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Abstract

Unbiased shifts of stochastic processes can be regarded as the general theoretical framework for the
fundamental extra head problem. In the first part of the thesis, we aim to give an overview of the rich
mathematical landscape related to the main theme. This exploration is made gradually from relatively
simple concepts to more complex ones. The second and third part contain original results with a focus
on optimal unbiased shifts. Though some insight from the second part proved to be useful in the third
part, new ideas and some involved technicalities were also necessary to establish the main result of
the third part.
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Chapter 1

Introduction - Exploring the
fundamental problem and related areas

The concept of unbiased shift was first introduced in the Brownian motion context, in [23], and
it has essentially three main characteristics. The underlying stochastic process is doubly infinite
or two sided, that is, indexed by Z or R in the discrete or continuous time setting, respectively.
The second key ingredient is some kind of invariance under time shift. This means that in the
Markov process case the transition probabilities are preserved after the shift. Thirdly, initial
distributions at the origins - before and after shift - are imposed. In general, the canonical
problem can be formulated as follows. Given initial distributions at the origin, how do we shift
a doubly-infinite Markov process in such a way that the (doubly-infinite) shifted process has the
same transition probabilities? This - admittedly - informal description will be made precise
and illustrated in various examples later on.

There are some typical questions attached to this problem, which people are interested in.

• Existence: Do such shifts always exist? If the answer is positive, how do they look like?
How can we characterize them?

• Moment properties : As these shifts are random variables, it is natural to investigate their
moment properties.

• Optimality : What is the optimal tail behaviour of these shifts? Which shifts are better on
average, than others? In other words, optimality of shifts can be studied also in expected
value terms.

These questions will be addressed in detail in this thesis.

A remarkable feature of this problem - as the key characteristics may suggest - is that it
links together many different areas of mathematics, which are well developed and recently
gained significant attention. Couplings, allocation and optimal transport problems, (Skorokhod)
embeddings ; to name the main ones.

In this introductory chapter, our aim will be to demonstrate these aspects throughout examples
and to explore some first details in different kind of related problems. The results in this chapter
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will be given mostly without proofs. If there is an exception to this, we present the proof mainly
because we think it contains interesting steps or notable arguments.

As chapter 2 and 3 contain all the new results in a concise way, we omit listing them separately
here.

1.1 Fundamental examples

1.1.1 The extra head problem

Consider the following problem: Given an i.i.d. sequence of coin tosses indexed by Z, find a
random coin that shows head, such that the sequences to its left and its right remain i.i.d.
Assume the coins Xi are such that for some 0 < p < 1, P(Xi = head) = p = 1−P(Xi = tail),
for all i ∈ Z. This problem was first introduced by Liggett [25], who also provided an explicit
solution for certain values of p, and subsequently studied in [18], and [20].

To see why this problem might not be as innocent as it seems, let us check the following attempt
at a solution. Wait until we first see a head. In other words, reveal the coin at the origin, if it
shows head, then it is the found coin; if the coin at the origin shows tail, then check the coin
to its right and keep going, until the first coin showing head. Assume that the coins are fair,
that is p = 1/2. It is a straightforward calculation that the probability that the coin to the left
of the found head, is a tail, is 3/4. Indeed, the coin at the origin shows head with probability
a half, in which case the coin to its left shows tail with probability a half. If the coin at the
origin is a tail, then we know for certain that the coin to the left of the found head will show a
tail. Therefore this cannot be a solution, as not just the fairness of a coin has been distorted,
but also independence property of the entire sequence is lost.

1.1.2 Extra head for Poisson process

The Poisson counterpart of the previous problem reads as follows. Let Π be a homogeneous
Poisson process on Rd, with unit intensity. Find a site X ∈ Rd such that Π(X) = 1, which
means that there is a point at site X, and the shifted process Π(X + ·) is, again, a Poisson
process on Rd with unit intensity. In other words, given a d-dimensional Poisson process, we
are looking for a point, from where the process still looks like a Poisson process.

Let us demonstrate this problem’s non-trivial nature in d = 1, through a tempting guess.
Namely, take the first point X of Π to the right of the origin. It is readily apparent that the
distance between the new origin X and the first point to its left will be a random variable that
is distributed as the sum of two exponential random variables with unit intensity. Hence, this
cannot be a solution, since this distance should be a unit exponential random variable.

What if we tweak this approach by choosing randomly the k-th point to the right of the origin?
To this end, we introduce an integer valued random variable Z that tells us, which point to be
the new origin X. Let us denote the distance between between the k − 1-th and k-th point
to the left of X by Dk, for k = 1, 2 . . . , where D1 is the distance between X and its first left
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neighbour point. By definition, Dk’s are independent and conditioned on Z = k,

P(Di > t|Z = k) =

{
e−t if i 6= k,

(1 + t)e−t if i = k,

where the i = k case comes from the fact, we have already seen above, that is Dk is the sum of
two independent, unit exponential random variables. This implies

P(Di > t) = e−t + te−tP(Z = k).

Therefore it is impossible to guarantee that Di ∼ Exp(1) for all i = 1, 2, . . . .

1.2 Shift coupling

The first solution to the two problems described above was given by the powerful machinery of
shift (or transformation) coupling, see [31] and chapter 7 in [32]. Following the latter reference
we give an overview of this tool. Though there exists an established theory for shift couplings
in ‘one-sided’ context, see e.g. chapter 5 in [32], we only present here the ‘two-sided’ case,
relevant for us.

Informally, coupling is a simultaneous construction of two (or more) stochastic processes on the
same probability space, with the aim to study certain properties of a stochastic process, e.g.
convergence to invariant measure.

Definition 1. Given an index set I, for all i ∈ I, let Xi,be a random variable, taking values in
a measurable space (Ei, Ei), and defined on probability space (Ωi,Fi,Pi). A family of random

variables (X̂i : i ∈ I) defined on a common probability space (Ω̂, F̂ , P̂) is a coupling of Xi, i ∈ I,
if

X̂i
D
= Xi,

for all i ∈ I, and where
D
= denotes equality in distribution.

Remark 1 The definition does not require Xi’s to be defined on a common probability space,
that is their joint distribution does not necessarily exist. The important point here is that
the collection of copies (X̂i : i ∈ I) is defined on a common probability, so they have a join
distribution.

A first toy example is the independence coupling that consist of independent copies of Xi’s.
This already indicates that the dependence structure plays a crucial role, as only the marginal
distributions need to match with those of Xi’s.

We consider two stochastic processes X = (Xt)t∈Rd and X ′ = (X ′t)t∈Rd , d ≥ 1. An element of
the index set Rd will be called site. In our setting these processes have a general state space
and path or sample space, denoted by (E, E) and (Ω,F), respectively. The notation (E, E) is
the usual one for a measurable space, where E is the state space and E is a suitable σ-algebra
on E. A standard choice is Polish space, that is a complete and separable metric space, for E
and right-continuous processes for the path space Ω. We note that usually the reason behind
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the choice of Polish space is that in this setting Kolmogorov extension theorem - a fundamental
tool in probability theory - is readily available, see e.g. p. 86 in [32] or for a classic application,
Theorem 12. 1.2 in [12] in the Brownian motion context.

Define the shift maps T−u, u ∈ Rd, by T−uω = (ωu+t)t∈Rd , where ω ∈ Ω. The processes X and
X ′ are assumed to be shift-measurable. This means that T−uΩ = Ω, for all u ∈ Rd and the
map (ω, u) ∈ Ω × B(Rd) 7→ T−uω ∈ Ω is F × B(Rd)/F measurable; where B(Rd) denotes the
Borel σ-algebra on Rd.

Definition 2. (Non-distributional) (X̂, X̂ ′, U, U ′, C) is a shift-coupling of X and X ′, if (X̂, X̂ ′)
is a coupling of X and X ′, U and U ′ are random sites and C is an event such that

T−UX̂ = T−U
′
X̂ ′ on C.

(Distributional) (X̂, X̂ ′, U, U ′, C, C ′) is a distributional shift-coupling of X and X ′, if (X̂, X̂ ′)
is a coupling of X and X ′, U and U ′ are random sites, and C and C ′ are events such that

P(T−UX̂ ∈ ·, C) = P(T−U
′
X̂ ′ ∈ ·, C ′),

therefore P(C) = P(C ′).

A shift-coupling is successful if P(C) = 1, in which case we omit the explicit reference to the
events C and C ′.

One of the advantages of this setup is that the shift maps form a group, which is partly due to
the choice of the index set Rd. If the origin is shifted by some site u ∈ Rd, then it can always
be shifted back and so no information on the path is lost. This implies that distributional shift
couplings can be turned into non-distributional ones, without the assumption of Polish space
and right continuity of paths, see Theorem 3.2, in Chapter 7 in [32].

Another implication of the group property is that the above definitions can be rewritten. By
introducing the shift S := U − U ′, they become

T−SX̂ = X̂ ′ on C,

in the non-distributional case, and

P(T−SX̂ ∈ ·, C) = P(X̂ ′ ∈ ·, C ′),

in the distributional case. The notation reduces to (X̂, X̂ ′, S, C) and (X̂, X̂ ′, S, C, C ′). This
gives a simple, but important insight, namely the two stochastic processes, shift coupled this
way, are the same, except only that their origins are different.

The shift-coupling inequality is a standard result and can be seen as the counterpart of the
usual coupling inequality, see section 5 of chapter 1 in [32], that has applications mainly in
proofs of convergence of measures.

Recall that, given two probability measures µ and ν on some measurable space (E, E), the total
variation distance is given by

‖µ− ν‖ := 2 sup
A∈E
|µ(A)− ν(A)|.
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Let λ denote the Lebesgue measure on B(Rd) and for all B ∈ B(Rd), with 0 < λ(B) < ∞,
define the uniform distribution λ(·|B) on B as

λ(A|B) :=
λ(A ∩B)

λ(B)
, A ∈ B(Rd).

The shift-coupling inequality reads as follows. For all B ∈ B(Rd), such that 0 < λ(B) <∞,

‖P(T−UBX ∈ ·)− P(T−UBX ′ ∈ ·)‖ ≤ 2− 2E[λ(S +B|B);C], (1.2.1)

where C is an event as in Definition 2, UB ∼ λ(·|B), i.e. UB is uniform on B, and independent
of X and X ′, and recall that S is the shift as introduced above.

This inequality can be extended to a general class of averaging sets. A family Bh ∈ B(Rd),
0 < h <∞, is called Folner averaging sets, if

0 < λ(Bh) <∞,

λ(t+Bh|Bh)→ 1 as h→∞, t ∈ Rd.

If P(C) = 1, using (1.2.1) with B = Bh, the above conditions imply the total variation conver-
gence

‖P(T−UBhX ∈ ·)− P(T−UBhX ′ ∈ ·)‖ → 0, as h→∞. (1.2.2)

Define the invariant σ-algebra by I = {A ∈ F : T−uA = A, u ∈ Rd} = {A ∈ F : T+uA =
A, u ∈ Rd}, where the second claim follows simply from the group property of the shift T−u,
u ∈ R.

The main result on shift-coupling is due to Thorisson and was originally appeared in [31].

Theorem 1. The following claims are equivalent:

(a) There exists a successful distributional shift-coupling of X and X ′.

(a’) There exists a random site U such that T−UX
D
= X ′.

(b) For some Folner averaging sets Bh, 0 < h <∞, (1.2.2) holds.

(b’) For all Folner averaging sets Bh, 0 < h <∞, (1.2.2) holds.

(c) P(X ∈ ·|I) = P(X ′ ∈ ·|I).

Remark 2 When X ′ is stationary, i.e. T−uX ′
D
= X ′, for all u ∈ Rd, then (1.2.2) becomes

T−UBhX → X ′,

in total variation, as h → ∞. The equivalence of (c) and (b) implies that two stationary
stochastic processes agree in distribution on I if and only if they are identically distributed.
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This theorem is a collection of more general results and its proof can be found in section 6
and 7 in chapter 7 in [32] or indeed as Theorem 1 and 2 in [31]. In the general setting one
can take a group G, which consists of measurable mappings from (E, E) to itself. An element
Γ ∈ G acts on a random element X defined on the probability space (Ω,F ,P) and ΓX is a
random element in (E, E). In our example the group was given by the group of the shift maps
(T−u : u ∈ Rd). Although this is not immediate to see, but this result can be applied to the
fundamental examples and one can obtain existence results. The reason for applicability is that
the index sets Z and Rd and also the state spaces we deal with are sufficiently nice; for further
details see [31].

These exciting developments in the coupling literature provided the first answer to the problems
presented in the previous subsection. Though they provided existence of solutions, it was
unclear how these solutions would look like. The first explicit solution to the extra head
problems was described by Liggett in [25], which was followed by a complete characterization
of the solutions to these problems, see [20]. Before we discuss the aspects of this characterization
in detail, we present a result concerning the moment properties of solutions. The reason we do
this is twofold; the result itself may seem remarkable at first sight and it uses the shift-coupling
inequality introduced above.

The following result is Theorem 3.1 in [25] and the proof below is based on the same reference.

Theorem 2. Let d = 1, and Y be a solution to the extra head problem described in section 1.1.1
, i.e. Y is a random site in Z, such that XY = head almost surely and the shifted sequence
{XY+z}z∈Z is an i.i.d. sequence with parameter p. Then Y satisfies,

lim inf
t→∞

E[|pY ∧ t|]√
t

≥
√

1− p
2π

,

in addition any solution Y to the (Poisson) extra head problem described in section 1.1.2 satisfies

lim inf
t→∞

E[|Y | ∧ t]√
t

≥
√

1

2π
.

Furthermore, in both cases, |Y | has infinite square root moment, i.e. E|Y |1/2 =∞.

Proof. As already indicated above, the core of the proof is the shift-coupling inequality. Con-
sider the first part of the assertion. Recall that the shift map T−u, u ∈ Z on {0, 1}Z is defined
as (T−uX)(k) = X(u + k). The shift acts on measures as (T−uµ)(A) = µ(T+uA). The total
variation norm is defined by

‖µ‖ = sup

{∫
fdµ : |f | ≤ 1

}
.

Let µ1 and µ2 be probability measures on {0, 1}Z. Assume that X, a random element in {0, 1}Z
is distributed according to µ1 and the site Y ∈ Z is chosen such that T−YX is distributed
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according to µ2. With these choices, the shift-coupling inequality can be written as∥∥∥∥∥ 1

n

n∑
k=1

T−kµ1 −
1

n

n∑
k=1

T−kµ2

∥∥∥∥∥ ≤ 2

n
E[|Y | ∧ n], (1.2.3)

for n ≥ 1. In order to see this, take f with |f | ≤ 1 and write∣∣∣∣∣ 1n
n∑
k=1

Ef(T−kX)− 1

n

n∑
k=1

Ef(T−(Y+k)X)

∣∣∣∣∣ =
1

n

∣∣∣∣∣E∑
l

f(T−lX)
[
1[1,n](l)− 1[Y+1,Y+n](l)

]∣∣∣∣∣
≤ 1

n
E
∑
l

∣∣1[1,n](l)− 1[Y+1,Y+n](l)
∣∣

=
2

n
E[|Y | ∧ n].

Taking the supremum over the set of f with |f | ≤ 1 yields inequality (1.2.3).

We now compute the left hand side of (1.2.3) in our case, that is µ1 is the distribution of X or
in other words the i.i.d. sequence (X(i) : i ∈ Z) with parameter p, and µ2 is the conditional
distribution µ1(·|X(0) = 1). Since µ1 is shift invariant and T−kµ2 is absolutely continuous with
respect to µ1 for each k, the left hand side of (1.2.3) becomes∫ ∣∣∣∣∣1− 1

n

n∑
k=1

d(T−kµ2)

dµ1

∣∣∣∣∣ dµ1.

Observe that T−kµ2(·) = µ1(·|X(k) = 1),

d(T−kµ2)

dµ1

(X) = p−1X(k).

Using this, we can rewrite the integral above as

E
∣∣∣∣1− p−1Sn

n

∣∣∣∣ ,
where Sn ∼ Bin(n, p). By the Central Limit Theorem, the last display has asymptotic√

2(1− p)/(πpn) as n→∞. Combined with (1.2.3), this yields

E [|Y | ∧ n] ≥ C
√
n, (1.2.4)

for some constant C > 0.

The (Poisson) extra head can be treated similarly. In this case the shift-coupling inequality
takes the form ∥∥∥∥1

t

∫ t

0

(T−sµ1)ds− 1

t

∫ t

0

(T−sµ2)ds

∥∥∥∥ ≤ 2

t
E[|Y | ∧ t],

where µ1 and µ2 now are distributions of Poisson processes, with unit intensity, on R. Now
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just follow and modify the steps of the argument presented for the i.i.d. case. In detail,
µ1 is the distribution of a Poisson process with unit intensity, which is shift invariant and
µ2 = µ1(·|Π(0) = 1), i.e. the distribution of a Poisson process conditioned on having a point at
the origin. Note that T−sµ2 is absolutely continuous with respect to µ1 for all s. Using these
consideration, we can evaluate the left hand side above, to get

E
∣∣∣∣1− Π[0, t]

t

∣∣∣∣ ,
which, again by the Central Limit Theorem, has asymptotic

√
2/(πt) as t→∞.

