatin. The expected size of the second fragment in Pat:GAR, Pat:GCS and Pat:APX 

were 1185 bp, 1794 bp and 978 bp respectively. From Figure 5.22, it can be seen that 

all PCR products were of expected sizes in all DNA samples including in Arabidopsis. 

Also, these PCR products correspond to the fragment in the respective plasmids. 

Importantly, sequencing result showed all transgenes were intact with initiation and 

stop codon (see Appendix Figure 9.2, 9.3, 9.4, 9.5 for the full sequence of 

Pat:transgene in Pat:SOD, Pat:GAR, Pat:GCS and Pat:APX respectively). 

Pat(-):Gus was included in the analysis although the fragments required for sequencing 

could not be obtained using the same combination of primers (PatPDESTR and 

DESTSeqF1 target the Patatin sequence). Nevertheless, PCR with these primers 

confirmed that Patatin and Patatin-driven GusPlus sequences not present in Pat(-):Gus 

constructs as no PCR products were amplified. For sequencing of the Pat(-):Gus, two 

different set of primers were created. Due to deletion of Patatin promoter (~ 1 kb), 

PatSeqF was paired with GUSintR instead of PatSeqR (used in Pat:Gus verification) to 

generate a longer product. GusFWD/TransgeneR was used for amplification of the 

remaining GusPlus gene sequence (Figure 5.23). Genomic DNA extracted from lines 

showing Gus activities (Section 5.3.2.3) were used as templates. 

 

 

Figure 5.23 Diagrammatic presentation of Pat(-):Gus expression cassette 

pDEST:GusPlus (-Pat) and the primers used to verify the putative Pat(-):Gus cassava 

plants. The expected sizes of PCR products (without Patatin) are indicated. 
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PCR with the primers produced the correct PCR product sizes (Figure 5.24). 

Sequencing revealed that PatSeqF/GUSintR amplified the first half of the GusPlus 

gene including the attB1 sequence while GusFWD/TransgeneR amplified the 

remaining of the sequence (See Appendix, Figure 9.6). This confirmed that the correct 

expression plasmid was transformed into Pat(-):Gus plants. 

 

 

Figure 5.24 Amplification with PatSeqF/GUSintR2 and DESTSeqF1/TransgeneR and 

GusFWD/TransgeneR (lower panel). Cassava transgenic lines are indicated 

alphanumerically, M= DNA marker, PL = positive control (pDEST:GusPlus (-Pat) 

plasmid), C = negative control (water).  

Overall, sequencing of the Patatin promoter and the individual transgene found that all 

the transgenic cassavas were transformed with the correct expression plasmid except 

the Pat:Gus and Pat:CAT. Pat:Gus was transformed with a truncated pCAMBIA 1305.1 

while the Pat:CAT contains Patatin fused to an unknown or altered DNA fragment. 

Nevertheless, it was confirmed that the genomes of the other transgenic to possess the 

Patatin and the individual target gene. 
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5.3.5 Analysis of Patatin promoter from Arabidopsis Pat:Gus 

5.3.5.1 Prediction of putative regulatory elements 

Absence of transgenic cassava plants transformed with a reporter gene construct has 

not permitted the study of Patatin behaviour and its expression profile. However, the 

Patatin from the corresponding construct in Arabidopsis has been sequenced (See 

Appendix Figure 9.7) and subsequently analysed. 

For prediction of regulatory elements or transcriptional motifs, the promoter sequence 

was searched against PLACE (Higo et al., 1999) and PlantCARE database (Rombauts 

et al., 1999) and this identified a number of critical transcriptional elements. Only 

matches with 90% or above identity are presented in Figure 5.25. The classification of 

the motifs according to function is presented in Table 5.2. 

Both search tools identified a CAAT box and TATA box near the proximal end of the 

promoter. At least four different motifs related to root specificity were found in the 999 

bp promoter. The root nodule elements called OSE1 and OSE2 were found at bp 360 

and 240, respectively (Vieweg et al., 2004). The rest of the root-specific related motifs 

include RAV1AAT (Kagaya et al., 1999) and TAPOX1 (Elmayan and Tepfer, 1995), 

which are implicated in directing expression in roots, were also found scattered along 

the sequence. However, despite generally being abundant in root-related motifs, this 

promoter was found to lack auxin-responsive motifs. No sequence consensus to the 

motifs like the canonical AuxRE (TGTCTC) (Goda et al., 2004) and NtBBF1 (ACTTA) 

(Baumann et al., 1999) were found. Nevertheless, a total of five sucrose responsive 

elements consisting of SURE1, SURE2 and SURECORE were found indicating its 

sucrose inducible activities. Additionally, the A+B repeat consensus, which also 

contains 10 base pairs motif within the B-box that involve in the binding of Storekeeper, 

was also found (Zourelidou et al., 2002). 
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Figure 5.25 The key regulatory elements of the Patatin promoter predicted with 

PLACE and PlantCARE database. The arrow facing the right direction indicates motifs 

found in the positive strand while the arrow facing the left direction indicates motifs 

found in the negative strand. The A+B repeat is highlighted in blue box. Nucleotides in 

the yellow fonts indicate mismatch. 
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Table 5.2 Analysis of the Patatin promoter sequence with PlantCARE and PLACE 

database predicted numerous common cis-elements. Only motifs with 90% or more 

identity are described. 

Function Consensus 
sequence 

Position Identity 
(%) 

Strand 

Tuber-specificity 
OSE1 
OSE2 
RAV1AAT 
TAPOX1 
 

 
AAAGAT 
CTCTT 
CAACA 
AATAT 

 
360-365 
240-244 
693-697 
360-365 

 
100 
100 
100 
100 

 
+ 
+ 
+ 
+ 

Sucrose-
inducibility 
SURE1 
SURE2 
SURECORE 

 
 
AATAGAAAA 
AATACTAAT 
GAGAC 

 
 
515-523,835-843 
822-830 
103-107,797-801 

 
 
100 
100 
100 

 
 
+, + 
+ 
-, - 

Hormone 
ERE 
GARE 
DPBFCORE 
MYCATRDD2 
LECPLEACS 

 
ATTTCAAA 
AAACAGA 
ACACATG 
CACATG 
ATATTTTA 

 
432-439 
554-560 
64-70, 576-582 
65-70, 576-581 
285-292 

 
100 
100 
100 
100 
100 

 
+ 
- 
+,- 
+,- 
- 

Flavonoid 
MYBCORE 
MBS 
 

 
CNGTTG 
CAACTG 

 
479-484,868-873, 
609-614,868-873 

 
100 
100 

 
+,+ 
+,- 

Light-response 
AAAC-motif 
ACE  
ATCT motif 
BOX-1 
G-BOX 
 I-BOX 
TCCC-motif 
 

 
CAACAAAAACGT 
AAAACGTTGA 
AATCTAATTT 
TTTCAAA 
CACGTA 
GATAAGGCG 
TCTCCCT 

 
693-704 
697-707 
165-174 
433-439 
968-973 
630-638 
544-550 

 
92 
91 
90 
100 
100 
100 
100 

 
+ 
+ 
+ 
+ 
- 
+ 
- 

Stress 
ABRE 
TC-rich 
 

 
TACGTG 
ATTTTCTTCG 

 
968-973 
324-333 

 
100 
91 
 

 
+ 
+ 
 

Wound 
WBOXATNPR1 
WBOXHVISO1 
 

 
TTGAC 
TGACT 
 

 
86-90,602-606 
597-601,603-607 
 

 
100 
100 
 

 
+,+ 
+,+ 
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Interestingly, more than 20 wound-related motifs were identified. This so-called WBOX 

motif includes the well-studied WBOXATNPR1 that is specifically recognised by 

salicylic acid-induced WRKY binding proteins. To extend the search for wound-related 

motifs, a number of cis-elements implicated in wound response of wound inducible 

genes were gathered from the literature and searched for manually.  

Table 5.3 The putative wound-inducible motifs searched in Patatin sequence. 

Putative motifs Sequence Reference 

Z-element GCACATACGT An et al. (1990) 

WUN ATGAAATTT Pastuglia et al. (1997) 

AG-motif AGATCCAA Sugimoto et al. (2003) 

GCC-box AGCCGCC Fujimoto et al. (2000) 

They included the nopaline synthase promoter that contains a Z-element, which is 

equally induced by wounding and auxin. Others were the Myb2 gene in tobacco which 

contains the AG-motif, STH-2 gene from potato which contains the WUN motif, and the 

poxA gene from rice containing the GCC-box (Table 5.3). However, searching for these 

motifs in the Patatin promoter only identified sequences with very low similarity. 

The search tools also predicted motifs indirectly associated with wound responses. In 

plants, common responses following wounding area rapid oxidative burst and the 

production of hydrogen peroxide. These are accompanied by the upregulation of the 

phenylpropanoid pathway, inactivation of photosynthetic components, and the 

accumulation of ethylene. In the second phase, the plant initiates its defence system by 

producing secondary metabolites before returning to its normal physiology. There were 

two motifs related to the biosynthesis of ethylene found in the Patatin promoter, namely 

an ethylene responsive element (ERE) and LECPLEACS (Matarasso et al., 2005). 

These motifs are significant, especially as ethylene accumulation is a typical aspect of 

PPD. Equally significant is the MYB binding domain, a transcription factor related to 

flavonoid synthesis (Bedon et al., 2010, Tamagnone et al., 1998, Park et al., 2008), 

which is also associated with PPD. 
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Additionally, motifs associated with stress and plant defence are scattered throughout 

the sequence. These include an abscisic acid response element (ABRE), a TC-rich 

repeat, and two other cis-elements related to abscisic acid responsiveness, 

DPBFCORE and MYCATRD22, which were also shown to be involved in oxidative 

stress responses (Jiang and Zhang, 2001). Moreover, the Patatin promoter contains 

seven different light-responsive elements and six highly conserved heat shock 

elements (HSE).  

5.3.5.2 Classification of the Patatin promoter 

The Patatin promoter used here was obtained from a research group working with 

cassava in the Shanghai Institute for Biological Sciences, which also used it to drive 

the expression of their genes of interest. However, it has not been characterised as a 

class I or a class II. Expression in tubers by a class I patatin is extremely high 

compared to that of the Class II as it constitutes 98% of the total Patatin mRNA 

(Wenzler et al., 1989). Therefore, classification of patatin is crucial to predict the 

expression profile of the target genes used in this study. 

Class II is differentiated from a class I by the presence of 22-bp insertion in the 

untranslated region close to the initiating methionine (ATG). In the class II, the 22-bp is 

highly identical and located at the same position (Mignery et al., 1988). Except for the 

insertion, the Patatin promoter of both classes is highly homologous especially towards 

the 3‘ end of the promoter so sequence alignment at this end should effectively 

discriminate patatin promoters. Therefore, to determine the class of our Patatin, it was 

aligned with a number of class I and class II patatin sequences available in the 

Genbank database (Figure 5.26). 
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Figure 5.26 Sequence alignment of class I (B33, PS20, PS3 and PAT21) and class II 

patatins (PS18, PS22, PS26) with the Patatin used in this study. B33 was obtained 

from Rocha-Sosa et al. (1989), PAT21 from Bevan et al. (1986) while PS20, PS3, 

PS18, PS22 and PS26 were from Mignery et al. (1988). The CAAT and TATA boxes 

are indicated in a light grey and a blue shading respectively. The 22-bp insertion is 

highlighted in orange font. The initiating Met is indicated by +1. 

From the sequence alignment, the 22-bp insertion was identified in all the class II 

patatins, where it was found at the bp position -32 to -11. The class I patatins did not 

possess this insertion. However, the alignment shows that the Patatin used in this 

study is missing 40 to 60 nucleotides at the 3‘ end, which include the region containing 

the definitive insertion/deletion. Since the missing nucleotides include the region used 

to differentiate between classes, it cannot be confirmed that our Patatin belongs to 

either class I or class II. Nevertheless, the Class II patatins used in this analysis also 

lack nucleotides at -152 and -155, which are present in the Class 1 patatin and our 

patatin promoter, thus suggesting that our patatin promoter may in fact be derived from 

a Class I. Despite not being able to classify the Patatin with absolute certainty, the 

CAAT and TATA boxes are present, so the Patatin was expected to function 

effectively. Certainly, its regulation in planta would help to elucidate this. 
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5.3.6 The Patatin promoter activity in planta 

The Pat:Gus expression cassette was previously transformed into Arabidopsis by Page 

(2009). This had generated 5 homozygous potential Pat:Gus lines called StPAT::GusP 

2-8, 7-1, 10-6, 13-4 and 16-5. In the next sections, StPAT::GusP 7-1 was used to 

examine overall expression of GusPlus in the whole plant, root specificity, wounding 

and sucrose inducibility. For simplicity, it is denoted as AtPat:Gus in this thesis. 

Arabidopsis B33:Gus (abbreviated AtB33:Gus) was also tested for comparative 

analysis and Col-0 served as WT control. B33 is a class I promoter that was used in 

analysis of the Patatin promoter in the previous section and the AtB33:Gus has been to 

confirmed root-specific The promoterless version of the expression cassette (Pat(-

):Gus) in Arabidopsis was not available, so it could not be analysed. Unless otherwise 

stated, the Arabidopsis samples used were mainly seedlings that had been germinated 

in water for five days (5 DAG) at 25-27°C, under a 14-hour photo period. The Gus 

assay was conducted based on the method described in Section 2.5.7.  

5.3.6.1 AtPat:Gus demonstrated root specificity and wound inducibility 

The GusPlus expression by the Patatin promoter under non-stressed condition was 

examined by staining the 5 DAG seedlings for Gus activities. In this assay the root-

specificity of the Patatin promoter was shown by a clear expression of the GusPlus 

gene in roots with no expression detected in hypocotyls or leaves. 

 

Figure 5.27 Root specificity of AtPat:Gus and AtB33:Gus is demonstrated in non-

wounded (NW) samples. The wounded samples (W) showed wound inducible 

characteristic in AtPat:Gus by showing heavy staining at the pierced site (indicated by 

arrow). The experiment was performed on 5 days after germination (DAG) seedlings. 
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Close examination revealed occasional staining in hydathodes. B33, being root-specific 

also demonstrated Gus expression in roots but it was not as strong as that observed in 

the AtPat:Gus. The differences between the Patatin and B33 suggests that the higher 

root-specific expression could be achieved using the patatin utilised in this study 

(Figure 5.27). 

Depending on the handling of the samples, staining was occasionally observed on the 

leaf tissues of At:PatGus. However, this was not observed in B33. As no additional 

treatments applied including addition of sucrose, the mechanical damage introduced 

during handling was thought to induce this. This characteristic is unique and must be 

confirmed. To do this, the leaf was pierced with a sterile needle prior to staining with 

Gus buffer. As shown in Figure 5.26, the wound inducibility characteristic is confirmed 

as the leaf developed Gus activity specifically at the wounded site. In contrast, the B33 

was found lacking this characteristic as the pierced B33 leaf remained unstained. 

 

5.3.6.2 Wound response by Patatin is rapid 

Wound inducibility is an important aspect in PPD especially with respect to the 

oxidative damage that causing it. Since an oxidative burst can occur shortly after 

wounding and afterwards cascades causing irreversible oxidative damage (Reilly, 

2001), it became crucial to determine the speed of the wound response in the promoter 

used. To assess this, AtPat:Gus leaves were wounded and then stained over a time-

course of wounding. Leaves were carefully pricked with tweezers and stained with Gus 

buffer before rinsing with sterile distilled water to stop the reaction. The 0 min leaf 

sample was rinsed immediately after incubation while other samples were rinsed after 

the designated time points. 

 

 

Figure 5.28 GusPlus expression in response to wounding in Pat:Gus as shown by the 

intensity of Gus staining. Numbers represent time after wounding in minutes. 

Figure 5.28 shows the progress of Gus staining over 60 minutes. The wounding 

response appears to be extremely rapid as Gus-staining is detectable after one minute 

of wounding. It is clearly shown that GusPlus expression increased with time as 
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heavier staining was shown in leaves that had been wounded for a longer period of 

time.  

5.3.6.3 GusPlus expression in Pat:Gus leaf was achieved with sucrose 

Sucrose inducibility is a distinctive feature of class I Patatin, so it was tested by 

incubation in different sugar solutions. 5 DAG seedlings that had been germinated in 

water were incubated in sucrose, glucose and fructose (0, 10, 100 mM) at room 

temperature for 24 hours before being stained for Gus activities. 

 

 

Figure 5.29 Staining of AtPat:Gus in various concentration of sugar solutions.The 

seedlings were stained following 24 hours of incubation. Suc = sucrose, Gluc = 

glucose, Fruc = fructose. 

The role of the sugar solutions in enhancing Gus activities is assessed visually. 

Basically, incubation in water (0 mM sugar solution) reflected the normal Gus activities 

in AtPat:Gus which demonstrated Gus activities exclusively in roots. Figure 5.29 shows 

that induction of expression is apparent in the AtPat:Gus plantlets that had been 

supplied with sucrose. In 10 mM sucrose the expression extended to the leaf tissue, 

while increasing the concentration by 10 times caused expression in the whole plant. 

On the other hand, glucose and fructose were found less effectively to induce Gus 
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expression in tissues other than root as adding these sugar to the same concentration 

of that sucrose did not change the pattern of Gus activities in the AtPat:Gus. 

 

 

Figure 5.30 Staining of AtB33:Gus in various concentration of sugar solutions.The 

seedlings were stained following 24 hours of incubation. Suc = sucrose, Gluc = 

glucose, Fruc = fructose. 

The response towards exogenous supply of sugars was also examined in the B33 

promoter. AtB33:Gus was subjected to the same treatment and assessment as 

AtPat:Gus. In AtB33:Gus, it was found that sucrose confers its inductive effect to the 

B33 promoter in a relatively different manner than the Patatin. Increasing sucrose 

solution effectively enhanced Gus expression in the root, but no expression in leaves or 

other tissues was observed. Such response was not expected as B33 is a class I 

promoter but one possible explanation for this might be the highest concentration 

tested here was not sufficient to induce expression in leaf and to cause observable 

activities. However, whether adding more sucrose would induce expression in the leaf 

was not investigated. Interestingly, glucose and fructose seems to suppress the B33 

promoter as less Gus expression was observed in AtB33:Gus plants supplied with 

these sugar solutions. As shown in Figure 5.30, glucose is more effective than fructose 
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as only 10 mM glucose is required to inhibit Gus expression while 100 mM fructose is 

required to exert the same effect. 

