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Abstract 

 

Background Following the outbreak of the Influenza A(H1N1) pandemic, mass 

vaccination was recommended in the UK, Europe and many other countries 

throughout the world. Given the limited pre-marketing experience with these vaccines, 

national and international post-marketing surveillance was recommended. 

 

Aim To contribute to the post-marketing surveillance of the influenza A(H1N1) pdm09 

vaccine using the GPRD, to assess the performance of the GPRD as a vaccine 

surveillance tool and to assess the potential of the VAESCO collaborative working 

model. 

 

Methods Several studies were carried out, both independently using UK GPRD data 

and in collaboration with VAESCO partners elsewhere in Europe. Cohort, case-control 

and self-controlled case series methodologies were used to estimate influenza 

A(H1N1) pdm09 vaccine uptake in high risk groups, provide background rates of 

events commonly reported following vaccination for use in passive surveillance and 

evaluate the risk of Guillain-Barré syndrome and foetal death following influenza 

A(H1N1) pdm09 vaccination. 

 

Results Uptake of influenza A(H1N1) pdm09 vaccine in clinical risk groups (40.3%) 

and pregnant women (21.6%) was low. Background rates of facial nerve palsy varied 

by data source, age, calendar year and calendar month. The risk of Guillain-Barré 

syndrome was not significantly higher among vaccinated than unvaccinated individuals 

in the case control (ORadj 1.0, CI95 0.3 to 2.7) or self-controlled case series (IRRadj 1.3 

CI95 0.6 to 2.7) studies while the risk of first (HRunadj 0.74, CI95 0.62 to 0.88), second 

(HRunadj 0.59, CI95 0.45 to 0.77) and third (HRunadj 0.70, CI95 0.47 to 1.03) trimester 

foetal death was not higher in vaccinated than unvaccinated individuals.  

 

Conclusion The GPRD performed well as a vaccine surveillance tool, providing 

accurate data on influenza A(H1N1) pdm09 vaccination and disease incidence. While 

the VAESCO studies produced useful data in a number of European data sources, 

limitations encountered suggest modification of the working model would be needed 

for future collaboration. 
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1.  Introduction
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1.1 Vaccination 

 

It has been noted since ancient times that exposure to an infectious disease can 

confer protection against future infection, and attempts at inducing such protection 

through controlled exposure to infectious agents, have been described since the 10th 

century [1]. Early attempts at immunisation generally amounted to exposing 

individuals to limited amounts of the causative infectious agent. While these 

techniques achieved varying levels of success the risk of developing severe infection 

was never adequately controlled. ‘Modern immunisation’ is therefore considered by 

many to have begun with the work of Edward Jenner in the late 18th century. Jenner 

described how infection of individuals with cowpox, a disease related to smallpox, but 

far less severe, could confer protection against smallpox [2]. Jenner’s experiments 

were the first to garner widespread acceptance of the potential of immunisation and 

by the middle of the 19th century the benefits of smallpox immunisation were such 

that it was made compulsory in Britain. While Jenner’s work was a vital step in the 

development of modern vaccines, smallpox was unique in that for most other 

infectious diseases there does not exist an obvious, naturally occurring, less severe 

form, such as cowpox. Therefore over the years that followed scientists sought to 

discover ways to safely induce immunity to other infectious diseases, culminating in 

the discovery of pathogen inactivation and the development of the first human rabies 

vaccine using an inactivated version of the rabies virus by Louis Pasteur and Emile 

Roux in 1885 [3]. This finding ushered in a new era of lab based vaccine development 

and vaccination has since become one of the most successful medical interventions in 

use today with effective vaccines now existing for a wide range of infectious diseases. 

Vaccination is credited with the eradication of smallpox, the near eradication of polio 

and measles and the prevention of more than 2 to 3 million deaths worldwide every 

year [4].  

 

Despite these successes immunisation has always been controversial and a strong 

anti-vaccination movement has existed since before the times of Jenner and Pasteur. 

Early criticisms of vaccination questioned its effectiveness and the ethics of the 

compulsory vaccination programmes it had bred. The successes of vaccination and the 

move from compulsory to optional vaccination policies have largely overcome these 

criticisms with attention instead turning to the safety of the vaccines [5]. As with any 

medical intervention, vaccination is not 100% safe and vaccines are known to cause a 

number of adverse events. Examples of such events range from minor reactions such 
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as fever, malaise and pain/swelling at the injection site to more serious reactions such 

as anaphylaxis, seizures and thrombocytopenia [6]. These events can result from 

incorrect administration of the vaccine, contamination of the vaccine or as a biological 

consequence of the vaccine’s mechanism of action. Any decision to grant marketing 

approval to a vaccine is not therefore based on benefit alone, but on a careful 

judgement of whether the potential benefits of vaccination outweigh any potential 

risks. In order to make this judgement, regulatory agencies must consider all available 

pre-clinical and clinical trial data. 

 

Despite the careful assessment that is carried out by regulatory agencies, unsafe 

vaccines can slip through the regulatory net, damaging public confidence in the value 

of vaccination and vaccine uptake rates [2]. Notably a number of recent safety 

concerns raised by vaccine critics have been based on very little scientific evidence. 

These reports usually arise due to a coincidental association between the time of the 

purported adverse event and the time of vaccination [7]. Such unsubstantiated 

reports have severely damaged public confidence in vaccination campaigns in the past 

[8] resulting in increases in vaccine preventable morbidity and mortality. It is 

therefore important for public health authorities to study the validity of any 

associations identified in order to provide a scientific evidence base to support or 

oppose continued vaccination. 

 

1.2 Seasonal influenza  

 

Influenza is an acute viral infection that is capable of rapid human to human 

transmission. Infection with influenza can result in symptoms such as sore throat, 

cough, fever, muscle pain and headache; however more serious complications such as 

pneumonia and death may also occur [9]. Subgroups of the population believed to be 

at higher risk of suffering the more serious complications of influenza include all those 

aged >65 and those of any age in a clinical risk group (i.e. those suffering from 

asthma, chronic obstructive pulmonary disease (COPD), chronic heart disease, chronic 

kidney disease, diabetes, chronic liver disease, stroke/transient ischaemic attack, 

central nervous system degeneration and immunosuppression) [10]. The World Health 

Organisation (WHO) estimates that between 250,000 and 500,000 deaths are caused 

by influenza every year [11].  

 

The pathogen responsible for influenza illness, the influenza virus, was first identified 

in 1933 [9]. In 1938 it was first noted that more than one subtype of influenza virus 
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existed and that one of the influenza subtypes, the influenza A virus, was capable of 

changing genetically in response to evolutionary pressure from the human immune 

system [12]. These genetic changes have since been found to occur through point 

mutations in the hemagglutinin and neuraminidase antigens; a process that has come 

to be known as ‘antigenic drift’ [13].  Antigenic drift prevents humans from developing 

long-term immunity to influenza following influenza infection, as the protective 

antibodies raised against antigens on one influenza strain often cannot recognise the 

mutated antigens on a ‘drifted’ strain [14].  

 

1.3 Seasonal influenza vaccine 

 

At the time the influenza virus was identified, vaccine development was progressing 

rapidly with pertussis, Bacillus Calmette–Guérin, diphtheria and tetanus vaccines all 

having been developed in the 1920s. Work on developing an influenza vaccine 

therefore began immediately and within three years the first live and killed influenza 

vaccines had been developed [3]. Poor antigen purification and yield, as well as a lack 

of recognition of the importance of antigenic drift, limited the utility of these early 

influenza vaccines [3]. Since then however, advances in centrifugation, the 

development of techniques to disrupt viruses and purify their antigens and the use of 

high yield strains have all significantly improved the production and efficacy of 

influenza vaccines [3]. Recently, immunogenic material, known as an ‘adjuvant’, has 

also been added to influenza vaccines in order to illicit a greater immune response 

against the antigenic material contained in the vaccine [82]. Despite these advances, 

the problem remains that in order for an influenza vaccine to effectively prevent 

infection the antigens contained in the vaccine must match the antigens in the 

circulating influenza strains [15]. In an effort to address this, the WHO set up the 

Global Influenza Surveillance program which monitors antigenic drift through 

surveillance of circulating influenza strains. Based on the Global Influenza Surveillance 

program’s recommendations, the strains contained in the influenza vaccine are 

changed annually in an effort to provide the best match for the circulating strains 

[12].  

 

Prevention from infection therefore requires the costly process of annually 

manufacturing new vaccines containing the recommended strains and revaccinating 

the susceptible population with them. Despite the costs involved vaccination is now 

widely recognised as the gold standard intervention for the prevention of seasonal 
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influenza infection with seasonal influenza campaigns implemented annually in 

countries throughout the world [83, 84]. 

1.4 Pandemic influenza 

 

In addition to antigenic drift, influenza viruses are capable of altering their antigenic 

make-up more substantially through a much rarer process known as ‘antigenic shift’ 

[13]. This situation most commonly arises when two or more influenza viruses co-

infect an organism. Reassortment of the viruses, resulting in the creation of a virus 

possessing antigenic material from both strains, is known as antigenic shift. If 

antigenic shift creates a reassorted virus that is capable of rapid human to human 

transmission, and that contains antigenic material that a large proportion of the 

world’s population are immunologically naïve to, a worldwide influenza outbreak 

known as an ‘influenza pandemic’ may occur [85]. 

 

Influenza pandemics have most likely occurred throughout history however there is 

little evidence to support or refute their occurrence before the 18th century [16]. Since 

the 18th century however, there is general agreement that several influenza 

pandemics have occurred. The most notable of these was the 1918 “Spanish” flu 

pandemic, which is estimated to have resulted in infection of one third of the world’s 

population with mortality estimates ranging from 20-100 million deaths [16-19].  

While exact details remain unclear, it is believed that the 1918 pandemic was caused 

by an antigenic shift that resulted in the adaption of an avian influenza strain to 

human transmission. Since 1918, antigenic shifts have resulted in two less severe 

pandemic outbreaks, one in 1957 and one in 1968. The strains responsible for these 

pandemics emerged through the reassortment of a drifted ancestor of the 1918 strain 

with genes from avian influenza strains. The 1957 and 1968 pandemics were far less 

severe than the 1918 outbreak, possibly due to pre-existing immunity to the drifted 

1918 portion of the pandemic strain. The availability of antibiotics to treat secondary 

pneumonia may also have limited the severity of these more recent pandemics [20]. 

 

1.5 Pandemic influenza vaccines 

 

Acknowledging the potential for further pandemics, over the past 20 years, national 

and international public health organisations have drawn up pandemic preparedness 

plans [86]. These plans set out the key activities to be undertaken in the event of a 

pandemic outbreak of influenza. The availability of a vaccine against the pandemic 
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influenza strain is a vital element of many of these plans. However, as the strains that 

will be involved in antigenic shifts cannot currently be predicted it is not possible to 

know in advance which antigens a pandemic-causing influenza virus will contain, 

therefore development of a pandemic vaccine in advance of a pandemic outbreak is 

not possible; vaccine development can only begin once an outbreak has already 

started. Under the normal vaccine approval process, marketing authorisation of a 

vaccine in the EU takes 18-24 months [21]. Given the typical duration of influenza 

pandemics, this would mean that if a pandemic vaccine were to undergo the normal 

authorisation procedures the most severe waves of a pandemic would be likely to have 

passed by the time a vaccine would be authorised. In 2005 the European Medicines 

Agency (EMA) approved the setup of a special approval process known as the ‘mock 

up authorisation procedure’ in an effort to prevent such a situation arising. 

 

The mock-up authorisation procedure is made up of two distinct steps, the first of 

which involves vaccine manufacturers developing a ‘mock up’ vaccine in the pre- or 

inter- pandemic period.  The mock-up vaccine is made using an influenza strain that 

the general population are immunologically naïve to, and which could therefore 

potentially cause a pandemic. The manufacturer performs all pre-clinical and clinical 

tests that a vaccine would undergo in the normal approval process and submits a ‘core 

dossier’ to the EMA detailing the results of these tests. Based on these data the EMA 

decide whether to grant the mock-up vaccine approval under ‘exceptional 

circumstances’ or not. At the beginning of the 2009 pandemic more than 20 mock up 

vaccines had received approval, most of them using H5N1 avian influenza as the mock 

up strain [22]. 

Figure 1.1 EMA mock up authorisation procedure. Adapted from [21] 

PIV; Pandemic Influenza Vaccine 
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The second part of the approval process occurs during the pandemic. Isolates from  

some of the earliest infected cases are sent to WHO contracted laboratories, each of 

which attempt to reassort the pandemic strain with a higher yielding strain in order to 

produce a seed strain that is more suitable for mass production. Once a high yielding 

seed strain has been identified it is sent to all companies that intend to develop a 

pandemic vaccine. The pandemic vaccine must then be produced in the same way the 

mock-up vaccine was, the only difference being that the H5N1 strain used for the 

mock-up is replaced with the pandemic seed strain. The only data that must then be 

submitted to the EMA in order to gain approval for a pandemic vaccine are quality 

data on the development and production of the pandemic vaccine and immunogenicity 

data for one batch of pandemic vaccine [22]. 

 

The principle of the mock up system is that changing only the seed strain used for the 

vaccine will not affect its characteristics greatly therefore many of the mock up results 

can be extrapolated to the pandemic vaccine. Regulatory authorities acknowledge that 

in order to speed up the approval process many of the usual premarketing safety and 

efficacy studies must be omitted meaning the pandemic vaccine will be introduced into 

the general population with limited efficacy and safety data [23]. In an effort to 

compensate for this, the post-marketing surveillance requirements for pandemic 

vaccines that undergo mock-up authorisation are much greater than normal.  

 

1.6 Influenza A(H1N1)pdm09 

 

On the 12th of April 2009 Mexican authorities informed the WHO of a local outbreak of 

respiratory disease occurring in La Gloria, Veracruz. This was closely followed by 

reports of increased numbers of severe cases of pneumonia arising in other regions of 

Mexico [24]. Concomitantly, on the 17th of April the Centre for Disease Prevention and 

control (CDC) confirmed that swine origin influenza A(H1N1)pdm09 was the causative 

agent in two cases of febrile respiratory disease arising in California [25]. Surveillance 

of respiratory disease was subsequently increased in both the USA and Mexico. Six 

days later the Public Health Agency of Canada identified swine influenza 

A(H1N1)pdm09 in samples from both Mexican and Canadian patients leading the WHO 

to declare on the 25th of April that the influenza outbreak had become ”a public health 

emergency of international concern” [26]. In response to this announcement, 

surveillance and containment measures were implemented in countries throughout the 

world. In the UK, containment involved active identification and antiviral treatment of 

potential cases, lab confirmation of illness and antiviral treatment of the close contacts 
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of any lab confirmed cases [48]. In addition schools in which cases were identified 

were closed for at least 7 days [48]. Despite this, over the next two months the 

outbreak progressed such that by the 11th of June 28,774 lab confirmed cases had 

been reported across 74 countries [27] leading the WHO to move their pandemic alert 

level to 6 (indicating that community level transmission of influenza occurring in 

multiple countries in one WHO region had spread to a second WHO region [88]) 

thereby officially declaring the outbreak of a pandemic [28]. 

 

The clinical characteristics of influenza A(H1N1)pdm09 infection became evident quite 

early in the outbreak the most frequently reported symptoms in all analyses were 

fever, cough and sore throat [29], all of which are classic symptoms of seasonal flu 

infection. However, a number of studies found a large proportion of patients also 

presented with diarrhoea, nausea or vomiting (24% of European cases [30], 38% of 

US patients [31]) none of which are frequently associated with seasonal flu infection. 

As with seasonal influenza, more serious outcomes such as respiratory failure and 

death were also reported [32-35], however measures of severity, such as case fatality 

ratios, varied widely making estimation of severity difficult [36]. 

 

The number of cases of influenza A(H1N1)pdm09 infection peaked in the northern 

hemisphere over the summer, in what is generally referred to as the “first wave” of 

the pandemic [87]. During this time epidemiological studies began to identify the risk 

factors associated with influenza A(H1N1)pdm09 infection. In contrast to seasonal 

influenza infection, the risk of influenza A(H1N1)pdm09 infection appeared to decrease 

with increasing age, with those aged >60 least likely to be infected [37-39]. A shift in 

the age groups susceptible to infection had been observed in the 1918 pandemic [19]. 

In 2009 this phenomenon was believed to result from pre-existing immunity among 

individuals exposed to pre-1957 influenza viruses and/or vaccines [40, 41]. With 

regard to risk factors for suffering severe symptoms following influenza 

A(H1N1)pdm09 infection, those individuals normally at higher risk of morbidity and 

mortality following seasonal influenza infection appeared to be at highest risk following 

influenza A(H1N1)pdm09infection [42]. Notably pregnant women appeared to be at a 

greater risk of serious illness than the general population [35, 43, 44].  

 

By July 2009 the vast majority of countries throughout the world had followed the 

WHO recommendation to move from pandemic containment, or ‘delaying’, to 

mitigation [45, 46]. While vaccination represents the gold standard intervention for 

pandemic influenza mitigation, it was clear that even with the mock up system in 

place, vaccines against a pandemic strain would not be available until a potential 
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second wave [47]. In the UK, the mitigation, or treatment only phase, saw a move 

away from routine lab confirmation of cases, tracing of close contacts and school 

closures. Instead, antiviral treatment of clinically diagnosed cases was pursued with 

an emphasis on treatment of those in high risk groups [48].  

 

The first wave of the pandemic illustrated that a large proportion of the world’s 

population were immunologically naïve to the influenza A(H1N1)pdm09strain and that 

the strain was highly transmissible, however it also illustrated that the severity of the 

pandemic was much lower than feared at first. Acknowledging this, the UK 

government revised the case fatality and case hospitalisation ratios used in their worst 

case scenario estimates thereby revising estimates of the number of pandemic deaths 

from 65,000 to 19,000 [49]. Despite this, the authorities did not dismiss the threat of 

the pandemic completely as the experience of previous pandemics, particularly the 

1918 pandemic, suggested that the second wave might prove to be considerably more 

severe than the first.  

1.7 Influenza A(H1N1)pdm09 vaccines 

 

With a second wave of uncertain severity expected, public attention began to turn to 

the impending availability of influenza A(H1N1)pdm09 vaccines. Vaccine production 

had been underway since the official announcement of the pandemic and the 

subsequent activation of the advance purchase agreements between vaccine 

manufacturers and national authorities [50]. Production was not going completely to 

plan however and despite the use of adjuvants in some vaccines it became clear that 

manufacturing delays would necessitate most countries to adopt a phased vaccination 

strategy [51]. 

 

In order to plan a phased vaccination strategy, national health authorities needed to 

split their population into sub-groups according to vaccination priority. As the major 

worldwide public health organisation, the WHO published recommendations on the 

composition of these sub-groups [51]. These recommendations emphasized the need 

to maintain healthcare capacity while protecting those at greatest risk from influenza 

A(H1N1)pdm09. The groups recommended for H1N1 vaccination in the UK (Table 1.1) 

[52] and most other countries European countries largely followed these WHO 

guidelines [53]. 
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Table 1.1 Priority groups for influenza A(H1N1)pdm09 vaccination in the UK. 

Frontline healthcare workers 

Individuals aged six months and up to 65 years in the current seasonal flu risk 

groups 

All pregnant women 

Household contacts of immunocompromised individuals 

Individuals aged 65 and over in the 2009/10 seasonal flu vaccine clinical at-risk 

groups 

All children aged between 6 months and 5 years old* 

*This group were only recommended as a priority group on the 19/11/2009, as safety data was deemed 
inadequate until this point [54]. 
 

 

 

 

 

 

 

Data from clinical trials using the mock-up (H5N1) vaccines suggested efficacy and 

safety was similar to that of seasonal influenza vaccines. Both vaccines that had been 

purchased by the UK, Pandemrix® and Celvapan®, met all other production quality and 

immunogenicity requirements set out by the regulatory authorities, receiving approval 

just over 100 days after the pandemic was declared (Table 1.2) [55, 56]. As the main 

aim of the mock up procedure was to expedite the approval process, in many respects 

it can be seen as a success; however, the problem remained that at the time of 

introduction into the population very little was known about the efficacy and safety of 

the specific vaccines that were being administered. 

 

With both vaccines purchased by the UK having received marketing approval, a 

vaccination strategy in place and the first batches of vaccine delivered and ready for 

administration, the UK H1N1 vaccination campaign began on the 21 October 2009 

[57].  
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Table 1.2 Characteristics of the influenza A(H1N1)pdm09 vaccines used in the UK. 

Vaccine name Pandemrix® Celvapan® 

Marketing Authorisation 

Holder 

GlaxoSmithKline Baxter 

Production Egg based Cell based 

Type Split influenza virus,  

inactivated 

Whole virion influenza, 

inactivated 

Antigen (mcg) 3.75 7.5 

Adjuvanted Yes (AS03) No 

Marketing approval date 24/09/2009 01/10/2009 

Doses purchased (UK) 60 million 30 million 

 

 

 

1.8 Post-marketing surveillance 

 

Given the lack of safety and efficacy data available at the start of the vaccination 

campaign, The EMA, the European Centre for Disease Prevention and Control (ECDC) 

and the Head of Medicines Agencies set out a “European Strategy for Influenza 

A/H1N1 Vaccine Benefit-Risk Monitoring” [58]. This strategy described the safety, 

effectiveness and immunogenicity activities these bodies believed would be required to 

support the pandemic vaccination campaign. The safety section of this strategy 

contained several different components. 

 

Spontaneous reporting  

 

Spontaneous adverse event reports are routinely collected in many European countries 

for all newly marketed drugs [59] and vaccines [60]. The existing reporting systems 

could therefore be used to collect spontaneous event reports following exposure to 

influenza A(H1N1)pdm09 vaccines [58]. In the UK the existing reporting system was 

adapted somewhat, creating a specific online portal for reporting adverse events 

suspected to be associated with influenza anti-virals and influenza A(H1N1)pdm09 

vaccines [61]. This portal allowed the collection of reports from both healthcare 

providers and their patients. Spontaneous reporting is primarily used for signal 
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detection. Data mining approaches, using measures such as the proportional reporting 

ratio, are used to detect whether an adverse event is reported a disproportionate 

number of times for a certain drug or vaccine [59, 60]. Where a signal is detected, 

causality assessments can be carried out using global introspection and causality 

algorithms [62]. The variability in the nature of the potential causal mechanisms 

under study limits these causality assessments, therefore in order to further assess a 

signal, classic epidemiological methods are also used [59]. The aim of these methods 

is to define the incidence of the adverse event among exposed individuals and to 

compare this to the known incidence of that event in the general population. Measures 

of exposure prevalence can be used as a denominator in the calculation of an 

approximate incidence rate of the adverse event among the exposed and measures of 

the incidence of the adverse event in the unexposed, or the background incidence 

rate, can be used for the comparison [59]. If this information is available, observed 

versus expected (OE) analyses can be conducted to obtain crude relative risk 

estimates. Notably all of these measures are limited by under- and selective reporting 

of events; however with careful consideration these analyses represent a cost effective 

way to rapidly assess postmarketing drug or vaccine safety [59, 60, 63, 64]. 

 

Background incidence rates 

 

In order to be of the greatest use in OE analyses, background incidence rates need to 

be accurate, detailed and generalisable to the population in which the spontaneous 

reports arise [65].  At the beginning of the vaccination campaign, the background 

incidence rates of many potential adverse events had not been estimated and, where 

they had been, they often lacked the requisite level of accuracy, detail or 

generalisability.  In the wake of the pandemic outbreak, and with the imminent 

vaccination of millions of people, the need for reliable background incidence rates 

became clear. In an effort to address this, the rates of a number of diseases in a 

number of countries were reported in advance of the influenza A(H1N1)pdm09 

vaccination campaign [66]. Realising the utility of such rates, the ECDC sponsored the 

VAESCO (Vaccine Adverse Event Surveillance and COmmunication) consortium to 

carry out a similar study estimating the rates of 11 adverse events of special interest 

(AESI) (Table 1.3) in 8 different countries [58, 67].  The VAESCO consortium is a 

network of investigators from European member states exploring the feasibility and 

demonstrating the benefits of collaborative post-licensure epidemiological studies 

investigating the safety of human vaccines [68]. The consortium is composed of 

experts from a range of professional backgrounds including academia, patient care, 

public health and regulatory affairs. 
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Table 1.3 Adverse events of special interest (AESI) 

Anaphylaxis 

Generalized convulsive seizure 

Guillain-Barré syndrome 

Thrombocytopenia 

Vasculitis 

Spontaneous abortion 

Bell’s Palsy (Facial Nerve Palsy) 

Neuritis 

Demyelinating disease 

Optic neuritis 

Encephalitis 

 

 

Vaccine uptake 
 

Prior to the pandemic, many European countries monitored exposure to seasonal 

influenza vaccine using either immunisation registries or vaccine uptake surveys [69]. 

These systems give an estimate of the number of people in a known sampling fraction 

who have a record of vaccination, that is, they estimate the prevalence or incidence of 

vaccine exposure in the population. As with background incidence rates, if these 

measures of vaccine uptake are to be utilised in OE analyses they need to be accurate, 

detailed and generalisable to the population of interest. In addition, as exposure 

prevalence changes over time the uptake measures need to be regularly updated. The 

success of promotional campaigns supporting vaccination can be measured against 

uptake and sub-populations with low uptake can be identified and targeted for future 

promotional efforts [70]. 

 

Industry responsibilities 
 

Manufacturers are normally obliged to submit Periodic Safety Update Reports (PSURs) 

on any newly authorised drugs to the EMA every 6 months [71]. These reports detail 

any emerging safety data the manufacturer has produced in that time period. In order 

to identify rapidly any safety concerns with a vaccine that had gone through the mock 

up approval process, the EMA required that during the first six months of the 

vaccination campaign simplified PSURs should be submitted to them on a monthly 

basis [72]. A further obligation of the mock up approval process was that every 

manufacturer had to consent to carrying out a prospective cohort study involving a 

minimum of 9,000 subjects followed for at least 6 months after the first or second 

dose [72]. 

 

Safety in population sub-groups 
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The safety of the vaccine among individuals in clinical risk groups must be considered 

separately from the general population as the conditions that render them more 

susceptible to severe influenza illness might also render them more susceptible to 

suffering vaccine associated adverse events. The rarity of many of the medical 

conditions defining risk group status makes it difficult to investigate safety for any 

specific condition in clinical trials. In addition, exclusion criteria for clinical trials can be 

prevalent among individuals with these conditions. Premarketing vaccine safety in 

clinical risk groups must therefore be extrapolated from the population used in clinical 

trials or from previous experience with seasonal influenza vaccine. As a result the 

vaccine benefit-risk plan stressed that once the vaccination campaign was underway, 

existing networks of specialists (eg. paediatricians, neurologists, and respiratory 

specialists) and registries (e.g. pregnancy registries) should be used to carry out 

observational studies providing additional safety information on these high risk groups 

[58]. A high risk sub -group of particular concern were pregnant women as the effects 

of an exposure on the developing foetus cannot be extrapolated from the general 

population [73]. While previous experience with seasonal influenza vaccination of 

pregnant women suggested there were no major safety concerns [74], evidence from 

active surveillance was needed to support this observation. In an effort to provide 

such evidence vaccine manufacturers were obligated to provide regulatory authorities 

with the results of a pregnancy registry study [72] however given the limitations of 

studies conducted in pregnancy registries [75] it was likely that studies using other 

data sources would also be needed [58]. 

 

Active surveillance –Guillain-Barré syndrome 
 

While passive surveillance using spontaneous reports provides rapid information on 

the safety of a newly introduced vaccine, its limitations result in it being used primarily 

in hypothesis generation. Where a specific safety concern is suspected, more active 

surveillance may be required. The primary pre-existing safety concern regarding the 

influenza A(H1N1)pdm09 vaccine was the rare neurological condition Guillain-Barré 

syndrome (GBS). In 1976 a mass swine influenza campaign in the US was halted 

following a substantial increase in the number of GBS cases. Specifically it was found 

that those who received the 1976 swine influenza vaccine were 4-8 times more likely 

to develop GBS in the 6 weeks following vaccination than those who did not [76].  A 

number of studies have since been carried out to assess whether an association exists 

between seasonal influenza vaccines and GBS and while the majority of these have 

indicated there is no association [77-79], a slightly increased risk was found in the 
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1992-93 and 1993-94 seasons [80]. A number of theories have been put forward 

suggesting such an association is biologically plausible, the strongest of which 

hypothesises that antibodies raised against vaccine components may cross-react with 

gangliosides on peripheral nerves [81]. With a sample size of ~9,000 subjects per 

vaccine the manufacturer led cohort studies were not powerful enough to produce 

accurate risk estimates for the occurrence of rare events such as GBS (GBS incidence 

1-2/100,000 person years) following vaccination. As a result, the post marketing 

surveillance plan highlighted the need for specific analyses evaluating the risk of GBS 

associated with influenza A(H1N1)pdm09 vaccines [58]. In an effort to address this, 

the ECDC again commissioned the VAESCO consortium to carry out a study, this time 

investigating the risk of GBS following influenza A(H1N1)pdm09 vaccination. The plan 

was to use two study designs, a case control and a self-controlled case series, in an 

effort to provide both rapid and unconfounded estimates of the risk of GBS following 

vaccination. 

 

Unexpected safety signals 
 

The plan acknowledged that any unexpected safety signals arising during the 

campaign would require rapid evaluation. Electronic healthcare databases and clinical 

specialist networks were identified as the most readily available and accessible data 

sources that could be used to evaluate such signals, while the possibility of performing 

large collaborative studies to investigate any association was also emphasised in the 

plan [58]. In addition vaccine manufacturers agreed to cooperate and independently 

investigate any unexpected safety signals.  
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During the summer of 2009, European regulatory authorities sought to identify and 

fund institutions and initiatives capable of addressing gaps in their respective influenza 

A(H1N1)pdm09 vaccine post-marketing surveillance strategies. To this end, the ECDC 

funded the VAESCO consortium to carry out two collaborative studies. The 

Pharmacoepidemiology unit at the University of Bath were invited by the VAESCO 

consortium to contribute UK General Practice Research Database (GPRD) data to these 

studies. 

 

It is in this context that the aims and objectives of this PhD thesis were devised. The 

primary aims of the thesis were: 

  

1. To contribute to the post marketing safety surveillance of the influenza 

A(H1N1)pdm09 vaccine using GPRD data.  

 

2. To assess the performance of the GPRD as a vaccine safety surveillance tool. 

 

3. To illustrate the potential of the VAESCO working model as a platform for 

collaborative vaccine safety studies. 

 
 

 

We sought to achieve these aims by completing the objectives set out below: 

 

 

a) To estimate the uptake of influenza A(H1N1)pdm09 vaccine and seasonal 

influenza vaccine by individuals in clinical risk groups in the UK and to identify 

demographic factors associated with vaccine uptake in this population. 

 

 

b) To estimate the uptake of influenza A(H1N1)pdm09 vaccine by pregnant 

women in the UK and to identify demographic factors associated with vaccine 

uptake in this population. 
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c) To estimate the 10 year background incidence rate of autoimmune and 

neurological diseases earmarked by regulatory authorities for enhanced 

surveillance based on a priori safety concerns. To investigate variation in these 

rates across age categories, seasons, calendar years and countries. 

 

 

d) To use a case control study to estimate whether the risk of Guillain-Barré 

syndrome in the 6 weeks following influenza A(H1N1)pdm09 vaccination was 

comparable to that among individuals who did not receive the vaccine.  

 

 

e) To use a self-controlled case series study to estimate whether the incidence of 

Guillain-Barré syndrome in the 6 week post influenza A(H1N1)pdm09 

vaccination risk period was different to the incidence in other time periods.  

 

 
f) To use a cohort study to estimate whether the hazard of first, second or third 

trimester foetal death in pregnant women vaccinated against influenza 

A(H1N1)pdm09 was greater than that among unvaccinated pregnant women. 

 

 

Objectives c, d and e were addressed as part of collaborative European vaccine safety 

studies.  
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3. Materials and Methods 
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In this chapter I introduce the GPRD, describe its strengths and limitations with regard 

to the specific study objectives and briefly outline the working models implemented in 

both the independent and collaborative studies. 

 

3.1 The General Practice Research Database (GPRD)   

 

UK General Practice 

 

In the UK, general practitioners (GPs) are commonly referred to as the “gatekeepers” 

of healthcare: since the early 20th century, in addition to handling encounters in 

general practice, they have also been responsible for referring patients for all non-

urgent further care. Diagnoses, procedures and treatments administered outside 

general practice are routinely reported back to the GP and recorded in a patient’s 

record.  

 

Patient information is recorded electronically in GP practices, primarily using a set of 

clinical and administrative codes called Read codes. There are currently over 100,000 

Read codes, allowing a GP to record detailed diagnostic, procedural, administrative 

and lifestyle information. Prescriptions are issued electronically, with coded details of 

the prescribed product automatically transcribed into the patient’s record. In addition 

to these coded data, the recording of unstructured textual information in association 

with a Read or prescription code is possible. This information, commonly referred to as 

‘free text’, generally contains elaborations on the information in the coded record. 

Documents detailing encounters outside the GP practice, such as hospital/specialist 

letters or discharge summaries, may also be kept in paper or electronic format, with 

relevant data entered under in a patient’s record using appropriate Read codes.  

 

GPRD 

 

The GPRD is a database containing the collated medical records of patients registered 

with GPs in the UK. The GPRD collects anonymised data from all consenting GP 

practices using Vision computer systems [1]. In an effort to standardise data entry, 

and make the routinely collected clinical data more useful in research, contributing 

practices are asked to follow a set of data recording guidelines which advise how and 

when data should be recorded. As a result, data contained in the database includes 

demographic details, diagnoses and symptoms that lead to hospital admissions, 

referrals to specialists or changes in prescriptions, lab tests, prescriptions issued by 
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the GP, pregnancies, contraception, immunisations, hospital discharge summaries, 

hospital clinic summaries, specialist letters and deaths [2]. The recording guidelines 

also suggest how data should be recorded in the free text. In an effort to further 

promote consistent recording of key lifestyle and procedural information a number of 

structured data entry areas are available in Vision systems [1]. These data entry areas 

support the systematic recording of information on a range of indicators such as 

smoking status, alcohol consumption, immunisations and test results. 

 

Data quality 

 

In theory, the GP record should contain a complete record of a patient’s medical 

history. However, in practice, the level of information recorded in the GP record will 

depend on factors such as the administrative quality of the primary and secondary 

care providers and the recording practices of the individual entering the data. As a 

result the quality of all data submitted to the GPRD by a practice is monitored by 

checking the continuity of reporting and by comparing the mortality rates in submitted 

data against those expected for that practice. Each practice is assigned an ‘up-to-

standard’ (UTS) date reflecting the date from which the database provider considered 

data contributed by a practice to have met these minimum quality criteria and to have 

reached a standard suitable for research purposes.  At a patient level, quality checks 

ensure registration, birth, death, age and sex information recorded in a patient’s 

record meet a number of basic criteria. Patients not meeting these criteria are flagged 

[1]. The age and sex distribution of the GPRD population is representative of the UK 

population as a whole, however the Welsh population and larger practices are both 

overrepresented (Appendix 1). 

 

Despite these checks, researchers using GPRD data are given access to all coded data 

for all patients; however ideally they should use only patient data recorded in 

“acceptable” periods after their practice’s UTS date. In certain situations, such as 

when investigating disease prevalence or the incidence of a very rare condition, invalid 

patients and non-UTS data might be used with caution.  

 

Even when working with data from valid, UTS records, consideration must be given to 

the impact coding errors or peculiar coding practices might have on the data. Such 

errors can range from the random incorrect entry of a single piece of information to 

the continued systematic miscoding of a condition by a particular individual or 

practice. While such problems may not affect routine clinical practice greatly, in 

research they can result in misclassification. Consideration of such issues is study 
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specific and will therefore be considered later, in the context of the data used in this 

thesis. 

 

Data Protection and ethics 

 
Collection, handling and distribution of GPRD data has been designed to conform with 

current data protection regulations. Bespoke data collection software is used to 

retrieve the full electronic medical record of every patient registered at a participating 

practice. Anonymised identifiers are assigned to all practices and patients by the data 

collection software. Strong identifiers (NHS numbers, addresses, telephone numbers, 

etc.) are removed from the dataset and staff identifiers are encrypted. Patients are 

provided with information on the nature of their practices’ participation in the GPRD 

and can choose to opt out, in which case their record will be deleted. This dataset is 

sent to the GPRD team at the MHRA using a tracked postal service. 

 

Upon receiving a practice dataset at the MHRA the coded portion of the data is 

separated from the free text and compiled into several tables. The quality of the coded 

data is then checked and made available to named users; in order to become a named 

user a researcher must attend a training day at the GPRD. Free text is only made 

available to researchers who commission its manual review and anonymisation. 

 

The GPRD has a single Multi-Centre Ethics approval for all observational studies using 

GPRD data (Trent MREC, ref: 05/MRE04/87). As a result any GPRD study that does 

not require direct patient involvement can be carried out following protocol approval 

by an Independent Scientific Advisory Committee (ISAC) [1]. ISAC comprises 

individuals with a wide range of epidemiological, statistical and subject matter 

expertise. ISAC may request study specific MREC approval be sought if a protocol 

proposes an ethical issue of particular concern. All of the work presented in this thesis 

was covered under the MREC approval 

 

Data Access 
 

Upon receiving ISAC approval and paying all relevant licence fees, GPRD data can be 

accessed in a number of ways. The most comprehensive option is to obtain a copy of 

the entire GPRD dataset and host it in-house: this offers the greatest amount of 

independence in data checking, manipulation and extraction. A second option is to 

request a study specific cohort from the GPRD research team: this offers relatively 

little independence, leaving the majority of data extraction to the GPRD research 

team. A third, and relatively recent option, is to access GPRD data using online data 
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extraction tools. This offers researchers the freedom to define, extract and manage 

their own data while removing much of the burden involved in managing an entire flat 

file dataset. This option also offers the advantage of providing data that is updated on 

a monthly basis.  

 

These three options offer access to the coded data only; free text data associated with 

these records cannot be routinely made available as it may contain identifiable 

information such as patient, doctor or hospital names. Researchers can request 

anonymised free text information associated with a patient or a defined set of codes at 

a cost of 5 pence per word. More recently, it has become possible to request a search 

of the free text for certain key words of interest and obtain the free text for any entry 

containing at least one of the key words. Given the data quality issues described 

above, information stored in the free text can prove vital in confirming the occurrence 

of an event. However, while a large amount of information is recorded in the free text, 

important information such as hospital letters and discharge summaries are 

sometimes not recorded therefore further verification might be required.  

 

Further verification can be obtained by requesting additional data from GPs or by 

linking to other data sources. At the request of researchers, the GPRD team will send 

patient specific, ISAC-approved questionnaires to a practice or ask a practice for any 

paper medical records they might have for a patient. Response rates for such methods 

are high [3, 4] but the costs involved (£60-£110 per questionnaire) can also be 

prohibitively high. The GPRD has data linkages with a number of other healthcare data 

sources such as Hospital Episode Statistics (HES), disease registries and Office of 

National Statistics (ONS) mortality data. These linkages can be used to assess 

whether a large amount of secondary care information was not received/recorded by 

the GP. The cost of linkage is dependent on the data source being linked to, and the 

size of the study population. Data linkage is only available for approximately 65% of 

English practices [1]. The number of GPRD data linkages available is currently 

increasing under a UK wide initiative to expand the availability of routinely collected 

healthcare data for research. Under this initiative, access to the GPRD and the various 

other data sources will be obtained through the newly created Clinical Practice 

Research Datalink (CPRD). In addition to increasing the number of linkages, the CPRD 

will also attempt to increase the study population by recruiting practices using non-

Vision computer systems [1]. As all studies in this thesis were carried out before the 

rebranding of the data source I refer to it as the GPRD throughout the thesis. 

 



 44 
 

As of June 2010, the GPRD contained data from 589 GP practices, or 5.8% of UK 

practices. Historic data were available on 11.7 million patients while over 5 million 

patients, or ~8.4% of the UK population, were registered and contributing data with 

up-to-standard  (UTS) practices (GPRD August 2010 release note).  

 

 

Immunisations 

 

Vaccine utilisation and safety studies require accurate recording of immunisation 

status [5]. In the UK, the seasonal influenza vaccination program is primarily 

administered in primary care.   

 

Prior to the pandemic vaccination campaign GPs regularly recorded seasonal influenza 

vaccinations administered in GP practices [6]. However, to my knowledge the quality 

of recording of vaccination status in electronic health records has not been validated. 

In advance of the pandemic vaccination campaign a set of Read codes were created to 

allow GPs to record specifically influenza A(H1N1)pdm09 vaccinations (as opposed to 

seasonal). The guidance published alongside these codes urged GPs to record all 

influenza A(H1N1)pdm09 vaccinations using these pandemic vaccination specific Read 

codes [7].  

 

Vision computer systems allowed seasonal and pandemic influenza immunisations to 

be recorded by the GP in three ways: as an immunisation procedure, as a clinical 

procedure or as a prescription. Vaccinations recorded as an immunisation procedure 

were entered in an immunisation-specific data entry area which prompted GPs to 

enter a Read code as well as other information such as whether the vaccine was 

accepted or refused. GPs entering vaccination information as a clinical procedure 

entered a Read code only and those entering a prescription entered the product details 

only, therefore for the purpose of this thesis all vaccinations recorded as clinical 

procedures and prescriptions were assumed to have been successful vaccination 

encounters while those immunisation procedures flagged as “refused” were excluded. 

 

Owing to the two dose vaccination schedule recommended in some children and 

immunosuppressed adults, individuals might have two influenza A(H1N1)pdm09 

vaccination records. In other cases individuals might have two or more records due to 

miscoding or use of a code in the incorrect way. In such cases the first and second 

vaccinations recorded in an individual’s record were classified as their first and second 

vaccination; all further vaccinations were assumed to relate to the earlier vaccinations 
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and were ignored. The potential for misclassification of vaccination status due to 

vaccination in non-GP settings and incorrect coding was considered in the 

interpretation of all study findings. 

 

Autoimmune and neurological conditions 

 

A number of the studies in this thesis involved determining the incidence of an 

autoimmune or neurological disease. Identifying incident events on the GPRD required 

careful consideration of how such events present to healthcare and how they are 

subsequently handled. First presentation with most neurological and autoimmune 

conditions is to the GP, who will most likely make a working diagnosis based on the 

reported and observed symptoms and refer the patient on to a specialist for 

confirmation of the diagnosis. The specialist’s diagnosis should then be sent to the GP 

and recorded in the patient’s record; this should be the case even where the first 

presentation was not in general practice. The entire diagnostic process, from first 

presentation to confirmation of diagnosis, may be recorded in a number of different 

ways depending on the final diagnosis, the quality of secondary care administration 

and the recording practices of the person entering the data.  A code for the disease of 

interest could be entered in the GP’s records at any point in this process. The situation 

is further complicated by the presence of non-specific Read codes and by the 

possibility that a code could be entered at a follow-up encounter, days, months or 

even years after the diagnosis.  

 

Given the potential for differential recording of diagnosis dates, determining exact and 

consistent index dates required further work which could include: 

 

 Manual review of each patient’s record to determine the index date based on 

the sequence of specific and supporting codes in a patient’s record.  

 Creation of an automated algorithm to determine the index date based on the 

sequence of specific and supporting codes in a patient’s record.  

 Request of free text information for all patients/relevant codes 

 Communication with  GPs of all patients with a relevant code 

 Request of the paper medical record of all relevant patients 

 Linkage with HES/registry data 

Each of these options would provide different levels of certainty with associated costs 

and time lags. The decision as to which method(s) to use therefore depended on the 

study question, study deadline and study budget.  
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Pregnancies 

 

Investigation of the potential risks associated with vaccine exposure in pregnancy 

using the GPRD required the identification of pregnancies. A number of research 

groups have created algorithms to identify pregnancies and determine their outcome, 

end date and start date on the GPRD [8, 9]; our research group at the University of 

Bath have created a similar algorithm [10, 11]. This algorithm was governed by a set 

of rules which classify pregnancies based on the type, timing and sequence of codes 

observed in a woman’s record. Briefly, this algorithm involved the following basic 

steps: Read codes were classified according to the level of evidence they provided 

about pregnancy occurrence, pregnancy outcome and gestational age. Pregnancies 

were then identified, based on the presence of codes supporting pregnancy occurrence 

and the outcome of each pregnancy was determined using any available outcome 

codes. The end dates of deliveries were set to the earliest pregnancy outcome in a 

series of outcome codes and the end dates of terminations and losses were set to the 

latest pregnancy outcome in a series of outcome codes. Where available, the 

estimated date of delivery and last menstrual period records were used to determine 

pregnancy start dates, where these were not available other gestational age related 

records were used (e.g. 6/12/24 week exam). If none of the above records were 

available the pregnancy start date was set to a default offset from the end date: 40 

weeks for deliveries and 10 weeks for losses/terminations. Where sufficient evidence 

of pregnancy occurrence existed but no outcome code was identified, evidence of 

postnatal care was used to infer pregnancy lengths and outcomes. 

 

Work has been carried out to refine this algorithm based on increasing knowledge of 

healthcare encounters in pregnancy and GP recording practices. For the purpose of 

this thesis, deliveries that had been flagged as antenatal deaths or potential stillbirths 

were all manually reviewed to assess the accuracy of gestational ages set by the 

algorithm. 