We finish the proof with showing that E|Y |1/2 =∞, by using a neat argument. By contradiction
assume that E|Y |1/2 <∞. Note that

|Y | ∧ n√
n
≤ |Y |

1
2 ,

and we can apply dominated convergence theorem to the left hand side, which yields

E
|Y | ∧ n√

n
→ 0,

as n→∞, but this contradicts (1.2.4).

1.3 Palm distributions

Both extra head problems can be studied from a Palm theory perspective, which is - again
- a well established theory, closely related to various notions of stationarity. Palm theory
has applications in various areas e.g. queueing theory, perfect simulation, disintegration of
measures, exchangeable sequences and ergodic theory linked to entropy. Here, we only aim to
give a brief and mostly informal, more heuristic introduction to the basic notions. However, for
a rigorous treatment of this topic, with some explicit applications, we refer either to chapter
11 in [22] or to the self-contained chapter 8 in [32]. The following material is mainly based on
the latter reference.

Recall that a stochastic process is stationary if its distribution is invariant under deterministic
time shifts. Cycle stationarity means that the stochastic process contains cycles that form a
stationary sequence; that is to say distributional invariance in this case is meant under shifts
from one cycle to another. Recurrent Markov chains are good examples for cycle stationary
processes. Indeed, cycles are given by successive visits to a given state and by the Markov
property they form an i.i.d. sequence. It is known that if the Markov chain is positive recurrent,
then its invariant distribution is a probability measure, hence the process has a stationary
version as well. Other examples for cycle stationary chains are renewal processes.

Two dualities describe the relationship between stationarity and cycle stationarity. The first one
asserts that the stationary process can be obtained from the cycle stationary process by placing
the origin uniformly at random in a cycle after ‘length-biasing’ the cycle length. Conversely, the
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cycle stationary process can be obtained from the stationary process by shifting the origin to
the right end point of the cycle straddling the origin after ‘length-debiasing’ the cycle length.
The interpretation of this result is that the cycle-stationary dual, i.e. the cycle-stationary
process associated with a given stationary process, looks like the stationary process conditioned
on having a point at the origin. We emphasize that this is indeed just a loose description,
because if we take a stationary (two-sided) Poisson process on R, then the probability that it
has a point at the origin is zero.

The second duality is similar in nature. The only difference to the first one is that the length-
biasing and length debiasing is done under conditioning on the invariant σ-algebra. The inter-
pretation of this result is that the cycle stationary dual looks like the stationary process with
origin shifted to a uniformly chosen point. Conversely the stationary dual looks like the cy-
cle stationary process with origin shifted to a time chosen uniformly in R. This can also be
regarded as taking a randomized origin.

We make this rather informal description mathematically more precise and present the first
duality formally from a measure theoretic point of view. Let Z0 denote the length of the cycle
straddling the origin, that is the distance between random times S0 and S−1, the starting
points of two consecutive cycles, such that S−1 < 0 < S0. If X is a two-sided (irreducible and
recurrent) Markov chain, then cycles are given by

Cn := (XSn−1+s)s∈[0,Zn), n ∈ Z,

where Zn is the n-th cycle length, that is Zn = Sn − Sn−1. A classic example for cycles are
excursions and the random times Sn are the return times to the same state. Furthermore, let
P be a probability measure on (Ω,F) such that it satisfies

E[1/Z0] <∞. (1.3.1)

Taking the Radon Nikodym derivative, we can define a new probability measure P◦ on (Ω,F)
by the density dP◦/dP := 1/(Z0E[1/Z0]) with respect to P, that is

dP◦ =
1

Z0E[1/Z0]
dP. (1.3.2)

This is called ‘length-debiasing’ P. From this, we get

E◦[Z0] =
1

E[1/Z0]
. (1.3.3)

Observe that 0 < Z0 <∞, which implies that E[1/Z0] > 0 and thus

E◦[Z0] <∞. (1.3.4)

This allows us to rewrite (1.3.2) as

dP =
Z0

E◦[Z0]
dP◦, (1.3.5)
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which is called ‘length-biasing’ P◦.
Conversely, given a probability measure P◦ on (Ω,F) that satisfies (1.3.4), we can define a new
probability measure P on (Ω,F) by (1.3.5). From this, we get

E[1/Z0] =
1

E◦[Z0]
. (1.3.6)

Observe that 0 < Z0 <∞, which implies E◦[Z0] and thus using (1.3.6) we conclude that (1.3.1)
holds. Therefore (1.3.5) can be rewritten as (1.3.2).

To sum up, we showed the connection between length-debiasing in (1.3.2) and length-biasing
in (1.3.5). This provides a duality between the probability measure P on (Ω,F), with prop-
erty (1.3.1), and the probability measure P◦ on the same measurable space (Ω,F), with prop-
erty (1.3.4).

Before we formulate the first duality result, we need a few more ingredients. Let X = (Xt)t∈R be
a stochastic process and S = (Sk)k∈Z be a (doubly infinite) ordered sequence of random times,
both supported on a probability space (Ω,F ,P). S is indexed according to the convention that
the time origin t = 0 is such that S−1 < 0 ≤ S0. The pair (X,S) is stationary, under P, if its
distribution is invariant under time shifts, that is

T−u(X,S)
D
= (X,S), u ∈ R,

under P. Recall that time shifts were defined as T−uX = (T−uXt)t∈R = (Xt+u)t∈R, for all
u ∈ R. These time shifts are defined on S as T−uS = (T−uSk)k∈Z = (Sn−u+k + u)k∈Z, for all
u ∈ R, where n−u = n if and only if u ∈ (sn−1, sn]. Note that the indices of S are compensated
in order to preserve the convention that the time origin satisfies T−uS−1 < 0 ≤ T−uS0.

Define a cycle by the random path segments Cn = (XSn−1+s)s∈[0,Zn), for all n ∈ Z and where
Zn = Sn − Sn−1 is the length of the n-th cycle. The cycle C0 straddling the origin has length
Z0.

Let P◦ be another probability measure, supported on the same measurable space (Ω,F) and
assume that the pair (X◦, S◦) lives on the probability space (Ω,F ,P◦). We say that (X◦, S◦)
is cycle stationary, under P◦, if the sequence of cycles is stationary, that is

(. . . , Cn−1, Cn, Cn+1, . . . )
D
= (. . . , C−1, C0, C1, . . . ), n ∈ Z.

We note that there is a one-to-one measurable correspondence between T−Sn(X,S) and
(. . . , Cn−1, Cn, Cn+1, . . . ), for all n ∈ Z. This implies that (X◦, S◦) is cycle stationary if and

only if T−Sn(X,S)
D
= (X◦, S◦), for all n ∈ Z.

The first duality that states this equivalence between the two notions of stationarity, is given
by

Theorem 3. Let (Ω,F) be a measurable space supporting (X,S) and ((X◦, S◦), U), where X
and X◦ are two-sided shift measurable processes, S and S◦ are two-sided sequences of times
increasing strictly from −∞ to ∞ with S−1 < 0 ≤ S0 and S◦0 ≡ 0, and U is a (0, 1] valued
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variable. Let (X,S) and ((X◦, S◦), U) be linked by

(X◦, S◦) = T−S0(X,S) and U = −S−1/Z0

or, equivalently, by
(X,S) = T (1−U)Z◦0 (X◦, S◦),

thus Z0 ≡ Z◦0 . Let P and P◦ be probability measures on (Ω,F) satisfying (1.3.1) and (1.3.4)
and linked by (1.3.2) or, equivalently, by (1.3.5). Then the following statements are equivalent

(i) (X,S) is stationary under P,

(ii) (X◦, S◦) is cycle stationary under P◦ and U is uniform on (0, 1] and independent of
(X◦, S◦).

Remark 3 U is uniform on (0, 1] and independent of (X◦, S◦) under P if and only if it is so
under P◦.

This is Theorem 4.1. in Chapter 8 in [32], where the proof can also be found. This result is
the first or ‘point-at-zero’ duality.

A natural way to think about this first Palm duality is in terms of distributions. In other words,
given a stationary distribution P we can apply Theorem 3 to some (X,S) with distribution P to
obtain P◦, which is the distribution of the cycle stationary dual (X◦, S◦). Conversely, given a
cycle stationary distribution P◦, the same theorem yields that we can obtain a stationary dual
from some ((X◦, S◦), U), where (X◦, S◦) is distributed according to P◦ and U ∼ Uni((0, 1]) is
independent of (X◦, S◦).

We conclude this section with the second or ‘randomized-origin’ duality result that makes the
link to shift-coupling even more explicit. It can be proved, that under conditions, similar to
that of Theorem 3, the following two statements are equivalent,

(a) (X,S) is stationary under P,

(b) (X◦, S◦) is cycle stationary under P◦ and U ∼ Uni((0, 1]) is independent of (X◦, S◦);

for the precise statement and proof, see Theorem 8.1 in chapter 8 in [32]. The difference -
which is apparent only in the conditions omitted here - between the last statement and that
of Theorem 3 is that the length-biasing and length-debiasing is done under the condition of
invariant σ-algebra.

Theorem 4. Assume the equivalent claims (a) and (b) described above hold. Then the proba-
bility space (Ω,F ,P) can be extended to support a random integer K such that

P(T−SK (X,S) ∈ ·) = P◦((X◦, S◦) ∈ ·).

Conversely, the probability space (Ω,F ,P◦) can be extended to support a random time Y such
that

P◦(T−Y (X◦, S◦) ∈ ·) = P((X,S) ∈ ·).

This is Theorem 9.1 in Chapter 8 in [32] and the proof can also be found therein.
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1.4 Allocation and transport problems

In their excellent paper [20], Holroyd and Peres gave a complete characterization of the solutions
to the fundamental extra head problems. Thus offering not just an insight to the nature of
solutions, but also a link to the vast area of allocation and transport problems. This result acted
as a catalyst for a wealth of subsequent research in this direction, see e.g. [19, 24] and perhaps
most notably [8]. First, we describe this remarkable characterization in its full generality and
next we intend to explore some of the classical allocation and transport problems and results.
The following introduction is based on [20] and for convenience we borrow the notation from
the same reference.

We start with the discrete extra head problem from section 1.1.1, but instead of Z, we take an
infinite countable group G, with identity i, which clearly contains Zd for d ≥ 1, as an example.
In this setting, we take the product measure µ on {0, 1}G. We refer to an element γ ∈ {0, 1}G
as a configuration. Γ will be a random configuration with law µ. We call an element g ∈ G
site. We say that the site g is occupied if Γ(g) = 1 and unoccupied, if Γ(g) = 0. Taking the left
multiplication as the usual group operation, we define g : x 7→ gx, for g, x ∈ G. This implies
that a site g ∈ G acts on a configuration γ ∈ Ω via (gγ)(x) = γ(g−1x), on measurable functions
f : {0, 1}G → R via (gf)(γ) = f(g−1γ), on events A ⊂ {0, 1}G via gA = {gγ : γ ∈ A}, therefore
1{gA} = g1{A}, and on measures via (gµ)(f) = µ(g−1f). At this stage perhaps we point out
that in case G = Zd, for d ≥ 1, the group action is the usual shift map T−uγ = (γu+t)t∈Zd , for
u ∈ Zd, we already defined in the Rd setting above, see section 1.2. This is a useful example,
which we will frequently return to in the sequel in order to gain a better insight.

Suppose µ is invariant and ergodic under the action of G. Let p denote the marginal probability

p = µ(Γ(i) = 1),

and p is assumed to be 0 < p < 1. We denote by µ∗ the conditional law of Γ given Γ(i) = 1,

µ∗(·) = µ(Γ ∈ ·|Γ(i) = 1).

Let X be a G-valued random variable on some joint probability space with Γ. Here we use P
for the notation of the probability distribution of X and E for the expectation with respect to
P. X is a discrete extra head scheme for µ, if X−1Γ has law µ∗ under P. Observe that in the
example G = Z, X−1Γ will be the two-sided sequence of coin tosses with an extra head at the
origin.

A discrete transport rule is a measurable function θ : {0, 1}G ×G×G→ R+ satisfying∑
y∈G

θγ(x, y) = 1 for all x ∈ G and µ-almost every γ. (1.4.1)

For sets A,B ⊂ G we define

θγ(A,B) :=
∑

x∈A,y∈B

θγ(x, y).
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Furthermore, θ is G-invariant in the sense that

θgγ(gx, gy) = θγ(x, y), (1.4.2)

for all γ and all x, y ∈ G. θγ(x, y) is interpreted as the amount of mass sent or transported
from x to y. In this view, equation (1.4.1) tells us that each site sends out unit mass in total.

A transport rule θ is balancing, if

θΓ(G, y) = p−1Γ(y), (1.4.3)

holds µ-almost every y ∈ G. In other words, every occupied site receives exactly p−1 mass and
every unoccupied site gets no mass.

Given µ, let θ be a transport rule and X be a G-valued random variable, we assume that

θΓ(i, x) = P(X = x|Γ), (1.4.4)

for µ-almost every Γ and all x ∈ G. Observe that (1.4.1) can be obtained by summing (1.4.4)
over all x and using (1.4.2). Hence, for any X, (1.4.4) determines θ uniquely up to a P-null
event, and the converse also holds, i.e. for any θ, (1.4.4) uniquely determines the joint law of
(Γ, X).

Now, we are ready to state the characterization result.

Theorem 5. Suppose X and θ are related by (1.4.4). Then X is an extra head scheme if and
only if θ is balanced.

The proof can be found in [20] as the proof of Theorem 10. This result inspired some of the
results in this thesis, see Theorem 9.

Allocation rules are defined as certain types of transport rules. More precisely, an allocation
rule for µ is a measurable map τ : {0, 1}G × G → G that µ-almost surely assigns every site
x ∈ G to a site τγ(x). Indeed, allocation rules can be expressed in terms of transport rules as

θγ(x, y) = 1{τγ(x) = y} (1.4.5)

Moreover, allocation rules satisfy the properties (1.4.1) and (1.4.2), with representation (1.4.5).
Assume for now that G = Zd, for some d ≥ 1 and the marginal probability p is a reciprocal of
an integer. In this case, condition (1.4.1) becomes |(τ−1

γ )(y)| = p−1γ(y) for µ-almost every γ

and every y ∈ Zd. Condition (1.4.2) takes the following form; if τγ(x) = y, then τT−uγ(T
−ux) =

T−uy, for all u ∈ Zd and where T−u is the shift operator as seen above. This representation
gives rise to a corollary of the previous result.

Proposition 1.4.1. Let Γ have law µ, and suppose p is the reciprocal of an integer. If τ is a
balanced allocation rule for µ, then the random variable X given by

X = τΓ(0) (1.4.6)

is a nonrandomized extra head scheme for µ. Conversely, if X is a nonrandomized extra
head scheme, then there exists a µ-almost everywhere unique balanced allocation rule τ satisfy-
ing (1.4.6).
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For the proof we refer to the proof of Proposition 7 in [20].

It is not so surprising that there is an analogous result in the continuous case, i.e. for the
Poisson extra head problem from section 1.1.2. Recall that Π is a translation invariant, simple
point process of unit intensity on Rd, for d ≥ 1, whose law will now be denoted by Λ. Let Π∗ be
the Palm version of Π, that is Π∗ is again a translation invariant, simple point process of unit
intensity on Rd with an added point at the origin. The law of Π∗ is denoted by Λ∗. Similarly to
the discrete case, an element x ∈ Rd is called site and a realization π of the random process Π is
called configuration, in other words π is an integer valued Borel measure on Rd. For all u ∈ Rd,
T−u is the usual shift operator, as already seen above, T−uπ(·) = π(·+ u). A continuum extra
head scheme for Π is an Rd-valued random variable Y such that T−Y Π has law Π∗.

The continuum counterpart of the discrete allocation rule can be defined as a measurable
function Ψ that assigns to Λ-almost every configuration π and every site x ∈ Rd a site Ψπ(x),
and Ψ is translation invariant in the sense that if Ψπ(x) = y, then ΨT−uπ(T−ux) = T−uy. Let
[Π] := {x ∈ Rd : Π({x}) = 1} be the support of Π, that is [Π] is a random collection of sites.
An allocation rule is balanced, if Ψ−1

Π (y) has Lebesgue measure 1 for all y ∈ [Π] and at the same
time the set Ψ−1

Π (Rd \ [Π]) has Lebesgue measure 0.

Theorem 6. Let Ψ be an allocation rule for Π. The random variable Y = ΨΠ(0) is a nonran-
domized extra head scheme for Π if and only if Ψ is balanced.

This theorem is proved in [20] as Theorem 13.