5.3.6.4  The effects of hormone regulators 

Tuber formation is largely regulated by phytohormones such as auxins, cytokinins and 

gibberellins (Aksenova et al., 2012). Therefore, it is of interest to examine the effects of 

these phytohormones on Patatin promoter expression. Since Arabidopsisis a non-

tuberous species this could only be studied in the roots through supplying the 

chemicals during the plant‘s active growing phase. To do this, 5 DAG seedlings were 

incubated in 0.1, 1 and 10 µM phytohormone solutions at room temperature for 24 

hours. 2,4-Dichloropenoxyacetic acid (2,4-D) and Indole-3-acetic acid (IAA) 

represented auxins, while 6-benzylaminopurine (BAP) and Gibberellic acid (GA3) 

represented cytokinins and miscellaneous phytohormones respectively. Seedlings that 

were incubated in water (0 Mm) served as a positive control. 

 

Figure 5.31 Phytohormone treatments of 5 DAG AtPat:Gus seedlings with 

phytohormone solutions of various concentrations. Incubation in water (0 Mm) 

represents untreated samples. 2,4-D = 2,4-Dichloropenoxyacetic acid, BAP = 6-

benzylaminopurine (BAP), GA3 = Gibberellic acid (GA3), IAA = Indole-3-acetic acid. 

Figure 5.31 shows that AtPat:Gus was not affected by any phytohormones at 0.1 and 1 

µm concentrations but at 10 µm the phytohormones effectively inhibited Gus 

expression as shown by absence of Gus staining. In contrast, AtB33:Gus was shown 

more sensitive to phytohormones than the At:PatGus. Apart from GA3, all types of 

phytohormone inhibited Gus expression at 0.1 µM and higher concentration (Figure 

5.32). 
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Figure 5.32 Phytohormone treatments of 5 DAG AtB33:Gus seedlings with 

phytohormone solutions of variable concentrations. Incubation in water (0 Mm) 

represents untreated samples. 2,4-D = 2,4-Dichloropenoxyacetic acid, BAP = 6-

benzylaminopurine (BAP), GA3 = Gibberellic acid (GA3), IAA = Indole-3-acetic acid. 

This finding suggests a strong regulation by the phytohormones in the B33 promoter 

which substantiates the previous findings that patatin, in general is highly regulated by 

developmental change (Stupar et al., 2006). A possibly weaker regulation by the 

phytohormones is proposed in our Patatin.  
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5.3.6.5 Patatin regulation towards general stressors 

Plants are consistently exposed to various stresses of abiotic and biotic origin. 

However, regarding to PPD, abiotic stress is of more concern than the biotic stress. To 

visualise Patatin regulation towards the general abiotic stresses, the seedlings were 

subjected to various treatments. To examine the effects of darkness, the Arabidopsis 

seeds were germinated for the same period and at the same temperature as the 

normally germinated seedlings, but with no exposure to light. For cold stress, the 5 

DAG seedlings were incubated in 4°C for 24 hours. Jasmonic acid (JA) and its 

derivative methyl jasmonate is an essential component of the systemic wound signal. 

Therefore, its effect was examined by incubating 5 DAG seedlings in 10 µM methyl 

jasmonate for 24 hours. AtPat:Gus seedlings that were germinated under normal light 

conditions served as a positive control and Col-0 served as a negative control. The 

results of these treatments are summarised in Figure 5.33. 

 

 

Figure 5.33 Gus activities of Arabidopsis seedlings in response to various stresses 

such as darkness, cold and accumulation of jasmonic acid (10 µM). All seedlings were 

Gus-stained following the treatments. L = light, D = dark stress, C = cold stress, JA = 

jasmonic acid. 
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It was found that the dark treatment had no effect on the AtPat:Gus samples as the 

root tissue consistently develop Gus activities. This observation suggests that light 

responsiveness probably is not an established characteristic of Patatin. On the other 

hand, B33 was severely affected by the absence of light in which it prevented Gus 

expression in all tissues of the seedlings. The JA treatment also produced contrasting 

results between the Patatin and the B33 promoter. JA at 10 µM had effectively 

prevented Gus expression in AtB33:Gus but it caused no change of expression in 

AtPat:Gus. Nevertheless, both promoters were shown not to be affected by low 

temperature as a similar expression pattern was observed in cold-stressed and non-

stressed condition. 

5.3.6.6 Patatin expression is expected in fully-grown plants 

 

Figure 5.34 An AtPat:Gus plantlet plant at 14 DAG showing Gus activities in the same 

fashion as the seedlings. Here, leaves are stained due to presence of sucrose in the 

growth medium. 

It is now evident that the Patatin used in this study is regulated by many factors and in 

a slightly different way to the B33. However it is crucial to determine the stability of the 

promoter. Staining of AtPat:Gus that had germinated for two weeks showed the plants 

maintained the same expression pattern as the seedlings (Figure 5.34). Gus staining 

was consistently observed in the primary and hairy roots. Here, sucrose inducibility of 

Patatin was demonstrated as the Arabidopsis leaves showed Gus activities without any 

treatment. This may be because Arabidopsis was grown in MS salt containing sucrose 

which is the standard in vitro growth conditions. Besides, growth was retarded when 

grown on MS salts without sucrose, so obtaining healthy plantlet Arabidopsis grown 

under this condition could not be achieved.  
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5.4  Discussion 

Since an identical Patatin promoter was used in all expression plasmids created, it was 

crucial to examine the regulatory pattern of Patatin by monitoring GusPlus expression. 

In the present study, Patatin regulation in cassava could not be examined as the 

cassava reporter lines did not exist. Sequencing of the key components of the 

supposedly Pat:Gus expression cassette confirmed that the constructed expression 

plasmid pDEST:GusPlus was not transformed into cassava. Instead, it was 

transformed with pCAMBIA 1305.1 with a truncated GusPlus sequence. Therefore, the 

Arabidopsis that had been transformed with the same expression plasmid that 

contained the full patatin promoter and GusPlus gene (Page, 2009), was analysed and 

the outcome was expected to be comparable. 

Patatin is closely associated with tuber formation in its native species, potato. Its 

expression was detected during the stolon initiation stage and gradually increased with 

the formation of mature tubers (Bachem et al., 1996, Stupar et al., 2006, Xu et al., 

2011). Being a tuberless species, Patatin demonstrated its tissue-specificity in 

Arabidopsis by showing Gus activities exclusively in roots. Therefore, its expression 

seemed not to be limited to storage organs as it was shown to be transcriptionally 

active in tobacco roots (Page, 2009). This root-specificity is the main indicator of 

Patatin function. Importantly, it parallels with our goal, which is to enhance the 

antioxidative capacity in order to modulate oxidative damage in cassava roots 

containing genes fused to Patatin. Root or tuber specificity is an established 

characteristic of Patatin and has been previously observed in heterologous expression 

in Arabidopsis using B33, a class I patatin. Quantification of Gus activity showed that 

B33:Gus caused increase of activity in roots by up to 18 and 85 times than in 

hypocotyls and cotyledon respectively (Naumkina et al., 2007). In cassava itself, 

patatin has been widely used as a promoter due to this characteristic. For example, 

overexpression of hydroxynitrilelyase (HNL) caused increases of the mRNA level by 

20-fold and protein level by 3-fold, thereby reducing cyanogen content in cassava roots 

(Narayanan et al., 2011). Patatin also was used to accumulate zeolin, a storage 

protein, in cassava aimed at increasing the nutritional protein of cassava roots, in which 

the transgenic was found to have a four times higher protein level than the non-

transgenic (Abhary et al., 2011). 
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Apart from being specific to root tissue, our Patatin was found to be highly responsive 

to wounding. The wound inducibility characteristic of our Patatin was discovered by 

Page (2009) and confirmed in the present study. It is novel since it has never been 

reported in any classes of patatin, including B33, despite the abundance in W-box 

motifs in the promoter regions (Prestridge, 1991). Moreover, patatin is not known as a 

defence-related protein involved in wound healing but rather in defence against 

pathogenic attack (Tonón et al., 2001). With respect to PPD, utilising Patatin is an 

excellent strategy because evidence suggests that PPD is the consequence of an 

incomplete wound response and wound-induced oxidative stress (Beeching et al., 

1994, Beeching et al., 1998). Wounded cassava storage root tissue rapidly 

accumulates reactive oxygen species (ROS) that disrupt the redox balance in the cells, 

while the anti-oxidant enzymes and compounds to neutralise them either accumulate to 

inadequate levels or too late. This leads to an oxidative burst and finally the formation 

of vascular streaking (Reilly et al., 2003). For example, superoxide dismutase (SOD) 

which is a frontline enzyme in ROS detoxification is only actively transcribed between 

12 to 24 hours after harvesting or wounding (Owiti, 2009, Shin et al., 2005) and 

catalase, which neutralises the toxic by-products of SOD, is up-regulated a few days 

after that (Reilly et al., 2003). The wound inducibility characteristic by Patatin can 

presumably be attributed to the numerous wound-response elements found in the 

sequence, the W-boxes in particular. The W-box is a generic name for wound-

response cis-acting elements of (T)(T)TGAC(C/T) sequence elements found in many 

plant defence-related genes which require WRKY binding factors to promote 

transcriptional activities. While there is limited information available regarding the 

activation of the wound response of PPD-related genes, the discovery of a WRKY 

binding factor gene homolog through cDNA-AFLP pinpoints the potential of the Patatin 

promoter in cassava (Kemp et al., 2005). 

Another prominent characteristic of Patatin is the induction of expression in non-

storage tissue, especially in leaves, by sucrose. The strong inducibility demonstrated 

by sucrose explains why histochemical analysis in the present study utilised water-

germinated seedlings instead of fully-grown plantlets which would require sucrose 

during growth. Sucrose catabolism involves either sucrose synthase or invertase, in 

which the latter predominates when oxygen is plentiful (Geigenberger, 2003). Although 

cassava itself does not produce a true tuber and its storage root is relatively low in 

sucrose, an increase in invertase activity has been detected following harvesting, 

indicating the accumulation of sucrose during PPD (Tanaka et al., 1984). Additionally, 

there is also evidence that at least 5% sucrose is required for initiation of cassava 
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storage roots from fibrous roots in vitro (Medina et al., 2007).The sucrose regulation by 

our Patatin is also specific as glucose and fructose at the same concentration could not 

induce expression in leaves. The specific induction by sucrose was previously 

examined and proved not to be due to changes in osmotic pressure as replacing 

sucrose with mannitol did not induce Gus expression (Martin et al., 1997). 

Nevertheless, although sucrose is recognised as an important metabolite in patatin 

induction, it was found not to directly modulate patatin, but requires supplementary 

modulators like glutamine and is also induced in the presence of light (Peña-Cortés et 

al., 1992). It is worth mentioning that the sucrose-inducible characteristic is not only 

unique to Patatin, as it is also involved in mediating the expression of the storage 

protein, Sporamin, in sweet potato (Hattori et al., 1991). 

In the present study, the light-dependent expression as observed by Peña-Cortés et 

al., (1992) was confirmed in B33, but not in our Patatin as this appeared not to be 

affected by the absence of light. However, the expression of both promoters was 

greatly inhibited by high concentration of phytohormones, although our Patatin was not 

affected by low concentration of phytohormones. Suppression of patatin expression by 

GA3 has been reported (Xu et al., 1998, Rodríguez-Falcón et al., 2006), but that by 

auxins and cytokininsis unclear as these are necessary components for tuber formation 

(Gukasyan et al., 2005, Romanov, 2009). Nonetheless, the data using phytohormones 

presented here are qualitative, so the precise active concentrations remain to be 

established. Combined treatments of physical and chemical stress would also further 

illuminate the regulatory function of our Patatin. 

Patatin classification has been attempted in order to discriminate between and to 

characterise the numerous copies of Patatin found in potato tubers. Since the coding 

region and the immunological responses of the protein are similar, classification based 

on the promoter sequence has been used. For example, class I, being exclusively 

expressed in tubers has been shown to cause thousands fold more mRNA production 

in tubers. So, overexpression of transgenes in tubers is best achieved using this 

promoter rather than a promoter from a class II patatin (Wenzler et al., 1989). Because 

of some unexpected expression data from patatin-gene fusions, including patatin-

GusPlus, in cassava, a detailed analysis of the nature of the patatin promoter found in 

some of the transgenic cassava and Arabidopsis was carried out. The amplified 

fragment was sequenced and this revealed that the Patatin used in our experiments to 

be slightly shorter than those of other characterised patatin promoters. Analysis of this 

sequence showed that nucleotides the proximal end which carries a common 

determinant used in patatin classification was missing. However, despite the missing 
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nucleotides it retained critical features of a Class I patatin. For example it contains A+B 

repeats that are responsible for the sucrose-inducible characteristic. Moreover, sucrose 

activation pattern showed our Patatin to have a classic response found exclusively in 

class I patatins. It is unclear from the literature whether the ―missing‖ sequence 

containing defining 22 bp plays a functional role in the expression profiles of these two 

classes of patatin. 

The characterisation of Patatin was intended to be studied by observing GusPlus 

expression in experiments that included cassava plants transformed with promoterless 

expression plasmid called pDEST:GusPlus (-Pat) as a control. In this promoterless 

control, the Patatin promoter had been excised leaving GusPlus positioned adjacent 2X 

CaMV35s in the reverse orientation that drove the selectable marker hptII. 

Unexpectedly, without a patatin promoter, Gus activity was observed indicating 

GusPlus expression. Having confirmed, though sequencing, that these transgenic 

plants possessed the correct construct, GusPlus minus the Patatin promoter, it was 

concluded that this unexpected result is probably due to the constitutive CaMV35s 

being able to drive GusPlus expression in the whole plant despite being in reverse 

direction. Interestingly, Gus staining of these transgenic cassava materials showed 

particularly intense staining.  

In conclusion, although the Patatin promoter expression profile could not be examined 

in cassava plants, the findings gathered from transgenic Arabidopsis have provided 

important indication of functions. It is worth highlighting that the root-specific and 

wound-induced features demonstrated by this promoter are important qualities as they 

should facilitate the accomplishment of the main objectives of this study.  
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CHAPTER 6 

Effects of anti-oxidant genes to PPD 

 

6.1 Introduction 

 

Reactive oxygen species (ROS) have been implicated as a causal agent in PPD. 

Accumulation of ROS following wounding of the storage roots has been observed. Like 

in other plants, cassava is equipped with ROS detoxification systems but they are 

inadequate in the harvested storage roots, leading to inefficient ROS scavenging 

(Beeching et al., 1999). Prolonged accumulation of ROS eventually causes oxidative 

stress, cell damage and tissue discolouration. The existing knowledge about the native 

expression of the target genes used in this study, including their response towards 

general abiotic stressors, is reviewed here.  

Superoxide radical anion (O2
-) is normally produced from leakage in the electron 

transport chain (ETC) but also can be artificially produced by treatment with a redox-

cycling herbicide, such as methyl viologen (MV). In the plant cells, O2
- is dismutated to 

H2O2 either spontaneously or enzymatically by superoxide-dismutase (SOD) (Bowler et 

al., 1994). In cassava storage roots O2
- can be detected within 15 minutes of tissue 

wounding. The importance of SOD and its classification have been discussed in 

Section 3.1.2.1. At least seven SOD isozymes were identified in cultured cassava cells, 

(You, 1996) but to date, only two SOD genes have been isolated and characterised. 

They are MecSOD1 and MecSOD2. Both genes are cytosolic, CuZn- type and are 

present as single copies in the cassava genome. However, MecSOD1 has been more 

studied than MecSOD2, with high expression detected in stems and storage roots, and 

low expression detected in non-storage roots and leaves. MecSOD2 expression in 

stems, leaves and storage roots resembles those of MecSOD1, but its expression in 

non-storage roots has not been investigated (Shin et al., 2005). Interestingly, 

MecSOD1 is also upregulated by sucrose, although it has not been determined 

whether this is a result of changes in osmotic pressure or metabolic activities (Lee et 

al., 1999). Nevertheless, both are also highly upregulated by wounding treatments, 

though the MecSOD1 expression data were obtained using storage roots of unknown 

cultivars (Owiti, 2009). In terms of response to ROS treatments, increased expression 

was more rapidly achieved in MecSOD2 than MecSOD1, with increased expression at 

6 hours and 30 hours, respectively. The high sensitivity demonstrated by MecSOD2 is 

a useful criterion for studying the role of SOD in PPD. The SOD expression pattern in 
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storage roots has been determined in a separate experiment by monitoring transcript 

abundance of a putative SOD gene that is highly identical to MecSOD1 at the amino 

acid level. In four cultivars with different PPD susceptibilities examined, the expression 

level was constant, but low, from day 1 to day 5 of harvest (Reilly, 2001). 

Peroxidase (POX) activity has been associated with the PPD symptoms developed in 

deteriorated cassava roots. For example, the blue-black discoloration has been shown 

to be a result of oxidation of polyphenols such as catechin, which present in higher 

concentration in deteriorated cassava roots, by POX (Tanaka et al., 1983). This is 

supported by the observation that the treatment with horseradish peroxidase increased 

formation of coloured deposits in cassava roots (Marriott et al., 1980) and the gradual 

increase of total POX activities in stored cassava roots over the course of deterioration 

(Tanaka et al., 1983). Several types of POXs, including those that oxidise scopoletin, 

which is the main compound associated with PPD symptoms, have been identified 

(Reilly, 2001, Gómez-Vásquez et al., 2004). Moreover, microarray analysis of 

deteriorating vs fresh cassava roots showed upregulation of a secretory POX 

(MecPX3) after 12 hours of harvesting. In addition to those POX that oxidise phenolic 

compounds, ascorbate peroxidase (APX), which is involved in the ascorbate-mediated 

detoxification of the by-product of O2
- dismutation to H2O2, plays a role in ROS 

detoxification in cassava roots post-harvest. The general mechanism of APX activity is 

discussed in Section 3.1.2.3. Nucleotide BLAST searches using Arabidopsis APX 

sequences predicted seven orthologous sequences in cassava (Bull, 2011), but so far 

only one APX has been isolated from the cassava genome, MecAPX3 (Reilly et al., 

2007), which was used in this study. Therefore, while the general expression profiles of 

POXs have been determined in cassava roots, that of MecAPX3 has been specifically 

studied and shown to have transient expression between 6-12 hours after harvesting 

(Owiti, 2009, Reilly, 2001). However, its response towards abiotic stimuli has not been 

determined. 