 

When considering drug safety in pregnancy a number of outcomes can be studied, 

however the nature of GPRD data limits the number of outcomes available. Congenital 

malformations are of concern, particularly given the wide publicity that has 

surrounded associations between malformations and drugs such as thalidomide and 

valproate. It has been shown that the GPRD is a valid source for studying congenital 

malformations [11], however given the very low incidence of most malformations, 

obtaining sufficient sample sizes to provide robust risk estimates is difficult for all but 

the most common malformations. Spontaneous abortion and stillbirth are relatively 
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common, severe pregnancy complications which pregnant women often link with 

exposures based on temporality alone. This is particularly problematic during mass 

vaccination campaigns as hundreds of thousands of women might receive vaccination 

while at high background risk for these outcomes [12]. Drug exposures may alter the 

risk of infants being born prematurely or small for their gestational age however these 

outcomes are not recorded accurately enough in the GPRD to allow valid investigation 

of their risk factors. 

 

Covariates 

 

A range of covariates are routinely collected by GPs and recorded in the GPRD, 

including age, sex and year of birth (month of birth for those aged <16), a practice 

identifier allowed the identification of individuals registered with the same practice and 

a family identifier identified individuals who live together.  

 

Deprivation is recorded in the GPRD using either Townsend scores or Indices of 

Multiple Deprivation (IMD). These are both indicators of deprivation that are assigned 

to geographic areas. Townsend scores are calculated using household level data from 

the 2001 census. In total four indicators are used: percentage unemployment, 

percentage of overcrowded households, percentage no car/vans ownership and 

percentage of non-home owners. In the Townsend score each factor carries the same 

weighting. IMD scores are calculated using seven domains of deprivation. Each domain 

covers a different aspect of deprivation (eg. income deprivation, employment 

deprivation, crime, living environment deprivation etc.) and within each domain 

several indicators are used to assign a score. Indicator data is collected from a range 

of administrative sources with only three of the 37 different indictors originating from 

census data. IMD domains are weighted to allow a greater influence of the more 

important domains on the overall score. The GPRD team assign deprivation scores to 

individual patients based on the deprivation score for the geographic area in which 

they reside, these areas have an average population of 1,500 residents. Patients can 

also be categorized into quintiles of deprivation based on where their area score ranks 

amongst the nationwide scores. Recording of both of these deprivation indicators is 

incomplete in the GPRD therefore in order to obtain a patient level deprivation 

indicator for the maximum number of possible patients we used Townsend quintile 

and, where this was not available, we used IMD quintile instead. Increasing 

deprivation quintile indicates increasing deprivation therefore the patients in 

deprivation quintile 5 are the most deprived and those in quintile 1 the least deprived. 
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IMD scores, but not Townsend scores, are also available at a practice level in the 

GPRD (ie. based on the area in which the practice is located); we therefore obtained 

the IMD quintile for the practice at which each patient was registered and included this 

in our model. Other potential practice level predictors investigated included practice 

location and practice size.  

 

At the beginning of the vaccination campaign a list of diagnostic (Read) and 

prescription (Multilex) codes were compiled by the primary care information service 

(PRIMIS+) for use in the UK national influenza vaccine uptake survey [7]. We have 

used the same code list to identify this sub-population in the studies included in this 

thesis. A GP or patient may decide whether the patient is in a clinical risk group based 

on factors other than the presence of one of these Read codes in their record. Where 

this decision differs from that determined by the Read code there will be some 

misclassification of clinical risk group status. 

 

Lifestyle factors such as smoking status, alcohol consumption and BMI are recorded 

for many patients in the GPRD however these measures are not always recorded in a 

standardised fashion. Pre-existing, in-house algorithms were therefore used to 

categorise patients according to the available measurements.  

 

Identification of individuals with influenza infection is difficult in most retrospective 

data sources as infected individuals do not always seek medical attention and, where 

they do, the resultant clinical diagnosis is usually of acute upper respiratory tract 

infection (URTI) or influenza-like-illness (ILI). Both of these diagnoses have been 

found to have a poor predictive value for true influenza infection. Lab confirmation of 

influenza infection is not common. As a result while ILI and URTI were included as a 

time varying covariate in some studies in this thesis, their impact must be interpreted 

with caution. 

 

As GPRD data is collected routinely in clinical practice a number of other potentially 

relevant covariates are not recorded, including genetic factors. Information on a GP’s 

perception of a patient’s health, of the safety of the influenza A(H1N1)pdm09 vaccine 

and of the risk posed by influenza A(H1N1)pdm09 infection is also not available. The 

potential impact of unmeasured confounding will therefore be considered in the 

interpretation of the results. 
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For all categorical variables with missing data a separate “missing” category was 

created and included in the models. The results in the missing category were carefully 

inspected to identify any potential biases introduced. 

 

3.3  Working model 

 

While a number of the studies contributing to this PhD were carried out independently 

within the University of Bath Pharmacoepidemiology unit, due to the rare nature of 

many vaccine safety outcomes, some were carried out as part of larger, collaborative, 

pan-European studies. 

 

University of Bath Pharmacoepidemiology unit 

 

The University of Bath pharmacoepidemiology unit is based in the Pharmacy Practice 

Research Group within the Department of Pharmacy and Pharmacology at the 

University of Bath. The unit consists of academic and research staff as well as post-

graduate research students. The unit works primarily with data from the UK GPRD 

with epidemiological, statistical and database management expertise all available 

within the group. 

 

All studies carried out within the unit follow standard operating procedures. These 

begin with detailed study feasibility, design and planning discussions. Based on these 

discussions study protocols are drafted. Protocols detail the creation of code lists and 

algorithms to identify exposures, outcomes and covariates, data extraction procedures 

and statistical analyses. Where necessary, manual review of patient records is pursued 

using specially developed electronic patient record visualisation software and 

additional information is requested from the GPRD for verification where feasible. 

 

For the duration of this PhD the unit held a full GPRD licence allowing it to both host 

GPRD datasets locally and access GPRD GOLD data online. The data used in this PhD 

is from either the December 2010 version of the GPRD or online GPRD data. The 

December 2010 GPRD data was hosted locally on an Oracle database and was 

accessed primarily using SQL Developer and, to a lesser extent, MS Access. Once 

downloaded from the GPRD servers, all online GPRD data was managed in a similar 

manner to flat file data. All in-house statistical analyses were carried out using 

STATA10/11/12 
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VAESCO 

 

As the primary UK partner in the VAESCO consortium, the pharmacoepidemiology unit 

at the University of Bath was responsible for contributing UK GPRD data to the ECDC 

funded VAESCO studies. 

 

While each of the studies differed slightly, a similar collaborative working model was 

used across studies. This model began with study design discussions focusing on the 

study question, the strengths and limitations of potential study designs, the possibility 

of bias and confounding and initial comparisons of the type of information available in 

the different data sources. Following agreement on the study design to be used for a 

particular study a protocol was drafted which was edited and discussed by all partners 

until a final protocol was agreed upon. Detailed comparisons of the information to be 

used in each data source were carried out in an effort to produce homogenous 

exposure, outcome and covariate measures. Based on these comparisons, final 

datasets were defined and extracted. Comparison and combination of data from 

different sources was facilitated by transformation to a standard format using Jerboa 

(Erasmus MC, Rotterdam). Jerboa is a data processing program developed specifically 

for use in collaborative drug and vaccine safety studies. It is written in Java so that it 

can be freely installed and run across settings using different data processing or 

statistical software. All data code was cross validated in SAS. Where analyses required 

that person level data be shared, Jerboa enabled personal identifiers and exact event 

dates to be removed to ensure complete anonymisation. Study management was the 

responsibility of the Brighton Collaboration and data management and statistical 

analyses were coordinated by Erasmus Medical Centre, Rotterdam.  

 

While this collaborative working model primarily sought to increase the homogeny of 

data contributed from different sources, each partner was nonetheless considered the 

“expert” on their own data source and was therefore granted a degree of autonomy in 

identifying, extracting/collecting and describing their own data. As a result in each 

VAESCO study I was responsible for:  

 

 Providing general, but primarily GPRD-focused, input to study design 

discussions. 

 Drafting and submitting ISAC protocols to obtain scientific and ethical approval 

to conduct the study in the GPRD (see Appendix 5 for VAESCO ISAC protocols).  

 Identifying Read code lists for identification of potential cases in the GPRD 
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 Deciding on GPRD case verification methods based on the agreed study aims, 

timelines and budget 

 Developing SQL programs to extract case information from the GPRD 

 Developing data entry forms in MS Access to allow the independent, side-by-

side review of coded and free text data on cases and the extraction of VAESCO 

relevant data in a pre-specified, Jerboa compatible format. 

 Reviewing and extracting case information using these data entry forms 

 Comparing the results of my case review with those of another reviewer 

(Corinne de Vries) and resolving any discrepancies. 

 Running the Jerboa analysis program and uploading encrypted, compressed 

data to Erasmus MC. 

 Reviewing proposed statistical analysis plans 

 Interpreting the results of statistical analyses 

 Reviewing draft manuscripts 

 

 

Additionally, in the two GBS studies I was also responsible for: 

 
 Developing SQL programs to match cases to controls 

 Developing data entry forms in MS Access to allow the independent, side-by-

side review of coded and free text data on exposures and covariates and the 

extraction of VAESCO relevant data in a pre-specified, Jerboa compatible 

format. 

 Reviewing and extracting exposure and covariate information using these data 

entry forms. 

 Comparing the results of my exposure and covariate review with those of 

another reviewer (Corinne de Vries) and resolving any discrepancies. 
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4. Results
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4.1 Introductory statement  

 

In this section I present manuscripts describing the studies carried out as part of this 

PhD. Preceding this I would like to highlight a number of points. 

 

 

 The VAESCO background incidence rate study investigated the rate of 

anaphylaxis, autoimmune hepatitis, Bell’s palsy, generalised convulsions, 

demyelinating diseases, encephalitis, GBS, optic neuritis, transverse myelitis, 

multiple sclerosis and thrombocytopenia. In this section I present a manuscript 

describing the rate of the event I am leading the publication of, facial nerve 

palsy. The methods described in the manuscript can be considered largely 

representative of those used in estimating the rate for each condition. 

 

 

 In an effort to allow the reader to clearly distinguish the work I have carried 

out myself from that primarily carried out by collaborators I have summarised 

my contribution to each manuscript in table 4.1. 

 

 

 

 

 

 

Table 4.1 Personal contribution to manuscripts (L = Lead, C = Contributor) 

Study Study 

design 

ISAC 

approval 

GPRD data 

extraction  

Statistical 

analysis 

Discussion 

of results 

Reporting 

of results 

Uptake  

(risk groups) 
L L L L L L 

Uptake  

(pregnancy) 
L L L L L L 

Background rates 

(facial palsy) 
C L L L C L 

GBS 

(Case control) 
C L L C C C 

GBS 

(SCCS) 
C L L C C C 

Pregnancy 

(Foetal death) 
L L L L L L 
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 The work presented in this section is based on edited versions of both 

published and unpublished manuscripts. All of the unpublished manuscripts are 

currently under review for publication in international journals (Table 4.2).  

 

 

 

 As each section was written as a stand-alone manuscript there may be some 

overlap with material presented in the introduction and methods sections.  

 

 In the immediate aftermath of the pandemic vaccination campaign a safety 

signal linking influenza A(H1N1)pdm09 vaccination with narcolepsy emerged. 

We contributed GPRD data to a VAESCO study investigating this signal. 

However as this study was not a pre-specified objective of this thesis I do not 

present it among the results. 

 

 

 

Table 4.2 Publication status of manuscripts 

Study Journal Status  

Facial nerve palsy 

background rates 
Vaccine Under internal review 

Uptake (clinical risk 

groups) 
Vaccine Published 

Uptake (pregnancy) Human vaccines and 

Immunother. 
Published 

GBS CC 

 
BMJ Published 

GBS SCCS 

 
PLoS ONE Published 

Foetal loss 

 
PLoS ONE Published 
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4.2 Factors associated with uptake of seasonal and 
pandemic influenza vaccine among clinical risk 
groups in the UK: an analysis using the General 
Practice Research Database 

 
 

 

 

 

 

 

 

The work presented in this section is based on work published in:  

 

Sammon, C. J., McGrogan, A., Snowball, J. and De Vries, C. Factors associated 

with uptake of seasonal and pandemic influenza vaccine among clinical risk 

groups in the UK: an analysis using the General Practice Research Database. 

Vaccine. 2012;30(14):2483-9 

 

The version presented herein has been edited for inclusion in this 

thesis therefore the views expressed may not represent those of 

authors who collaborated on the published manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Word Count (Abstract):  296 

Word Count (Full text):  2,882 

Number of tables:    6     

Number of figures:   1 
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Abstract 

 

Background: Influenza vaccine uptake rates are low compared with uptake rates of 

many other vaccines. It is unclear how this differs between risk groups in the 

population and between pandemic and non-pandemic influenza vaccines. 

Aim: This study sought to estimate uptake rates of pandemic and seasonal influenza 

vaccines among clinical risk groups in the UK during the 2009/2010 influenza season 

and to identify predictors of vaccine uptake in this cohort.  

Methods: Uptake rates were calculated using data from the UK General Practice 

Research Database (GPRD). Predictors of vaccination were identified using a modified 

Poisson regression with robust standard error estimates. 

Results: Uptake of pandemic influenza vaccine in clinical risk groups was 40.3% and 

uptake of seasonal influenza vaccine was 61.3%. Factors found to be predictive of 

seasonal and pandemic influenza vaccination included age and the total number of 

underlying health conditions an individual had. At risk individuals in those age groups 

in which universal vaccination of the general population was recommended were more 

likely to have been vaccinated than individuals in age groups in which only clinical risk 

groups were recommended for vaccination; hence children in clinical risk groups were 

more likely to receive pandemic than seasonal influenza vaccine. In older people, 

having a history of Guillain Barré syndrome was associated with a reduced likelihood 

of receipt of both seasonal (IRRadj 0.83, CI95 0.77-0.90) and pandemic influenza 

vaccines (IRRadj 0.82, CI95 0.73-0.92).  

Discussion: Uptake of pandemic influenza vaccine was lower than that of seasonal 

influenza vaccine among those at a clinically high risk of influenza related morbidity. 

This suggests that vaccination strategies may need to be altered during future 

pandemics. Recommending universal vaccination within age categories in which there 

is a large proportion of high risk individuals could be considered as this may result in 

higher uptake among clinical risk groups. 
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Introduction 

 

Influenza is an acute respiratory disease that commonly occurs following infection with 

influenza viruses. In many individuals the disease is self-limiting with patients 

experiencing the classic symptoms of influenza (such as fever, sore throat and cough) 

followed by recovery within one to two weeks. However, in some individuals infection 

can result in the development of more serious complications such as pneumonia, 

respiratory failure and death. Individuals with the following underlying health 

conditions are known to be at a particularly high risk of suffering from these more 

serious symptoms [1;2]: asthma, chronic obstructive pulmonary disease (COPD), 

chronic heart disease, chronic kidney disease, diabetes, chronic liver disease, 

stroke/transient ischaemic attack, central nervous system degeneration, and 

immunosuppression. These health conditions are therefore considered ‘clinical risk 

groups’ for seasonal influenza; individuals in these groups are recommended for 

vaccination during annual influenza immunisation programs in countries throughout 

the world [3-8].  

 

In the early stages of the 2009/10 H1N1 pandemic, epidemiological evidence 

suggested that individuals in seasonal influenza clinical risk groups were also among 

those at the highest risk of complications following H1N1 infection [9]. This led a 

number of public health organisations, including the World Health Organisation, to 

recommend that they be one of the groups prioritised for vaccination in mass H1N1 

immunisation campaigns [9-11]. Consequently, in many countries, including the UK, 

all individuals in seasonal influenza clinical risk groups were recommended to receive 

both seasonal influenza vaccine (SIV) and pandemic influenza vaccine (PIV) during the 

2009/10 influenza season. In addition to those in clinical risk groups, all individuals 

aged greater than 65 were recommended to receive SIV [49] whereas all those aged 6 

months up to 5 years old were recommended to receive PIV [50]. Pregnant women 

were also recommended to receive PIV [51]. 

 

High vaccination coverage is vital to the success of any vaccination campaign. Annual 

SIV coverage varies widely across Europe with the majority of countries reporting 

uptake rates of less than 50% among clinical risk groups [12]. Uptake rates have been 

shown to vary by a range of factors such as: age [13-18], sex [15;17-21], chronic 

illness [20;21], socioeconomic factors [15;16;18;20;22] and ethnicity [20;21;23;24]. 

In the UK, uptake rates among those in clinical risk groups aged <65 years have 

ranged from 40% to 48% over the last 5 years [13]. Surveys conducted during the 

2009/10 H1N1 pandemic revealed that in many countries there was a widespread 
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public perception that the pandemic was not serious or that PIV was not safe [25]. 

Reporting of associations between pandemic influenza vaccination and the neurological 

disorder Gullain Barré syndrome (GBS) in the mainstream media [52, 53] may have 

contributed to the perception that PIV was not safe, particularly among those with a 

history of the condition. Such perceptions may have decreased PIV uptake 

substantially, and indeed coverage data from the UK and the US suggest that while 

uptake of SIV did not change in 2009/10, it was considerably higher than that of PIV 

[14;26-28]. In this study we have estimated uptake rates and factors predictive of 

uptake of both PIV and SIV among clinical risk groups in UK general practice during 

the 2009/10 influenza season.  

 

Materials and methods 

 

This study was carried out using the UK General Practice Research Database (GPRD). 

The GPRD is a primary care database containing the anonymised records of ~8.4% of 

the UK population. Patient data that is routinely available in the database includes 

demographic details, diagnoses and symptoms leading to hospital admissions, 

referrals to specialists, laboratory tests, prescriptions issued by the GP, pregnancies, 

contraception, immunisations, hospital discharge summaries, hospital clinic summaries 

and deaths [29]. The GPRD operates a continuous quality control procedure which 

requires that all data submitted by practices be considered of a standard sufficient for 

research purposes (up-to-standard) [30]. As of August 2010 the GPRD contained data 

from 589 practices with up-to-standard data.  

 

The study population consisted of all patients registered with a practice contributing to 

the GPRD who, at the beginning of the UK H1N1 vaccination campaign, had an 

underlying health condition that placed them in a ‘clinical risk group’
1
. We identified all 

such patients using the list of diagnostic (Read) and prescription (Multilex) codes 

compiled by the primary care information service (PRIMIS+) for use in the UK national 

influenza vaccine uptake survey [31]. People who were not in a clinical risk group, but 

who were recommended for vaccination solely because of their age were not included 

in the study population. 

 

Any SIVs and PIVs administered between 31/08/2009 and 21/06/2010 were identified 

using either Read or Multilex codes [31]. Where patients had more than one 

                                                 
1
 The underlying health conditions which place individuals in a ‘clinical risk group’ are: asthma, chronic obstructive 

pulmonary disease (COPD), chronic heart disease, chronic kidney disease, diabetes, chronic liver disease, stroke/transient 

ischaemic attack, central nervous system degeneration, and immunosuppression 
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vaccination event coded during the study period we assumed the first entry to be their 

date of vaccination. 

 

Patient level factors that were investigated as potential predictors of vaccination 

included age, sex, BMI, alcohol consumption, smoking status, history of GBS and the 

total number of underlying health conditions a patient had. Practice level predictors 

investigated included geographic location of a practice at a national level and practice 

size, which was determined by categorizing practices according to their patient list 

size.   

 

Deprivation was investigated at both patient and practice level. Patient level 

deprivation was estimated using the Townsend score [32] of patients’ area of 

residence, or, where this was not available, the area indices of multiple deprivation 

(IMD) score [33].  Practice deprivation was estimated using the IMD score of a 

practice’s area. 

 

Bivariate analyses were carried out to identify the variables suitable for inclusion in 

the multivariate model. Any variable found to be predictive of either SIV or PIV uptake 

at a significance level of p<0.2 was considered for inclusion in both multivariate 

models. Where a variable did not reach this level of significance in the bivariate 

analysis the decision as to whether it was suitable for inclusion in our multivariate 

model was made based on the perceived clinical relevance of that variable. A modified 

Poisson regression using robust standard error estimates to account for clustering by 

practice [34] was then carried out using all independent variables that remained 

following the bivariate analyses stage. From this we estimated the incidence rate 

ratios (IRR) of vaccination and the associated 95% confidence intervals (CI95). All 

analyses were carried out twice, firstly using receipt of PIV as the dependant variable 

and secondly using receipt of SIV as the dependant variable. Variables were included 

in both the PIV and SIV models if deemed to be significant in one. Interaction terms 

and stratified models were used to investigate interaction between predictors of 

vaccination. All analyses were carried out using STATA10. 

 

Results 

 

A total of 708,609 patients were included in our study population. Population 

characteristics are given in table 4.3 and table 4.4. The overall PIV uptake rate was 

40.3% and the SIV uptake rate was 61.3%. Of the study population, 65.3% had a 

record of vaccination with at least one of the two influenza vaccines. 36.3% of these 
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had a record of vaccination against both PIV and SIV, while 4.0% were vaccinated 

with PIV-only and 25.0% with SIV-only. These exclusive rates varied widely across 

age groups (Figure 4.1). Children in risk groups who were aged from 6 months up to 5 

years old were the only group in which the majority of individuals vaccinated received 

only PIV.  

 

Table 4.3  Distribution of study variables and results of bivariate and 

main multivariate analyses investigating predictors of influenza 

A(H1N1)pdm09 vaccine uptake in clinical risk groups 
  Pandemic influenza vaccine 

  % (n/n)
a
 

Unadj. 
IRR  

(95% CI) 
Adj. 

IRR  
(95% CI) 

Sex             

Male 42.2 (146,617/347,322) ref. - ref.  

Female 38.4 (138,875/361,287) 0.91 (0.90,0.92) 0.94 (0.93,0.94) 

Age       

0.5 – 4 50.2 (2,758/5,497) 1.13 (1.09,1.17) 1.27 (1.21,1.34) 

5 – 19 37.0 (17,725/47,944) 0.83 (0.81,0.85) 0.91 (0.88,0.94) 

20 – 39 31.6 (21,864/69,136) 0.71 (0.70,0.73) 0.76 (0.74,0.77) 

40 – 64 44.4 (103,136/232,111) ref. - ref.  

65 – 79 43.5 (97,920/225,143) 0.98 (0.95,1.01) 0.92 (0.89,0.95) 

80 – 110 32.7 (42,089/128,778) 0.74 (0.71,0.77) 0.70 (0.67,0.73) 

Patient deprivation quintile
b
       

1 (least deprived) 41.8 (31,402/75,118) 1.04 (0.99,1.09) 1.03 (0.98,1.08) 

2 42.0 (25,661/61,168) 1.04 (1.01,1.08) 1.04 (1.01,1.08) 

3 40.2 (23,124/57,533) ref. - ref.  

4 36.7 (18,423/50,211) 0.91 (0.88,0.95) 0.92 (0.89,0.96) 

5 (most deprived) 34.7 (12,654/36,440) 0.86 (0.82,0.91) 0.88 (0.83,0.93) 

Unknown 40.7 (174,228/428,139) 1.01 (0.94,1.10) 0.90 (0.82,0.98) 

BMI       

<20 35.7 (15,031/42,083) 0.85 (0.83,0.87) 0.92 (0.91,0.94) 

20-24 38.7 (58,194/150,359) 0.92 (0.91,0.93) 0.98 (0.97,0.99) 

25-30 41.9 (82,277/196,515) ref. - ref.  

30-34 43.5 (50,092/115,187) 1.04 (1.03,1.05) 1.01 (1.00,1.02) 

35+ 44.6 (25,840/57,988) 1.06 (1.05,1.08) 1.02 (1.01,1.04) 

Unknown 36.9 (54,058/146,477) 0.88 (0.83,0.93) 0.83 (0.81,0.86) 

Alcohol consumption       

Non-drinker 37.3 (30,100/80,705) 0.89 (0.86,0.92) 0.93 (0.90,0.95) 

Drinker 41.9 (173,483/413,843) ref. - ref.  

Heavy drinker
c
 39.7 (14,335/36,074) 0.95 (0.93,0.97) 0.91 (0.89,0.93) 

Unknown 38.0 (67,574/177,987) 0.91 (0.86,0.95) 0.95 (0.92,0.99) 

Smoking status       

Non-smoker 39.8 (119,645/300,338) ref. - ref.  

Smoker 34.5 (29,284/84,920) 0.87 (0.85,0.89) 0.82 (0.81,0.84) 

Ex-smoker 43.8 (93,856/214,201) 1.10 (1.08,1.12) 1.03 (1.02,1.05) 

Unknown 39.1 (42,707/109,150) 0.98 
(0.92,1.05 
) 

1.02 (0.98,1.07) 

History of Guillain Barré syndrome       

No 40.3 (285,319/708,105) ref. - ref.  

Yes 34.3 (173/504) 0.85 (0.76,0.96) 0.82 (0.73,0.92) 

Total number of risk groups       

1 37.6 (178,420/474,564) ref. - ref.  

2 44.4 (76,814/173,184) 1.18 (1.16,1.20) 1.20 (1.18,1.22) 

>2 49.7 (30,258/60,861) 1.32 (1.29,1.35) 1.35 (1.31,1.38) 

Practice region       

England 37.2 (197,765/531,373) ref - ref.  

Northern Ireland 57.5 (11,195/19,459) 1.55 (1.35,1.76) 1.63 (1.42,1.88) 

Scotland 55.9 (28,869/51,644) 1.50 (1.38,1.63) 1.58 (1.43,1.74) 

Wales 47.5 (22,459/47,261) 1.28 (1.17,1.39) 1.34 (1.21,1.48) 

Unknown 42.8 (25,204/58,872) 1.15 (1.04,1.27) 1.36 (1.23,1.51) 

       

a) n/n represents the number vaccinated divided by the total number of individuals in that group. b) 
Deprivation scores were categorized into quintiles with category 1 containing the least deprived 

quintile and category 5 the most deprived. Patient deprivation scores were assigned to 

patients based on the level of deprivation in the area in which they reside. c) Heavy 
drinkers are defined as individuals possessing a record indicating consumption of 
excessive amounts of alcohol; >42 units/week for males, >31 units/week for females.  
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Table 4.4  Distribution of study variables and results of 

bivariate and main multivariate analyses investigating 

predictors of seasonal influenza vaccine uptake in clinical risk 

groups. 
  Seasonal influenza vaccine 

  % (n/n)
a
 

Unadj. 
IRR  

(95% CI) 
Adj. 

IRR  
(95% CI) 

Sex             

Male 61.0 (211,927/347,322) ref. - ref.  

Female 61.6 (222,645/361,287) 1.01 (1.00,1.02) 1.00 (0.99,1.00) 

Age       

0.5 – 4 26.0 (1,429/5,497) 0.46 (0.43,0.49) 0.51 (0.47,0.55) 

5 – 19 34.5 (16,530/47,944) 0.61 (0.59,0.63) 0.65 (0.63,0.67) 

20 – 39 37.1 (25,660/69,136) 0.66 (0.64,0.67) 0.68 (0.67,0.70) 

40 – 64 56.6 (131,341/232,111) ref. - ref.  

65 – 79 74.8 (168,307/225,143) 1.32 (1.30,1.34) 1.27 (1.25,1.29) 

80 - 110 70.9 (91,305/128,778) 1.25 (1.22,1.28) 1.20 (1.17,1.23) 

Patient deprivation quintile
b
       

1 (least deprived) 65.8 (49,394/75,118) 1.04 (1.01,1.08) 1.04 (1.00,1.07) 

2 65.6 (40,137/61,168) 1.04 (1.02,1.07) 1.03 (1.00,1.05) 

3 62.9 (36,204/57,533) ref. - ref.  

4 60.6 (30,449/50,211) 0.96 (0.94,0.99) 0.98 (0.95,1.00) 

5 (most deprived) 59.5 (21,688/36,440) 0.95 (0.91,0.98) 0.98 (0.94,1.01) 

Unknown 60.0 (256,700/428,139) 0.95 (0.90,1.00) 0.92 (0.85,0.98) 

BMI       

<20 49.3 (20,744/42,083) 0.75 (0.73,0.76) 0.95 (0.94,0.96) 

20-24 61.5 (92,498/150,359) 0.93 (0.92,0.94) 0.98 (0.97,0.98) 

25-30 66.1 (129,930/196,515) ref. - ref.  

30-34 66.2 (76,299/115,187) 1.00 (1.00,1.01) 1.01 (1.00,1.02) 

35+ 65.2 (37,801/57,988) 0.99 (0.98,1.00) 1.03 (1.02,1.04) 

Unknown 52.8 (77,300/146,477) 0.80 (0.76,0.84) 0.85 (0.83,0.87) 

Alcohol consumption       

Non-drinker 61.3 (49,460/80,705) 0.93 (0.92,0.95) 0.96 (0.94,0.98) 

Drinker 65.6 (271,618/413,843) ref. - ref.  

Heavy drinker
c
 58.0 (20,918/36,074) 0.88 (0.87,0.90) 0.93 (0.92,0.95) 

Unknown 52.0 (92,576/177,987) 0.79 (0.76,0.83) 0.98 (0.96,1.01) 

Smoking status       

Non-smoker 61.7 (185,237/300,338) ref. - ref.  

Smoker 51.3 (43,563/84,920) 0.83 (0.82,0.85) 0.86 (0.85,0.88) 

Ex-smoker 68.4 (146,618/214,201) 1.11 (1.10,1.12) 1.02 (1.01,1.02) 

Unknown 54.2 (59,154/109,150) 0.88 (0.83,0.93) 1.02 (0.98,1.06) 

History of Guillain Barré syndrome       

No 61.3 (434,294/708,105) ref. - ref.  

Yes 55.2 (278/504) 0.90 (0.83,0.97) 0.83 (0.77,0.90) 

Total number of risk groups       

1 56.5 (267,931/474,564) ref. - ref.  

2 68.3 (118,201/173,184) 1.21 (1.20,1.22) 1.14 (1.13,1.16) 

>2 79.6 (48,440/60,861) 1.41 (1.39,1.43) 1.22 (1.19,1.24) 

Practice region       

England 59.8 (318,002/531,373) ref - ref.  

Northern Ireland 70.0 (13,626/19,459) 1.17 (1.04,1.32) 1.25 (1.09,1.43) 

Scotland 66.8 (34,523/51,644) 1.12 (1.04,1.20) 1.18 (1.09,1.29) 

Wales 63.8 (30,141/47,261) 1.06 (1.01,1.13) 1.12 (1.04,1.20) 

Unknown 65.0 (38,280/58,872) 1.09 (1.03,1.76) 1.27 (1.20,1.34) 

       

a) n/n represents the number vaccinated divided by the total number of 

individuals in that group. b) Deprivation scores were categorized into quintiles 
with category 1 containing the least deprived quintile and category 5 the most 
deprived. Patient deprivation scores were assigned to patients based on the 
level of deprivation in the area in which they reside. c) Heavy drinkers are 
defined as individuals possessing a record indicating consumption of excessive 
amounts of alcohol; >42 units/week for males, >31 units/week for females. 
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Figure 4.1 Vaccination uptake in clinical risk groups according to age, number and 

type of vaccine received. 

 

 

 
 

 

The results of the main multivariate regression models are shown in table 4.3 and 

table 4.4. Age was a strong predictor of vaccination. Uptake of both vaccines varied 

significantly across different age groups with the likelihood of receiving SIV increasing 

in each age category from childhood up to 65-80 year olds. The association between 

PIV and age was bimodal with the highest uptake rates achieved in those aged 6 

months up to 5 years old (IRRadj 1.28, CI95 1.22-1.35) and in those aged 40-64 years 

old (reference category). Predictors of vaccination differed across age strata. Uptake 

rates and immunisation policies in different age strata are summarised in Table 4.7 

and the results of age-stratified models are given in table 4.5 and table 4.6. 

 

Overall, females were slightly less likely to receive PIV than males (IRRadj 0.94, CI95 

0.93-0.94) while sex was not meaningfully associated with SIV uptake (IRRadj 1.00, 

CI95 0.99-1.00). Stratification by age category revealed that the association between 

sex and PIV (but not SIV) uptake was only observed in women aged 65-110 years 

(IRRadj 0.86, CI95 0.85-0.87). Overweight and obese individuals (BMI >24) were more 

likely to be vaccinated with PIV and SIV than those of normal weight or underweight 

(BMI <25). Overweight 5-64 year old individuals were more likely to be vaccinated 

with PIV and SIV than those of normal weight while this association was observed with 

PIV but not with SIV in those aged 65-110 years. BMI was missing for 96% of those 

aged 6 months to 5 years, this is to be expected as BMI is not typically calculated for 

children of such an age. BMI was therefore not included in the stratified model for this 

age group. (table 4.5 and table 4.6.). 
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Smoking status and alcohol consumption were both predictors of PIV, with smokers 

(IRRadj 0.82, CI95 0.81-0.84) and non-drinkers (IRRadj 0.92, CI95 0.90-0.95) being less 

likely to be vaccinated than non-smokers and drinkers respectively. Slightly weaker 

associations were noted between these predictors and SIV. The estimates for those 

patients with unknown/missing data for smoking status and alcohol consumption were 

consistent with this group being made up of an unbiased mixture of each of the known 

groups, suggesting that this data may be missing at random. People living in the most 

deprived areas were less likely to be vaccinated with PIV than those from less 

deprived areas. Associations between deprivation category and influenza vaccination 

were weak, however the risk estimates suggested a possible trend towards decreasing 

uptake with increasing deprivation. Risk estimates for alcohol consumption, smoking 

status and patient deprivation did not vary greatly across age strata.  

 

Individuals who had more than two diseases indicating at-risk status were 35% more 

likely to be vaccinated with PIV (IRRadj 1.35, CI95 1.31-1.38) and 22% more likely to 

be vaccinated with SIV (IRRadj 1.22, CI95 1.19-1.24) than those with only a single high 

risk condition. These associations were stronger among those aged <65 years than in 

those aged >65 years (table 4.5 and table 4.6). 

 

Patients with a history of GBS were 18% less likely to have received PIV (IRRadj 0.82, 

CI95 0.73-0.92) and 17% less likely to have received SIV (IRRadj 0.83, CI95 0.77-0.90) 

than those without a prior GBS diagnosis. After stratifying by age category the 

associations were only observed in those aged 65-110 years for PIV (IRRadj 0.70, CI95 

0.59-0.82) and SIV (IRRadj 0.78, CI95 0.71-0.85). No children aged from 6 months and 

up to 5 years old had a history of GBS therefore this variable was excluded from their 

stratified model. People in Northern Irish, Scottish and Welsh practices all had 

significantly higher uptake of PIV than those in English practices. SIV uptake was also 

significantly higher in non-English practices than English practices however the 

magnitude of the association was considerably smaller than that observed with PIV. 

Practice size and practice level deprivation were not significantly associated with 

uptake of either vaccine. Testing for interactions between predictors other than age 

revealed a number of significant interactions; however inclusion of such terms did not 

alter the risk estimates materially. 
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Table 4.5  Results of age-stratified multivariate analyses 

investigating predictors of influenza A(H1N1)pdm09 vaccine 

uptake in clinical risk groups. 
  Pandemic influenza vaccine 

  6months - 4 yrs 5yrs - 64yrs 65yrs - 110yrs 

  adj. 
IRR 

(ci95) adj. 
IRR 

(ci95) adj. 
IRR 

(ci95) 

Sex             

Male 
ref.  ref.  ref.  

Female 
0.94 (0.90,1.00) 0.98 (0.97,0.99) 0.86 (0.85,0.87) 

Patient deprivation quintile
a
 

      
1 (least deprived) 

1.13 (0.98,1.31) 1.03 (0.99,1.08) 1.04 (0.98,1.10) 
2 

0.98 (0.86,1.13) 1.04 (1.01,1.08) 1.05 (1.00,1.09) 
3 

ref.  ref.    
4 

0.93 (0.80,1.08) 0.91 (0.88,0.95) 0.92 (0.88,0.97) 
5 (most deprived) 

0.76 (0.63,0.92) 0.89 (0.85,0.94) 0.86 (0.79,0.93) 
Unknown 

0.97 (0.85,1.10) 0.94 (0.88,1.02) 0.85 (0.75,0.96) 
BMI       
<20 -

c
 - 0.92 (0.90,0.94) 0.84 (0.82,0.87) 

20-24 - - 0.94 (0.93,0.95) 0.96 (0.95,0.97) 
25-30 - - ref.    
30-34 - - 1.03 (1.02,1.04) 1.02 (1.01,1.04) 
35+ - - 1.05 (1.03,1.07) 1.04 (1.02,1.06) 
Unknown - - 0.82 (0.80,0.85) 0.77 (0.73,0.81) 
Alcohol consumption       
Non-drinker -

d
 - 0.94 (0.91,0.96) 0.90 (0.87,0.93) 

Drinker - - ref.    
Heavy drinker

b
 - - 0.92 (0.90,0.94) 0.95 (0.92,0.98) 

Unknown - - 0.92 (0.89,0.94) 0.95 (0.88,1.03) 
Smoking status       
Non-smoker -

d
 - ref.    

Smoker - - 0.84 (0.83,0.86) 0.82 (0.79,0.84) 
Ex-smoker - - 1.05 (1.04,1.07) 1.03 (1.01,1.05) 
Unknown - - 1.01 (0.97,1.05) 1.12 (1.00,1.26) 
History of Guillain Barré syndrome       
No -

e
 - ref.    

Yes - - 1.02 (0.87,1.20) 0.70 (0.59,0.82) 
Total number of risk groups       
1 

ref.  ref.    
2 

1.08 (1.03,1.14) 1.22 (1.20,1.24) 1.16 (1.13,1.18) 
>2 

1.34 (1.01,1.76) 1.51 (1.48,1.55) 1.26 (1.23,1.30) 
Practice region 

      
England 

ref.      
Northern Ireland 

1.41 (1.20,1.66) 1.55 (1.37,1.76) 1.75 (1.47,2.08) 
Scotland 

1.47 (1.32,1.63) 1.48 (1.37,1.60) 1.71 (1.50,1.96) 
Wales 

1.23 (1.10,1.37) 1.28 (1.18,1.40) 1.40 (1.23,1.60) 
Unknown 

0.95 (0.79,1.14) 1.37 (1.25,1.51) 1.44 (1.26,1.65) 
             

a) Deprivation scores were categorized into quintiles with category 1 
containing the least deprived quintile and category 5 the most deprived. 
Patient deprivation scores were assigned to patients based on the level of 
deprivation in the area in which they reside. b) Heavy drinkers are defined 
as individuals possessing a record indicating consumption of excessive 
amounts of alcohol; >42 units/week for males, >31 units/week for 
females. c) BMI excluded from model as >95% missing data. d) Smoking 
status and alcohol consumption excluded from model as not relevant for 
this age group. e) History of GBS excluded from model as no patients in 
this age category had an existing diagnosis. 
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Table 4.6  Results of age-stratified multivariate analyses 

investigating predictors of seasonal influenza vaccine 

uptake in clinical risk groups. 
  Seaasonal influenza vaccine 

  6months - 4 yrs 5yrs - 64yrs 65yrs - 110yrs 

  adj. 
IRR 

(ci95) adj. 
IRR 

(ci95) adj. 
IRR 

(ci95) 

Sex             

Male 
ref.  ref.  ref.  

Female 
0.87 (0.80,0.96) 1.00 (1.00,1.01) 0.98 (0.98,0.99) 

Patient deprivation quintile
a
 

      
1 (least deprived) 

0.99 (0.79,1.25) 1.03 (0.99,1.07) 1.05 (1.02,1.08) 
2 

0.84 (0.66,1.08) 1.02 (1.00,1.05) 1.03 (1.00,1.07) 
3 

ref.  ref.  ref.  
4 

0.89 (0.70,1.13) 0.98 (0.95,1.01) 0.97 (0.94,1.00) 
5 (most deprived) 

0.92 (0.68,1.23) 0.98 (0.93,1.03) 0.97 (0.94,1.00) 
Unknown 

0.88 (0.72,1.09) 0.98 (0.93,1.04) 0.88 (0.81,0.95) 
BMI       
<20 -

c
 - 0.81 (0.80,0.83) 0.94 (0.93,0.96) 

20-24 - - 0.91 (0.90,0.92) 0.99 (0.98,1.00) 
25-30 - - ref.  ref.  
30-34 - - 1.05 (1.04,1.06) 0.99 (0.99,1.00) 
35+ - - 1.07 (1.06,1.08) 0.99 (0.98,1.00) 
Unknown - - 0.77 (0.75,0.79) 0.87 (0.85,0.89) 
Alcohol consumption       
Non-drinker -

d
 - 0.98 (0.96,1.00) 0.93 (0.91,0.95) 

Drinker - - ref.  ref.  
Heavy drinker

b
 - - 0.95 (0.93,0.97) 0.94 (0.92,0.96) 

Unknown - - 0.86 (0.84,0.89) 0.98 (0.94,1.01) 
Smoking status       
Non-smoker -

d
 - ref.  ref.  

Smoker - - 0.89 (0.88,0.91) 0.86 (0.84,0.88) 
Ex-smoker - - 1.07 (1.06,1.08) 1.01 (1.00,1.02) 
Unknown - - 0.96 (0.92,1.00) 1.11 (1.04,1.18) 
History of Guillain Barré syndrome       
No -

e
 - ref.  ref.  

Yes - - 0.98 (0.86,1.12) 0.78 (0.71,0.85) 
Total number of risk groups 

      
1 

ref.  ref.  ref.  
2 

0.92 (0.83,1.02) 1.25 (1.23,1.27) 1.08 (1.07,1.09) 
>2 

1.58 (1.02,2.46) 1.55 (1.52,1.58) 1.14 (1.12,1.16) 
Practice region 

      
England 

ref.  ref.  ref.  
Northern Ireland 

1.83 (1.46,2.29) 1.29 (1.14,1.45) 1.21 (1.04,1.40) 
Scotland 

1.63 (1.29,2.07) 1.21 (1.12,1.31) 1.17 (1.05,1.30) 
Wales 

0.89 (0.60,1.33) 1.07 (0.99,1.15) 1.14 (1.05,1.24) 
Unknown 

0.90 (0.69,1.19) 1.56 (1.46,1.66) 1.17 (1.10,1.24) 
             

a) Deprivation scores were categorized into quintiles with category 1 
containing the least deprived quintile and category 5 the most deprived. 

Patient deprivation scores were assigned to patients based on the level of 
deprivation in the area in which they reside. b) Heavy drinkers are defined 
as individuals possessing a record indicating consumption of excessive 
amounts of alcohol; >42 units/week for males, >31 units/week for 
females. c) BMI excluded from model as >95% missing data. d) Smoking 
status and alcohol consumption excluded from model as not relevant for 
this age group. e) History of GBS excluded from model as no patients in 
this age category had an existing diagnosis. 
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Table 4.8 shows uptake rates for each of the underlying health conditions constituting 

‘clinical risk groups’ stratified by age. In every age group, high uptake of both 

vaccines was noted among people with diabetes. Among those aged 5 years up to 110 

years old, people with immunosupression had notably high uptake. Comparatively low 

uptake of both vaccines was observed across all age categories in individuals with 

central nervous system degeneration (multiple sclerosis, cerebral palsy, etc) and 

among individuals aged younger than 5 years and older than 64 years with a history 

of stroke/TIA. In contrast, among individuals aged from 5 up to 64 years with a 

previous stroke/TIA higher uptake was observed. 

 

 

  

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Discussion 

 

Except for in young children, the uptake of SIV in clinical risk groups during the 2009 

UK pandemic vaccination campaign far exceeded that of PIV. Several factors including 

age, number of underlying health conditions and history of GBS were found to be 

predictive of both pandemic and seasonal influenza vaccine uptake. 

 

One of the main strengths of this study was the large sample size from a well 

validated primary care database. A limitation of using such a database for this study is 

that information on the GPs’ and patients’ personal views regarding susceptibility to 

influenza related morbidity and the influenza vaccination’s effectiveness and safety is 

not available. This type of data can be strongly predictive of vaccine uptake [18;35-

Table 4.7 Comparison of seasonal and influenza A(H1N1)pdm09 vaccine 

uptake rates in clinical risk groups across age groups and immunisation 

policies. 
Age group Influenza 

vaccine 
Immunisation policy Uptake rate in 

clinical risk 
groups (%) 

       
6 months - 4 years Seasonal clinical risk groups 26.0 

Pandemic entire age group 50.2 
       

5 years - 64 years Seasonal clinical risk groups 49.7 

Pandemic clinical risk groups 40.9 
       

65 years – 110 years Seasonal entire age group 73.4 

Pandemic clinical risk groups 39.6 
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37]. However, many of the surveys collecting this type of information may suffer from 

recall and response bias. Such biases are not an issue when using the GPRD. 

Reassuringly our estimate of ~15% of the population being in a ‘clinical risk group’ is 

similar to that identified by others [14]. As GP practices are contractually obliged to 

accurately record vaccinations in a patient’s record [55], and as GP practices are likely 

to use the information in these records to complete payment claims, recording of 

vaccinations in the GPRD should be relatively complete. Despite this, as SIV is 

available in pharmacies, supermarkets and workplaces misclassification of seasonal 

influenza vaccination status may have occurred. In our study population, negative 

misclassification of vaccinations administered outside the GP practice should have 

been mitigated as vaccines were only available free of charge to individuals in clinical 

risk groups if they were administered by GP practices. 

 

 

 

Table 4.8  Seasonal influenza and influenza A(H1N1)pdm09 vaccine uptake in 

each ‘clinical risk group’ across age strata. 