We saw above that extra head schemes typically have bad moment properties in dimension one
and two, see Theorem 2; the two dimensional result can be found in [20]. Somewhat surprisingly
in d ≥ 3 there is a striking contrast.

Theorem 7. Let µ be a product measure with parameter p on Zd. If d ≥ 3, then there exists a
balanced discrete transport rule θ satisfying

E exp(C‖θΓ(0)‖d) <∞

for some C = C(d, p) > 0.

If we consider that an extra head scheme is at least as far as the first occupied site from the
origin, meaning that P(‖X‖d ≥ x) > exp(−C1x

d), for some C1(d, p) > 0, then we also see that
the above result is the best we may hope for.

Theorem 8. Let Π be a Poisson process of unit intensity on Rd. If d ≥ 3, then there exists a
continuum extra head scheme for Π satisfying

E exp(C‖Y ‖d) <∞

for some C = C(d) > 0.

The above theorems are proved in Section 8 [20]. Though these results are surprising, at this
stage they do not give a clue how such schemes might look like explicitly. The first explicit
construction was offered by the gravitational allocation rules - a truly original result appeared
in [8].
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1.4.1 Further themes for allocations

In the Poisson setting above, we saw that to every Poisson point x ∈ Rd there was a set
S(x) ⊂ Rd assigned by some allocation map Ψ such that these sets had the same (unit)
area. More precisely, for any two distinct Poisson points x, y ∈ Rd, there were given sets
S(x), S(y) ⊂ Rd such that S(x) ∩ S(y) = ∅ and L(S(x)) = L(S(y)) = 1, where L denotes the
Lebesgue measure in Rd. In other words, the Poisson measure was allocated or coupled to the
Lebesgue measure, by some allocation map Ψ.

It is fairly natural to introduce a non-negative, increasing cost function c that gives the allo-
cation or transport cost c(|x − y|) between two points x, y ∈ Rd. A standard and extensively
studied question is the following: For a given cost function c, does there exist an optimal
allocation rule Ψ. Optimality means that for any other allocation rule Ψ′, we have

Ec(YΨ) ≤ Ec(YΨ′),

where YΨ and YΨ′ are the extra head schemes, i.e. the distances between the origin and the
point, where the origin is assigned to, under the allocation Ψ and Ψ′, respectively. This was
the main subject of [21], where this question was answered in a general context.

Instead of taking the Lebesgue measure, we might as well take another homogeneous Poisson
process with the same unit intensity and try to couple the two Poisson measures. Informally,
assume that there are blue and red points in Rd given by two independent Poisson processes
with the same unit intensity. We aim to find a scheme that matches the blue points to the red
points in a translation invariant way. Then the matching distance Y between a typical blue
point and its matched red pair can be studied. A wealth of results concerning the optimal tail
and moment properties of Y was established in [19], which contains some problems that are
still open.

1.5 Optimal transport

Optimal transport has been a vast area of intensive mathematical research in the past three
decades and apart from its probabilistic aspects it has a deep analytic connection to PDE
theory and Riemannian geometry. We refer to Villani’s book [33], as a solid account on the
topic.

Since the main results in this thesis drew some inspiration from the optimal transport literature,
we think that the classical problem deserves a description and it may help the reader to put
these results into a richer context.

As already mentioned in the preceding subsection 1.4.1, it is natural to consider allocations or
transport maps together with some cost. In the classical Monge-Kantorovich setting - instead
of Poisson and Lebesgue measures - we take two probability measures µ, ν on Polish spaces
X ,Y . A set Θ(µ, ν) of transport maps consists of all measures on X × Y with X -marginal µ
and Y-marginal ν. Given a non-negative cost function c : X×Y → [0,∞], we define a transport
cost functional by

C(θ) =

∫
X×Y

c(x, y)dθ(x, y),
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that assigns to every transport map θ ∈ Θ(µ, ν) a transport cost. The Monge-Kantorovich
problem is to find

C := inf{C(θ) : θ ∈ Θ(µ, ν)}

together with a transport map θ that minimizes C.

When we look for tractable characteristics of the minimizers, it turns out that the right de-
scription is the cyclically monotone property their support sets. A Borel set B ⊆ X × Y is
cyclically monotone if and only if

c(x1, y2)− c(x1, y1) + · · ·+ c(xn−1, yn)− c(xn−1, yn−1) + c(xn, y1)− c(xn, yn) ≥ 0,

for all (x1, x1), (x2, y2), . . . , (xn, yn) ∈ B. A transport map θ is cyclically monotone if it is
concentrated on some cyclically monotone set B. A fundamental result says that every optimal
transport map is cyclically monotone, see e.g. [4] and the references therein. Intuitively this
should be clear, since the cyclically monotone property means that no cost improvement can
be achieved by cyclical rerouting the mass along a cycle. The converse property, whether
a cyclically monotone transport map is always optimal, is a more subtle issue. Under mild
condition on the transport map, this converse can indeed be proved. For a short and concise
treatment of this topic, see [4], which establishes this result as a corollary of the ergodic theorem.
This might be particularly interesting, since the main optimality results in this thesis also use
an ergodic argument, see Theorem 12 and Theorem 13 in Chapter 2 and 3, respectively.

1.6 Embedding aspects

The fundamental problem also has a ‘embedding aspect’, as we pointed out at the beginning
of this chapter.

Let us first recall the classical Skorokhod embedding problem (SEP). Let X be a real valued
random variable with distribution µ and W = {W (t) : t ∈ R+}, where R+ is the usual notation
for the non-negative real line, be a standard Brownian motion. Our goal is to find a stopping
time T with E[T ] < ∞, such that W (T ) has law µ. Since we assume that T is an integrable
stopping time, it is a corollary of Wald’s lemmas, see e.g. Theorem 2.44 and Theorem 2.48
in [26], that

E[W (T )] = 0 and E[W 2(T )] = E[T ] <∞.

This implies that if X is a centered random variable, distributed according to µ, with finite
variance, i.e. E[X] = 0 and E[X2] <∞, then there exists a stopping time T satisfying E[T ] <∞
and W (T ) ∼ µ. For a proof of this standard result, see Theorem 5.15 in [26].

Now consider a two-sided Brownian motion B = {B(t) : t ∈ R} with B(0) = 0, then the
fundamental problem translates to the following problem. Given a probability measure µ on
the real line, how do we find a random time T , such that B(T ) has law µ and {B(T+t)−B(T ) :
t ∈ R} is again a two sided Brownian motion. The main difference to the classical SEP is that
we need to guarantee the ‘Brownian property’ on both sides. Recall that if T is a stopping time,
then the forward looking part is a Brownian motion by the strong Markov property. However
the backward looking part is the main source of difficulty. This problem was first studied in [23].
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In Chapter 3 we elaborate more formally on this topic and we prove a strong result related to
the optimality of such times T .

1.6.1 Variations on embedding

Recently there have been a few interesting directions emerged, all of which share some key
features of either the problems or the techniques we have introduced so far.

In [5], the authors establish a subtle connection between optimal transport and the classical
SEP. Based on concepts and geometric ideas in optimal transport theory, they develop a new
approach to study and characterize solutions to SEP.

The novelty lies in the starting point. Consider the set of stopped paths

S = {(f, s) : f : [0, s]→ R is continuous, f(0) = 0},

and a functional ϕ : S → R. The optimal Skorokhod embedding problem is to construct a
stopping time optimizing

Pϕ(µ) = inf{E[ϕ((Bt)0≤t≤τ , τ)] : τ solves (SEP)},

where µ is the target distribution we would like to embed, i.e. B(τ) has distribution µ. In this
approach it is usually assumed that this problem is well-posed that is E[ϕ((Bt)0≤t≤τ , τ)] exists
and takes values in (−∞,∞] for all stopping times τ that solve SEP. A first example is given
by the Root’s solution to SEP, where the cost functional ϕ is given by ϕ(f, s) = s2. For further
exciting examples and a detailed treatment, see [5].

Recently, another interesting embedding related problem was presented in [7], where the authors
introduce and study forward Brownian motions. These processes are defined on the whole real
line and they appear to be Brownian motion when observed from random points in space-time
in the forward time direction. Formally speaking, {X(t) : t ∈ R} is a forward Brownian motion
(FBM), if there exists a sequence {Sn : n ≤ 0} of random times satisfying limn→−∞ Sn = −∞,
a.s., and for all n, the process {X(Sn + t)−X(Sn) : t ≥ 0} is a standard Brownian motion on
[0,∞).

The first example of an FBM is a two-sided Brownian motion. The authors of [7] give less
trivial examples of FBM, which are substantially different from a two-sided Brownian motion.
One of the intriguing questions they also address is the following. Given that we can observe
a process only in one direction, what can we infer - from these observations - regarding the
opposite direction. In particular, if we see a process that shows ‘Brownian properties’ in forward
time, is it necessarily a ‘Brownian like’ process in backward time as well? It turns out that an
example can be constructed which demonstrates that the answer to the previous question is a
no. However this immediately leads to a natural question of homogeneity in both, space and
time. In other words, are there processes that generate i.i.d. pieces of trajectories under shifts?
Again, for the detailed exposition, we refer to the original paper [7].

As a last example we mention the recent work of Pitman and Tang, [29], where they embed
Brownian bridge in Brownian motion by a spacetime shift. More precisely, given a standard
Brownian motion {B(t) : t ≥ 0}, the authors show that there exists a non-negative random
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time T , such that {B(T + u) − B(T ) : 0 ≤ u ≤ 1} has the same distribution as a standard
Brownian bridge.

This problem led to the study of the bridge-like process, which appeared as a natural candidate
for a solution to the bridge-embedding problem. The bridge-like process is defined by

{B(F + u)−B(F ) : 0 ≤ u ≤ 1},

where F := inf{t ≥ 0 : B(t+1)−B(t) = 0}. It is still an open problem, whether the bridge-like
process is a standard Brownian bridge. Another open problem, intimately related to this is
that in case of a negative answer, is the distribution of a standard Brownian bridge absolutely
continuous with respect to the distribution of the bridge-like process? The reason why this
proves to be a hard problem is the rather unusual nature of the random time F . It is also
unknown, whether the bridge-like process has the Markov property or not.

22



Chapter 2

Skorokhod embeddings for two-sided
Markov chains

This chapter is a joint work with my supervisor, Peter Mörters and was published in Probability
Theory and Related Fields, see [27].

2.1 Introduction and statement of main results

Let S be a finite or countable state space and p = (pij : i, j ∈ S) an irreducible and recurrent
transition matrix. Then there exists a stationary measure (mi : i ∈ S) with positive weights,
which is finite in the positive recurrent case, and infinite otherwise. The two-sided stationary
Markov chain X = (Xn : n ∈ Z) with initial measure (mi : i ∈ S) and transition matrix p is
characterized by

• P(Xn = i) = mi for all n ∈ Z, i ∈ S;

• P(Xn = j |Xn−1, Xn−2, . . .) = pXn−1j for all n ∈ Z, i, j ∈ S.

This chain always exists, if we allow P to be a σ-finite measure. For the simplest construction,
let (Xn : n ≥ 0) be the chain with initial measure (mi : i ∈ S) and transition matrix p, and
(X−n : n ≥ 0) be the chain with given initial state X0 and dual transition probabilities given
by p∗ij = (mj/mi)pji.

By conditioning the stationary chain X on the event {X0 = i}, we define the two-sided Markov
chain with transition matrix p with fixed initial state X0 = i. Its law, denoted by Pi, does
not depend on the choice of (mi : i ∈ S) and is always a probability law. Note that we can
equivalently define this chain, or indeed the two-sided Markov chain with transition matrix p
and arbitrary initial distribution ν, by picking X0 according to ν and letting the forward and
backward chains (Xn : n ≥ 0), resp. (X−n : n ≥ 0), evolve as in the case of the stationary chain.

A natural version of the Skorokhod embedding problem in this context asks, given the two-sided
Markov chain (Xn : n ∈ Z) with transition matrix p and initial state X0 = i and a probability
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measure ν on the state space S, whether there exists a random time T such that (Xn+T : n ∈ Z)
is a two-sided Markov chain with transition matrix p such that XT has law ν. If this is the
case we say that T is an embedding of the target distribution ν. Our interest here is mainly in
times T which are non-randomized, which means that T is a measurable function of the sample
chain X. The random times T are often stopping times, but this is not a necessary requirement.

Finding embeddings of two-sided Markov chains is a subtle problem, because even for stopping
times T the shifted process T−1X := (Xn+T : n ∈ Z) often will not be a two-sided Markov chain.
For example, take a simple symmetric random walk on the integers, started in X0 = 0, and let
T be the first positive hitting time of the integer a > 0. Then T embeds the Dirac measure δa,
but the increment T−1X0− T−1X−1 always takes the value +1, hence T−1X is not a two-sided
simple random walk. A similar argument shows that even shifting the simple random walk by
a nonzero fixed time does not preserve the property of being a simple random walk with given
distribution of the state at time zero.

The first main result of this paper gives a necessary and sufficient condition on the initial state,
the target measure and the stationary distribution for the existence of a Skorokhod embedding
for an arbitrary two-sided Markov chain.

Theorem 9. Let X be a two-sided irreducible and recurrent Markov chain with transition
matrix p and initial state X0 = i. Take ν = (νj : j ∈ S) to be any probability measure on S.
Then the following statements are equivalent.

(a) There exist a non-randomized random time T such that (Xn+T : n ∈ Z) is a Markov chain
with transition matrix p and XT has law ν.

(b) The stationary measure (mj : j ∈ S) satisfies mi
mj
νj ∈ Z for all j ∈ S.

If the random time T in (a) exists it can always be taken to be a stopping time.

Example 2.1.1 (Embedding measures with mass in the initial state) Assume that the target
measure ν charges the initial state i ∈ S of the Markov chain, i.e. νi > 0. Choosing i = j in
(b) shows that a non-randomized random time T with the properties of (a) can exist only if
ν = δi. In this case a natural family of embeddings can be constructed using the concept of
point stationarity, see for example [32], as follows: Let r ∈ N and let Tr be the the time of the
rth visit of state i after time zero. Then it is easy to check, and follows from [24, Theorem
6.3], that the process T−1

r X is a Markov chain with transition matrix p and XTr = i.

Example 2.1.2 (Extra head problem) Take a doubly-infinite sequence of tosses of a (possibly
biased) coin, or more precisely let X = (Xn : n ∈ Z) be i.i.d. random variables with distribution
P(Xn = head) = p, P(Xn = tail) = 1 − p, for some p ∈ (0, 1). Our aim is to find, without
using any randomness generated in a way different from looking at coins in the sequence, a
coin showing head in this sequence in such a way that the two semi-infinite sequences of coins
to the left and to the right of this coin remain independent i.i.d. sequences of coins with the
same bias. This is known as extra head problem and was investigated and fully answered by
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Liggett [25] and Holroyd and Peres [20]. To relate this to our setup, we can assume that
X0 = tail, as otherwise the coin at the origin is the extra head. Then the extra head problem
becomes the Skorokhod embedding problem for X with initial state X0 = tail and target
measure ν = δhead. Theorem 9 shows (as proved by Holroyd and Peres before) that the extra
head problem has a solution if and only if (1− p)/p ∈ Z, i.e. if and only if p is the inverse of
an integer. Moreover, Liggett [25] gives an explicit solution of the extra head problem which
we generalize to our setup in Theorem 2 below.

Example 2.1.3 (Inverse extra head problem) If in the setup of Example 2.1.2 the state of the
coin at the origin has been revealed, we ask whether it is possible to shift the sequence in such
a way that this information is lost, i.e. the shifted sequence is an i.i.d. sequence of coins with
the original bias. This means that we wish to embed the invariant distribution ν = m given by
mhead = p,mtail = 1− p. Theorem 9 shows that this is impossible.

Example 2.1.4 (Extra head problem with a finite pattern) In the setup of Example 2.1.2 we
now ask to find a particular finite pattern of successive outcomes, such that the coins to its left
and right remain an i.i.d. sequence of coins with the same bias. Looking, for example, for the
pattern head/tail we would first reveal the coin at the origin, and then if this shows head its
right neighbour, and if this shows tail its left neighbour. The underlying Markov chain has
the state space {tail/tail, tail/head, head/tail, head/head}, the transition matrix

1− p p 0 0
0 0 1− p p

1− p p 0 0
0 0 1− p p

 ,

and invariant measure ((1− p)2, p(1− p), p(1− p), p2). Our theorem shows that, if we initially
reveal tail/tail then we need 1/p to be an integer, and if we reveal head/head then we need
1/(1− p) to be an integer. Hence we can only embed head/head if p = 1

2
. More generally, the

problem can be solved for patterns that are repetitions of the single symbol head if and only
if 1/p is an integer, for patterns that are repetitions of the single symbol tail if and only if
1/(1− p) is an integer, and for patterns containing both symbols tail and head if and only if
p = 1

2
.