The non-enzymatic components for modulating ROS include glutathione (GSH/GSSG) 

and ascorbate (AA), which are involved in the ascorbate-glutathione cycle for ROS 

detoxification. In Arabidopsis, ɣ-glutamylcysteine synthetase (GCS) is proposed to be 

the key enzyme for GSH (reduced glutathione) formation, which is a powerful 

compound against oxidative stress (Szalai et al., 2009). The pathways for the 

biosynthesis of GSH and its antioxidative properties have already been discussed in 

Section 3.1.2.5. Microarray experiments using deteriorating cassava roots revealed 

upregulation of glutathione S-transferase (GST), which is an enzyme involved in 

catalysing the detoxification of metabolites resulting from cell damage, but there was 
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no report on expression of genes involved in glutathione biosynthesis, including GCS 

(Reilly et al., 2007). Hence, the gene encoding this enzyme has yet to be isolated and 

its expression profile to be determined in cassava. 

Similarly, the gene encoding galacturonic acid reductase (GAR) has not been isolated 

in cassava, so data on its expression profile is currently not available. GAR is the 

enzyme identified in the galacturonate pathway in AA biosynthesis whose 

overexpression has been shown to increase AA levels substantially in strawberry fruit 

and Arabidopsis (Agius et al., 2003) .The other pathway for AA biosynthesis is 

described in Section 3.1.2.4 and the GAR gene used in this study is listed in Table 3.1. 

The cassava root is relatively low in AA, though examination of 30 cassava genotypes 

found some indication that AA content might increase resistance to PPD (Chavez et al., 

2000). 

 

6.2 Research aim 

This chapter aims to assess PPD symptoms and changes of biochemical activities in 

cassava roots from plants transformed with the above mentioned anti-oxidant genes. 

Assessments involve the putative single-insert lines which have been confirmed 

carrying correct expression cassettes as identified in Chapter 3 and Chapter 5. 
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6.3 Results – MecSOD2 

Seven single-insert independent lines had been identified from the pDEST:MecSOD2-

transformed cassava. From this, selected lines were grown in the greenhouse for six 

months to produce storage roots (Section 2.2.2). Assessments of yield and phenotypes 

from three Pat:SOD plantings did not find conclusive differences between the 

transgenics and the WT plants due to extensive variations (Section 3.3.2.2). Further, 

four of the total numbers of the single-insert lines were used for expression analysis, 

enzyme activity, ROS detection and PPD assessment. 

 

6.3.1 Cassava harbouring the pDEST:MecSOD2 cassette over-express the 
transgene in root tissue 
 

6.3.1.1 RNA isolation method produced RNA of good quality 

Total RNA isolation from cassava roots is complicated by high starch and polyphenols 

in which commercial kits failed to yield good quality RNA.  

 

 

Figure 6.1 The data obtained from Experion™ Automated Electrophoresis System (a) 

A simulated agarose gel of RNA showing that two bands corresponding to 18s and 28s 

rRNA were obtained in all samples except in Sample 3.(b) Chromatograms of good 

(Sample 2) and poor (Sample 3) quality RNA. 18s and 28s peaks are clear in Sample 2 

but these are not shown in Sample 3. 
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Therefore, it was extracted according to a conventional method used for isolation of 

RNA from recalcitrant pine needle (Chang et al., 1993). RNA was quantified using 

Experion™ Automated Electrophoresis System which simultaneously checked the 

integrity of the RNA (Section 2.4.3). Simulated gel showed the typical 18s and 28s 

RNA indicating clean RNA preparations (Figure 6.1). Unless a high quality of RNA was 

obtained from a sample, re-extraction was performed. 

 

6.3.1.2  Validation of target gene and reference gene primers for qPCR 

qPCR was performed according to the Pfaffl method which measures fold-increase in 

the transgene as a ratio to fold-increase in the reference gene (Pfaffl, 2001). While the 

gene encoding a housekeeping gene 18s was selected as a reference gene based on 

recommendations in the literature (Bas et al., 2004), as the target gene requires 

rigorous validation. Since cassava possess an endogenous MecSOD2 gene it was 

decided that it would be more biologically relevant to design primers that would 

measure the transcript levels derived from both genes, endogenous and transgene, 

rather than primers that could differentiate between them (Figure 6.2). Therefore, the 

primers called SODtf and SODtr were designed based on the MecSOD2 coding region. 

A similarity search of the primers against the cassava genome database in Phytozome 

and the T-DNA region found no other target sequence than MecSOD2. To detect 

contaminating genomic DNA the primers were designed to span an intron to 

discriminate amplification from genomic DNA and cDNA by size. Amplification from 

pure cDNA would generate a smaller sized PCR product (135 bp), if contaminating 

genomic DNA was present in the cDNA preparation another PCR product of greater 

size (325 bp) would appear on the electrophoresis gel. 

 



153 
 

 

Figure 6.2 Nucleotide alignment of the expression plasmid (pDEST:SOD), genomic 

DNA sequence of MecSOD2 (gDNA, phytozome: cassava 4.1_018289) and the coding 

sequence of MecSOD2 (cDNA). Intron, forward primer (SODtf) and reverse primer 

(SODtr) are indicated.  

 

 

Figure 6.3 PCR of various DNA templates using primers SODtf and SODtr with Taq 

polymerase. Amplification from plasmid and cDNA template generated a single PCR 

product of 135 bp. Amplification from a transgenic genomic DNA template generated 

the 135 bp PCR products and two additional PCR products. M = DNA marker, 1 = 

positive control (pDEST:MecSOD2 plasmid), 2 = transgenic genomic DNA, 3 = 

transgenic cDNA, 4 = WT DNA, 5 = WT cDNA, 6 = negative control (water).  

 

The primers specificities were validated by conventional PCR using Taq Polymerase. 

PCR with cDNA templates generated a single PCR product of the correct size but PCR 

with transgenic genomic DNA generated three PCR products instead of two (Figure 
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6.3). The smaller PCR product was the transgene MecSOD2 fragment while the other 

two were believed to be the genomic fragments of MecSOD2 because similar PCR 

products were obtained from the WT genomic DNA. Alignment of SODtf and SODtr 

primers with MecSOD2 homolog (phytozome: cassava 4.1_018294) found putative 

non-specific binding of the primers with expected PCR product of approximately 300 bp 

(Figure 6.4). Thus, this explains the presence of additional PCR product in genomic 

DNA template. The PCR products amplified from WT cDNA and transgenic cDNA were 

sent for sequencing and they were confirmed a MecSOD2 coding sequence fragment 

(data not shown).  

 

 

Figure 6.4 Primer alignment of SODtf and SODtr to MecSOD2 homolog (Phytozome: 

cassava4.1_018294) in cassava genome. This unspecific binding has caused an 

additional PCR products of 300 bp to be amplified from cassava genomic DNA.  

 

Amplification with Taq polymerase confirmed the primers specificities but this requires 

further validation in the actual qPCR reaction. To do this, a melting curve analysis was 

performed. 

6.3.1.3  Melting curve analysis 

The specificities of both the target and reference gene primers in qPCR reaction were 

determined by melting curve analysis. This is an indispensable step in qPCR utilising 

SYBR green. Amplification of cDNA templates derived from the WT and Pat:SOD with 

SODtf/SODtr primers generated a single fluorescence signal peak confirming 

measurement of only transgene and absence of unwanted products such as primer 
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dimers. Similar results were obtained for the reference gene 18s, where a single 

fluorescence peak was obtained (Figure 6.5). Difference in melting temperature is 

attributed to the properties of the PCR products. 

 

 

Figure 6.5 Melting curve analysis (a) transgene MecSOD2 and (b) reference gene 

amplification. Presence of a single fluorescence peak confirms specificity of the primers 

in qPCR reaction.  

 

6.3.1.4 Determination of amplification efficiencies of target and reference gene 

Another indispensable step in the Pfaffl method is determination of amplification 

efficiencies (AE) of the target and reference genes using standard curve analysis. The 

standard curve is constructed by plotting CT values and the amount of cDNA template 

used. AE would be used in quantification of the target gene transcript (Section 2.4.6). 

Five cDNA dilutions derived from WT roots harvested at 0, 1 and 3 DAH were prepared 

and amplified with the proposed qPCR primers using SYBR green. AE was determined 

from the slope of the standard curve (Figure 6.6). A similar approach was applied to the 

reference gene (Figure 6.7). 
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Figure 6.6 Standard curve analysis of qPCR amplification. Dilutions of WT-derived 

cDNA amplified with SODtf and SODtr primers. 0 DAH; y= -3.493x + 35.73 (R2 = 

0.997), 1 DAH; y = -3.099x + 34.50 (R2 = 0.988), 3 DAH; y= -3.501x + 33.94 (R2 = 

0.994).  

 

 

Figure 6.7 Standard curve analysis of qPCR amplification. Dilutions of WT-derived 

cDNA amplified with 18s For and 18s Rev. 0 DAH; y= -4.085x + 18.90 (R2 = 0.993), 1 

DAH; y = -3.748x + 18.78 (R2 = 0.996), 3 DAH; y= -3.953x + 18.36 (R2 = 0.998).  

 

In all the materials, excellent correlation coefficients were found between the amount of 

templates and CT values as suggested by the high R2 values (R2> 0.980), but AEs 

varied between materials and genes. According to Table 6.1, target genes had high 

AEs as more than 90% were achieved with the designed primers. Reference gene AEs 

were generally lower than those of targets genes in which only 76-85% were achieved.  
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Table 6.1 Amplification efficiencies of target gene (MecSOD2) and reference gene 

(18S) as determined from the slope. 

 Reference gene Target gene 

Materials Slope AE(%) Slope AE(%) 

0 DAH -4.085 76 -3.493 93 

1 DAH -3.748 85 -3.099 110 

3 DAH -3.953 79 -3.501 92 

 

6.3.1.5 Transcriptional levels of MecSOD2 and CuZnSOD activity in Pat:SOD roots 

over a PPD time-course. 

MecSOD2 transcriptional levels were determined using cDNA derived from fresh 

cassava roots as a template. This was quantified as fold differences normalised to 

transcriptional levels in the WT. The changes in transcriptional level over harvesting 

times were determined by normalising qPCR reactions to the transcriptional level in WT 

roots at 0 DAH setting the fold of expression to 1.0. For measurement of CuZnSOD 

activities, total protein was extracted from the root samples and quantified according to 

the methods in Section 2.5.2 and 2.5.3, respectively. The SOD activities were 

determined and based on a standard curve constructed from photoreduction of 

nitrobluetetrazolium (NBT) at A560 (Figure 6.8) (Section 2.5.5)  

 

Figure 6.8 Typical SOD standard curve showing percentage inhibition as a function of 

amount of SOD added (a) and a linear double-reciprocal standard curve (b). R2 is 

shown. 
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Figure 6.9 Mean relative expression of MecSOD2 in Pat:SOD transgenic roots 

compared to the WT roots following harvest. n = 3, SD shown. 

Figure 6.9 shows the transgenic cassava roots have higher MecSOD2 transcriptional 

level than the WT indicating transgene expression in transgenic cassava. Between 1.7- 

to 5.3- fold increase was achieved in the fresh transgenic cassava with significantly 

higher expression shown in C1 (t-test: WT vs. C1, p=0.003) and C4 (t-test: WT vs. C4, 

p=0.005). High variations of transcriptional level were observed in both the transgenics 

and the WT roots in the roots undergoing deterioration but it was possible to 

differentiate a general trend in the transcriptional profile of MeCSOD2 and the WT. 

After 24 hours of harvest, the transcriptional level increased in both the transgenics and 

the WT but this was much greater and significant in the transgenics. B2 root samples 

showed the highest average increase with up to 12-fold compared to the WT which 

only showed an insignificant average increase of 4.4. Interestingly, the high 

transcriptional level of B2 remained at the same level until 3 DAH while the rest of the 

root samples changed variably but non-significantly. Overall, it can be concluded that 

the transgenics tended to have a significant transient increase of transcription at 24 

hours after harvest compared to the harvest point, while the WT had a slight, though 

not statistically significant increase.  
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Figure 6.10 Mean CuZnSOD activities in Pat:SOD transgenic roots compared to the 

WT roots following harvest. n = 3, SD shown. 

The measurement of CuZnSOD activities also produced highly variable data, as seen 

by the large standard errors (Figure 6.10). In the fresh cassava roots, the CuZnSOD 

activities were low in both the transgenics and the WT and there was no significant 

difference between the activities in the transgenics and the WT at this time point. As 

may be inferred from the graph, at 1 DAH, activities increased in all lines but this was 

not statistically significant. Also not significant were the difference between the 

activities in the WT at this time point. Only after 3 days of harvest, the CuZnSOD 

activities were found increased significantly (t-test, 3 DAH vs 0 DAH, p <0.05) in the 

transgenics. Additionally, (except in C4) their activities were significantly higher than 

that of the WT at this time point. In contrast, the activities of the WT roots did not 

change significantly at 3 DAH although it appears to have decreased slightly. 

From this, it can be summarised that CuZnSOD activities were constant throughout 

PPD times in the WT roots but it increased at 3 DAH in the transgenics. Clearly, the 

increase was not parallel with the enhanced expression of MecSOD2 that occurred at 1 

DAH. The difference could be due to differential turnover rates for the mRNA and the 

enzyme. Nevertheless, the trend in the CuZnSOD activities was not expected as it was 

predicted that the patatin-driven transgene would lead to an increased CuZnSOD 

expression during root development rather than after harvest, unless the wound-

induced expression of patatin is also playing a role. 
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6.3.2 Does the increase in SOD activities cause changes in H2O2-detoxifying 

enzymes? 

In a normal plant ROS scavenging network, an enhanced SOD activity would lead to 

the production of H2O2, which would require the activity of CAT and APX enzyme to 

complete the ROS detoxification. To investigate if the same events have occurred in 

transgenic cassava roots, the activities of these enzymes were measured. The CAT 

enzyme activities were measured by monitoring the rate of H2O2 decomposition at 

A240 (Section 2.5.6) while APX activities were determined by taking the rate of AA 

oxidation to dehydroascorbate (DHA) at A290 (Section 2.5.4). 

 

 

Figure 6.11 Mean CAT activities in Pat:SOD roots measured at 0, 1 and 3 DAH. n=3, 

SD shown. n = 3, SD shown 

The CAT and APX activities are shown in Figure 6.11 and 6.12, respectively. According 

to Figure 6.11, there was no clear changes in CAT enzyme activities in the Pat:SOD 

transgenic roots during the course of deterioration. Although it may appear to increase 

or decrease in some lines, this was not statistically significant. The CAT activities can 

be concluded as being at the same level from the point of harvest until 3 DAH. 

However, it should be noted that at 0 DAH, the CAT enzyme activities of the Pat:SOD 

roots were significantly lower than the WT.  
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Figure 6.12 Mean APX activities in Pat:SOD roots measured at 0, 1 and 3 DAH. n =3, 

SD shown. 

It can be seen in Figure 6.12 that the APX enzyme activities were changing erratically 

in all lines, except in D7. D7 showed a steady increase and exceptionally high activities 

at all time-points, but this was largely caused by variation between biological replicates. 

Moreover, statistically, the activities in this line were not significantly different from the 

WT. Similarly, the APX enzyme activities in all lines including the WT were not 

statistically significant. Therefore, it can be summarised that the APX enzyme activities, 

in both transgenics and the WT did not change over the course of PPD. 

In conclusion, measurement of CAT and APX enzyme activities showed that these 

were not affected by changes in MecSOD2 expression, which might have been 

expected were the anti-oxidant system acting as an integrated network. The significant 

increase of SOD activities at 3 DAH failed to increase the activities of these enzymes 

accordingly. Consequently, this caused inefficient detoxification of H2O2 which then led 

to oxidative stress due its accumulation in the storage roots.  

 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 DAH 1 DAH 3 DAH

A
P

X
 a

c
ti

v
it

y
 (

U
/m

g
) 

PPD times 

B2

C1

C4

 D7

WT



162 
 

6.3.3 Does the enzyme activities affect ROS production pattern? 

Superoxide was quantified according to the method in Section 2.5.10 and based on the 

standard curve in Figure 6.13.  

 

Figure 6.13 Standard curve constructed from known amount of NBT for quantification 

of O2
- in cassava root tissue. 

Figure 6.14 shows the level of O2
- in all lines during the PPD times. While high variation 

is detected there is no significant change of O2
- over the time-course. Certainly, there 

was no clear differences of O2
- level between the Pat:SOD roots and the WT. With 

highly variable data measured at all time-points it was not possible to differentiate the 

trend of O2
- accumulation in the transgenics and the WT. 

 

Figure 6.14 O2
- levels in Pat:SOD roots undergoing PPD. B2 - D7 indicate Pat:SOD 

transgenics . n = 3, SD shown. 
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H2O2 was quantified according to Section 2.5.12. A standard curve constructed using 

known amounts of H2O2 was used to determine H2O2 in the root samples (Figure 6.15). 

 

 

Figure 6.15 Standard curve constructed from H2O2 of known concentrations for 

determination of H2O2 in cassava root tissue. 

 

 

Figure 6.16 H2O2 in Pat:SOD roots undergoing PPD. B2 - D7 indicate Pat:SOD 

transgenics . n = 3, SD shown. 

