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Abstract 

Emerging energy technologies give us the opportunity to manage the challenges 

posed by climate change, environmental degradation and oil shortages. Superconducting 

energy storage system (SMES) is a promising candidate technology due to its potential 

for promoting renewable energy and stabilising grid systems. It enables improvements 

to power grid capacity, reliability and efficiency. SMES also has the advantages of high 

cyclic efficiency, quick response times, deep discharge and recharge abilities and being 

easy to build hybrid energy storage system. This dissertation studies the key 

technologies for the design and application of SMES using 2G HTS materials. 

The first part of this dissertation investigates through experiments the behaviour of 

2G HTS tape under an external magnetic field and impregnation. It is found that that the 

critical current and n value are closely related under a magnetic field, which can be 

verified by theoretical analysis. Different impregnation materials are tested to enhance 

the superconducting tapes. The experiments find that Gallinstan does not cause 

degradation of the impregnated tape. However, the degree of degradation caused by 

different resins varies: Stycast Black degrades the tape a small amount, while Stycast 

1266 and Araldite degrade the tape considerably. Reasons for the degradation are 

discussed and suggestions for coils fabrication are presented. 

Superconducting coils are studied experimentally and numerically under self field 

and an external field. This numerical model is based on minimization of the magnetic 

energy using the line current assumption. Good agreement was achieved between the 

numerical model and the experiments. Then the coils with two different tapes are 

investigated under a DC magnetic field. The load line method is improved to take into 

account the anisotropy in 2G HTS coils. In order to calculate the magnetic field and AC 

losses of a stack of superconducting coils, coupling of the critical state model with the 

line front track approximation is proposed and validated.  

Some critical issues related to SMES design are discussed. A conceptual design of a 

60 kJ SMES is presented. The design process includes magnetic optimization, current 
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lead design and cooling system selection. This SMES is then hybridized with a battery 

and applied in wave generator system to analyse the extension of battery life. Finally, 

different configurations of SMES are compared and an economic analysis is performed. 

Original work in this dissertation includes: 

1. Multiphysics modelling of HTS coils using magnetic energy minimization based 

on homemade finite element analysis code. This method couples the magnetic energy 

minimization with magnetic, thermal and mechanical fields for the first time, and 

efficiently simulates the superconducting coils using fewer elements and avoiding high 

non-linearity. 

2. Efficient numerical modelling of a stack of HTS pancake coils using the line front 

track approximation. Accurate current distribution, magnetic field and AC losses are 

calculated and compared to established H-formula methods. This method is further 

applied to a real 2G HTS SMES design for the first time. 

3. Detailed conceptual design of a 60 kJ HTS SEMS, which is hybridized with a 

battery to smooth the output of the renewable energy system. Extension of the battery 

lifetime is modelled and discussed for the first time, based on the rainflow counting 

method. 
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Chapter 1. Introduction 

1.1  Background 

Climate change is one of the great challenges in the 21st century [1]. Seeking a green 

economy is the priority task for all countries. The transition to a sustainable and low 

carbon economy will involve major changes to the ways energy is supplied and used. 

Transforming the electricity system lies at the heart of these changes. Emerging 

technologies give us the opportunity to manage these challenges.  

The UK electricity system faces considerable challenges. According to the UK Low 

Carbon Transition Plan (2009), it is expected that around 30% of electricity will be 

generated from renewable sources by 2020 [2]. By 2050, the electricity sector should be 

almost entirely decarbonized, with significantly increased levels of electricity 

production and demand incorporation of heat and transport sectors into the electricity 

system. In order to achieve these aims, it is incredibly important to increase the amount 

of renewable energy, such as wind, solar and ocean energy, in the power system. 

The past decade has witnessed a large increase in electricity generation from 

renewable sources around the world, especially in wind and photovoltaic energy. The 

2012 global wind power market grew by more than 10% compared to 2011, as shown 

in Figure 1-1, and nearly 45 GW of new wind power sources were brought online, 

representing investments of about £50 billions [3]. At the same time, solar and ocean 

energy also underwent a remarkable penetration. For example, the UK government said 

that 4 million homes would be powered by the sun within eight years [4], meaning that 

there would be 22,000 MW of installed solar power capacity by 2020. 

Such a large proportion of renewable sources connected to power generation and 

distribution systems brings significant challenges to the power system due to their 

intermittent and unpredictable nature. The present power systems are built 50 years ago 

with few automatical devices and are not flexible enough to upgrade, leading to 

substantial wastage of green energy. As renewable penetration increases, it will be 
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economically and environmentally beneficial to promote microgrids which will be able 

to make the best use of local renewable energy sources. Within a microgrid, power 

available from renewable energy sources fluctuates dramatically depending upon the 

environmental conditions, e.g. wind strength and sunlight, which can vary on timescales 

from seconds to days. Therefore, it is a great challenge to manage the stability, security 

and reliability of a microgrid from the practical view. 

 

Figure 1-1 Global annual wind installed capacity before 2012 [3]. Wind generators have 

been installed continually during the past two decades. 

 The introduction of energy storage into the microgrid can alleviate the problems 

caused by the intermittent and unpredictable nature. Generally speaking, energy storage 

systems perform three functions: energy management, power bridging and power 

quality control. They are installed to harness the energy generated by renewable energy 

sources to overcome their intermittency and uncertainty. Due to the large variation in 

load/generation balance of renewable energy sources, an energy storage system capable 

of responding quickly to power fluctuations on a short timescale, ranging from seconds 

to minutes, will be of significant value. Therefore, a game-changing energy storage 

system should have large power density with fast response, to support renewable energy 

integration into microgrids. 

Superconducting magnetic energy storage (SMES) systems are one such enabling 

technology, offering high power density and quick response speed. Their high power 

density is due to their ability to respond quickly to the demand request as the energy 

conversion is constrained in the electromagnetic process, and is not involving with any 

mechanical, hydraulic or chemical processes. Compared to conventional energy storage 

technologies, another advantage of SMES is the significant amount of energy saved 

because the energy is stored as a lossless persistent current. Moreover, the devices can 
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be made much smaller in size, and they are greener and safer than conventional 

technologies. 

Investigation of SMES for power systems began in 1969, and the first system was 

discussed using low temperature superconductors (LTS) [5]. At present, LTS SMES, 

which functions using liquid helium, is technically mature and can be used to provide 

good quality power to end users. However, high temperature superconductors (HTS), 

which operate at 77 K, can operate at higher magnetic fields than LTSs, and this 

capability offers the potential to create more compact SMES devices. The cooling 

systems of HTS SMES are easier and the associated costs are decreased compared to 

LTS SMES. Research on HTS SMES has been a popular topic for the past decade. 

Most HTS SMES projects are focused on the use of Bismuth Strontium Calcium 

Copper Oxide (BSCCO) superconductors, which are the first generation (1G) HTS. 

Superconductivity in BSCCO conductors was discovered in the late 1980s and 

commercial SMES beame available in the 1990s. So far, several HTS SMES systems 

based on BSCCO conductors have demonstrated the feasibility of applying HTS SMES 

to power systems [6-8]. However, it was also found that wide application of BSCCO-

related SMES was very challenging for two major reasons. Firstly, the cost of BSCCO 

superconductors is high, and further price reduction is difficult because large amounts 

of silver are indispensable during the fabrication process [9]. Secondly, the performance 

of 1G HTS is poor under a magnetic field, which decreases the efficiency of 

superconducting devices based on BSCCO conductors [10]. 