Example 2.1.5 (Simple random walk) Let X be a two-sided simple symmetric random walk
on the integers, with X0 = i for some i ∈ Z. In this case the invariant measure is mi = 1 for
all i ∈ Z, hence Theorem 9 shows that the target measures that can be embedded are precisely
the Dirac measures δj, j ∈ S. The same result holds for the simple symmetric random walk
on the square lattice Z2.

The proof of Theorem 9 extends the ideas developed by Liggett [25] and Holroyd and Peres [20]
for the extra head problem to the more general Markov chain setup. In particular, under the
additional assumption that the target measure does not charge the initial state, we are able
to generalize Liggett’s construction of an elegant explicit solution, in analogy to the Brownian
motion case studied in Last et al. [23]. Recall that the case when the target measure charges
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the initial state was already discussed in Example 2.1.1. To describe this solution we define the
local time Lj spent by X at state j ∈ S to be the normalized counting measure given by

Lj(A) :=
1

mj

#{n ∈ A : Xn = j} for any A ⊂ Z.

Theorem 10. Let X be a two-sided irreducible and recurrent Markov chain with X0 = i and
further assume that the target measure ν satisfies νi = 0 and the conditions in Theorem 9 (b).
Then

T∗ : = min
{
n ≥ 0: Li([0, n]) ≤

∑
j∈S

νj L
j([0, n])

}
(2.1.1)

is a finite, non-randomized stopping time satisfying the conditions of Theorem 9 (a).

Example 2.1.6 We take a stationary three state Markov chain with transition probabilities
given by p12 = p32 = 1 and p21 = 1− p and p23 = p. If 1/p is an integer we can shift the chain
so that it starts in the third state and the chain property is preserved, as follows: Uncover the
state at the origin. If it is the third state we are done; if it is the second state we move along
the chain until the number of visits to the third state is at least p times the number of visits
to the second state; if it is the first state we move until the number of visits to the third state
is at least p

1−p times the number of visits to the first state. Note that if the state of the origin
is the first state it is not a solution to wait one time step, whence you are in the second state,
and then apply the strategy for start in the second state as this creates a bias in the backward
chain.

Skorokhod embedding problems usually concern embedding times with finite expectation. How-
ever in the extra head problem it is not possible to achieve finite expectation of the random
time T . In fact Liggett [25] shows that in this case always E

√
T =∞, see Theorem 2 in Chap-

ter 1 above or Holroyd and Liggett [18]. For the simple random walk on the integers we expect

in analogy to the Brownian motion case studied by Last et al. [23] that always E 4
√
T = ∞.

Our aim here is to understand the general picture.

To this end we now recall the notion of asymptotic Green’s function of the Markov chain. Given
states i, j ∈ S we first define the normalized truncated Green’s function by

aij(n) = EiLj([0, n]) =
1

mj

Ei
[ n∑
k=0

1{Xk = j}
]
,

that is aij(n) gives the normalized expected number of visits to state j between time 0 and
time n, by the Markov chain with initial state X0 = i. By Orey’s ergodic theorem, see, e.g.,
Chen [9], for any states i, j, k, l ∈ S, the functions aij and akl are asymptotically equivalent in
the sense that

lim
n→∞

aij(n)

akl(n)
= 1.

We then define the asymptotic Green’s function a(n) as the equivalence class of the truncated
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Green’s functions under asymptotic equivalence. Observe that finiteness of moments is a class
property, i.e. expressions of the form E[a(Y )] < ∞, where a is an equivalence class and Y an
integer-valued random variable, are meaningful.

Theorem 11. Let X be a two-sided irreducible and recurrent Markov chain with X0 = i and
ν be any target measure different from the Dirac measure δi. If T∗ is the stopping time defined
in (2.1.1), then

(i) Ei
[
a(T∗)

1/2
]

=∞.

If additionally ν has finite support, then

(ii) Ei
[
a(T∗)

β
]
<∞ for all 0 ≤ β < 1

2
.

As a(n) cannot grow faster than n, our solutions T∗ always have ‘bad’ moment properties as
even for the nicest Markov chain T∗ can never have finite square root moments. However,
our next theorem shows that no other solution of the embedding problem has better moment
properties than T∗.

In fact, it turns out that T∗ has a strong optimality property, as it simultaneously minimizes
all concave moments of non-negative solutions of the embedding problem. This striking result
is new even for the case of the extra head problem and therefore, in our opinion, constitutes
the most interesting contribution in this paper.

Theorem 12. Let X be a two-sided irreducible and recurrent Markov chain with X0 = i and
ν be a target measure satisfying the conditions in Theorem 10. If T∗ is the solution of the
Skorokhod embedding problem constructed in (2.1.1) and T any other non-negative (possibly
randomized) solution, then

Ei
[
ψ(T∗)

]
≤ E⊕i

[
ψ(T )

]
,

for any non-negative concave function ψ defined on the non-negative integers, where the expec-
tation on the right is with respect to the chain as well as any possible extra randomness used to
define T .

Theorem 12 is inspired by exciting recent developments connecting the classical Skorokhod
embeddings for Brownian motion with optimal transport problems. In a recent paper, Bei-
glböck, Cox and Huesmann [5] exploit this connection to characterize certain solutions to the
Skorokhod embedding problem by a geometric property. In a similar vein, our solution T∗ is
characterized by a geometric property, the ‘non-crossing’ condition, which yields the optimality.
See also our concluding remarks in Section 2.6 for possible extensions of this result.

Example 2.1.7 Suppose the underlying Markov chain is positive recurrent. Then the
asymptotic Green’s function satisfies a(n) ∼ n. Therefore all non-negative solutions T of the
Skorokhod embedding problem satisfy Ei[

√
T ] =∞, while the solution constructed in Theo-

rem 10 satisfy Ei[T β∗ ] <∞ for all 0 ≤ β < 1/2. This applies in particular to Examples 2.1.2
and 2.1.4.
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Example 2.1.8 The situation is much more diverse for null-recurrent chains. Looking at Ex-
ample 2.1.5, for a two-sided simple symmetric random walk on the integers we have a(n) ∼

√
n.

Hence the solution T∗ constructed in Theorem 10 satisfies Ei[Tα∗ ] <∞ for all 0 ≤ α < 1/4,
while any non-negative solution has infinite 1/4 moment. This is similar to the case of Brow-
nian motion on the line, which is discussed in [23], although in that paper other than here
the discussion is restricted to solutions which are non-randomized stopping times. In contrast
to this, for simple symmetric random walk on the square lattice Z2 we have a(n) ∼ log n,
and therefore Ei[

√
log T ] is infinite for any non-negative solution T , while the solution T∗ con-

structed in Theorem 10 satisfies Ei[(log T∗)
α] <∞, for all 0 ≤ α < 1/2.

2.2 Relating embedding and allocation problems

In this section we relate our embedding problem to an equivalent allocation problem. The
section specializes some results from Last and Thorisson [24] which are themselves based on
ideas from [20]. We give complete proofs of the known facts in order to keep this paper self-
contained. Generalizing from [23] we call a random time T an unbiased shift of the Markov
chain X if the shifted process T−1X is a two-sided Markov chain with the same transition
matrix as X. Note that this definition allows T to be randomized, i.e. it does not have to be
a function of the sample chain X alone.

Let Ω = {(ωi)i∈Z : ωi ∈ S} be the set of trajectories of X. A transport rule is a measurable
function θ : Ω× Z× Z→ [0, 1] satisfying∑

y∈Z

θω(x, y) = 1 for all x ∈ Z and P-almost every ω.

Note that we write the dependence on the trajectory ω by a subindex, which we drop from the
notation whenever convenient. Transport rules are interpreted as distributing mass from x to
Z in such a way that the site y gets a proportion θ(x, y) of the mass. For sets A,B ⊂ Z we
define

θω(A,B) :=
∑

x∈A,y∈B

θω(x, y).

A transport rule θ is called translation invariant if

θzω(x+ z, y + z) = θω(x, y),

for all ω ∈ Ω and x, y, z ∈ Z, where zω, defined by zωn = ωn−z for any n ∈ Z, is the trajectory
shifted by −z. A transport rule balances the random measures ξ and ζ on Z if∑

z∈Z

θω(z, A)ξ(z) = ζ(A), (2.2.1)

for any A ⊂ Z and P-almost all ω. Given a two-sided Markov chain X as before recall the
definition of the local times Li, and given a probability measure ν = (νi : i ∈ S) we further
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define
Lν =

∑
i∈S

νi L
i.

Proposition 2.2.1. Assume that there is a measurable family of probability measures (Qω : ω ∈
Ω) on some measurable space Ω′ and T : Ω×Ω′ → Z is measurable. The random time T and a
translation invariant transport rule θ are associated if

Qω

(
ω′ ∈ Ω′ : T (ω, ω′) = t

)
= θω(0, t) for all t ∈ Z and P-almost all ω ∈ Ω. (2.2.2)

For any probability measure µ = (µi : i ∈ S) we define the probability measure P⊕µ on Ω×Ω′ by

P⊕µ (dω dω′) =
∑
i∈S

µi Pi(dω)Qω(dω′). (2.2.3)

Then, if µ, ν is any pair of probability measures on S and the random time T and translation
invariant transport rule θ are associated, the following statements are equivalent.

(a) Under P⊕µ the random time T is an unbiased shift of X and XT has law ν.

(b) The transport rule θ balances Lµ and Lν P-almost everywhere.

Note that in the last proposition unbiased shifts need not be non-randomized. The trans-
port rules associated to non-randomized shifts are the allocation rules. These are given by a
measurable map τ : Ω× Z→ Z such that θω(x, y) = 1 if τω(x) = y and zero otherwise.

Proposition 2.2.2. If the random time T in Proposition 2.2.1 is non-randomized, then there is
an associated transport rule θ, which is an allocation rule. Conversely if θ in Proposition 2.2.1
is an allocation rule, then there exists an associated non-randomized random time T .

We give proofs of the propositions for completeness. For a transport rule θ we define

Jµ(ω) :=
∑
k∈Z

θω(k, 0)Lµ(k), (2.2.4)

which is interpreted as the total mass received by the origin. We recall the following simple
fact, see [20] for a more general version.

Lemma 2.2.3. Let m : Z×Z→ [0,∞] be such that m(x+z, y+z) = m(x, y) for all x, y, z ∈ Z.
Then ∑

y∈Z

m(x, y) =
∑
y∈Z

m(y, x).

The following calculation is at the core of the proof.

Lemma 2.2.4. Suppose that T and θ are related by (2.2.2). Then, for any measurable function
f : Ω→ [0,∞], we have

E⊕µ
[
f(T−1X)

]
= E

[
Jµ(X)f(X)

]
,

where E⊕µ is the expectation with respect to P⊕µ defined in (2.2.3).
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Proof of Lemma 2.2.4. Writing Pµ =
∑

i∈Z µiPi we get

E⊕µ
[
f(T−1X)

]
=

∫
dPµ(ω)

∫
f
(
T (ω, ω′)−1X(ω)

)
Qω(dω′)

=

∫
dPµ(ω)

∑
t∈Z

Qω(T = t)f(t−1X(ω)).

Using relation (2.2.2) and the definition of Pµ we continue with

=
∑
i∈Z

µi

∫
dPi(ω)

∑
t∈Z

θω(0, t)f(t−1X(ω))

=
∑
i∈Z

µi

∫
dP(ω)

∑
t∈Z

θω(0, t)Li(0)f(t−1X(ω)),

as Li(0) = 1
mi

and Lj(0) = 0 under Pi for j 6= i. Applying Lemma 2.2.3 gives

=
∑
i∈Z

µi

∫
dP(ω)

∑
t∈Z

θω(t, 0)Li(t)f(X(ω))

=

∫
dP(ω)

∑
t∈Z

θω(t, 0)Lµ(t)f(X(ω))

= E
[
Jµ(X)f(X)

]
,

using first the definition of Lµ and second the definition of Jµ(X).

Proof of Proposition 2.2.1. First assume that θ is a translation invariant transport rule. Then,
for any non-negative measurable f , by Lemma 2.2.4, we have

E⊕µ
[
f(T−1X)

]
= E

[
Jµ(X)f(X)

]
= E

[∑
k∈Z

θω(k, 0)Lµ(k)f(X)
]
. (2.2.5)

If θ balances Lµ and Lν this equals

E
[
Lν(0)f(X)

]
=
∑
j∈Z

νj E
[
Lj(0)f(X)

]
=
∑
j∈Z

νj Ej
[
f(X)

]
= Eν

[
f(X)

]
.

Hence under P⊕µ the random variable T−1X has the law of X under Pν . In other words T is an
unbiased shift and XT has distribution ν.

Conversely, assume that T is an unbiased shift and XT has distribution ν. Hence
E⊕µ [f(T−1X)] = Eν [f(X)] = E[Lν(0)f(X)]. Plugging this into (2.2.5) gives

E
[∑
k∈Z

θω(k, 0)Lµ(k)f(X)
]

= E
[
Lν(0)f(X)

]
.

As f was arbitrary we get
∑

k∈Z θω(k, 0)Lµω(k) = Lνω(0) for P-almost all ω, where we emphasise
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the dependence of the measures Lµ and Lν on the trajectories by a subscript. As θ is translation
invariant we get, substituting m := k − `,∑

k∈Z

θω(k,A)Lµω(k) =
∑
k∈Z

∑
`∈A

θω(k, `)Lµω(k) =
∑
`∈A

∑
m∈Z

θ−`ω(m, 0)Lµ−`ω(m)

=
∑
`∈A

Lν−`ω(0) =
∑
`∈A

Lνω(`) = Lνω(A),

for every A ⊂ Z and P-almost every ω.

Proof of Proposition 2.2.2. Suppose T = T (ω) is non-randomized. Define τω : Z → Z by
τω(k) = T (−kω)+k and let θω(x, y) = 1 if τω(x) = y and zero otherwise. Then θ is a translation
invariant allocation rule. Moreover, Qω(T = t) = 1{t = T (ω)} = 1{t = τω(0)} = θω(0, t),
hence T and θ are associated. Conversely, if θ is a translation invariant allocation rule
given by τ : Ω × Z → Z define a non-randomized time T by T = τω(0). As before,
Qω(T = t) = 1{t = T (ω)} = 1{t = τω(0)} = θω(0, t), and hence T and θ are associated.

2.3 Existence of allocation rules: Proof of Theorems 9 and 10

In the light of the previous section our Theorems 9 and 10 can be formulated and proved
as equivalent statements about allocation rules. We start with the result on non-existence of
non-randomized unbiased shifts, which is implicit in Theorem 9.

Suppose that statement (a) in Theorem 9 holds and for the Markov chain X with X0 = i there
exists a non-randomized unbiased shift T such that XT has law ν. Then by Proposition 2.2.2
there exists a translation-invariant allocation rule τ associated with T and by Proposition 2.2.1
this rule balances the measures Li and Lν . Recall that Li is the measure on Z which has masses
of fixed size 1/mi at the times when the stationary chain X visits state i. By the balancing
property (2.2.1) for allocation rules, all masses of Lν must have sizes which are integer multiples
of 1/mi. As these masses are νj/mj we get that mi

mj
νj must be integers for all j ∈ S, which is

statement (b).

The remainder of this section is devoted to the proof of existence of non-randomized unbiased
shifts of the Markov chain X with X0 = i, embedding ν under the assumption of Theorem 9 (b).
By Example 2.1.1 we may additionally assume that for the initial state i of the Markov chain we
have νi = 0. Our claim is that the stopping time T∗ defined in Theorem 10 is an unbiased shift
with the required properties. The next proposition shows that an associated allocation rule
balances the measures Li and Lν which, once accomplished, implies Theorem 10 and completes
the proof of Theorem 9.

Proposition 2.3.1. Under the assumptions set out above, the following holds.

(a) The mapping τ : Ω× Z→ Z defined by

τω(k) = min
{
n ≥ k : Liω([k, n]) ≤ Lνω([k, n])

}
31



is a translation-invariant allocation rule associated with the T∗ defined in (2.1.1).

(b) For P-almost every ω and all A ⊂ Z we have∑
k∈Z

1{τω(k) ∈ A}Liω(k) = Lνω(A), (2.3.1)

in other words the allocation rule balances Li and Lν.

The proof of the proposition is similar to that of [23, Theorem 5.1] in the diffuse case. We
prepare it with two lemmas. The first lemma is a pathwise statement which holds for every
fixed trajectory ω satisfying the integer assumption stated in Theorem 9 and also the assumption
νi = 0.

Lemma 2.3.2. Suppose b ∈ Z is such that Xb = j for some j ∈ S with νj > 0, and a ∈ Z is
given by

a := max
{
k < b : Li([k, b]) ≥ Lν([k, b])}.

Then ∑
k∈[a,b]

1{τ(k) ∈ A}Li(k) = Lν(A), (2.3.2)

holds for any A ⊂ [a, b].