Production of H2O2 over PPD time course is shown in Figure 6.16. It suggests that 

there was general increase of H2O2 production in all roots but due to highly variable 

data this could not be statistically confirmed. Also, it could not statistically be confirmed 

whether there were any differences in H2O2 production between the transgenics and 

the WT. 
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To elucidate the pattern of O2
- and H2O2 production in Pat:SOD transgenic roots, a 

preliminary ROS staining experiment was carried out. The root samples were subjected 

to NBT and DAB staining to detect O2
- and H2O2 respectively (Section 2.5.9 and 

2.5.11). Briefly, for the NBT staining root samples were vacuum-infiltrated with NBT 

and incubated for 15 minutes. For the DAB staining, root samples were vacuum-

infiltrated with DAB and incubated for 3 hours. The results are shown below. 

 

Figure 6.17 In situ detection of O2
- by NBT staining. Formation of purple insoluble 

product called formazan corresponds to O2
- liberation. Number indicates time (hour) 

after wounding/harvest. B2-D7 indicate Pat:SOD transgenics. 

O2
- detection was carried out on a limited number of samples. Because of this, it could 

not be confirmed if there were clear-cut differences in terms of O2
- production pattern 

between the transgenics and the WT. However, this experiment allows a general 

observation to be drawn. For example, O2
- was found to be produced within 0 to 15 

minutes after wounding, primarily in the storage parenchyma, substantiating the 

occurrence of a wound-induced oxidative burst by Reilly (2001). After one hour, O2
- 

peaked transiently before it decreased to a lower level at 12 hours after wounding. By 

24 and 72 hours after wounding, superoxide could no longer be detected in any of the 

root samples. This result indicates superoxide abundance tended to change within 0 to 

12 hours after harvest, so it is sensible to measure it within this time frame. It also 

explains why this change was not captured in the previous quantitative determination. 
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Figure 6.18 In situ detection of H2O2 by DAB staining. Formation of brown precipitates 

corresponds to O2
- liberation. Number indicates time (hour) after wounding/harvest. B2-

D7 indicate Pat:SOD transgenics. 

Similar to O2
- detection, H2O2 detection was carried out on limited number of samples 

(Figure 6.18). Therefore, the aim of this experiment was rather to see the general trend 

in H2O2 production than to find the differences in H2O2 accumulation between the 

transgenics and the WT. It is evident that accumulation of H2O2 occurred intensely after 

12 hours after harvest in the majority of the root samples including the WT particularly 

in storage parenchyma. H2O2 accumulation was noticeable in the first few hours after 

harvest as found by Reilly (2001) but it is difficult to be categorical about this because 

of the very mild staining. Generally, H2O2 remained in high concentration until 72 hours, 

although in some roots it may be that some decrease in concentration had taken place. 

Overall, the data presented, although not conclusive, supports the view that there was 

increasing H2O2 production in cassava roots as measured previously. 
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6.3.4 Do the Pat:SOD transgenic plants confer tolerance to oxidative stress? 

The tolerance to oxidative stress at the plant level was assessed by propagating 

Pat:SOD plantlets on Cassava Basic Medium (CBM) plate containing H2O2. All single-

insert independent lines were used for this experiment. After two weeks, photographs 

of the plates were taken and the average root lengths of three replicates were 

measured using ImageJ. 

 

Figure 6.19 Mean root lengths of plantlets grown on various concentration of H2O2. A2 

– D8 indicate Pat:SOD transgenics. n = 3, SD shown. 

 

In all plant lines, reduction in root length was clear with increasing H2O2 concentration 

(Figure 6.19). In CBM supplied with 100 µm H2O2, variable tolerance was exhibited by 

the transgenics with the transgenic line A2 and B2 growing significantly shorter roots. 

When the concentration of H2O2 was increased to 200 µm, there was a significant 

reduction of root lengths (t-test, 100 µm vs 200 µm, p <0.05) shown by all lines 

indicating lack of tolerance to H2O2. However, this was not shown by A2 and C2, which 

may suggest some gain of tolerance in these lines. When the concentration of H2O2 

was increased to 200 µm, the root lengths was again reduced significantly (t-test, 200 

µm vs 300 µm, p <0.05) in all lines except in the WT and D7. Although this may 

suggest some tolerance, it is unlikely that the tolerance was conferred by the transgene 

because the WT also responded to the increasing H2O2in the same way. Based on 

these data, it could be concluded that over-expression of MecSOD2 almost certainly 

did not confer tolerance to oxidative stress generated by H2O2. 
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6.3.5  Does overexpression of MecSOD2 alter the PPD response? 

The Pat:SOD transgenic plants were planted three times, but all were harvested and 

assayed differently for the PPD assessment. The first batch was assayed with PPD 

Assay 1, which has been criticised for not producing uniform PPD symptoms suitable 

for scoring, while the second batch was assayed with PPD Assay 2, which caused the 

roots to be severely dehydrated. Despite of the weaknesses of the assays, examination 

of the roots could provide some insights as to whether MecSOD2 affects PPD.  

 

Figure 6.20 Pat:SOD root samples assessed for PPD using PPD Assay 1. In this 

assay, the roots were left to deteriorate intact at 25-27°C. Prior to photographing the 

roots were cut to 2cm thickness to reveal PPD symptoms. na = not available 

In PPD Assay 1, cassava roots were let to deteriorate intact. Figure 6.20 shows the 

root samples at 3 DAH. It is apparent that the transgenics, except C4, had developed 

visible PPD symptoms at this time-point while the WT had not. The most affected line 

was B2, followed by D7 and C1.  
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Figure 6.21 Pat:SOD root samples assessed for PPD using PPD Assay 2 at 3 DAH. In 

this assay the, two root sections of 2 cm thickness were incubated at 25-27°C. 

The second batch of Pat:SOD roots was assayed with PPD Assay 2 in which the roots 

were cut into 2 cm sections. In this assay, generally most of the roots turn dry and 

chalky (Figure 6.21). Even so, it should be noticed that the WT samples appeared 

more deteriorated in this assay compared to those in Assay 1 and this might be due to 

the nature of the Assay 2 that accelerates PPD. Meanwhile, B2 root sample which 

showed apparent PPD symptoms in PPD Assay 1 now did not seemed deteriorated.  

Only in the third planting were the roots assayed with PPD Assay 4, which was the 

most reliable method so far. Therefore, data from this were used to evaluate PPD in 

Pat:SOD transgenics. Deterioration was most prominent at 4 DAH, thus greyness 

scores at this time point were calculated and normalised to greyness scores at 0 DAH 

to get PPD scores of the root samples. Basically, high PPD scores indicate highly 

visible deterioration symptoms and vice versa. The root pictures are shown in Figure 

6.22 and the PPD scores are as in Table 6.2. 

 



169 
 

 

Figure 6.22 PPD Assay 4 of Pat:SOD roots harvested from six months plants. The 

roots were photographed at fixed camera settings and scored for PPD using PPD 

Symptom Score software. Pat:C1 R3 was not assessed for PPD because due to small 

size. 

Table 6.2 Individual and mean PPD scores of deteriorated cassava root samples four 

days after harvest (4 DAH). The scores were obtained by taking percentage difference 

of greyness score of root samples at 4 DAH and the greyness scores during harvest (0 

DAH).  

Plant line 
Mean score ± 
SD (max,min) 

t-test 

Pat:SOD 
B2 

42.5 ± 11.6 
(51.4 / 29.3) 

p = 0.47 

Pat:SOD 
C1 

48.9 ± 1.4 
( 49.8/47.9 ) 

p = 1.00 

Pat:SOD 
C4 

50.4 ± 4.0 
(53.2. / 45.9) 

p = 0.77 

Pat:SOD 
D7 

40.7 ± 13.6 
(50.4/ 25.1) 

p = 0.30 

WT 
48.9 ± 7.7 
(55.9 / 40.7) 

- 
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A general observation was that some of the root samples deteriorated at different rates 

compared to those observed with the two other assay methods, but this may be due to 

the unreliable and unsatisfactory nature of those methods. For example, B2 and D7 

assayed with PPD Assay 1 were more severely deteriorated than was the case with 

PPD Assay 4. On the other hand, C4 and the WT, which were the least deteriorated 

samples with Assay 1, now showed considerable PPD symptoms. 

Scoring of PPD symptoms was done using PPD Symptom Score software. In this 

assay, B2 and D7 had lower PPD scores than the WT suggesting some tolerance to 

PPD, while C4 had a higher score than the WT suggesting weaker tolerance to PPD. 

However, this might not be correct because the scores in these samples were 

substantially reduced because one of the root sample replicates had PPD score about 

two times less than other replicates. Also, statistical analysis proved no significant 

differences in PPD resistance between the transgenics and the WT (WT vs all 

transgenics, t-test > 0.05). It is difficult to draw categorical conclusions from variable 

data derived from a small number of replicates; therefore, based on the data presented 

here, it can be concluded that overexpression with MecSOD2 did not alter tolerance to 

PPD. 

6.3.6 Summary (Pat:SOD) 

In summary, over-expression of MecSOD2 in cassava roots was successful where up 

to 5.3-fold more transcriptional level was achieved. However, the increase of 

transcriptional level occurred mostly from 24 hours, which is after the initial post-

harvest burst of O2
- was detected. Additionally, the increase of SOD enzyme activities 

was only achieved at 72 hours after harvest. While it was too late to prevent oxidative 

burst, the mechanism to detoxify harmful H2O2 was not activated causing it to 

accumulate in the root tissue. Collectively, the data gathered here explain why 

overexpression with MecSOD did not contribute tolerance to oxidative stress as well as 

to PPD. 
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6.4 Results - AtGCS 

Transformation of cassava with AtGCS gene generated ten single-insert lines. 

Sequence analysis revealed that the gene was driven by the Patatin promoter, retained 

the correct length, and thus was expected to be functional. Phenotypic analysis of 

these lines found significant differences in some of the transgenic lines. Four lines 

(Pat:GCS C5, C6, C11 and C16) were significantly taller than the WT while one line 

(C19) was significantly shorter. The transformation with AtGCS also changed the 

performance of the plants in terms of yield. Four lines, including those that were 

significantly taller than the WT plant, produced lower yields than the WT plants. The 

lines were C5, C6, C16 and C19. 

6.4.1 Cassava harbouring the pDEST:AtGCS cassette over-express the transgene in 
root tissue 

 
Five single-insert lines were randomly selected for qPCR experiment. The extraction 

and quantification of RNA were carried out using the same methods used in Pat:SOD. 

 

6.4.1.1 Validation of target gene and reference gene primers for qPCR 

The AtGCS gene is foreign to cassava genome. Therefore, designing primers to 

amplify the AtGCS cDNA is straightforward. A forward primer flanking AtGCS 

sequence and a reverse primer flanking attB2 sequence was designed to amplify 

approximately 135 bp PCR product. 

 

 Figure 6.23 Primers designed for qPCR of AGCS gene. The position of attB2 

sequence is shown. 
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To check the primer specificities, a BLAST search against cassava genome and a 

similarity search with T-DNA of pDEST:AtGCS were performed, and no similar 

sequences were found. The specificity of the primer pair was confirmed by 

conventional PCR using Taq polymerase.  

 

Figure 6.24 PCR of various DNA templates using primers GCStf and GCStr with Taq 

polymerase. Amplification from plasmid, genomic and cDNA derived from transgenic 

plants produced 135 bp PCR products. M = DNA marker, 1 = positive control 

(pDEST:GCS plasmid), 2 = transgenic genomic DNA, 3 = transgenic cDNA, 4 = WT 

DNA, 5 = WT cDNA, 6 = negative control (water).  

Amplification with Pat:GCS cDNA produced a single PCR product of the correct size, 

as confirmed by the positive control (plasmid). A similar PCR product was also 

obtained from Pat:GCS genomic DNA. The absence of additional PCR products 

confirmed that other target sequences for the primers did not exist in cassava genome. 

This was validated by amplification of both the genomic DNA and cDNA of WT plants, 

which produced no PCR product (Figure 6.24). For a more rigorous verification, the 

PCR product was sequenced and it confirmed that it was the expected fragment (data 

not shown). 
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6.4.1.2  Melting curve analysis 

As mentioned previously, melting curve analysis is essential in qPCR using SYBR-

green in order to verify whether the amplification signals produced are the result of a 

single PCR product or from primer dimers. Primer dimer formation must be avoided 

because it also generates a signal that gives a false result. 

 

 

Figure 6.25 Fluorescence peak produced from amplification of Pat:GCS DNA with 

primers GCStf/GCStr. A single peak indicates specificity of the primers and absence of 

primer dimers. 

 

The fluorescence profile generated from qPCR with Pat:GCS cDNA produced a single 

peak indicating high specificity of the primers. No primer dimer peak was detected. The 

melting curve analysis for reference gene primers 18s was shown earlier and it had 

also confirmed specific (Figure 6.25). 

 

6.4.1.3 Determination of amplification efficiencies of target and reference gene  

Amplification efficiency (AE) tends to vary between primers and materials; therefore, it 

is essential to take it into account when determining fold expression. Five cDNA 

dilutions prepared from Pat:GCS roots harvested at 0, 1 and 3 DAH were used as 

template in qPCR reaction with GCStf and GCStr primers (Figure 6.26) and 18s 

For/18s Rev. The CT values obtained from the reactions were plotted against the 

diluted cDNAs to construct a standard curve. The slope of the standard curve was used 

for calculating the AE for each material. 
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Figure 6.26 Standard curve analysis of real-time PCR amplification. Dilutions of 

transgenic-derived cDNA amplified with GCStf and GCStr primers. 0 DAH; y= -3.101x 

+ 28.43 (R2 = 0.980), 1 DAH; y = -3.491x + 26.69 (R2 = 0.997), 3 DAH; y= -4.372x + 

31.21 (R2 = 0.934).  

 

 

Figure 6.27 Standard curve analysis of real-time PCR amplification. Dilutions of 

transgenic-derived cDNA amplified with 18s For and 18s Rev primers. 0 DAH; y = -

3.222x + 15.01 (R2 = 0.979), 1 DAH; y = -3.656x + 13.46 (R2 = 0.981), 3 DAH; y = -

3.903x + 17.75 (R2 = 0.997).  

 

Table 6.3 Amplification efficiencies of Pat:GCS roots harvested at 0, 1 and 3 DAH.  

 Reference gene Target genes 

Materials Slope EA (%) Slope EA(%) 

0 DAH -3.222 104.3 -3.101 110 

1 DAH -3.656 87.7 -3.491 93 

3 DAH -3.903 80.4 -4.372 70 
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The recommended AE is close to 100% (90-110%) (Taylor et al., 2010). In both 

reference and target genes, high AEs were achieved with fresh materials but these 

were reduced by 10 to 20% in aged materials. The disparity in amplification efficiency 

might arise from an unavoidable consequence of the PPD process itself, which is the 

release of polyphenols and their oxidation. Despite applying the best RNA extraction 

method to get the highest quality RNA possible the presence of these unwanted 

compounds in RNA and cDNA preparations could disrupt the qPCR process itself, such 

as during the release of the SYBR green signal. Indeed, this highlights the need to 

determine amplification efficiency for each type of material. 

6.4.1.4 At:GCS profile in deteriorating cassava roots 

All independent single-insert lines were grown to mature plants (six months) but only 

roots from those with sufficient biological replicates were harvested and analysed. The 

roots were assayed for PPD with Assay 3 and were collected at 0, 1 and 3 DAH. RNA 

was extracted from the root samples and used for cDNA synthesis which later served 

as templates in qPCR. 

 

 

Figure 6.28 AtGCS transcriptional level relative to 18s transcriptional level during 

PPD. The transcriptional levels of each root samples are shown. 

The transcriptional level of AtGCS was measured as the relative abundance of AtGCS 

gene to 18s gene. Since the primers would not work in the WT, because target sites for 

them are not present in the cassava genome, normalisation to WT transcriptional level 

could not be done. Figure 6.28 shows transcriptional level of AtGCS during the PPD 

time-course. 
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The mean relative expression between 0.3 to 4.1 was achieved in the Pat:GCS roots 

indicating transgene expression, with C6 having the highest fold increase than other 

transgenics. After 24 hours, the AtGCS transgene was very actively transcribed in the 

Pat:GCS roots where more than 20-fold increase were achieved in C5, C11 and C16. A 

lower level of 15- and 7-fold increase was achieved by C6 and C19 respectively but the 

increases were significant (t-test, 0 DAH vs 1 DAH, p <0.05) except in C19. 

Nevertheless, the transcriptional level appears to be transient as it decreased 

significantly (t- test, 1 DAH vs 3 DAH p <0.05) to mean relative expression between 0.1 

to 1.6-fold. The clear-cut pattern of expression shown by AtGCS is exciting as it may 

indicate the novel response of the Patatin promoter which could not be determined 

using Gus gene. However, more importantly, it must be determined whether this 

pattern of expression altered the anti-oxidant status of the transgenic. 

 

6.4.2 Does the increase in Pat:GCS expression increase the anti-oxidant status of 

cassava roots? 

Due to the difficulty in obtaining meaningful data from the measurement of separate 

oxidative stress components as was found with the Pat:SOD samples, the effects of 

AtGCS transformation was evaluated based on overall anti-oxidant capacity of the 

transgenic roots. The anti-oxidant status of Pat:GCS plants were measured using the 

Oxygen Radical Absorbance Capacity (ORAC) assay (Section 2.5.8). 

 

The ORAC assay is widely used in measuring the anti-oxidant capacity of biomolecules 

from a variety of samples. In this assay, the anti-oxidant capacity is expressed as 

Trolox equivalents, which measure the amount of anti-oxidant required to scavenge the 

free-radical diphenylpicrylhydrazyl (DPPH•) determined from area under curve (AUC). 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble 

analogue of α-tocopherol. 
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Figure 6.29 Trolox standard curve for the ORAC assay (upper panel). Typical 

fluorescence profile of trolox standard and blank (bottom panel). The ORAC activity of 

a sample is calculated by subtracting the area under the blank curve from the area 

under the sample curve to obtain the net area under the curve (Net AUC). 
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Figure 6.30 Comparative antioxidative capacity of Pat:GCS roots with the WT 

measured with ORAC assay. Measurement was taken at different PPD times from 

roots assayed with PPD Assay 3. n = 3, SD shown. 