The second generation (2G) HTS tapes, based on Yttrium-Barium-Copper-Oxide 

(YBCO), are state-of-the-art conductors with significantly higher irreversibility fields 

and critical current density values in an external magnetic field. They can be operated 

either by liquid nitrogen, gaseous helium, or commercial cryocoolers, thereby 

eliminating the requirement for expensive liquid helium. In the near future, 2G HTS will 

be developed with a substantial increase in critical current density, along with a lower 

cost in terms of dollar per kiloamp-meter ($/kA•m) than 1G HTS and copper [10]. This 

means that even taking into account the cooling cost, 2G HTS SMES systems will be 

cost competitive compared to conventional technologies. Thus, the technology is now 

on the edge of inclusion in widespread industrial applications. There is now a critical 

opportunity to develop 2G HTS SMES systems. 
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Magnesium diboride MgB2 shows a wide application prospect in the field of low 

field application for its relatively simple structure and rather higher critical temperature 

than LTS. It can be operated in the environment of liquid H2 and thus reduce the 

cryogenic cost. Compared with 2G HTS, the obvious advantages of MgB2 includes the 

cheap material and isotropic magnetic property which makes it attractive for 20K 

application. So far, there are some conceptual designs for MgB2 in energy storage 

system[11-14].  

A number of countries are active in developing SMES technology using 2G HTS 

conductors, including a 2.5 MJ SMES system for grids in the U.S., a 2.5 MJ SMES 

system for power quality in Korea [15] and a MJ-range SMES for voltage quality in 

Japan [16].  

This dissertation studies the key technologies for design and application of SMES in 

power system. The first part of this dissertation investigates the behaviour of 2G HTS 

tapes under external magnetic field and impregnation through experiments. This is 

followed by studying superconducting coils experimentally and numerically under self 

field and external field. This numerical model is based on minimization of magnetic 

energy with sheet current model. In order to calculate the magnetic field and AC losses 

of a stack of superconducting coils, line front track approximation is proposed. Finally 

primary design and application of SMES system in renewable energy generation are 

presented and discussed. 

1.2 Scope of the study 

 Superconducting coils are the core components of superconducting devices, especially 

for a superconducting magnetic energy storage system. Our research is focused on 

solving the issues that arise during the fabrication and modelling of superconducting 

coils, employing the recently developed numerical models and technologies. Among 

these problems, the decisive factor is the estimation of AC losses and critical current, 

because it determines the rated operating conditions and the cryogenic system design. 

Firstly, achieving a high current-carrying capability in the superconductors is one of 

the most important objectives for superconducting device design. However, the critical 

current is often constrained by the existence of an external magnetic field, as the critical 

currents of HTSs are field dependent. In addition to this, the impregnation process also 
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induces critical current degradation due to the thermal mismatch properties between the 

superconductor and the impregnation materials. Further research on single tape 

performance under an external magnetic field and impregnation is necessary. These 

experiments will not only help to select the proper superconductors and the 

impregnation materials, but also provide raw data for the numerical model which can be 

used to predict the performance of superconducting coils. 

Secondly, critical current and AC losses are two major parameters that characterize 

the performance of the superconducting coils. Critical current is a key factor for the 

stored energy, and AC loss determines the operating conditions and cryogenic system 

design. Thus, prediction of the critical current and the AC loss are critical to 

superconducting coil design. However, accurate and quick estimation of the critical 

current and AC loss values of HTS coils is very challenging. First, superconductivity is 

a very complex physical phenomenon. The relationship between the electric field, E, 

and current density, J, is highly non-linear. Secondly, the geometry of a HTS tape has a 

large aspect ratio, resulting in huge numbers of meshes in a numerical simulation. 

Thirdly, the strong field dependencies of the critical current on magnetic, thermal and 

strain fields require multiphysics modelling. Efficient numerical modelling of 

superconducting coils is therefore of vital importance. 

 The third area in this research is the feasibility study of integrating a superconducting 

energy storage system with renewable energy generation, from technical and economic 

perspectives. One problem in SMES design is to calculate the AC losses of the 

superconducting coils for its intensive calculation problem. We aim to propose one 

efficient calculation scheme for large SMES coil. The SMES, hybridized with battery, 

is used to stabilize the voltage output of a wave generator, which proves the feasibility 

in renewable energy integration. Finally, we consider the cost of different configurations 

for kJ, MJ and GJ SMES, from the economic aspects.  

1.3 Structure of the dissertation 

This dissertation will investigate all the aforementioned problems related to 

superconducting coils, with the aim of proposing an engineering solution for application 

of superconducting energy storage system. The structure of this dissertation is as follows: 
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Chapter 2 presents a brief introduction to superconductivity, including the main 

commercially available high temperature superconductor materials. Modelling methods 

used for superconducting simulation are reviewed and their pros and cons are 

summarized. Finally, the SMES system and its development history are introduced. 

Chapter 3 proceeds to research 2G HTS tapes under an external magnetic field and 

impregnation. The critical currents and the n-values are measured under a varying 

external DC magnetic field. The magnetic field dependency of the critical current and 

the n-value is discussed and analysed. Different impregnation materials are introduced 

and their influences on the critical current and AC losses are investigated. 

Chapter 4 presents experimental and numerical investigations on single 2G 

superconducting coils. The critical current and AC losses of several pancake coils are 

measured. These results are compared to numerical results based on minimization of the 

magnetic field energy. The critical currents of these coils under a DC magnetic field are 

also investigated and calculated. 

In Chapter 5, a numerical model based on the line front track for a multi-pancake coil 

is proposed and validated. This model is compared to and verified by current distribution 

and AC loss results obtained from H formula. This model is further used to study the 

AC losses of a stack of pancake coils in a 2 kJ SMES system. 

Chapter 6 presents a conceptual design process of a 60 kJ SMES-battery hybrid 

energy storage system. The optimal configuration of a 60 kJ SMES for a wave generator 

is achieved based on electromagnetic field simulation. The life time of the battery is 

analyszed using rainflow counting algorithm. This is followed by the economic analysis 

of different scale SMES systems. 

Finally, Chapter 7 gives concluding remarks, as well as some ideas for future work.  

1.4 Thesis contributions 

The main contributions from this thesis can be summarised as follows: 

1. Fully multiphysics modelling of 2G HTS coils is proposed and validated using 

magnetic energy minimization, based on homemade finite element analysis code. This 

method couples the magnetic energy minimizaiton with magnetic, thermal and 
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mechanical fields for the first time and simulates the superconducting coils efficiently 

for less elements and avoiding high non-linearity. Critical current and AC losses of the 

2G HTS coils can be calculated accurately and efficiently. This model can be used to 

analyse the thermal and mechanical process when the superconducting coil charges and 

discharges.  

2. Efficient numerical modelling of a stack of HTS pancake coils with thousands of 

turns is presented using line front track approximation. Accurate current distribution, 

magnetic field and AC losses are calculated and compared with established H-formula 

methods. We further analyze the screening current and the AC losses in different 

pancakes, finding that most part of the losses is generated in the top and bottom coils. 

This method is further applied in a real 2G HTS SMES design for the first time. 