 
Age 

6months - 4 years  5 years – 64 years  65 years -110 years 

 total  PIV SIV  total  PIV SIV  total  PIV SIV 

Risk Group
a
  n % %  n % %  n % % 

Chronic heart disease 1,579 45.8 23.4  60,075 41.9 52.3  146,359 40.2 73.2 

Chronic kidney disease 51 47.1 33.3  26,956 42.4 50.2  133,168 38.9 75.5 

Chronic respiratory disease 3,386 52.8 27.2  171,322 40.6 48.9  90,360 45.4 77.9 

Diabetes 61 65.6 55.7  76,815 49.0 64.5  84,972 44.5 75.6 

Stroke/Transient ischaemic attack 53 43.4 13.2  9,583 43.3 57.2  34,306 35.1 70.3 

Chronic liver disease 28 53.6 42.9  12,302 34.8 40.0  4,852 38.8 69.4 

Immunosuppression 54 46.3 24.1  18,546 53.6 57.0  8,712 54.2 81.7 

Central nervous system degen. 397 46.1 23.4  21,115 34.5 38.3  23,529 32.0 67.4 

                      
a) clinical risk groups are not mutually exclusive as an individual may have a multitude of the 
underlying health conditions listed 

 

 

The national immunisation policy may explain some of the differences between SIV 

and PIV uptake in different age categories. In the UK, one of two immunisation 

policies was implemented in each age category: vaccination of all individuals in that 

age category or vaccination of only those in clinical risk groups. Vaccination of an 

entire age category was only employed where evidence suggested a large proportion 

of people of that age were at a high risk of prolonged or more serious morbidity 

resulting from influenza infection. As a result within some age groups different policies 

were implemented for SIV and PIV: all those aged 6 months to up to 5 years were 

advised to be vaccinated with PIV and all those aged >64 were advised to be 

vaccinated with SIV. In both age categories, the other vaccine (SIV and PIV 

respectively) was only offered to people who were in clinical risk groups. As illustrated 

in Table 4.7, where immunisation policies differed within an age category, for both 
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vaccines the uptake by people in clinical risk groups was higher if the vaccine had also 

been offered to people in their age category who were not in clinical risk groups. 

Amongst 5 – 64 year olds only those in clinical risk groups were invited for PIV and 

SIV vaccination and in this age group the difference in uptake rates between the two 

vaccines was considerably less. Overall this suggests that immunisation policies that 

cover entire age groups are associated with higher uptake of influenza vaccines by 

individuals in clinical risk groups. Associations between immunisation policy and 

influenza vaccine uptake have been investigated in Canada, Spain and Finland. SIV 

uptake rates in a region that implemented an age based immunisation policy were 

compared with rates in regions with the standard risk group based immunisation 

policy. In each case vaccine uptake amongst people in clinical risk groups was found 

to be higher in those regions with the broader, age-based vaccination policy [38-40]. 

The CDC have suggested this may be because targeting entire age groups simplifies 

the overall public health message regarding influenza vaccines and removes the need 

for identification of high risk individuals by GPs [41].  

 

Given the reports of an increased risk of H1N1 influenza related complications in obese 

individuals [42;43] it is unsurprising that we observed higher PIV uptake in individuals 

with higher BMI. The fact there were no such reports for SIV may explain the slightly 

weaker association between SIV and BMI. Notably all associations between BMI and 

vaccine uptake were of a small magnitude and therefore may be sensitive to the 

presence of missing data. Individuals with normal or slightly low BMI may be 

overrepresented among those with unknown/missing BMI if recording of low BMI is 

deemed to be less clinically relevant by GPs. If this were true, our results suggest we 

would have underestimated any association between high BMI and high vaccine 

uptake. Our results also suggest a weak association between increasing deprivation 

and decreasing influenza vaccine uptake. A similar, albeit slightly stronger trend was 

observed for Carstairs deprivation score in a recent study of influenza vaccine uptake 

in the UK [44]. Differences in these results might be explained by differences between 

the measures contributing to the Carstairs score and those contributing to our 

composite (Townsend or IMD) score. In addition, the low uptake observed in those 

with missing deprivation data might obscure the true association between deprivation 

and vaccine uptake. 

 

The decreased likelihood of vaccination among individuals with a history of GBS may 

reflect GP and patient concerns surrounding the potentially increased risk of GBS 

recurrence following influenza vaccination. Recent data suggests it may be the 

influenza infection itself, and not the vaccine, that carries the highest risk of GBS 
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[45;46]. If this is true then any decision not to vaccinate against influenza in an effort 

to prevent GBS recurrence may have the opposite effect. 

 

The difference in unadjusted and adjusted incidence rate ratios comparing uptake in  

Wales, Scotland and Northern Ireland to England resulted from the inclusion of the 

deprivation variable in the model; individuals in non-English countries had a much 

greater proportion of individuals missing deprivation score than English practices, and 

uptake was much lower in this group. Differences in the handling of the pandemic and 

the pandemic vaccination campaign in Wales, Scotland, Northern Ireland and England 

might have led to the differences in uptake that were observed in the unadjusted 

analysis. A review of the pandemic vaccination campaign in Northern Ireland 

highlighted their decision to split bulk packs of vaccines on a pro rata basis, allowing 

wider distribution of the earliest vaccine supplies, as key to the high uptake obtained 

there [54]. In England bulk packs were not split [54] while no literature could be 

found to confirm what policy was adopted on this in Wales and Scotland. Closer 

investigation of the policies implemented in each devolved administration might 

provide other reasons for the disparities observed.  

The uptake rates observed across the clinical risk groups varied and were similar to 

those reported in the HPA Pandemic H1N1 and seasonal influenza vaccine uptake 

surveys [14;28]. Our finding that the likelihood of influenza vaccination increased with 

increasing number of risk groups has been reported previously for both SIV and PIV in 

Spain [21;47].  

 

Overall, uptake of PIV in clinical risk groups was low compared with that achieved in 

many other countries, while uptake of SIV was similar to that achieved in previous 

seasons in the UK. Our results suggest that recommending universal vaccination of 

certain age categories may increase influenza vaccination rates among clinically at risk 

individuals of that age. Given the low PIV uptake achieved in the UK it may be worth 

considering recommendation of universal vaccination during future pandemics where 

the consequences of poor vaccine uptake in clinical risk groups might have more 

serious consequences. Such policy changes may also be required for SIV if the UK are 

to meet the European Council’s recommended 2014/15 target of 75% SIV uptake 

among all risk groups [48]. However, before any policy changes are made 

consideration would need to be given to the cost effectiveness of such a strategy, that 

is, whether the costs associated with vaccinating millions of individuals at low-risk of 

influenza complications would be acceptable given the potential savings that would be 

brought about through increasing uptake in clinical risk groups. The recent 
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introduction of universal influenza immunisation in the United States may provide the 

opportunity to observe the relative merits of introducing such a policy. 
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Abstract 

 

Background: Pregnant women in Great Britain were recommended to receive 

influenza A(H1N1)pdm09 vaccines during the 2009/10 influenza pandemic, however 

uptake of the vaccines by pregnant women was reported to have been very low.  

 

Aim: We sought to estimate uptake of influenza A(H1N1)pdm09 vaccines and to 

investigate predictors of vaccine uptake in pregnant women in Great Britain during the 

2009/10 pandemic. 

 

Methods: Uptake rates were calculated using data from the UK General Practice 

Research Database (GPRD). Predictors of vaccination were identified using a Cox 

proportional hazards model. 

 

Results: Uptake of influenza A(H1N1)pdm09 vaccines by pregnant women was 

21.6%. Pregnant women with an underlying health condition increasing the risk of 

influenza-related complications had a higher vaccination rate than pregnant women 

without such conditions. The hazard ratio comparing these two groups decreased 

logarithmically throughout pregnancy from 9.3 in the first week to 1.3 by the end of 

pregnancy. Increasing maternal age (HR 1.01, CI95 1.00 – 1.01), having a previous 

delivery recorded (HR 1.22, CI95 1.17 – 1.27) and living in Scotland (HR 2.55, CI95 

2.30 – 2.84) or Wales (HR 1.38, CI95 1.20 – 1.59) as opposed to England were all also 

associated with an increase in vaccination uptake rates throughout pregnancy. 

 

Discussion: Uptake of influenza A(H1N1)pdm09 vaccines by pregnant women was 

low. None of the potential predictors evaluated in this study were strong enough to 

account for this, however information on health beliefs and GP recommendation were 

not available. If the low rates reported here are to be improved new strategies to 

increase uptake of influenza vaccine in pregnant women need to be identified, 

evaluated and implemented. 
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Introduction 

The emergence and rapid global spread of a mutated strain of influenza (influenza 

A(H1N1)pdm09 ) in spring 2009 resulted in the declaration of the first influenza 

pandemic of the 21st century[1]. Data collected early in the pandemic suggested that 

the risk of serious complications or death following infection with influenza 

A(H1N1)pdm09 might be much higher in pregnant women than in the general 

population [2]. This finding refocused attention upon an ongoing debate about the 

risks of influenza infection in pregnancy and the relative merits of vaccinating 

pregnant women against influenza [3-8]. 

 

Retrospective cohort studies have found increased rates of cardiopulmonary 

hospitalisations among pregnant women not in influenza clinical risk groups during 

weeks 21-26 (RR 2.52 CI95 1.74-3.65), 27-31 (RR 2.62 CI95 1.82-3.76), 32-36 (RR 

3.21 CI95 2.32-4.44) and 37-42 (RR 4.67 CI95 3.42-6.39) of pregnancy relative to the 

post-partum period [51] and in the second (RR 1.50 CI95 1.01-2.23) and third (RR 

2.81 CI95 1.98-3.99) trimester relative to the first [52] in addition to increased rates of 

respiratory hospitalisations in second (RR 1.87 CI95 1.11-3.17) and third (RR 2.40 CI95 

1.70-3.40) trimesters during the influenza season relative to the non-influenza season 

[53] and in the first (RR 1.67 CI95 1.00-2.77) second (RR 2.09 CI95 1.34-3.26), and 

third (RR 5.14 CI95 3.62-7.31) trimesters relative to the year before pregnancy [53]. 

Notably, these studies have lack lab confirmed endpoints. However it has also been 

suggested that during the 1918 pandemic the case fatality rate for pregnant women 

[54, 55, 56, 57] may have been higher than many of the estimates for the general 

population [56, 57, 58] and that during the 1957 pandemic pregnant women were 

overrepresented among those who died. As in the general population, influenza 

vaccination may result in pregnant women experiencing mild side effects [59, 60, 61, 

62], however the risk of serious maternal or foetal adverse events in vaccinated 

women has not been found to be increased relative to non-vaccinated [63, 64] and 

pneumococcal vaccinated women [65]. Despite all of this, studies of influenza vaccine 

safety in pregnancy are lacking [5]. 

 

As a result, the most thorough reviews carried out to date have come to a common 

set of conclusions [5, 6]: seasonal influenza vaccination is warranted in the second 

and third trimesters in healthy pregnant women; in any trimester in pregnant women 

with underlying health conditions; during pandemics, influenza vaccination is 

warranted in any trimester regardless of underlying health conditions. Interestingly 

such conclusions have not been widely reflected in public health policy and while 

countries such as the US and Canada have been recommending seasonal influenza 
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vaccination for pregnant women for several years, authorities in many other countries 

have been reluctant to make similar recommendations; until 2008 only 10 out of 27 

European countries [9] and 7 out of 43 countries in the Americas [10] recommended 

routine seasonal influenza vaccination for pregnant women. 

 

Despite this historic reluctance to vaccinate pregnant women against seasonal 

influenza, the limited early data on the risk of pandemic influenza in pregnant women 

was readily accepted by public health bodies and during the 2009/10 pandemic 

vaccination campaign many countries recommended all pregnant women receive 

A(H1N1)pdm09 influenza vaccines regardless of their underlying health status [11]. 

The main difference in recommendations between these countries was in the 

recommended trimester of vaccination: some recommended second and third 

trimester vaccination only, while others, including the UK, recommended vaccination 

in any trimester [12-14]. This represented a considerable shift in influenza vaccination 

policy in the UK as, before the pandemic, the only pregnant women recommended for 

seasonal influenza vaccination were those who had underlying health conditions 

known to increase the risk of influenza-related complications independent of 

pregnancy [15, 16].  

 

In the UK, vaccination of pregnant women with pandemic influenza A(H1N1)pdm09 

vaccines began on 21 October 2009 and ended in the summer of 2010 [17]. A 

national survey of more than 90% of English GP practices has since reported a 

pandemic vaccine coverage of 14.9% in pregnant women [18]. The public health 

impact of such low vaccination coverage does not appear to have been great, possibly 

reflecting the fact that the pandemic was ultimately much less severe than first 

anticipated. However, such low uptake of a vaccine by a high risk group warrants 

further investigation: identifying particular demographic groups or gestational periods 

in which there was low vaccine uptake may inform targeting of promotional campaigns 

during future influenza seasons. In this study we describe the uptake of pandemic 

influenza vaccine by pregnant women in the UK during the 2009/10 pandemic 

reporting on the (gestational) time to vaccination and investigating a number of 

potential predictors of vaccine uptake. 

 

Methods 

This study was carried out using the UK General Practice Research Database (GPRD). 

The GPRD is a primary care database containing the anonymised records of ~8.4% of 

the UK population [42]. Patient data routinely available in the database includes 

demographic details, diagnoses and symptoms leading to hospital admissions, 
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immunisations, pregnancies, laboratory tests, referrals to specialists, prescriptions 

issued by the GP, contraception, hospital discharge and clinic summaries and deaths 

[43]. The GPRD operates a continuous quality control procedure which assesses 

whether or not they consider data submitted by a practice to be of a standard 

sufficient for research purposes (up-to-standard) [42]. Pregnant women have been 

identified on the GPRD using an algorithm similar to those applied elsewhere[44, 45]. 

In summary this algorithm identifies individual pregnancies based on records of 

pregnancy losses or deliveries and estimates each pregnancy’s start and end dates 

using all pregnancy-related events in a woman’s record. This algorithmic approach to 

pregnancy identification on the GPRD has been tested against manual review of 

electronic and paper medical records [46]. Quality of comorbidity recording in 

pregnancy is similar to that in the general population, although lifestyle factors are 

more commonly recorded by midwives during pregnancy using a paperbased system 

kept by the pregnant woman.  

 

Pregnancy outcome data was available on all pregnancies starting before 01 April 

2010, and with very few exceptions, any woman with a pregnancy ending after the 

start of the vaccination campaign (21 October 2009) was eligible for pandemic 

vaccination at some time during their pregnancy. The study population therefore 

consisted of all women with a pregnancy ending after 21 October 2009 and starting 

before 01 April 2010. Only pregnancies ending in delivery were included in our study 

population. Women who were vaccinated with influenza A(H1N1)pdm09 vaccine before 

their pregnancy start date were excluded from the study. Patients from Northern Irish 

practices were also excluded from the study population as vaccination of pregnant 

women in Northern Ireland was coordinated through acute trusts, as opposed to GPs 

[47]. 

Pandemic influenza vaccinations were identified using influenza A(H1N1)pdm09 

vaccine specific medical and product codes; codes which had been created to allow 

differential recording of seasonal and pandemic vaccinations on GP systems [48]. 

Where a woman had more than one pandemic vaccination recorded, the first record of 

vaccination was considered to be on the vaccination date.  

 

Kaplan Meier curves for vaccine uptake by gestational age were constructed. Cox 

regression modelling was used to identify predictors of pandemic influenza vaccine 

uptake. The following population characteristics were considered potential predictors 

of vaccine uptake and their associations with uptake rates were evaluated: whether a 
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woman was in one of the clinical risk groups
*
, maternal age (years), record of a 

previous delivery (yes/no), pre-pregnancy alcohol consumption (drinker, non-drinker, 

heavy drinker), pre-pregnancy smoking status (smoker, non-smoker, ex-smoker), 

pre-pregnancy BMI (<20, 20-24, 25-29, >29), Indices of Multiple Deprivation (IMD) 

score of a patients’ practice (quintiles) and the country in which a patients’ practice 

was located (England, Scotland, Wales). All factors were coded as categorical variables 

with the exception of maternal age, which was included as a continuous variable. 

Where missing data existed for a variable, a separate “unknown” category was created 

to identify these women in the models. Survival time began on the first day of the 

estimated LMP date and delayed entry was used for pregnancies beginning before the 

start of the vaccination campaign. To account for the change in exposure prevalence 

over calendar time estimates were stratified by the calendar month of estimated LMP 

date. Variables that were significant in the multivariate model at p<0.05 or found to 

alter the hazard ratio of another variable by >10% were included in the final model. 

Interactions between variables were investigated by introducing multiplicative 

interaction terms into the model. Linearity of the association with maternal age was 

checked using plots of standardized residuals and deviation was addressed by the 

introduction of polynomial terms into the model. The proportionality assumption was 

examined graphically using plots of the scaled Schoenfeld residuals and log-log 

survival probabilities over time and was investigated formally by testing for non-zero 

slope in a linear regression of the scaled Schoenfeld residuals over time. Where non-

proportionality was suggested interaction terms between the offending predictor and 

log time were introduced into the model; any significant interactions with log time 

were included in the final model. Robust standard error estimates were used to 

account for clustering by practice.  As a sensitivity analysis, uptake rates were 

estimated restricting the study population to pregnancies beginning before the start of 

the vaccination campaign; all such women were recommended for vaccination during 

the two peak months of vaccination. All analyses were performed using STATA10[49]. 

 

Results 

Overall uptake of pandemic influenza vaccine by pregnant women was 21.6%. The 

probability of vaccination in the first trimester was 7%, the probability of vaccination 

by the end of the second trimester was 24% and the probability of vaccination by the 

end of week 40 of pregnancy was 32%.  

 

                                                 
*
 Underlying health conditions warranting inclusion in a clinical risk group: asthma, chronic heart disease, 

chronic liver disease, chronic kidney disease, chronic obstructive pulmonary disease, chronic 

neurodegenerative disease, diabetes, immunosuppresion and stroke/transient ischemic attack. 
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Figure 4.2 shows the relationship between gestational age and date of vaccination among 

vaccinated women using a Lexis diagram. Notable gaps in vaccination are observed 

around major holidays (25-Dec-2009, 31-Dec-2009). As can be seen from this figure, 

uptake of vaccination in pregnancy was highest in the first two months following the 

introduction of the vaccine. After January, fewer pregnant women received A/H1N1 

vaccine. This was particularly evident for vaccinations early in the 1st and in the 3rd 

trimester.  

 

Univariate analyses suggested the strongest predictor of vaccination in pregnancy was 

being in a clinical risk group. The Kaplan Meier failure curve for those in a clinical risk 

group versus those not in a risk group (Figure 4.3) suggested that the main difference 

in the probability of vaccination between these two groups arose in the first trimester. 

Examination of the scaled Schoenfeld residuals also suggested non proportionality 

therefore an interaction term between clinical risk group and (log) time was 

introduced into our Cox model. As shown in Table 4.10 and Figure 4.4, on any day in 

the first week of pregnancy those in a clinical risk group were 9.2 times more likely to 

be vaccinated than those without an underlying health condition. This ratio decreased 

throughout the pregnancy such that by the end of the first trimester (end of week 12) 

the rate of vaccination in those in a clinical risk group had decreased to 2.48 times 

that of those not in a clinical risk group. The hazard ratio remained much more stable 

over the second and third trimesters; by gestational week 40 it was 1.30. 

 

 

 
Figure 4.2 Lexis diagram showing the relationship between gestational age and 

calendar date of vaccination in vaccinated women. Grey lines represent vaccinated 

women. Blue dots represent first trimester vaccinations, green dots represent second 

trimester vaccinations and orange dots represent third trimester vaccinations. 
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Table 4.9 Characteristics of pregnant women 

recommended for A(H1N1)pdm09 vaccination 

  
Total (n) 

Vaccinated 
% 

Total 54,694 21.7 
    

Maternal age (continuous) - - 
   

Underlying health condition   

No 52,160 21.1 

Yes 2,534 33.1 
   

Record of previous delivery   

No 28,942 19.6 
Yes 25,752 23.9 

   

Smoking status    

Smoker 13,251 19.6 
Non-smoker 29,773 22.4 

Ex-smoker 10,900 23.0 

Missing 770 9.0 

   

Alcohol consumption   

Drinker 30,824 23.2 
Non-Drinker 13,104 19.8 

Heavy drinker
a
 1,486 16.7 

Missing 9,280 19.7 

   

Practice region   

England 45,573 19.3 
Scotland 4,947 40.0 

Wales 4,174 25.1 

   

Practice IMD score
b
   

1 (least deprived) 9,562 25.3 
2 10,586 22.2 

3 11,069 21.5 

4 12,092 19.6 

5 (most deprived) 11,369 20.4 

unknown 16 31.3 

   

Pre-pregnancy BMI   

<20 4,884 21.7 
20-24 17,341 23.5 

25-29 8,870 24.0 

>29 6,393 24.6 

Unknown 17,206 17.5 

      
a) Heavy drinkers are defined as individuals possessing a record 

indicating consumption of excessive amounts of alcohol; >42 
units/week for males, >31 units/week for females. b) IMD scores 
were categorized into quintiles with category 1 containing the least deprived 

quintile and category 5 the most deprived. IMD scores were assigned to 

patients based on the level of deprivation in the area in which their 
practice is located. 
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Figure 4.3 Kaplan Meier curve showing the proportion of pregnant women vaccinated 

over gestational age by clinical risk group. Separate curves fitted for those in a clinical 

risk group (dashed line) and those not in a clinical risk group (solid line). Shaded 

regions show 95% CI. The dashed lines (grey) highlight the difference in the 

proportion vaccinated at different time points. 
 

 
Figure 4.4 Change in hazard ratio for those in a clinical risk group versus those not in 

a clinical risk group over gestational age (red line). Shaded blue region shows 95% CI 

for the change. 
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Table 4.10 Unadjusted and adjusted hazard ratios for A(H1N1)pdm09 

vaccination among pregnant women recommended for vaccination 

  

unadj. 
HR 

(95% CI) 
 adj.  

HR 
(95% CI) 

 

Total      
       

Maternal age (continuous) 1.02 (0.01 - 1.02)  1.01 (1.00 - 1.01) 
      

Underlying health condition      

No ref. -  ref. - 

Yes 9.17 (6.73-12.49)  9.21 (6.78 – 12.53) 

Interaction with log(t) 0.59 (0.53 -0.65)  0.59 (0.53 - 0.65) 
      

Record of previous delivery      

No ref. -  ref. - 
Yes 1.27 (1.21 - 1.32)  1.22 (1.17 - 1.27) 

      

Smoking status       

Smoker 0.87 (0.82 - 0.93)  0.88 (0.84 - 0.93) 
Non-smoker ref. -  ref. - 

Ex-smoker 1.04 (0.98 - 1.10)  1.00 (0.95 - 1.05) 

Missing 0.34 (0.26 - 0.44)  0.36 (0.28 - 0.47) 

      

Alcohol consumption      

Drinker ref. -  ref. - 
Non-Drinker 0.83 (0.78 - 0.89)  0.88 (0.82 - 0.94) 

Heavy drinker
a
 0.62 (0.53 - 0.73)  0.72 (0.62 - 0.83) 

Missing 0.82 (0.75 - 0.88)  0.89 (0.83 - 0.95) 

      

Practice region      

England ref. -  ref. - 
Scotland 2.53 (2.29 - 2.79)  2.55 (2.30 - 2.84) 

Wales 1.35 (1.19 - 1.54)  1.38 (1.20 - 1.59) 

      

Practice IMD score
b
      

1 (least deprived) 1.28 (1.07 - 1.54)  1.20 (1.04 – 1.38) 
2 1.09 (0.91 - 1.30)  1.07 (0.93 – 1.23) 

3 1.07 (0.89 - 1.27)  1.06 (0.93 – 1.22) 

4 0.95 (0.79 - 1.13)  1.00 (0.87 – 1.15) 

5 (most deprived) ref. -  ref. - 

unknown 1.23 (1.06 - 1.41)  0.62 (0.55 – 0.71) 

      

Pre-pregnancy BMI      

<20 0.93 (0.87 - 1.01)    
20-24 ref. -    

25-29 1.02 (0.96 - 1.08)    

>29 1.06 (1.00 - 1.13)    

Unknown 0.74 (0.70 - 0.78)    

           
a) Heavy drinkers are defined as individuals possessing a record indicating consumption of 

excessive amounts of alcohol; >42 units/week for males, >31 units/week for females. b) IMD 
scores were categorized into quintiles with category 1 containing the least deprived quintile and category 5 the 

most deprived. IMD scores were assigned to patients based on the level of deprivation in the area in 

which their practice is located. 
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With every 1 year increase in maternal age the hazard of vaccination increased by 1% 

(HR 1.01, CI95 1.00 – 1.01). On any day of pregnancy, women who had a record of a 

previous successful pregnancy were 1.2 times more likely than women with no 

recorded deliveries (HR 1.22, CI95 1.17 – 1.27) to be vaccinated. This association was 

observed independent of maternal age. Those in Scottish (HR 2.55, CI95 2.30 – 2.84) 

and Welsh practices (HR 1.38, CI95 1.20 – 1.59) had a higher rate of vaccination than 

those in English practices throughout pregnancy. The hazard of vaccination was higher 

in women registered with practices in the least deprived areas than women registered 

at practices in the most deprived areas (HR 1.20, CI95 1.04 – 1.38). 

 

The rate of vaccination among smokers was 13% lower than the rate among non-

smokers while the rate of vaccination among ex smokers was similar to that among 

non-smokers. Women with missing smoking status were substantially less likely to 

have a vaccination recorded than smokers (HR 0.36, CI95 0.28 – 0.47). Non drinkers 

and heavy drinkers had vaccination rates that were lower than those among drinkers. 

Those with missing data on alcohol consumption also had slightly lower vaccination 

rates than drinkers.  

 

There were no meaningful differences in the rate of vaccination across all BMI 

categories and none of the multiplicative interaction terms were found to be 

significant. Stratification by calendar month of LMP did not materially alter the risk 

estimates (data not shown). Restriction of the study population to pregnancies 

beginning before the vaccination campaign increased the uptake rate to 26%. 

 

Discussion 

 

At 21.6%, we report low uptake of pandemic vaccine among pregnant women 

registered with UK general practices. This is markedly lower than the 40.3% uptake 

rate observed among other groups recommended for vaccination [19]. We have 

identified a number of predictors of vaccination uptake, none of which are strong 

enough to account for the extremely low uptake achieved. Uptake was highest among 

those in a clinical risk group and those living in Scotland; however uptake in these 

groups only reached 33.1% and 40% respectively. 

 

Using the GPRD for this study, we were able to provide robust estimates for predictors 

of vaccine uptake using data on over 50,000 pregnancies. Vaccination details and 

other covariates such as underlying health status were collected in routine clinical 

practice thus minimizing the likelihood of recall bias. We have described previously the 
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limitations of using the GPRD to identify predictors of pandemic vaccination [19]. 

While pregnant women in the included countries were vaccinated primarily by GPs, in 

approximately 20% of practices midwives may have administered the vaccine [20]. 

Practices are contractually obliged to ensure all vaccinations, including those 

administered by midwives, are accurately recorded in GP records [21] however where 

such recording is poor, vaccination status may have been misclassified resulting in 

underestimation of uptake rates. Missing data on smoking status, alcohol 

consumption, BMI and deprivation may have obscured associations between each of 

these variables and vaccine uptake. For example, uptake was low in women missing 

pre-pregnancy BMI data, if such women are more likely to have normal BMI (a 

plausible situation given that normal BMI is of less clinical relevance than high or low 

BMI) then uptake will have been overestimated in those with normal BMI. Such 

overestimation could have resulted in the hazard ratios comparing uptake in those 

with higher BMI to those with normal BMI not reaching statistical significance. In 

addition, it has been shown that the use of a deprivation measure aggregated at 

practice postcode level underestimates patient socioeconomic inequalities [50]. 

 

The number of births on the GPRD, as determined by our algorithm, is proportional to 

that reported in the literature [22], supporting the accuracy of pregnancy recording on 

the GPRD. Information on pregnancy start dates (dates of last menstrual periods) are 

not available for many pregnancies on the GPRD therefore the start dates of 

approximately 80% of pregnancies were defaulted to 40 weeks before delivery. 

Pregnant women’s perceptions about the pandemic and the pandemic vaccine are 

strong predictors of uptake in pregnant women [23-25]. In addition, healthcare 

provider recommendations have also been found to be predictive of uptake [23-25]. 

The GPRD does not contain data on these factors.  

 

Both our study and the English pandemic influenza vaccine uptake survey used similar 

study periods and collected data from GP practices however the vaccination uptake we 

report for English practices (19.3%) is somewhat higher than that reported by the HPA 

(14.9%) [18]. This is likely to result from either a lack of precision in our estimates or 

differences in the study period or denominators used in each study (in their report the 

HPA acknowledge that a coding error may have inflated their denominator of pregnant 

women [18]). The uptake we observed in Scotland and Wales were higher than that in 

England. Such differences in uptake may result from different implementation of the 

immunisation campaign in each country; in Northern Ireland, where the immunisation 

of pregnant women was coordinated through acute trusts, uptake was reported to be 

57.1% [26].  
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Uptake among pregnant women in other European countries varied widely with 

Netherlands achieving 63% uptake [27], while Germany [28], Spain, Hungary, Estonia 

and Slovenia [13] all reported uptake of <10%. Uptake in France [29, 30] and 

Portuga l[13] was similar to that observed in England and Wales while uptake in the 

Republic of Ireland (~33%) [13] fell between that we report here for Wales (25%) 

and Scotland (40%). It has been suggested that the high uptake observed in the 

Netherlands may reflect the high level of trust the Dutch public were reported to have 

in their government [27, 31]. With the exception of Northern Ireland and the 

Netherlands, uptake in Europe was generally lower than that reported in the USA (42-

86%) [23-25, 32, 33] and Canada (76%) [34]; this is likely to reflect the fact that 

seasonal influenza vaccination has been recommended for all pregnant women in 

these countries for a number of years while, before the pandemic, only those with 

chronic illnesses had been recommended for influenza vaccination in most European 

countries.  

 

Our finding, that uptake in clinical risk groups was much higher than that in pregnant 

women, is surprising, given that individuals in clinical risk groups and pregnant women 

were both vaccinated primarily by their GP. This difference in uptake may reflect 

concerns among pregnant women or their healthcare providers about vaccine related 

adverse pregnancy outcomes. While all individuals involved in the care of pregnant 

women were advised to recommend pandemic vaccination it is unclear to what extent 

they did; anecdotal reports suggested that British healthcare professionals were 

sceptical about the need for, and safety of the pandemic vaccine, although to our 

knowledge this has not been evaluated systematically. The difference in uptake may 

also reflect the fact that individuals in clinical risk groups have been recommended for 

seasonal influenza vaccination for many years while pregnant women have not. The 

high uptake observed in women who were both pregnant and in a clinical risk group is 

in line with this. 

 

While the UK government recommended vaccination in any trimester of pregnancy, 

our vaccination rates suggest that many pregnant women and/or GPs avoided first 

trimester exposure. First trimester uptake was particularly low in those not in clinical 

risk groups. Literature reviews have found little evidence to support first trimester 

seasonal influenza vaccination [5, 6], and the evidence supporting first trimester 

pandemic influenza vaccination is based on limited data from this and previous 

pandemics [5, 6, 35]. This paucity of evidence led many European countries not to 

vaccinate pregnant women against influenza A(H1N1)pdm09 during their first 
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trimester [13] and may also have led to the low uptake observed in the UK. Post-

marketing surveillance of pandemic vaccination campaigns has resulted in the 

publication of studies supporting the safety of influenza vaccination in any trimester of 

pregnancy [36-39]. The low uptake we report here suggests it is vital that the results 

of such studies are communicated in a clear and understandable way to pregnant 

women and their healthcare providers.  

 

Since the 2010/11 influenza season the UK government has recommended 

immunisation of all pregnant women in any trimester with seasonal influenza vaccine 

which, like the pandemic vaccines, contains the A(H1N1)pdm09 strain. A survey of 

English GP practices reported uptake of the seasonal influenza vaccine by pregnant 

women to have increased to 38% in the 2010/11 season [40]. While this is an 

improvement on the uptake we report for the pandemic vaccine in 2009/10 it is still 

well below the levels of vaccine coverage observed in other high risk groups [40]. 

Further to this, reports from the 2011/12 season suggest seasonal influenza vaccine 

uptake in pregnant women may have decreased to 27.4% [41]. While similar reasons 

for low uptake among pregnant women have been consistently identified [23-25, 27, 

32] few formal investigations of strategies to increase uptake rates have been carried 

out. The uptake observed in Northern Ireland [26] suggests the increased involvement 

of acute trusts in vaccination of pregnant women should be investigated, while a 

recent study reporting higher uptake of seasonal influenza vaccine among general 

practices in which midwives were involved in recommending and administering the 

vaccine to pregnant women suggests the increased involvement of midwives should be 

looked into further [20]. The low uptake we report here suggests that more strategies 

to increase uptake of influenza vaccine among pregnant women need to be identified, 

evaluated and implemented if influenza vaccination of pregnant women is to prove a 

successful public health intervention. 
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Abstract 

 
Introduction: Facial nerve palsy has been found to be associated with vaccination 

therefore in advance of the 2009 H1N1 pandemic the VAESCO consortium sought to 

estimate the background incidence rate of facial nerve palsy for use in post-marketing 

surveillance. 

 

Methods: A collaborative retrospective cohort study was used to estimate the 

incidence rate of facial nerve palsy in eight European databases from 1996-2008. A 

common protocol was implemented at each study site and standardised analysis 

software (Jerboa®) was used to analyse, aggregate and encrypt data. Incidence rates 

were estimated by data source, age category, calendar year and calendar month. 

Prevalent cases and recurrent events were excluded. 

 

Results: The age standardized incidence rate (per 100,000 person years) of facial 

nerve palsy was found to range from 5.33 in Sweden to 41.82 in Spain. Incidence 

rates from Sicily (IR 6.64) and Sweden (IR 5.33) were considerably lower than those 

in other sources and incidence rates from GP databases were higher than those from 

hospital databases. Incidence rates in all countries increased with age, peaking 

between the ages of 65 and 74 years. Incidence rates in Spain and Denmark increased 

over time, possibly due to registration practices in these data sources. Higher 

incidence rates were observed in winter months, most notably in BIFAP and HSD. 

 

Discussion: In this study we confirm a number of previously reported variations in 

the background incidence rate of facial nerve palsy and provide detailed, precise and 

generalisable background incidence rates suitable for use in OE analyses in several 

European countries.  
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Introduction 

 

Facial nerve palsy (FNP) is a rare condition in which paralysis or paresis of cranial 

nerve VII, the facial nerve, results in an inability to control facial muscles. The 

incidence of facial nerve palsy ranges between 11 and 60 cases per 100,000 person 

years (PY) [1]. Trauma, stroke, malignancy and Lyme disease are among a number of 

the conditions known to cause facial palsy, however 75-80% of cases are routinely 

classified as idiopathic facial nerve palsy, a condition commonly referred to as Bell’s 

palsy [2]. While Bell’s palsy is by definition idiopathic, vascular, infectious and 

immunological aetiologies have all been suggested as potential causes.  Associations 

with infection, and pathological similarities between facial nerve palsy and other 

neurological conditions such as Guillain-Barré syndrome, have led to a growing belief 

that many idiopathic cases of facial paralysis may have an autoimmune aetiology [2]. 

Consistent with this theory a number of sources have described the onset of facial 

palsy following immunisation [3-5].  

 

In 2004, a cluster of 46 case reports in Switzerland, describing Bell’s palsy occurring 

as an adverse event following inactivated intranasal influenza immunisation, led public 

health authorities to initiate a controlled epidemiological study [6]. This study verified 

the reported signal using both case control and case series analyses: the risk of Bell’s 

palsy in vaccinated cases was estimated to be at least 19 times that in the 

unvaccinated. While a causal mechanism for this association has not yet been 

established it has been suggested that the E. coli heat labile enterotoxin adjuvant 

used in the inactivated intranasal vaccine may have provoked the adverse events. In 

the same year a study using Vaccine Adverse Event Reporting System (VAERS) data 

found that between 1991 and 2001 the proportion of spontaneous adverse events 

reported for Bell’s palsy was higher for inactivated intramuscular influenza vaccine 

than for all other vaccines combined (proportional reporting ratio = 3.78) [7]. 

Controlled epidemiological studies carried out in electronic healthcare databases have 

not supported this finding, identifying a relative incidence of Bell’s palsy in the 3 

months after influenza vaccination of 0.92 (0.78 – 1.08) in the UK using an SCCS 

study design [8] and an odds ratio of Bell’s palsy in the 28 days after influenza 

vaccination of  0.70 (CI95 0.2 – 2.8) in the USA using a case centred study design [9].  

The evidence to date therefore suggests that while an association may have existed 

with the vaccine used in Switzerland, other influenza vaccines do not appear to be 

associated with Bell’s palsy.  

 

The inability to confirm the association observed in the VAERS data demonstrates the 

limitations of hypotheses generated using disproportionality analyses of spontaneous 

reports and highlights the need for verification of safety signals using controlled 
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epidemiological studies. However, before initiating expensive and lengthy 

epidemiological studies, safety signals must be thoroughly assessed in order to make 

preliminary regulatory decisions and establish whether further study is needed. 

Observed versus Expected (OE) analyses form a key aspect of any such assessment. 

OE analyses compare the number of events observed in individuals exposed to a 

certain drug or vaccine to the number expected based on the normal, or background 

incidence rate. The ratio of observed to expected events for the drug or vaccine of 

interest is then often compared to that for other drugs or vaccines to assess whether 

it is disproportionately high. The background incidence rates used to calculate the 

expected numbers of events for OE analyses can be obtained from the literature or, 

where suitable rates cannot be identified in the literature, can be estimated using de 

novo studies. 

 

In advance of the 2009 H1N1 pandemic vaccination campaign, regulatory authorities 

identified several neurological and/or autoimmune adverse events of specific interest 

(AESI) [10-12]. Amidst concern that existing background rates for many of these 

events lacked the generalisability, detail and precision needed for use in OE analyses 

[10-12], the VAESCO consortium designed and carried out a study investigating the 

background rate of several AESI using eight healthcare databases based in seven 

different European countries. This manuscript describes the background incidence rate 

of facial nerve palsy calculated in this study.  

 

Methods 

 

A collaborative retrospective cohort study was used to estimate the incidence rate of 

facial nerve palsy in eight European databases from 1996-2008 (Table 4.11). A 

common protocol was implemented at each site and standardised analysis software 

(Jerboa®) was used to analyse, aggregate and encrypt data. 

 

Table 4.11 Types of database and coding library used in the estimation of the 

background incidence rate of facial nerve palsy. 

Country Data source Coding library 

GP - medical records 

Netherlands IPCI ICPC 

Spain BIFAP ICPC 

United Kingdom (UK) GPRD READ 

Italy (GP) HSD ICD9-CM 

Hospital - inpatient and/or outpatient diagnoses 

Italy (Hospital) Sicilian Regional Database (SRD) ICD9-CM 

Sweden MBR/NHR ICD10 

Denmark DCRS/NHDR ICD10 

Finland  HILMO ICD10 
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The study population comprised all individuals who were registered within one of the 

contributing databases at any time between 01 January 1996 and 31 December 2008 

and for whom a valid start and end of follow-up could be defined. Follow-up began one 

year after the person was first registered in the database or one year after the start of 

data collection, whichever was latest. Follow-up ended on the date of death, 

transferring out of the study population or the end of data collection, whichever was 

earliest. Sex and date of birth were extracted for each patient, where exact birthdates 

were not available midpoints (i.e. 30 June) were used. Based on these criteria, 

Jerboa® compatible files containing the entire study population in a data source were 

created at each study site.  

 

The databases in the study use one of four coding schemes to describe events: the 

International Classification of Diseases (ICD9-CM and ICD10); the International 

Classification of Primary Care (ICPC); and the READ Code classification (Table 4.11). 

Owing to differences between these coding schemes and the use of free text in most 

medical record databases, facial nerve palsy related terms were mapped according to 

a common terminology system, the Unified Medical Language System® (UMLS®). The 

UMLS is a biomedical terminology integration system handling more than 150 

terminologies including the four used in this study. The mapping process was 

supplemented by a manual comparison and check of the code lists; the final code lists 

created using this methodology are shown in Table 4.12. All events recorded with one 

of these codes during the study period were identified in each database and Jerboa® 

compatible files containing information on these events were created at each study 

site.  

 

At each study site, the population and event files were entered into Jerboa® to 

calculate age, sex, year and calendar month specific incidence rates of facial nerve 

palsy. 95% confidence intervals were calculated assuming a normal approximation to 

the binomial distribution. Age standardized rates were calculated based on the age 

distribution of the world population as presented by the WHO [13]. All subjects with 

an event before the start of follow-up were considered prevalent cases and were 

excluded. Only first events in an individual were considered. Sensitivity analyses 

compared the impact of disease free run-in periods of 0 years, 1 year and 3 years to 

define incident events.  

 

Aggregated national population level data were used to estimate denominators in 

Finland. As a result, the Finnish data was not compatible with Jerboa®. The Finnish 

data was therefore analysed and anonymised in a similar fashion to Jerboa®, but using 

software other than Jerboa. 
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Table 4.12 Clinical codes used to identify facial nerve palsy cases 

UMLS CONCEPT 
Coding library 

Read code ICD10 ICD9CM ICPC 

Bell’s palsy 2BR6.00 G51.0 351.0 N91 

Facial Hemiatrophy - - - - 

Facial Nerve Diseases F31..00 
F310.00 
F31y.00 
F31yz00 
F31z.00 

G51.9 351.9 - 

Facial weakness/facial droop* -  781.94 - 

*Not a UMLS concept 

 

 

 

 

 

 

Results 

The 8 databases contributed a total of 264,050,313 PY of data. The amount of person 

time contributed by each data source is shown in Figure 4.5, broken down by age 

category, season and calendar year. Most person time was contributed between the 

ages of 20 and 60 years with the amount of person time decreasing after 

approximately 60 years of age in all databases. In Italy (GP) no person time was 

contributed in those aged <10 and in Sweden the amount of person time contributed 

in those aged <5 was low. The amount of person time contributed in Spain increased 

each year up to 2007, after which it dropped. The large drop in overall person time 

observed in 2008 can be attributed to the lack of data from Sweden for this year. 

 

Table 4.13 reports age standardised incidence rates of FNP for each country while 

figure 4.6 depicts the incidence rate of FNP in each database by age group, calendar 

year and calendar month. Numerators, denominators, incidence rates and 95% 

confidence intervals on which Figure 4.5 and 4.6 are based are presented in Appendix 

2. Rates in GP medical record databases were generally higher than those in hospital 

discharge databases; Finland was the only hospital discharge database with rates as 

high as the GP medical record databases. The rate of facial nerve palsy in all 

databases increased from birth, peaking at approximately age 65 -74 years and then 

declining. The increase in incidence rates over time in Spain is likely to reflect 

improvements in the validity of data as opposed to true changes in the incidence of 
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facial nerve palsy (Dr Miguel Gil Garcia, BIFAP project coordinator – personal 

communication) therefore Spanish rates that are not stratified by calendar year may 

underestimate the true rate in the Spanish data source. The reason for the increasing 

incidence in Denmark is not clear but may be due to a similar reason. In Spain and 

Italy (GP) incidence rates were higher in winter than in summer months. This was also 

observed in other databases, although the differences were not as pronounced. No 

notable differences in the incidence rates by sex were observed (Appendix 2). The 

rates presented above used a disease-free run in period of one year; the use of 

disease-free run in periods of 1 and 3 years did not materially alter the results (data 

not shown). 

 

 

 

 

 

 

 

 

Table 4.13 Age standardised incidence rates of facial nerve palsy (per 100,000 PY) in 

each data source and their 95% confidence intervals. 

Country 
Total  

IR CI95 
 

GP - medical records 

Netherlands 21.88 (12.81-30.94) 

Spain 41.82 (37.08-46.56) 

UK 27.22 (24.85-29.59) 

Italy (GP) 27.34 (19.12-35.56) 

Hospital - inpatient and/or outpatient diagnoses 

Italy (Hospital) 6.64 (5.48-7.79) 

Sweden 5.33 (4.67-5.99) 

Denmark 15.11 (13.93-16.28) 

Finland 23.39 (20.84-25.95) 
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Figure 4.5 Person time available for background rate calculation in each data source 

by age (A), calendar month (B) and calendar year (C). Data from Denmark and 

Sweden are absent from Figure 4.5(B) as rates were not stratified by calendar month 

in these data sources 
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Figure 4.6 Age(A), calendar month (B) and calendar year (C) specific incidence rates 

by data source. Data from Denmark and Sweden are absent from Figure 4.5(B) as 

rates were not stratified by calendar month in these data sources 
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Discussion 

 

In this study we confirm a number of previously reported variations in the background 

incidence rate of facial nerve palsy and provide detailed, precise and generalisable 

background incidence rates suitable for use in OE analyses in several European 

countries. Age standardised incidence rates of facial nerve palsy ranged from 

5.33/100,000 PY in Sweden to 41.82/100,000 PY in Spain. 

 

The study used populations from 8 geographically diverse data sources, providing a 

total study population of more than 264 million PY of data. The use of a common 

protocol removed much of the heterogeneity in results that might normally be 

introduced by trivial differences in study definitions, thereby overcoming a problem 

often encountered when comparing rates from different sources. While this approach 

improved the comparability of our rates, substantial heterogeneity remained, most 

notably the difference in rates between GP databases and hospital based databases. 