 

The anti-oxidant capacities of Pat:GCS roots were compared to those of WT to assess 

the behaviour of the AtGCS gene in cassava roots (Figure 6.30). In freshly harvested 

roots, the majority of Pat:GCS lines were found to have lower anti-oxidant capacities 

than the WT except in C6 and C19 which showed slightly, but non-significant, higher 

anti-oxidant capacities. After being harvested for 24 hours, though not significantly (t-

test, 0 DAH vs 1 DAH, p > 0.05), the anti-oxidant capacities of the Pat:GCS roots 

increased slightly except for C19. The low anti-oxidant capacity shown by C10 

corresponds to the low AtGCS transcriptional level but it must be noted that higher anti-

oxidant capacities were shown by the WT roots at this time point despite not 

expressing the target gene AtGCS. Subsequently, there was a clear reduction in anti-

oxidant activities shown by the WT from 1 to 3 DAH but no apparent changes of anti-

oxidant capacities shown by the transgenic lines.  

 

Based on the data presented here, it is clear that the expression of AtGCS did not 

contribute to the anti-oxidant capacity of the cassava roots. Despite being highly 

expressed, especially at 1 DAH, there was no significant increase in antioxidative 

capacity. This data indicate two possibilities. 1) The overexpression of AtGCS did not 

increase GSH/GSSG content significantly to cause a high anti-oxidant capacity 2) 

GSH/GSSG content itself did not contribute to better antioxidative capacities. 
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6.4.3 Do Pat:GCS transgenic plants confer tolerance to oxidative stress? 

To test the tolerance to oxidative stress at the plant level, the plants were grown on 

Cassava Basic Medium (CBM) with added H2O2 at 100, 200 add 300 µM. After two 

weeks growth photographs of the plates were taken and the average root lengths of 

three replicates were measured using ImageJ. Since this did not require growth in the 

greenhouse, all single-insert independent lines were used. 

 

Figure 6.31 Pat:GCS roots measured following two weeks sub-culturing in H2O2-

containing plates. The plantlets were grown in a growth room under the same 

conditions as normally grown plantlet libraries. n = 3, SD shown. 

The result is shown in Figure 6.31. In general, the lengths of the roots decreased with 

H2O2 concentration. At 100 µM, nearly all plantlets produced highly variable data, so no 

significant difference between the lengths of the roots in transgenics and the WT 

measured at this concentration could be detected. When the H2O2 concentration was 

increased to 200 µM, the root lengths were reduced significantly (t-test, p <0.05) in the 

WT and most transgenic lines, except in C1, C2, C3 and C13. Interestingly, when the 

concentration was increased to 300 µM no significant reductions in root length were 

measured in all lines which also may suggest tolerance to high oxidative stress. 

However, since this was also observed in the WT, it is unlikely that the tolerance was 

conferred by the transgene. Moreover, there was no significant difference in the root 

length of the WT and the transgenics at this concentration although it might appear that 

the transgenics had greater root length. Based on the data gathered, it can be 

concluded that some degree of tolerance might be gained by a number transgenics 

such as C1, C2, C3 and C13 when exposed to medium H2O2-mediated oxidative 

stress. 
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6.4.4 Do the Pat:GCS transgenic plants develop tolerance to pH? 

The effects of pH on glutathione has been shown previously (Ikebuchi et al., 1993) 

where acidic conditions was found to reduce GSH content and impair the glutathione 

redox cycle. To test this, in vitro plantlets of Pat:GCS plants were grown in CBM 

adjusted to pH 3.8, 5.8 and 7.8. Similar to the H2O2 test, above, the photographs of the 

plates were taken after two weeks and the average root lengths of three replicates 

were measured using ImageJ. The result is presented in Figure 6.32. 

 

 

Figure 6.32 The response of Pat:GCS roots grown on CBM plates adjusted at 

various pHs. The plantlets were grown in growth room under the condition of normally 

grown plantlet libraries.C3 was not tested at pH 7.8 due to loss of plants. n=3, SD 

shown 

Cassava plantlets are normally propagated on CBM medium at pH 5.8.There was no 

significant difference in the length of roots produced by the transgenics and the WT at 

this pH except in the case of C2, which was shorter (t-test, C2 vs. WT p <0.05). 

Lowering the pH to 3.8 seemed not to affect the root formation in these plants except in 

transgenic line C3, C11 and C12 which were reduced significantly (t-test, pH 3.8 vs pH 

5.8, p<0.05). However, at this pH nearly all transgenics except C2 and C19 produced 

significantly shorter root lengths compared to the WT (t-test, WT vs transgenics, p 

<0.05). Although not conclusive, this might relate to the impairment of the glutathione 

redox cycle in the transgenics because cassava normally is tolerant to acidic pH. 

However, increasing the pH to 7.8 did not significantly affect the formation of roots in 

both the transgenics and the WT (t-test, pH 5.8 vs pH 7.8, p>0.05), although they may 

appear to be reduced at certain extent. Also there was no significant difference 
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between the lengths of roots formed by the transgenics and the WT at this pH. Overall, 

it can be concluded that expression of AtGCS did not enhance tolerance to pH change 

but it suggested that the transgenics plants are not suitable to acidic soil.  

6.4.5 Does overexpression of AtGCS alter the response towards PPD? 

The Pat:GCS plants were planted and harvested twice. The first batch of planting was 

assayed with PPD Assay 2 while the second was assayed with PPD Assay 3 (Section 

4.3.2 & 4.3.3). PPD Assay 2 caused root samples at later PPD stages to become 

severely dehydrated, which prevented any biochemical activities from the samples from 

being evaluated reliably. On the other hand, PPD Assay 3 failed to produce PPD 

symptoms for valid comparison. Due to time constraints it was not possible to grow 

another batch of Pat:GCS and assay it with PPD Assay 4. While the data presented 

here were generated from analysis of roots assayed with PPD Assay 3 the symptoms 

showed by the roots in PPD assay 2, though with low certainties due to highly variable 

symptoms between replicates, might be useful to qualitatively assess the symptoms 

between WT and the transgenics. 

 

 

Figure 6.33 PPD Assay 2 of Pat:GCS roots. Two root samples representing each 

line are shown. Samples were collected from different plants and only photographs at 1 

and 4 DAH were assessed. 
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In this assay at least two roots from separate plant replicates were used. The pictures 

of the roots were taken with automatic setting so computer scoring might not be valid. 

Instead, visual scoring was applied. Since PPD symptoms developed after one day 

after harvest, the pictures taken at this time-point were used for assessment. Attention 

was drawn to the ‗high-expression‘ lines such as C5, C11 and C16. 

 

Assessment at 4 DAH was done by excluding the C5 and C6 root samples because 

they were severely dehydrated. Figure 6.33 shows no apparent differences in the PPD 

symptoms shown by the rest of the transgenic roots, including the high-expression line, 

at this time-point. Observation of PPD symptoms was also done on root samples at 1 

DAH, which is assumed to be more appropriate because dehydration had not taken 

place, but PPD symptoms had not developed at this early time, so detecting 

differences between the high- and low-expression lines among the transgenics and the 

WT root samples was unlikely. Essentially, a precise conclusion is not possible using 

these limited data, but they suggest that overexpression of AtGCS in cassava roots 

had no effect on PPD symptoms. 
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6.4.6 Putative GCS sequence in cassava 

There is no information on the role of GSH in cassava PPD. Its biosynthesis in cassava 

has also not been studied. However, a BLAST search with AtGCS (gshI) used in this 

study found a putative GCS sequence homolog in cassava genome database 

(Phytozome). 

 

 

Figure 6.34 Nucleotide sequence alignment of 1: putative cassava GCS coding 

sequence (Phytozome accession: cassava4.1_005513m), 2: Hevea brasiliensis GCS 

coding sequence (Genbank accession: GU997638) and 3: Arabidopsis GCS coding 

sequence, gshI (Genbank accession: AF419576). 
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The sequence is 1572 bp and found to have 92% identity with Hevea brasiliensis 

(GU997638), a species close to cassava. Less percentage similarity was found with the 

Arabidopsis sequence. Nucleotide sequence alignment of these sequences found more 

divergence in the 5‘-end rather than 3‘-end (Figure 6.36). Identification of this sequence 

will facilitate the isolation of this gene and its role in defining the GSH anti-oxidant 

properties in cassava PPD. 
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6.5  Results – MecAPX3 

Transformation with MecAPX3 produced seven independent single-insert lines. 

Sequencing revealed that Patatin and MecAPX3 coding sequence is integrated in the 

genome of Pat:APX plants.  

 

6.5.1 Does MecAPX3 cause changes in APX activity? 

Pat:APX roots were harvested from 6 months old plants and APX enzyme activity over 

the PPD time-course was measured according Section 2.4.4.The result is presented 

below. 

 

 

Figure 6.35 APX activities of transgenic lines following harvest. The activities were 

measured from root samples obtained from single-insert independent lines. n = 3, SD 

shown.  

A general observation on the data presented in Figure 6.35 was that APX enzyme 

activities over the PPD time course did not appear to change. As with the expression 

levels, the APX enzyme activities were also variable. At 0 DAH, although the APX 

enzyme activity in the transgenics appear higher than those in the WT, this was not 

significant by statistical analysis. While the expression data for roots sampled at 1 and 

3 DAH were not available, the enzyme activities at these time points showed that they 

were equally varied as the 0 DAH enzyme activities. Importantly, measurement of APX 

enzyme activities in the transgenic roots at all time points found that activities in these 

roots resemble those measured in the WT which were constant during the course of 
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deterioration. Therefore, it can be concluded that MecAPX3 did not increase APX 

activities at any PPD time point. 

6.5.2 Do the Pat:APX transgenic plants confer tolerance to oxidative stress? 

The tolerance to oxidative stress at the plant level was assessed by propagating 

Pat:APX plantlets on Cassava Basic Medium (CBM) plate containing H2O2. After two 

weeks, the photographs of the plates were taken and the average root lengths of three 

replicates were measured using ImageJ. Six single-insert independent lines were used 

for this experiment. The result of the experiment is presented in Figure 6.36. 

 

 

 

 

 

 

 

 

Figure 6.36 Average length of fibrous root measured from in vitro plants grown in CBM 

plate containing various concentration of H2O2. n = 3, SD shown. 

 

Measurement of root length showed all transgenics produced shorter root lengths 

compared to the WT indicating weaker tolerance to H2O2 at 100 µM. However, due to 

highly variable data this was only statistically valid for A4, A6 and A15 (t-test, 

transgenics vs WT, p <0.05). Increasing the H2O2 concentration to 200 µM caused 

significant reduction in the root length of the WT, A6 and A12 (t-test, 100 µM vs 200 

µM, p <0.05) but not in the rest of the transgenic lines. This result may suggest that a 

degree of tolerance was exhibited by the transgenics at this concentration. Moreover, 

when the concentration was increased to 300 µM, it is shown the transgenics produced 

greater lengths of roots while the WT produced shorter roots. While this may indicate 

high tolerance of the transgenics at high H2O2 concentration, statistically, there was no 

significant change of root length occurred either in the transgenic or the WT. Therefore, 
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it can be concluded that overexpression of MecAPX3 did not confer tolerance to H2O2-

mediated oxidative stress. 

 

6.5.3 Does the APX enzyme activity alter the PPD response? 

Pat:APX plants were harvested at six months old and the roots were sampled at 0, 1 

and 3 DAH. The roots were assayed with PPD Assay 1 in which they were allowed to 

deteriorate intact. Although it did not allow accurate scoring of PPD symptoms the 

representative roots for each line are shown here in Figure 6.37.  

 

 

Figure 6.37 Representatives of Pat:SOD roots following harvest. The roots were 

assayed with PPD Assay 1 (Section 4.3.1). 
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In general, the roots lacked PPD symptoms at 0 and 1 DAH. PPD symptoms became 

visible at 3 DAH in most transgenic roots but no symptoms were shown by the WT 

roots. Interestingly the root samples from line A10 showed PPD symptoms on the day 

of harvest as indicated by brown staining. It was very unlikely for the roots to develop 

the symptoms immediately after harvesting of just before harvesting. Close 

examination suggests the symptoms were not the typical PPD symptoms. Instead, 

these plants probably were over-watered during their growth (J. Watling, pers. comm.). 

 

6.5.4 Summary (Pat:APX) 

In conclusion, the transformation with MecAPX3 did not cause tolerance to oxidative 

stress. It also did not successfully increase APX activities within the PPD assay period 

tested here, so the effects of APX activities could not be examined. It would be 

interesting to extend the assay to later PPD times, but were APX activities to increase 

they would probably be too late to delay or prevent PPD.  
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6.6 Results-FaGAR 

Transformation with FaGAR had generated nine independent single-insert lines. The 

analysis of the phenotypes of Pat:GAR transgenic plants showed no significant 

differences in terms of the growth of the plant and yield except two lines (B29 and B33) 

that produced significantly lower yields of storage roots.  

 

6.6.1 PPD assessment of Pat:GAR roots 

The weakness of the existing PPD assay method and the limitation of its application 

with the greenhouse-grown materials have been identified and discussed thoroughly in 

Chapter 4. Finally, PPD Assay 4 that efficiently measured PPD within a convenient 

timeframe was established. Using this assay method, the cassava roots undergoing 

PPD developed typical symptoms of PPD such as vascular streaking and browning 

without drying the roots excessively. The transgenic groups that was fortunately 

assayed with this method include Pat:GAR. Here, the use of this method to measure 

PPD is demonstrated. 

The effects of cassava transformation with Pat:GAR to PPD in roots were assessed 

based on the PPD scores which were calculated using the equation below 

PPD score = ((Mean Greyness Score Y DAH – Mean Greyness Score at 0 DAH)/ 

Mean Greyness Score at Y DAH)) x 100% 

Y = the time-point PPD scores intended to measure 

 

Since the PPD symptoms in Pat:GAR roots were only highly visible at 3 and 4 DAH, 

using PPD scores derived from either time-point are valid. The PPD score of seven 

independent single-insert Pat:GAR lines are presented in Figure 6.39 and Table 6.4. 
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Figure 6.38 Pat:GAR root samples photographed at 3 and 4 DAH. The roots were 

assayed with PPD Assay 4.  

As discussed in Chapter 4, it is simply impossible to avoid variations in PPD symptoms, 

either in the transgenics or the WT plants. In the Pat:GAR transgenic group this was 

observed at both 3 and 4 DAH, although the former relatively exhibited less (Figure 

6.38). Using the mean PPD scores at 3 DAH for PPD assessment shows that all the 

Pat:GAR root samples were more severely deteriorated than the WT with PPD scores 

of up to 60 being calculated, whereas the WT had the mean PPD score of only 30 

Figure (6.39). However, due to extremely high variation between PPD scores of the WT 

roots, as reflected by PPD symptoms in Figure 6.38 and score in Table 6.4 this 

difference was deemed not significant. Using the PPD scores at 4 DAH, where the 

symptoms generally more distinctive, also shows that the Pat:GAR were more 

deteriorated than the WT except in C8. Nevertheless, this was also not statistically 

significant. Therefore, it was not shown that the transformation altered PPD tolerance. 
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Figure 6.39 The mean PPD score of Pat:GAR transgenic lines measured at 3 DAH 

(upper panel) and 4 DAH (lower panel). n = 3 SD shown. 

Table 6.4 PPD scoring of Pat:GAR root samples at 3 and 4 DAH. Student t-test was 

performed at p = 0.05, two-tailed level of significance to test whether transformation 

with FaGAR increased tolerance to PPD. 

Plant lines 

3 DAH 4 DAH 

Mean score ± 
SD (max/min) 

t-test Mean score ± 
SD (max,min) 

t-test 

Pat:GAR 
A13 

49.9 ± 29.8 
(70.1 / 15.7) 

p = 0.50 59.3 ± 16.8 
(71.4 / 40.2) 

p = 0.35 

Pat:GAR 
A15 

55.4 ± 6.2 
(60.9 / 48.9) 

p = 0.27 52.4 ± 7.5 
(60.1 / 45.2) 

p = 0.48 

Pat:GAR 
B27 

59.4 ± 0.6 
(60.1 / 58.9) 

p = 0.20 45.7 ± 28.9 
(65.2 / 12.5) 

p = 0.36 

Pat:GAR 
B29 

51.8 ± 5.5 
(56.0 / 45.6) 

p = 0.33 56.5 ± 1.2 
(57.8 / 55.7) 

p = 0.36 

Pat:GAR 
B33 

58.3 ± 3.3 
(61.8 / 55.2) 

p = 0.22 53.8 ± 8.3 
(63.2 / 47.7) 

p = 0.44 

Pat:GAR 
C8 

44.8 ± 13.8 
(53.0 / 28.9) 

p = 0.54 36.6 ± 19.4 
(52.2 / 14.9) 

p = 0.93 

Pat:GAR 
C12 

53.4 ± 8.6 
(62.7 / 45.8) 

p = 0.31 42.9 ± 17.1 
(54.0 / 23.2) 

p = 0.84 

WT 31.3 ± 31.8 
(66.5 / 4.6) 

na 38.6 ± 29.9 
(72.3 / 15.5) 

na 

0.0

20.0

40.0

60.0

80.0

100.0

P
P

D
 s

c
o

re
 

0.0

20.0

40.0

60.0

80.0

100.0

A13 A15 B27  B29 B33  C8  C12 WT

P
P

D
 S

c
o

re
 

Cassava lines 



192 
 

6.6.2 PPD comparison of Pat:GAR and Pat:SOD samples 

The main advantage of PPD Assay 4 is that it enabled cross comparison with samples 

from separate samplings. This is because the samples were allowed to deteriorate 

under controlled conditions, the pictures were taken with fixed camera settings and the 

PPD symptoms were scored with a computer program. 

The PPD tolerance of Pat:GAR and Pat:SOD transgenics were assessed by comparing 

the scores in each group. Although it may be suggested that Pat:SOD tolerated PPD 

better, it could not be statistically proven due to highly variable data. Comparing the 

highest (t-test, Pat:GAR A13 vs Pat:SOD C4, p >0.05) and the lowest score (t-test, 

Pat:GAR C8 vs Pat:SOD D7, p > 0.05) from each group also produced similar results. 