3. Design of a hybrid energy storage using an SMES system and battery. The full 

details are presented for the design of a 60 kJ SMES. The electromagnetic and 

mechanical fields are calculated using the line front approximation. This SMES is 

applied to a renewable energy system. Extension of the battery life time with the use of 

SMES is discussed using the rainflow counting method. Rough cost estimation of the 

SMES system with different energy scales is presented and discussed. 
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Chapter 2. Superconductivity and 

Superconducting Energy Storage 

Superconductivity was discovered in 1911 by Kamerlingh Onnes, shortly after helium 

gas was first liquefied. The special properties of superconductors, such as zero-

resistance and the Meissner Effect drove electrical engineers to develop new 

technologies and design new devices [9]. This chapter gives a brief introduction to 

superconductors and theories. Particular attention is paid to the simulation of 2G HTS 

superconducting coils. Finally, a short introduction to SMES technologies and projects 

are presented. 

2.1 Fundamentals of superconductivity 

2.1.1 History 

The early history of superconductivity was closely related to the development of 

cryogenic technology. In 1908, in a laboratory at Leiden University, the Dutch physicist 

Heike Kamerlingh Onnes successfully liquefied helium for the first time in history. 

Three years later, when Onnes was measuring the resistance of mercury in liquid helium, 

he found that the resistance vanished abruptly and completely instead of decreasing 

continuously upon cooling as expected. His further work on this topic confirmed this 

unexpected result, and it was at this point that the word “superconductivity” was coined 

to describe this new state of matter [9]. The discovery of superconductivity earned 

Kamerlingh Onnes a Nobel Prize in 1913.  

In the following decades, many pure metals were found to behave in a similar way 

to liquid helium, as well as some alloys, such as NbTi and Nb3Sn. These materials were 

called low temperature superconductors (LTSs), as their superconductivity only existed 

below 40 K. The alloys were more attractive compared to the pure metal 
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superconductors, since they could remain the superconducting state under rather high 

magnetic fields and had many potential applications in high energy physics facilities.  

However, the expense required to sustain the low temperature environment was 

enormous and their practical applications were limited for a long time. Considerable 

progress was made in 1986, by discovering the superconductivity of ceramic cuprates 

at temperatures above 77 K. Owing to the discovery of superconductivity in 

temperatures achievable using liquid nitrogen, Muller and Benodz were awarded the 

1987 Nobel Prize. This remarkable discovery excited the whole superconductivity 

community and very rapid progress was made in the late 1980s. In the early 1990s, 

BSCCO was made commercially available, and was termed as 1G HTS. Soon it was 

found that the current carrying capability of BSCCO degraded rapidly under an external 

magnetic field. Adding to this, silver was the primary raw material required for the 

fabrication process, which made it very hard to decrease the price of the material. 

Because of these problems, the efficiency and cost of BSCCO devices were unattractive. 

In the middle of the 2000s, YBCO tape was commercially produced at a scale of 100 m. 

It could transport large currents in a high magnetic field. Research and use of YBCO 

superconductors has been very active during the past several years. At the same time, 

continuously efforts have also been made to improve the performance of BSCCO 

conductors. The latest progress in BSCCO 2212 is that the critical current of round 

BSCCO wire has been improved and generates 2.6 T in 31.2 T background field [17]. 

2.1.2 Superconducting properties 

Superconductivity is widely perceived to be a phenomenon of zero electrical resistance. 

In a superconductor the voltage drops abruptly to zero when the material is cooled below 

its critical temperature. Another way to demonstrate this property is by inducing 

persistent current in a circuit loop. An electric current flowing through a loop of 

superconducting wire can persist for a long time without a power source. More precise 

measurement reveals that the resistance of a superconductor is smaller than 10-25 Ωm. 

For comparison, the resistance of copper is 10-8 Ωm at room temperature, and 10-10 Ωm 

at liquid nitrogen temperature. This property is traditionally named as zero-resistance or 

ideal conductivity. 

Most superconducting devices employ the fundamental property that they can carry 

current without energy dissipation. This feature only exists when the transporting 
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current density is below a certain value, the critical current, Ic. If the current density 

exceeds Ic, the superconductivity disappears, known as quenching. The critical current 

Ic is characterized by the critical electric field of Ec, 1e-4 V/m, in the E-I curve. A typical 

E-I curve is presented in Figure 2-1. Unlike a traditional conductor, depicted by the 

linear Ohm’s law, a superconductor can be described using the E-J power law: 

 
n

c

c

I
E E

I

 
  

 
 Equation 2-1 

where E is the longitudinal electric field along the superconductor, and n is a 

characteristic parameter, often larger than 20. 

 

Figure 2-1 Typical E-I curve of superconductors. The critical current is defined by the 

voltage drop of 1 μV/cm. 

Although zero-resistance is straightforward in characterizing superconductors, the 

fundamental criterion for superconductivity is the Meissner Effect. Meissner and 

Ochsenfeld observed that when pure tin was cooled in the presence of a magnetic field, 

on reaching its superconducting transition temperature the magnetic flux was suddenly 

completely expelled from its interior, as shown in Figure 2-2. This discovery became 

known as Meissner Effect. The Meissner Effect is similar to diamagnetism in other 

normal materials. The difference is that superconductors can expel the magnetic flux 

completely, showing that they are perfect diamagnetic materials. 

The London model shows that the Meissner Effect results from the induced current 

in the surface of the conductor, and the thickness of the induced current is called 
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penetration depth. The Meissner Effect allows the current to penetrate from the 

boundary to the centre when the applied current increases. 

 

Figure 2-2 A superconductor under an external magnetic field expels the magnetic field 

inside the conductor. This is named as the Meissner Effect. 

The existence of superconductivity is highly dependent on the surrounding physical 

conditions. Temperature, magnetic field and current density are three typical major 

parameters. Each parameter has its own critical value, defined by the 

superconducting/normal transition process, denoted by Tc, Hc and Jc. For example, the 

critical temperature of certain superconductors marks the emergence of 

superconductivity when the conductor is continually cooled. The relationship between 

critical temperature, critical magnetic field and critical current is very complex. Figure 

2-3 presents the critical surface of T-H-J for a superconductor. 

superconducting region

normal region

H

T

J

Tc

Hc

Jc

 

Figure 2-3 The critical surface of T-H-J for superconductors. The zone within the surface 

is the superconducting region, and the remainder of the zone is the normal region. 

superconducting normal 
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Based on the behaviour of superconductors under a magnetic field higher than the 

critical magnetic field, superconductors can be classified into two groups. Some 

superconductors return to a normal state, while others enter a mixed state. Type I 

superconductors have only a superconducting state and a normal state. Thus, they have 

only one critical magnetic field Hc value, as shown in Figure 2-4(a). Most metallic 

superconductors belong to this group. Type II superconductors have three states: the 

superconducting state, the mixed state and the normal state, as shown in Figure 2-4(b). 

The two boundaries between these three regions are Hc1 and Hc2, respectively. Examples 

of type II materials are alloys and compounds such as Nb3Sn, NbTi, MgB2 and all high-

Tc cuprates. 

The critical fields, µ0Hc, for type I superconductors are relatively low, i.e. 10 mT, 

which means that even their self-fields can destroy the superconducting state. 