Proof. We define the function ∆f : Z→ [0,∞) by

∆f(k) := Li(k)− Lν(k) =

{
1
mi

if Xk = i,

− νj
mj

if Xk = j 6= i.

Recall that by our assumption
νj
mj

is an integer multiple of 1
mi

. Hence, denoting

f vu :=
v∑

n=u

∆f(n) for all u, v ∈ Z and u ≤ v,

we have a = max
{
k < b : f bk = 0} and hence f ba = 0.

By the additivity of both sides of (2.3.2) it suffices to prove∑
k∈[a,b]

1{τ(k) = z}Li(k) = Lν(z) for all sites z ∈ [a, b]. (2.3.3)

Fix z ∈ [a, b] and let j = Xz. Observe that τ(k) = z if and only if f zk ≤ 0 but f `k > 0 for all
k ≤ ` < z. Hence we may assume νj > 0 as otherwise both sides of (2.3.3) are zero. We also
have that f za > 0 if z < b. Indeed, suppose that f za ≤ 0. Then f bz+1 = f ba − f za ≥ 0 contradicting
the choice of a.

As f za ≥ 0, f zz = − νj
mj

< 0 and νj/mj is an integer multiple of 1/mi we find a k1 ≥ a with f zk1 = 0
and f zj < 0 for all k1 < j ≤ z. Similarly, we find k1 < k2 < · · · < kN where N := (mi

mj
) νj such
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that
f zkn = 1−n

mi
and f zj <

1−n
mi

for all kn < j ≤ z.

As τ(k) = min{n ≥ k : fnk ≤ 0} we infer that τ(kn) = z for all n ∈ {1, . . . , N} and there are no
other values k with τ(k) = z. Each of these values contributes a summand 1

mi
to the left hand

side in (2.3.3). Therefore this side equals N
mi

=
νj
mj

, as does the right hand side. This completes
the proof.

The second lemma is probabilistic and ensures in particular that the mapping τ described in
Proposition 2.3.1 (a) is well defined.

Lemma 2.3.3. For P-almost every ω the following two events hold

( E1) for all k with Xk = i we have τ(k) <∞;

( E2) for all b such that Xb = j for some j ∈ S with νj > 0 there exists a < b such that Xa = i
and Li([a, b]) = Lν([a, b]).

Proof. To show this we use an argument from [20], see Theorem 17 and the following remark.
We formulate the negation of the two events. The complement of (E1 ) is the event that there
exists k such that Xk = i and Li([k, `]) > Lν([k, `]), for all ` > k. The complement of (E2 )
is that there exists b such that Xb = j for some j ∈ S with νj > 0 and Li([a, b]) < Lν([a, b]),
for all a < b with Xa = i. We first show that, for P-almost every ω, both complements cannot
occur simultaneously.

Indeed, for a fixed ω, it is clear that there cannot be k and b as above such that k < b. Assume
for contradiction that the set of trajectories ω for which there exists k > b as above has positive
probability. On this event the minimum over all ` > k with X` = i and τ(`) =∞ is finite, we
denote it by K. By translation invariance P(K = 0) > 0 from which we infer by conditioning
on the event {X0 = i} that Pi(K = 0) > 0. If (Tn : n ∈ N) is the collection of return times
to state i, by the invariance described in Example 1.1 we have Pi(K = Tn) = Pi(K = 0) > 0
for all n ∈ N contradicting the finiteness of Pi. Therefore we have shown that, for P-almost
every ω, either (E1 ) or (E2 ) occurs.

As the last step we show that event (E1 ) cannot occur without event (E2 ). To this end define
m(x, y) = E[1{τ(x) = y,Xx = i}] and apply Lemma 2.2.3 to get

E
[∑
k∈Z

1{τ(k) = 0, Xk = i}
]

= E
[∑
k∈Z

1{τ(0) = k,X0 = i}
]
.

The left-hand side in this equation equals mi if and only if (E2 ) occurs P-almost every ω, and
the right-hand side equals mi if and only if (E1 ) occurs P-almost every ω. As these two events
cannot fail at the same time, both events (E1 ) and (E2 ) occur for P-almost every ω.

Proof of Proposition 2.3.1. Recall that τ is well-defined and note that translation-invariance of
the allocation rule defined in terms of τ follows easily from the fact that τω(k) = τkω(0) + k.
As T∗(ω) = τω(0) by definition, the allocation rule is associated with T∗. This proves (a).
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To prove (b) we note that it suffices to fix z ∈ Z and show that for P-almost every ω equa-
tion (2.3.1) holds for A = {z}. We let b = τ(z). By Lemma 2.3.3 for P-almost every ω there
exists a < b such that Xa = i and Li([a, b]) = Lν([a, b]). Then the interval [a, b] contains z and
all k with τ(k) = z. Hence the results follows by application of Lemma 2.3.2.

2.4 Moment properties of T∗: Proof of Theorem 3

The critical exponent 1
2

occurring in Theorem 11 originates from the behaviour of the first
passage time below zero by a mean zero random walk. We summarize the results required for
such random walks in the following lemma.

Lemma 2.4.1. Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables with
Eξ = 0 taking values in the integers. Define the associated random walk by Sn =

∑n
i=1 ξi and

its first passage time below zero as N = min{n ∈ N : Sn ≤ 0}.

(a) If the walk is skip-free to the right, i.e. P (ξ > 1) = 0, then E
[
N1/2

]
=∞.

(b) If the walk has finite variance, then there exists C > 0 such that P
(
N > n

)
∼ C

1√
n
.

Proof. (a) Denote by N (j) the first passage time for the walk given by S(j)
n =

∑n
i=1 ξi+j−1. Then

E[N ∧ n] =
n∑
j=1

P (N ≥ j) =
n∑
j=1

P (N (j) ≥ n− j + 1) = E
[ n∑
j=1

1{N (j) ≥ n− j + 1}
]
,

If Sn denotes the minimum of {S0, S1, . . . , Sn} we have, using that the walk is skip-free to the
right,

n∑
j=1

1{N (j) ≥ n− j + 1} = Sn − Sn.

This implies E[N ∧ n] ≥ E[(Sn)+]. By a concentration inequality for arbitrary sums of inde-
pendent random variables, see [28, Theorem 2.22], there exists a constant C > 0 such that, for
all ε > 0 and n ∈ N, we have P (Sn ∈ [−ε

√
n, ε
√
n]) ≤ C ε. Hence, by Markov’s inequality, for

any ε > 0,

E
[
(Sn)+

]
=

1

2
E|Sn| ≥

1

2
ε
√
nP
(
|Sn| > ε

√
n
)
≥ 1

2
ε(1− Cε)

√
n.

We infer that lim inf 1√
n
E[N ∧ n] > 0. But if we we had E[N1/2] <∞ dominated convergence

would imply that this limit is zero, which is a contradiction.

(b) This is a classical result of Spitzer [30]. A good proof can be found in [16, Theorem 1a in
Section XII.7], see also [16, Section XVIII.5] for a proof that random walks with finite variance
satisfy Spitzer’s condition.
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2.4.1 Proof of Theorem 11 (i).

We start by proving a variant of the upper half in the Barlow-Yor inequality [2] for Markov
chains. This result, usually given in the context of continuous martingales, estimates the
moments of the local time at a stopping time, by moments of the stopping time itself.

Lemma 2.4.2. For any 0 < p < 1, there exists a constant Cp such that, for any state i ∈ S
and any stopping time T ,

Ei[Li([0, T ])p] ≤ Cp Ei[aii(T )p]. (2.4.1)

The lemma relies on the following classical inequality, we refer to [3, (6.9)] for a proof.

Lemma 2.4.3 (Good λ inequality). For every 0 < p < 1 there is a constant Cp > 0 such
that, for any pair of non-negative random variables (X, Y ) satisfying

P (X > 3λ, Y < δλ) ≤ δ P (X > λ) for all 0 < δ < 3−p−1 and λ > 0, (2.4.2)

we have
E [Xp] ≤ CpE [Y p] .

Proof of Lemma 2.4.2. If we show that (2.4.2) holds with random variables X = miL
i([0, T ])

and Y = miaii(T ) under Pi, the result follows immediately from Lemma 2.4.3. If λ ≤ 1 the left
hand side of (2.4.2) is zero and there is nothing to show. We may therefore assume that λ > 1.
Define mia

−1
ii (x) := max{n : miaii(n) < x}. Let T0 = 0 and Tk be the time of the kth visit of

state i after time zero. Finally assume, without loss of generality, that Pi(X > λ) > 0. Then,

Pi
(
X > 3λ, Y < δλ

∣∣X > λ
)

= Pi
(
Tb3λc+1 ≤ T,miaii(T ) < δλ

∣∣Tbλc+1 ≤ T
)

≤ Pi
(
Tb3λc−bλc ≤ mia

−1
ii (δλ)

)
≤ Pi

(
Li([0,mia

−1
ii (δλ)]) ≥ b2λc

)
.

By Markov’s inequality the last expression above can be bounded by

b2λc−1 Ei
[
Li([0,mia

−1
ii (δλ)])

]
= b2λc−1miaii

(
mia

−1
ii (δλ)

)
≤ δ

λ

b2λc
,

which is smaller than δ, as required.

We define T0 = 0 and Tk = min{n > Tk−1 : Xn = i}, for k ≥ 1. Recall that
EiLj([Tk−1, Tk)) = 1/mi and hence, by the strong Markov property, the random variables
ξk := 1−mi L

ν([Tk−1, Tk)) are independent and identically distributed with mean zero. By
Lemma 2.4.1 (a) the first passage time of zero for this walk satisfies Ei[N1/2] =∞. As
miL

i([0, T∗]) ≥ N − 1 the result follows.

2.4.2 Proof of Theorem 11 (ii).

We first prove the result in the simple case that the state space S is finite. In this case the
chain is positive recurrent and we have a(n) ∼ n.
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Lemma 2.4.4. Suppose S is finite. Then, for any i ∈ S, we have Ei
[
T β∗
]
< ∞, for all

0 ≤ β < 1
2
.

Proof. Let T0 = 0 and, for k ∈ N, define Tk = min{n > Tk−1 : Xn = i}. Denote by hij
the probability that the chain started in i hits j before returning to i, and observe that irre-
ducibility implies that hij > 0. By the strong Markov property we have mjL

j[0, T1] = Y Z
where Y is a Bernoulli variable with mean hij and Z is an independent geometric with suc-
cess parameter hji. Hence EiLj[0, T1) = hij/mjhji, which also equals 1/mi. Recalling that
E[Z2] ≤ 2/h2

ji we get Ei[Lj[0, T1)2] ≤ 2hij/m
2
jh

2
ji, and hence Lν [0, T1) has finite variance. De-

fine ξk := 1−mi L
ν([Tk−1, Tk)), and observe that ξ1, ξ2, . . . are independent and identically dis-

tributed variables with mean zero and finite variance. Let N := min{n :
∑n

k=1 ξk ≤ 0}, and
observe that T∗ ≤ TN . Fix ε > 0 and note that

Pi
(
T∗ > n

)
≤ Pi

(
N > εn

)
+ Pi

( dεne∑
k=1

(Tk − Tk−1) > n
)
.

By Lemma 2.4.1 (b) the first term on the right-hand side is bounded by a constant multiple
of (εn)−1/2. For the second term we note that the random variables T1 − T0, T2 − T1, . . . are
independent and identically distributed with finite variance. By Chebyshev’s inequality we
infer that, for sufficiently small ε > 0, the term is bounded by a multiple of 1/n. Altogether we
get that Pi(T∗ > n) is bounded by a constant multiple of n−1/2, from which the result follows
immediately.

We return to the general case. The next result, which is an auxiliary step in the proof of
Theorem 11 (ii), may be of independent interest. The short proof given here, which does not
make any regularity assumptions on the chain, is due to Vitali Wachtel.

Lemma 2.4.5. Fix a state i ∈ S and let T = min{n > 0: Xn = i} be the first return time to
this state. Then

Ei
[
aii(T )α

]
<∞, for all 0 ≤ α < 1.

Proof. By Lemma 1 in Erickson [14], we have for m(n) :=
∫ n

0
Pi(T > x) dx that

n

m(n)
≤ miaii(n) ≤ 2

n

m(n)
for all positive integers n.

As m(n) ≥ nPi(T > n− 1) we infer that miaii(n) ≤ 2/Pi(T > n− 1) and therefore

Ei
[
aii(T )α

]
≤
(

2
mi

)α ∞∑
n=1

(
Pi(T > n− 1)

)−α Pi(T = n) =
(

2
mi

)α ∞∑
n=1

(1− sn−1)−α
(
sn − sn−1

)
,

where sn := Pi(T ≤ n). Letting s(t) := sn−1 + (t− (n− 1))(sn − sn−1), for n− 1 ≤ t < n, we
can bound the sum by

∫∞
0

(1− s(t))−α ds(t), which is finite for all 0 ≤ α < 1, as required.

We now look at the reduction of our Markov chain to the finite state space S ′ = {0} ∪ {j ∈
S : νj > 0}. More explicitly, let t0 = 0 and tk = min{n > tk−1 : Xn ∈ S ′} for k ∈ N, and
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tk = max{n < tk+1 : Xn ∈ S ′} for k ∈ −N. Then Yn = Xtn defines an irreducible Markov chain
Y = (Yn : n ∈ Z) with finite state space S ′, and its invariant measure is (mi : i ∈ S ′). If N is
the stopping time constructed in Theorem 2 for the reduced chain Y , then the solution T∗ for
the original problem is T∗ = tN .

Given two states i, j ∈ S ′ we denote by Sij a random variable whose law is given by P(Sij =
s) = Pi(t1 = s |Y1 = j) for all s ∈ N, if Pi(Y1 = j) > 0, and Sij = 0 otherwise. We construct
a probability space on which there are independent families (Sij, S

(k)

ij : k ∈ N) of independent
random variables with this law, together with an independent copy of Y and hence N . We
denote probability and expectation on this space by P, resp. E. Observe that on this space we
can also define a copy of the process (tk : k ∈ N) by t0 = 0 and

tk = tk−1 +
∑
i,j∈S′

S(k)

ij 1{Yk−1 = i, Yk = j} for k ∈ N.

For any non-decreasing, subadditive representative a of the class of the asymptotic Green’s
function,

Ei
[
a(T∗)

β
]

= E
[
a
( N∑
k=1

tk − tk−1

)β]
≤ E

[
a
( N∑
k=1

∑
i,j∈S′

S(k)

ij

)β]
≤
∑
i,j∈S′

E
[
a
( N∑
k=1

S(k)

ij

)β]
.

It therefore suffices to show that

E
[
aii

( N∑
k=1

S(k)

ij

)β]
<∞.

Let n ∈ N and use first subadditivity of aii and then Jensen’s inequality to get, for 2β < α < 1,
that

E
[
aii

( n∑
k=1

S(k)

ij

)β]
≤ E

[( n∑
k=1

aαii
(
S(k)

ij

))β/α]
≤
( n∑
k=1

E
[
aαii
(
S(k)

ij

)])β/α
= nβ/αE

[
aαii
(
Sij
)]β/α

.

We now note that, if Tij denotes the first hitting time of state j for X under Pi, we have
P(Sij > x) ≤ C0 Pi(Tij > x) for all x > 0, where C0 is the maximum of the inverse of all
nonzero transition probabilities from i to all other states, by the chain Y . Hence

E
[
aαii
(
Sij
)]
≤ C0 Ei

[
aαii
(
Tij
)]
.

In the case i = j the right hand side is finite by Lemma 2.4.5 and, as aii grows no faster than
linearly, the right hand side is finite for all choices of i, j ∈ S ′ by application of Theorem 1.1 in
Aurzada et al. [1]. Summarising, we have found a constant C > 0 such that

E
[
aii

( n∑
k=1

S(k)

ij

)β]
≤ Cnβ/α.
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Using the independence of N and (S(k)

ij : k ∈ N) and Lemma 2.4.4 we get

E
[
aii

( N∑
k=1

S(k)

ij

)β]
≤ CEi

[
Nβ/α

]
<∞,

as required.

2.5 Optimality of T∗: Proof of Theorem 4

In this section we prove Theorem 12. In what follows we only consider forward looking transport
rules, all the results here contain this assumption implicitly. We start by introducing an intuitive
and convenient way to talk about allocation rules. A path of the Markov chain X can be viewed
as leaving white and coloured balls on the integers, in the following way: At each site k ∈ Z
we place one white ball if Xk = i, and mi

mj
νj balls of colour j if Xk = j. By our assumption

there is always an integer number of balls at each site. We call a bijection from the set of white
balls to the set of coloured balls a matching. Given a matching we define an allocation rule
τ : Ω× Z→ Z by letting

• τ(k) = k if there is no white ball at site k,

• τ(k) = ` if the white ball at site k is matched to a coloured ball at site `.

Every allocation rule thus constructed balances Lµ and Lν , for µ = δi. Conversely, every
balancing allocation rule agrees Lµ-almost everywhere with an allocation rule constructed from
a matching. We denote by τ∗ : Ω × Z → Z the allocation rule associated with T∗ constructed
in Proposition 2.3.1.