Therefore, based on the data gathered, it can be concluded that Pat:GAR and Pat:SOD 

had similar tolerance to PPD. 

Table 6.5 The mean score of Pat:GAR and Pat:SOD root samples collected at 4 DAH. 

Pat:GAR 
plant lines 

Mean score  Pat:SOD 
plant lines 

Mean score  

Pat:GAR 
A13 

59.3 ± 16.8 
 

Pat:SOD 
B2 

42.5 ± 11.6 
 

Pat:GAR 
A15 

52.4 ± 7.5 
 

Pat:SOD 
C1 

48.9 ± 1.4 
 

Pat:GAR 
B27 

45.7 ± 28.9 
 

Pat:SOD 
C4 

50.4 ± 4.0 
 

Pat:GAR 
B29 

56.5 ±1.2 
 

Pat:SOD 
D7 

40.7 ± 13.6 
 

Pat:GAR 
B33 

53.8 ± 8.3 
 

  

Pat:GAR 
C8 

36.6 ± 19.4 
 

  

Pat:GAR 
C12 

42.9 ± 17.1 
 

  

WT 38.6 ± 29.9 
 

WT 48.9 ± 7.7 
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6.6.3 Putative GAR sequence in cassava 

The GAR gene sequence had not been identified in cassava but a BLAST search with 

the target gene used in this work found a putative GAR sequence in the cassava 

genome. It shares approximately 81% similarity with putative GAR sequence in 

Theobroma cacao (cocoa plant) and 71% with that in Papaver somniferum (opium 

poppy). Collectively this suggests cassava may utilise the same pathway as the 

strawberry plants, which is the galacturonate pathway. 

 

Figure 6.40 Nucleotide sequence alignment of 1: Opium poppy GAR coding sequence 

(Genbank accession: AF108438), 2: putative cassava GAR coding sequence 

(Phytozome accession: 4.1_012131.2, 3: putative cocoa GAR coding sequence 

(Genbank accession: XM 007045353). 
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6.7 Discussion 

Unexpected expression pattern in transgenic cassava 

The overexpression of the target genes of Pat:SOD and Pat:GCS transgenic groups 

have been confirmed in this experiment. MecSOD2 and AtGCS target genes showed 

enhanced transcriptional level in storage roots upon harvesting with the highest 

increase between 5- to 10-fold over the WT, respectively. The use of patatin as a gene 

promoter in cassava transformation is relatively new so there is limited information 

about its performance. Additionally, gene expression using this promoter in the existing 

studies has been qualitatively evaluated by others (Ihemere et al., 2006, Ihemere, 

2003, Siritunga and Sayre, 2004, Zidenga et al., 2012). However, up to 20-fold 

increase has been reported in HNL gene expression using a longer version of class I 

patatin (Narayanan et al., 2011). Whereas, about the same fold expression was 

reported using a vascular-specific promoter (p45/1.0) in cassava roots (Xu et al., 

2013a). Therefore, compared to these results, the expression enhancement achieved 

in the work presented here, though significant, is relatively low. 

The initial aim of these transgenic experiments was to increase the accumulation of 

individual anti-oxidant enzymes in the cassava roots at, and immediately after harvest 

in order to elevate the anti-oxidative status at the point where the oxidative burst is 

triggered and the damage to the root from ROS starts. However, the overexpression of 

these transgenes was only observed from 24 hours after harvesting. Such increases 

were not observed in the WT either here or in previous work. In the case of MecSOD2, 

its transcriptional level was found steady but low from the day of harvest until five days 

after that; a consistent pattern that was found in cassava roots of various PPD 

tolerances (Reilly, 2001), although transient upregulation between 6 to 12 hours after 

wounding was reported in an unknown cultivar (Owiti, 2009). There has been no report 

on GCS transcription profile in the WT cassava so far but the boost in overexpression 

after 24 hours of harvesting either suggests that there was delay in Patatin response 

towards wounding or the biochemical changes in PPD process itself. It is unfortunate 

not to be able to show the expression pattern of Patatin in transgenic Gus-expressing 

cassava plants, but the evidence on sugar metabolism (Tanaka et al., 1983), ethylene 

accumulation (Hirose et al., 1984) and flavonoid biosynthesis (Uarrota et al., 2014) 

during PPD suggests that the motifs identified in the Patatin promoter could be 

activated by these compounds, as described in the previous chapter. 
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Overexpression of target genes did not confer tolerance to oxidative stress to 

the roots during PPD 

The overall tolerance of transgenic plants to major ROS was evaluated in all transgenic 

groups. Less convincing data can be gathered from measurement of root length 

following propagation on hydrogen peroxide-containing medium due to high variation 

between replicates. However, the upregulation of the genes did not render the cassava 

roots less susceptible to oxidative stress. For example, the increase of MecSOD2 

transcriptional level seemed not to affect its efficiency in reducing O2
- content in the 

roots and it did not prevent accumulation of H2O2. It must be emphasised that the main 

consequence of increasing SOD activities is increasing production of H2O2, which then 

may present a new threat. Unless the mechanism to detoxify this by-product 

synchronises with the mechanism that produced it, using SOD alone is not a good 

strategy. In this work it is shown that, Pat:SOD transgenic roots lacked this 

synchronisation as the CAT and APX enzyme activities did not change over PPD. H2O2 

toxicity due to overexpression of SOD has been rarely reported, but was observed in 

tobacco and tomato cells introduced with petunia SOD gene (Tepperman and 

Dunsmuir, 1990) and in winter survival alfalfa plants (McKersie et al., 2000). 

Due to the threat of H2O2, coupled expression of SOD with other H2O2-detoxifying 

genes has been attempted and proved more efficient at increasing oxidative-stress 

related resistance. Potato plants transformed with the combination of SOD and APX 

were found to be highly tolerant to MV treatment and had increased photosynthetic 

activity (Tang et al., 2006). Similarly, it substantially improved the phytoremediative 

potential of tall fescue plants by increasing their tolerance to oxidative stress and 

various heavy metals. There was significant increased in SOD and APX activities as 

well as reduction in H2O2 formation in the transgenic plants when challenged with 

abiotic stress (Lee et al., 2007). Simultaneous expression with CAT gene also is 

promising. Transgenic Chinese cabbage plants over-expressing SOD and CAT were 

also found to be less affected by sulphur dioxide compared to those over-expressing 

SOD alone (Tseng et al., 2007). Recently, coupled expression of SOD and CAT genes 

driven by the vascular-specific promoter p54/1.0 in cassava roots caused PPD to delay 

for to up four days which correlates with a significant reduction of H2O2 at this time-

point (Xu et al., 2013a). 

The sudden increase in AtGCS transgene expression, an enzyme catalysing the first 

step of GSH biosynthesis, also did not confer resistance to oxidative stress to the 

Pat:GCS roots. Up to 30-fold increase of transgene expression was achieved 
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compared to only about 12-fold achieved in the Pat:SOD but it showed that the 

transgenics had less anti-oxidant capacities than the WT. These results are in 

agreement with a study that claims GCS might not be the best candidate for increasing 

GSH in poplar trees. Instead, glutathione reductase (GR) was suggested to be a better 

choice (Foyer et al., 1995). The anti-oxidant property of glutathione relies on its 

reduced form (GSH), which scavenges peroxide and oxidises it to GSSG. GSSG is 

reduced back to GSH by GR, thus GR is an alternative to GCS in increasing the 

antioxidative potential of GSH (Gill et al., 2013). Moreover, a number of experiments 

suggest that there is possible feedback inhibition of GSH on GCS itself, which limits its 

use (Jez et al., 2004, Richman and Meister, 1975, Huang et al., 1988). Nevertheless, 

increasing GSH content alone seemed not to improve the antioxidative potential of 

GSH because it disrupts the GSH/GSSG balance. For example, in tobacco, GSH levels 

were enhanced via GCS over-expression by three-fold, but the transgenic leaves 

became more susceptible to photo-oxidative stress compared to the WT. Impairment of 

redox sensing of the chloroplast due to an imbalance in GSH/GSSG was identified as 

the main reason for this (Creissen et al., 1999). Therefore, since the GSH content was 

not measured in this experiment, the unimproved oxidative stress shown by the root 

samples overexpressing AtGCS could arise from two possibilities: it could either 

caused by the inefficiency of AtGCS to increase GSH content or by disruption of the 

GSH/GSSG balance. 

Transformation with the target genes may not be sufficient to delay PPD 

Although the gene expression was not measured in all the transgenic groups, a large 

percentage of independent single-insert lines from each group were assessed for PPD 

symptoms. Transformation with MecSOD2 was evaluated using the best assay 

determined by the present study, which is PPD Assay 4. However, there were not 

enough data to support a relationship between the overexpression of this gene and 

delayed PPD. No significant differences in PPD scores were measured between the 

transgenic roots and the WT roots. Moreover, PPD assays found that the roots 

deteriorated in a random fashion. Some of the roots deteriorated more rapidly when 

stored intact but rather slowly in the form of sections and vice versa. Cassava plants 

transformed with FaGAR was also evaluated using PPD Assay 4, but statistical 

analysis found no significant difference between the WT and the transgenic roots in 

terms of the PPD symptoms they produced. On the other hand, it was not possible to 

determine with high confidence if overexpression in AtGCS overexpression and 

MecAPX2 transgenics caused a reduction in PPD symptoms, due to the weakness of 

the assays used for PPD assessment in these roots. 
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Given that PPD is a complex process, it is unlikely that overexpression of one gene 

could sufficiently ameliorate the response. Moreover, the genes used in this study are 

those involved in ROS defence network, which is itself a complex process with many 

interacting components. As substantiated by this study, the release of O2- following 

wounding probably is the earliest indicator that PPD is oxidative stress-related, but the 

recent findings suggested that O2
- can be preceded by cyanogenesis (Siritunga and 

Sayre, 2007). Cyanogenesis is triggered by wounding of the cassava roots releasing 

cyanide, which then interrupts electron transfer in mitochondrial cytochrome c oxidase 

leading to ROS formation. However, in addition to cytochrome c oxidase plant contains 

a cyanide insensitive alternative oxidase (AOX), which provides an alternative pathway 

for the electron transfer (Maxwell et al., 1999, Van Aken et al., 2009). Research 

focusing on AOX gene and PPD is currently ongoing. 
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CHAPTER 7 

General Discussion 

 

The aim of this research was to determine whether PPD is ROS-mediated. The 

strategy was to use transgenic cassava plants designed to have an increased ability to 

scavenge ROS through root-specific over-expression of target genes encoding ROS-

scavenging enzymes or enzymes for the biosynthesis of anti-oxidant molecules. While 

altered patterns of gene expression were measured, these were not sufficient to confer 

significant alterations to ROS levels, nor to alter the PPD response of the roots. 

 

7.1 ROS detoxification in plant cells is complex 

The formation of ROS is a consequence of aerobic respiration and photosynthesis, 

which are processes to produce energy. Being present at a basal concentration, ROS 

functions as signalling molecules to maintain the integrity of the cells, but if this 

concentration is exceeded ROS can potentially damage the cells. Therefore, in a plant 

cell, ROS formation is expected but there is no benchmark to determine if ROS is 

formed excessively to levels that cause oxidative stress. 

Oxidative stress occurs at the heart of PPD due to unsynchronised changes between 

ROS production and transcript abundance of genes associated with ROS-scavenging 

(Reilly et al., 2003). In the present study, SOD gene transcriptional levels were found to 

be low at the time of harvest despite dramatic cellular production of superoxide. It was 

possible that the changes in transcriptional activity of MecSOD and activity of SOD did 

not occur as anticipated because there is alternative pathway for its removal. Excess 

superoxide in cassava roots probably was neutralised by spontaneous dismutation 

instead of by the catalytic activity of SOD (Sawyer and Valentine, 1981). In contrast to 

spontaneous dismutation, SOD dismutation is a reversible process as it is inhibited by 

its by-product H2O2, thus it is favoured by cells only when there is a low superoxide 

concentration (Miwa et al., 2008). The preference for spontaneous dismutation is 

supported by the nature of SOD itself, particularly CuZnSOD, which is known to be 

cyanide–sensitive. While cyanide is abundant and progressively released upon 

wounding in cassava roots, it is possible that this enzyme may not be functioning as 

efficiently as it would in a cyanide-free environment. Cyanide is highly poisonous, 

exogenous application at micromolar concentrations has been shown to rapidly inhibit 
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the activity of CuZnSOD in mungbean (Reddy and Venkaiah, 1984). Also, cyanide in 

the form of KCN is a chemical routinely added to SOD enzyme assays intended to 

measure SOD activity of SOD isoforms other than CuZn. 

The proposed model for ROS-scavenging network may seem to suggest an 

orchestrated process to ensure oxidative stress is avoided at any cost but the anti-

oxidant enzymes may not change their activities in a linear fashion. For example, while 

SOD is expected to be transcribed first because MV is a superoxide-generating agent, 

MV-treated transgenic potato transformed with SOD and APX gene showed earlier 

overexpression of APX (at 12 hours) but rather late SOD transcript accumulation of (48 

hours after treatment) (Tang et al., 2006). Moreover, plants show resistance to 

oxidative stress by manipulating anti-oxidant capacities of different ROS-scavenging 

components. In wheat, one stress tolerant genotype had high APX and ascorbate level 

while another genotype with similar tolerance had increased activity of SOD and CAT 

(Sairam et al., 2002). Additionally, an independent study on the role of CAT and SOD 

in norflurazon-induced oxidative stress in maize showed increased transcript levels of 

CAT and chloroplastic SOD (but not cytosolic or mitochondrial), indicating differential 

antioxidative responses by a similar type of enzyme is possible (Jung et al., 2001). 

That said, it is possible that PPD is controlled by activation of only several components 

of the system keeping others unaltered. It is critical to identify these components but 

the task is not going to be straightforward. There are numerous factors to add to the 

complexity of the plant ROS-scavenging system. For example, a stress inducer may 

act to suppress specific components of the system. In oxidative stress caused by 

cadmium in pea plants, treatment with the metal caused cellular glutathione and 

ascorbate to decrease severely, but it induced CAT and MDHAR transcript levels in a 

cadmium-dependent manner (Romero-Puertas et al., 2007). However, the metal might 

have indirectly caused this, since it has been shown that other components of the 

system can also act in the similar fashion. For instance, inhibition of GSH synthesis 

and APX activity by CuZnSOD over-expression has been reported (Ai et al., 2008, 

Kwon et al., 2002). 

It was mentioned in Chapter 6 that sensitivity to PPD shown by Pat:GCS plants might 

relate to the inability of AtGCS to increase GSH content. However, increased activity of 

the biosynthetic enzyme does not guarantee increased GSH as it also is determined by 

many factors including its constituents availability, particularly cysteine (Ogawa et al., 

2004). An independent study demonstrated that overexpression of serine acetyl 

transferase, which is involved in cysteine biosynthesis in transgenic potato, is critical 

for increased levels of GSH  (Harms et al., 2000). Besides, there are many ways to 



200 
 

increase GSH concentration, including by enhancing GSH turnover by direct feeding 

with GSSG (Gomez et al., 2004) and overexpression of glutathione reductase (Gill et 

al., 2013). Nevertheless, although it is accepted that the redox potential of glutathione 

is attributed to GSH oxidation to GSSG that simultaneously catalyses the detoxification 

of H2O2 through ascorbate-glutathione cycle, GSH oxidation was recently found to be 

coupled to at least to four other reactions in four different pathways emphasising the 

complexity of GSH/GSSG modulation and plant ROS scavenging network in general 

(Rahantaniaina et al., 2013). Likewise, the goal to increase AA pool is not 

straightforward as both the turnover pathway and down-regulation of AA oxidation 

could also affect its accumulation (Ishikawa et al., 2006). Moreover, AA itself has the 

potential to generate the hydroxyl radical through interaction with a transition metal ion 

and H2O2via the Udenfriend reaction (Valko et al., 2005). However, rather than the 

above-mentioned problems, the existence of multiple biosynthesis pathways for 

ascorbate is seen as the main challenge that makes ascorbate accumulation difficult to 

engineer. Since cassava AA biosynthesis has not been studied in cassava, it was also 

possible that the wrong enzyme was targeted in the present study. 

ROS production is the earliest response in wounded tissue, which also activates the 

stress hormones such as salicylic acid (SA), jasmonic acid and ethene as wound 

signalling molecules (León et al., 2001). Since these molecules are not exclusive to 

wounding, but also play roles in other physiological processes, it is necessary to 

measure them to see if their concentrations are affected by PPD. Importantly, many of 

these molecules are derived from the phenylpropanoid biosynthetic pathway, which 

has been shown to be activated during the onset of PPD (Tanaka et al., 1983, 

Rodriguez, 2001). In Arabidopsis, SA, despite being known as a signalling molecule in 

defence to pathogen-related stress, was shown to provoke production of H2O2 causing 

lipid peroxidation and oxidative damage due to impeded CAT and APX activities under 

continuous SA treatment (Rao et al., 1997). While in PPD, although some of these 

molecules and their precursors had been detected, it is not known if they may play a 

role in the occurrence of PPD (Hirose et al., 1984, Owiti et al., 2011) 
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7.2 Improvement of PPD assessment is crucial 

The factors that accelerate PPD, such as dehydration and multiple wounding, were 

recognised and a reliable method to assay PPD was finally developed in the present 

study. Although developing a new PPD assay method was not perceived as required at 

the beginning of this project, problems arising from getting meaningful signals to 

differentiate subtle differences between samples from several rounds of harvesting 

highlighted the urgency to design a robust and useful assay. The difficulty in assessing 

PPD has been acknowledged by many researchers in cassava PPD, but has not been 

further investigated or even reported (Salcedo et al., 2010). Very recently, PPD scoring 

using the same software used in the present study (PPD Symptom Score Software) 

unambiguously showed statistically significant reduction of PPD symptoms in 

transgenic cassava roots (Vanderschuren et al., 2014). 