Applications of type I superconductors are therefore limited. On the other hand, the 

upper critical fields Hc2 of type II superconductors can be very high (At 4 K the upper 

critical field for Hc2 is 12 T for NbTi, 27 T for Nb3Sn, 15 T for MgB2, and > 100 T for 

YBCO and Bi-2223 [28]), indicating their potential use in high field magnets. This 

thesis is therefore interested in type II superconductors. 

Hc(0)

Tc
0 T

H

Meissner State

Normal State

 

Hc2(0)

Tc
0 T

H

Meissner State

Normal State

Hc2(T)

Mixed State

Hc1(0)
Hc1(T)

 

(a) (b) 

Figure 2-4 Phase diagrams of Type I and Type II superconductors. Type I 

superconductors have two regions: Meissner State and Normal State; Type II 

superconductors have three states, Meissner State, Normal State and Mixed State. 

Most power superconducting applications require that the superconductor is in the 

form of a long, strong and flexible conductor so that it can replace traditional wires. 
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However, current HTS materials are easily cracked due to their ceramic nature. YBCO 

tape is produced by coating YBCO powder onto a specially prepared substrate. Figure 

2-5 shows the typical structure of a coated YBCO superconductor. The YBCO layer is 

only 1 μm thick. And it has been demonstrated that the thicker the superconducting layer, 

the lower the current density the tape can carry [18].  

 

Figure 2-5 Configuration of a YBCO coated superconductor [10]. The superconducting 

YBCO layer is 1 µm thick, and is surrounded by substrate and stabilizer. 

In order to investigate the macro behaviour of a superconductor in magnetic field, 

Bean proposed the famous critical state model (CSM) in the 1960s [19, 20]. The CSM 

divided a superconductor into two regions: the penetrated area or critical region, and the 

unpenetrated area, also called the subcritical region. It was assumed that the current 

density in the critical region was equal to the constant critical current density, Jc, and 

the magnetic field was equal to zero in the subcritical region, which was indicated by 

the Meissner Effect. The Bean model has been verified by numerous experiments and it 

has been widely applied in analytical and numerical calculation for its simplicity. 

Experiments have shown that the critical current is degraded under a magnetic field, as 

depicted in Figure 2-6. Kim [21] raised a new model, now called the Kim model, to 

modify the constant Jc assumption in the CSM. He claimed that the critical current 

depended on the local magnetic flux density, B: 

   0
0

0

c c

B
J B J

B B



 Equation 2-2 

where Jc0 is the critical current density with no external field, and B0 is a fitting 

parameter obtained from experimental results, as shown in Figure 2-6. 
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Figure 2-6 Critical current as a function of the parallel and perpendicular magnetic fields 

at different temperatures for YBCO tape by AMSC in 2006. The critical current is 

decreased by the existence of an external magnetic field [10]. 

2.1.3 Superconducting theories 

Since the discovery of superconductivity in 1911, the physics community has been eager 

to explore its mechanism. Although the journey to the theory of superconductivity is 

still continuing, there have been many achievements and these theories have greatly 

extended our understanding to superconductivity.  

In 1934, the Dutch physicists Gorter and Casimir proposed a simple physical model, 

the two-fluid model, based on a thermodynamic treatment of superconductivity [22]. 

This model introduced two new points: 

(1). After transition to the superconducting state, some of the free electrons are 

“frozen” as ordered superconducting electrons. Thus the total electrons can be divided 

into two parts: superconducting electrons and normal electrons. The ratio of 

superconducting electrons to total electrons is closely related to the temperature. When 

the temperature decreases to absolute zero degree, all the electrons become 

superconducting. 

(2). The zero resistivity is due to the fact that superconducting electrons are different 

from normal electrons in terms of their motion. Normal electrons induce resistance 

because of electron scattering, while the superconducting electrons follow a completely 

ordered motion with no scattering. 

The two-fluid model is a phenomenological model which can explain a few 

superconducting phenomena. It can give a rough understanding of superconductivity at 

the macro level. This marks the first step of developing a superconductivity theory. 
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The second step was made by the London brothers, who suggested the London model 

to explain the Meissner Effect [23]. To maintain the Meissner Effect, there was a 

superconducting current flowing within the very small penetration depth along the 

surface. The penetration depth was negligible compared to the superconducting 

thickness. Another contribution of the London model was that it laid the foundation to 

utilize the Maxwell equation to describe the electromagnetic behaviour of 

superconductors. 

One of the major achievements of the 1950s was the establishment of the Ginzburg-

Landau theory [24]. This theory assumed that the emergence of superconductivity was 

the result of second-order phase transitions. It bridged the macro phenomenon with 

micro parameters by revealing the quantum nature of superconductivity. A major 

success of the Ginzburg-Landau theory was the prediction of type-I and type-II 

superconductors.  

Another major achievement of superconductivity research is the BCS theory [25], 

proposed by Bardeen, Cooper and Schrieffer. Based on BCS theory, the key to 

superconductivity was the introduction of the Cooper pair, which held the 

superconducting electrons. The formation of the Cooper pair was the consequence of 

the energy gap below the critical temperature, showing that a Cooper pair was more 

stable than a normal electron. The existence of a Cooper pair rendered the electrons 

resistant to scattering by the lattice vibration, which was the mechanism of zero 

resistance. BCS theory was considered to be a great success since it presents a 

reasonable explanation for the rich phenomena of superconductivity, such as the 

temperature dependency of the energy gap E and the critical magnetic field. 

2.1.4 Superconductor materials 

Parallel to the search for the mechanism of superconducting, the investigation to identify 

technically useful superconductors has been another hot topic over the past decades. The 

critical values of superconductors must be large enough for technical applications, so 

only type II conductors are suitable. The first superconductors used for industrial 

applications were two kinds of low temperature superconductors (LTS): niobium-tin 

(Nb3Sn) and niobium-titanium (NbTi). Their superconductivity is successfully 

explained by the BCS theory. 
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However, the low operating temperature requirement limited their wide application. 

In 1986, lanthanum-barium-copper-oxide (La2-xBaxCu1O4) was found to be 

superconducting with a critical temperature of 40 K. This critical temperature exceeded 

the upper limit of the BCS theory prediction, therefore this new group of 

superconductors were usually referred to as “unconventional superconductors”, or “high 

temperature superconductors” after their high transition temperatures.  

In 2001, the discovery of superconductivity in MgB2 by Jun Akimitsu’s group 

produced a boom in applied superconductivity research [26]. This conductor had a 

critical temperature of 39 K and the critical field Hc2 of 33T, higher than that of Nb3Sn. 

Thus MgB2 seemed to be the most promising material for the next generation high field 

magnets and a strong competitor for Nb3Sn and NbTi. 