The allocation rule τ∗ is associated with the following one-sided stable matching or greedy
algorithm, which is a variant of the famous Gale–Shapley stable marriage algorithm [17].

(1) If the next occupied site to the right of a white ball carries one or more coloured balls,
map the white ball to one of those coloured balls.

(2) Remove all white and coloured balls used in step (1) and repeat.

By Lemma 2.3.3 the algorithm matches every ball after a finite number of steps, and it is easy
to see that this leads to the allocation rule τ∗.

Now recall from Section 2 that non-negative, possibly randomized, times T are associated to
transport rules θ : Ω× Z× Z→ [0, 1] balancing Lµ and Lν with the property that θω(x, y) = 0
whenever x > y. Without loss of generality we may assume that θω(x, x) = 1 if the site x does
not carry a white ball. This implies that, for x < y, we can have θω(x, y) > 0 only if the site x
carries a white ball, and the site y carries a coloured ball. Moreover, if y carries a ball of colour
j, we have ∑

x<y

θω(x, y) =
mi

mj

νj.
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Suppose that u, v ∈ Z with u < v. We say that the pair (u, v) is crossed by θ if there exist
sites x < u < v < y such that θ(x, v) > 0 and θ(u, y) > 0. In this case (x, u, v, y) is called a
crossing.

For a transport rule θ we repair the crossing (x, u, v, y) by letting

• θ′(x, y) = θ(x, y) + (θ(x, v) ∧ θ(u, y)),

• θ′(u, v) = θ(u, v) + (θ(x, v) ∧ θ(u, y)),

• θ′(x, v) = θ(x, v)− (θ(x, v) ∧ θ(u, y)),

• θ′(u, y) = θ(u, y)− (θ(x, v) ∧ θ(u, y)),

and setting θ′(w, z) = θ(w, z) if w 6∈ {x, u} or z 6∈ {y, v}, see Figure 2.1. Note that θ′ is still
a transport rule, the crossing has been repaired, i.e. (x, u, v, y) is not a crossing by θ′, and if θ
balances Lµ and Lν then so does θ′.

We now explain how to repair a pair (u, v) crossed by θ by sequentially repairing its crossings
and taking limits, so that (u, v) is not crossed by the limiting transport rule. For this purpose
we define that a sequence of transport rules θn converges uniformly to a transport rule θ if

lim
n→∞

∑
x,y∈Z

∣∣θn(x, y)− θ(x, y)
∣∣ = 0.

Denote by y1, y2, . . . the sequence of sites v < y1 < y2 < · · · such that θ(u, yn) > 0, and by
x1, x2, . . . the sequence of sites u > x1 > x2 > · · · such that θ(xn, v) > 0. Note that both
sequences could be finite or infinite. First we successively repair the crossings x1 < u < v < yn,
for n = 1, 2, . . .. The total mass moved in the nth repair is bounded by 4θ(u, yn) and because∑

n θ(u, yn) ≤ 1 we can infer that the sequence of repaired transport rules converges uniformly
to a transport rule θ1. Of course, here and below if a sequence is finite we take the last
element of the sequence as limit. We continue by repairing the crossings x2 < u < v < yn
of θ1, for n = 1, 2, . . ., obtaining θ2, and so on. We obtain a sequence θ1, θ2, . . . of transport
rules. The amount of mass moved when going from θn−1 to θn is bounded by 4θ(xn, v). As∑

n θ(xn, v) <∞, we infer that the sequence (θn)n converges uniformly to a limiting transport
rule. We observe that this transport rule balances Lµ and Lν and that (u, v) is not crossed by
it.

Lemma 2.5.1. Suppose that θ is a transport rule balancing Lµ and Lν and A ⊂ Z a finite
interval. Then, by repairing pairs crossed by θ in a given order, we obtain a transport rule θ∗
balancing Lµ and Lν, such that if u, v ∈ A then (u, v) is not crossed by θ∗.

Proof. Without loss of generality the left endpoint of A carries a white ball, and its right
endpoint carries a coloured ball. Let v1, . . . , vn be the sites in A carrying coloured balls, ordered
from left to right. We go through these sites in order, starting with v1. Take u1 to be the
rightmost site to the left of v1 carrying a white ball. Repair the pair (u1, v1) as above, and
observe that the resulting transport rule transports a unit mass from u1 to v1. We declare the
white ball at site u1 and one of the coloured balls at v1 cancelled. If v1 carries an uncancelled
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x u v y
Z

x u v y
Z

θ(x, v) θ(u, y)

θ(x, y) +θmin

θ(u, v) +θmin

θ(x, v) −θmin
θ(u, y) −θmin

Figure 2.1: The picture above shows a crossing. Its weight θmin := θ(x, v) ∧ θ(u, y) is assumed to be θ(x, v),
so that in the picture below we see that after the repair the dotted edge has weight zero, and the crossing is
therefore removed.

ball and there are uncancelled white balls on sites of A to the left of v1, we choose the rightmost
of those, say u2, repair the pair (u2, v1), and cancel two balls as above. We continue until we
run out of uncancelled balls. The resulting transport rule has the property that none of the
pairs (u, v1), with u ∈ A, is crossed, and from all sites carrying cancelled white balls a unit
mass is transported to site v1.

We now move to the next coloured ball v2 and repair all pairs (u, v2), where u goes from right
to left through all sites in A ∩ (−∞, v2) carrying uncancelled white balls. We do this until we
run out of uncancelled white balls to the left of, or coloured balls on the site v2. Observe that
at the end of this step none of the pairs (u, v1) or (u, v2), with u ∈ A, is crossed by the resulting
transport rule. We continue, moving to the next coloured ball until all coloured balls in A are
exhausted. At the end of this finite procedure we obtain a transport rule θ∗ balancing Lµ and
Lν , such that if u, v ∈ A then (u, v) is not crossed by θ∗.

We call a set A an excursion if it is an interval [m,n] such that that there is the same number
of white and coloured balls on the sites of A, but the number of white balls exceeds the number
of coloured balls on every subinterval [m, k], for m ≤ k < n. Observe that if A is an excursion,
then it is an interval of the form [m, τ∗(m)] where m carries a white ball, but not all such
intervals are excursions. Moreover, for every x ∈ A, we have both τ∗(x) ∈ A and τ−1

∗ (x) ⊂ A.

Lemma 2.5.2. Let A be an excursion and θ∗ a transport rule balancing Lµ and Lν, such that
any pair (u, v) with u, v ∈ A is not crossed by θ∗. Then θ∗ agrees in A with the allocation
rule τ∗, in the sense that θ∗(x, y) = 1{τ∗(x) = y} and θ∗(y, x) = 1{τ∗(y) = x}, for all x ∈ A
and y ∈ Z.

Proof. We start by fixing a site x ∈ A carrying a white ball, and note that, by definition of an
excursion, we also have τ∗(x) ∈ A. We show by contradiction that θ∗ transports no mass from
x to a point other than τ ∗(x).
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First, suppose that there exist x < v < τ∗(x) with θ∗(x, v) > 0. As there are more white than
coloured balls on the sites in [x, v], which is a consequence of the definition of τ∗, and as every
site carries at most one white ball, we find x′ ∈ (x, v) such that the sites of [x′, v] carry the same
number of white and coloured balls. As θ∗(x, v) > 0 not all white balls in [x′, v] are matched
within that interval, and there must also exist u ∈ [x′, v) and y > v such that θ∗(u, y) > 0. So
we have found a pair (u, v) with u, v ∈ A, which is crossed by θ∗, and hence a contradiction.

Second, suppose that there exist v > τ∗(x) with θ∗(x, v) > 0. As there are at least as many
coloured balls as white balls in [x, τ∗(x)] not all coloured balls are matched within that interval,
and hence there exists a y ∈ (x, τ∗(x)] and a site u < x with θ∗(u, y) > 0. So we have found a
pair (x, y) with x, y ∈ A, which is crossed by θ∗, and hence a contradiction. We conclude that
θ∗(x, y) = 1{τ∗(x) = y} for all x ∈ A.

Now fix a site x ∈ A carrying balls of colour j. Then τ−1
∗ (x) is a set of (mi/mj)νj points in A.

Hence, by the first part, θ∗(y, x) = 1{τ∗(y) = x} for all y ∈ τ−1
∗ (x). Moreover,∑

y∈τ−1
∗ (x)

θ∗(y, x) = (mi/mj)νj =
∑
y∈Z

θ∗(y, x).

Hence θ∗(y, x) = 0 = 1{τ∗(y) = x} also for all y 6∈ τ−1
∗ (x).

We now let ψ be a non-negative, concave function on the non-negative integers N0. Note that
this implies that ψ : N0 → [0,∞) is non-decreasing. We further assume that ψ(0) = 0, an
assumption which causes no loss of generality in Theorem 12. We write ψ(n) = 0 for n ≤ 0 to
simplify the notation.

Lemma 2.5.3. Let A be an excursion and suppose θ is a transport rule balancing Lµ and Lν.
Then∑

x∈A

ψ
(
τ∗(x)− x

)
+

∑
x∈τ−1
∗ (A)

ψ
(
τ∗(x)− x

)
≤
∑
x∈A
y∈Z

θ(x, y)ψ(y − x) +
∑
x∈Z
y∈A

θ(x, y)ψ(y − x).

Proof. Observe that, by concavity, for all a, b, c ∈ N0, we have

ψ(a+ b) + ψ(b+ c) ≥ ψ(a+ b+ c) + ψ(b). (2.5.1)

Fix a crossing x < u < v < y with u, v ∈ A, and let θ′ be the result of repairing the crossing.
We show that repairing the crossing does not increase∑

x∈A
y∈Z

θ(x, y)ψ(y − x) +
∑
x∈Z
y∈A

θ(x, y)ψ(y − x)
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by looking at the difference of the repaired and original state of the sum. If x, y 6∈ A we get

θ′(u, y)ψ(y − u) + 2θ′(u, v)ψ(v − u) + θ′(x, v)ψ(v − x)

−
(
θ(u, y)ψ(y − u) + 2θ(u, v)ψ(v − u) + θ(x, v)ψ(v − x)

)
=
(
θ(x, v) ∧ θ(u, y)

)(
2ψ(v − u)− ψ(v − x)− ψ(y − u)

)
≤ 0,

as ψ is non-decreasing. If x ∈ A, y 6∈ A we get

θ′(u, y)ψ(y − u) + 2θ′(u, v)ψ(v − u) + 2θ′(x, v)ψ(v − x) + θ′(x, y)ψ(y − x)

−
(
θ(u, y)ψ(y − u) + 2θ(u, v)ψ(v − u) + 2θ(x, v)ψ(v − x) + θ(x, y)ψ(y − x)

)
=
(
θ(x, v) ∧ θ(u, y)

)(
2ψ(v − u) + ψ(y − x)− 2ψ(v − x)− ψ(y − u)

)
≤
(
θ(x, v) ∧ θ(u, y)

)(
ψ(v − u) + ψ(y − x)− ψ(v − x)− ψ(y − u)

)
≤ 0,

using first that ψ is non-decreasing and then (2.5.1). The case x 6∈ A, y ∈ A is analogous. If
x, y ∈ A the difference is twice

θ′(x, v)ψ(v − x) + θ′(u, y)ψ(y − u) + θ′(u, v)ψ(v − u) + θ′(x, y)ψ(y − x)

−
(
θ(x, v)ψ(v − x) + θ(u, y)ψ(y − u) + θ(u, v)ψ(v − u) + θ(x, y)ψ(y − x)

)
=
(
θ(x, v) ∧ θ(u, y)

)(
ψ(y − x) + ψ(v − u)− ψ(v − x)− ψ(y − u)

)
≤ 0,

by application of (2.5.1), which shows that in all cases the sum above is not increased by the
repair.

Repairing crossings successively as described in Lemma 2.5.1, we get∑
x∈A
y∈Z

θ∗(x, y)ψ(y − x) +
∑
x∈Z
y∈A

θ∗(x, y)ψ(y − x) ≤
∑
x∈A
y∈Z

θ(x, y)ψ(y − x) +
∑
x∈Z
y∈A

θ(x, y)ψ(y − x).

By Lemma 2.5.2 we have θ∗(x, y) = 1{τ∗(x) = y} if x ∈ A or y ∈ A, and this allows us to
rewrite the left hand side as stated.

Lemma 2.5.4. Let T ≥ 0 be a (possibly randomized) unbiased shift and θ : Ω× Z× Z→ [0, 1]
be the associated transport rule. Denote by (Tn : n ∈ Z) the times in which X visits the state i,
in order so that T0 = 0. Let ψ : Z→ [0,∞) be concave. Then, Pi-almost surely,

lim
n→∞

1

n

{ Tn−1∑
k=0

∞∑
`=k+1

θ(k, `)ψ(`− k) +
k−1∑
`=−∞

θ(`, k)ψ(k − `)
}

= 2E⊕i ψ(T ),

and

lim
m→∞

1

m

{ −1∑
k=T−m

∞∑
`=k+1

θ(k, `)ψ(`− k) +
k−1∑
`=−∞

θ(`, k)ψ(k − `)
}

= 2E⊕i ψ(T ),

where the expectations on the right hand sides are taken with respect to the chain as well as any
possible extra randomness used to define T , formally Ei

∑∞
`=1 ψ(`)θω(0, `) = E⊕i ψ(T ).
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n

Lµ([0, n))− Lν([0, n)) (n ≥ 0)−Lµ([n, 0)) + Lν([n, 0)) (n < 0)

T−5 T−4 T−3 T−2 T−1 T0 T1 T2 T3 T4 T5 T6

σ3 σ2 = σ1 τ0 τ1 = τ2 τ3

1
mi

Figure 2.2: A possible profile of local time differences over the excursion [σ3, τ3− 1]. Upward jumps are of size
1/mi, downward jumps are a positive integer multiple of 1/mi, the actual value depending on the colour of the
ball at the location of the jump.

Proof. We observe, from the strong Markov property, that ξn = (XTn−1+1, . . . , XTn), n ∈ Z,
are independent and identically distributed random vectors. Hence their shift is stationary
and ergodic, see for example [12, 8.4.5]. By the ergodic theorem, see e.g. [12, 8.4.1], Pi-almost
surely,

lim
n→∞

1

n

{ Tn−1∑
k=0

∞∑
`=k+1

θ(k, `)ψ(`− k)
}

= Ei
∞∑
`=1

θω(0, `)ψ(`) = E⊕i ψ(T ).

Similarly,

lim
n→∞

1

n

{ Tn−1∑
k=0

k−1∑
`=−∞

θ(`, k)ψ(k − `)
}

= Ei
T1−1∑
k=0

k−1∑
`=−∞

θω(`, k)ψ(k − `).

The expectation equals

∑
j∈S

mj

mi

Ej
−1∑

`=−∞

θω(`, 0)ψ(−`) =
1

mi

E
−1∑

`=−∞

θω(`, 0)ψ(−`) =
1

mi

E
∞∑
`=1

θω(0, `)ψ(`) = E⊕i ψ(T ),

using translation invariance of θ. Also recall that if y 6= 0 and X0 6= i, then θω(0, y) = 0. The
second statement follows in the same manner.
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Proof of Theorem 12. We now look at the sequence

τn = min
{
Tk ≥ 0: Lµ([0, Tk))− Lν([0, Tk)) ≤ −n

mi

}
.

Let dn = Lµ([0, τn))− Lν([0, τn)) and define

σn = max
{
k ≤ 0: − Lµ([k, 0)) + Lν([k, 0)) = dn

}
.

(τn) and (σn) are well-defined subsequences of (Tn : n ∈ Z), Pi-almost surely, by Lemma 2.3.3.
Moreover, τn ↑ ∞, σn ↓ −∞ and by construction [σn, τn − 1] is an excursion, see Figure 2.2.
By Lemma 2.5.3

τn−1∑
k=σn

{
ψ
(
τ∗(k)−k

)
+

∑
`∈τ−1
∗ (k)

ψ
(
τ∗(`)− `

)}
≤

∑
σn≤k≤τn−1

`∈Z

θ(k, `)ψ(k− `)+
∑

σn≤`≤τn−1
k∈Z

θ(k, `)ψ(k− `).

Lemma 2.5.4 shows that the left hand side is asymptotically equivalent to
2mi L

i([σn, τn])Eiψ(T∗) and the right hand side to 2mi L
i([σn, τn])E⊕i ψ(T ), from which

we conclude that Eiψ(T∗) ≤ E⊕i ψ(T ).