The accuracy of incidence rates estimated from GP and hospital databases is 

dependent on the diagnosis under study. The databases using hospital data may 

underestimate the rate of facial palsy as they will miss cases that do not result in 

hospital admission; it has been suggested that hospital referral rates might be as low 

as 20% in some countries [14]. In contrast the vast majority of facial nerve palsy 

cases are likely to be seen by their GP and have their diagnosis or symptoms recorded 

in their GP’s notes. However, rates in the GP databases may include events recorded 

as working diagnoses that were not subsequently confirmed resulting in 

overestimation of the background incidence rate; this is less likely in hospital 

databases as the diagnosis will usually be complete on discharge. Overall incidence 

rates reported for hospital based databases are expected to underestimate the true 

incidence. The exclusion of recurrent events, the inclusion of secondary FNP events 

and the underestimation of Spanish (and possibly Danish) rates due to the inclusion of 

data from years with poor quality should be taken into account in any interpretation of 

our rates. 

 

As we include all cases of facial nerve palsy, regardless of their aetiology, some of the 

geographical variation observed in incidence rates might result from variation in 

aetiological factors. For example the high rate observed in those aged >50 is due, at 

least in part, to facial nerve palsy occurring as a result of stroke. Similarly 

geographical variation in the epidemiology of viral agents such as Lyme disease may 

explain differences. 2-25% of facial nerve palsy cases in some cohorts have been 
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identified as having Lyme disease [19], the incidence of which varies across and within 

European countries [20].  

 

With the exception of Sweden, the rates we reported for Northern European data 

sources were similar to those reported in the literature [1]. The rates we reported for 

the two Italian databases were considerably lower than those previously reported in 

Sicilian (52.8) [15] and Roman Health districts (53.3) [16], however these studies 

included cases referred from areas outside the health districts which may have 

resulted in underestimation of the true denominator; in the Italian GP database the 

denominator is likely to be more accurate. The rate in Spain is higher than that 

previously reported in the same area of Spain; however consistent with VAESCO data, 

this lower rate was observed in a hospital database. The seasonal trends observed, 

particularly in Spain and Italy (GP), are in line with previous studies reporting a higher 

incidence of Bell’s palsy in colder seasons. Excluding the Italian hospital based rates, 

the overall geographical distribution of our rates provides weak support for an 

association between facial nerve palsy and warmer countries [1] or more arid climates 

[17]. 

 

It has been suggested that the dissemination of rates and expected numbers of 

background events in advance of introducing a new drug or vaccine on the market 

would aid the interpretation of safety data by both regulatory authorities and the 

public [10, 18]. Our results suggest such information must be provided in enough 

detail to allow OE analyses to account for variability in the rates. In Table 4.14 we 

present the number of facial nerve palsy events that could be expected to occur in a 

120 day period following vaccination based on our age specific rates, if vaccination did 

not alter the risk of facial nerve palsy.  

 

While passive surveillance is moving towards more advanced signal detection 

techniques, it is likely that OE-type analyses, and therefore background incidence 

rates, will continue to play an important role in the assessment of drug and vaccine 

safety signals. The incidence rates presented here offer a detailed breakdown of the 

incidence of facial nerve palsy in Europe across time, age, season, country and data 

source. Preliminary versions of these rates have been used by the EMA in the post-

marketing surveillance of the H1N1 vaccination campaign [12] and should prove 

particularly useful in assessing the post marketing safety of newly introduced 

intranasal vaccines. 
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Abstract 

 

Objective: To assess the association between influenza A(H1N1)pdm09 vaccine and 

Guillain-Barré syndrome. 

 

Design: Case-control study. 

 

Setting: Five European countries. 

 

Participants: 104 patients with Guillain-Barré syndrome and its variant Miller-Fisher 

syndrome matched to one or more controls. Case status was classified according to 

the Brighton Collaboration definition. Controls were matched to cases on age, sex, 

index date, and country. 

 

Main outcome measures: Relative risk estimate for Guillain-Barré syndrome after 

pandemic influenza vaccine. 

 

Results: Case recruitment and vaccine coverage varied considerably between 

countries; the most common vaccines used were adjuvanted (Pandemrix and 

Focetria). The unadjusted pooled risk estimate for all countries was 2.8 (95% 

confidence interval 1.3 to 6.0). After adjustment for influenza-like illness/upper 

respiratory tract infection and seasonal influenza vaccination, receipt of pandemic 

influenza vaccine was not associated with an increased risk of Guillain-Barré syndrome 

(adjusted odds ratio 1.0, 0.3 to 2.7). The 95% confidence interval shows that the 

absolute effect of vaccination could range from one avoided case of Guillain-Barré 

syndrome up to three excess cases within six weeks after vaccination in one million 

people. 

 

Conclusions: The risk of occurrence of Guillain-Barré syndrome is not increased after 

pandemic influenza vaccine, although the upper limit does not exclude a potential 

increase in risk up to 2.7-fold or three excess cases per one million vaccinated people. 

When assessing the association between pandemic influenza vaccines and Guillain-

Barré syndrome it is important to account for the effects of influenza-like illness/upper 

respiratory tract infection, seasonal influenza vaccination, and calendar time.
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Introduction 

 

During the 2009 influenza A (H1N1) pandemic, new monovalent adjuvanted and non-

adjuvanted pandemic influenza A (H1N1) vaccines were introduced in Europe. 

Documented immunogenicity and safety was in line with the CHMP Note for Guidance, 

but safety data were limited [1-8]. Vaccination campaigns started in autumn 2009 at 

the peak of the pandemic in Europe. 

 

A concern with the pandemic influenza A (H1N1) 2009 vaccine was the possible 

occurrence of neuroimmunological adverse events, including Guillain-Barré syndrome. 

A more than sevenfold increased risk of Guillain-Barré syndrome was observed in the 

6 weeks following receipt of the swine-origin influenza A (H1N1) subtype A/NJ/76 

vaccine applied in the United States in 1976 [9], when the vaccination campaign had 

to be discontinued abruptly. Subsequent prospective surveillance studies [10;11] and 

retrospective epidemiological studies [12;13] on seasonal influenza vaccines used in 

1978, 1979, 1980, 1992, 1993, and beyond showed no or modest increases (up to 

twofold) in risk of Guillain-Barré syndrome. Even though the studies repeatedly 

showed risk estimates well below the sevenfold increase of 1976, they do not provide 

reassurance that there is no increase in risk after seasonal influenza vaccination. 

Small increases might surface only during mass vaccination campaigns. 

 

Guillain-Barré syndrome is an acute polyneuropathy, which, in Europe, mostly 

presents as acute inflammatory demyelinating polyradiculoneuropathy leading to 

progressive symmetrical paresis [14-16]. Guillain-Barré syndrome is fatal in 3-10% of 

cases and leads to disability for more than six months in 20% [17]. The risk increases 

with age; reported incidence rates range between 0.4 and 4 per 100,000 person years 

[18]. 

 

The pathogenesis of the syndrome is not fully understood, but it is usually preceded 

by specific gastrointestinal and respiratory infections [21]. Some infections might 

induce the production of cross reactive antibodies to neural gangliosides [22], which 

cause inflammatory neural damage. In 2008, Nachamkin et al reported that the 1976 

influenza A (H1N1) vaccine was capable of inducing cross reactive anti-GM1 in mice, 

supporting a causal relation between the vaccination and Guillain-Barré syndrome 

[23]. 

 

To date the role of influenza vaccinations as a trigger in Guillain-Barré syndrome 

remains controversial. Two recent studies from the United Kingdom found no 
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supporting evidence for a causal relation but rather identified influenza-like illness as a 

strong risk factor [21;24]. The results suggested a protective effect of seasonal 

vaccination, possibly through the prevention of influenza-like illness [21]. 

 

Prospective monitoring of vaccine safety is essential in maintaining public trust in 

vaccination campaigns [25]. This and the issues around Guillain-Barré syndrome in 

1976 led the European Centre for Disease Prevention and Control (ECDC) to 

commission a prospective evaluation of any association between pandemic influenza 

vaccines and Guillain-Barré syndrome. 

 

Methods 

 

Setting 

 

The VAESCO (Vaccine Adverse Events Surveillance and Communication) consortium 

conducted a distributed case-control study. VAESCO is a growing network of 

organisations (public health institutes, regulatory agencies, and academic research 

centres) in Europe dedicated to improving the monitoring of safety of vaccines after 

licensing and was initiated by the European Centre for Disease Prevention and Control. 

Centres in Denmark, France, the Netherlands, Sweden, and the UK participated in this 

study. The respective databases captured a total source population of 50 million. All 

centres worked according to a common protocol with a standardised case definition 

and data collection form. Data were entered locally through a common electronic data 

entry system. At each centre, transformations were carried out using a standardised 

JAVA based program (Jerboa version 2.6.0, Erasmus University Medical Center, 

Rotterdam, Netherlands), which was verified using SAS [26]. Only completely 

anonymous and de-identified datasets with no individual dates of disease or exposure 

were shared for data pooling and centralised analysis. Consent forms, original data, 

and Jerboa input files were kept locally. Because of differences in healthcare structure 

and availability of registries, the type of source population from which cases and 

controls were recruited and the type of data sources differed by country (see table 

4.15). The coordinating centre closely verified and queried data quality. The 

coordinating centre and the national lead investigators ensured that, as far as 

possible, information was collected in the same way from cases and controls. The 

study period ran between 1 November 2009 and 30 March 2010. 
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Cases and controls 

 

For this study we included cases of Guillain-Barré syndrome and its variant Miller-

Fisher syndrome. Each case was validated according to the standardised case 

definition of Guillain-Barré syndrome developed by the Brighton Collaboration for use 

in immunisation safety studies [14], using information obtained from the reporting 

neurologist (France, Sweden, and Netherlands) or from data in medical charts/records 

(UK, Denmark). All cases fulfilling the case definition for Guillain-Barré syndrome or 

Miller Fisher syndrome level 1 to 3 were included as well as any other cases with a 

diagnosis confirmed by a neurologist. A sensitivity analysis was conducted in which we 

restricted the cases to those meeting Brighton Collaboration definition levels 1-3 only. 

 

The index date was the earliest date of first symptoms or diagnosis of Guillain-Barré 

syndrome. Table 4.15 summarises country specific approaches to identification of 

cases and controls. Each case was matched to up to 25 controls on age (plus or minus 

one year), sex, index date, and country. 

 

Exposure classification 

 

The primary exposure of interest was pandemic influenza vaccination during a risk 

window of one day to 42 days before the index date, reflecting the 6 week risk period 

observed in 1976. Exposure was further classified according to the brand of vaccine 

(Pandemrix, Focetria, Celvapan, Panenza, or other) and dose (first or second). 

Vaccination occurring more than six weeks before was classified as past exposure [9]. 

Unknown vaccination dates were categorised separately. Data on pandemic influenza 

vaccination were obtained from vaccine registries in Denmark and France, from 

general practitioner records in the UK and the Netherlands, and through structured 

interviews in Sweden. 

 

Control for confounding 

 

Information on the following covariates was collected with a standardised data 

collection form in each country: history of Guillain-Barré syndrome, Epstein-Barr virus 

infection, malignancy, immunosuppression, autoimmune disorder, gastrointestinal 

infections, influenza-like illness or upper respiratory tract infection, and other 

vaccinations (especially seasonal influenza vaccination). For influenza-like illness or 

upper respiratory tract infection, gastrointestinal infection, and seasonal influenza 
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vaccination, the risk window comprised the six weeks before the index date, not 

including the index date itself. Seasonal influenza vaccination (2009-10 season) more 

than six weeks before the index date was classified as past exposure. Information on 

covariates was retrieved from general practice records in the UK and the Netherlands, 

from hospital medical records in France, and by structured interview in Sweden. In 

Denmark, information on covariates was obtained through chart review of the cases 

only and therefore could not be used for statistical adjustments. 

 

Statistical analysis 

 

Matched odds ratios and 95% confidence intervals were calculated with multivariate 

conditional logistic regression. “No vaccination” in the six weeks before the index date 

served as the reference category. Variables considered for inclusion in the final model 

were those that were associated with Guillain-Barré syndrome in the univariate 

matched analysis at p<0.1; they were retained in the final model if they changed the 

point estimate of the association between the pandemic influenza vaccine and Guillain-

Barré syndrome by more than 10% [27]. We conducted age stratified analyses to 

estimate the association with pandemic influenza vaccination in different age groups. 

We explored interactions between pandemic influenza vaccination and the main 

confounders by applying population restrictions but had insufficient power for 

statistical testing because of the low prevalence of exposure. 

 

We carried out sensitivity analyses regarding disease and misclassification of exposure 

to pandemic influenza vaccination to assess robustness of the results. Exposure 

misclassification was addressed with three approaches: with all people with unknown 

dates of vaccination considered as exposed; with all people with unknown dates of 

vaccination considered as unexposed; and with all exposures more than six weeks 

before classified as non-exposure. 

 

Risk estimates across countries were pooled with a meta-analytical approach to 

account for the differences in exposure prevalence. We used a random effects model 

to account for heterogeneity between countries [28]. For all analyses significance was 

accepted at a two sided p<0.05. Analyses were done in SPSS 15.0 for windows 

(release 15.0, 2006, SPSS, Chicago, IL). 
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Results 

 

Study population 

 

From a source population of about 50 million in the five countries, 154 cases of 

Guillain-Barré syndrome were identified. Of these, 104 could be matched to one or 

more controls. Many unmatched cases were from France, where timely recruitment of 

controls was problematic. Comparison of the number of patients with Guillain-Barré 

syndrome in hospital claims registries in the Netherlands suggested around 50% 

under-reporting of cases omitted for the study. The uptake of pandemic influenza A 

(H1N1) 2009 vaccine in excluded cases was similar to that in the included cases. 

 

Most cases were men, aged 46-61 (table 4.16) and had Brighton Collaboration case 

classification level 1 to 3. In countries with retrospective chart or medical record 

review (Denmark and UK) the available information did not always allow for Brighton 

Collaboration classification, mostly because information regarding symptoms and 

diagnostic processes was not recorded to the required level of detail and could not be 

retrieved retrospectively. Acute inflammatory demyelinating polyradiculoneuropathy 

was the most common type of Guillain-Barré syndrome. Six patients (5.8%) had a 

disability score of 5 (ventilator treatment required) or 6 (fatal). 

 

Chronic comorbidity was rare; malignancy and immunocompromise were the most 

common comorbid conditions, but these were no more prevalent among cases than 

controls. Acute infections in the six weeks leading up to the index date were more 

common and occurred mostly in cases (table 4.17). Most infections were influenza-like 

illness/upper respiratory tract infections. They were strongly associated with Guillain-

Barré syndrome, with odds ratios ranging from 4.9 (95% confidence interval 1.6 to 

15.5) in the UK to 19.3 (5.9 to 63.4) in the Netherlands. 

 

Vaccinations 

 

Pandemrix was the most widely used pandemic influenza A (H1N1) 2009 vaccine in 

the study population as this was the main brand used in Denmark, Sweden, and the 

UK. In the Netherlands Focetria was the predominant vaccine, but Pandemrix was 

used in children aged below 6. Other brands were used only rarely. Vaccine uptake 

was highest in the Netherlands and Sweden and was much lower (<10% of study 

population) in the UK, Denmark, and France (table 4.18). In each country, exposure 

to the vaccine in unmatched cases was similar to that in matched cases. Exposure 
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prevalence among unreported cases in the Netherlands was similar to that of cases in 

the study. 

 

Seasonal influenza vaccination coverage in the Netherlands was similar to pandemic 

influenza vaccination coverage but consistently occurred earlier and therefore was 

more often classed as past exposure (table 4.18). In the UK seasonal influenza 

vaccination was more common than pandemic influenza vaccination, and there was 

evidence of an increased risk of Guillain-Barré syndrome with recent exposure to 

seasonal influenza vaccination (odds ratio 6.3 (1.8 to 22.0) with no adjustment for 

influenza-like illness/upper respiratory tract infections; 5.1 (1.4 to 18.6) with 

adjustment). In Sweden the recorded uptake of seasonal influenza vaccination was 

low and potentially incomplete. For Denmark and France, no information on seasonal 

influenza vaccination was available for controls. No cases were exposed to other types 

of vaccination in the six weeks before the index date. 

 

Guillain-Barré syndrome and pandemic influenza vaccination 

 

Unadjusted matched analyses resulted in risk estimates for Guillain-Barré syndrome 

with pandemic influenza vaccination that ranged from 1.3 to 2.5 in the UK, Sweden, 

and Netherlands (table 4.20). The risk estimate in Denmark, based on two exposed 

cases, was 9.5 (1.7 to 53). Both cases had extensive comorbidity but no influenza-like 

illness/upper respiratory tract infections or gastrointestinal infections recorded in the 

charts. We could not calculate an estimate for France because there was only one 

exposed case and no exposed controls. There was no difference in risk between 

Pandemrix and Focetria, although the products could not be compared within 

countries. Two doses of pandemic influenza vaccination as provided in the Netherlands 

seemed to be associated with a higher risk of Guillain-Barré syndrome (table 4.19). 

 

The increase in risk of Guillain-Barré syndrome associated with pandemic influenza 

vaccination in the unadjusted analyses disappeared when we adjusted the results for 

influenza-like illness/upper respiratory tract infections and seasonal influenza 

vaccination. Adjusted risk estimates for the Netherlands and the UK, where 

information on both variables was available, were 0.6 (0.1 to 4.4) and 0.7 (0.1 to 

4.1), respectively (table 4.19). 

 

The test for homogeneity in effect estimates across the four countries was not 

significant (P=0.40), but, because of lack of power of the test and the differences 

observed, we used a random effects model for the weighted pooling. The crude 
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matched risk for Guillain-Barré syndrome was 2.8 (1.3 to 6.0). The random effects 

risk estimate adjusted for seasonal influenza vaccination and influenza-like 

illness/upper respiratory tract infections for the Netherlands, UK, and Sweden was 1.0 

(0.3 to 2.7, P=0.81 for homogeneity). As Swedish data did not capture seasonal 

influenza vaccination well and might be subject to selection and recall bias, we 

conducted a sensitivity analysis without Sweden. The pooled adjusted odds ratio was 

0.7 (0.2 to 2.5) (table 4.20). Denmark could not be included in the adjusted analyses 

because information on influenza-like illness/upper respiratory tract infections and 

seasonal influenza vaccination was unavailable for the controls. 

 

Restricted and stratified analyses 

 

Among individuals without influenza-like illness/upper respiratory tract infections, the 

risk of Guillain-Barré syndrome was higher in vaccinated than unvaccinated 

individuals, however this association  was non-significant, unstable and shrank on 

adjustment for seasonal influenza vaccination (table 4.20). Influenza-like illness/upper 

respiratory tract infections had a strong confounding effect in people without seasonal 

influenza vaccination. As recorded seasonal influenza vaccination in Sweden was 

possibly incomplete we could explore confounding only by influenza-like illness/upper 

respiratory tract infections, which again was substantial (matched odds ratio for 

Swedish population without influenza-like illness/upper respiratory tract infections was 

1.3, 0.2 to 8.1).  

 

Cases in children were rare (9%, table 4.16). Most cases were in people aged 19-59 

(n=57, 55%), in whom uptake of pandemic influenza A (H1N1) 2009 vaccine was low 

(exposure in controls 4%). Uptake of the vaccine was higher in those aged over 60 

(10% in controls). Risk estimates for those aged 19-59 and 60 and over did not differ 

significantly (4.9 (1.3 to 17.9) v 2.7 (0.8 to 9.1)). Below the age of 19 the risk 

estimate seemed high but this was unstable because of too few exposed people (one 

case and two controls). 
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Sensitivity analyses 

 

We carried out a number of sensitivity analyses to assess the impact of 

misclassification of the outcome and exposure as well as residual confounding. 

Restricting the cases to Brighton Collaboration case classification levels 1 to 3 did not 

materially alter the risk estimates (pooled random effects adjusted odds ratio 0.9, 0.2 

to 4.6). Extending the risk window for pandemic influenza A (H1N1) 2009 vaccine to 

any time before the index date reduced this to 0.7 (0.3 to 1.9). Considering people 

with missing dates of pandemic influenza vaccination as exposed in the risk window 

reduced the estimate to 0.8 (0.3 to 2.3) as data were missing mostly in controls. 

Considering them as unexposed had no effect on the estimate. Excluding Sweden (the 

only country with interview based assessment of exposure and covariates) from the 

pooled analyses changed the adjusted pooled random effects estimate from 1.0 (0.3 

to 2.7) to 0.7 (0.2 to 2.5) (table 4.20). 

 

Discussion 

 

Principal findings 

 

In a source population of around 50 million people in Europe we could not find any 

association between adjuvanted pandemic influenza A (H1N1) 2009 vaccine and 

Guillain-Barré syndrome (adjusted odds ratio 1.0, 95% confidence interval 0.3 to 2.7). 

The increased risk in the unadjusted analyses disappeared when we adjusted for the 

apparent strong confounding of influenza-like illness/upper respiratory tract infections  

and seasonal influenza vaccination. Based on the 95% confidence interval for the 

adjusted odds ratio it is unlikely that the relative risk is above 2.7. Thus it is unlikely 

that there would be more than one excess case of Guillain-Barré syndrome per 

340,000 vaccinated people (or three per million) given a risk window of six weeks and 

a background incidence rate of 1.5 per 100,000 person years. 

 

The effects of adjustment for seasonal influenza vaccination were strong but differed 

between countries, which could be explained by differences in vaccination strategies. 

In the Netherlands the population targeted for pandemic influenza A (H1N1) 2009 

vaccine overlapped largely with the population targeted for seasonal influenza 

vaccination, whereas in the UK it only partially overlapped as not all older people were 

targeted for pandemic influenza A (H1N1) 2009 vaccination. In Sweden, pandemic 

influenza A (H1N1) 2009 vaccine was made available to the entire population, but 
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there was under-reporting of seasonal influenza vaccination so that we could not 

appropriately adjust for it. 

 

Relation to other studies 

 

The VAESCO consortium is one of the first groups to provide data on the association 

between pandemic influenza A (H1N1) 2009 vaccines and Guillain-Barré syndrome 

with substantial power and mostly adjuvanted vaccines. Our results are comparable 

with those of a study investigating the risk of Guillain-Barré syndrome with non-

adjuvanted pandemic influenza A (H1N1) 2009 vaccine in the US, which showed an 

age adjusted rate ratio of 1.77 (1.12 to 2.56) [29]. In the US Vaccine Safety Datalink 

no increased risk of adverse events was identified after administration of 1,195,552 

doses of non-adjuvanted vaccine to people aged under 18 and 4,773,956 doses to 

adults [30]. Those studies made no statistical adjustment for influenza-like 

illness/upper respiratory tract infections and seasonal influenza vaccination. 

 

Influenza-like illness/upper respiratory tract infections are a recognised risk factor for 

Guillain-Barré syndrome [16], as confirmed in our study. The association with 

influenza-like illness shown previously in the UK General Practice Research Database 

was stronger (18.0 (7.5 to 46.4) for influenza-like illness and 5.2 (3.5 to 7.6) for 

acute respiratory tract infections) than in our study (4.9 (1.6 to 15.5) for influenza-

like illness/upper respiratory tract infections and predominantly comprising upper 

respiratory tract infections) [21]. 

 

Several vaccines have been associated with Guillain-Barré syndrome [31-33], but 

controversy remains for the influenza vaccines [9;12;13;20;34;35]. A recent study 

found no association between seasonal influenza vaccination and Guillain-Barré 

syndrome [24], whereas our study showed an increased risk. Different circumstances 

and differences in study design could explain this discrepancy. The previous study was 

a self controlled case series, had differential case verification, and used data up to 

2005. In 2009, during the study period of the present study, seasonal influenza 

vaccinations were supplied while the pandemic was coming to its peak. As in most 

countries pandemic influenza vaccines became available only after the seasonal 

vaccination campaign, people with influenza symptoms might have had a higher 

uptake of seasonal influenza vaccination. If there was under-reporting of influenza-like 

illness in the General Practice Research Database, because patients were discouraged 

to visit the general practitioner for such symptoms in the UK in 2009, seasonal 

influenza vaccination could therefore be a proxy for influenza-like illness. This could 
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explain why the effect of seasonal influenza vaccination was higher than expected in 

the General Practice Research Database. 

 

Strengths and weaknesses 

 

By combining data from several European countries we showed consistency of the risk 

estimate across countries and we could increase the sample size by pooling data that 

were collected, transferred, and analysed in a standardised way, reducing 

heterogeneity between study sites. By pooling through meta-analysis we accounted 

for population size and differences in exposure prevalence [28]. Moreover, the 

differences in data collection between countries allowed us to establish the impact of 

potential biases. 

 

Because this study was conducted in a pandemic situation it also has limitations, 

especially given the increased awareness of a potential increase in the risk of Guillain-

Barré syndrome associated with pandemic influenza vaccination. As a consequence, 

people at increased baseline risk (such as those with a history of the syndrome) might 

be less likely to have received the vaccine and there could have been over-reporting 

or selective inclusion of exposed people with Guillain-Barré syndrome in the 

participating countries. 

 

In the Netherlands there was under-reporting of cases, but verification against 

objective claims data suggested this was non-differential with regards to exposure. In 

Sweden and France, there were substantial delays in inclusion of cases, and 

selectiveness could not be fully assessed as data on non-included patients were not 

available. In the UK and Denmark, patient consent was not required, which should 

reduce the likelihood of differential under-reporting. This assumption, however, could 

not be verified with the available data. A priori we had assumed that any selection 

would work in the direction of including more exposed cases as many physicians were 

aware of the potential risk. The latter would have resulted in an overestimated risk, 

which does not seem to have affected our study as we did not find an increased risk. 

 

Misclassification of the timing of pandemic influenza A (H1N1) 2009 vaccine, as 

reflected by the amount of missing information on vaccination, occurred mostly in 

controls, suggesting more accurate collection of data for cases, especially in Sweden. 

Sweden was the only country in which exposure was collected by interview rather than 

a registry, which could have introduced recall bias. Sensitivity analyses addressing this 
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particular issue showed that complete information on all dates would have resulted in 

even lower risk estimates. 

 

We addressed important confounders by matching (age, sex, calendar time, and 

country) and by adjusting in a multivariate analysis. Adjustment for influenza-like 

illness/upper respiratory tract infection and seasonal influenza vaccination had strong 

effects on the risk estimates and caused the pooled estimate to reduce from 2.8 to 

1.0. Both factors were positively associated with pandemic influenza vaccination and 

also with Guillain-Barré syndrome. In particular seasonal influenza vaccination and 

pandemic influenza vaccination were strongly associated with each other and 

adjustment for seasonal vaccination had the most pronounced effect on the effect 

estimate, as shown in table 4.19, both in the UK and the Netherlands. As argued 

above, seasonal influenza vaccination could be a proxy for being at high risk for 

complications associated with influenza or for having influenza symptoms as the 

seasonal vaccination was supplied at the beginning of the pandemic when there was 

fear of the consequences and the pandemic influenza vaccination was not yet 

supplied. 

 

Residual confounding will exist for the countries where information on influenza-like 

illness/upper respiratory tract infection or seasonal influenza vaccination was (partly) 

unavailable, such as in Denmark, Sweden (seasonal vaccination), and France. 

Differential recording of risk factors for Guillain-Barré syndrome cannot be ruled out 

and hence more information regarding these risk factors might have been available for 

cases than for controls, especially if cases were recruited through neurologists. This 

would have resulted in an underestimated risk. Recall bias in the Swedish data cannot 

be ruled out as information was gathered from cases and controls by interview. In the 

UK information on covariates was obtained similarly for cases and controls, showing 

slightly less impact of influenza-like illness/upper respiratory tract infection, and the 

adjusted risk estimate showed no association. The relatively low impact of influenza-

like illness/upper respiratory tract infection on Guillain-Barré syndrome in the UK could 

also be the consequence of non-differential false negative misclassification of 

infections: patients were advised not to visit their general practitioner for influenza-

like illness. 
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Meaning of the study 

 

In our opinion the study contributes at least four pieces of important information. The 

quantification of the association between Guillain-Barré syndrome and adjuvanted 

pandemic influenza vaccines allows for subsequent assessment of benefit to risk. Our 

point estimate shows no association between pandemic influenza vaccination and 

Guillain-Barré syndrome, although the upper confidence limit is 2.7. In terms of 

absolute risk, on the basis of the upper confidence limit the absolute risk would be less 

than three excess cases after one million vaccinations. This is well below the observed 

increase in risk with the 1976 swine origin influenza A (H1N1) subtype A/NJ/76 

vaccine applied in the US, which was reported to be sevenfold. The consistent pattern 

across countries provides reassurance about the findings. The study also highlights the 

added value of an international data linkage study with a single protocol, a common 

data model, and a uniform analysis plan for the assessment of vaccine safety. 

 

Unanswered questions and future research 

 

Residual confounding by unmeasured patients’ characteristics that are not time 

dependent (such as the underlying reason for being eligible for vaccination) can be 

studied with a self controlled case series design. VAESCO is finalising such a study of 

the association between pandemic influenza A (H1N1) 2009 vaccination and Guillain-

Barré syndrome in seven countries. The series will include the cases from the study 

presented here supplemented with unmatched cases and cases from additional 

countries over a longer period. It will also eliminate any differential recording of 

confounders between cases and controls. 
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Abstract 

Background: Based on a-priori concerns about the risk of Guillain-Barré syndrome 

(GBS) following the 1976 swine flu vaccination campaign in the USA, active 

surveillance programs were enhanced during the pandemic influenza A(H1N1)pdm09 

mass immunization campaigns. The objective of this study was to estimate the risk of 

developing GBS following influenza A(H1N1)pdm09 vaccination. 

 

Methods: A self-controlled case series (SCCS) analysis was performed in Denmark, 

Finland, France, Netherlands, Norway, Sweden, and the United Kingdom. Information 

was collected using a common protocol and standardised data collection procedures. 

Cases were classified according to the Brighton Collaboration case classification 

system.  A 42 day post vaccination risk window was used. We adjusted for calendar 

month and if possible for gastrointestinal (GI) infections, influenza-like illness (ILI), 

and upper respiratory tract infections (URTI). Conditional Poisson regression was used 

for estimation of the risk ratio (RR) and pooling was done using a random effects 

approach. 

 

Findings: 303 GBS cases were included in the study. The unadjusted pooled RR for all 

countries was 3.5 (95% Confidence Interval (CI): 2.3-5.3). After adjustment for 

calendar month, the pooled RR was 2.0 (95% CI: 1.2-3.1). Accounting for contra-

indication to vaccination reduced the pooled RR to 1.9 (95% CI: 1.1-3.2). In countries 

where further adjustment for infections (GI, ILI, and URTI) was possible (Netherlands, 

Norway, United Kingdom) the pooled RR decreased from 1.7 (adjusted for calendar 

month) to 1.3 (95% CI: 0.6-2.7).  

 

Interpretation:  This study illustrates the potential of collaborative European vaccine 

safety studies. The effect of adjustments for infections and vaccinations in a subset of 

the countries suggests the pooled estimates for all countries suffer from residual 

confounding. Based on the upper limits of the partially and fully adjusted pooled 

estimates, we can rule out with 95% certainty  that  the number of excess GBS cases 

after influenza A(H1N1)pdm09 vaccination would be more than 3 per million 

vaccinated. 
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Introduction 

 

During the influenza A (H1N1) 2009 pandemic, new monovalent adjuvanted and non-

adjuvanted influenza A(H1N1)pdm09 vaccines were introduced in Europe. 

Documented immunogenicity and safety was in line with the Committee for Medicinal 

Products for Human use (CHMP) Note for Guidance, but safety data were limited [1-

3]. Vaccination campaigns started in the autumn of 2009 at the peak of the pandemic 

in Europe. 

 

The primary safety concern with the influenza A(H1N1)pdm09 vaccines was the 

possible occurrence of neuroimmunologic adverse events including Guillain-Barré 

syndrome (GBS). An increased risk of GBS was observed in the 6 weeks following 

receipt of  the swine-origin influenza subtype A/NJ/76 vaccine introduced in the USA in 

1976, resulting in the abrupt discontinuation of the vaccination campaign [4]. All 

subsequent prospective surveillance studies and retrospective epidemiological studies 

on seasonal influenza (SI) vaccines used in 1978, 1992, 1993 and beyond showed no 

or modest increases in the risk of GBS [5-8]. Despite this, based on the 1976 

experience, the US Food and Drug Administration (FDA), the World Health 

Organization (WHO) and the European Medicines Agency (EMA) all recommended to 

actively monitor a potential association between the influenza A(H1N1)pdm09 vaccine 

and the occurrence of GBS. 

 

GBS is an acute inflammatory demyelinating polyradiculoneuropathy (AIDP) in the 

majority of cases [9]. Three to ten per cent of patients with GBS die and an estimated 

20% experience continued disability for more than six months [10]. Prospective 

studies in developed countries have estimated an incidence rate of 2 per 100,000 

population per year with an increased risk with age and in males [11]. GBS is thought 

to be primarily triggered by a preceding respiratory or gastrointestinal infection [12]. 

It has been suggested that the association between GBS and influenza A(H1N1)pdm09 

vaccine is considered biologically plausible through the cross-production of anti-

ganglioside antibodies during the immunization process [13] however Yuki et al 

recently reported no anti-ganglioside antibody production following influenza 

A(H1N1)pdm09 vaccination of both mice and men [14]. 

 

The European Centre for Disease prevention and Control (ECDC) requested the 

VAESCO (Vaccine Adverse Events Surveillance and Communication) consortium to 

conduct hypothesis testing studies on the potential association between influenza 

A(H1N1)pdm09 vaccine and GBS. Two designs were used: a case control design for a 

rapid initial assessment of an association, and a large-scale prospective self-controlled 
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case series (SCCS) study. The VAESCO consortium case control study was based on 

104 cases in five European countries and showed no association between 

A(H1N1)pdm09 vaccine and GBS [15]. In this paper we present the results from the 

SCCS study.  

 

Methods 

 

Setting and design 

 

To investigate the association between influenza A(H1N1)pdm09 vaccination and GBS 

a prospective self-controlled case series  (SCCS) study was conducted in the VAESCO 

consortium. The SCCS is a case-only design which compares the incidence of disease 

during risk and non-risk periods within the same person, thereby inherently controlling 

for measured and unmeasured confounding factors that remain stable over time [16]. 

The VAESCO consortium aims to improve post licensure vaccine safety surveillance in 

Europe. The project was initiated and core funded by the European Centre for Disease 

Prevention and Control (ECDC) and partners are a mixture of public health 

organizations, regulatory authorities and academic research institutions in Europe. The 

project was coordinated by the Brighton Collaboration Foundation.  Sites from the 

United Kingdom (UK), France, Norway, Sweden, Finland, Netherlands and Denmark 

contributed to the study. All participating centres worked according to a common 

protocol with a standardised Brighton Collaboration case definition. Implementation of 

the common protocol and data collection differed per country based on ethical 

requirements and the healthcare structure. Data harmonization, transformation and 

pooling were done based on methods and infrastructure that were derived from the 

EU-ADR project [17]. In short, centers were asked to create harmonized input files 

according to well-defined instructions. Data could be obtained directly from automated 

resources or by manual data entry through an electronic case report form.  

Subsequently at each centre transformations of input data were done by a 

standardized JAVA-based program (Jerboa® version 2.6.0, September 2010, Erasmus 

University Medical Center, Rotterdam, the Netherlands). Only completely anonymous 

and de-identified information with no individual dates of disease or exposure were 

shared for individual patient level data pooling and centralised analysis. Consent 

forms, original data and Jerboa input files were retained at the local sites. Secondary 

quality control and verification of transmitted data was done at the central data 

management and analysis center (Erasmus University) in close collaboration with all 

the sites and the VAESCO consortium. Each of the study sites received the data and 

had the opportunity to comment on the data prior to release.    
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Source and study population  

 
The source populations from which the cases were recruited exceeded 50 million (M) 

subjects with most countries recruiting cases on a national level (Norway (4.8 M), 

Sweden (9 M), Finland (5.5 M), Denmark (5 M), Netherlands (16 M)). In the UK the 

General Practice Research Database (GPRD) (3.5 M) was used and in France 

specialised hospitals with a large but undefined catchment area participated. Case 

recruitment started on 1st November 2009 and lasted a maximum of 365 days. 

 

The study population encompassed all cases with GBS or its variant Miller Fisher 

syndrome with onset of disease during the study period.  

 

Detailed descriptions of case recruitment are provided in Table 4.21. Completeness of 

case recruitment was verified retrospectively at the end of the study period by 

comparing recruited and diagnosed case lists; additional cases identified in this way 

were included retrospectively where possible. For each subject, follow-up started at 

the beginning of the study period or date of birth, if born after the start of the study 

period. Follow up ended at the end of the study period or death, if occurring prior to 

the end of the study period. 

 

The earliest available date of onset of first neurological symptoms was used as the 

index date. If the date of first symptoms could not be retrieved the date of diagnosis 

or hospitalization was used as the index date. Informed consent was required for 

cases in Sweden and France. Information about case characteristics were obtained 

from neurologists, or discharge letters and used to classify the case according to the 

Brighton Case Classification using the Automated Brigton Classsification (ABC) tool 

(www.brightoncollaboration.org).  

 
Vaccine Exposure  

 
The primary exposure of interest was vaccination with A(H1N1)pdm09 vaccine which 

was assessed from vaccination registries (France, Denmark, Finland, Norway), General 

Practitioners’ (GP) records (Netherlands, UK) or  patient interview (Sweden). The risk 

window of interest (risk period) began the day after vaccination and ended 42 days 

later, reflecting the 6 week risk period observed in 1976. If two doses of the vaccine 

were administered, the risk window of the first dose ended when the second dose was 

administered. Brand specific information was collected for each influenza 

A(H1N1)pdm09 vaccination. 
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Abbreviations:, DK, Denmark; FI, Finland; FR, France; NL, Netherlands; NO, Norway; SE, Sweden; UK, 

United Kingdom. 

Table 4.21 Sources of cases, exposure and covariate information per country 

 Cases recruitment Exposure 
Information 

Covariates 
during follow-
up 

Potential bias 

DK Cases were identified from the National 
Patient Register using primary discharge 
diagnoses only (ICD-10: G61.0). Case 
validation based on retrospective chart 
review.   
 

Vaccination 
registry 

None (only 
from case 
hospital 
charts) 

Cases: not all charts 
available 
No ability to control 
for time varying 
confounders 

FI From hospital Discharge and hospital 
outpatient records, primary diagnoses 
(ICD-10 G61.0). Case validation based 
on retrospective chart review  

Vaccination 
registry 

None (only 
from case 
hospital 
charts) 

Cases: not all charts 
available  
No ability to control 
for time varying 
confounders 

FR Cases were identified prospectively 
through neurologists in 7 reference 
hospitals in FR. Patients needed to 
provide informed consent. Completeness 
was verified against pharmacy data 
(immunoglobulin prescriptions) and 
showed incomplete reporting (<50%), 
Vaccination status of non-reported cases 
could not be verified since linkage to 
vaccination registry required consent. 
 

Ad hoc 
A(H1N1)pdm0
9 vaccination 
registry 

Hospital charts 
and interview, 
only for period 
prior to GBS  

Incompleteness and 
potential selection 
bias cannot be 
excluded. 
No ability to control 
for time varying 
confounders 

NL Cases were identified prospectively 
through neurologists. Completeness was 
verified retrospectively by checking 
against the claims codes in each of the 
reporting hospitals. Missing patients were 
included retrospectively in hospitals that 
were reporting at least one case 
prospectively.  

GP medical 
record 

GP medical 
record  

Small potential for 
misclassification of 
exposure since 
A(H1N1)pdm09 
vaccination could also 
be provided through 
public health agency 
for parents of young 
children 
 

NO Nationwide neurologist reporting network, 
group of neurologists. Case validation 
based on review of GBS experts  

Vaccination 
registry 

Neurologists, 
Hospitals, and 
GPs 

Potential selection 
due to 
incompleteness? 
Information on co-
variates collected 
differently for period 
prior to GBS.  

SE Cases of GBS were identified through 
seven neurology assessment labs where 
GBS cases are laboratory confirmed for a 
population of 9.4 million. Informed 
consent needed to be obtained from all 
cases. Completeness of cases was 
checked in the National Patient Registry 
for part of the country. Recruitment was 
incomplete because of delays in consent 
and non-consent. It was not possible to 
assess whether this non-response 
differed by vaccination status and hence 
selection bias cannot be excluded. 
 

By interview at 
end of follow-
up, recall bias 
cannot be 
excluded. 

By interview 
for cases at 
the end of 
follow up. 
Change in 
region over 
time. Should 
not be used for 
adjustment  

Consent required, 
potential selection 
bias. 
Recall bias 
(differential recall 
over time) 

UK Each case identified from GPRD by using 
appropriate READ codes (F370.00, 
F370000, F370100, F370200, F370z00). 
Case verification done with free text, 
scanned hospital letters as well as GPs’ 
notes regarding diagnostic procedures.  

GP medical 
record 

GP medical 
record 

Potential for 
misclassification of 
exposure since 
A(H1N1)pdm09 
vaccination could also 
be provided outside 
GP setting. 
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Covariates 

 
Information on several time varying risk factors for GBS were collected during follow-

up. The impact of seasonal influenza vaccination, influenza-like illness (ILI), upper 

respiratory tract infections (URTI), and gastrointestinal infections (GI) were assessed 

over a 42 day risk period. The risk period began on the day of onset of ILI, URTI, or 

GI or the date of seasonal influenza vaccine receipt and ended 42 days later. 

Covariate information was not collected in Denmark and Finland. In France, covariate 

data were collected from neurologists at case occurrence for the period prior to GBS 

whereas in Sweden information was collected at the end of follow-up by interview. In 

the UK, Netherlands and Norway, general practitioner records were used and data 

from these records were collected similarly over the entire period; Norway also 

assessed covariate information received from neurologists at the time of case data 

collection, potentially leading to a slight differential in data collection over time. To 

adjust for seasonal effects and changes in circulation of the wild type influenza 

A(H1N1)pdm09 virus and differences in case inclusion over the observation period we 

considered calendar month as a time varying covariate. 

 

Statistical analysis 

 
The incidence rate ratio (RR) for the association between vaccination and GBS was 

estimated by using a conditional Poisson regression analysis. This was done for each 

country separately. Adjustment for calendar month was possible in all countries, 

whereas further adjustment for ILI, URTI, GI and seasonal influenza vaccination was 

only possible in NL, UK and NO. Sensitivity analyses were conducted to assess the 

effects of confounding  and misclassification of exposure.  

 

To explore confounding by contra-indication to influenza A(H1N1)pdm09 vaccination in 

cases with GBS, two approaches were applied: an analysis including vaccinated cases 

only and an analysis using a pseudo-likelihood approach. In the analysis including 

vaccinated cases only the observation period began on the vaccination date and 

continued until the end of the observation period. Dropping unexposed case-time has 

an adverse effect on the statistical power of the study and can introduce selection bias 

therefore a pseudo-likelihood approach was also applied. This approach includes all 

observation time for all cases but only includes the first exposure in the RR calculation 

and redefines any post event exposed time as baseline time, adjusting the number of 

events observed in this time period to that which would be expected had there been 

no exposures [16, 26]. 
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 To assess the impact of residual confounding by ILI, URTI, seasonal influenza 

vaccination and GI infections, a subset analysis was conducted in the countries where 

this was possible.  To study misclassification of the risk period sensitivity analyses 

were done looking at smaller risk periods within the 42 days.  In order to study effect 

modification by infections just prior to GBS onset, stratified analyses were done for 

age, sex, history of GBS and prior infections (ILI, URTI, GI), for the countries that 

collected this information around case occurrence.  The country specific estimates 

were pooled using a random effects model. SAS v9.1 (Cary, North Carolina) was used 

for all analyses.  

 

 

Results 

During the study period, which varied across the seven participating countries, a total 

of 730 potential GBS cases were identified. From these 730 cases, 427 cases were 

excluded: 13 did not provide consent, for 160 the diagnosis could not be confirmed 

after validation, 5 cases were duplicates, 99 cases had onset of GBS prior to start of 

the study period and 150 cases were excluded since they had no available information 

to assess onset of disease or vaccination exposure. Finally, we included 303 GBS cases 

in the study (Figure 4.7). Case inclusion declined with time from 133 cases in the first 

three months of the study period to 18 in the last three months. Despite this decline, 

the percentage of influenza A(H1N1)pdm09 vaccinated cases (including those 

vaccinated outside the 6 week risk window) did not appear to change significantly over 

time. 

 

 
Figure 4.7: Flowchart of SCCS case inclusion 
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Cases had a mean age of 50 years (SD: 4.1) ranging from 45 years (SD: 20.8) in the 

Netherlands to 56 (SD: 19.5) years in Norway, and less than 10% of the cases were 

younger than 20. On average the follow-up period for the cases was 321 days. The 

case certainty classification differed by country depending on the type of data source 

that was used for case recruitment.  From the total number of cases, 36% were 

classified as Brighton Collaboration classification level 1, 26% as level 2, 13% as level 

3 and 25% as level 4a.  In 69 cases electrophysiology either had not been performed 

for diagnosis or it was not explicitly recorded. When electrophysiology was performed, 

most cases were classified as AIDP. On a scale of 0 to 6, with 0 meaning complete 

physical fitness and 6 meaning death, the disability score was most frequently 4 (30.6 

%), with few extreme values (Table 4.22).  

 

99 cases (33%) were administered an influenza A(H1N1)pdm09 vaccine before 

symptom onset, most of which were adjuvanted with AS03 (Table 4.23). Among the 

99 vaccinated cases 36 (37%) had an index date within 42 days of a first dose of 

influenza A(H1N1)pdm09 vaccination whereas 7 had an index date within the risk 

window after a second dose of influenza A(H1N1)pdm09 vaccination.   