Six superconductors are currently used for industrial-scale applications, and are 

known as technical superconductors: 

 Niobium-titanium (NbTi) 

 Niobium-tin (Nb3Sn) 

 Bismuth-strontium-calcium-copper-oxide (BSCCO 2212) 

 Bismuth-strontium-calcium-copper-oxide (BSCCO 2223) 

 Rare-earth-barium-copper-oxide (REBCO) 

 Magnesium-diboride (MgB2) 

Only the BSCCO2212, BSCCO2223 and REBCO superconductors can be practically 

used in industrial applications at 77 K (the liquid nitrogen temperature). The first two 

are denoted as first generation (1G) HTS materials, and are manufactured using powder-

in-tube (PIT) manufacturing processes. Although the fabrication technologies are quite 

mature and their properties are sufficient, the high cost is a hindrance to wide usage. It 

is very difficult to reduce their high cost because silver is an unavoidable requirement 

for the fabrication process. Silver is used as a sheath material and it is crucial to the 

success of the PIT processes for both BSCCO 2212 and BSCCO 2223, as it is the only 

material that is both chemically compatible with BSCCO and permeable to oxygen at 

the processing temperature. It also decreases the formation temperature of the BSCCO 

2223 phase. Silver comprises approximately 60% of the cross-section and thereby 
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contributes to a significant fraction of the cost of BSCCO 2223 wire. Besides the high 

cost, 1G superconductors do not perform as well as 2G REBCO conductors, under 

external magnetic field. 

Contrary to the powder-in-tube processes used to fabricate 1G HTS, REBCO 

conductors are produced by multilayer coating on a textured substrate, and this 

techniques are named as “coated conductor technologies”. Figure 2-7 presents the 

schematics of the epitaxial multilayer structure of 2G REBCO superconductors. A nickel 

alloy strip is typically used as the depositing base, upon which a buffer layer and a 

superconducting layer are deposited successively. The buffer layer prevents metal atoms 

from diffusing from the substrate into the REBCO layers. The superconducting 

behaviour is utterly dependent on the grain directions, so epitaxial growth is required. 

The initial texture for epitaxial growth is either formed within the metallic substrate by 

the rolling-assisted, biaxial textured growth (RABiTS) method, or, in the initial buffer 

layers by using an ion-beam-assisted deposition technique. After this, a thin layer of 

silver is added to the REBCO layer to protect it against environmental degradation and 

to enhance the electrical contact. Finally, copper is applied over the silver layer to enable 

current transfer and stabilize the superconductor.  

 

Figure 2-7 The configuration of 2G coated conductors constructed using two techniques. 

The left is produced using RABiTS by American Superconductor, and the right using 

IBAD, by SuperPower [27] 
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2.2 Modelling methods 

Since the fabrication technologies have achieved great successes so far, electrical and 

manget engineering have been focusing on the application of these superconducting 

materials. Both analytical and numerical models have been developed during the past 

two decades for designing superconducting devices. Analytical methods employ 

relatively simple formulas and calculate the magnetic field for simple geometries. They 

are fast methods that offer us the opportunity to understand the basic mechanism of 

electromagnetic behaviour. However, there are some limitations, such as the constraints 

on the simple geometry and tape configuration. On the other hand, numerical methods 

are more flexible and powerful. 

From the mathematical point of view, there are two existing numerical schools in 

solving engineering continuum problems. The first method is the field approach, which 

involves the solution of partial differential equations (PDE) using element 

approximation. The second approach is denoted as the source distribution technique, 

which makes use of Green’s function and seeks the field directly by integration of trying 

source distribution. This thesis refers to these two approaches as the differential method 

and the integral method, respectively. In other references they sometimes are referred to 

as the partial differential equation (PDE) and integral equation (IE) methods. 

As noted in the previous section, the most obvious feature of a superconductor is the 

Meissner Effect under a magnetic field, due to the induced surface current. The induced 

current generates a magnetic field opposing the external field, and thus reduces the 

magnetic flux density inside the superconductor to zero. The most difficult part of the 

model is to determine the current distribution by the self field or external field. Both the 

differential method and the integral method try to numerically calculate the current 

distribution. The following section presents a short review of current distribution 

simulation methods: the analytical method, differential and integral methods. 

2.2.1 Analytical method 

Norris [28] first summarized the AC loss calculation using complex variable analysis of 

simple geometries in 1970. He derived the AC loss calculation equations for a single 

tape with the cross-sectional geometries of rectangle, circle and ellipse. His results 

employed the original Bean model, assuming the critical current density to be constant. 
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These results were widely used as benchmark examples for modern experimental and 

simulation results. According to Norris’s calculation, the AC loss for a single rectangle 

tape is: 

 2

0 c nQ I L  Equation 2-3 

where Ln is the loss factor, a parameter related to the carrying current, which can be 

found in a table in the original paper. 

Brandt [29] later extended Norris’s calculation for a single tape with a large 

width/thickness ratio. Brandt also proposed a method to calculate the current 

distribution during the process of current changing. According to Brandt’s paper the AC 

loss in single tape is [30]: 
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2.2.2 Differential methods 

The basic idea of the differential method relies on Ampere’s law, which relates the 

magnetic field to the current source. Since the finite element method (FEM) is a 

powerful tool for solving PDEs, it is natural to use the FEM with Ampere’s law to 

calculate current distributions. We can transform the Maxwell’s equation into different 

formats to satisfy FEM implementation. There are some differences in choosing 

different formats of PDEs and the selection of format results in three formulas: A-V 

formula [31], T-Ω formula [32] and H-formula [33]. The name of each formula is based 

on the variables solved by the formula. Grilli summarized different formulations 

commonly used to solve the Maxwell equations with numerical models [34]. To use all 

differential methods, it is necessary to predefine the resistance and to set the boundary 

conditions and initial values. Superconductivity is described by the E-J law, as shown 

in Figure 2-2. The smooth current-voltage characteristic is especially preferable for 

FEM simulation. From the E-J law, we can easily determine the resistance of the 

material as: 
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Normally, this resistance is measured by current-voltage experiments and applied to 

the FEM analysis. For most differential problems the boundary conditions are infinitely 

far away, hence the simulation volume is much larger than the superconducting regions. 

The A-V formula is widely used and highly developed method for conventional 

materials, and it can also be applied to superconductors [35].  

The control equation of A-V formula is: 

 

0

1 1 dA
A V

dt 

   
        

  
 Equation 2-7 

where A and V are state variables, standing for the magnetic vector potential and 

electrostatic potential, respectively. V is a scalar field related to the electric field, E. It 

can be interpreted as the potential due to electrostatic charges. In many cases the 

electrostatic potential V is ignored. Hauser developed a special element, and first 

modelled the force and the displacement in superconducting bearing using the 

commercial FEM code, ANSYS [36].  

The control equation can also be formulated using the current vector potential, T, and 

the scalar magnetic potential, Ω, in an equation very similar to the A-V formula. The 

current vector potential, T, and scalar magnetic potential, Ω, are defined as: 

 
T J   Equation 2-8 

 
H T   Equation 2-9 

where Ω is calculated analogous to the way that static charges determine V in the A-V 

formulation. The control PDE of T-Ω formula from the Maxwell equations can be 

obtained using: 

 
  0

dT d
T

dt dt
 

   
      

  
 Equation 2-10 

Amemiya raised the T-Ω formula with the normal node element in a superconductor 

in 1998 and used it for different boundaries and geometries [32]. Stenvall presented the 

vector potential eddy current formulation for solving the hysteresis losses of 

superconductors using the finite element method [37, 38]. He incorporated edge element 

in this method and compared the results to the existing analytical method, obtaining 

good agreement.  
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The latest established formula was the H-formulation, which was first reported in 

2006 and was used by many research groups worldwide. Compared to the other 

differential methods, the H formulation has advantages of using the fewest variables, 

easily setting boundary conditions and avoidance of unstable calculations. Another 

obvious advantage is that it can be applied using commercial software, which frees us 

from complicated and tedious programming. 