2.6 Concluding remarks and open problems

Non-Markovian setting. Theorem 9 and Theorem 10 remain valid in a more general non-
Markovian setting. We require that under the σ-finite measure P the stochastic process X,
taking values in the countable state space S, is stationary with a strictly positive stationary σ-
finite measure (mi : i ∈ S). The probability measure Pi is then defined by conditioning X on the
event {X0 = i}. We further require that, for every i, j ∈ S, the random sets {n ∈ N : Xn = j}
and {n ∈ N : X−n = j} are infinite Pi-almost surely. Then both theorems carry over to this
conditioned process. Further technical conditions are required to generalize Lemma 2.5.4 and
hence extend Theorem 4 to the non-Markovian setting. Theorem 3 however fully exploits the
Markov structure and cannot be generalized easily.

General initial distribution. Although our main focus is on the case where the initial dis-
tribution is the Dirac measure δi for some i ∈ S, the statements of Proposition 2.2.1 and 2.2.2
allow general initial distributions µ. By conditioning on the initial state one can see that a
sufficient condition for existence of the solution is that the target measure ν admits a decom-
position ν =

∑
i∈S ν

(i)µi, where ν(i) are probability measures on S, such that miν
(i)

j /mj are
integers for all i, j ∈ S. We do not believe that this is also a necessary condition.

Randomized shifts. If the target measure ν fails to satisfy the integer condition in Theo-
rem 9 (b), extra randomization is needed to solve the embedding problem. With extra random-
ness any target measure ν may be embedded in a way similar to the extra head schemes in [20]:
Take a random variable U ∼ Uniform(0, 1) and define

Trand := min
{
n ≥ 0: Li([0, n])−

∑
j∈S

νj L
j([0, n]) ≤ U

mi

}
. (2.6.1)
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Then Trand is an unbiased shift embedding ν. We see that if the integer condition holds, the
sample value of U becomes irrelevant and we recover the non-randomized solution T∗ defined
in Theorem 10.

Brownian motion and optimal shifts. Last et al. [23] discuss the Skorokhod embedding
problem for a two-sided Brownian motion (Bt)t∈R. In this context a random time T solves the
embedding problem if (BT+t −BT )t∈R is a standard two-sided Brownian motion independent
of BT and the law of BT is ν. They show that for any target distribution ν not charging
the origin the stopping time T∗ = inf{t > 0: L0

t = Lνt }, where (Lxt : t > 0) is the process of
local times at level x and Lνt :=

∫
Lxt ν(dx), solves the embedding problem. They further show

that every solution T that is a stopping time satisfies E[T
1
4 ] =∞ while under a mild condition

on ν the constructed solution T∗ satisfies E[T β
∗ ] <∞ for all β < 1

4
. Some techniques of the

present chapter can be adapted to improve the results of [23] by showing that E[T
1
4 ] =∞ even

for non-negative solutions which are not necessarily stopping times, and also to show a strong
optimality result similar to Theorem 12, i.e. that E0ψ(T∗) ≤ E0ψ(T ) simultaneously for all
non-negative concave functions ψ. Chapter 3 is entirely devoted to discuss the proof of this
result.

Signed shifts. The optimality result of Theorem 12 cannot be extended easily to random
times T that can take both positive and negative values. Indeed, starting from such a solution T
and associating an allocation rule τ to it, we may still make local improvements by repairing
crossings, but now there is more than one way to repair a crossing and the optimal way to
do this appears to involve nonlocal choices. To get a feeling for the difficulties, we look at a
two-sided stable matching strategy that at a first glance looks like a good candidate for an
optimal solution. In the language of Section 2.5 we match a coloured ball to a white ball if both
the coloured ball is the nearest coloured ball to the white ball, and the white ball is the nearest
white ball to the coloured ball (resolving possible ties in some deterministic way). Locally,
the resulting allocation rule may be better or worse than the one coming from our one-sided
stable matching. Consider, for example, configuration of balls in the order white–coloured–
white–coloured placed at distances a, b, c such that b < a, c. The two-sided algorithm matches
the middle balls and, if other balls are sufficiently far away, the outer balls, which gives a
contribution of ψ(b) + ψ(a + b + c). One-sided stable matching matches the first pair and the
second pair and gives ψ(a) + ψ(c), and each contribution could be smaller or larger depending
on the relative size of a, b, c. Even finding the optimal moment properties of signed shifts is an
open problem.

Random fields. A vast open area of possible further research are embedding problems for
multiparameter processes and random fields. In higher dimensions stable allocation procedures
no longer have optimal moment properties, see for example Holroyd, Peres and Schramm [19],
so other methods need to be considered. It would be particularly interesting to investigate
embedding problems for spin systems such as the infinite volume Gibbs measure of the Ising
model at high temperature.
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Chapter 3

Optimal embeddings by unbiased shifts
of Brownian motion

This chapter is a joint work with my supervisor, Peter Mörters and has been submitted for
publication.

3.1 Introduction

A random time T is called an unbiased shift of the two sided Brownian motion (Bt : t ∈ R)
if the shifted process (BT+t : t ∈ R) is again a two-sided Brownian motion. This notion was
introduced and studied by Last et al. in [23], where the additional requirement of measurability
of T with respect to the process (Bt : t ∈ R) is made, which we drop here for greater generality.
The concept of unbiased shifts goes back to a similar idea for coin tosses, known as the extra
head problem in [18, 25, 20], and, more generally, the concept of shift-couplings, see the work
of Thorisson [32] and Chapter 1.

In [23] the authors solve the embedding problem for unbiased shifts. Namely, given two orthog-
onal probability measure µ, ν on the real line such that B0 ∼ µ they construct a nonnegative
unbiased shift T∗ such that BT∗ ∼ ν. The solution of [23] can easily be described explicitly.
Let (Lxt : x ∈ R, t ≥ 0) be a continuous version of the local time for (Bt : t ≥ 0). We use this to
build two continuous additive functionals by letting

Lνt :=

∫
Lxt ν(dx), and Lµt :=

∫
Lxt µ(dx),

and obtain the solution as
T∗ := inf{t > 0: Lνt = Lµt }. (3.1.1)

Note that T∗ occurred in the context of one-sided (Skorokhod) embedding problems in the work
of Bertoin and Le Jan [6], is reminiscent of extra head schemes in [25, 20] or [27], and turns
out to be closely related to allocation and transport problems, see [19, 5].

The present paper is concerned with the problem whether this natural and explicit solution
of the embedding problem is optimal in the sense that it minimises certain moments. To see
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which moments should be looked at, Last et al. [23] have investigated finiteness of moments for
unbiased shifts under the assumption B0 = 0, and have shown that, for any unbiased shift T
embedding a measure without atom at zero, the random variable |T | has infinite square-root
moment. Under the additional assumption that T is a nonnegative stopping time they obtain

E
[
T 1/4

]
=∞.

It is conjectured in [23] that this holds without the assumption that T is a stopping time, and
this conjecture will be confirmed in this paper, see Remark 1(c) below. The results of [23] show
that in order to understand optimality we need to focus on moments of fractional order smaller
than 1

2
, or more generally moments taken with respect to concave gauge functions.

We denote by Pµ,Eµ probability and expectation on a probability space supporting a two-sided
Brownian motion (Bt : t ∈ R) with B0 ∼ µ. We can now state our main result.

Theorem 13. Assume that µ and ν are two orthogonal probability measures on R. For any
non-negative unbiased shift T embedding ν and all ψ : [0,∞)→ [0,∞) concave,

Eµψ(T∗) ≤ Eµψ(T ),

where T∗ is the unbiased shift constructed in (3.1.1).

Remark 4

(a) This result is closely related to a similar optimality result in [27], or in Chapter 2 for the
case of discrete-time Markov chains. Although our proof relies on a discrete approxima-
tion, we have been unable to derive Theorem 13 directly from the results of the previous
Chapter. Instead, we use a concavity inequality, stated as Lemma 3.3.2(b) below, that
may be of independent interest.

(b) We make no assumptions on measurability of T with respect to the Brownian motion,
i.e., T is allowed to use additional randomisation beyond that taken from the Brownian
motion.

(c) As T∗ is a stopping time, we have EµT 1/4
∗ =∞ by Theorem 8.1 in [23], and hence

EµT 1/4 =∞

for all non-negative solutions T of the embedding problem.

(d) Under mild conditions on ν we have EµTα∗ <∞ for α < 1
4

by Theorem 8.2 in [23].

(e) The result is strongly reminiscent of optimality results for Skorokhod embeddings, as
given, for example, in the classical papers [10, 11]. Optimality of Skorokhod embeddings
and optimal transport is also the topic of a lot of current research, of which [5] is a major
highlight.
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3.2 Preliminaries and outline of the proof

We recall the framework of [23], which will be used as a main reference throughout this paper.
Let (Ω,A,P0) be such that Ω is the space of continuous functions ω : R→ R - with the natural
topology that is uniform convergence on compact sets - equipped with the Borel σ-algebra A
and the distribution P0 of two-sided Brownian motion with ω0 = 0. For all x ∈ R we define
Px to be the distribution of ω + x and introduce the σ-finite measure P :=

∫
Px dx, which is

invariant under the shifts ω 7→ sω defined by (sω)(·) = ω(· − s), for all s ∈ R. As usual,
expectations with respect to P,Px will be denoted by E,Ex, respectively.

Let (`x : x ∈ R) be a continuous, in time and space, version of the family of local times of ω at
level x, and for any locally finite measure ν on R set `ν :=

∫
`x ν(dx). We note that the local

times `x and `ν are random measures and depend on ω ∈ Ω. When necessary, this dependence
will be indicated as `·ω. We may and shall assume that `xz+ω = `x−zω , for all x, z ∈ R, for P-almost
every ω.

A transport rule is a Markov kernel θ : Ω × R × B → [0, 1], where B is the Borel σ-algebra
on R. We use the notation θω(ds, dt) = θω(s, dt)`µ(ds), and θω(A,B) =

∫
A
θω(s, B)`µ(ds)

for any A,B ∈ B. An interpretation of the Markov kernels θ(s, ·) is that each site s ∈ R
sends out unit mass to the real line. A transport rule θ is called translation invariant if
θω(s, A) = θtω(s− t, A− t), for any (s, A) ∈ R× B, t ∈ R, for P-almost every ω.

We now briefly summarise results of [23], which are derived from the abstract results of [24].
Given a translation invariant transport rule θ we obtain an unbiased shift T by letting

Pµ(ω ∈ A, T ∈ B) =

∫∫
A

θω(0, B)Px(dω)µ(dx), for A ∈ A, B ∈ B. (3.2.1)

Conversely, given an unbiased shift T we can construct a translation invariant transport rule
θ by letting θω(s, B) = Pµ(T ∈ B − s | sω), for s ∈ R, B ∈ B, ω ∈ Ω, where we use a suitably
regularised version of conditional probabilities so that (3.2.1) holds.

The transport rules associated in this way with nonnegative unbiased shifts are forward looking
in the sense that θω(s, (−∞, s)) = 0 for all s ∈ R. In the chapter we only consider forward
looking transport rules and all results contain this assumption implicitly. An unbiased shift T
solves the embedding problem for a pair of orthogonal probability measures µ, ν if and only if
the associated transport rule satisfies the balancing property∫

θω(s, dt) `µω(ds) = `νω(dt) for P-almost all ω.

If the unbiased shift is not randomised, i.e. a measurable function of ω, then the associated θ
is an allocation rule, i.e. it is of the form θω(s, A) = 1A(τω(s)) for some τω : R → R. In this
case each site s ∈ R is assigned to a new site τω(s) ∈ R. The allocation rule associated to the
random times T∗ is given by

τ∗(s) := inf{t > s : `µ[s, t] = `ν [s, t]}, for all s ∈ R. (3.2.2)

Let us now outline the proof of Theorem 13. The first part looks at what happens pathwise.
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With every transport rule we associate a local cost. Given a fixed ω, we show that on carefully
chosen intervals called excursions, the best possible cost is offered by the allocation rule τ∗. We
do this by proving an analogous discrete result and then taking a suitable limit. The second
part of the proof uses ergodic theory to translate the local cost optimality of τ∗ into a result on
the moments of T∗.

3.3 Pathwise level

In what follows, we fix a path ω. An excursion E is any interval of the form [s, τ∗(s)], for s ∈ R.
Observe that τ∗ maps E onto itself. Our main goal is to show that the allocation rule τ∗ offers
the best possible cost inside an arbitrary excursion E . More precisely we will devote this section
to proving the following.

Proposition 3.3.1. Given an excursion E, for any transport rule θ balancing `µ and `ν,∫∫
E×R

ψ(t− s) θ(ds, dt) +

∫∫
R×E

ψ(t− s) θ(ds, dt) ≥ 2

∫
E
ψ(τ∗(s)− s)`µ(ds), (3.3.1)

for all ψ : [0,∞)→ [0,∞) concave.

The left hand side in (3.3.1) is called the cost of the transport rule θ over the interval E .
Note that the right hand side is then the cost of the allocation rule given by τ∗ over the same
interval. By subtracting a constant from both sides of the equation we may henceforth assume
that ψ(0) = 0. As a remark on the double integral notation, we note that first component E in
the product range E × R refers to the first argument of θ(ds, ·) and the second component R
refers to the second argument of θ(·, dt).
We start by establishing a similar result in a discrete setting. The inequality we establish
below is of a general nature and may be of independent interest. A map τ : A → B between
two discrete and disjoint sets A,B ⊂ R is the stable allocation map if

τ(a) = min
{
b ∈ B : b > a, |B ∩ [a, b]| = |A ∩ [a, b]|

}
.

Lemma 3.3.2. Let a1 > a2 > a3 > . . . and b1 < b2 < b3 < . . . be disjoint real sequences, such
that we have an ↘ −∞ and bn ↗∞.

(a) The stable allocation map τ : {. . . , a3, a2, a1} → {b1, b2, b3, . . .} is well-defined and there
exists N ∈ N such that τ(ai) = bi for all i ≥ N .

(b) For every concave function ψ : [0,∞)→ [0,∞) and nonnegative matrix π = (πi,j : i, j ∈ N)
with the properties that

– πi,j = 0 if ai > bj,

–
∑∞

j=1 πi,j = 1 for all i ∈ {1, . . . , N},
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–
∑∞

i=1 πi,j = 1 for all j ∈ {1, . . . , N},

we have
N∑
i=1

∞∑
j=1

+
∞∑
i=1

N∑
j=1

πi,jψ(bj − ai) ≥ 2
N∑
i=1

ψ(τ(ai)− ai). (3.3.2)

In the special case that a1 < b1 we have τ(ai) = bi for all i, and hence N ∈ N can be chosen
arbitrarily. Then our result becomes the following general result, which to the best of our
knowledge is new, too.

Corollary 3.3.3. For every double-sided increasing sequence (an : n ∈ Z) that is unbounded
from above and below, every stochastic matrix π = (πi,j : i, j ∈ N), and every concave function
ψ : [0,∞)→ [0,∞) we have

n∑
i=1

∞∑
j=1

+
∞∑
i=1

n∑
j=1

πi,jψ(ai − a−j) ≥ 2
n∑
i=1

ψ(ai − a−i).

Proof of Lemma 3.3.2(a). Given a ∈ A the set A ∩ [a,∞) is finite, but the set B ∩ [a,∞) is
infinite. Hence, on the one hand, there exists b ∈ B such that |B ∩ [a, b]| ≥ |A ∩ [a,∞)| ≥
|A ∩ [a, b]|, while on the other hand |B ∩ [a, a]| = 0 < 1 = |A ∩ [a, a]|. This implies that there
exists b′ ∈ [a, b] with |B ∩ [a, b′]| = |A ∩ [a, b′]|, and hence τ is well-defined.

We now show that there exists N ∈ N such that, for all n ≥ N , we have τ(an) = bn. If a1 < b1

one can choose N = 1. Otherwise define an integer-valued function f : [b1,∞)→ R by

f(x) =
∣∣A ∩ [b1, x]

∣∣− ∣∣B ∩ [b1, x]
∣∣.

Let M ∈ Z be the minimum of f on [b1, a1]. Note that f(a1) > M and on [a1,∞) the
function f is decreasing to −∞ by downward jumps of size one. Hence there exists n > 1
with f(bn) = M − 1. Observe that f(b1) = −1 and |B ∩ [b1, bn]| = |A ∩ [b1, bn]| − (M − 1).
Clearly, for all m ≥ n we have |A ∩ [am, bm]| = m = |B ∩ [am, bm]| while, for j < m, we have
|A ∩ [am, bj]| > j = |B ∩ [am, bj]|. Hence, τ(am) = bm, as required.

Proof of Lemma 3.3.2(b). This is a variant of Lemma 5.3 in [27]. We say that π crosses the
pair (ai, bj) if there exist indices k < i and l > j such that πkj > 0 and πil > 0. Such a crossing
can be repaired by replacing the matrix π by a new matrix π′ given by

π′kj = πkj − (πkj ∧ πil), π′il = πil − (πkj ∧ πil),
π′ij = πij + (πkj ∧ πil), π′kl = πkl + (πkj ∧ πil),

leaving all other entries untouched. If π satisfies the conditions of (b), then so does π′. By
concavity of the function ψ we get

ψ(bj − ak) + ψ(bl − ai) ≥ ψ(bj − ai) + ψ(bl − ak).