 

Few countries could collect data on time-varying covariates over the entire follow-up 

period. Most countries assessed covariates at the time of case collection, but not 

afterwards, and therefore these data cannot be utilized for adjustments but only for 

stratification. Based on the information collected at case occurrence, 15 cases 

developed GBS within 42 days after seasonal influenza vaccination and 79 cases 

developed GBS within 42 days after onset of ILI or URTI (Table 4.23). 
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Risk ratio of GBS 

 

The crude RR of GBS during the influenza A(H1N1)pdm09 vaccination risk period 

varied from 1.6 in Finland to 7.7 in Denmark, with an overall pooled estimate of 3.5 

(95% CI: 2.3-5.3). Adjustment for calendar month had a significant impact on the 

pooled estimate (RR 2.0, 95% CI: 1.2-3.1). Sensitivity analyses accounting for the 

fact that vaccination may be contra-indicated after GBS onset produced minor 

changes. The RR changed from 2.0 to 1.9 when the pseudolikelihood method was 

used (95% CI: 1.1-3.2), and to 1.8 (95% CI: 0.7-4.7) when considering vaccinated 

cases only (Table 4.24). 

 

In countries where further adjustment for infections, seasonal influenza vaccination 

and other time dependent covariates were possible (Netherlands, Norway, UK) the RR 

decreased from the unadjusted RR of 3.2 (95% CI: 1.8-5.6) to 1.7 (95% CI: 0.9-3.2) 

after adjustment for calendar month and to 1.3 (95% CI: 0.6-2.7) upon further 

adjustment for ILI and URTI. 

 

Sensitivity analyses in which we varied the risk period showed that restriction of the 

risk period to the first four weeks yielded a month-adjusted pooled RR of 2.3 (95% CI: 

1.4-3.8) for the association between influenza A(H1N1)pdm09 vaccination and GBS. 

The RR was 2.3 (95% CI: 1.2-4.4) in the first two weeks and 2.6 (95% CI 1.4-4.9) 

during weeks three to four.  

 

The RR of GBS following influenza A(H1N1)pdm09 vaccination adjusted for calendar 

month was higher in persons aged 60 or higher (RR 3.2, 95% CI 1.5-6.9) than in 

people who were younger than 60  (RR 1.3, 95% CI: 0.5-3.6). We did not observe 

statistically significant interactions between infections or seasonal influenza 

vaccination and the risk associated with the influenza A(H1N1)pdm09 vaccine (Table 

4.25).  
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Discussion 
 

Based on a source population of more than 25 million subjects from the Netherlands, 

the UK, and Norway, and adjusting for ILI, URTI, calendar month and a number of 

other potential confounders, we found no association between immunization with an 

adjuvanted influenza A(H1N1)pdm09 vaccine (mostly AS03 adjuvanted) and the onset 

of GBS (RR 1.3, 95% CI: 0.6-2.7). These data therefore confirm the results from the 

previous VAESCO case control study published elsewhere [15], which captured only 

one third of the cases in a subset of the countries. The slightly higher pooled RI 

estimate for all countries (RI 2.0, 95% CI 1.2-3.1) should be interpreted with caution 

as it is likely to result from residual confounding due to a lack of adjustment for ILI 

and URTI. 

 

The direct pooling of data from seven countries using a common protocol, common 

case definitions, a common infrastructure and common data elaboration scripts is a 

unique approach to vaccine safety assessment in Europe. This innovative method goes 

beyond the traditional approach of meta-analysis, where estimates resulting from 

different designs, methods and settings are often pooled. It should be noted that, 

while the implementation of common methods standardized the study design and 

some of the methods, the common protocol approach did not remove all heterogeneity 

between sources; as specified in Table 4.21, identification of cases, exposures and 

covariates varied between sources included in the study. As a result, the results from 

each individual source may be subject to different biases. 

 

In France, Netherlands, and Sweden, claims records indicated that case identification 

through reporting networks was incomplete, in the Netherlands such cases were 

included retrospectively while in Sweden and France no further information on such 

cases could be obtained. If reporting networks were more likely to report vaccinated 

cases, risk estimates from Sweden and France may overestimate the association 

between vaccination and GBS. In order to investigate whether the changes in case 

inclusion over time that were observed were related to exposure we assessed the 

distribution of vaccinated cases (including those vaccinated outside the 6 week risk 

period) over time; no significant trend was observed, suggesting that time trends in 

non-inclusion are unlikely to have introduced selection bias. 

 

Data sources recruiting cases directly from neurologists (i.e., France, Netherlands, 

Norway, and Sweden) were able to collect data for case verification prospectively, as a 

result case certainty in these sources was high. In Denmark, where retrospective chart 
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review was used for case verification, the detailed diagnostic information required to 

assign high levels of case certainty was sometimes missing from the chart. Details of 

specialist test results are not routinely recorded in GP records in the UK, therefore all 

UK cases were classified at the lowest Brighton Collaboration case certainty level. Any 

non-differential misclassification of outcome status will have resulted in bias towards 

the null whereas differential misclassification, which may have occurred if vaccinated 

individuals without GBS were more likely to receive a working diagnosis of GBS based 

on the purported association with vaccination than non-vaccinated individuals, would 

have resulted in an overestimate of the RI. While non-differential misclassification may 

therefore explain the lack of association observed in the UK, the consistency of the 

estimates with those in the Netherlands are reassuring. In addition, despite the lack of 

test details, all UK cases required a record of diagnosis by a specialist in order to be 

included.  

 

Sweden was the only country in which case data was obtained through interviews and 

may therefore have suffered from recall bias. This would be expected to result in an 

overestimation of any association. In the Netherlands, exposure may have been 

misclassified in young children (<5) who were participating in mass vaccination 

campaigns, however as there were very few paediatric cases this is unlikely to impact 

results. Misclassification of exposure among individuals vaccinated outside a GP 

setting (e.g. in secondary care) may have occurred in the UK, however as the 

pandemic vaccination campaign was primarily administered in GP practices and as 

vaccinations outside the GP setting should be reported back to the GP we expect such 

misclassification to be minimal. 

 

Misclassification of exposure may also occur due to misspecification of the risk period. 

The sensitivity analysis regarding the definition of the risk period showed no difference 

in the RR when the risk window was restricted to 15 and 28 days after vaccination (RR 

2.6, 95% CI: 1.4-4.9); compared to the first two weeks (RR 2.3, 95% CI: 1.2-4.4) 

and the risk in a risk window 4 weeks (RR 2.3, 95% CI: 1.4-3.8).  

 

The sensitivity analysis investigating whether GBS could be a contra-indication for 

influenza A(H1N1)pdm09 vaccine showed that the pooled RR reduced slightly from 2 

to 1.9 for the pseudo likelihood method and 1.8 if only vaccinated cases were 

included, indicating that contra-indications were not an important issue.  

 

While the SCCS design controls for all time-constant confounders, adjustment for 

time-varying confounders remains necessary. Adjustment for calendar month was 
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possible in all countries, and was found to be important; most likely because it acts as 

a proxy for infection with influenza A(H1N1)pdm09 and other respiratory pathogens, 

which were highly time dependent and co-occurring with the mass vaccination 

campaigns. Adjustment for additional time-varying confounders, such as ILI and URTI, 

lowered the RR in the countries where this was possible (Netherlands, Norway, UK) 

from 3.2 (95 % CI: 1.8-5.6) to 1.3 (95 % CI: 0.6-2.7). These findings suggest that 

residual confounding by influenza status in the overall pooled estimate is very likely.  

 

There is a possibility that ILI and URTI lie in the causal pathway between vaccination 

and GBS. If this is the case adjusting for them would result in overadjustment bias 

[27]. Overadjustment will have results in bias towards the null and the extent of the 

bias would be dependent on the nature of the causal relationship between the three 

variables, if the only causal pathway from influenza A(H1N1)pdm09 vaccine to GBS is 

through ILI/URTI then, in the absence of other biases, adjustment would completely 

remove any true association. The potential role of ILI/URTI in the causal pathway 

between vaccination and GBS warrants further investigation. 

 

Our estimates, and those from the previous VAESCO study [15], compare well with 

those in the literature. In studies where little or no adjustment for ILI, URTI or 

calendar time have been made, moderate increases in risk have been observed in 

both the United States( RI 2.1, 95% CI: 1.2-3.5 [18]; RI 4.4, 95% CI: 1.3-14.2 [19]; 

RI 2.5, 95% CI: 0.4-15.0 [20]) and Germany (RI 4.7, 95% CI: 2.2-10.0 [21]). 

However, where adjustment for calendar month has been possible, increases in risk 

have not been observed in the UK (RI 1.05, 95% CI: 0.37–2.24 [22]), France (RI 0.9, 

95% CI: 0.1-7.6 [23]), Sweden (RI 1.1 95% CI: 0.6-1.9 [24]) and Canada (1.9. 95% 

CI 1.0-3.5 [25]).   

 

Conclusion 

 

This large, multinational self-controlled case series study confirms the results from the 

initial, smaller VAESCO case control study [15]. In each country, the unadjusted 

association between influenza A(H1N1)pdm09 vaccine and GBS suggests a possible 

increase in risk, and adjustment for confounders consistently lowered this risk. Full 

adjustment could only be carried out in a subset of countries and demonstrated the 

effect of confounding by influenza like illness and upper respiratory tract infections, 

which themselves are strong risk factors for GBS. Potential biases associated with 

each individual data source should be taken into account in interpreting both the 

country-specific and also the pooled results. Based on the upper limit of the 
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confidence interval of the partially and fully adjusted RR estimates we can rule out 

with 95% certainty that adjuvanted influenza A(H1N1)pdm09 vaccines  (mainly AS03 

adjuvanted) would have resulted in more than 2 or 3 excess cases of GBS per 1 

million vaccinated persons. 
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Abstract 

Objectives – To evaluate the risk of foetal loss associated with pandemic influenza 

vaccination in pregnancy. 

Design - Retrospective cohort study. 

Setting – UK General Practice Research Database 

Participants Pregnancies ending in delivery or spontaneous foetal death after 21 

October 2009 and starting before 01 January 2010.  

Main outcome measures – Hazard ratios of foetal death for vaccinated compared to 

unvaccinated pregnancies were estimated for gestational weeks 9 to 12, 13 to 24 and 

25 to 43 using discrete-time survival analysis. Separate models were specified to 

evaluate whether the potential effect of vaccination on foetal loss might be transient 

(for ~4 weeks post vaccination only) or permanent (for the duration of the 

pregnancy). 

Results – 39,863 pregnancies meeting our inclusion criteria contributed a total of 

969,322 gestational weeks during the study period. 9,445 of the women were 

vaccinated before or during pregnancy. When the potential effect of vaccination was 

assumed to be transient, the hazard of foetal death during gestational weeks 9 

through 12 (HRunadj 0.56; CI95 0.43 to 0.73) and 13 through 24 (HRunadj 0.45; CI95 

0.28 to 0.73) was lower in the 4 weeks after vaccination than in other weeks. Where 

the more permanent exposure definition was specified, vaccinated pregnancies had a 

lower hazard of foetal loss than unvaccinated pregnancies in gestational weeks 9 

through 12 (HRunadj 0.74; CI95 0.62 to 0.88) and 13 through 24 (HRunadj 0.59; CI95 

0.45 to 0.77). There was no significant difference in the hazard of foetal loss during 

weeks 25 to 43 in either model. Sensitivity analyses suggest the strong protective 

associations observed may be due in part to unmeasured confounding. 

Conclusions – Influenza vaccination during pregnancy does not appear to increase 

the risk of foetal death. This study therefore supports the continued recommendation 

of influenza vaccination of pregnant women. 
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Introduction 

 

Current evidence suggests the risk/benefit profile of influenza vaccination in 

pregnancy is favourable for both the mother and her newborn. The benefits of 

vaccination to the mother are particularly evident in the second and third trimester 

and during pandemics [1, 2]. This is reflected in national immunisation policies 

implemented in countries throughout the world [3]. Despite this, little is known about 

the effects of influenza and influenza vaccination on the developing foetus. A small 

number of studies have linked influenza infection to an increased rate of foetal death 

[4-7], babies born small for their gestational age [8] and prematurity [8]. If influenza 

infection does increase the risk of these adverse pregnancy outcomes, vaccination 

might prove beneficial in mitigating this risk. However, given the paucity of evidence 

available, few public health authorities currently cite influenza-related adverse 

pregnancy outcomes as their rationale for recommending influenza vaccination of 

pregnant women.  

 

With regard to foetal risks, little is known about the potential adverse effect that 

influenza vaccination may have. While maternal safety can be extrapolated to a 

certain extent from the general population, it is not possible to extrapolate risks to the 

foetus from other populations. Given ethical issues concerning the inclusion of 

pregnant women in randomised controlled trials, most studies that have considered 

influenza vaccine safety in pregnancy have been observational in nature. Those that 

have evaluated the vaccine-associated risk of adverse pregnancy outcomes have 

focused on outcomes such as preterm birth [9, 10], malformations [10-12] and 

caesarean section [9]. Few studies have investigated the risk of pregnancy loss 

(miscarriages/stillbirths) following influenza vaccination [12] as there are a number of 

methodological challenges inherent in studying such associations. Bias introduced by 

the incomplete ascertainment of implantation failures and early embryonic deaths is 

the primary problem; ~60% of conceptions are lost prior to clinical recognition [13], 

while variation in both exposure and outcome [14] incidence over gestational time 

may also create challenges. If these issues are not accounted for appropriately in 

study design and analysis they can result in profoundly biased risk estimates. 

 

While influenza vaccination in pregnancy is recommended in the UK and many other 

countries, uptake of influenza vaccines by pregnant women is low [15-20]. 

Perceptions that influenza infection is not dangerous, and vaccine safety concerns 

have been identified as major barriers to uptake of both pandemic [21-25] and 

seasonal [24, 26, 27] influenza vaccine in pregnant women. Without insight into the 



159 
 

risk of pregnancy loss associated with vaccination it will be difficult to achieve a 

meaningful increase in vaccination uptake. In this study we have investigated whether 

the hazard of foetal death is altered in pregnancies vaccinated against influenza 

A(H1N1)pdm09. 

 

Methods 

 

We designed a cohort study in which we used discrete-time survival analysis to 

compare the hazard of foetal death occurring after 8 weeks gestation between 

vaccinated and unvaccinated pregnant women. Using survival analysis allowed us to 

account for the changing incidence of pregnancy losses and pandemic vaccination with 

increasing gestational age, while using a discrete parameterization of time 

acknowledged potential uncertainties in estimated last menstrual period (LMP) dates. 

Delaying study entry until the 9th week of gestation means we focus solely on 

pregnancy losses occurring after 8 weeks and therefore exclude the selection bias that 

would be introduced by the incomplete ascertainment of embryonic deaths. However, 

this also means any risk estimates reported in the study are conditional on the 

pregnancy surviving through at least the first 8 weeks gestation.  

 

This study was carried out using the UK General Practice Research Database (GPRD). 

The GPRD is a primary care database containing the anonymised records of ~8.4% of 

the UK population [28]. Patient data routinely available in the database include 

demographic details, diagnoses and symptoms leading to hospital admissions, 

immunisations, pregnancies, laboratory tests, referrals to specialists, prescriptions 

issued by the GP, contraception, hospital discharge and clinic summaries and deaths 

[29]. The GPRD operates a continuous quality control procedure and check that all 

data submitted by practices meet a specific set of quality criteria; those meeting the 

criteria are considered of a standard sufficient for research purposes. 

 

The study population consisted of all women with a pregnancy ending after the start of 

the vaccination campaign on 21 October 2009 and starting before 1 January 2010, for 

whom at least 6 months of data was available before their LMP date (Figure 4.7). 

Pregnancies were identified using an algorithm similar to those described elsewhere 

[30, 31]. In summary this algorithm identifies individual pregnancies based on records 

of pregnancy outcomes and estimates each pregnancy’s start and end date using all 

pregnancy related events in a woman’s record. Where a pregnancy outcome was 

identified but the pregnancy start date remained unclear the pregnancy was assigned 
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a default start date of 280 days before the date of delivery/stillbirth or 70 days before 

the date of foetal death.  

 

This algorithmic approach to pregnancy identification on the GPRD has been verified 

using manual review of electronic and paper medical records [32]. Ectopic pregnancies 

and pregnancies resulting in hydatidiform mole or induced abortions were excluded 

from the study population and where a woman had multiple eligible pregnancies only 

the first pregnancy was included. Previous work suggested pandemic vaccinations may 

be misclassified in Northern Irish GPRD practices therefore pregnancies in women 

registered with Northern Irish practices were excluded. 

 

The main outcome in this study was foetal death, defined as a pregnancy loss at any 

time between the 9th gestational week and the onset of labour/delivery. Foetal death 

includes first trimester miscarriages (gestational weeks 9-12), second trimester 

miscarriages (gestational weeks 13-24) and second or third trimester stillbirths 

(gestational weeks 25+). 

 

 

 

 

Figure 4.7 Time periods for inclusion of pregnancies in the study. 
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Pandemic influenza vaccinations were identified using influenza A(H1N1)pdm09 

vaccine specific medical and product codes; codes which had been created to allow 

differential recording of seasonal and pandemic vaccinations on GP systems [33]. 

Where a woman had more than one pandemic vaccination recorded the first record of 

vaccination was considered to be on the vaccination date.  

 

Potential confounders and effect modifiers identified a priori and investigated in the 

analysis included: maternal age, history of spontaneous loss, diabetes, pre-pregnancy 

smoking status, pre-pregnancy alcohol use, pre-pregnancy body mass index, indices 

of multiple deprivation score of the area in which a patients practice was located, the 

number of consultations in the 6 months before the LMP date and being in an 

influenza A(H1N1)pdm09 clinical risk group (i.e. recommended for pandemic influenza 

vaccination due to a chronic medical condition). A separate category was created for 

all those with missing data on pre-pregnancy smoking status, alcohol use or BMI.  

 

In the discrete survival model, weekly intervals were used to define exposure and 

event occurrence and separate hazard ratios were estimated for weeks 9-12, weeks 

13-24 and weeks 25-42. Delayed entry was used to account for left truncation of 

pregnancies beginning before the start of the study period. Influenza A(H1N1)pdm09 

vaccination status was coded as a time varying covariate. We used two influenza 

A(H1N1)pdm09 vaccine exposure definitions to represent the two separate hypotheses 

under investigation:  

a) To assess whether vaccination had an acute adverse effect on pregnancy 

outcome we assumed exposure to be transient and investigated whether there 

was an association between influenza A(H1N1)pdm09 vaccination and foetal 

death in the week of vaccination or the three weeks immediately thereafter. 

b) To assess whether immunisation protected against foetal death by conferring 

immunity against influenza and its related morbidity, we assumed exposure to 

be permanent and investigated whether there was an association between 

influenza A(H1N1)pdm09 vaccination and foetal death in any subsequent week 

of pregnancy. 

Henceforth these two models shall be referred to as the ‘toxicity model’ (a) and the 

‘immunity model’ (b). Effect modification was identified through stratification and 

introduction of interaction terms into the models. Confounders were defined as 

variables whose inclusion in the model changed the point estimate of the HR for 

vaccination by >10%. The proportionality assumption was investigated within each 
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gestational period under investigation through the introduction of interaction terms 

between each variable and gestational age. All statistical analyses were carried out 

using STATA 12. 

 

Previous work identifying pregnancies on the GPRD suggested that it would not be 

possible to ascertain the exact pregnancy start date for a large proportion of the first 

trimester spontaneous losses. In the main analysis a default pregnancy start date of 

70 days before foetal death was assigned to any such pregnancies; as a result in the 

main analysis all such foetal deaths were defined as occurring in the 10th week. To 

investigate the sensitivity of our estimates to this defaulting of first trimester 

pregnancy losses we estimated models in which we changed the default pregnancy 

start date to 42, 56 and 84 days before loss, defining foetal deaths as occurring in the 

6th, 8th or 12th week respectively.  

 

Vaccination does not confer immediate immunity on an individual; there is 

approximately a 1-2 week delay between influenza vaccination and the onset of 

immunity. As a sensitivity analysis for the immunity model we therefore coded both 

one- and two-week periods after vaccination as unexposed with “exposure” only 

beginning after immunity could plausibly have developed. 

 

In order to investigate whether the associations observed in the ‘immunity’ model 

were due to underlying differences between individuals who were vaccinated and 

those who were not (a “healthy user effect”) we performed an additional analysis 

stratifying gestational weeks as <1 March 2010 or >28 February 2010. As influenza 

was not circulating widely after February 2010 [34] little or no protective association 

should be observed in this period; any association that was observed could therefore 

be considered an estimate of the level of confounding present in our main model 

estimates. 

 

A fourth sensitivity analysis modelled the effect of a hypothetical confounder on our 

results [35]. It investigated whether some unmeasured factor, such as a healthy 

lifestyle, might be both associated with a decreased risk of foetal death and more 

prevalent among vaccinated than unvaccinated pregnancies. 
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Results 

 

39,863 pregnancies meeting our inclusion criteria contributed a total of 969,322 

gestational weeks during the study period. 36,438 of these pregnancies ended in a 

delivery and 3,425 ended in foetal death. 9,445 of the women had been immunised 

with an influenza vaccination before the end of their pregnancy and 9,161 of the 

vaccinations occurred during pregnancy. Patient characteristics are given in Table 

4.26. The proportion of pregnancies vaccinated and the proportion of foetal deaths 

occurring over gestational time are shown in Figure 4.8. 

 

 

 

 

 

 

Figure 4.8 Percentage of pregnancies surviving (blue) and vaccinated (red) by each 

gestational week. The drop in survival at 10 weeks is an artefact of the defaulting 

process. In reality the losses contributing to this curve would be more evenly 

distributed across weeks 9-12 resulting in a more gradual drop in survival. 
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Table 4.26 Population characteristics of pregnant women eligible for influenza 

vaccination during the influenza A(H1N1)pdm09 pandemic. 

 Delivery Foetal death 

  Week 9-12 Week 13-24 Week 25-41 

Total (n) 36,438 2,543 711 171 

Mean pregnancy length, weeks (SD) 40.8 (1.4) 10.2 (0.6) 16.6 (3.5) 36 (6.0) 

Unvaccinated weeks     

 weeks 1-12 59,425 4,912 2,081 298 

 weeks 13-24 215,195 - 2,614 1,182 

 weeks 25-43 388,192 - - 1,416 

Vaccinated (weeks)      

 weeks 1-12 4,897 269 142 12 

 weeks 13-24 41,554 - 253 141 

 weeks 25-43 123,658 - - 288 

Maternal age (years)     

 Mean (SD) 29.9 (6.0) 32.2 (7.2) 31.6 (6.7) 30.0 (6.4) 

 11-19 1,194 93 21 8 

 20-34 25,350 1,371 422 117 

 35-40 7,594 619 156 33 

 40-44 2,151 393 102 12 

 45-49 149 67 10 1 

Number of previous spontaneous abortions     

 0 30,089 376 522 136 

 1 5,175 1,624 160 25 

 2 929 379 22 7 

 >2 245 164 7 3 

In clinical risk group for influenza vaccination     

 No 34,304 2,359 669 164 

 Yes 2,134 184 42 7 

     

Diabetes     

 No 36,136 2,501 700 168 

 Yes 302 42 11 3 

Number of consultations in 6 months before LMP     

 0-1 8,664 554 158 47 

 2-3 8,199 534 177 43 

 4-5 6,095 404 101 28 

 6-9 7,258 506 133 36 

 10+ 6,222 545 142 17 

Pre-pregnancy smoking status     

 Smoker  8,973 658 185 53 

 Non-smoker 19,751 1,327 383 82 

 Ex-smoker 7,491 534 141 36 

 Unknown 223 24 2 0 
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The results of the main analyses are shown in Table 4.27. Both in the toxicity model 

and in the immunity model, the hazard of foetal death was reduced after 

A/H1N1pdm09 vaccinations in each of weeks 9 to 24 of gestation. This association 

appeared to be strongest in the toxicity model. After gestational week 24, no 

statistically significant associations were observed. 

 

As anticipated, maternal age, number of previous spontaneous losses, being in a 

influenza clinical risk group and having diabetes were all associated with the hazard of 

foetal death. However, no variables were observed to confound the association 

between vaccination and foetal death. Hazard ratios and confidence intervals for the 

missing categories did not suggest they masked a confounding association (data not 

shown). Fitting interactions between the vaccination and gestational age suggested 

that the hazards across vaccination groups were proportional within each gestational 

period reported (data not shown). 

 

 

 

 

 

Table 4.27 Hazard ratios and 95% confidence intervals for association between 

pandemic influenza vaccination and foetal death in different gestational periods 

 "Immunity model"  "Toxicity model" 

 HR unadj CI95  HR unadj CI95 

Foetal death in weeks 9-12 0.74 (0.62 - 0.88)  0.56 (0.43 - 0.73) 

      

Foetal death in weeks 13-24 0.59 (0.45 - 0.77)  0.45 (0.28 - 0.73) 

      

Foetal death in weeks 25 - 43 0.70 (0.47 - 1.03)  1.56 (0.73 – 3.34) 
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For 2,025 of 2,543 first trimester foetal deaths, no information was available 

regarding the LMP date or the expected date of delivery. These pregnancies were 

assigned a default pregnancy start date of 63 to 70 days before the date of loss (i.e. 

foetal death occurred in the 10th gestational week). In a sensitivity analysis, as we 

moved the default start date forward, and therefore decreased the estimated 

gestational age of many of the first trimester foetal deaths, our risk estimates moved 

towards, and then greater than, 1. (Table 4.28). 

 

 

 

 

 

 

 

Table 4.28 Sensitivity analysis 1: effect of varying the default 

length of first trimester spontaneous losses*.                                                                                                                                                                                                                                                                  
 "Immunity model"  "Toxicity model" 

 HRunadj CI95  HRunadj CI95 

default 6th week 1.24  (1.04 - 1.48)  1.06 (0.82 - 1.38) 

      

default 8th week 0.98 (0.83 - 1.17)  0.78 (0.60 - 1.00) 

      

default 10th week** 0.74 (0.62 - 0.88)  0.56 (0.43 - 0.73) 

      

default 12th week 0.59 (0.49 - 0.70)  0.44 (0.35 – 0.58) 

      

*All hazard ratios are for gestational weeks 9-12 only. **same as effect estimates in 

table 4.27 
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When we changed exposure status in the first two weeks following vaccination to 

unexposed (to allow for delay between vaccination and onset of immunity) we 

observed a decrease in the protective association observed. This was most notable in 

the 9-12 week gestational period when the rates of vaccination and loss were 

changing rapidly (Table 4.29). Associations between influenza A(H1N1)pdm09 vaccine 

and foetal death were not found to be statistically significant during periods of little/no 

influenza circulation, however point estimates were of a similar magnitude during 

periods of high influenza circulation and during periods of little/no influenza circulation 

(Table 4.30). 

 

 

 

 

 

 

Table 4.29 Sensitivity analysis 2: one and two week post vaccination 

time periods coded as unexposed to account for a delay between 

vaccination and onset of immunity. 
    "Immunity model" 

    HRunadj CI95 

week of vaccination 

coded as unexposed 

loss in weeks 9-12 0.80 (0.66 – 0.96) 

   

loss in weeks 13-24 0.63 (0.48 - 0.83) 

   

loss in weeks 25 - 43 0.69 (0.47 – 1.02) 

        

    

week of vaccination and 

week following 

vaccination coded as 

unexposed 

loss in weeks 9-12 0.84 (0.69 – 1.03) 

   

loss in weeks 13-24 0.64 (0.48 – 0.85) 

   

loss in weeks 25 - 43 0.69 (0.46 – 1.02) 
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Table 4.30 Sensitivity analysis 3: pregnancy weeks stratified as 

being either during influenza season or post-influenza season; no 

causal protective associations are expected in the post-influenza 

season period. 
    "Immunity model" 

    *HRunadj CI95 

Influenza season 

loss in weeks 9-12 0.76 (0.63 - 0.92) 

   

loss in weeks 13-24 0.55 (0.40 - 0.75) 

   

loss in weeks 25 - 43 0.70 (0.38 – 1.29) 

        

    

Post-influenza season 

loss in weeks 9-12 0.63 (0.39 – 1.05) 

   

loss in weeks 13-24 0.68 (0.42 – 1.10) 

   

loss in weeks 25 - 43 0.71 (0.43 – 1.18) 

    

 

 

 

 

 

 

 

The sensitivity analysis modelling the effect of a hypothetical confounder suggested 

that in order for a confounder to completely account for the protective associations 

observed in the immunity model or to mask an adverse association in the toxicity 

model it would have to be both considerably more prevalent among the vaccinated 

than unvaccinated and strongly associated with a decreased risk of foetal death 

(Appendix 3). Taking healthy lifestyle as an example, if 90% of vaccinated women 

followed this healthy lifestyle and only 20% of unvaccinated women did, the healthy 

lifestyle factor would have to be associated with a 40% reduced risk of foetal death to 

produce the protective associations observed in weeks 9-12 or a 50% reduced risk to 

produce the protective association in weeks 13-24. A similarly distributed healthy 

lifestyle would have to be associated with a reduction in the risk of foetal death of 

70%-80% to hide an acute adverse effect in weeks 9-12 or 13-24.   
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Discussion 

 

Vaccination against influenza A(H1N1)pdm09 was associated with a lower risk of foetal 

death. While this may be explained in part or completely by residual uncontrolled 

confounding, this study provides reassurance that vaccination is unlikely to be 

associated with an increased risk of pregnancy loss.  

 

To our knowledge this is one of the first large population based studies of the 

association between influenza A(H1N1)pdm09 vaccination and foetal death [36, 37]. 

As the influenza A(H1N1)pdm09 vaccine most commonly used in the UK was the AS03 

adjuvanted vaccine, Pandemrix®, this is also one of the first studies to investigate the 

association between an adjuvanted vaccine and foetal loss. The rates of foetal death 

and vaccine uptake observed in the GPRD are in line with rates observed elsewhere 

[16, 38, 39]. As the A(H1N1)pdm09 vaccine was primarily administered in GP 

surgeries, the accuracy of vaccination information in the GPRD should be high. 

However, misclassification of vaccination status may have occurred where pandemic 

vaccinations were recorded using non-specific influenza vaccination codes or obtained 

from outside the GP practice. The use of a discrete-time survival analysis enabled us 

to account for the opposing trends in the incidence of vaccine uptake and foetal death 

during pregnancy, while acknowledging uncertainties in the estimated gestational age 

of event occurrence. We were able to examine a number of potential confounders in 

this study; sensitivity analyses suggested residual confounding, for instance by 

lifestyle or dietary factors or folic acid intake, remained present.  

 

The observation of a protective association immediately after vaccination and the 

similar magnitude of (statistically non-significant) point estimates observed during 

periods of little/no influenza circulation to those observed during periods of high 

influenza circulation is suggestive of unmeasured confounding as the vaccine can 

provide little or no true protective effect in these periods. There is a possibility that 

women may begin to feel ill or be admitted to hospital in the days preceding foetal 

death, if this were the case they would be unlikely to be vaccinated in such a period. 

This could explain the protective associations observed in both models and the 

stronger association observed in the toxicity model. The weakening of the protective 

associations when changing the exposure definition may result from the partial 

removal of such bias (Table 4.29). While the potential influence of residual 

confounding on our estimates needs to be carefully considered, it is reassuring that 

the risk estimates were reasonably precise and no statistically significant increases in 
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the hazard of foetal death were observed in any of the sensitivity analyses evaluating 

this.  

 

The sharp drop in survival at 10 weeks in Figure 4.8 results from the defaulting of LMP 

dates of first trimester foetal deaths to 10 weeks before the date of loss; the results 

were sensitive to misclassification resulting from such defaulting. However, sensitivity 

analysis results suggest it is unlikely that any such misclassification would be 

substantial enough to hide an increased hazard of foetal death among vaccinated 

pregnancies (Table 4.28) as a significantly increased hazard was only observed when 

the default LMP date of first trimester foetal deaths was set to 6 weeks before the 

foetal death: an unlikely situation. In view of missing information on early pregnancy 

loss on the GPRD we excluded pregnancy losses occurring before 9 weeks gestation 

from our analysis; this study therefore provides no insight into the risk of embryonic 

death following vaccination. However, most pregnant women do not contact their GP 

for their pregnancy until close to the end of the embryonic period; exposure to 

influenza vaccine is therefore low, and mainly limited to those in clinical risk groups, 

early in pregnancy. 

 

A number of recent studies have investigated the risk of foetal death following H1N1 

vaccination. Pasternak et al reported non- or marginally-significant differences in the 

propensity score adjusted hazard of overall foetal death (HR 0.79; CI95 0.53 to 1.16), 

spontaneous loss (HR 1.11; CI95 0.71 to 1.73) and stillbirth (HR 0.44; CI95 0.20 to 

0.94) between vaccinated and unvaccinated women; these point estimates and those 

from their sensitivity analyses generally suggest a lower hazard of foetal death among 

vaccinated women [36]. Recently, Fell et al. evaluated the risk of a range of 

pregnancy outcomes following influenza A(H1N1)pdm09 vaccination, reporting an 

adjusted RR of foetal death after 20 weeks of 0.66 (CI95 0.47 to 0.91)[37]. Restricting 

our analysis to foetal deaths occurring after 20 weeks for comparison, we observed a 

HR of a similar magnitude (HR 0.62; CI95 0.46 to 0.84). In a primarily methodological 

paper, Xu et al compared the rate of spontaneous loss in H1N1 vaccinated women 

contacting North American teratology information services with unvaccinated women 

contacting the same service [40]. While study power was low, spontaneous loss rates 

among the vaccinated were similar to those in the unvaccinated. Tavares et al and 

Moro et al have reported rates of spontaneous loss among vaccinated pregnant 

women with both finding rates to be within the range expected [41, 42].  

 

Reassuringly, while the protective associations reported in some of these studies may 

be completely explained by underlying differences between women who choose to be 



171 
 

vaccinated and those who do not, none found any evidence to suggest an increase in 

the risk of foetal death following vaccination. Indeed, sensitivity analyses suggested 

that a confounder would have to be both strongly protective against foetal death and 

highly prevalent among vaccinated women for it to hide an adverse association 

between vaccination and foetal death. 

 

As methodological difficulties and low exposure prevalence complicate the evaluation 

of the risk of embryonic death, future study may be better directed at further 

evaluating the risk of adverse pregnancy outcomes such as foetal death, 

malformations, preterm birth and growth retardation. Developing methods to account 

for, or evaluate, residual confounding will be vital in any such studies. While this study 

does not provide any definitive evidence that influenza vaccination in pregnancy is 

completely safe or effective, its results provide some reassurance to patients that 

vaccination is unlikely to increase the risk of foetal death. Taken alongside current 

evidence, this study supports a favourable risk-benefit profile of influenza vaccines 

and the continued recommendation of influenza vaccination of pregnant women.  
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5. Discussion 
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5.1 Influenza pdm09 vaccine: contribution to post-marketing surveillance 

 

The 2009/10 influenza pandemic and the resultant vaccination campaign prompted the 

initiation of a huge number of studies on influenza vaccine: a Pubmed search for 

articles published between 01-01-2009 and the 01-01-2012 containing the MeSH term 

"Influenza Vaccines" returns 3352 results: over 1500 more articles than in the 3 years 

immediately preceding this period. The six studies presented in this thesis represent a 

small proportion of all evidence on the risks and benefits of the pandemic influenza 

vaccine. Despite this, the findings can play a key role in answering a number of 

important questions regarding the influenza A(H1N1)pdm09 vaccine. The results may 

also be extrapolated to seasonal influenza vaccines and other adjuvanted vaccines. 

 

At 40.1% and 21.6%, uptake of influenza A(H1N1)pdm09 vaccine by those in clinical 

risk groups and pregnant women was low. Age was the demographic characteristic 

most strongly associated with uptake. As described in section 4.2, this is likely to 

reflect the immunisation policies implemented in different age groups. Therefore an 

age-based policy may increase vaccination uptake in clinical risk groups. The 

immunisation of those not in risk groups may also provide protection to those in 

clinical risk groups through herd immunity. The UK government recently proposed 

intranasal influenza vaccination of all children aged 2 to 17 years[1]: our results 

suggest such a policy would improve uptake of the vaccine among children in clinical 

risk groups. Country of residence was the other key determinant of uptake: uptake in 

Wales, Scotland and Northern Ireland was higher than that in England. This suggests 

sharing of knowledge between public health authorities in each of the devolved 

countries might facilitate improvement of influenza vaccination rates in risk groups 

during vaccination campaigns. For example, while we couldn’t estimate uptake among 

pregnant women in Northern Ireland it appears the decision to organise vaccination of 

pregnant women in Northern Ireland through acute trusts, as opposed to through GPs, 

may have resulted in higher vaccine uptake. In future, the use of multi-level 

regression modelling might allow more in depth investigation of the relationship 

between patient, practice and regional level variation in vaccine uptake. 

The age standardised 10 year incidence rate of facial nerve palsy estimated in 8 data 

sources ranged from 5.33/100,000 PY in Sweden to 41.82/100,000 PY in Spain. These 

rates, and the rates of the other neurological and autoimmune diseases investigated in 

the VAESCO background rate study, varied across age categories, calendar time and 

data sources. Despite delays in providing the background rates to regulators limiting 

the contribution of these results to post-marketing safety surveillance of the pandemic 

vaccine, the results have been used to support OE analyses of the influenza 
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A(H1N1)pdm09 vaccine [2] and can be used to support such analyses in future 

vaccination campaigns. The results also demonstrate the importance of selecting an 

appropriate data source and population sub-group to provide the expected rates in OE 

analyses. Future work might seek to produce rates for other conditions and further 

validate the existing rates. 

 

Risk estimates for the association between GBS and influenza A(H1N1)pdm09 

vaccination in the different sources varied, however point estimates consistently 

showed increased risks which were reduced, or disappeared entirely, following 

adjustment for ILI, URTI or calendar month (CC: IRRadj 1.0; CI95 [0.3 to 2.7], SCCS: 

ORadj 1.3; CI95 [0.6 to 2.7]). These results add to the growing body of evidence 

suggesting that influenza A(H1N1)pdm09 vaccination was associated with little or no 

increased risk of GBS [3-6] and provide evidence supporting an association between 

respiratory infection and GBS. A potential role of ILI/URTI in the causal pathway 

between vaccination and GBS needs to be considered as an alternative explanation for 

the associations observed on adjustment. Closer investigation of the temporal 

relationship and clinical characteristics of vaccinated cases that developed ILI/URTI 

between vaccination and GBS onset may provide such information. The association 

between seasonal influenza vaccination and GBS observed in the GPRD data and the 

association between two doses of pandemic influenza vaccination and GBS observed in 

the Dutch (IPCI) data may warrant further investigation, however as both were based 

on a small number of exposed cases and as other studies have not observed similar 

findings these associations do not warrant great concern. The GBS issue has now been 

well studied using traditional epidemiological methods and, if there is a small increase 

in the risk of GBS following vaccination, future work might seek to identify the risk 

factors that render certain individuals susceptible to developing GBS post-

immunisation. To this end, a number of studies currently underway in the USA are 

seeking to identify genetic determinants of post immunisation events such as GBS [7].  

 

Vaccination against influenza A(H1N1)pdm09 was associated with a significantly lower 

risk of first (HRunadj 0.74; CI95 0.62 to 0.88) and second (HRunadj 0.59; CI95 0.45 to 

0.77) trimester foetal death and a non-significantly lower risk of  third trimester foetal 

death (HRunadj 0.70; CI95 0.47 to 1.03). While this may be explained by residual 

confounding, sensitivity analyses provide reassurance that vaccination is unlikely to be 

associated with an increased risk of pregnancy loss. These results agree with the 

results of other published studies [8-11], all of which report no increase in the risk of 

foetal death among women vaccinated against influenza A(H1N1)pdm09 during 

pregnancy. Further work to investigate risks associated with first trimester 
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vaccination, such as congenital malformations and embryonic or foetal death is 

needed. Given the low exposure prevalence and rarity of such outcomes, large 

populations will be required to study such associations. As seasonal influenza 

vaccination has now been universally recommended for pregnant women in the UK 

since the 2010/11 influenza season, the GPRD might be able to provide such a 

population, however methods to deal with missing and inaccurate pregnancy data 

need to be further explored. Most of the studies investigating the safety of pandemic 

vaccination in pregnancy suffer from confounding, mostly through a healthy-vaccinee 

effect. As a result they suggest that influenza vaccination is associated with protection 

against foetal death, a finding which sensitivity analyses did not support. While 

sensitivity analyses can be used to show that it is unlikely such confounding hid an 

increased risk, the protective effect cannot be quantified. Future studies investigating 

the safety or effectiveness of vaccination in pregnancy must therefore seek to identify 

ways to minimise or quantify such confounding. Specific examples of potential 

methods that might be used are considered in section 5.2. 

 

Taken together, these results represent a meaningful contribution to the post-

marketing surveillance of the influenza A(H1N1)pdm09vaccination campaign. Despite 

the interesting population level uptake findings, surveys suggest that the low uptake 

of pandemic influenza vaccines, like seasonal influenza vaccines, was primarily driven 

by two key factors: patient and healthcare practitioner perceptions of the risk of 

influenza infection and patient and healthcare practitioner perceptions of vaccine 

safety [12-17].  Therefore if influenza vaccination uptake is to be improved, public 

health authorities need to focus energy and funding on developing interventions to 

address these barriers to uptake. Any such interventions will need to be based on 

strong evidence, clearly illustrating that influenza infection is responsible for significant 

morbidity and mortality and that influenza vaccination is both safe and effective. The 

safety studies presented in this thesis suggest that the GPRD can play a role in 

generating such evidence.   

 

 

5.2 GPRD: performance as a vaccine surveillance tool 

 

Vaccine surveillance requires the production of accurate, precise results in a timely 

manner, therefore a complete assessment of the potential of the GPRD as a vaccine 

surveillance tool must consider its performance on all of these factors. 
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A key strength of the GPRD is the availability of routinely collected clinical information 

on a historic population of more than 10 million individuals, more than 5 million of 

whom were actively followed during the pandemic vaccination campaign. Therefore 

while the GPRD covered only 8.4% of the UK population during the study periods, its 

study population was comparable in size to national registries in countries such as 

Denmark, Finland and Norway. The size of the GPRD population permitted the 

calculation of precise estimates of predictors of influenza A(H1N1)pdm09 vaccine 

uptake, the incidence of several AESI and the hazard of foetal death. Vaccine uptake 

rates were comparable to those reported in national GP surveys [18, 19] while 

background rates of disease and foetal death were as, or more, precise than estimates 

in many other VAESCO countries and in the literature.  The precision of estimates of 

the risk of GBS in the GPRD were limited by the low incidence of GBS and the low 

exposure prevalence in the UK in the age group at highest risk of GBS. However it 

should be noted that any UK data source would have suffered from this limitation, in 

fact it is likely that many smaller data sources may not have captured a single case of 

GBS following pandemic influenza vaccination. The GPRD have recently announced an 

expansion plan which will seek to rapidly increase the number of registered practices, 

this will serve to increase the precision of estimates in future studies.  

 

While this illustrates the potential external validity that can be achieved using the 

GPRD the extrapolation of results is not valuable unless internal validity exists. In 

assessing internal validity one must consider all potential sources of bias and 

confounding, in this regard the accuracy and availability of exposure, outcome and 

confounder data is vital. The internal validity of each study in this thesis has already 

been discussed however a number of general observations can be made about the 

accuracy and availability of vaccine surveillance related data on the GPRD. 

 

As vaccination is an acute exposure, vaccine safety studies generally assess the 

incidence of outcome events in biologically plausible post vaccination time windows; 

inaccuracy in the date of vaccination diminishes the biological plausibility of such 

windows. Possible scenarios in which vaccination dates on the GPRD may be 

inaccurately entered include recording of vaccinations administered outside a GP 

practice and recording of vaccination administrative procedures, such as the sending 

of invitations, using influenza vaccination codes. We did not carry out a formal 

validation to quantify the amount and magnitude of inaccuracy in vaccination records 

however no suggestion of inaccurate recording was observed in any of the GBS cases 

that were validated. As the pandemic influenza vaccine was primarily given in GP 

practices and specific codes exist for vaccine administration procedures, we expect 
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such inaccuracies to have had little impact on any of the results presented in this 

thesis.  

 

In section 3.1 we described potential ways in which inaccuracy could be introduced 

into outcome data on the GPRD and described ways to validate outcomes. A number 

of these methods were applied in this thesis. The information in the free text allowed 

the validation of the occurrence and dates of diagnosis of most GBS cases. Cases did 

not meet high levels of the Brighton Collaboration GBS criteria however this is likely to 

reflect the poor suitability of the criteria to GP data sources rather than 

misclassification of outcome status or date. A Read code algorithm was used to 

identify pregnancies and pregnancy outcomes in the pregnancy uptake and foetal 

death studies. Validation has shown this algorithm to perform well. The lack of data on 

LMP dates limited the accuracy of gestational age at pregnancy outcome and 

necessitated many to be set to a default value. The sensitivity analysis showed that 

the results of foetal death studies on the GRPD may be sensitive to the choice of 

default gestational age at loss. Validation of facial nerve palsy cases was not carried 

out, however such an event is very likely to present and be diagnosed in general 

practice therefore outcome status and dates should be accurate. The variation in the 

rates of some of the other VAESCO outcomes such as convulsions, anaphylaxis and 

thrombocytopenia suggests validation would be useful, particularly where events are 

diagnosed or first present outside the GP setting. Routinely collected secondary care 

data or prospectively collected specialist data might be better placed to accurately 

identify these and other vaccine related outcomes; however each of these sources 

suffer from their own limitations. Linkage of the GPRD with such data sources would 

combine the strengths of each source while mitigating many of their weaknesses. The 

GPRD expansion plan includes plans to increase the number of linkages available 

therefore such an approach may become increasingly feasible. 