According to Faraday’s Law: 

 dH
E

dt
    

Equation 2-11 

Since H has Hx and Hy two components in 2D geometry: 
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Inserting E-J law into the above equation:  
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Ignoring the displacement current for quasi-approximation problems, Ampere’s law 

gives:  

 
y x

H H
J

x y

 
 

 
 Equation 2-14 

Thus, the control H-formula yields: 



- 22 - 

 n

y x

c

c

x

n
y

y x

c

c

H H

x y
E

J

dH

y dt

dH
H H

dt
x y

E
J

x



   
   

    
   
         
   
    
            

       
        

 

 Equation 2-15 

This equation can be represented by the general PDE form:  

 
  0

dH
H

dt
      Equation 2-16 

Hong implemented this approach in COMSOL and applied it to  magnetisation 

simulation with impressive results [33]. His work provided a new way to carry out 

numerical modelling with the COMSOL commercial software. Grilli employed this 

approach in AC loss calculation first and compared it to experimental results, which 

verified the model [39]. Zhang further extended this model to complicated materials and 

geometries with experimental results [40, 41]. The H-formula employs the magnetic 

field variable H as a state parameter directly, so it is especially efficient to incorporate 

the Kim model. 

Although differential methods are hugely successful at simulating current 

distribution, there are some natural drawbacks to hinder them from future device-scale 

simulations. The YBCO layer has a thickness of 1 µm and the tape has a width/thickness 

ratio of greater than 4000. Additionally there is a drastic change in current density, which 

requires very fine meshes to gain an accurate current distribution. At the same time, 

differential methods require boundary setting which further increases the complexity of 

the meshes. What’s more, the superconductor model is highly non-linear which 

significantly increases the calculation time. This is impractical when applied to a real 

engineering device simulation, where hundreds of tapes are wound together to generate 

the expected magnetic field. The emergence of integral methods offers a promising 

method for simulating current distribution since they overcome these limitations by the 

incorporation of reasonable assumptions. 
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2.2.3 Integral methods 

With the development of differential FEM methods in the last century, integral equation 

methods have also drawn considerable attention. The choice of integral methods is made 

to avoid the use of global meshes and also to avoid the need to specify external boundary 

conditions. The integral method was first employed in magnet design, and was later 

extended to assess the effects of eddy currents in the design of both accelerator and 

Tokamak magnets [42]. 

The basic idea of superconductor modelling is minimization of the magnetic energy 

in the superconducting region. In this approach, trying current distribution is specified 

in the whole superconducting area. The whole energy can then be obtained using 

integrated parameters, such as the magnetic flux density, B, or magnetic vector potential, 

A. With the help of mathematical optimization algorithms, we can find the optimal 

current distributions. 

Clem proposed an numerical method to estimate the AC losses of a stack of 

infinateYBCO tapes based on integral equations [43]. According to the previous results, 

he also assumed that the tape is homogenous, carrying the same net current, and that the 

critical current penetration in the superconductor is a line vertical to the width direction. 

The second assumption is that each tape has a constant penetration depth. These two 

assumptions built the foundations for trying current selection. From the Green theorem, 

the vector potential, A, and magnetic flux density, B, can be derived respectively: 
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Based on Clem’s idea of the line front track assumption, Yuan raised a new model by 

replacing the frontier with a quadratic function [44, 45]. This model minimised the total 

perpendicular B square in the subcritical region. In Yuan’s model the same homogenous 

approximation was applied, but allowing for a magnetic field dependence on the critical 

current density. Further extension was made to the cylindrical geometry for coils with a 

small inner radius. Yuan verified his model with experimental results. 
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Pardo and Gormory proposed a minimum magnetic energy variation (MMEV) which 

minimizes the functional in the J formulation and constrains the current in each tape. 

The energy was calculated by A∙J across the superconducting area [46, 47]. All current 

distributions with discrete values below the critical current density were calculated, and 

the current with the least energy was chosen as the stable state. The current distribution 

and AC losses were compared to analytical and experimental results. 

Prigozhin created the variational method to investigate the current distribution of a 

bulk superconductor in the mid 1990s [48]. Since the thickness of the YBCO layer is so 

small, usually 1 μm, it was natural to consider it as a sheet. In 2011, he extended his 

model to coated conductors, and this new model was called the sheet current model [49]. 

Based on the current density distribution, an inequality was drawn from Bean’s model. 

After some transformation and variational processes, this problem became a quadratic 

optimisation problem and the optimal current distribution denoted for the minimised 

energy state. The MMEV and the sheet current model share the same energy formation 

and can yield the same current distribution. 

All integral methods have the virtue of fast calculation. This efficiency comes from 

two aspects. The first reason is that the critical current state avoids nonlinear iterations, 

which appear in differential methods due to the E-J power law. The second reason is the 

avoidance of global mesh generation. In the integral method, only the values at the 

points of interest are calculated, particularly in large aspect ratio tapes, rather than the 

whole area as in FEM methods. Both these reasons make integral methods attractive for 

future simulations, especially in superconducting devices based on YBCO tapes. 

2.3 AC loss 

2.3.1 AC loss mechanism and classification 

When superconductors are exposed to an AC electromagnetic field, energy is dissipated, 

which is referred as the AC loss. From a macroscopic perspective, AC loss results from 

the induced electric field by the transporting AC current or the time-varying external 

magnetic field. From a microscopic perspective, AC loss is the energy dissipation during 

the movement of the depinned flux lines.  
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AC loss can be classified into two groups: magnetisation loss and transporting loss. 

The superconductor can be magnetized by an external magnetic field and, similar to 

ferrous materials, the magnetisation B-H curve can be plotted during the magnetisation 

process. Thus, the magnetisation loss can be calculated by integrating BH across the 

close B-H curve. The transporting loss is the dissipated energy when the superconductor 

is carrying an AC current. Both losses should be considered when the superconductor is 

transporting AC current in an external time-varying magnetic field. 

From the aspects of physical mechanisms, AC loss can be divided into three types: 

hysteresis loss, eddy loss and coupling loss. Hysteresis loss is caused by the movement 

of the penetrated magnetic flux in the superconductors under AC conditions. Eddy loss 

is generated by the induced circulating currents in the normal metal parts of the 

superconductors. Coupling loss is caused by the currents coupling two or more 

superconducting filaments via the normal metal regions separating them. Under power 

frequency, the major part of AC losses is due to hysteresis loss [50]. 

2.3.2 Measurement techniques 

There are two ways to measure AC losses in a superconductor: the calorimetric method 

and the electrical method.  

A calorimetric method to measure AC losses in superconducting tapes was 

introduced in [51, 52]. Figure 2-8 presents the measurement system. This method is 

based on the idea that the AC loss produces heat, which boils a corresponding amount 

of liquid nitrogen. Thus, the AC loss in the coil can by measured through the gas 

evolution rate in the boil-off chamber. This technique is relatively easy to set up, 

however, it has limitations in terms of sensitivity and the need for expensive 

experimental equipment.   

The second method to measure AC losses in superconductors is the electrical 

method [53]. Figure 2-9 gives an example circuit. The superconducting device is 

connected to an AC current using a power amplifier controlled by a function generator. 