Scoring PPD based on visual symptoms that develop on the surface of storage root 

sample may be simple and straightforward but it requires trained eyes to differentiate 

minor differences. The use of computer software and the need to calculate the PPD 

score for each sample, though it might be considered more laborious than visual 

assessment that only requires personal judgement, was proven the most practical in 

the present study because it generates objective descriptive data, thereby reducing 

human bias. With other plant produce, visual assessment is commonly used to inspect 

the external appearance and to grade post-harvest quality, but it often involves 

evaluation of many characteristics making it an easier task. For example, papaya is 

rated by firmness, peel colour, degree of shrivelling and decay severity (Emond and 

Brecht, 2005) while parsley post-harvest quality is graded by aroma, percentage of 

greenness, discoloration and decay (Loaiza and Cantwell, 1997). This was not the 

case with PPD of cassava, as the symptoms attributed to it are limited to the physical 

appearance of root surface so careful assessment of the symptoms is a must. 

Nowadays, computer vision has become a potential component in the quality control of 

various produce because it is hygienic, non-destructive and relatively robust (Brosnan 

and Sun, 2002). 

There is need to find an alternative method to assess PPD other than a visual one (with 

or without software analysis), ideally by the use of a marker related to the variable 

symptoms shown by the roots.  While scopoletin would appear a good candidate due to 

its abundance and fluorescence under UV, exploratory assays were not persuasive of 

its usefulness as a good marker. The method should either involve measurement of 

other biochemical markers or assessment of a molecular marker. The combined 
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analysis of physical appearance and a useful marker would be the ideal way forward in 

PPD assessment.  In this respect, H2O2 is seen as a potential candidate. Not only it is 

detectable by in situ techniques but its concentration in the affected tissue can be 

determined easily. Compared to superoxide, H2O2 is not only relatively stable but more 

connected to the deterioration symptoms because it tends to appear later in the PPD 

stage. There is evidence from the present study that the accumulation of H2O2 in 

cassava root tissue is more likely to cause oxidative stress than the superoxide 

because the H2O2-scavenging enzymes did not increase their activities despite 

increases in the H2O2 cellular concentration (Section 6.3.2). Possible direct regulation 

of gene expression by H2O2 has also been proposed, but the exact mechanisms 

underlying this remain to be determined (Neill et al., 2002). H2O2 either oxidises 

transcription factors or interacts with signalling proteins, such as protein kinase or 

protein phosphatase in the cytoplasm or in the nucleus, in which protein s-nitrosylation 

by nitric oxide is said to be the mediator of the process (Lin et al., 2012, Wang et al., 

2013). 

 

7.3 Assessment of Pat:Gus cassava plants and Pat (-):Gus Arabidopsis will 

provide clearer insights in Patatin promoter 

It was unfortunate not to be able to see Gus expression in cassava, because the 

plasmid containing Patatin-driven GusPlus gene was not transformed. However, some 

useful information was gathered from evaluating Gus expression in Arabidopsis 

seedlings, which allowed prediction of the general features of the promoter. The patatin 

used in the present study was confirmed to be root-specific and wound-inducible. 

Rapid induction by tissue damage is a characteristic never reported in any patatins 

before (Page, 2009). 

The significant increase of transgene transcription of Pat:SOD and Pat:GCS, which 

occurred 24 hours after harvest is considered late when compared to Gus expression 

in Arabidopsis. Certainly, the wound-inducibility characteristic is the result of several 

interacting molecules that function as wound signals, both systemic and local (Zhou 

and Thornburg, 1999). Because this was not examined in either Arabidopsis or 

cassava it was possible that the unidentified molecules were produced at a slower rate 

in cassava roots so increased gene expression took longer to occur. Therefore, 

measurement of these molecules such as systemin, abscisic acid, ethene, jasmonic 

acid and oligogalacturonides (OGAs) may be the key to understanding the differences 

between the two plants. Species-specific wound response has been demonstrated in 
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tomato and Arabidopsis in which the former was activated by OGAs while the former 

was inhibited by the same substances (Schilmiller and Howe, 2005). It is also important 

to note that wounded cassava tissue releases considerable amount of cyanogens 

which may impair the process by blocking mitochondrial oxidative phosphorylation 

(Nzwalo and Cliff, 2011). 

The strong Gus expression in promoterless cassava lines must also be investigated as 

it might suggest that the neighbouring CaMV35s promoter driving hptII gene could be 

able to co-regulate the expression of MecSOD2 and AtGCS gene in Pat:SOD and 

Pat:GCS transgenic plants respectively. Such a response is rare but CaMV35s 

interference with adjacent promoters have been reported before (Zheng et al., 2007, 

Yoo et al., 2005). Therefore, creating promoterless Gus plants in Arabidopsis and 

making comparative assessments between Arabidopsis Pat:Gus would be of interest 

as this could confirm whether or not the wound-inducible characteristic observed before 

is exclusively attributed to Patatin or influenced by the CaMV35s. 

 

7.4 Future prospect for cassava PPD research 

ROS production had been observed and measured in cassava roots immediately after 

harvest in the present study. Therefore, increasing the anti-oxidant status as the first 

line of protection, with the aim to avoid oxidative stress, is a viable strategy. However, 

as mentioned earlier, the associated physiological stress implicated with ROS and 

oxidative stress is equally important to be considered in understanding PPD.    

There exists considerable evidence that shows that oxidative stress triggers the onset 

of programmed cell death (PCD). PCD which initially was considered as a degenerative 

process is a high metabolic activity and a consequence of severe injury. The regulation 

of PCD by redox activity in the cell has been proposed (De Pinto et al., 2012). PCD 

involving cytoplasmic male sterility in rice is associated with down-regulation of CAT 

and APX activities causing premature microspore loss, indicating that H2O2 is an 

essential component in this process through disrupting mitochondrial ETC function (Li 

et al., 2004). The mechanism for H2O2-induced PCD is not fully understood, but 

overexpression of human apoptotic suppressor Bcl-2 and Ced-9 enhanced oxidative 

tolerance in rice and tobacco respectively (Deng et al., 2011, Wang et al., 2009). These 

findings are encouraging and a co-expression of these genes with anti-oxidant genes 

could be a potential solution to delay PPD. A project research investigating PCD in 
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PPD by manipulating these genes is currently ongoing in this lab (K. Jones, pers. 

comm.). 

Nevertheless, the success of this approach would critically hinge on the choice of 

promoter, the target genes and transformation method. While the method of 

transformation used in the present study had produced high percentage of independent 

single-insert lines, a wide range of tissue-specific promoters are available to be tested. 

However, given the highly variable data produced in the present study, the ability to 

produce a huge number of replicates which enable careful selection of materials is 

crucial. This is the goal that will only be achieved by collaboration with cassava growing 

countries. 
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9 APPENDIX 

 

Table 9.1 Mean height of cassava plants and storage root mean weight of Pat:CAT 

plants. Asterisk (*) denotes significant differences at the 95% level using the Student‘s 

t-test. na= not applicable. 

Cited in Chapter 3, page 60 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight (g) Weigh

t (SD) 

t-test 

weight 

Pat:CAT B2 70.3 5.3 0.81 60.8 7.6 0.07 

Pat:CAT B3 66.1 4.5 0.68 56.0 6.6 0.69 

Pat:CAT C1 62.3 3.7 0.18 51.5 8.9 0.63 

Pat:CAT C2 73.0 4.9 0.25 55.2 5.0 0.91 

Pat:CAT C3 68.1 4.1 0.29 54.3 5.3 0.52 

Pat:CAT C4 69.3 9.5 0.91 50.5 5.7 0.88 

Pat:CAT D1 73.4 6.9 0.21 40.0 8.9 0.46 

Pat:CAT D3 77.1 9.8 0.08 21.1 5.3 0.03* 

WT 67.3 6.7 na 51.3 14.1 na 

 

 

 

Table 9.2 Mean height of cassava plants and storage root mean weight of Pat:GAR 

plants. Asterisk (*) denotes significant differences at the 95% level using the Student‘s 

t-test. na= not applicable. 

Cited in Chapter 3, page 60 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight 

(g) 

Weight 

(SD) 

t-test 

weight 

Pat:GAR A13 81.3 11.9 0.56 116.8 10.6 0.07 

Pat:GAR A15 72.7 8.1 0.22 105.9 13.6 0.62 

Pat:GAR B27 87.0 7.0 0.34 88.9 18.8 0.33 

Pat:GAR B29 89.3 3.8 0.41 75.7 8.1 0.05* 

Pat:GAR B33 82.7 13.6 0.79 62.1 13.1 0.02* 

Pat:GAR C8 94.3 10.2 0.30 79.4 8.7 0.09 

Pat:GAR C12 94.3 5.1 0.18 95.1 9.3 0.37 

WT 84.7 4.0 na 100.0 4.0 na 
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Table 9.3 Mean height of cassava plants and storage root mean weight of Pat:GCS 

plants. Asterisk (*) denotes significant differences at the 95% level using the Student‘s 

t-test. na= not applicable. 

Cited in Chapter 3, page 60 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight 

(g) 

Weight 

(SD) 

t-test 

weight 

Pat:GCS C5 66.7 3.4 0.00* 66.5 12.6 0.05* 

Pat:GCS C6 70.5 3.6 0.00* 56.2 10.4 0.00* 

Pat:GCS C11 67.8 3.2 0.01* 69.6 8.4 0.07 

Pat:GCS C12 54.3 9.1 0.02* 50.4 23.4 0.02* 

Pat:GCS C13 60.3 5.5 0.26 60.0 12.1 0.00* 

Pat:GCS C16 68.6 4.4 0.01* 61.7 13.1 0.01* 

Pat:GCS C19 59.3 4.2 0.05* 54.0 11.0 0.00* 

WT 62.7 3.8 na 81.3 16.6 na 

 

 

Table 9.4 Mean height of cassava plants and storage root mean weight of Pat:Gus 

plants.  

 

Cited in Chapter 3, page 60 

Plant lines Height 

(cm) 

Height 

(SD) 

t-test 

height 

Weight 

(g) 

Weight 

(SD) 

t-test 

weight 

 

Pat:Gus A4 67.7 2.3 0.71 86.9 7.8 0.26 

Pat:Gus A6 66.0 3.0 0.46 85.1 18.2 0.30 

Pat:Gus A15 68.0 3.5 0.86 95.5 7.3 0.35 

Pat:Gus B1 70.5 6.4 0.66 104.3 5.6 0.74 

Pat:Gus B2 72.5 2.1 0.16 83.2 2.1 0.29 

Pat:Gus B4 77.0 3.0 0.62 119.8 11.8 0.73 

WT 68.7 2.3 na 112.6 30.9 na 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCGGTC

ATGGATCCTTGCAAGTTCCGTCCATCAAGCTCAAACAATACCCCCTTCTGGACCACCGATGCTGGTGCTC

CAGTATGGAACAACAATTCCTCCATGACTGTTGGAACCAGAGGTCCAATCCTTTTGGAGGACTATCATAT

GATAGAGAAACTTGCCAACTTTACCAGAGAGAGGATTCCAGAGCGTGTCGTCCATGCTAGGGGAATGAGT

GCAAAGGGCTTCTTTGAAGTCACCCACGATGTCTCTCACCTTACTTGTGCTGATTTCCTTCGAGCCCCTG

GAGTTCAAACCCCTGTCATCGTCCGTTTCTCCACTGTTATCCACGAGCGTGGCAGCCCTGAAACACTCAG

GGATCCTCGAGGTTTTGCGACTAAGTTCTACACCAGAGAGGGCAACTTTGATATTGTGGGAAACAACTTC

CCTGTCTTCTTCATCCGTGATGGAATAAAATTCCCAGATGTGATACACGCTTTTAAGCCCAATCCCAAGT

CTCACATCCAAGAATACTGGAGGATCTTTGACTTCTTATCACACCATCCTGAGAGCTTGAGCACCTTCGC

CTGGTTCTTCGATGATGTTGGAATTCCCCAAGATTACAGACACATGGAAGGTTTCGGTGTTCACACCTTT

ACTTTCATCAACAAGGCTGGAAAAGTAACCTACGTGAAATTTCACTGGAAACCCACTTGCGGGGTCAAGT

GTTTGATGGATGATGAGGCACTTAAGATCGGAGGTGCCAACCACAGCCATGCTACGCAGGATTTATACGA

CTCCATTGCCGCTGGCAACTATCCTGAGTGGAGACTCTTCATCCAGACAATGGATCCAGCTGATGAAGAC

AAATTCGACTTTGATCCACTTGATATGACCAAGATCTGGCCTGAGGATATTTTTCCTCTACAGCAAATTG

GCCGTTTGGTCTTGAACAGGAACATCGATAACTGGTTTGCTGAGAATGAAATGCTCGCATTCGACCCTGG

TCATATTGTTCCTGGCATTCACTATTCAAACGACAAGTTGTTTCAGCTCAGAACCTTTGCATATGCTGAC

ACTCAGAGGCACCGTCTCGGACCCAACTATAAGATGCTCCCTGTTAATGCTCCCAAGTGTGCTTATCACA

ACAATCATTACGATGGTTTCATGAATTTCATGCACAGGGATGAGGAGGTGGATTACTTCCCATCCAGGTA

TGATCCAGTTCGCCATGCTGAGAGAAGCCCCATTCCTAACGCTATCTGTAGTGGAAGGCGTGAAAAGTGC

GTCATTGAAAAGGAGAACAATTTCAAGCAACCTGGAGAGAGATATCGATCCTGGGCACCTGATAGACAAG

AAAGATTCCTGTGCAGATTGGTTAACGCCTTATCAGAGCCACGTATCACCTTTGAGATTCGCAGTATCTG

GGTCTCTTACTGGTCTAAGTGCGACGCGTCTCTGGGTCAAAAGCTGGCTTCTCGTCTCAACGTGAGGCCA

AATATATGA 

Figure 9.1 Pat:MecCAT1 sequence obtained from sequencing Arabidopsis Pat:CAT 

line (At3.8). The Patatin sequence is highlighted in turquoise, MecCAT1 is highlighted 

in grey. Sequence in red font and underlined indicates restriction site for PstI and 

sequence in red font indicates restriction site for NcoI. The attB1 sequence is 

underlined, Kozak sequence which introduce for efficient gene translation is highlighted 

in yellow. 

Cited in Chapter 5, page 124. 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCGACA 

ATGGTGAAGGCCGTTGCTGTTCTTAACAGTAGTGAGGGTGTTGCTGGGACAATCTTCTTCACCCAAGAAG

GAGATGGTCCAACCACCGTCACTGGAAGTGTTTCTGGCCTTAAGCCAGGGCTTCATGGATTCCATGTTCA

TGCCCTTGGAGACACAACAAATGGTTGCATGTCAACTGGGCCACATTTCAACCCTGGTGGCAAAGAGCAT

GGTGCCCCTGAGGACGACATTCGTCATGCTGGTGATCTGGGAAATGTCACTGCTGGTGATGATGGCACTG

CTAGTTTCACAATCGTTGACAAGGATATTCCTCTTTCTGGTCCGCATTCCATTGTAGGAAGGGCAGTCGT

TGTTCACGCAGATCCTGATGATCTTGGAAAGGGGGGACATGAACTTAGCAAAACCACTGGAAATGCTGGT

GGCAGGGTAGCATGTGGTGTTATTGGTTTGCAAGGATAG 

Figure 9.2 Pat:MecSOD2 sequence obtained from sequencing cassava Pat:SOD line. 

The Patatin sequence is highlighted in turquoise, MecSOD2 is highlighted in grey. 

Sequence in red font and underlined indicates restriction site for PstI and sequence in 

red font indicates restriction site for NcoI. The attB1 sequence is underlined, Kozak 

sequence which introduce for efficient gene translation is highlighted in yellow. 

Cited in Chapter 5, page 128. 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTACACC 

ATGGCAAAGGTTCCTTCAGTAACCCTCAGCTCCTGCGGTGATGACATCCAGACCATGCCTGTAATCGGCA

TGGGAACTTCATCGTACCCTCGGGCCGACCCTGAAACCGCCAAGGCTGCTATTCTCGAAGCAATTAGAGC

TGGTTACCGACATTTCGACACCGCCGCTGCTTACGGCTCGGAGAAAGATCTCGGTGAAGCCATAGCCGAG

GCTCTCCGTCTCCAACTCATCAAGTCTAGGGACGAGCTCTTCATCACAACCAAACTTTGGGCCAGTTTCG

CCGAGAAAGACCTTGTGCTGCCCTCCATCAAAGCCAGTTTAAGCAATCTTCAAGTAGAATACATTGACAT

GTACATCATACACTGGCCATTCAAATTGGGAAAAGAGGTGAGAACCATGCCTGTTGAGAGAGATCTGGTG

CAGCCCCTTGATATCAAATCTGTTTGGGAAGCCATGGAAGAGTGCAAGAAACTTGGGCTTGCTAGAGGTA

TTGGTGTCAGTAACTTCACTAGCAGCATGCTTGAGGAGCTTCTTTCCTTCGCCGAAATCCCTCCGGCCGT

AAACCAATTGGAGATGAACCCAGCTTGGCAGCTGAAGAAATTGAGGGACTTCTGCAAGGCAAAGGGAATT

CATGTCACGGCTTACTCTCCGCTCGGAGCAGCTAGGACTAAATGGGGTGACGATAGGGTTTTGGGATCAG

ATATCATCGAAGAGATTGCCCAAGCCAAAGGAAAATCAACTGCTCAGATATCATTGAGATGGGTGTACGA

ACAAGGTGTGAGCATAGTAACAAAAAGTTACAACAAAGAAAGAATGAGGCAGAACCTTGACATCTTCGAC

TTCTGCTTGACCGAGGAGGAACTGGAGAAGATGAGTCATCTTCCACAGCGGAAAGGGGTTACCTTTGCTT

CAATTCTAGGACCCCATGATATTGTTCTGGAAGTTGACGAAGAATTATGA 

 

Figure 9.3 Pat:FaGAR sequence obtained from sequencing cassava Pat:GAR line. 