 

As GPRD data is collected for general patient care, a large number of potential 

confounders such as comorbidities, drug prescribing and lifestyle factors can be 

identified and used in GPRD studies. In the GBS studies the GPRD was one of the few 

sources capable of partially controlling for influenza like illness and upper respiratory 

infection while in the foetal death and uptake studies a range of potential confounders 

could be controlled for. Despite this, important variables will not be recorded in the 

GPRD if they are not considered clinically relevant or are not reported to the GP. 

Linkage of the GPRD with other data sources may provide extra information on such 

variables. For example, linkage with other routinely collected data sources such as the 

NHS Number for Babies and birth registries databases would add up to 99% complete 
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data on pregnancy variables such as gestational age at pregnancy outcome and birth 

weight to that already available in the GPRD. However in vaccine safety studies 

confounders may exist that cannot be accurately measured in any routinely collected 

data source. An example of such a confounder is the healthy vaccinee effect, the 

vaccine equivalent of confounding by indication, whereby individuals who choose to be 

vaccinated are generally healthier and therefore less likely to suffer an outcome than 

unvaccinated individuals. In such cases special study designs and statistical analyses 

must be used to reduce confounding. The SCCS, applied in section 4.6 is an example 

of a study design which has been designed for this purpose. However, current SCCS 

methods are not suitable for application in all situations, such as in pregnancy safety 

studies. Propensity scores and instrumental variables have both been proposed as 

methods to deal with unmeasured confounding, however the ability of propensity 

scores to adjust for unmeasured confounding is dependent on the ability of the 

measured confounders used in the propensity score to act as proxies for unmeasured 

confounders while the identification of suitable instruments has also proven difficult. 

The potential of these two methods to improve such studies has therefore yet to be 

fully realised. Where suitable methods have not yet been developed, sensitivity 

analyses can be used to estimate what the true results might be if the observed 

results are subject to different levels of confounding; such an analysis was carried out 

in the foetal death study. The main problem with this approach is that it relies on a 

number of subjective assumptions about the relationships between exposure, 

unmeasured confounder and outcome. If detailed information on difficult to measure 

confounders can be collected in smaller samples of the population using patient 

questionnaires or interviews this information can be used to better inform the 

assumptions of sensitivity analyses applied in larger data sources such as the GPRD. 

 

The timeliness with which vaccine surveillance results can be produced is of great 

importance as problems with a vaccination campaign can only be rectified within a 

limited time frame. This is particularly important in vaccine safety as uncertainty can 

lead to a loss of confidence in vaccination campaigns and, in the face of true adverse 

associations, in avoidable harm to patients. Near real time surveillance of vaccine 

safety using routinely collected clinical data has been pursued in sources such as the 

US Vaccine Safety Datalink. The GPRD could potentially be used in a similar fashion 

based on its monthly updates however its use as a passive signal detection tool is not 

currently warranted as this would limit its use in hypothesis testing.  Further to this, 

the experience gained carrying out the studies in this thesis highlight a number of 

delays which may be encountered in conducting vaccine safety studies on the GPRD. 

Most notable were the delays in specialist diagnoses being communicated to a GP and 
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delays in obtaining additional validation data from the GPRD. Also, while the GPRD 

receives monthly updates, individual practices may only update their data up to every 

3 months. Despite these findings the GPRD can be considered a relatively rapid data 

source. 

 

Despite its size, where outcome events are rare, exposure prevalence is low or effect 

sizes are small, as was the case with GBS and pandemic influenza vaccination, years 

of data collection may be required for the GPRD to provide precise estimates of an 

association. In such cases the use of collaborative studies might facilitate more rapid 

investigation of associations. 

 

 

5.3 VAESCO: potential as a platform for collaborative vaccine safety 

studies 

 
Can the VAESCO approach provide answers more rapidly? 

 

The belief that the large population available in a collaborative study could provide 

meaningful answers to important vaccine safety questions more rapidly than individual 

studies carried out in sources like the GPRD was one of the main premises upon which 

the VAESCO studies were initiated. It is well known that the size of a study population, 

or more accurately, the amount of person follow-up available in an analysis, plays a 

key role in determining the statistical power of that analysis (and therefore its ability 

to investigate rare outcomes) [20]. In theory, it is therefore true that a VAESCO-sized 

study would produce precise results much more rapidly than a GPRD-sized study, were 

it conducted in the same population. 

 

In practice, however, the GPRD and VAESCO study populations are not based on the 

same underlying populations; drop-out rates, vaccine uptake rates and outcome 

incidence rates varied widely across VAESCO data sources. As a result, VAESCO data 

could not be simply combined into a single large dataset and analysed as if it came 

from a single population as it has been shown that in the presence of heterogeneous 

exposure prevalence this can produce biased results; in some extreme cases even 

changing the direction of associations [21]. 

 

Instead, a meta-analytical approach was taken. That is, datasets supplied from each 

individual collaborating data source were analysed individually and an average 

estimate of the effect observed across all sources was calculated. The average effects 
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were estimated using a random effects model, which assumes that the effect 

estimates in each individual study had been sampled from a population of true effect 

estimates (in contrast to a fixed effects model, which assumes there is a single true 

population effect and any variability observed in individual study results is solely due 

to chance) [22]. Generally the pooled estimates obtained from a random effects meta-

analysis will be more precise than those of the individual studies contributing to it. 

However, heterogeneity between effect estimates from individual studies decreases 

the precision of a random effects pooled estimate, therefore the ability of the VAESCO 

model to provide precise estimates in a short time frame was largely dependent on its 

ability to remove unnecessary heterogeneity between contributing data sources [23].  

 

Can the VAESCO approach remove unnecessary heterogeneity? 

 

The VAESCO approach involved substantial efforts to reduce heterogeneity between 

data sources. Two common protocols were developed prior to the 2009 pandemic, one 

for the background incidence rate study and one for the case control and SCCS 

investigations of the pandemic vaccination GBS association. These protocols 

standardised the collection of information on observation periods, vaccinations, AESI 

(using Brighton Collaboration case definitions) and a range of additional covariates. 

The use of Jerboa, the Java-based data processing software developed by the 

informatics team at Erasmus University Medical Centre Rotterdam for use in 

collaborative studies, standardised the processing and anonymisation of data collected 

across all sites, creating a common analysis file for each. The analysis of these Jerboa 

output files at a single site by a single analysis team served to standardise the 

analysis process and also allowed for a central data quality check to be carried out.  

 

Despite these efforts, in all three VAESCO studies in this thesis heterogeneity can still 

be observed between the results from each VAESCO source. While this may be due to 

natural variation in the association between vaccination and GBS (i.e. in line with a 

random effects model) it is likely that it is at least partly a result of residual 

heterogeneity. The major reason for residual heterogeneity is the underlying 

qualitative differences in the data sources included in the study, most notably those 

related to data collection as different data collection methods are associated with 

potentially differential biases which can be of unpredictable direction and magnitude. 

For example, false negative misclassification of exposures and covariates in sources of 

routinely collected data due to missing information, recall bias in sources which rely on 

interview data and biased case ascertainment in countries with incomplete case 

identification. Somewhat counter-intuitively, this residual heterogeneity has been put 
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forward as a potential strength of the VAESCO model, the argument being that it 

provides insight into the different biases at work in each data source. While this is true 

to a certain extent, accurately determining how much of the heterogeneity between 

results is due to chance and how much is due to bias or a lack of standardisation was 

not possible. 

 

Given this residual heterogeneity, in assessing the working model it would be useful to 

obtain a measure of how much heterogeneity the VAESCO approach actually removed. 

However in the absence of information on the alternative to the VAESCO approach, 

that is, a set of independent studies carried out in each VAESCO data source, it is not 

possible to directly obtain such a measure. Investigating heterogeneity in the methods 

applied across non-VAESCO studies of the association between influenza 

A(H1N1)pdm09 vaccine and GBS can provide some insight into the amount of 

heterogeneity that can arise between independent studies, and therefore the relative 

success of VAESCO. In table 5.1 I compare some key design features of VAESCO 

studies and independent, non-VAESCO studies. While the harmonisation of overall 

study design is the most obvious advantage of the VAESCO approach, the majority of 

independent studies also used an SCCS approach. In addition most independent 

studies used a 0-42 day post vaccination exposure window (the exceptions being the 

German study which used 5-42 days and the Canadian study which used 0-56 days) 

and while some of the non-VAESCO studies did not use Brighton Collaboration case 

definitions for verification of cases it could be argued that in some VAESCO sources, 

such as the GPRD, the use of Brighton Collaboration case definition added little. 

Overall the table shows that the non-VAESCO studies do not appear to be much more 

heterogeneous than the VAESCO studies. Despite this, it should also be noted that the 

level of homogeneity between these studies is aided by the characteristics of the 

specific research question: the acute nature of vaccination, the wide agreement on the 

6 week post-vaccination risk period, the specificity of diagnoses and diagnostic codes 

used to identify GBS and the availability of a standardised case definition for 

confirmation of GBS. An investigation of the association between exposure to a chronic 

treatment (such as blood glucose lowering agents) and a complex outcome (such as 

cancer) would be likely to result in much greater heterogeneity between exposure and 

outcome definitions used in independent studies; in such situations the amount of 

heterogeneity removed through the VAESCO approach would be more substantial. 
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One might argue that despite the residual heterogeneity observed in VAESCO, and the 

apparent homogeneity of the independent non-VAESCO study characteristics, the 

removal of any heterogeneity that would otherwise have existed rendered the use of 

the VAESCO working model worthwhile in this, and future scenarios. However, the 

advantages of any increases in homogeneity must be balanced against the potentially 

detrimental effect the VAESCO approach can have on other aspect of the study such 

as the speed with which results are obtained and the interpretation of results by 

external stakeholders. 

 

Pitfalls of the VAESCO working model 

 

As VAESCO discussions involved experts from a range of subject areas (e.g. public 

health, epidemiology, medicine) and cultures, differences in opinion were to be 

expected. The VAESCO background incidence rate and GBS protocols did not suffer 

any substantial delays due to differences in opinion however the subsequent VAESCO 

study investigating the association between narcolepsy and pandemic vaccination 

encountered considerable delays in protocol development due to the contrasting views 

of internal stakeholders. Collaborative studies such as this require well-defined 

mediation procedures in order to ensure any conflicts that arise are handled in a 

timely and satisfactory manner. Procedures to establish an independent arbitration 

committee might prove useful in dealing with situations in which mediation proves 

unsuccessful. Notably, independent studies carried out by investigators with 

differences of opinion are less likely to suffer such delays.  

 

In the absence of strong differences in opinion, discussion and agreement on 

standardised study definitions can still be a laborious process. For example, in the 

VAESCO studies the code lists used to define outcomes, exposures and covariates at 

each source had to be harmonised across the different coding dictionaries. For some of 

the complex, less well characterised events, such as generalised convulsive seizure or 

vasculitis, this proved to be a time consuming process, and was the major factor 

responsible for the delay in providing regulatory authorities with background incidence 

rates for use in real time OE analyses. In future, the protocol for defining, drafting, 

reviewing and finalising clinical and operational study definitions needs to be clearly 

defined during protocol development in order to avoid such unnecessary delays.  

 

It has been suggested that the use of Jerboa was a key strength of the VAESCO 

studies. However, anecdotal evidence suggests some external experts were uncertain 

about the role of Jerboa in the study, viewing it as a “black-box” into which study data 
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was entered. Similar concerns were also initially voiced by some internal VAESCO 

collaborators, however once it was explained that Jerboa carried out relatively simple 

data processing, that it was written in Java so that it could be run at all sites without 

the need for expensive software licences to be purchased and that all code had been 

cross validated in SAS, internal concerns dissipated. This same information needs to 

be clearly communicated to external stakeholders in order to ensure confidence in 

results is maintained. A contrasting problem might also arise if the functions of Jerboa 

are not clearly described to external stakeholders: casual readers might be led to 

believe that Jerboa is better than it is, for example that it is capable of removing 

heterogeneity in data collected from different sources. Such a belief might lead to a 

false sense of confidence in the comparability of results. 

 

The collaborative approach implemented in VAESCO resulted in the analysis of all 

study data at a single site, Erasmus University Medical Centre. Collaborating partners 

interested in providing input in the analysis were afforded the opportunity to 

contribute to the analysis both remotely and at in person analysis meetings. Despite 

this, the use of Jerboa and the sending of data to an external study site may have 

created a psychological divide between individual collaborators and their data. Such a 

situation might leave collaborators feeling like data providers rather than 

investigators. This disconnect may have had knock-on effects on participation in the 

discussion of results and the review of any draft manuscripts or reports. 

 

A practical problem with developing a common protocol is that any error in the design 

or analysis of the study will be implemented in all data sources. If a large proportion 

of the best epidemiological data sources available are recruited to a collaborative 

study like this, few sources of valid estimates may remain.  

 

Publication of data from all sources in a single manuscript allows for external 

stakeholders to compare results across sources and develop an overall picture of the 

research question however it can also result in important information that might 

normally be included in a manuscript being left out. In addition, publication of data 

from all sources as a single “study” may provide the reader with a false sense of the 

comparability of sources, and therefore an incorrect interpretation of the results. The 

single publication approach can also affect the speed of result dissemination, whereby 

delays in one source lead to a delay in the publication as a whole, even if some 

sources have data ready on time. A way around this problem is to report no results, or 

interim results, for the delayed sources; however this might not be well accepted by 

individuals working on the delayed source 



189 
 

 

Suggestions for the future 

 

In closing it should be emphasized that while the VAESCO studies provided useful 

information to inform the surveillance of the pandemic vaccination campaign, the 

VAESCO project was primarily a proof of principle endeavour. As a result it is 

important that the difficulties described above are viewed not as failings, but as 

challenges to be addressed in future implementations of the working model. 

 

Indeed an adapted version of the VAESCO working model has now been implemented 

in a collaborative multinational project investigating the safety of drugs used in the 

treatment of type 2 diabetes [31]. Changes made to the model for this project 

include: recruitment of more comparable data sources, distribution of the 

responsibility for study efforts across all collaborators in a clear and open manner, 

creating a “remote research environment” (a remote desktop located within the 

firewalls of Erasmus UMC Rotterdam) which collaborators log into using a password in 

order to contribute to analyses, pre-specification of a publication plan which involves 

contribution from as many partners as possible and a strong effort to clearly describe 

the role of Jerboa to a wider audience. These changes should serve to address some of 

the aforementioned limitations of the VAESCO working model. As the remote research 

environment removes the need to transmit data by email, data is uploaded to it 

through a secure file transfer protocol client, data protection has also been improved.  

 

In another collaborative drug safety initiative [32] a less collaborative working model 

has been implemented. Within this model a common protocol is drafted and 

implemented across all sources but all data processing and analysis is conducted 

locally using local scripts. Local results are then meta-analysed across sites and data 

disseminated in a single manuscript.  

 

As the associations under investigation in both of these new studies require more 

complex definitions of study populations, exposures, outcomes and covariates it will 

be interesting to see if the collaborative approach implemented in these studies 

improves comparability over previous non-collaborative studies of the same 

associations, and over the VAESCO studies. In future, a simple method to obtain a 

formal measure of the heterogeneity removed through these collaborations might be 

to ask individual partners to first draft local, data source specific protocols and then 

compare these with the final common protocol. Given the relative infancy of large 

collaborative European drug and vaccine safety projects, the financial support they 
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require and their uncertain effectiveness in harmonising data and results in the 

VAESCO project, it is vital that such comparisons are made in order to ensure that the 

theoretical advantages of collaboration are realised operationally and outweigh any 

possible disadvantages. 

 

5.4 Conclusions 

 
 At 40.3% and 21.6%, uptake of influenza A(H1N1)pdm09 vaccine by those in 

clinical risk groups and pregnant women was low. Age was the demographic 

characteristic most strongly associated with uptake among those in clinical risk 

groups. Being in a clinical risk group was the strongest predictor of uptake in 

pregnant women.  

 

 The age standardised 10 year incidence rate of facial nerve palsy estimated in 

8 data sources ranged from 5.33/100,000 PY in Sweden to 41.82/100,000 PY 

in Spain with the rate in the UK estimated as 27.22/100,000 PY. Variation 

observed across age categories, calendar time and data sources suggest it is 

important that such factors are considered when carrying out comparisons 

between observed and expected rates of facial nerve palsy. 

 

 Risk estimates for the association between GBS and influenza A(H1N1)pdm09 

vaccination in the different sources varied, however point estimates 

consistently showed increased risks which were reduced, or disappeared 

entirely, following adjustment for ILI, URTI or calendar month ([CC: IRRadj 1.0, 

CI95 0.3 to 2.7]; [SCCS: ORadj 1.3, CI95 0.6 to 2.7]). 

 

 Vaccination against influenza A(H1N1)pdm09 was associated with a lower risk 

of first (HRunadj 0.74, CI95 0.62 to 0.88), second (HRunadj 0.59, CI95 0.45 to 

0.77) and third (HRunadj 0.70, CI95 0.47 to 1.03) trimester foetal death. While 

this may be explained by residual confounding, sensitivity analyses provide 

reassurance that vaccination is unlikely to be associated with an increased risk 

of pregnancy loss. 

 

 Taken together, these results represent a meaningful contribution to the post-

marketing surveillance of the influenza A(H1N1)pdm09vaccination campaign 

and suggest that the campaign was characterised by the low uptake of a 

generally safe vaccine against a relatively mild pandemic strain of influenza.  
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 The findings also show that the GPRD performed well as a vaccine surveillance 

tool, providing accurate data on influenza A(H1N1) pdm09 vaccination and 

disease incidence. We highlight a number of possible developments which 

might serve to improve the GPRD’s ability to contribute meaningfully to vaccine 

surveillance during future vaccination campaigns.  

 
 

 

 The collaborative VAESCO studies illustrate the potential advantages and 

difficulties of international collaboration in vaccine safety. The VAESCO working 

model served to reduce heterogeneity across data sources however  further 

investigation is needed to determine whether the reduction in heterogeneity is 

worthwhile given the potential limitations the model can impose on the speed, 

quality and interpretation of study results. 
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6.  Appendices
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6.1 Appendix 1 – Comparison of GPRD and ONS data 

  GPRD* ONS** 

  N(1000s) % N(1000s) % 

Male 2,212 0.50 30154 0.49 

Female 2,253 0.50 31243 0.51 

          

  GPRD* ONS** 

  MALE 

  N(1000s) % N(1000s) % 

Under 1 23 1.06 403 1.34 

1 - 4 105 4.76 1,492 4.95 

5 - 9 125 5.65 1,735 5.75 

10 - 14 136 6.14 1,872 6.21 

15 - 19 141 6.35 2,049 6.80 

20 - 29 278 12.57 4,236 14.05 

30 - 44 492 22.25 6,450 21.39 

45 - 59 453 20.49 5,814 19.28 

60 - 64 139 6.28 1,780 5.90 

65 - 74 183 8.30 2,449 8.12 

75 - 84 106 4.77 1,452 4.82 

85 and over 30 1.38 422 1.40 

          

  GPRD* ONS** 

  FEMALE 

  N(1000s) % N(1000s) % 

Under 1 22 0.99 385 1.23 

1 - 4 100 4.44 1,420 4.54 

5 - 9 120 5.32 1,658 5.31 

10 - 14 131 5.80 1,785 5.71 

15 - 19 133 5.91 1,938 6.20 

20 - 29 280 12.42 4,076 13.05 

30 - 44 477 21.16 6,527 20.89 

45 - 59 441 19.59 5,983 19.15 

60 - 64 140 6.21 1,861 5.96 

65 - 74 198 8.78 2,708 8.67 

75 - 84 143 6.35 1,988 6.36 

85 and over 68 3.03 914 2.93 

          

 
GPRD* ONS** 

Country N(1000s) % N(1000s) % 

Scotland 428 7.9 5,169 8.4 

Wales 382 7.0 2,990 4.9 

Northern Ireland 151 2.8 1,775 2.9 

England 4,467 82.3 51,465 83.8 

UK 5,429 100.0 61,399 100 

*All GPRD figures are based on ‘up-to-standard’ population available in the GPRD on the 
01/01/2009 
**Office for National Statistics (ONS) figures are based on the mid-2008 population estimates 
published in Chapter 15 of their Annual Abstract of Statistics - Quarter 3, 2011 available at 
http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-222649 

http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-222649
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6.2 Appendix 2 - Facial nerve palsy data 

 
Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

IPCI - 
Netherlands   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 1130 0 1146 0 2276 

  1997 16 58800 16 56717 32 115518 

  1998 18 80911 17 79102 35 160013 

  1999 21 109742 24 108990 45 218732 

  2000 42 114375 38 113398 80 227774 

  2001 35 107119 30 106579 65 213698 

  2002 20 109939 26 109282 46 219221 

  2003 34 108741 25 108437 59 217178 

  2004 24 112035 25 111597 49 223632 

  2005 19 92528 24 92690 43 185218 

  2006 9 42945 8 42439 17 85384 

  2007 0 864 0 871 0 1734 

  2008 0 0 0 0 0 0 

Calendar month Jan 25 80545 20 79726 45 160271 

  Feb 14 74158 26 73404 40 147562 

  Mar 22 81401 20 80692 42 162094 

  Apr 19 78776 20 78090 39 156866 

  May 18 79611 21 78965 39 158576 

  Jun 22 77317 21 76705 43 154022 

  Jul 11 79395 18 78757 29 158152 

  Aug 23 79703 20 79091 43 158794 

  Sep 15 77941 16 77382 31 155324 

  Oct 24 79016 24 78432 48 157448 

  Nov 13 74421 15 73830 28 148250 

  Dec 32 76844 12 76174 44 153019 

Age category 0-4 4 56380 2 59141 6 115521 

  5-9 1 55037 3 57576 4 112613 

  10-14 5 54897 5 56996 10 111892 

  15-19 13 53317 9 54982 22 108299 

  20-24 9 55824 8 57712 17 113536 

  25-29 22 66090 11 68835 33 134925 

  30-34 15 73015 17 79182 32 152197 

  35-39 16 75476 17 80214 33 155690 

  40-44 15 72896 17 75714 32 148610 

  45-49 19 67999 25 69176 44 137175 

  50-54 14 64715 28 66796 42 131510 

  55-59 23 55050 21 56155 44 111205 

  60-64 12 43131 23 43192 35 86324 

  65-69 22 38448 16 35108 38 73557 

  70-74 20 35324 16 28871 36 64196 

  75-79 17 31277 9 21495 26 52773 

  80-84 8 21851 2 12542 10 34393 

  85+ 3 18401 4 7559 7 25960 

Group Total   238 939129 233 931249 471 1870377 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

IPCI - 
Netherlands   

IR/100000 
 

  
  
 women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 0.00 - 0.00 - 0.00 - 
1997 

27.21 (16.19-43.14) 28.21 (16.78-44.72) 27.70 (19.30-38.60) 
  1998 22.25 (13.65-34.40) 21.49 (12.99-33.63) 21.87 (15.49-30.06) 
  1999 19.14 (12.20-28.70) 22.02 (14.47-32.22) 20.57 (15.20-27.27) 
  2000 36.72 (26.83-49.14) 33.51 (24.08-45.49) 35.12 (28.04-43.47) 
  2001 32.67 (23.14-44.90) 28.15 (19.37-39.63) 30.42 (23.68-38.51) 
  2002 18.19 (11.46-27.54) 23.79 (15.91-34.32) 20.98 (15.56-27.73) 
  2003 31.27 (22.03-43.16) 23.05 (15.29-33.48) 27.17 (20.88-34.78) 
  2004 21.42 (14.08-31.34) 22.40 (14.85-32.54) 21.91 (16.40-28.71) 
  2005 20.53 (12.78-31.41) 25.89 (17.02-37.88) 23.22 (17.03-30.96) 
  2006 20.96 (10.35-38.25) 18.85 (8.89-35.57) 19.91 (12.04-31.16) 
  2007 0.00 - 0.00 - 0.00 - 
  2008 0.00 - 0.00 - 0.00 - 

Calendar 
month 
  

Jan 31.04 (20.58-45.08) 25.09 (15.81-37.98) 28.08 (20.74-37.21) 
Feb 

18.88 (10.81-30.83) 35.42 (23.68-51.09) 27.11 (19.65-36.52) 
  Mar 27.03 (17.42-40.18) 24.79 (15.62-37.53) 25.91 (18.93-34.67) 
  Apr 24.12 (15.01-36.89) 25.61 (16.14-38.78) 24.86 (17.95-33.62) 
  May 22.61 (13.88-34.96) 26.59 (16.95-39.89) 24.59 (17.75-33.26) 
  Jun 28.45 (18.34-42.30) 27.38 (17.45-41.06) 27.92 (20.48-37.23) 
  Jul 13.85 (7.35-23.98) 22.86 (14.03-35.34) 18.34 (12.54-25.96) 
  Aug 28.86 (18.79-42.55) 25.29 (15.93-38.29) 27.08 (19.86-36.11) 
  Sep 19.25 (11.24-30.94) 20.68 (12.30-32.78) 19.96 (13.82-27.95) 
  Oct 30.37 (19.96-44.44) 30.60 (20.11-44.77) 30.49 (22.75-40.06) 
  Nov 17.47 (9.78-29.02) 20.32 (11.87-32.67) 18.89 (12.82-26.90) 
  Dec 41.64 (29.02-58.03) 15.75 (8.60-26.68) 28.75 (21.17-38.23) 

Age 
category 
  

0-4 7.09 (2.37-16.87) 3.38 - 5.19 (2.16-10.71) 
5-9 

1.82 - 5.21 (1.44-13.90) 3.55 (1.19-8.45) 
  10-14 9.11 (3.45-19.96) 8.77 (3.33-19.23) 8.94 (4.59-15.86) 
  15-19 24.38 (13.65-40.51) 16.37 (8.08-29.88) 20.31 (13.09-30.20) 
  20-24 16.12 (7.96-29.43) 13.86 (6.54-26.16) 14.97 (9.05-23.43) 
  25-29 33.29 (21.45-49.49) 15.98 (8.48-27.66) 24.46 (17.14-33.92) 
  30-34 20.54 (12.00-33.03) 21.47 (12.98-33.60) 21.03 (14.65-29.30) 
  35-39 21.20 (12.61-33.61) 21.19 (12.81-33.17) 21.20 (14.85-29.39) 
  40-44 20.58 (12.02-33.09) 22.45 (13.58-35.14) 21.53 (15.00-30.00) 
  45-49 27.94 (17.39-42.74) 36.14 (23.96-52.49) 32.08 (23.61-42.64) 
  50-54 21.63 (12.39-35.33) 41.92 (28.46-59.70) 31.94 (23.34-42.73) 
  55-59 41.78 (27.20-61.60) 37.40 (23.84-56.09) 39.57 (29.13-52.60) 
  60-64 27.82 (15.19-47.12) 53.25 (34.67-78.51) 40.55 (28.72-55.72) 
  65-69 57.22 (36.88-85.07) 45.57 (27.11-72.25) 51.66 (37.13-70.12) 
  70-74 56.62 (35.68-85.73) 55.42 (32.96-87.85) 56.08 (39.92-76.73) 
  75-79 54.35 (32.86-85.06) 41.87 (20.68-76.42) 49.27 (32.94-71.06) 
  80-84 36.61 (17.27-69.09) 15.95 - 29.08 (14.93-51.58) 
  85+ 

16.30 (4.51-43.50) 52.91 
(17.69-
125.81) 26.96 (12.02-52.95) 

Group Total   25.34 (22.27-28.72) 25.02 (21.96-28.39) 25.18 (22.98-27.53) 
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Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

BIFAP - Spain   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 3509 0 3547 0 7056 

  1997 0 7058 0 6435 0 13493 

  1998 6 17074 2 15176 8 32250 

  1999 21 76623 13 62501 34 139124 

  2000 70 237733 70 193887 140 431620 

  2001 214 508463 158 424495 372 932959 

  2002 317 669891 225 576322 542 1246214 

  2003 410 810889 337 706394 747 1517283 

  2004 501 942673 421 828162 922 1770835 

  2005 456 966649 409 855715 865 1822365 

  2006 503 921982 416 822848 919 1744829 

  2007 441 862195 360 775148 801 1637343 

  2008 287 573977 263 517300 550 1091277 

Calendar 
month 

Jan 
284 541754 246 474995 530 1016749 

  Feb 271 501254 196 439481 467 940735 

  Mar 298 556484 206 487799 504 1044283 

  Apr 271 542950 244 475882 515 1018832 

  May 296 564255 227 494619 523 1058873 

  Jun 240 548253 207 480878 447 1029132 

  Jul 255 565372 203 495861 458 1061233 

  Aug 230 568578 228 498884 458 1067462 

  Sep 278 554998 227 487516 505 1042514 

  Oct 269 565934 218 497223 487 1063157 

  Nov 285 537703 243 471621 528 1009325 

  Dec 249 551182 229 483171 478 1034353 

Age category 0-4 44 324894 38 342268 82 667163 

  5-9 33 265076 37 279445 70 544522 

  10-14 118 288846 65 302988 183 591833 

  15-19 120 331597 135 342980 255 674577 

  20-24 180 441965 159 420594 339 862559 

  25-29 244 555240 216 501332 460 1056572 

  30-34 274 571909 276 496104 550 1068013 

  35-39 253 539611 249 476162 502 1015773 

  40-44 188 496727 207 437580 395 934307 

  45-49 215 466058 204 395075 419 861133 

  50-54 225 433844 215 370646 440 804490 

  55-59 222 389376 205 344577 427 733953 

  60-64 227 310548 147 275937 374 586485 

  65-69 225 280402 162 236152 387 516554 

  70-74 228 289005 155 223711 383 512716 

  75-79 198 253257 114 171679 312 424937 

  80-84 149 188769 64 103706 213 292474 

  85+ 83 171287 26 66804 109 238091 

Group Total   3226 6598409 2674 5787741 5900 12386151 

 



200 
 

 
 
 
 

 
Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

BIFAP - 
Spain   

IR/100000 
  
 

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 0.00 - 0.00 - 0.00 - 
1997 

0.00 - 0.00 - 0.00 - 
  1998 35.14 (14.61-72.44) 13.18 - 24.81 (11.70-46.81) 
  1999 27.41 (17.47-41.11) 20.80 (11.65-34.56) 24.44 (17.22-33.73) 
  2000 29.44 (23.14-36.97) 36.10 (28.37-45.33) 32.44 (27.39-38.15) 
  2001 42.09 (36.73-48.02) 37.22 (31.75-43.37) 39.87 (35.97-44.08) 
  2002 47.32 (42.32-52.75) 39.04 (34.19-44.40) 43.49 (39.95-47.27) 
  2003 50.56 (45.84-55.64) 47.71 (42.82-53.01) 49.23 (45.80-52.86) 
  2004 53.15 (48.64-57.96) 50.84 (46.15-55.87) 52.07 (48.79-55.51) 
  2005 47.17 (42.99-51.65) 47.80 (43.33-52.60) 47.47 (44.38-50.71) 
  2006 54.56 (49.94-59.48) 50.56 (45.87-55.59) 52.67 (49.35-56.16) 
  2007 51.15 (46.54-56.09) 46.44 (41.83-51.43) 48.92 (45.62-52.40) 
  2008 50.00 (44.47-56.04) 50.84 (44.97-57.27) 50.40 (46.32-54.75) 

Calendar 
month 
  

Jan 52.42 (46.59-58.79) 51.79 (45.62-58.57) 52.13 (47.83-56.71) 
Feb 

54.06 (47.91-60.79) 44.60 (38.68-51.18) 49.64 (45.29-54.30) 
  Mar 53.55 (47.73-59.89) 42.23 (36.76-48.30) 48.26 (44.19-52.62) 
  Apr 49.91 (44.23-56.13) 51.27 (45.14-58.02) 50.55 (46.32-55.06) 
  May 52.46 (46.74-58.69) 45.89 (40.21-52.16) 49.39 (45.29-53.76) 
  Jun 43.78 (38.50-49.58) 43.05 (37.48-49.22) 43.43 (39.55-47.60) 
  Jul 45.10 (39.82-50.90) 40.94 (35.59-46.87) 43.16 (39.34-47.25) 
  Aug 40.45 (35.47-45.94) 45.70 (40.06-51.93) 42.91 (39.11-46.97) 
  Sep 50.09 (44.46-56.24) 46.56 (40.80-52.92) 48.44 (44.35-52.81) 
  Oct 47.53 (42.10-53.47) 43.84 (38.31-49.96) 45.81 (41.87-50.01) 
  Nov 53.00 (47.11-59.43) 51.52 (45.35-58.31) 52.31 (47.99-56.92) 
  Dec 45.18 (39.82-51.05) 47.40 (41.55-53.84) 46.21 (42.21-50.50) 

Age 
category 
  

0-4 13.54 (9.97-18.00) 11.10 (7.98-15.07) 12.29 (9.84-15.17) 
5-9 

12.45 (8.72-17.26) 13.24 (9.47-18.04) 12.86 (10.10-16.14) 
  10-14 40.85 (33.97-48.73) 21.45 (16.70-27.16) 30.92 (26.68-35.65) 
  15-19 36.19 (30.14-43.11) 39.36 (33.13-46.43) 37.80 (33.37-42.66) 
  20-24 40.73 (35.10-47.01) 37.80 (32.27-44.03) 39.30 (35.28-43.66) 
  25-29 43.94 (38.69-49.72) 43.09 (37.62-49.12) 43.54 (39.69-47.65) 
  30-34 47.91 (42.49-53.84) 55.63 (49.36-62.49) 51.50 (47.33-55.94) 
  35-39 46.89 (41.37-52.94) 52.29 (46.10-59.10) 49.42 (45.24-53.89) 
  40-44 37.85 (32.72-43.55) 47.31 (41.19-54.09) 42.28 (38.26-46.60) 
  45-49 46.13 (40.27-52.61) 51.64 (44.91-59.09) 48.66 (44.16-53.49) 
  50-54 51.86 (45.41-58.98) 58.01 (50.64-66.16) 54.69 (49.76-59.99) 
  55-59 57.01 (49.88-64.89) 59.49 (51.76-68.06) 58.18 (52.85-63.90) 
  60-64 73.10 (64.05-83.08) 53.27 (45.18-62.42) 63.77 (57.55-70.48) 
  65-69 80.24 (70.27-91.25) 68.60 (58.64-79.79) 74.92 (67.73-82.67) 
  70-74 78.89 (69.14-89.64) 69.29 (59.01-80.85) 74.70 (67.50-82.47) 
  75-79 78.18 (67.85-89.65) 66.40 (55.04-79.45) 73.42 (65.61-81.91) 
  80-84 78.93 (67.01-92.39) 61.71 (47.95-78.27) 72.83 (63.53-83.11) 
  85+ 48.46 (38.85-59.75) 38.92 (26.02-56.14) 45.78 (37.78-55.00) 
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Group 
Total 

  
48.89 (47.23-50.60) 46.20 (44.47-47.98) 47.63 (46.43-48.86) 

 
 
 
 

Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

CPRD (UK)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 776818 0 760035 0 1536854 

  1997 0 843169 0 826004 0 1669173 

  1998 344 940490 330 923411 674 1863901 

  1999 361 1026493 359 1009047 720 2035540 

  2000 403 1149272 368 1130736 771 2280008 

  2001 435 1256154 445 1236494 880 2492647 

  2002 503 1373608 427 1354390 930 2727998 

  2003 566 1437423 505 1422010 1071 2859434 

  2004 538 1472368 482 1459639 1020 2932007 

  2005 572 1504247 537 1489532 1109 2993779 

  2006 466 1510198 499 1494054 965 3004252 

  2007 503 1502410 461 1487209 964 2989619 

  2008 473 1328247 467 1311938 940 2640185 

Calendar month Jan 502 1366770 468 1348101 970 2714870 

  Feb 388 1250158 391 1233208 779 2483365 

  Mar 470 1372197 428 1353795 898 2725992 

  Apr 407 1329549 401 1311785 808 2641334 

  May 467 1375773 403 1357530 870 2733304 

  Jun 386 1331208 400 1313676 786 2644884 

  Jul 419 1380393 368 1362121 787 2742514 

  Aug 423 1383298 389 1364762 812 2748060 

  Sep 430 1342942 401 1324720 831 2667661 

  Oct 443 1381591 417 1362952 860 2744544 

  Nov 445 1301020 385 1283241 830 2584262 

  Dec 390 1305998 434 1288609 824 2594606 

Age category 0-4 42 871607 48 916608 90 1788216 

  5-9 74 922390 67 970847 141 1893237 

  10-14 207 926279 125 989771 332 1916050 

  15-19 213 859131 182 955721 395 1814852 

  20-24 234 765818 195 845378 429 1611196 

  25-29 256 931740 257 961570 513 1893311 

  30-34 393 1111296 359 1137765 752 2249060 

  35-39 398 1236764 399 1272528 797 2509292 

  40-44 401 1209288 416 1254057 817 2463345 

  45-49 366 1123234 424 1164013 790 2287247 

  50-54 403 1088395 420 1120250 823 2208645 

  55-59 394 1033725 420 1054243 814 2087967 

  60-64 395 895662 418 897449 813 1793111 

  65-69 398 778689 367 737686 765 1516375 

  70-74 353 716809 328 620983 681 1337792 

  75-79 268 644206 233 483387 501 1127593 

  80-84 203 500060 145 309827 348 809887 

  85+ 172 505805 82 212413 254 718218 

Group Total   5170 16120897 4885 15904499 10055 32025396 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

CPRD 
(UK)   IR/100000 

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 0.00 - 0.00 - 0.00 - 
1997 

0.00 - 0.00 - 0.00 - 
  1998 36.58 (32.86-40.60) 35.74 (32.04-39.75) 36.16 (33.51-38.97) 
  1999 35.17 (31.68-38.94) 35.58 (32.04-39.40) 35.37 (32.86-38.03) 
  2000 35.07 (31.77-38.62) 32.55 (29.35-36.00) 33.82 (31.49-36.27) 
  2001 34.63 (31.49-38.00) 35.99 (32.76-39.45) 35.30 (33.03-37.69) 
  2002 36.62 (33.52-39.93) 31.53 (28.64-34.63) 34.09 (31.95-36.34) 
  2003 39.38 (36.23-42.72) 35.51 (32.52-38.71) 37.45 (35.26-39.75) 
  2004 36.54 (33.55-39.73) 33.02 (30.17-36.07) 34.79 (32.70-36.97) 
  2005 38.03 (35.00-41.24) 36.05 (33.10-39.20) 37.04 (34.91-39.27) 
  2006 30.86 (28.15-33.76) 33.40 (30.56-36.43) 32.12 (30.14-34.20) 
  2007 33.48 (30.65-36.50) 31.00 (28.26-33.93) 32.24 (30.26-34.33) 
  2008 35.61 (32.51-38.93) 35.60 (32.48-38.94) 35.60 (33.38-37.93) 

Calendar 
month 
  

Jan 36.73 (33.62-40.05) 34.72 (31.68-37.97) 35.73 (33.53-38.03) 
Feb 

31.04 (28.06-34.24) 31.71 (28.68-34.97) 31.37 (29.22-33.63) 
  Mar 34.25 (31.26-37.45) 31.61 (28.73-34.72) 32.94 (30.84-35.15) 
  Apr 30.61 (27.75-33.70) 30.57 (27.69-33.67) 30.59 (28.54-32.76) 
  May 33.94 (30.97-37.13) 29.69 (26.89-32.69) 31.83 (29.77-34.00) 
  Jun 29.00 (26.21-32.00) 30.45 (27.57-33.54) 29.72 (27.69-31.85) 
  Jul 30.35 (27.55-33.37) 27.02 (24.36-29.88) 28.70 (26.74-30.75) 
  Aug 30.58 (27.77-33.60) 28.50 (25.78-31.44) 29.55 (27.57-31.63) 
  Sep 32.02 (29.10-35.15) 30.27 (27.42-33.34) 31.15 (29.09-33.32) 
  Oct 32.06 (29.18-35.16) 30.60 (27.76-33.64) 31.33 (29.29-33.48) 
  Nov 34.20 (31.14-37.49) 30.00 (27.12-33.11) 32.12 (29.99-34.36) 
  Dec 29.86 (27.01-32.94) 33.68 (30.62-36.96) 31.76 (29.65-33.98) 

Age 
category 
  

0-4 4.82 (3.52-6.45) 5.24 (3.91-6.88) 5.03 (4.07-6.16) 
5-9 

8.02 (6.35-10.01) 6.90 (5.39-8.71) 7.45 (6.29-8.75) 
  10-14 22.35 (19.46-25.55) 12.63 (10.56-14.99) 17.33 (15.54-19.27) 

  15-19 24.79 (21.63-28.29) 19.04 (16.43-21.96) 21.76 (19.70-23.99) 
  20-24 30.56 (26.83-34.66) 23.07 (20.00-26.48) 26.63 (24.20-29.24) 
  25-29 27.48 (24.26-31.00) 26.73 (23.61-30.15) 27.10 (24.83-29.52) 
  30-34 35.36 (32.00-38.99) 31.55 (28.41-34.95) 33.44 (31.11-35.89) 
  35-39 32.18 (29.13-35.46) 31.35 (28.39-34.55) 31.76 (29.61-34.03) 
  40-44 33.16 (30.03-36.53) 33.17 (30.10-36.48) 33.17 (30.95-35.50) 
  45-49 32.58 (29.37-36.05) 36.43 (33.08-40.02) 34.54 (32.19-37.01) 
  50-54 37.03 (33.54-40.78) 37.49 (34.03-41.21) 37.26 (34.78-39.87) 
  55-59 38.11 (34.49-42.02) 39.84 (36.16-43.79) 38.99 (36.38-41.73) 
  60-64 44.10 (39.91-48.61) 46.58 (42.27-51.20) 45.34 (42.30-48.54) 
  65-69 51.11 (46.27-56.32) 49.75 (44.85-55.04) 50.45 (46.97-54.12) 
  70-74 49.25 (44.31-54.59) 52.82 (47.33-58.77) 50.90 (47.19-54.84) 
  75-79 41.60 (36.84-46.81) 48.20 (42.31-54.69) 44.43 (40.67-48.45) 
  80-84 40.60 (35.30-46.47) 46.80 (39.64-54.89) 42.97 (38.63-47.66) 
  85+ 34.01 (29.20-39.38) 38.60 (30.91-47.66) 35.37 (31.21-39.92) 
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Group 
Total 

  
32.07 (31.20-32.95) 30.71 (29.86-31.59) 31.40 (30.79-32.02) 

 
 
 
 

 
Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

HSD (IT)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 0 0 0 0 0 

  1997 0 0 0 0 0 0 

  1998 0 0 0 0 0 0 

  1999 0 0 0 0 0 0 

  2000 0 0 0 0 0 0 

  2001 0 0 0 0 0 0 

  2002 0 0 0 0 0 0 

  2003 120 332008 111 297611 231 629619 

  2004 124 344563 138 310269 262 654832 

  2005 148 350376 131 316074 279 666450 

  2006 130 357703 140 323370 270 681073 

  2007 135 365711 128 331439 263 697150 

  2008 127 372299 153 337565 280 709864 

Calendar month Jan 78 177811 103 160281 181 338092 

  Feb 64 162963 65 146940 129 309903 

  Mar 73 178763 72 161235 145 339997 

  Apr 76 173418 65 156447 141 329865 

  May 60 179697 62 162188 122 341885 

  Jun 49 174455 73 157540 122 331995 

  Jul 56 180595 53 163112 109 343707 

  Aug 46 180896 66 163396 112 344292 

  Sep 79 175422 44 158464 123 333886 

  Oct 62 181565 70 164042 132 345607 

  Nov 78 175968 67 159002 145 334970 

  Dec 63 181107 61 163681 124 344789 

Age category 0-4 0 0 0 0 0 0 

  5-9 0 0 0 0 0 0 

  10-14 2 8526 1 9303 3 17829 

  15-19 23 82896 23 91133 46 174030 

  20-24 29 119869 34 125142 63 245011 

  25-29 37 143771 44 141309 81 285080 

  30-34 37 173668 66 166162 103 339830 

  35-39 51 190124 65 181480 116 371604 

  40-44 39 193551 69 183253 108 376803 

  45-49 53 175053 73 168000 126 343053 

  50-54 70 161291 54 156149 124 317440 

  55-59 77 161341 73 152869 150 314210 

  60-64 73 145426 62 135028 135 280454 

  65-69 77 143559 83 125552 160 269111 

  70-74 73 132418 63 105302 136 237720 

  75-79 75 121937 44 84824 119 206761 

  80-84 44 98261 36 57607 80 155868 

  85+ 24 70969 11 33216 35 104185 

Group Total   784 2122660 801 1916329 1585 4038989 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category 

HSD (IT)   IR/100000 

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 NC - NC - NC - 
1997 

NC - NC - NC - 

  1998 NC - NC - NC - 

  1999 NC - NC - NC - 

  2000 NC - NC - NC - 

  2001 NC - NC - NC - 

  2002 NC - NC - NC - 

  2003 36.14 (30.10-43.06) 37.30 (30.83-44.73) 36.69 (32.18-41.65) 

  2004 35.99 (30.06-42.75) 44.48 (37.51-52.37) 40.01 (35.38-45.08) 

  2005 42.24 (35.84-49.47) 41.45 (34.80-49.01) 41.86 (37.17-47.00) 

  2006 36.34 (30.49-43.00) 43.29 (36.56-50.92) 39.64 (35.12-44.59) 