Thus, a suitable AC current supply is introduced to the system. A compensation coil is 

used to eliminate the inductive part of the voltage so that only the in-phase resistive 

component remains. A lock-in amplifier is used to detect voltage signals in-phase with 
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the operating current. The resistive part in the sample can thus be collected and the AC 

losses can be calculated. The AC loss per unit length per cycle (the unit of AC loss) is: 

 rms rmsI V
Q

f
  Equation 2-19 

The first difference between the electrical method and the calorimetric method is that 

the electrical method can only measure the transporting losses, however the calorimetric 

method can measure both the transporting losses and magnetisation losses. However, 

the electrical method is less time consuming than the calorimetric method, in terms of 

efficiency.  

 

Figure 2-8 Schematic of the experimental apparatus used for AC loss measurements in 

superconducting pancake coils using the calorimetric liquid nitrogen boil-off technique 

[54] 

2.3.3 AC loss calculation methods 

Like Joule heating, AC loss can be calculated by: 

 q E J   Equation 2-20 

where q is the heat density with units of W/m3. As we have seen, J can be directly 

derived by the methods presented in sections 2.2.1 and 2.2.2. The problem is how to 

calculate the electric field E. 
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Figure 2-9 AC loss measurement system using the electrical method 

For the H formula, E can easily be found using the E-J law, while for the integral 

method, careful derivations should be performed. As we have pointed out in last section: 

 dA
E V

dt
    Equation 2-21 

where V  is the gauge of the potential. According to the Bean model assumption, the 

electric field in subcritical region is equal to 0. Thus in the subcritical region: 

 subcriticaldA
V

dt
    Equation 2-22 

Since V  remains constant across the section, the electric field in the section can be 

expressed: 

 subcriticaldAdA
E

dt dt
    Equation 2-23 

The total AC loss of the section can be integrated across the section: 

 

T S

Q E Jdxdydt    Equation 2-24 

2.4 Thermal and mechanical modelling 

After establishing the current distribution calculation, multiphysics modelling is 

required to simulate the thermal and mechanical fields within the system. There are 

several reasons for the implementation of thermal and mechanical field modelling.  
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For thermal modelling, quench simulation is a priority task of superconducting coil 

design and is closely related to the safe operation of the coils. Once the quench is 

triggered under the time-varying magnetic fields, the current decaying process, 

temperature distribution and voltage between the terminals are key issues for magnet 

stability. All these processes can be simulated and visualized with the help of thermal 

coupled simulations. Another reason for using thermal simulation is to design the 

cryogenic system. The selection of the cryocooler and the configuration of the coldhead 

can be optimized using the results of the temperature distribution simulation. 

High current in the superconducting tapes coupled with high magnetic field may 

result in an enormous Lorentz force, which may destroy the whole system. Thus, 

mechanical stability requires the accurate simulation of stress and strain distributions. 

Secondly, most superconductors are wound into coils, or pancakes, to function as 

magnets, and many experiments have shown that the winding process degrades the 

critical current of the tapes [55]. Understanding the mechanical stress distribution helps 

us to avoid degradation and to optimize the coil design.  

Park presented the optical configuration of a 600 kJ SMES acquired by Auto Tuning 

Niching Genetic Algorithm [56]. Electromagnetic fields and stresses were then 

calculated by FEM for different operating currents. The stresses (radial and hoop stress) 

imposed on the designed HTS magnets were calculated by the program, and the results 

of the stress analysis were discussed. The results showed that the hoop stress was the 

main concern in SMES design. In this research the superconductors were considered to 

be normal conductors, and this simplification sometimes was not appropriate 

Zhang performed an experimental and numerical study of a YBCO pancake coil with 

a magnetic substrate in COMSOL [40, 41]. The influence of the magnetic substrate 

under AC and DC conditions was studied. It was observed that when the applied DC 

current approaches the critical current, the coil loss profile changed completely in the 

magnetic substrates due to the change in the magnetic field distribution.  

In summary, up to now papers about multiphysics solutions for superconducting coils 

using HTS are very limited, and the model is not fully developed. Some papers have 

focused on thermal fielded calculations of several tapes, such as quench propagation 

and the minimal energy zone. Other papers have studied the mechanical field simulation 
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using the homogenous material model. Few work involves the complete multiphysics 

modelling in superconducting coils. 

2.5 Superconducting energy storage 

2.5.1 Structure and application 

Efficient and reliable electric energy storage technologies have become more and more 

important in the past few decades [57]. SMES has many advantages and shows the 

potential for further application [58]. It is well accepted that SMES devices have large 

roundtrip efficiency and large power density. Furthermore, SMES has a long calendar 

life, long lifecycle and rapid response to power demands. Therefore, from a technical 

sense, SMES is an ideal storage system for electrical utilities. 

 SMES stores energy in the form of persistent current in superconducting coils and 

exchanges the energy between the coils and the grid when necessary. Since no energy 

conversion takes place during the charging and discharging process, the efficiency is 

extremely high and the response time is very short. SMES system consists of four parts: 

the superconducting magnetic coils, the power conditioning system (PCS), the cooling 

system and the control system, as presented in Figure 2-10 [59]. 

Coil
Power condition 

system

Cryogenic 

system

Control 

system

Power Grid

SMES System

 

Figure 2-10 SMES system has four parts: superconducting coil, power conditioning 

system (PCS), cryogenic system and control system. It connects to the power grid 

through PCS. 

Superconducting magnets are the key part of SMES systems. In a 2G HTS SMES, 

the magnet is assembled from pancake coils. The major part of the power conditioning 

system is an AC/DC converter, which transfers energy from the superconducting 

magnets bi-directionaly. While the cooling system plays the role to sustain the required 
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cryogenic environment for superconductivity. The control system regulates both the 

PCS and cryogenic system. For instance, if the transporting current exceeds the critical 

current, which may cause a quench, the control system may increase the cooling power 

and trigger the quench protection. 

SMES systems offer significant benefits to power systems. These applications can be 

classified into three aspects: system stability enhancement and power quality 

improvement. 

Modern power systems have obvious limitations in terms of stability and security, 

because they lack sufficient components that can absorb and release energy quickly [60]. 

The stability of a power system relies on the inertial energy storage of the generators, 

relay protection and other automatic devices, which act as passive protection. As an 

active power source, SMES can be used to eliminate the lower frequency oscillation of 

an interconnected power grid, and to migrate sub synchronous resonance (SSR) and sub 

synchronous oscillation (SSO). As a reactive power source, SMES can also provide the 

necessary voltage support for a transmission line, particularly for the end loads. Figure 

2-11 shows that SMES can provide both active and reactive power to the grid. 

P, Q Pt, Qt

Ps, Qs

SMES Unit

Generator

Infinite Bus

 

Figure 2-11 SMES unit connected to generator providing both active and reactive power. 

Active power is denoted by P and reactive power is noted by Q 
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In order to improve power quality, SMES can be used as an energy storage system 

for a flexible AC transmission system (FACTS) devices [59]. A static synchronous 

compensator (StatCom) is one of the core units and core technologies in a FACTS. Its 

major role is to compensate the reactive power, maintain the voltage between joint 

points, and to improve the steady-state and dynamic performance of the system. The 

active power from SMES enables the StatCom to absorb and inject active and reactive 

power simultaneously, and thereby offers additional benefits and improvements. 