Hence the left hand side of (3.3.2) decreases when we replace π by π′. If we systematically
repair all the crossings of pairs (ai, bj) with 1 ≤ i, j ≤ n, using the repair algorithm described
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in Chapter 2, see Lemma 2.5.1 and Lemma 2.5.2, we end up with a matrix π∗ with entries
π∗ij = 1{τ(ai) = bj}, which satisfies

N∑
i=1

∞∑
j=1

+
∞∑
i=1

N∑
j=1

πi,jψ(bj − ai) ≥
N∑
i=1

∞∑
j=1

+
∞∑
i=1

N∑
j=1

π∗i,jψ(bj − ai).

Plugging in the value of π∗ the right hand side gives the form of (3.3.2).

We now use Lemma 3.3.2 to get a continuous inequality. Let E = (b0, a0] ⊂ R be an excursion
and M = `µ(E). Given n ∈ N we pick a1 > a2 > . . . > an such that `µ(ai, ai−1) = M

n
and

b1 < b2 < . . . < bn such that `ν(bj−1, bj) = M
n

, for 1 ≤ i, j ≤ n. Note that an = b0 and bn = a0.

Additionally, ai, bi, for i > n, are chosen in such a way that ai ↘ −∞, bi ↗∞, and

∞
sup
i=n

(
bi+1 − bi

)
,

∞
sup
j=n

(
aj − aj+1

)
−→ 0.

Then, if τn : {. . . , a3, a2, a1} → {b1, b2, b3, . . .} is the (discrete) stable allocation map, in
Lemma 3.3.2 we may choose N = n. Now suppose a balancing transport rule θ is given.
We define

πi,j =
n

M
θ((ai, ai−1], (bj−1, bj])

and note that π = (πi,j : i, j ∈ N) satisfies the conditions of Lemma 3.3.2 (b). Hence we have

n∑
i=1

∞∑
j=1

+
∞∑
i=1

n∑
j=1

πi,jψ(bj − ai) ≥ 2
n∑
i=1

ψ(τn(ai)− ai). (3.3.3)

Multiply both sides by M/n and let n go to infinity. We will argue that the right and left hand
side of (3.3.3) converge to those of (3.3.1).

First we show convergence of the left hand side of (3.3.3). Given {ai}i∈N and {bj}j∈N as
constructed above, let gn(a) = ai, if a ∈ (ai, ai−1] and hn(b) = bj, if b ∈ (bj−1, bj].

Lemma 3.3.4. For `µ-almost every a we have gn(a) → a, and for `ν-almost every b we have
hn(b)→ b.

Proof. It suffices to prove the first claim. The result is trivial if a ≤ b0. Given ε > 0, for
`µ-almost every a with b0 + ε < a ≤ a0 there exists η > 0 such that `µ(a − ε, a) ≥ η. Hence,
for all n > M/η, there exists ai ∈ (a− ε, a) which implies 0 < a− gn(a) < ε.

Note that
M

n

n∑
i=1

∞∑
j=1

πi,jψ(bj − ai) =

∫∫
E×R

ψ
(
hn(b)− gn(a)

)
θ(da, db).

Now we compare the integrand with ψ
(
b− a). Adding and subtracting ψ(b− gn(a)) and then
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using the triangle inequality we get

|ψ(hn(b)− gn(a))− ψ(b− a)| ≤ |ψ(hn(b)− gn(a))− ψ(b− gn(a))|+ |ψ(b− a)− ψ(b− gn(a))|
≤ ψ(hn(b)− b) + ψ(a− gn(a)),

where in the second inequality we used the sub-additivity of ψ as follows,

|ψ(hn(b)− gn(a))− ψ(b− gn(a))| = ψ(hn(b)− gn(a))− ψ(b− gn(a))

= ψ(hn(b)− b+ b− gn(a))− ψ(b− gn(a)) ≤ ψ(hn(b)− b).

Using this estimate on the integrand, we get∫∫
E×R

ψ
(
hn(b)− gn(a)

)
− ψ(b− a) θ(da, db) ≤

∫∫
E×R

ψ(hn(b)− b) + ψ(a− gn(a)) θ(da, db).

The integrand on the right is bounded and converges to zero, θ-almost everywhere, by
Lemma 3.3.4. Hence the left hand side of (3.3.3), multiplied by M

n
, converges to the required

limit, ∫∫
E×R

+

∫∫
R×E

ψ(b− a) θ(da, db).

Second we show convergence of the right hand side of (3.3.3). The key to this is the following
lemma.

Lemma 3.3.5. For `µ-a.e. a ∈ E, we have limn→∞ τn(hn(a)) = τ∗(a).

Proof. We define
f : [a, τ∗(a)]→ [0,∞), f(x) = `µ[a, x]− `ν [a, x],

and
fn : [a, τ∗(a)]→ R, fn(x) = M

n

(
|{i : ai ∈ [gn(a), x]}| − |{j : bj ∈ [gn(a), x]}|

)
.

The proof is organised into five steps.

Step 1: |f(x)− fn(x)| ≤ 4M
n

.

Proof. Denote k1 = |{i : ai ∈ [gn(a), x]}| and k2 = |{j : bj ∈ [gn(a), x]}|, then fn(x) = M
n

(k1−k2)
and

`µ[a, x] = (k1 − 1)
M

n
+ `µ[gn(x), x]− `µ[gn(a), a],

and hence |`µ[a, x]−k1
M
n
| ≤ 2M

n
. Similarly, |`ν [a, x]−k2

M
n
| ≤ 2M

n
, which implies the statement.

Recall that τ∗(a) = inf{x > a : f(x) = 0} and

τn(gn(a)) = inf{x > gn(a) : fn(x) = 0}.
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Step 2: For `µ-almost every a ∈ E , there exists ε > 0 such that,

f(a+ x) ≥ 5
6
`µ[a, a+ x] for all x ∈ (0, ε), and

f(τ∗(a)− x) ≥ 5
6
`ν [τ∗(a)− x, τ∗(a)] for all x ∈ (0, ε).

Proof. For `µ-almost every a ∈ E , there exists ε > 0 such that,

`ν [a, a+ x] ≤ 1
6
`µ[a, a+ x] for all x ∈ (0, ε).

see, e.g., Section 1.6, Theorem 3 in [15]. This implies the first property, and the second is
analogous.

Step 3: Let Gn := {ai : i ∈ {1, . . . , n}, 6 ∃bj ∈ [ai, ai−7]}. Then, for `µ-almost every a, there
exists arbitrarily large n with gn(a) ∈ Gn.

Proof. Fix η > 0 small for the moment. For `µ-almost every a, there exists δ0 > 0 such that

`ν [a− δ, a+ δ] ≤ η`µ[a− δ, a+ δ], for all 0 < δ < δ0.

Supposing that, for some k ∈ N,

(k+2)M
n
≤ `µ[a− δ, a+ δ] ≤ (k+3)M

n

we have ∣∣{ai : i ∈ {1, . . . , n}, ai ∈ [a− δ, a+ δ]
}∣∣ ≥ k

and ∣∣{bj : j ∈ {1, . . . , n}, bj ∈ [a− δ, a+ δ]
}∣∣ ≤ 1 + η(k + 3).

By the pigeonhole principle therefore∣∣{ai ∈ Gn : ai ∈ [a− δ, a+ δ]
}∣∣ ≥ k − 7(1 + η(k + 3)).

Hence, given ε > 0, we can find η, and hence δ0 > 0, such that

`µ{x ∈ [a− δ, a+ δ] : gn(x) 6∈ Gn} < ε
4
`µ[a− δ, a+ δ], for all 0 < δ < δ0 and n ≥ n0(δ).

We can thus find a global δ, and a collection of intervals [a− δ, a+ δ] as above covering the set
[a, τ∗(a)] at most twice, and at least up to a set E with `µ(E) < ε

2
. The result follows as ε > 0

was arbitrary.

Step 4: In this step ε > 0 is chosen according to the previous steps above. Using Step 3, for
`µ-almost every a, we can choose n such that gn(a) ∈ Gn and

5M
n
≤ min{f(x) : x ∈ [a+ ε, τ∗(a)− ε]}.

Recall that gn(a) = ai, if a ∈ (ai, ai−1]. In this case we also write g(k)
n (a) = ai−k.
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By Step 1 and choice of n we have

fn(x) ≥ f(x)− 4M
n
≥ M

n
for all x ∈

[
a+ ε, τ∗(a)− ε

]
.

By Step 2, using again Step 1,

fn(x) ≥ f(x)− 4M
n
≥ 5

6
`µ[a, g(7)

n (a)]− 4M
n
≥ M

n
for all x ∈

[
g(7)

n (a), a+ ε
]
,

and the fact that gn(a) ∈ Gn implies that

fn(x) ≥ M
n

for all x ∈
[
gn(a), g(7)

n (a)
]
.

We thus obtain that

τn(gn(a)) = inf{x > gn(a) : fn(x) = 0} ≥ τ∗(a)− ε.

Step 5: For `µ-almost every a, we have, for sufficiently large n,

τn(gn(a)) ≤ τ∗(a) + ε.

Proof. Recall that hn(b) = bj, if b ∈ (bj−1, bj]. In this case we also write h(k)
n (b) = bj+k. We

note from Step 1 that fn(τ∗(a)) ≤ 4M
n

. Let G′n := {bj : i ∈ {1, . . . , n}, 6∃ai ∈ [bj, bj+5]}. Then, as
in Step 3, for `µ-almost every a, there exists arbitrarily large n with τ∗(a) ∈ G′n. We infer that
τn(gn(a)) ≤ h(5)

n (τ ∗(a)) ≤ τ∗(a) + ε, if n is large enough.

The result follows by combining Steps 4 and 5, as ε > 0 was arbitrarily small.

To conclude we note that, using Lemmas 3.3.4 and 3.3.5,

lim
n→∞

M

n

n∑
i=1

ψ(τn(ai)− ai) = lim
n→∞

∫
E
ψ(τn(gn(a))− gn(a)) `µ(da)

=

∫
E

lim
n→∞

ψ(τn(gn(a))− gn(a)) `µ(da) =

∫
ψ(τ∗(a)− a) `µ(da),

by bounded convergence.

As a concluding remark we note that immediately right after τ∗(a) the function f increases
only if τ∗(a) is a local minimum. However there are only countably many local minima, hence
τ∗(a) is almost surely none of them.

3.4 Ergodicity

Denote by P(µ) =
∫
Px µ(dx) the law of two-sided Brownian motion with ω0 ∼ µ, and by Sr the

generalized inverse of the local time `µ, that is

Sr :=

{
sup{t ≥ 0 : `µ[0, t] = r}, if r ≥ 0,
sup{t < 0 : `µ[t, 0] = −r}, if r < 0.

(3.4.1)
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Then P(µ) is invariant under the shifts Sr : (ωs) 7→ (ωSr+s), for every r ∈ R, by Theorem 3.4
in [23]. In order to show that the family of shifts (Sr) is ergodic, we need to show that any
invariant set A is trivial, i.e. P(µ)(A) ∈ {0, 1}. We follow a classical approximation approach.
By [13, Appendix A.3] there exist sets Ar with Ar ∈ σ(Bs : s ∈ [S−r, Sr]) for all r > 0, such
that P(µ)(A∆Ar)→ 0 as r →∞, where ∆ denotes the symmetric difference of the two sets. As
A is invariant under the shift S2r we get

P(µ)(A∆S2rAr) = P(µ)(S2rA∆S2rAr) = P(µ)(S2r(A∆Ar)) = P(µ)(A∆Ar)→ 0.

Hence there exists rn ↗∞ such that

∞∑
n=1

P(µ)(A∆S2rnArn) <∞,

and A \
⋂
s>0

⋃
rn>s

S2rnArn and
⋂
s>0

⋃
rn>s

S2rnArn \ A are P(µ)-nullsets. This implies

P(µ)(A) = P(µ)

(⋂
s>0

⋃
rn>s

S2rnArn

)
∈ {0, 1},

using that the latter event is a tail event and hence trivial, see e.g. [26, Theorem 2.9].

Lemma 3.4.1. Let T ≥ 0 be an unbiased shift embedding ν and θ be the associated transport
rule. Furthermore let ψ : [0,∞)→ [0,∞) be concave with ψ(0) = 0, with the extension ψ(z) = 0
for z ≤ 0. Let Srµ+ν be the inverse of the local time `µ+ν. Then, P(µ+ν)-almost surely,

lim
r→∞

1

r

∫∫ Srµ+ν

0

ψ(t− s) θ(ds, dt) = lim
r→∞

1

r

∫∫ 0

S−rµ+ν

ψ(t− s) θ(ds, dt) = 1
2
Eµψ(T ),

and,

lim
r→∞

1

r

∫ Srµ+ν

0

∫
ψ(t− s) θ(ds, dt) = lim

r→∞

1

r

∫ 0

S−rµ+ν

∫
ψ(t− s) θ(ds, dt) = 1

2
Eµψ(T ),

where the first (second) part of the double integrals should be understood as integration with
respect to the first (second) argument of θ(·, ·).

Proof. Recall that by the unbiased shift T embeds ν. By the ergodic theorem, P(µ+ν)-almost
surely,

lim
r→∞

1

r

∫∫ Srµ+ν

0

ψ(t− s) θ(ds, dt) = lim
r→∞

1

r

∫ Srµ+ν

0

ψ(t− s)
∫
θ(s, dt) `µ+ν(ds)

= lim
r→∞

1

r

∫ r

0

ψ(t− Ssµ+ν)

∫
θ(Ssµ+ν , dt) ds

= 1
2
E(µ+ν)

∫
ψ(t) θ(0, dt) = 1

2
Eµψ(T ).

56



Note that the measure µ+ ν has total mass of 2, hence a normalizing 1
2

factor above. The last
equality stems from the assumption that the initial measure is µ, i.e. B0 ∼ µ, and µ and ν are
orthogonal measures. Similarly, we obtain P(µ+ν)-almost surely,

lim
r→∞

1

r

∫ Srµ+ν

0

∫
ψ(t− s) θ(ds, dt) = 1

2
E(µ+ν)

∫
ψ(−s)θ(ds, 0)

= 1
2
E(ν)

∫
ψ(−s) θ(ds, 0).

Using the generalized Campbell formula, see [23, (2.4)], we get

E(ν)

∫
ψ(−s) θ(ds, 0) = E(ν)

∫ (∫
ψ(−s)1{s+ r ∈ [0, 1]} θω(ds, 0)

)
dr

= E
∫ (∫

ψ(−s)1{s+ r ∈ [0, 1]} θrω(ds, 0)

)
`ν(dr)

= E
∫∫

1{t ∈ [0, 1]}ψ(r − t) θω(dt, r)`ν(dr),

where in the last equation we used the shift-invariance of θ. Using the balancing property first
and then the generalized Campbell formula again this equals

E
∫∫

1{t ∈ [0, 1]}ψ(r − t) θω(t, dr)`µ(dt) = E(µ)

∫
ψ(t) θ(0, dt) = Eµψ(T ).

The claims about backward time follow in the same manner.

Proof of Theorem 13. Define the following stopping times

ρ(u) = inf{t ≥ 0 : `µ([0, t])− `ν([0, t]) = −u},
σ(u) = sup{t ≤ 0 : −`µ([t, 0]) + `ν([t, 0]) = −u},

for all u ∈ R+. We have ρ(u)↗∞ and σ(u)↘ −∞, as u→∞, and, for all u ∈ R, the interval
[σ(u), ρ(u)] forms an excursion. Hence, by Proposition 3.3.1,∫ ρ(u)

σ(u)

∫
ψ(t− s) θ(ds, dt) +

∫ ∫ ρ(u)

σ(u)

ψ(t− s) θ(ds, dt) ≥ 2

∫ ρ(u)

σ(u)

ψ(τ∗(s)− s) `µ(ds).

Applying Lemma 3.4.1 the left hand side is asymptotically equal to 1
2
`µ+ν([σ(u), ρ(u)])Eµψ(T ),

and the right hand side to 1
2
`µ+ν([σ(u), ρ(u)])Eµψ(T∗), which concludes the proof.

As a remark, we note that the asymptotic equality comes from the following consideration.
The random set {Srν : r > 0} can be written as the set of points of left increase of `ν , that is
{Srν : r > 0} = {s > 0 : `ν(s − ε, s] > 0}. It is clear that {ρ(u) : u > 0} ⊂ {Srν : r > 0},
for any ε > 0. This implies that for any sequence {un}n∈N such that un → ∞, there exists
a sequence {rn}n∈N with rn → ∞. The ergodic theorem guarantees almost sure convergence
along all such sequences. Analogously, this line of argument extends to {Srν : r < 0} and also
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for sets involving S·µ. Furthermore, it is clear that {Srµ+ν : r > 0} = {Srµ : r > 0}∪{Srν : r > 0}.
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