  2007 36.91 (31.07-43.54) 38.62 (32.36-45.76) 37.73 (33.37-42.49) 

  2008 34.11 (28.56-40.44) 45.32 (38.56-52.94) 39.44 (35.02-44.27) 

Calendar 
month 
  

Jan 43.87 (34.92-54.44) 64.26 (52.73-77.60) 53.54 (46.16-61.77) 
Feb 

39.27 (30.51-49.81) 44.24 (34.44-56.00) 41.63 (34.90-49.29) 

  Mar 40.84 (32.26-51.03) 44.66 (35.21-55.89) 42.65 (36.12-50.02) 

  Apr 43.82 (34.78-54.53) 41.55 (32.34-52.60) 42.74 (36.12-50.25) 

  May 33.39 (25.72-42.67) 38.23 (29.58-48.66) 35.68 (29.77-42.45) 

  Jun 28.09 (21.02-36.81) 46.34 (36.60-57.91) 36.75 (30.65-43.71) 

  Jul 31.01 (23.66-39.96) 32.49 (24.60-42.16) 31.71 (26.17-38.10) 

  Aug 25.43 (18.85-33.60) 40.39 (31.51-51.05) 32.53 (26.92-38.98) 

  Sep 45.03 (35.91-55.81) 27.77 (20.44-36.91) 36.84 (30.75-43.79) 

  Oct 34.15 (26.42-43.47) 42.67 (33.53-53.57) 38.19 (32.09-45.14) 

  Nov 44.33 (35.29-55.01) 42.14 (32.93-53.16) 43.29 (36.67-50.77) 

  Dec 34.79 (26.97-44.20) 37.27 (28.77-47.53) 35.96 (30.04-42.72) 

Age 
category 
  

0-4 NC - NC - NC - 
5-9 

NC - NC - NC - 

  10-14 23.46 - 10.75 - 16.83 (4.66-44.89) 

  15-19 27.75 (18.06-40.91) 25.24 (16.43-37.21) 26.43 (19.60-34.93) 

  20-24 24.19 (16.54-34.25) 27.17 (19.14-37.50) 25.71 (19.94-32.67) 

  25-29 25.74 (18.41-35.07) 31.14 (22.92-41.40) 28.41 (22.72-35.12) 

  30-34 21.31 (15.24-29.03) 39.72 (30.98-50.20) 30.31 (24.87-36.60) 

  35-39 26.82 (20.20-34.97) 35.82 (27.88-45.34) 31.22 (25.92-37.29) 

  40-44 20.15 (14.54-27.25) 37.65 (29.54-47.35) 28.66 (23.63-34.46) 

  45-49 30.28 (22.92-39.28) 43.45 (34.32-54.30) 36.73 (30.73-43.57) 

  50-54 43.40 (34.10-54.49) 34.58 (26.26-44.76) 39.06 (32.63-46.40) 

  55-59 47.72 (37.94-59.30) 47.75 (37.72-59.68) 47.74 (40.55-55.85) 

  60-64 50.20 (39.65-62.73) 45.92 (35.53-58.45) 48.14 (40.52-56.78) 

  65-69 53.64 (42.64-66.65) 66.11 (53.01-81.51) 59.46 (50.77-69.22) 

  70-74 55.13 (43.54-68.90) 59.83 (46.39-76.01) 57.21 (48.19-67.45) 

  75-79 61.51 (48.74-76.64) 51.87 (38.19-68.96) 57.55 (47.90-68.61) 

  80-84 44.78 (32.97-59.53) 62.49 (44.49-85.51) 51.33 (40.98-63.52) 

  85+ 33.82 (22.22-49.48) 33.12 (17.57-57.32) 33.59 (23.80-46.16) 
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Group 
Total 

  
36.93 (34.42-39.59) 41.80 (38.98-44.77) 39.24 (37.35-41.21) 

 
 
 

 
 
Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

SRD (IT)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 0 0 0 0 0 

  1997 0 0 0 0 0 0 

  1998 0 0 0 0 0 0 

  1999 0 0 0 0 0 0 

  2000 0 0 0 0 0 0 

  2001 4 36443 0 38673 4 75116 

  2002 213 2435368 217 2266970 430 4702338 

  2003 191 2457920 214 2290669 405 4748588 

  2004 207 2487774 194 2321466 401 4809240 

  2005 197 2503663 207 2339349 404 4843012 

  2006 183 2521237 172 2358545 355 4879782 

  2007 161 2537208 144 2375430 305 4912638 

  2008 143 2556765 135 2395491 278 4952256 

Calendar month Jan 140 1482418 139 1384421 279 2866838 

  Feb 117 1353726 112 1264366 229 2618091 

  Mar 123 1484621 129 1386747 252 2871368 

  Apr 121 1437770 103 1343120 224 2780890 

  May 121 1486851 103 1389105 224 2875956 

  Jun 90 1440028 94 1345518 184 2785546 

  Jul 79 1489251 94 1391684 173 2880935 

  Aug 74 1490517 95 1393021 169 2883538 

  Sep 110 1443677 110 1349384 220 2793061 

  Oct 136 1493113 113 1395763 249 2888876 

  Nov 109 1446078 107 1351926 216 2798004 

  Dec 79 1488328 84 1391538 163 2879866 

Age category 0-4 47 878284 35 928198 82 1806482 

  5-9 51 893228 46 942266 97 1835494 

  10-14 92 999092 59 1054599 151 2053691 

  15-19 45 1043083 27 1086648 72 2129732 

  20-24 53 1057397 39 1053906 92 2111303 

  25-29 51 1151858 52 1113325 103 2265182 

  30-34 52 1269433 70 1213238 122 2482671 

  35-39 62 1324425 69 1265116 131 2589541 

  40-44 60 1300393 82 1233512 142 2533905 

  45-49 83 1195962 87 1126350 170 2322312 

  50-54 85 1104008 96 1041094 181 2145102 

  55-59 96 1052745 127 988008 223 2040753 

  60-64 122 919754 128 839732 250 1759486 

  65-69 130 903261 124 782316 254 1685577 

  70-74 111 841727 116 680375 227 1522102 

  75-79 98 717819 72 524075 170 1241894 

  80-84 47 505145 40 319976 87 825121 

  85+ 14 378763 14 193859 28 572622 

Group Total   1299 17536378 1283 16386592 2582 33922970 



206 
 

        

         
 
 
 

Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

SRD (IT)   IR/100000 

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 NC - NC - NC - 
1997 

NC #VALUE! NC - NC - 

  1998 NC - NC - NC - 

  1999 NC - NC - NC - 

  2000 NC - NC - NC - 

  2001 10.98 (3.67-26.10) 0.00 - 5.33 (1.78-12.66) 

  2002 8.75 (7.63-9.98) 9.57 (8.36-10.91) 9.14 (8.31-10.04) 

  2003 7.77 (6.73-8.93) 9.34 (8.15-10.66) 8.53 (7.73-9.39) 

  2004 8.32 (7.24-9.51) 8.36 (7.24-9.60) 8.34 (7.55-9.18) 

  2005 7.87 (6.83-9.03) 8.85 (7.70-10.12) 8.34 (7.56-9.19) 

  2006 7.26 (6.26-8.37) 7.29 (6.26-8.44) 7.27 (6.55-8.06) 

  2007 6.35 (5.42-7.38) 6.06 (5.13-7.11) 6.21 (5.54-6.94) 

  2008 5.59 (4.73-6.57) 5.64 (4.74-6.65) 5.61 (4.98-6.30) 

Calendar 
month 
  

Jan 9.44 (7.98-11.11) 10.04 (8.47-11.82) 9.73 (8.64-10.93) 
Feb 

8.64 (7.18-10.32) 8.86 (7.33-10.62) 8.75 (7.67-9.94) 

  Mar 8.28 (6.92-9.85) 9.30 (7.80-11.01) 8.78 (7.74-9.91) 

  Apr 8.42 (7.01-10.02) 7.67 (6.29-9.26) 8.05 (7.05-9.16) 

  May 8.14 (6.78-9.69) 7.41 (6.08-8.95) 7.79 (6.82-8.86) 

  Jun 6.25 (5.06-7.64) 6.99 (5.68-8.51) 6.61 (5.70-7.61) 

  Jul 5.30 (4.23-6.57) 6.75 (5.49-8.23) 6.00 (5.16-6.95) 

  Aug 4.96 (3.93-6.20) 6.82 (5.55-8.30) 5.86 (5.03-6.80) 

  Sep 7.62 (6.29-9.15) 8.15 (6.73-9.78) 7.88 (6.89-8.97) 

  Oct 9.11 (7.67-10.74) 8.10 (6.70-9.69) 8.62 (7.60-9.74) 

  Nov 7.54 (6.22-9.05) 7.91 (6.52-9.52) 7.72 (6.74-8.80) 

  Dec 5.31 (4.23-6.58) 6.04 (4.85-7.43) 5.66 (4.84-6.58) 

Age 
category 
  

0-4 5.35 (3.98-7.05) 3.77 (2.67-5.18) 4.54 (3.63-5.60) 
5-9 

5.71 (4.30-7.44) 4.88 (3.62-6.45) 5.28 (4.31-6.42) 

  10-14 9.21 (7.47-11.24) 5.59 (4.30-7.16) 7.35 (6.25-8.60) 

  15-19 4.31 (3.19-5.72) 2.48 (1.67-3.56) 3.38 (2.67-4.23) 

  20-24 5.01 (3.80-6.50) 3.70 (2.67-5.00) 4.36 (3.53-5.32) 

  25-29 4.43 (3.33-5.77) 4.67 (3.53-6.07) 4.55 (3.73-5.49) 

  30-34 4.10 (3.09-5.33) 5.77 (4.53-7.24) 4.91 (4.10-5.85) 

  35-39 4.68 (3.62-5.96) 5.45 (4.28-6.86) 5.06 (4.25-5.98) 

  40-44 4.61 (3.55-5.90) 6.65 (5.32-8.21) 5.60 (4.74-6.58) 

  45-49 6.94 (5.56-8.56) 7.72 (6.23-9.48) 7.32 (6.28-8.48) 

  50-54 7.70 (6.19-9.47) 9.22 (7.51-11.21) 8.44 (7.27-9.74) 

  55-59 9.12 (7.43-11.08) 12.85 (10.76-15.24) 10.93 (9.56-12.43) 

  60-64 13.26 (11.06-15.78) 15.24 (12.77-18.06) 14.21 (12.53-16.05) 

  65-69 14.39 (12.08-17.03) 15.85 (13.24-18.83) 15.07 (13.30-17.01) 

  70-74 13.19 (10.90-15.82) 17.05 (14.15-20.37) 14.91 (13.07-16.95) 

  75-79 13.65 (11.15-16.56) 13.74 (10.83-17.20) 13.69 (11.75-15.87) 

  80-84 9.30 (6.92-12.26) 12.50 (9.06-16.84) 10.54 (8.50-12.94) 

  85+ 3.70 (2.12-6.04) 7.22 (4.14-11.79) 4.89 (3.32-6.96) 

Group Total   7.41 (7.01-7.82) 7.83 (7.41-8.27) 7.61 (7.32-7.91) 
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Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

MBR/NHR (SK)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 0 0 0 0 0 

  1997 0 68661 0 71898 0 140559 

  1998 245 4285541 234 4178972 479 8464513 

  1999 271 4343184 238 4238546 509 8581730 

  2000 314 4382903 239 4280064 553 8662967 

  2001 288 4372287 249 4273513 537 8645800 

  2002 319 4377129 240 4283241 559 8660370 

  2003 269 4365697 251 4275974 520 8641671 

  2004 306 4342028 262 4255039 568 8597067 

  2005 291 4283064 226 4199170 517 8482233 

  2006 333 4237085 269 4156038 602 8393123 

  2007 262 4178624 238 4101479 500 8280103 

  2008 0 0 0 0 0 0 

Calendar month Jan 0 0 0 0 0 0 

  Feb 0 0 0 0 0 0 

  Mar 0 0 0 0 0 0 

  Apr 0 0 0 0 0 0 

  May 0 0 0 0 0 0 

  Jun 0 0 0 0 0 0 

  Jul 0 0 0 0 0 0 

  Aug 0 0 0 0 0 0 

  Sep 0 0 0 0 0 0 

  Oct 0 0 0 0 0 0 

  Nov 0 0 0 0 0 0 

  Dec 0 0 0 0 0 0 

Age category 0-4 116 1769222 104 1865517 220 3634739 

  5-9 189 2562219 183 2697461 372 5259680 

  10-14 148 2795867 124 2947254 272 5743120 

  15-19 85 2601308 57 2751812 142 5353121 

  20-24 82 2462029 56 2587914 138 5049942 

  25-29 72 2645030 62 2754794 134 5399825 

  30-34 130 2889738 81 3018333 211 5908071 

  35-39 140 2956445 105 3096759 245 6053205 

  40-44 140 2849356 127 2962606 267 5811963 

  45-49 148 2793047 137 2868528 285 5661575 

  50-54 178 2931912 160 2984638 338 5916550 

  55-59 244 2886608 192 2923526 436 5810134 

  60-64 186 2419446 226 2394087 412 4813533 

  65-69 216 2024398 195 1869871 411 3894269 

  70-74 213 1903043 211 1604053 424 3507096 

  75-79 236 1829256 202 1378905 438 3208160 

  80-84 189 1499063 142 964914 331 2463977 

  85+ 186 1418217 82 642961 268 2061178 

Group Total   2898 43236203 2446 42313934 5344 85550137 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

MBR/NHR 
(SK)   IR/100000           

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 NC - NC - NC - 
1997 

0.00 - 0.00 - 0.00 - 

  1998 5.72 (5.03-6.47) 5.60 (4.92-6.35) 5.66 (5.17-6.18) 

  1999 6.24 (5.53-7.02) 5.62 (4.94-6.36) 5.93 (5.43-6.46) 

  2000 7.16 (6.40-7.99) 5.58 (4.91-6.33) 6.38 (5.87-6.93) 

  2001 6.59 (5.86-7.38) 5.83 (5.14-6.58) 6.21 (5.70-6.75) 

  2002 7.29 (6.52-8.12) 5.60 (4.93-6.35) 6.45 (5.94-7.01) 

  2003 6.16 (5.46-6.93) 5.87 (5.18-6.63) 6.02 (5.52-6.55) 

  2004 7.05 (6.29-7.87) 6.16 (5.45-6.94) 6.61 (6.08-7.17) 

  2005 6.79 (6.05-7.61) 5.38 (4.71-6.12) 6.10 (5.59-6.64) 

  2006 7.86 (7.05-8.74) 6.47 (5.73-7.28) 7.17 (6.62-7.76) 

  2007 6.27 (5.54-7.06) 5.80 (5.10-6.58) 6.04 (5.53-6.59) 

  2008 NC - NC - NC - 

Calendar 
month 
  

Jan NC - NC - NC - 
Feb 

NC - NC - NC - 

  Mar NC - NC - NC - 

  Apr NC - NC - NC - 

  May NC - NC - NC - 

  Jun NC - NC - NC - 

  Jul NC - NC - NC - 

  Aug NC - NC - NC - 

  Sep NC - NC - NC - 

  Oct NC - NC - NC - 

  Nov NC - NC - NC - 

  Dec NC - NC - NC - 

Age 
category 
  

0-4 6.56 (5.44-7.83) 5.57 (4.58-6.73) 6.05 (5.29-6.89) 
5-9 

7.38 (6.38-8.49) 6.78 (5.85-7.82) 7.07 (6.38-7.82) 

  10-14 5.29 (4.49-6.20) 4.21 (3.51-5.00) 4.74 (4.20-5.32) 

  15-19 3.27 (2.63-4.02) 2.07 (1.58-2.66) 2.65 (2.24-3.12) 

  20-24 3.33 (2.67-4.11) 2.16 (1.65-2.79) 2.73 (2.30-3.22) 

  25-29 2.72 (2.15-3.41) 2.25 (1.74-2.86) 2.48 (2.09-2.93) 

  30-34 4.50 (3.77-5.32) 2.68 (2.15-3.32) 3.57 (3.11-4.08) 

  35-39 4.74 (4.00-5.57) 3.39 (2.79-4.09) 4.05 (3.56-4.58) 

  40-44 4.91 (4.15-5.78) 4.29 (3.59-5.08) 4.59 (4.07-5.17) 

  45-49 5.30 (4.50-6.21) 4.78 (4.03-5.63) 5.03 (4.47-5.64) 

  50-54 6.07 (5.23-7.01) 5.36 (4.58-6.24) 5.71 (5.13-6.35) 

  55-59 8.45 (7.44-9.56) 6.57 (5.69-7.55) 7.50 (6.82-8.23) 

  60-64 7.69 (6.64-8.85) 9.44 (8.27-10.73) 8.56 (7.76-9.42) 

  65-69 10.67 (9.32-12.17) 10.43 (9.04-11.97) 10.55 (9.57-11.61) 

  70-74 11.19 (9.76-12.77) 13.15 (11.47-15.02) 12.09 (10.98-13.28) 

  75-79 12.90 (11.33-14.63) 14.65 (12.73-16.78) 13.65 (12.42-14.98) 

  80-84 12.61 (10.91-14.50) 14.72 (12.44-17.29) 13.43 (12.04-14.94) 

  85+ 13.12 (11.33-15.10) 12.75 (10.21-15.74) 13.00 (11.51-14.63) 
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Group 
Total 

  
6.70 (6.46-6.95) 5.78 (5.55-6.01) 6.25 (6.08-6.42) 

 
 
 
 

 
Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

DCRS/NHDR (DK)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 277 2766394 301 2707184 578 5473578 

  1997 311 2794138 315 2736893 626 5531030 

  1998 385 2828504 349 2773104 734 5601608 

  1999 424 2862883 415 2809020 839 5671903 

  2000 418 2885146 426 2832740 844 5717886 

  2001 420 2871821 464 2821248 884 5693070 

  2002 475 2864313 491 2815817 966 5680129 

  2003 483 2856054 537 2809280 1020 5665334 

  2004 568 2856304 515 2810368 1083 5666672 

  2005 488 2840646 543 2795656 1031 5636302 

  2006 545 2831759 583 2787313 1128 5619073 

  2007 594 2820895 569 2776647 1163 5597542 

  2008 590 2815784 598 2771403 1188 5587187 

Calendar month Jan 0 0 0 0 0 0 

  Feb 0 0 0 0 0 0 

  Mar 0 0 0 0 0 0 

  Apr 0 0 0 0 0 0 

  May 0 0 0 0 0 0 

  Jun 0 0 0 0 0 0 

  Jul 0 0 0 0 0 0 

  Aug 0 0 0 0 0 0 

  Sep 0 0 0 0 0 0 

  Oct 0 0 0 0 0 0 

  Nov 0 0 0 0 0 0 

  Dec 0 0 0 0 0 0 

Age category 0-4 143 2226634 207 2337589 350 4564223 

  5-9 199 2251581 208 2360061 407 4611641 

  10-14 281 2260086 213 2340512 494 4600599 

  15-19 228 2302087 229 2347765 457 4649851 

  20-24 286 2393381 282 2450505 568 4843887 

  25-29 432 2512865 392 2591988 824 5104853 

  30-34 532 2668360 473 2781335 1005 5449695 

  35-39 464 2659298 494 2785812 958 5445110 

  40-44 414 2566343 459 2672799 873 5239142 

  45-49 414 2442165 495 2515255 909 4957419 

  50-54 435 2460611 540 2516113 975 4976724 

  55-59 426 2295230 540 2316549 966 4611778 

  60-64 394 1952864 419 1906265 813 3859129 

  65-69 347 1584021 379 1450070 726 3034091 

  70-74 292 1375464 322 1143124 614 2518588 

  75-79 298 1190038 227 856045 525 2046083 

  80-84 224 910446 150 533561 374 1444007 

  85+ 169 843169 77 341326 246 1184495 

Group Total   5978 36894642 6106 36246672 12084 73141314 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

DCRS/NHDR 
(DK)   

IR/100000 

  
  

wom
en 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 10.01 (8.89-11.25) 11.12 (9.92-12.43) 10.56 (9.73-11.45) 
1997 

11.13 (9.94-12.42) 11.51 (10.29-12.83) 11.32 (10.46-12.23) 

  1998 13.61 (12.30-15.02) 12.59 (11.32-13.96) 13.10 (12.18-14.08) 

  1999 14.81 (13.45-16.27) 14.77 (13.40-16.25) 14.79 (13.82-15.82) 

  2000 14.49 (13.15-15.93) 15.04 (13.66-16.52) 14.76 (13.79-15.78) 

  2001 14.62 (13.28-16.07) 16.45 (15.00-17.99) 15.53 (14.53-16.58) 

  2002 16.58 (15.14-18.13) 17.44 (15.95-19.03) 17.01 (15.96-18.10) 

  2003 16.91 (15.45-18.47) 19.12 (17.55-20.78) 18.00 (16.92-19.13) 

  2004 19.89 (18.30-21.57) 18.33 (16.79-19.96) 19.11 (18.00-20.28) 

  2005 17.18 (15.71-18.75) 19.42 (17.84-21.11) 18.29 (17.20-19.43) 

  2006 19.25 (17.68-20.91) 20.92 (19.27-22.67) 20.07 (18.93-21.27) 

  2007 21.06 (19.41-22.80) 20.49 (18.86-22.23) 20.78 (19.61-22.00) 

  2008 20.95 (19.31-22.70) 21.58 (19.90-23.36) 21.26 (20.08-22.50) 

Calendar 
month 
  

Jan NC - NC - NC - 
Feb 

NC - NC - NC - 

  Mar NC - NC - NC - 

  Apr NC - NC - NC - 

  May NC - NC - NC - 

  Jun NC - NC - NC - 

  Jul NC - NC - NC - 

  Aug NC - NC - NC - 

  Sep NC - NC - NC - 

  Oct NC - NC - NC - 

  Nov NC - NC - NC - 

  Dec NC - NC - NC - 

Age category 
  

0-4 6.42 (5.43-7.54) 8.86 (7.71-10.12) 7.67 (6.90-8.50) 
5-9 8.84 (7.67-10.13) 8.81 (7.68-10.07) 8.83 (8.00-9.71) 

  10-14 12.43 (11.04-13.95) 9.10 (7.94-10.39) 10.74 (9.82-11.72) 

  15-19 9.90 (8.68-11.25) 9.75 (8.55-11.08) 9.83 (8.96-10.76) 

  20-24 11.95 (10.62-13.40) 11.51 (10.22-12.91) 11.73 (10.79-12.72) 

  25-29 17.19 (15.63-18.87) 15.12 (13.68-16.68) 16.14 (15.07-17.27) 

  30-34 19.94 (18.30-21.69) 17.01 (15.53-18.59) 18.44 (17.33-19.61) 

  35-39 17.45 (15.91-19.09) 17.73 (16.22-19.35) 17.59 (16.51-18.73) 

  40-44 16.13 (14.63-17.74) 17.17 (15.66-18.80) 16.66 (15.59-17.80) 

  45-49 16.95 (15.38-18.65) 19.68 (18.00-21.47) 18.34 (17.17-19.56) 

  50-54 17.68 (16.08-19.40) 21.46 (19.71-23.33) 19.59 (18.39-20.85) 

  55-59 18.56 (16.86-20.39) 23.31 (21.41-25.34) 20.95 (19.66-22.30) 

  60-64 20.18 (18.26-22.24) 21.98 (19.95-24.16) 21.07 (19.66-22.55) 

  65-69 21.91 (19.69-24.30) 26.14 (23.60-28.87) 23.93 (22.23-25.72) 

  70-74 21.23 (18.90-23.77) 28.17 (25.22-31.37) 24.38 (22.51-26.37) 

  75-79 25.04 (22.32-28.01) 26.52 (23.23-30.14) 25.66 (23.53-27.93) 

  80-84 24.60 (21.54-27.99) 28.11 (23.88-32.89) 25.90 (23.37-28.63) 

  85+ 20.04 (17.19-23.24) 22.56 (17.93-28.03) 20.77 (18.29-23.49) 
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Group Total   16.20 (15.80-16.62) 16.85 (16.43-17.27) 16.52 (16.23-16.82) 

 
 
 
 

 
Numbers of facial nerve palsy events and person time of follow up by calendar year, calendar month 
and age category. 

HILMO (FI)   women   men   total   

    Events 
Person 

years Events 
Person 

years Events 
Person 

years 

Calendar year 1996 0 0 0 0 0 0 

  1997 0 0 0 0 0 0 

  1998 0 0 0 0 0 0 

  1999 0 0 0 0 0 0 

  2000 0 0 0 0 0 0 

  2001 0 0 0 0 0 0 

  2002 0 0 0 0 0 0 

  2003 0 0 0 0 0 0 

  2004 0 0 0 0 0 0 

  2005 680 2,567,214 777 2,678,882 1,457 5,246,096 

  2006 702 2,578,046 795 2,688,222 1,497 5,266,268 

  2007 695 2,590,265 805 2,698,455 1,500 5,288,720 

  2008 731 2,604,220 848 2,709,179 1,579 5,313,399 

Calendar month Jan 259 861,645 289 897,895 548 1,759,540 

  Feb 236 861,645 250 897,895 486 1,759,540 

  Mar 267 861,645 292 897,895 559 1,759,540 

  Apr 209 861,645 252 897,895 461 1,759,540 

  May 239 861,645 246 897,895 485 1,759,540 

  Jun 174 861,645 259 897,895 433 1,759,540 

  Jul 214 861,645 252 897,895 466 1,759,540 

  Aug 262 861,645 299 897,895 561 1,759,540 

  Sep 238 861,645 274 897,895 512 1,759,540 

  Oct 245 861,645 290 897,895 535 1,759,540 

  Nov 236 861,645 284 897,895 520 1,759,540 

  Dec 229 861,645 238 897,895 467 1,759,540 

Age category 0-4 42 589,712 40 564,340 82 1,154,052 

  5-9 52 593,727 55 568,283 107 1,162,010 

  10-14 73 657,040 86 632,435 159 1,289,475 

  15-19 90 665,984 123 637,867 213 1,303,850 

  20-24 131 676,405 165 646,203 296 1,322,608 

  25-29 180 682,161 180 650,297 360 1,332,458 

  30-34 154 650,972 220 617,772 374 1,268,744 

  35-39 196 684,209 179 658,689 375 1,342,897 

  40-44 240 762,120 222 739,060 462 1,501,180 

  45-49 222 761,155 218 747,975 440 1,509,130 

  50-54 260 781,584 257 780,421 517 1,562,004 

  55-59 273 814,501 269 819,648 542 1,634,149 

  60-64 250 628,742 248 656,570 498 1,285,311 

  65-69 204 471,128 258 533,360 462 1,004,487 

  70-74 188 369,711 211 463,351 399 833,062 

  75-79 142 288,991 226 436,791 368 725,781 

  80-84 78 169,256 166 339,970 244 509,226 

  85+ 33 92,351 102 281,711 135 374,061 

Group Total   2,808 10,339,744 3,225 10,774,738 6,033 21,114,482 
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Incidence rate of facial nerve palsy per 100,000 person years by calendar year, calendar month and 
age category. 

HILMO 
(FI)   

IR/100000 

    women 95%CI men 95%CI Total 95%CI 

Calendar 
year 
  

1996 0 0 0 0 0 0 

1997 0 0 0 0 0 0 

  1998 0 0 0 0 0 0 

  1999 0 0 0 0 0 0 

  2000 0 0 0 0 0 0 

  2001 0 0 0 0 0 0 

  2002 0 0 0 0 0 0 

  2003 0 0 0 0 0 0 

  2004 0 0 0 0 0 0 

  2005 26.49 (24.55-28.54) 29.00 (27.02-31.10) 27.77 (26.37-29.23) 

  2006 27.23 (25.27-29.30) 29.57 (27.57-31.68) 28.43 (27.01-29.89) 

  2007 26.83 (24.89-28.88) 29.83 (27.82-31.95) 28.36 (26.95-29.83) 

  2008 28.07 (26.09-30.16) 31.30 (29.25-33.46) 29.72 (28.28-31.21) 

Calendar 
month 
  

Jan 30.06 (26.56-33.89) 32.19 (28.63-36.06) 31.14 (28.62-33.84) 
Feb 

27.39 (24.06-31.05) 27.84 (24.55-31.46) 27.62 (25.25-30.16) 

  Mar 30.99 (27.44-34.87) 32.52 (28.95-36.41) 31.77 (29.22-34.49) 

  Apr 24.26 (21.13-27.72) 28.07 (24.76-31.69) 26.20 (23.89-28.67) 

  May 27.74 (24.39-31.42) 27.40 (24.13-30.98) 27.56 (25.19-30.10) 

  Jun 20.19 (17.36-23.37) 28.85 (25.49-32.52) 24.61 (22.37-27.01) 

  Jul 24.84 (21.67-28.33) 28.07 (24.76-31.69) 26.48 (24.16-28.97) 

  Aug 30.41 (26.89-34.26) 33.30 (29.68-37.24) 31.88 (29.33-34.60) 

  Sep 27.62 (24.28-31.30) 30.52 (27.06-34.29) 29.10 (26.66-31.70) 

  Oct 28.43 (25.04-32.16) 32.30 (28.74-36.18) 30.41 (27.91-33.07) 

  Nov 27.39 (24.06-31.05) 31.63 (28.11-35.47) 29.55 (27.09-32.18) 

  Dec 26.58 (23.30-30.19) 26.51 (23.30-30.04) 26.54 (24.22-29.03) 

Age 
category 
  

0-4 7.12 (5.20-9.53) 7.09 (5.14-9.55) 7.11 (5.69-8.77) 
5-9 

8.76 (6.61-11.39) 9.68 (7.37-12.50) 9.21 (7.59-11.08) 

  10-14 11.11 (8.78-13.89) 13.60 (10.95-16.71) 12.33 (10.52-14.36) 

  15-19 13.51 (10.93-16.53) 19.28 (16.10-22.92) 16.34 (14.25-18.64) 

  20-24 19.37 (16.26-22.90) 25.53 (21.86-29.66) 22.38 (19.94-25.04) 

  25-29 26.39 (22.74-30.46) 27.68 (23.85-31.95) 27.02 (24.33-29.92) 

  30-34 23.66 (20.14-27.62) 35.61 (31.14-40.56) 29.48 (26.60-32.58) 

  35-39 28.65 (24.84-32.87) 27.18 (23.41-31.38) 27.92 (25.20-30.86) 

  40-44 31.49 (27.69-35.67) 30.04 (26.28-34.19) 30.78 (28.06-33.68) 

  45-49 29.17 (25.52-33.20) 29.15 (25.47-33.21) 29.16 (26.53-31.98) 

  50-54 33.27 (29.40-37.50) 32.93 (29.09-37.15) 33.10 (30.34-36.05) 

  55-59 33.52 (29.72-37.67) 32.82 (29.07-36.92) 33.17 (30.46-36.05) 

  60-64 39.76 (35.06-44.92) 37.77 (33.29-42.70) 38.75 (35.45-42.26) 

  65-69 43.30 (37.66-49.55) 48.37 (42.74-54.55) 45.99 (41.94-50.33) 

  70-74 50.85 (43.97-58.52) 45.54 (39.70-52.00) 47.90 (43.37-52.77) 

  75-79 49.14 (41.55-57.73) 51.74 (45.32-58.82) 50.70 (45.72-56.09) 

  80-84 46.08 (36.69-57.19) 48.83 (41.82-56.69) 47.92 (42.18-54.22) 

  85+ 35.73 (25.04-49.55) 36.21 (29.68-43.76) 36.09 (30.38-42.57) 
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Group 
Total 

  
27.16 (26.17-28.18) 29.93 (28.91-30.98) 28.57 (27.86-29.30) 
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6.3 Appendix 3 - Modelling the effect of a hypothetical confounder on 

the hazard of foetal death. 

 
Table S3.1 The effect of a hypothetical confounder of varying strength and prevalence 

on the hazard ratio of foetal death in gestational weeks 9-12 (immunity model) 

Fix X Y fix Z2 Z1 

ARR RRCD PC1 PC0 RRadjusted % Bias 

0.74 0.5 0.6 0.4 0.85 -12.50 
0.74 0.6 0.6 0.4 0.82 -9.52 
0.74 0.7 0.6 0.4 0.79 -6.82 
0.74 0.8 0.6 0.4 0.77 -4.35 
0.74 0.9 0.6 0.4 0.76 -2.08 
0.74 0.5 0.7 0.4 0.91 -18.75 
0.74 0.6 0.7 0.4 0.86 -14.29 
0.74 0.7 0.7 0.4 0.82 -10.23 
0.74 0.8 0.7 0.4 0.79 -6.52 
0.74 0.9 0.7 0.4 0.76 -3.12 
0.74 0.5 0.8 0.4 0.99 -25.00 
0.74 0.6 0.8 0.4 0.91 -19.05 
0.74 0.7 0.8 0.4 0.86 -13.64 
0.74 0.8 0.8 0.4 0.81 -8.70 
0.74 0.9 0.8 0.4 0.77 -4.17 
0.74 0.5 0.9 0.4 1.08 -31.25 
0.74 0.6 0.9 0.4 0.97 -23.81 
0.74 0.7 0.9 0.4 0.89 -17.05 
0.74 0.8 0.9 0.4 0.83 -10.87 
0.74 0.9 0.9 0.4 0.78 -5.21 
0.74 0.5 0.6 0.4 0.85 -12.50 
0.74 0.6 0.6 0.3 0.86 -13.64 
0.74 0.7 0.6 0.3 0.82 -9.89 
0.74 0.8 0.6 0.3 0.79 -6.38 
0.74 0.9 0.6 0.3 0.76 -3.09 
0.74 0.5 0.7 0.3 0.97 -23.53 
0.74 0.6 0.7 0.3 0.90 -18.18 
0.74 0.7 0.7 0.3 0.85 -13.19 
0.74 0.8 0.7 0.3 0.81 -8.51 
0.74 0.9 0.7 0.3 0.77 -4.12 
0.74 0.5 0.8 0.3 1.05 -29.41 
0.74 0.6 0.8 0.3 0.96 -22.73 
0.74 0.7 0.8 0.3 0.89 -16.48 
0.74 0.8 0.8 0.3 0.83 -10.64 
0.74 0.9 0.8 0.3 0.78 -5.15 
0.74 0.5 0.9 0.3 1.14 -35.29 
0.74 0.6 0.9 0.3 1.02 -27.27 
0.74 0.7 0.9 0.3 0.92 -19.78 
0.74 0.8 0.9 0.3 0.85 -12.77 
0.74 0.9 0.9 0.3 0.79 -6.19 
0.74 0.5 0.6 0.3 0.90 -17.65 
0.74 0.6 0.6 0.2 0.90 -17.39 
0.74 0.7 0.6 0.2 0.85 -12.77 
0.74 0.8 0.6 0.2 0.81 -8.33 
0.74 0.9 0.6 0.2 0.77 -4.08 
0.74 0.5 0.7 0.2 1.02 -27.78 
0.74 0.6 0.7 0.2 0.95 -21.74 
0.74 0.7 0.7 0.2 0.88 -15.96 
0.74 0.8 0.7 0.2 0.83 -10.42 
0.74 0.9 0.7 0.2 0.78 -5.10 
0.74 0.5 0.8 0.2 1.11 -33.33 
0.74 0.6 0.8 0.2 1.00 -26.09 
0.74 0.7 0.8 0.2 0.92 -19.15 
0.74 0.8 0.8 0.2 0.85 -12.50 
0.74 0.9 0.8 0.2 0.79 -6.12 

Notation 

 

 

RR “True” or fully adjusted exposure relative risk 

ARR Apparent (or observed) exposure relative risk 

RRCD Association between confounder and disease outcome 

PC1 Prevalence of confounder in the exposed 

PC0 Prevalence of confounder in the unexposed 
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0.74 0.5 0.9 0.2 1.21 -38.89 
0.74 0.6 0.9 0.2 1.06 -30.43 
0.74 0.7 0.9 0.2 0.95 -22.34 
0.74 0.8 0.9 0.2 0.87 -14.58 
0.74 0.9 0.9 0.2 0.80 -7.14 

 

 

 
 

Table S3.2 The effect of a hypothetical confounder of varying strength and prevalence 

on the hazard ratio of foetal death in gestational weeks 13-24 (immunity model) 
Fix X Y fix Z2 Z1 

ARR RRCD PC1 PC0 RRadjusted % Bias 

0.59 0.5 0.6 0.4 0.67 -12.50 
0.59 0.6 0.6 0.4 0.65 -9.52 
0.59 0.7 0.6 0.4 0.63 -6.82 
0.59 0.8 0.6 0.4 0.62 -4.35 
0.59 0.9 0.6 0.4 0.60 -2.08 
0.59 0.5 0.7 0.4 0.73 -18.75 
0.59 0.6 0.7 0.4 0.69 -14.29 
0.59 0.7 0.7 0.4 0.66 -10.23 
0.59 0.8 0.7 0.4 0.63 -6.52 
0.59 0.9 0.7 0.4 0.61 -3.12 
0.59 0.5 0.8 0.4 0.79 -25.00 
0.59 0.6 0.8 0.4 0.73 -19.05 
0.59 0.7 0.8 0.4 0.68 -13.64 
0.59 0.8 0.8 0.4 0.65 -8.70 
0.59 0.9 0.8 0.4 0.62 -4.17 
0.59 0.5 0.9 0.4 0.86 -31.25 
0.59 0.6 0.9 0.4 0.77 -23.81 
0.59 0.7 0.9 0.4 0.71 -17.05 
0.59 0.8 0.9 0.4 0.66 -10.87 
0.59 0.9 0.9 0.4 0.62 -5.21 
0.59 0.5 0.6 0.4 0.67 -12.50 
0.59 0.6 0.6 0.3 0.68 -13.64 
0.59 0.7 0.6 0.3 0.65 -9.89 
0.59 0.8 0.6 0.3 0.63 -6.38 
0.59 0.9 0.6 0.3 0.61 -3.09 
0.59 0.5 0.7 0.3 0.77 -23.53 
0.59 0.6 0.7 0.3 0.72 -18.18 
0.59 0.7 0.7 0.3 0.68 -13.19 
0.59 0.8 0.7 0.3 0.64 -8.51 
0.59 0.9 0.7 0.3 0.62 -4.12 
0.59 0.5 0.8 0.3 0.84 -29.41 
0.59 0.6 0.8 0.3 0.76 -22.73 
0.59 0.7 0.8 0.3 0.71 -16.48 
0.59 0.8 0.8 0.3 0.66 -10.64 
0.59 0.9 0.8 0.3 0.62 -5.15 
0.59 0.5 0.9 0.3 0.91 -35.29 
0.59 0.6 0.9 0.3 0.81 -27.27 
0.59 0.7 0.9 0.3 0.74 -19.78 
0.59 0.8 0.9 0.3 0.68 -12.77 
0.59 0.9 0.9 0.3 0.63 -6.19 
0.59 0.5 0.6 0.3 0.72 -17.65 
0.59 0.6 0.6 0.2 0.71 -17.39 
0.59 0.7 0.6 0.2 0.68 -12.77 
0.59 0.8 0.6 0.2 0.64 -8.33 
0.59 0.9 0.6 0.2 0.62 -4.08 
0.59 0.5 0.7 0.2 0.82 -27.78 
0.59 0.6 0.7 0.2 0.75 -21.74 
0.59 0.7 0.7 0.2 0.70 -15.96 
0.59 0.8 0.7 0.2 0.66 -10.42 
0.59 0.9 0.7 0.2 0.62 -5.10 
0.59 0.5 0.8 0.2 0.89 -33.33 
0.59 0.6 0.8 0.2 0.80 -26.09 
0.59 0.7 0.8 0.2 0.73 -19.15 
0.59 0.8 0.8 0.2 0.67 -12.50 
0.59 0.9 0.8 0.2 0.63 -6.12 
0.59 0.5 0.9 0.2 0.97 -38.89 
0.59 0.6 0.9 0.2 0.85 -30.43 
0.59 0.7 0.9 0.2 0.76 -22.34 
0.59 0.8 0.9 0.2 0.69 -14.58 
0.59 0.9 0.9 0.2 0.64 -7.14 
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Table S3.3 The effect of a hypothetical confounder of varying strength and prevalence 

on the hazard ratio of foetal death in gestational weeks 9-12 (toxicity model) 
Fix X Y fix Z2 Z1 

ARR RRCD PC1 PC0 RRadjusted % Bias 

0.56 0.5 0.6 0.4 0.64 -12.50 
0.56 0.6 0.6 0.4 0.62 -9.52 
0.56 0.7 0.6 0.4 0.60 -6.82 
0.56 0.8 0.6 0.4 0.59 -4.35 
0.56 0.9 0.6 0.4 0.57 -2.08 
0.56 0.5 0.7 0.4 0.69 -18.75 
0.56 0.6 0.7 0.4 0.65 -14.29 
0.56 0.7 0.7 0.4 0.62 -10.23 
0.56 0.8 0.7 0.4 0.60 -6.52 
0.56 0.9 0.7 0.4 0.58 -3.12 
0.56 0.5 0.8 0.4 0.75 -25.00 
0.56 0.6 0.8 0.4 0.69 -19.05 
0.56 0.7 0.8 0.4 0.65 -13.64 
0.56 0.8 0.8 0.4 0.61 -8.70 
0.56 0.9 0.8 0.4 0.58 -4.17 
0.56 0.5 0.9 0.4 0.81 -31.25 
0.56 0.6 0.9 0.4 0.74 -23.81 
0.56 0.7 0.9 0.4 0.68 -17.05 
0.56 0.8 0.9 0.4 0.63 -10.87 
0.56 0.9 0.9 0.4 0.59 -5.21 
0.56 0.5 0.6 0.4 0.64 -12.50 
0.56 0.6 0.6 0.3 0.65 -13.64 
0.56 0.7 0.6 0.3 0.62 -9.89 
0.56 0.8 0.6 0.3 0.60 -6.38 
0.56 0.9 0.6 0.3 0.58 -3.09 
0.56 0.5 0.7 0.3 0.73 -23.53 
0.56 0.6 0.7 0.3 0.68 -18.18 
0.56 0.7 0.7 0.3 0.65 -13.19 
0.56 0.8 0.7 0.3 0.61 -8.51 
0.56 0.9 0.7 0.3 0.58 -4.12 
0.56 0.5 0.8 0.3 0.79 -29.41 
0.56 0.6 0.8 0.3 0.72 -22.73 
0.56 0.7 0.8 0.3 0.67 -16.48 
0.56 0.8 0.8 0.3 0.63 -10.64 
0.56 0.9 0.8 0.3 0.59 -5.15 
0.56 0.5 0.9 0.3 0.87 -35.29 
0.56 0.6 0.9 0.3 0.77 -27.27 
0.56 0.7 0.9 0.3 0.70 -19.78 
0.56 0.8 0.9 0.3 0.64 -12.77 
0.56 0.9 0.9 0.3 0.60 -6.19 
0.56 0.5 0.6 0.3 0.68 -17.65 
0.56 0.6 0.6 0.2 0.68 -17.39 
0.56 0.7 0.6 0.2 0.64 -12.77 
0.56 0.8 0.6 0.2 0.61 -8.33 
0.56 0.9 0.6 0.2 0.58 -4.08 
0.56 0.5 0.7 0.2 0.78 -27.78 
0.56 0.6 0.7 0.2 0.72 -21.74 
0.56 0.7 0.7 0.2 0.67 -15.96 
0.56 0.8 0.7 0.2 0.63 -10.42 
0.56 0.9 0.7 0.2 0.59 -5.10 
0.56 0.5 0.8 0.2 0.84 -33.33 
0.56 0.6 0.8 0.2 0.76 -26.09 
0.56 0.7 0.8 0.2 0.69 -19.15 
0.56 0.8 0.8 0.2 0.64 -12.50 
0.56 0.9 0.8 0.2 0.60 -6.12 
0.56 0.5 0.9 0.2 0.92 -38.89 
0.56 0.6 0.9 0.2 0.81 -30.43 
0.56 0.7 0.9 0.2 0.72 -22.34 
0.56 0.8 0.9 0.2 0.66 -14.58 
0.56 0.9 0.9 0.2 0.60 -7.14 
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Table S3.4 The effect of a hypothetical confounder of varying strength and prevalence 

on the hazard ratio of foetal death in gestational weeks 13-24 (toxicity model) 
Fix X Y fix Z2 Z1 