The Patatin sequence is highlighted in turquoise, FaGAR is highlighted in grey. 

Sequence in red font and underlined indicates restriction site for PstI and sequence in 

red font indicates restriction site for NcoI. The attB1 sequence is underlined, Kozak 

sequence which introduce for efficient gene translation is highlighted in yellow. 

Cited in Chapter 5, page 128. 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCTACC 

ATGGCGCTCTTGTCTCAAGCAGGAGGATCATACACTGTTGTTCCTTCTGGAGTTTGTTCAAAGGCTGGAA

CTAAAGCTGTTGTTTCGGGTGGCGTGAGGAATTTGGATGTTTTGAGGATGAAAGAAGCTTTTGGTAGCTC

CTACTCTAGGAGTCTATCTACCAAATCAATGCTTCTCCATTCTGTTAAGAGGAGTAAGAGAGGGCATCAA

TTGATTGTTGCGGCAAGTCCTCCAACGGAAGAGGCTGTAGTTGCAACTGAGCCGTTGACGAGAGAGGATC

TCATTGCCTATCTTGCCTCTGGATGCAAAACAAAGGACAAATATAGAATAGGTACAGAACATGAGAAATT

TGGTTTTGAGGTCAATACTTTGCGCCCTATGAAGTATGATCAAATAGCCGAGCTTCTTAATGGTATCGCT

GAAAGATTTGAATGGGAAAAAGTAATGGAAGGTGACAAGATCATTGGTCTGAAGCAGGGAAAGCAAAGCA

TTTCACTTGAACCTGGGGGTCAGTTCGAGCTTAGTGGTGCACCTCTTGAGACTTTGCATCAAACTTGTGC

TGAAGTCAATTCACATCTTTATCAGGTAAAAGCAGTTGCTGAGGAAATGGGAATTGGTTTCTTAGGAATT

GGCTTCCAGCCCAAATGGCGTCGGGAGGATATACCCATCATGCCAAAGGGGAGATACGACATTATGAGAA

ACTACATGCCGAAAGTTGGTACCCTTGGTCTTGATATGATGCTCCGAACGTGTACTGTTCAGGTTAATCT

GGATTTTAGCTCAGAAGCTGATATGATCAGGAAGTTTCGTGCTGGTCTTGCTTTACAACCTATAGCAACG

GCTCTATTTGCGAATTCCCCTTTTACAGAAGGAAAGCCAAACGGATTTCTCAGCATGAGAAGCCACATAT

GGACAGACACTGACAAGGACCGCACAGGAATGCTACCATTTGTTTTCGATGACTCTTTTGGGTTTGAGCA

GTATGTTGACTACGCACTCGATGTCCCTATGTACTTTGCCTACAGAAAGAACAAATACATCGACTGTACT

GGAATGACATTTCGGCAATTCTTGGCTGGAAAACTTCCCTGTCTCCCTGGTGAACTGCCTTCATATAATG

ATTGGGAAAACCATCTGACAACAATATTCCCAGAGGTTCGGTTGAAGAGATACTTGGAGATGAGAGGTGC

TGATGGAGGTCCCTGGAGGAGGCTGTGTGCCCTGCCAGCTTTCTGGGTGGGTTTATTATATGATGATGAT

AGTCTCCAAGCTATCCTGGATCTGACAGCTGACTGGACTCCAGCAGAGAGAGAGATGCTAAGGAACAAAG

TCCCAGTTACTGGCTTAAAGACTCCTTTTAGGGATGGTTTGTTAAAGCATGTCGCTGAAGATGTCCTGAA

ACTCGCAAAGGATGGTTTAGAGCGCAGAGGCTACAAGGAAGCCGGTTTCTTGAACGCAGTCGATGAAGTG

GTCAGAACAGGAGTTACGCCTGCGGAGAAGCTCTTGGAGATGTACAATGGAGAATGGGGACAAAGCGTAG

ATCCCGTGTTCGAAGAGCTGCTGTACTAA 

 

Figure 9.4 Pat:gshI sequence obtained from sequencing cassava Pat:GCS line. The 

Patatin sequence is highlighted in turquoise, gshI is highlighted in grey. Sequence in 

red font and underlined indicates restriction site for PstI and sequence in red font 

indicates restriction site for NcoI. The attB1 sequence is underlined, Kozak sequence 

which introduce for efficient gene translation is highlighted in yellow. 

 

Cited in Chapter 5, page 128. 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCAAAA 

ATGCCGAAGAACTACCCAAAAGTTAGTGAAGAGTACCAGAAAGCCATTGATAAGGCCAGGAGGAAGCTCA

GAGGTTTCATCGCTGAGAAAGGCTGCGCTCCTCTCATGCTCCGTATCGCATGGCACTCAGCTGGAACTTA

CGACGTGAAGACGAACACTGGAGGTCCTTTTGGAACCATGAGGCACGCAGCGGAGCAGGGTCATGCTGCT

AACAATGGGTTAGATATTGCTGTTAGACTCCTTGAGCCCATCAAGGAGCAGTTCCCTATCCTCTCCTACG

CCGACTTCTATCAGCTCGCTGGTGTTGTTGCCGTTGAGATCACTGGTGGGCCTGATATCCCATTCCACCC

AGGAAGAGAGGACAAGCCTGAACCGCCTCCAGAAGGTCGTCTCCCTAATGCTACTAAAGGTGCTGATCAC

TTGAGAGAGGTCTTTGGGAAAACCATGGGTCTCACCGACAAGGATATTGTTGTCCTTTCTGGTGGCCACA

CCTTGGGAAGGTGCCACAAGGAACGCTCTGGTTTTGAAGGTCCCTGGACTCCTAATCCTCTCATCTTTGA

CAATTCCTTCTTCCAGGTGCTCTTGGACGAACCGACAGAAGATCTTCTACAATTGCCGACTGACAGTGTT

CTTGTCACGGATCCTGTCTTCCGCCCATATGTTGAAAAATATGCTGCTGATGAAGAGGCATTCTTTGCTG

ATTATGCTGAGTCCCATATGAAGCTCTCTGAGCTCGGATTTGCTGAGGCGTAA 

 

Figure 9.5 Pat:MecAPX3 sequence obtained from sequencing cassava Pat:APX line. 

The Patatin sequence is highlighted in turquoise, MecAPX3 highlighted in grey. 

Sequence in red font and underlined indicates restriction site for PstI and sequence in 

red font indicates restriction site for NcoI. The attB1 sequence is underlined, Kozak 

sequence which introduce for efficient gene translation is highlighted in yellow. 

 

Cited in Chapter 5, page 128. 
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CCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCGATGGTAGATCTGAGGGTAAATTTCTAGT

TTTTCTCCTTCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGAGCTTTGATCTTTCTTTAA

ACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATATTACATAGCTTTAACTGATAATCTGATTACT

TTATTTCGTGTGTCTATGATGATGATGATAGTTACAGAACCGACGAACTAGTCTGTACCCGATCAACACC

GAGACCCGTGGCGTCTTCGACCTCAATGGCGTCTGGAACTTCAAGCTGGACTACGGGAAAGGACTGGAAG

AGAAGTGGTACGAAAGCAAGCTGACCGACACTATTAGTATGGCCGTCCCAAGCAGTTACAATGACATTGG

CGTGACCAAGGAAATCCGCAACCATATCGGATATGTCTGGTACGAACGTGAGTTCACGGTGCCGGCCTAT

CTGAAGGATCAGCGTATCGTGCTCCGCTTCGGCTCTGCAACTCACAAAGCAATTGTCTATGTCAATGGTG

AGCTGGTCGTGGAGCACAAGGGCGGATTCCTGCCATTCGAAGCGGAAATCAACAACTCGCTGCGTGATGG

CATGAATCGCGTCACCGTCGCCGTGGACAACATCCTCGACGATAGCACCCTCCCGGTGGGGCTGTACAGC

GAGCGCCACGAAGAGGGCCTCGGAAAAGTCATTCGTAACAAGCCGAACTTCGACTTCTTCAACTATGCAG

GCCTGCACCGTCCGGTGAAAATCTACACGACCCCGTTTACGTACGTCGAGGACATCTCGGTTGTGACCGA

CTTCAATGGCCCAACCGGGACTGTGACCTATACGGTGGACTTTCAAGGCAAAGCCGAGACCGTGAAAGTG

TCGGTCGTGGATGAGGAAGGCAAAGTGGTCGCAAGCACCGAGGGCCTGAGCGGTAACGTGGAGATTCCGA

ATGTCATCCTCTGGGAACCACTGAACACGTATCTCTACCAGATCAAAGTGGAACTGGTGAACGACGGACT

GACCATCGATGTCTATGAAGAGCCGTTCGGCGTGCGGACCGTGGAAGTCAACGACGGCAAGTTCCTCATC

AACAACAAACCGTTCTACTTCAAGGGCTTTGGCAAACATGAGGACACTCCTATCAACGGCCGTGGCTTTA

ACGAAGCGAGCAATGTGATGGATTTCAATATCCTCAAATGGATCGGCGCCAACAGCTTCCGGACCGCACA

CTATCCGTACTCTGAAGAGTTGATGCGTCTTGCGGATCGCGAGGGTCTGGTCGTGATCGACGAGACTCCG

GCAGTTGGCGTGCACCTCAACTTCATGGCCACCACGGGACTCGGCGAAGGCAGCGAGCGCGTCAGTACCT

GGGAGAAGATTCGGACGTTTGAGCACCATCAAGACGTTCTCCGTGAACTGGTGTCTCGTGACAAGAACCA

TCCAAGCGTCGTGATGTGGAGCATCGCCAACGAGGCGGCGACTGAGGAAGAGGGCGCGTACGAGTACTTC

AAGCCGTTGGTGGAGCTGACCAAGGAACTCGACCCACAGAAGCGTCCGGTCACGATCGTGCTGTTTGTGA

TGGCTACCCCGGAGACGGACAAAGTCGCCGAACTGATTGACGTCATCGCGCTCAATCGCTATAACGGATG

GTACTTCGATGGCGGTGATCTCGAAGCGGCCAAAGTCCATCTCCGCCAGGAATTTCACGCGTGGAACAAG

CGTTGCCCAGGAAAGCCGATCATGATCACTGAGTACGGCGCAGACACCGTTGCGGGCTTTCACGACATTG

ATCCAGTGATGTTCACCGAGGAATATCAAGTCGAGTACTACCAGGCGAACCACGTCGTGTTCGATGAGTT

TGAGAACTTCGTGGGTGAGCAAGCGTGGAACTTCGCGGACTTCGCGACCTCTCAGGGCGTGATGCGCGTC

CAAGGAAACAAGAAGGGCGTGTTCACTCGTGACCGCAAGCCGAAGCTCGCCGCGCACGTCTTTCGCGAGC

GCTGGACCAACATTCCAGATTTCGGCTACAAGAACGCTAGCCATCACCATCACCATCACGTGTGA 

Figure 9.6 Pat(-):GusPlus sequence obtained from sequencing cassava Pat(-):Gus 

line. The GusPlus is highlighted in grey. Sequence in red font indicates restriction site 

for NcoI. The attB1 sequence is underlined, Kozak sequence which introduce for 

efficient gene translation is highlighted in yellow. 
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CTGCAGTTGTAGTTAATGCGTATTAGTTTTAGCGACGAAGCACTAAATCGTCTTTGTATACTTTGAGTGA

CACATGTTTAGTGACGACTGATTGACGAAATTTTTTTCGTCTCACAAAATTTTTAGTGACGAAACATGAT

TTATAGATGACGAAATTATTTGTCCCTCATAATCTAATTTGTTGTAGTGATCATTACTCCTTTGTTTGTT

TTATTTGTCATGTTAGTTCATTAAAAAAAAAATCTCTCTTCTTATCAATCCTGACGTGTTTAATATCATA

AGATTAAAAAATATTTTAATATATCTTTAATTTAAACTCACAAAGTTTAATTTTCTTCGTTAACTTAATT

TGTCAAATCAGGCTCAAAGATCGTTTTTCATATCGGAATGAGGATTTTATTTATTCTTTTAAAAATAAAG

AGGTGTTGAGCTAAACAATTTCAAATCTCATCACACATATGGGGTCAGCCACAAAAATAAAGAACGGTTG

GAACGGATCTATTATATAATACTAATAAAGAATAGAAAAAGGAAAGTGAGTGAGGTGCGAGGGAGAGAAT

CTGTTTAATATCAGAGTCGATCATGTGTCAGTTTTATCGATATGACTTTGACTTCAACTGAGTTTAAGCA

ATTCTGATAAGGCGAGGAAAATCACAGTGCTGAATCTAGAAAAATCTTATACAATGTGAGATAAATCTCA

ACAAAAACGTTGAGTCCATAGAGGGGGTGTATGTGACACCCCAACCTCAGCAAAAGAAAACCTCCCCTCA

AGAAGGACATTTGCGGTGCTAAACAATTTCAAGTCTCATCACACATATATATTATATAATACTAATAAAG

AATAGAAAAAGGAAAGGTAAACATCACTAATGACAGTTGCGGTGCAAAGTGAGTGAGATAATAAACATCA

GTAATAGACATCACTAACTTTTATTGGTTATGTCAAACTCAAAATAAAATTTCTCAACTTGTTTACGTGC

CTATATATACCATGCTTGTTATATGCCATGGTAGATCATCACAAGTTTGTACAAAAAAGCAGGCTCGATG

GTAGATCTGAGGGTAAATTTCTAGTTTTTCTCCTTCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATT

TTTTTGAGCTTTGATCTTTCTTTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATATTACAT

AGCTTTAACTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGATGATAGTTACAGAACCGACG

AACTAGTCTGTACCCGATCAACACCGAGACCCGTGGCGTCTTCGACCTCAATGGCGTCTGGAACTTCAAG

CTGGACTACGGGAAAGGACTGGAAGAGAAGTGGTACGAAAGCAAGCTGACCGACACTATTAGTATGGCCG

TCCCAAGCAGTTACAATGACATTGGCGTGACCAAGGAAATCCGCAACCATATCGGATATGTCTGGTACGA

ACGTGAGTTCACGGTGCCGGCCTATCTGAAGGATCAGCGTATCGTGCTCCGCTTCGGCTCTGCAACTCAC

AAAGCAATTGTCTATGTCAATGGTGAGCTGGTCGTGGAGCACAAGGGCGGATTCCTGCCATTCGAAGCGG

AAATCAACAACTCGCTGCGTGATGGCATGAATCGCGTCACCGTCGCCGTGGACAACATCCTCGACGATAG

CACCCTCCCGGTGGGGCTGTACAGCGAGCGCCACGAAGAGGGCCTCGGAAAAGTCATTCGTAACAAGCCG

AACTTCGACTTCTTCAACTATGCAGGCCTGCACCGTCCGGTGAAAATCTACACGACCCCGTTTACGTACG

TCGAGGACATCTCGGTTGTGACCGACTTCAATGGCCCAACCGGGACTGTGACCTATACGGTGGACTTTCA

AGGCAAAGCCGAGACCGTGAAAGTGTCGGTCGTGGATGAGGAAGGCAAAGTGGTCGCAAGCACCGAGGGC

CTGAGCGGTAACGTGGAGATTCCGAATGTCATCCTCTGGGAACCACTGAACACGTATCTCTACCAGATCA

AAGTGGAACTGGTGAACGACGGACTGACCATCGATGTCTATGAAGAGCCGTTCGGCGTGCGGACCGTGGA

AGTCAACGACGGCAAGTTCCTCATCAACAACAAACCGTTCTACTTCAAGGGCTTTGGCAAACATGAGGAC

ACTCCTATCAACGGCCGTGGCTTTAACGAAGCGAGCAATGTGATGGATTTCAATATCCTCAAATGGATCG

GCGCCAACAGCTTCCGGACCGCACACTATCCGTACTCTGAAGAGTTGATGCGTCTTGCGGATCGCGAGGG

TCTGGTCGTGATCGACGAGACTCCGGCAGTTGGCGTGCACCTCAACTTCATGGCCACCACGGGACTCGGC

GAAGGCAGCGAGCGCGTCAGTACCTGGGAGAAGATTCGGACGTTTGAGCACCATCAAGACGTTCTCCGTG

AACTGGTGTCTCGTGACAAGAACCATCCAAGCGTCGTGATGTGGAGCATCGCCAACGAGGCGGCGACTGA

GGAAGAGGGCGCGTACGAGTACTTCAAGCCGTTGGTGGAGCTGACCAAGGAACTCGACCCACAGAAGCGT

CCGGTCACGATCGTGCTGTTTGTGATGGCTACCCCGGAGACGGACAAAGTCGCCGAACTGATTGACGTCA

TCGCGCTCAATCGCTATAACGGATGGTACTTCGATGGCGGTGATCTCGAAGCGGCCAAAGTCCATCTCCG

CCAGGAATTTCACGCGTGGAACAAGCGTTGCCCAGGAAAGCCGATCATGATCACTGAGTACGGCGCAGAC

ACCGTTGCGGGCTTTCACGACATTGATCCAGTGATGTTCACCGAGGAATATCAAGTCGAGTACTACCAGG

CGAACCACGTCGTGTTCGATGAGTTTGAGAACTTCGTGGGTGAGCAAGCGTGGAACTTCGCGGACTTCGC

GACCTCTCAGGGCGTGATGCGCGTCCAAGGAAACAAGAAGGGCGTGTTCACTCGTGACCGCAAGCCGAAG

CTCGCCGCGCACGTCTTTCGCGAGCGCTGGACCAACATTCCAGATTTCGGCTACAAGAACGCTAGCCATC

ACCATCACCATCACGTGTGA 

Figure 9.7 Pat:GusPlus sequence obtained from sequencing Arabidopsis Pat:GusPlus 

line. The Patatin sequence is highlighted in turquoise, GusPlus is highlighted in grey. 

Sequence in red font and underlined indicates restriction site for PstI and sequence in 

red font indicates restriction site for NcoI. The attB1 sequence is underlined, Kozak 

sequence which introduce for efficient gene translation is highlighted in yellow. 

Cited in Chapter 5, page 130. 