ARR RRCD PC1 PC0 RRadjusted % Bias 

0.45 0.5 0.6 0.4 0.51 -12.50 
0.45 0.6 0.6 0.4 0.50 -9.52 
0.45 0.7 0.6 0.4 0.48 -6.82 
0.45 0.8 0.6 0.4 0.47 -4.35 
0.45 0.9 0.6 0.4 0.46 -2.08 
0.45 0.5 0.7 0.4 0.55 -18.75 
0.45 0.6 0.7 0.4 0.53 -14.29 
0.45 0.7 0.7 0.4 0.50 -10.23 
0.45 0.8 0.7 0.4 0.48 -6.52 
0.45 0.9 0.7 0.4 0.46 -3.12 
0.45 0.5 0.8 0.4 0.60 -25.00 
0.45 0.6 0.8 0.4 0.56 -19.05 
0.45 0.7 0.8 0.4 0.52 -13.64 
0.45 0.8 0.8 0.4 0.49 -8.70 
0.45 0.9 0.8 0.4 0.47 -4.17 
0.45 0.5 0.9 0.4 0.65 -31.25 
0.45 0.6 0.9 0.4 0.59 -23.81 
0.45 0.7 0.9 0.4 0.54 -17.05 
0.45 0.8 0.9 0.4 0.50 -10.87 
0.45 0.9 0.9 0.4 0.47 -5.21 
0.45 0.5 0.6 0.4 0.51 -12.50 
0.45 0.6 0.6 0.3 0.52 -13.64 
0.45 0.7 0.6 0.3 0.50 -9.89 
0.45 0.8 0.6 0.3 0.48 -6.38 
0.45 0.9 0.6 0.3 0.46 -3.09 
0.45 0.5 0.7 0.3 0.59 -23.53 
0.45 0.6 0.7 0.3 0.55 -18.18 
0.45 0.7 0.7 0.3 0.52 -13.19 
0.45 0.8 0.7 0.3 0.49 -8.51 
0.45 0.9 0.7 0.3 0.47 -4.12 
0.45 0.5 0.8 0.3 0.64 -29.41 
0.45 0.6 0.8 0.3 0.58 -22.73 
0.45 0.7 0.8 0.3 0.54 -16.48 
0.45 0.8 0.8 0.3 0.50 -10.64 
0.45 0.9 0.8 0.3 0.47 -5.15 
0.45 0.5 0.9 0.3 0.70 -35.29 
0.45 0.6 0.9 0.3 0.62 -27.27 
0.45 0.7 0.9 0.3 0.56 -19.78 
0.45 0.8 0.9 0.3 0.52 -12.77 
0.45 0.9 0.9 0.3 0.48 -6.19 
0.45 0.5 0.6 0.3 0.55 -17.65 
0.45 0.6 0.6 0.2 0.54 -17.39 
0.45 0.7 0.6 0.2 0.52 -12.77 
0.45 0.8 0.6 0.2 0.49 -8.33 
0.45 0.9 0.6 0.2 0.47 -4.08 
0.45 0.5 0.7 0.2 0.62 -27.78 
0.45 0.6 0.7 0.2 0.58 -21.74 
0.45 0.7 0.7 0.2 0.54 -15.96 
0.45 0.8 0.7 0.2 0.50 -10.42 
0.45 0.9 0.7 0.2 0.47 -5.10 
0.45 0.5 0.8 0.2 0.68 -33.33 
0.45 0.6 0.8 0.2 0.61 -26.09 
0.45 0.7 0.8 0.2 0.56 -19.15 
0.45 0.8 0.8 0.2 0.51 -12.50 
0.45 0.9 0.8 0.2 0.48 -6.12 
0.45 0.5 0.9 0.2 0.74 -38.89 
0.45 0.6 0.9 0.2 0.65 -30.43 
0.45 0.7 0.9 0.2 0.58 -22.34 
0.45 0.8 0.9 0.2 0.53 -14.58 
0.45 0.9 0.9 0.2 0.48 -7.14 
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6.4 Appendix 4 – Characteristics of pregnancies with missing LMP data 

 
Table S4.1. Patient characteristics among pregnancies with and without data recorded on LMP date 

 

  Delivery  Foetal death 

   
LMP available LMP defaulted LMP available LMP defaulted 

      n % n % n % n % 

Total 16,536 100 19,902 100 1,288 100 2,137 100 

Mean pregnancy length, weeks (SD) 41 (1.9) 41 (0.3) 18 (8.3) 13 (8.8) 

Unvaccinated weeks . 
       

 
weeks 1-12 2,198 3.0 2,699 2.8 235 32.8 188 48.5 

 
weeks 13-24 18,497 24.8 23,057 24.1 314 43.8 80 20.6 

 
weeks 25-43 53,765 72.2 69,893 73.1 168 23.4 120 30.9 

Vaccinated (weeks) 
         

 
weeks 1-12 26,799 9.1 32,626 8.9 3,420 50.5 3,871 71.6 

 
weeks 13-24 97,607 33.1 117,522 31.9 3,062 45.2 734 13.6 

 
weeks 25-43 170,180 57.8 218,012 59.2 288 4.3 799 14.8 

Maternal age (years) 
        

 
Mean (SD) 30 (5.9) 30 (6.1) 32 (6.7) 32 (7.3) 

 
11-19 467 2.8 727 3.7 31 2.4 91 4.3 

ap 20-34 11,395 68.9 13,955 70.1 725 56.3 1,185 55.5 

 
35-40 3,645 22.0 3,949 19.8 313 24.3 495 23.2 

 
40-44 978 5.9 1,173 5.9 196 15.2 311 14.6 

 
45-49 51 0.3 98 0.5 23 1.8 55 2.6 

Number of previous spontaneous abortions 
        

 
0 13,689 82.8 16,400 82.4 945 73.4 89 4.2 

 
1 2,316 14.0 2,859 14.4 278 21.6 1,531 71.6 

 
2 414 2.5 515 2.6 50 3.9 358 16.8 

 
>2 117 0.7 128 0.6 15 1.2 159 7.4 

In clinical risk group for influenza vaccination 
       

 

 
No 15,561 94.1 18,743 94.2 1,205 93.6 1,987 93.0 

 
Yes 975 5.9 1,159 5.8 83 6.4 150 7.0 

Diabetes 
        

 
No 16,405 99.2 19,731 99.1 1,272 98.8 2,097 98.1 

 
Yes 131 0.8 171 0.9 16 1.2 40 1.9 

Number of consultations in 6 months before LMP 
        

 
0-1 4,071 24.6 4,593 23.1 304 23.6 455 21.3 

 
2-3 3,795 22.9 4,404 22.1 311 24.1 443 20.7 

 
4-5 2,765 16.7 3,330 16.7 184 14.3 349 16.3 

 
6-9 3,256 19.7 4,002 20.1 250 19.4 425 19.9 

 
10+ 2,649 16.0 3,573 18.0 239 18.6 465 21.8 

Pre-pregnancy smoking status 
        

 
Smoker  3,797 23.0 5,176 26.0 304 23.6 592 27.7 

 
Non-smoker 9,142 55.3 10,609 53.3 714 55.4 1,078 50.4 

 
Ex-smoker 3,532 21.4 3,959 19.9 266 20.7 445 20.8 

 
Unknown 65 0.4 158 0.8 4 0.3 22 1.0 

Pre-pregnancy BMI 
        

 
<20 1,685 10.2 2,042 10.3 123 9.5 211 9.9 
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20-24 6,473 39.1 7,187 36.1 469 36.4 757 35.4 

 
25-29 3,367 20.4 3,790 19.0 288 22.4 414 19.4 

 
30-34 

 
1,194 7.2 1,448 7.3 113 8.8 148 6.9 

 
>34 

 
946 5.7 1,138 5.7 85 6.6 151 7.1 

 
Unknown 2,871 17.4 4,297 21.6 210 16.3 456 21.3 

Pre-pregnancy alcohol consumption 
        

 
Drinker 10,201 61.7 11,605 58.3 815 63.3 1,264 59.1 

 
Non-drinker 3,709 22.4 4,141 20.8 272 21.1 441 20.6 

 
Heavy drinker 134 0.8 220 1.1 16 1.2 38 1.8 

  Unknown 2,492 15.1 3,936 19.8 185 14.4 394 18.4 
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6.5 Appendix 5 – ISAC protocols for VAESCO studies 

 

 

 

 

 

Establishing background incidence rates for adverse events which commonly 

follow immunisation using the UK General Practice Research Database 

 

Lay Summary of Research 

In the wake of the current H1N1 outbreak the need for reliable incidence rates for 

adverse events that commonly follow immunisation (AEFI) has been highlighted by a 

number of regulatory agencies. This study will establish background incidence rates 

for a number of these AEFI using the UK GPRD. The provision of such rates will 

allow these agencies to quantify better the risk associated with vaccination in the early 

stages of an immunisation campaign. We intend to calculate age, sex and calendar 

year specific AEFI incidence rates for each of the last 10 years by identifying all 

incident events recorded in the database over this time period. This study is being 

performed as part of a collaborative European project with the intention of providing 

results that will inform both UK and European vaccination policy. 

 

 

Objectives, specific aims and rationale 

The purpose of this study is to establish reliable background incidence rates for a 

number of adverse events that commonly follow immunisation. The adverse events of 

specific interest (AESI) are listed below 

  

 anaphylaxis 

 convulsive seizures 

 optic neuritis 

 encephalitis 

 vasculitis 

 Guillain-Barré syndrome 
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 demyelinating disease 

 Bell’s palsy 

 thrombocytopenia 

 autoimmune hepatitis 

 transverse myelitis 

 

This study is part of a pan-European project to establish background incidence rates 

for AESI. This data will allow authorities better to assess whether a vaccine is 

associated with any observed increases in adverse events following vaccination and 

will allow rates to be readily compared across many European countries. 

 

Background 

In response to the pandemic H1N1 influenza outbreak, national vaccination 

campaigns have been set in motion in countries throughout the world. These mass 

vaccinations have resulted in the immunisation of millions of people with pandemic 

influenza vaccines (PIV). Given the huge numbers of vaccinations administered it is 

inevitable that adverse events will be temporally associated with the PIV. These 

temporal associations may be due to true causative associations, in which case the risk 

associated with the event will have to be weighed against the benefits of vaccination. 

A number of past vaccination campaigns have been derailed by the premature 

reporting of solely temporal associations between adverse events and vaccines, most 

notably in the late nineties when an association between the MMR vaccine and autism 

was suggested(1). Given the current level of public scepticism surrounding the safety 

of the pandemic H1N1 vaccine any similar reports would cause severe damage to the 

vaccination campaign. The rapid analysis of any suggested association is therefore 

vital to any vaccination campaign. Many adverse event reporting systems, such as 

VAERS in the US and the yellow card scheme in the UK may provide early warning 

of the numbers of temporal associations between adverse events and vaccination; 

however they cannot produce any evidence of causality(2). 

 

Black et al. (2009) emphasise the usefulness of calculating background incidence 

rates for adverse events following immunization (AEFI)(3). The importance of 
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calculating such rates has also been highlighted by a number of regulatory bodies(4). 

Knowledge of the background incidence rates of adverse events should allow 

authorities to rapidly investigate the risk associated with any adverse event for which 

a temporal association is suggested by comparison of background incidence rates with 

rates observed following the introduction of the immunisation campaign. This will 

leave authorities in a better position to relay accurate, meaningful information to the 

public regarding any risk, or lack thereof.  

 

One problem with many incidence rates currently available in the literature is that 

they vary widely across countries. It is unclear whether this is due to true geographic 

variance in the incidence of events or due to differences in study design and analysis. 

In order to deal with this issue the ECDC has tasked the VAESCO network with 

harmonizing H1N1 vaccine safety studies across Europe. To this end, and in response 

to the current pandemic threat, VAESCO have set up the Pandemic Influenza Vaccine 

Safety Assessment Network Europe (PIV-SANE). PIV-SANE have identified the 

generation of internationally harmonized background incidence rates for AESI as a 

key process in assessing the safety of PIV. This study is therefore one of a number of 

similar studies taking place throughout Europe. It is hoped that by using similar 

methodologies in the analysis of data the comparability of results across European 

countries will be improved.  

 

Study Type 

This is a descriptive study. 

 

Study Design 

The study will use a retrospective cohort design to determine the baseline incidence 

rates of a number of diseases. With regard to combining the data from the different 

databases across Europe a number of possible options were explored, these ranged 

from combining all of the source data to performing meta-analyses to combine results 

of independent studies. The model which we have chosen involves the combination of 

aggregated data. In this model the data will be analysed locally by each centre 

participating in the study in order to generate results which can then be compared 

across study centres. This approach has been validated and works well in the EU-
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ADR project. It is also similar to the distributed HMO (VSD) and Sentinel network 

approach in the USA (5;6). 

 

Study Population 

Any patient in the GPRD database with ‘acceptable’ status in a practice with ‘up to 

standard’ data contributing data to the GPRD between 01/01/1998 and the 01/01/2009 

will be included.  Temporary patients will be excluded from the analysis. Based on 

incidence rates reported in the literature and assuming the GPRD contains ~3.6 

million person years of data every year, over a ten year period we estimate the 

following numbers of relevant patients and confidence intervals in the GPRD; 

 

 

 

AEFI 
Incidence

1
 (per 

100,000 py) Expected number of patients Lower 95% CI Upper 95% CI 

Autoimmune hepatitis 1.38 298.8 (7)- 691.2 (8) 451.39 538.61 

Anaphylaxis 7.55 2412 (9) - 3024 (10) 2615.82 2820.18 

Bell's palsy 22.60 7272 (11)- 9000 (12) 7959.21 8312.79 

Convulsive seizures 56.00 20160 (13) 19881.71 20438.29 

Demyelinating Disease 7.58 1980 (14)- 3474 (15) 2624.65 2829.35 

Encephalitis 6.34 2282 (16) 2188.37 2375.63 

Guillain Barré 
Syndrome 1.45 396 - 648 (17) 477.22 566.78 

Optic Neuritis 1.88 525.6 (18)- 828 (19) 625.81 727.79 

Thrombocytopaenia 2.90 1044 (20) 980.67 1107.33 

Transverse Myelitis 13.85 1116 (20) - 8856 (21) 4847.60 5124.40 

Vasculitis N/A
2
 N/A N/A N/A 

1 Incidence calculated based on median where a range is given for the number of events 
2 No relevant incidence rates found in the literature, all published rates estimate the incidence of vasculitis sub-
types as opposed to estimating the incidence of all vasculitides together 

 

 

 

 

Upon stratification of some of our rates we expect the number of patients found to get 

very small, for example, based on the latest age distribution information published on 

the GPRD website(22) and the median number of expected events listed above we 

estimate the following counts and confidence intervals following age stratification of 

GBS (the AEFI with the lowest expected number of patients) 

 

 

 

Age groups 
% of pop. in each 
age group number of events lower 95% CI upper 95% CI 

<= 9 9.42 49.16 35.42 62.90 

Oct-19 12.08 63.04 47.48 78.61 

20-29 12.31 64.24 48.53 79.95 
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30-39 13.75 71.79 55.18 88.39 

40-49 15.48 80.81 63.19 98.43 

50-59 12.63 65.95 50.03 81.86 

60-69 11.28 58.87 43.83 73.90 

70-79 7.51 39.20 26.93 51.47 

80 + 5.54 28.94 18.40 39.49 

 

 

 

 

A range of incidence rates have been reported for GBS(17) with the lowest rate found 

in children being 0.34/100,000py(23), while the lowest rate in adults is 

0.84/100,000py(24). Taking these as the lowest rates we are likely to find in the 

GPRD we estimate that the following rates, event numbers and 95% CI may be 

obtained for a single year. 

 

 

 

Incidence rate (per 100,000py) 
number of 

events lower 95% CI 
upper 95% 

CI 

0.36 12.96 5.904 20.016 

0.84 30.24 19.46178197 41.01821803 

 

 

 

 

Outcomes 

The specific AESI we intend to establish incidence rates for are anaphylaxis, 

convulsive seizures, optic neuritis, encephalitis, vasculitis, Guillain-Barré syndrome, 

demyelinating disease, Bell’s palsy, thrombocytopenia, autoimmune hepatitis and 

transverse myelitis. These outcomes were chosen based on guidance from the ECDC. 

The lists of READ codes that will be used to identify these events were produced 

using a three step process. Firstly, all relevant codes for each outcome were identified 

independently by two investigators. After consensus was reached, this list of codes 

was reviewed by a clinician and then the code list was refined based on the clinician’s 

recommendations. This list of codes was sent to the coordinating centre of the 

collaboration. The other centres participating in the study use nomenclature systems 

other than READ codes, namely the International Classification of Primary Care 

(ICPC) and the International Classification of Diseases (ICD9-CM and ICD-10). Our 

code list was therefore further refined in order to produce a list of codes that would be 

as comparable as possible across all of these other code systems. This refined set of 

codes was then sent back to us and represents the final draft of the code list to be used 
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in this study. Cases have to be registered with the GPRD for at least one year prior to 

the occurrence of the event in order to be included. In order to limit the inclusion of 

prevalent cases patient data will be censored upon first occurrence of the event of 

interest.  

 

Data Analysis 

Age-, sex- and calendar year-specific incidence rates for each event will be calculated 

by dividing the number of incident cases of the event by the total contributed patient 

time. Indirect standardization will be carried out using the WHO World Standard 

Population as a reference to account for age differences in comparing the overall 

rates.  

 

Aggregated data (age-, sex- and calendar year-specific incidence rates) will then be 

transmitted to the central database within the firewalls of the Erasmus University. All 

data management pertaining to the generation of the files, including programming 

language for data elaboration, raw source data, final files, and output files, will be 

kept locally for a period of at least 10 years.  

 

Limitations 

The main limitation of this study concerns the potential for misclassification of cases. 

The likelihood of this occurring, and the direction of any misclassification (false 

positive/false negative), will vary according to the particular disease we are 

classifying. The GPRD has been shown to provide reliable incidence estimates for a 

number of the diseases we are looking at; for example incidence rates for GBS and 

BP derived from GPRD data(11;25) are similar to those obtained using other data 

sources(12;17) suggesting that misclassification is not a big problem. 

Misclassification is more likely to occur when identifying cases of a more complex 

disease such as vasculitis or convulsive seizures. A specific example of where 

classification problems may occur is with the identification of encephalitis cases as it 

is known to have a higher incidence in children aged <1 year old (26); as children of 

this age are more likely to be seen in a hospital many of these cases may not be 

recorded in the GPRD. 
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In the event of a safety alert arising surrounding one of the studied AEFI added 

funding will become available in order to further validate these incidence rates. This 

validation may take the form of chart review for individual case validation or data 

linkage with HES data for more widespread validation. In the event of such a situation 

arising we will apply for separate approval for access to this data. 

 

 

In order to identify and remove prevalent cases from the analysis we have set a one 

year run in period and will censor the person time upon first occurrence of the disease. 

However it has been shown that when calculating incidence rates for chronic diseases 

using the GPRD a one year run in period may not be adequate to exclude all prevalent 

cases (27). A number of the AEFI we are investigating are chronic relapsing and 

remitting diseases therefore in addition to the one year run in period described in the 

data analysis we will also carry out sensitivity analyses using two and three year run 

in periods in order to investigate the likelihood and possible impact of including 

prevalent cases. 

 

When comparing our results with those of the other European study centres, we 

anticipate that our results may differ for a number of reasons. Firstly any observed 

differences may be accounted for by geographical variance in disease incidence. For 

example the incidence of various forms of vasculitis has been shown to vary 

substantially between European countries(28), therefore we can expect to observe 

variability in our estimates. In addition the inherent differences between the data 

sources being used may also account for some differences. The data sources vary 

across the clinical setting from which they derive their data (primary care/hospital) 

and the coding systems they use to record diagnoses (Read, ICD9/10, ICPC). Despite 

efforts to harmonize code lists (described in the “outcome” section) we still expect the 

incidence rates to vary across study centres due to this heterogeneity.  

 

Owing to these problems we do not anticipate that pooling of incidence rates across 

countries will be possible, rather each centre will produce their own country specific 

rates. Comparison of these rates across geographic location and data source will then 

be carried out and the effect that omitting certain sub-groups (based on age, calendar 

year, specific Read codes, etc.) has on the comparability of the rates across sources 
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will be examined. For example in order to investigate the aforementioned possibility 

of encephalitis misclassification our rates can be compared with those from study 

centres using hospital data sources with and without the <1 year age group to see if 

this affects comparability of rates. 

 

 

Plans for disseminating and communicating study results 

Results of the study will be made public. Communication of the study results will be 

made according to the guidelines set out in the EMA’s ‘European Strategy for 

Influenza A/H1N1 Vaccine Benefit-Risk Monitoring’(4). This document sets down 

the following principles with regard the communication of results;  

 

 “- If the outcome of a signal assessment is a risk minimisation 

measure, this should be communicated as appropriate to inform the 

public without inducing fears; the timing of the finalisation of the 

assessment and of the decision-making process should be included. 

- When a Member State plans to issue a communication, the 

other Member States, the EMA and ECDC should preferably be 

informed in advance. Reference is in this respect made to the existing 

Memorandum of Understanding between the National Competent 

Authorities of the European Economic Area and the European 

Medicines Agency on the sharing of EudraVigilance data and other 

safety and pharmacovigilance related confidential documents and/or 

information relating to medicinal products for human use. 

- EMA should lead communications on centrally authorised 

vaccines.” 

 

The findings from this study will also be published for peer-review in 

international journals and at conferences.  
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Evaluating the Possible Association between Pandemic Influenza Vaccination 

and Guillain-Barré Syndrome using the UK General Practice Research Database 

 

 

Lay summary of research 

One of the main safety concerns surrounding the current pandemic influenza 

vaccination campaign is the occurrence of neurological adverse events such as 

Guillain Barré syndrome (GBS) following vaccination. This study aims to estimate 

the risk of developing GBS following immunisation with a pandemic influenza 

vaccine (PIV). In order to do this we will utilise two study designs, one of which uses 

both cases and controls and one of which uses cases only. Each of these designs offers 

its own distinct advantages and therefore the proposed approach should provide two 

comparable and reliable estimates of the risk of developing GBS following PIV. This 

study is part of a collaborative European approach to monitoring vaccine safety, 

which aims to ensure study centres throughout Europe use a shared methodology in 

assessing PIV safety. It is hoped that this approach will increase the comparability of 

results and thereby possibly allow pooling of the data across centres. Given the rarity 

of GBS this pooling of data across study centres is invaluable as it should enable us to 

increase the power of our results substantially. 

 

 

Objectives, specific aims and rationale 

To use the GPRD as part of a Europe-wide initiative to test the hypothesis that there is 

no increased risk of GBS following receipt of pandemic H1N1 influenza vaccine. 

Specifically we intend to use two different study designs, a case control and a self 

controlled case series, to estimate the risk of developing GBS following PIV. Using 

the two study designs will ensure we can make both rapid and reliable estimates of the 

risk.  

 

 

Background 

In response to the ongoing pandemic H1N1 influenza outbreak national vaccination 

campaigns have been introduced in countries throughout the world. These mass 

vaccination plans have resulted in the immunisation of millions of people with PIV. 
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With these numbers of vaccinations having been administered it is inevitable that 

adverse events will be temporally associated with the PIV. A list of the side effects 

most commonly associated with vaccination has been drawn up by the ECDC based 

on previously reported associations. From this list the ECDC have singled out GBS 

for additional safety monitoring as it has been associated with both pandemic swine 

influenza vaccines(1-3) and seasonal vaccines(4) in observational studies in the past. 

Limited evidence also suggests that an association between GBS and influenza 

vaccination may be biologically plausible(5). 

The major problem with conducting a study to monitor this association is that, given 

the rarity of GBS and the relatively low PIV coverage observed in many countries no 

single data source worldwide has the capacity to provide sufficiently powered risk 

estimates to detect a mid to moderate increase in risk (see “Sample Size/Power 

calculations” section). The possibility of combining results from a number of data 

sources was therefore investigated by the ECDC. This resulted in the setup of the 

VAESCO network, the main aim of which is to set up a sustainable infrastructure for 

post licensure vaccine safety assessment in the European Region. Early VAESCO 

work has focused on conducting collaborative studies on the safety of the H1N1 

vaccine. We are one of several study centres involved in VAESCO that intend to 

contribute to a Europe wide GBS/PIV safety study in an effort to obtain the necessary 

power to provide accurate and reliable risk estimates of the association between PIV 

and GBS. 

 

Study type 

This is a hypothesis testing study 

 

Study design 

This study will use both a case-control and self controlled case series (SCCS) design 

to estimate the increase in risk of GBS associated with PIV. 

 

A case-control design will first be used as its retrospective nature allows the 

association with GBS to be rapidly assessed. However a key problem with this design 

is that confounding may have profound effects on the risk estimate. 
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A SCCS will therefore also be carried out. The main advantage of this design is that it 

uses only cases. In the SCCS cases act as their own controls; consequently all 

potential confounding that is constant within patients during the study period is 

controlled for. The fact that it requires a substantial amount of follow up time after 

exposure in order to prove efficient means it is less suitable for rapid risk analysis. 

 

With regard to combining the data from the different databases across Europe, a 

number of options were explored, these ranged from combining source data to 

performing meta-analyses to combine results of independent studies. The model that 

we have chosen involves the combination of aggregated data. In this model the data 

will be analysed locally by each centre participating in the study in order to generate 

results, which can then be compared across study centres. This approach has been 

validated and works well in the EU-ADR project(6). It is also similar to the 

distributed HMO (VSD) and Sentinel network approach in the USA(7;8). 

 

Study population 

The source population for the case control study will comprise all patients at risk of 

developing GBS that are registered in the GPRD from the 21
st
 of October 2009 (start 

of UK H1N1 vaccination campaign) to the 25
th

 of March 2010.  

The source population for the SCCS study will comprise all patients at risk of 

developing GBS that are registered in the GPRD from the 21
st
 of October 2009 to the 

21
st
 of October 2010. 

 Prevalent GBS cases will be identified and excluded from both populations and only 

those patients that have contributed at least one full year of data before the study start 

date will be included in the studies. From these source populations we will identify all 

incident cases of GBS. 

 

Selection of controls 

In the case control study incidence density sampling will be used to sample 4 controls 

per case. Controls will be matched on age, sex, GP practice and the index date of the 

case.  

 

Sample size/power calculations 
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In previous studies the relative risk of GBS associated with vaccination varied 

between 1.5 and 7(9) and the background incidence of GBS was estimated at 

approximately 15 per 1,000,000 person years(10). In a total population of around 100 

million European inhabitants, we can anticipate 1500 new cases of GBS in a one year 

period and 375 during a 3 month period. However to obtain the number of vaccinated 

GBS cases, assuming no increased risk, the expected number of GBS cases has to be 

multiplied by the vaccine coverage. 

If we assume a 42 (i.e. 6 weeks) and  90 day post vaccination risk period and a total 

follow up of one year then the following relative risks (or relative incidence) can be 

detected at 5% significance and 80% power for various numbers of GBS events in 

persons vaccinated during the study period (Table 1). 

 

Table 1  Detectable RR (or relative incidence) for self-controlled case series 

 
 

 

 

 

 

*Note that these calculations do not account for age and period effects, 

which may slightly reduce power. 

 

 

For the case-control analysis, employing the same assumptions (alpha 5% and power 

80%) and assuming a vaccine coverage of 25%, we can detect an odds ratio of 3 with 

120 GBS cases matched to 4 controls and an odds ratio of 2 with 280 cases and 4 

controls (Table 2). 

 

 

 

 

 

Table 2: Number of cases and power in a matched case-control analysis 

 Detectable odds ratio* 

cases 0.5 0.8 1.2 1.5 2 3 4 

0 na na na na na na na 

Number of events* Detectable RR (90 day 

risk window) 

Detectable RR (42 day risk 

window) 

10 4.4 5.8 

20 3.1 4.0 

40 2.3 2.9 

80 1.9 2.2 
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20 na na na na na na na 

40 0.153 0.060 0.061 0.101 0.192 0.377 0.522 

60 0.219 0.067 0.066 0.126 0.268 0.538 0.720 

80 0.285 0.075 0.071 0.153 0.342 0.670 0.847 

100 0.351 0.082 0.076 0.179 0.413 0.771 0.921 

120 0.415 0.089 0.081 0.205 0.480 0.845 0.961 

140 0.476 0.096 0.087 0.232 0.542 0.898 0.982 

160 0.533 0.104 0.092 0.258 0.599 0.934 0.992 

180 0.586 0.111 0.097 0.284 0.651 0.958 0.996 

200 0.634 0.118 0.102 0.310 0.697 0.973 0.998 

240 0.719 0.133 0.112 0.360 0.775 0.990 1.000 

280 0.787 0.148 0.123 0.409 0.836 0.996 1.000 

320 0.841 0.164 0.133 0.456 0.882 0.999 1.000 

360 0.883 0.179 0.144 0.500 0.916 1.000 1.000 

400 0.915 0.194 0.154 0.543 0.940 1.000 1.000 

 based on 4 controls per case, vaccination degree of 25% and matched correlation of 0.7 

 

Based on preliminary analyses the incidence of GBS in the GPRD is ~14.9 

cases/1,000,000 person years; this is in line with previously published incidence rates 

for GBS (10;11). Therefore based on a GPRD population of ~4million active patients 

we could expect to see ~20 cases during the study period. These calculations were 

conducted with an assumed vaccine coverage of 25%, in reality it appears that vaccine 

coverage in the UK will be closer to 10% of the population. It is clear that based on 

GPRD data alone such a study would be underpowered to detect increases in the risk 

of developing GBS. In order to increase the power, and in view of the fact that safety 

issues may arise early after vaccination, using data from across Europe through the 

VAESCO project is an essential feature of this study. 

 

Exposures 

The primary exposure of interest is PIV. The exposure details we intend to collect are 

“event date” of vaccine administration and vaccination brand (where available). 

In addition we will collect data on the event date of any other vaccinations occuring 

after the 01/09/2009. 

 

Outcome 

The main outcome of interest is GBS. Previous studies (11;12) and preliminary in-

house analyses suggest the incidence of GBS in the GPRD to be in line with the 

results of recent reviews on the epidemiology of GBS(10;13). In addition a recent 
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study compared the incidence rate of Guillain Barré syndrome recording in the GPRD 

with both the admission rate from Hospital Episode Statisitics and the incidence rate 

in a subset of validated GPRD cases and found no significant differences(14). This is 

a good indication that most GBS cases are currently captured in the GPRD and that 

those cases that are identified represent true cases. The specific codes used to identify 

GBS cases are provided in appendix 1. All cases identified using these codes will be 

further validated using the information available in the free text. In order to allow 

pooling and comparison of data across the VAESCO network a common definition of 

GBS is being used; the definition to be used is that developed by the Brighton 

Collaboration. The Brighton Collaboration definition categorises cases into different 

levels according to the level of certainty regarding the diagnosis. Full details of the 

Brighton Collaborations definition are given in appendix 2. As this definition was not 

primarily developed for use with database studies we do not expect to have enough 

case information to classify cases in the top three levels of diagnostic certainty. Most 

of our cases will therefore meet the criteria to be classed at either level 4(a) or 4(b) of 

the definition.  

 

Covariates 

Information on the following covariates will be collected: 

 

In the 6 weeks before the index date; 

 Gastrointestinal infection  

 Upper respiratory infection  

 influenza like illness (ILI)  

 

Anywhere in medical record; 

 Epstein-Barr virus infection  

 surgeries  

 malignancies  

 pregnancy  

 immunocompromised (i.e. history of HIV or other immunosuppressive 

disorder, transplantation or use of immunosuppressants)  

 autoimmune disorders  
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Retrieval of covariate information will be identical for cases and controls to minimize 

information bias. 

 

 

Data Analysis 

In the case-control analysis odds ratios and 95% confidence intervals will be 

calculated using multivariate conditional logistic regression. Covariates will be 

included into the multivariate model if they are significantly (p<0.05) associated with 

GBS and/or change the point estimate of the association between H1N1 vaccination 

and GBS by at least 10%. The primary exposure in the analysis is H1N1 vaccination 

with ‘no vaccination’ as the reference category, To study the time-effect association 

we will define different risk windows for exposure: 1-42 days before index date, 43-

90 days before index date, and >90 days before index date, with ‘no vaccination’ as 

the reference category. In a third analysis, the exposure will be further divided into 

first and second administrations (i.e. dose-response relationship). The association with 

different adjuvants will be studied by stratifying the analysis by the type of vaccine 

and by categorizing exposure in the multivariate model according to the type of 

vaccine. Finally, any associations with other vaccines (i.e. co-vaccination) during the 

risk period will be assessed by stratification for ‘co-vaccination’ and adding an 

interaction term to the multivariate model. Stratified analyses may be conducted to 

estimate the effect in specific subgroups e.g. pregnant women, immunocompromised 

subjects, children and older people. 

 

In the SCCS, we will use conditional Poisson regression to calculate relative risks (or 

relative incidences) of GBS for a number of risk periods following PIV. Taking into 

account the possibility of lag time between vaccination and GBS onset, we will define 

the following risk periods: pre-vaccination, 0-28 days after PIV, 29-42 days after PIV, 

43-60 days after PIV and 61-90 days after PIV with the remaining periods serving as 

the reference period (15-17). As mentioned previously, the SCCS methodology 

inherently controls for confounders that are constant over time as each person serves 

as its own control.  

If two doses of vaccine are given then the risk period after the first dose will be 

censored at the point the second is given (18). To adjust for the effect of ILI a 90 day 
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post ILI risk period will be used. Seasonal vaccine has not been shown to be 

associated with GBS and will only be included if this factor is significant. If seasonal 

vaccine is given at the same time as pandemic vaccine then an analysis will be 

performed looking at this scenario by treating this as a separate exposure. In a 

secondary analysis we will stratify for age to evaluate the difference in risk estimates 

in different age groups 

 

Limitations 

A potential limitation is the (false negative) misclassification of vaccination status as 

well as a lack of vaccination detail. This will most commonly arise where special risk 

groups, such as health care workers and certain other employees, may receive their 

vaccine through the employer rather than the GP or other dedicated authority. This 

will prove more of a problem with seasonal vaccines as they are provided by many 

employers and private clinics whereas the vast majority of H1N1 vaccine was 

administered in GP practices. There is also a possibility that some GP’s may have 

entered a pandemic vaccination under one of the seasonal vaccine codes. 

 

As mentioned previously the potential for false misclassification of GBS diagnosis 

does not seem likely as incidence rates calculated in the GPRD using our codes are 

very similar to those in the published literature. However there is a chance that in 

some cases there will be a time lag between onset of GBS and recording of the 

diagnosis in the GPRD(14); in these cases the date on which the GBS diagnosis is 

recorded in the GPRD will actually represent the date of hospital discharge or the date 

a letter is received from the neurologist. GBS case validation will be carried out using 

free-text information and discharge summaries in order to decrease the likelihood of 

false positive misclassification of GBS status and of false recording of the date of 

GBS onset. If the information contained in the free text provides insufficient 

information to do this then we will design questionnaires to send to GPs to obtain 

additional details regarding the GBS cases. In this event separate ISAC approval will 

be sought for these questionnaires. 

 

With regard to the case-control design we will look at a number of potentially 

confounding factors however any unidentified confounders will inevitably affect our 

results. While the SCCS will control for any unidentified non-time varying covariates 
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there are a number of limitations which must be considered when using it in the 

current scenario. 

 

The first such limitation is due to the possibility that GBS will be either a contra-

indication to vaccination or that individuals diagnosed with GBS are less likely to 

ever receive the vaccine. Whilst it is possible to control for delayed vaccination in ill 

individuals by specifying a pre-vaccination ‘low risk’ period to be removed from the 

background, it is not possible to use any pre-vaccination person time if GBS cases are 

less likely to be vaccinated.  In order to account for this we will carry out sensitivity 

analyses using only post vaccination person time. The main problem with this 

approach, and one of the key reasons for performing the case control analysis, is that 

it will affect the timeliness of producing results since it will be necessary to wait until 

sufficient time has accrued after the vaccine risk period (vaccine risk period may last 

up to 90 days). 

 

Another complicating factor is the analysis of data where two doses of vaccine are 

given. Given the long post-vaccination risk period it is unlikely to be possible to 

separate risks after one dose from another. It is probably necessary to combine the 

post first and second dose risks together as a single risk window. There is also a 

technical issue that if GBS occurs after a first dose then a second dose may never be 

given – but as the risk period is much longer than the interval between doses this is 

unlikely to bias the analysis. In addition we expect only a small number of the 

population to have received two doses of the vaccine as two doses were only 

recommended for immuncompromised individuals. 

 

Plans for disseminating and communicating study results 

Results of the study will be made public. Communication of the study results will be 

made according to the guidelines set out in the EMAs ‘European Strategy for 

Influenza A/H1N1 Vaccine Benefit-Risk Monitoring’(19). This document sets down 

the following principles with regard the communication of results; 

 

“- If the outcome of a signal assessment is a risk minimisation 

measure, this should be communicated as appropriate to inform the 
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public without inducing fears; the timing of the finalisation of the 

assessment and of the decision-making process should be included. 

- When a Member State plans to issue a communication, the other 

Member States, the EMEA and ECDC should preferably be informed 

in advance. Reference is in this respect made to the existing 

Memorandum of Understanding between the National Competent 

Authorities of the European Economic Area and the European 

Medicines Agency on the sharing of EudraVigilance data and other 

safety and pharmacovigilance related confidential documents and/or 

information relating to medicinal products for human use. 

- EMEA should lead communications on centrally authorised 

vaccines.” 

 

The findings from this study will also be published for peer review in 

international journals and conferences. 
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Appendix I – Pegasus Medical Codes 
 

Outcome 

 
Pegasus Medical Codes Read Term 

1607 Guillain-Barre syndrome 

6376 Acute infective polyneuritis 

33841 Miller-Fisher syndrome 

63544 Acute infective polyneuritis NOS 

24216 Postinfectious polyneuritis 

 

Primary Exposure 

 
Pegasus Medical Codes Read Term 

98183 PANDEMRIX – first influenza A (H1N1v) 2009 vaccination given 

94301 First pandemic influenza vaccination 

98184 PANDEMRIX – second influenza A (H1N1v) 2009 vaccination given 

95092 Second pandemic influenza vaccination 

98217 1
st
 pandemic influenza vac give by other healthcare providr 

98203 PANDEMRIX – 1
st
 flu A (H1N1v) 2009 vac by other provider 

98234 CELVAPAN – first influenza A (H1N1v) 2009 vaccine given 

98302 CELVAPAN – second influenza A (H1N1v) 2009 vaccine given 

98449 CELVAPAN – 1st
nd

 flu A (H1N1v) 2009 vacc by other provider 

98303 CELVAPAN – 2
nd

 flu A (H1N1v) 2009 vacc by other provider 

98304 PANDEMRIX – 2
nd

 flu A (H1N1v) 2009 vacc by other provider 

98306 2nd pandemic influenza vac give by other healthcare providr 

 

Pegasus Product Codes Product Name 

41150 PANDEMRIX vaccine [GLAXSK UK] 

41168 influenza (h1n1) inactivated split virion vaccine 

41240 influenza (h1n1) inactivated whole virion vaccine 

41925 CELVAPAN vaccine [BAXTER]    
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Appendix II – Brighton Case Defintion 

 

 

 

 

Level 1 of diagnostic certainty 

 
• Bilateral AND flaccid weakness of the limbs 

4, 4a, 4b
 

 

AND 

 

• Decreased or absent deep tendon reflexes in weak limbs 
4c

 

 

AND 

 

• Monophasic illness pattern5 AND interval between onset and nadir of weakness 

between 12 hours and 28 days AND subsequent clinical plateau
5a

 

 

AND 

 

• Electrophysiologic findings consistent with GBS
6
 

 

AND 

 

• Cytoalbuminologic dissociation (i.e., elevation of CSF protein level above 

laboratory normal value AND CSF total white cell count <50 cells/μl)
7
 

 

AND 

 

• Absence of an identified alternative diagnosis for weakness (see Appendix III)
1

 

 

 

 

 

Level 2 of diagnostic certainty 

 
• Bilateral AND flaccid weakness of the limbs 

4, 4a, 4b
 

 

AND 

 

• Decreased or absent deep tendon reflexes in weak limbs
4c

 

 

AND 
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• Monophasic illness pattern5 AND interval between onset and nadir of weakness 

between 12 hours and 28 days AND subsequent clinical plateau
5a

 

 

AND 

 

• CSF total white cell count <50 cells/μl (with or without CSF protein 

elevation above laboratory normal value)
7
 

 

OR 

 

• IF CSF not collected or results not available, electrophysiologic studies 

consistent with GBS
6
 

AND 

 

• Absence of identified alternative diagnosis for weakness (see Appendix III)
1

 

 

 

 

 

Level 3 of diagnostic certainty 

 
• Bilateral AND flaccid weakness of the limbs 

4,4a, 4b
 

 

AND 

 

• Decreased or absent deep tendon reflexes in weak limbs
4c

 

 

AND 

 

• Monophasic illness pattern5 AND interval between onset and nadir of weakness 

between 12 hours and 28 days AND subsequent clinical plateau
5a

 

 

AND 

 

• Absence of identified alternative diagnosis for weakness (see Appendix III)
1

 

 

 

 

 

Level 4(a) of diagnostic certainty8 
 

• Discharge letter indicating diagnosis of GBS made by a neurologist 
 

AND 

 

• Absence of identified alternative diagnosis for weakness (see Appendix III)
1

 

 

 
 

 

Level 4(b) of diagnostic certainty8 
 

• Diagnosis of GBS entered into GP medical record 
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AND 

 

• Absence of identified alternative diagnosis for weakness (see Appendix III)
1

 

 

 

 

Footnotes for Case Definitions 

 

1. If an alternative diagnosis explaining flaccid weakness/paralysis is present (Appendix 

III), a diagnosis of Guillain-Barré syndrome is excluded. However, in many, if not most 

cases, a comprehensive documentation of testing for various other etiologies will either 

be incomplete or unavailable. These case definitions are provided to give guidance in the 

absence of detailed information on investigations for alternative etiologies of flaccid 

paralysis. 

 

2. It is recognized that there are several clinical syndromes which are considered as part of 

the spectrum of Guillain-Barré syndrome that may not be captured under these case 

definitions. However, these are rare and comprise under 1% of overall GBS cases. Thus, 

the number of cases missed by these definitions is considered to be extremely low. An 

exception to this is the FS of ophthalmoplegia, ataxia, and loss of tendon reflexes which 

is generally considered to be a subtype of GBS (see FS case definition). 

 

3. The clinical and electrophysiologic criteria specified in this document were designed to 

be applicable to all ages. The Working Group recognizes that neurologic features in 

infants and young children are continually developing and that assessment of infants can 

be difficult. However, GBS in children under 6 months of age is a very uncommon 

occurrence. When possible, infants and children under 2 years of age should preferably be 

evaluated by a clinician familiar with the neurologic evaluation of young children, and 

such evaluations should be performed in an age-appropriate fashion, taking into account 

the changing neurologic features in the developing infant. 

 

4. Weakness is usually, but not always, symmetric in nature, and usually has a pattern of 

progression from legs to arms (ascending). However, other patterns of progression may 

occur (e.g., beginning in the arms). The degree of weakness can range from mild to 

moderate to severe, i.e., complete paralysis. 

 

4a. Respiratory or cranial nerve-innervated muscles may also be involved. 

 

4b. It is important that strength be assessed in a manner that takes into account subject 

age, sex, and level of functioning. 

 

4c. Decreased or absent tendon reflexes may also be seen in limbs without weakness. 

However, to meet case definition criteria, decreased or absent tendon reflexes must be 

observed in weak limbs. 

 

5. Fluctuations in level of weakness, before reaching nadir, or during the plateau or 

improvement phases, occur in some cases, usually associated with the use of disease 

modifying therapies. Such fluctuations usually occur within the first 9 weeks after onset 

and are followed by eventual improvement. 
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5a. The eventual outcome is either stabilization at nadir OR subsequent improvement OR 

death. 

 

6. Electrophysiologic patterns consistent with polyneuropathy of the types described for 

GBS. Electrophysiologic studies performed sooner than 7 days after weakness onset may 

be normal and should thus be repeated at a later time if possible, and “normal” studies 

may occur in otherwise typical cases of GBS. However, cases with persistently “normal” 

studies will not meet Level 1 criteria. 

 

7. CSF (cerebrospinal fluid) protein concentrations should be elevated above what is 

considered normal reference values for the testing laboratory. CSF may be “normal” in 

otherwise typical cases of GBS; this is particularly true within the first week of illness. 

However, cases with persistently “normal” CSF, or CSF with >50 WBC, will not meet 

Level 1 criteria. 

 

8. Although the definition of a level 4 is alluded to in the Brighton Collaboration’s 

definition the specifics of levels 4(a) and 4(b) of diagnostic certainty shown here are not 

part of the published Brighton Collaboration. These have been developed specifically for 

this study with a view to creating a definition which is suited to defining cases from 

databases.  

 

Full published definition available at:  

http://www.brightoncollaboration.org/internet/en/index/definition___guidelines/

document_download.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.brightoncollaboration.org/internet/en/index/definition___guidelines/document_download.html
http://www.brightoncollaboration.org/internet/en/index/definition___guidelines/document_download.html
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Appendix III - Exclusionary Criteria for a Diagnosis of Guillain-Barré Syndrome 

 

 

There are multiple other pathologic processes that may occur at various localizations in 

the central and peripheral nervous system that may present with a clinical picture similar 

to or identical to that of Guillain-Barré syndrome. If such a diagnosis explaining flaccid 

weakness/paralysis is present, this effectively excludes a diagnosis of Guillain-Barré 

syndrome, and the subject is considered “Not a case”. 

 

Examples of other diagnoses, grouped according to typically affected region, are 

provided below; this is not intended to be an exhaustive list, but rather to highlight the 

localizations within the nervous system that lesions or illness might occur, with examples 

provided: 

 

• Intracranial 

carcinomatous meningitis 

brain stem encephalitis 

 

• Spinal cord 

infarct, myelitis, compression 

 

• Anterior horn cells of spinal cord 

polio and other viruses producing poliomyelitis, including West Nile virus 

 

• Spinal nerve roots 

chronic inflammatory demyelinating polyneuropathy 

cauda equina compression 

 

• Peripheral nerves 

metabolic derangements such as hypermagnesemia or hypophosphatemia 

tic paralysis 

heavy metal toxicity such as arsenic, gold and thallium 

Drug-induced neuropathy, (e.g., vincristine, platinum compounds, nitrofurantoin, 

paclitaxel) 

porphyria 

critical illness neuropathy 

vasculitis 

diphtheria 

 

• Neuromuscular junction 

myasthenia gravis 

organophosphate poisoning 

botulism 
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• Muscle 

critical illness myopathy 

polymyositis 

dermatomyositis 

hypo/hyperkalemia 

 