2.5.2 SMES history 

The concept of SMES was suggested in France in 1969 to level the diurnal power 

demand in a utility grid [5]. The basic process was to charge the superconducting magnet 

during the off-peak time and to release the energy during the peak time. Feasibility 

studies were conducted in the 1970s to consider large scale SMES as a replacement for 

pumped hydro [9, 61]. The technical feasibility of large scale SMES for load levelling 

was demonstrated, but the cryogenic system for LTS SMES was too expensive and the 

cooling down process usually took a long time, making it very impractical. 

Los Alamos and Bonneville Power Administration proposed a different application 

for SMES in 1976. They aimed to stabilize a power grid using a 30 MJ/10 MW 

superconducting magnet. Following this project, Japan and US conducted some other 

projects. To the end of the 1980s, research efforts and business development were started 

on medium and small scale SMES devices, such as compensation of load fluctuation for 

factories and military application. These efforts verified the effectiveness of the SMES 

systems at several sites. 

Since the discovery of HTS in 1987, intensive research has been conducted to design 

and build HTS SMES. The advantage of HTS SMES is the operating temperature above 

that of liquid helium, which simplifies the cryogenic system and lowers the construction 

cost. Another advantage is that at 20 K and a field above 10 T the critical current density 

of HTS is much higher than that of LTS. At the same time, the mechanical strength of 

HTS is greater than those of LTS wires, since they are enhanced by the alloyed substrate 

materials. As a result, a compact coil with a high field operated at 20 K can be made 

using HTS [59]. 
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As early as 1993, a conceptual design of HTS SMES was proposed in the U.S. A 

Bismuth-based superconductor – BSCCO – was used in the design, and the energy 

stored ranged from 7.2 GJ to 720 GJ [62]. This paper analysed feasible configurations 

for the critical current density, cost, magnetic field and strain distribution, which were 

the key consideration for the SMES design. It concluded that, for practical applications, 

the critical current should be improved, the prices of conductors should be lowered, 

higher field operation was required, strength should be enhanced, and AC loss needed 

to be reduced. These conclusions are still viable today. 

The first successfully constructed HTS SMES was reported in 1997 by Kalsi [6]. It 

was a 5 kJ SMES, consisting of a BSCCO-2223 solenoid coil and operating at a 

temperature of 25 K. This system was designed and built by American Superconductor, 

which was shipped to Germany to be tested in a scaled grid. The success of this HTS 

SMES proved the feasibility of using HTS SMES in commercial products. Combined 

with the commercialisation of BSCCO conductors, this success was followed by many 

HTS SMES projects around the world, capable of holding energy from the small scale 

(kJ) to the medium scale (MJ).  

Friedman A. and his colleagues designed two SMES systems using BSCCO tapes 

operating in liquid nitrogen [63]. The second device stored 1.2 kJ and could release 

20 kW during the discharging process. The superconducting coils had ferromagnetic 

cores to enhance the energy density. Using liquid nitrogen in the cooling method offered 

a good thermal contact between the coolant and the device, thus providing good thermal 

stability and homogeneity. These projects proved the power conditioning capability of 

HTS SMES systems, and successfully demonstrated compensation for voltage drops in 

the electric grid. 

The University of Wollongong in Australia constructed a nominally 2.5 kJ prototype 

HTS SMES using BSCCO 2223 tape, and further work led to a 20 kJ HTS SMES device 

[8, 64]. This prototype was cooled to 20 K with a gaseous helium cold head cryocooler. 

The control electronics enabled the coil to discharge energy to a 3-phase AC load to 

compensate for the voltage sag.  

Grenoble University in France funded a project to design and construct a 800 kJ 

SMES with the rated current of 135A [65, 66]. Nexans conductors, made of Bi-2212 

PIT tapes, were used to wind the coils and the coils were soldered in parallel. 26 
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superposed simple pancakes were wound and bonded with epoxy to sliced copper plates. 

Cryocoolers were applied to make the cryogenics very friendly and invisible for the 

SMES users. This project demonstrated the feasibility of industrial SMES application. 

Table 2-1 Selected SMES projects with the year developed, stored energy and design 

purpose 

Country Developer and Year Material Energy Application 

U. S. LANL, 1979 NbTi 30 MJ Frequency regulation 

University of Florida, 

2003 

NbTi 100 MJ Frequency regulation 

AMSC, 2010 NbTi 1–5 MJ Commercialized 

Japan NIFS, 2006 NbTi 1 MJ UPS 

Chubu Electric, 2009 NbTi 20 MJ Voltage sag 

compensation 

Chubu Electric, 2004 BSCCO 1 MJ Voltage sag 

compensation 

Toshiba, 2006 BSCCO, 

NbTi 

6.5 MJ Laboratory 

demonstration 

Korea KERI, 2006 NbTi 3 MJ UPS 

KERI, 2010 BSCCO 2.5 MJ Grid stability 

France CNRS, 2008 BSCCO 800 kJ - 

Italy University of Bologna, 

2008 

NbTi 200 kJ Enhance power 

quality 

Germany ACCEL Instruments 

GmbH, 2003 

BSCCO 150kJ UPS 

Australia University of 

Wollongong, 2005 

BSCCO 2.48kJ Voltage sag 

compensation 

China Tsinghua University, 

2007 

NbTi 300kJ Voltage sag 

compensation 

CAS, 2010 BSCCO 2MJ Enhance power 

quality 

HUST, 2005 BSCCO 35kJ Hydro station 

Poland ASL BSCCO 34.8kJ UPS 
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2.5.3 Comparison of SMES with other technologies 

Generally speaking, there are four types of energy storage systems that handle the 

intermittency and uncertainty of renewable energy generators: battery, supercapacitor, 

flywheel and SMES [67]. However, as shown in Figure 2-12, all energy storage 

elements cannot simultaneously satisfy both the desired characteristics of high power 

density and high energy density.  

Battery is the most widely used energy storage device [68]. It has considerably high 

energy densities and it is suitable to support a microgrid. However, it can’t release the 

required energy quickly and their total charging and discharging cycles are quite small. 

Flywheel stores energy in the form of the angular momentum with a spinning rotor. 

Kinetic energy from the flywheel can be transferred into AC power through the use of 

controls and power conversion systems [69]. The energy of flywheels can be charged 

and discharged very quickly, with specifically designed electronic interfaces, meaning 

the power density is high [70]. However, there is a large standby loss due to the 

mechanical bearing friction, also the energy transformation from mechanical to 

electrical process can also decrease the efficiency.  

Supercapacitors and SMES store energy in electromagnetic fields, absorbing and 

releasing energy controlled by electronic inverters [71]. Supercapacitors store energy 

through the separation of electrical charge. They achieve very high capacitance and 

energy capacity through a high surface area and small charge separation distance. Since 

there are no chemical variations on the electrodes, supercapacitors have a high power 

density, high efficiency and a long lifecycle. 

SMES systems run persistent current through closed superconducting coils so that 

magnetic energy can be charged and discharged [72, 73]. Their response time ranges 

from several milliseconds to several seconds, with an efficiency of greater than 95%. 

SMES systems have significantly higher power densities and module power ratings, 

compared to flywheels and supercapacitors. In addition, they have advantages such as 

solid-state operation and high round-trip efficiencies. Therefore SMES are able to 

improve the performance of renewable energy system significantly. 
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Figure 2-12 Ragone Chart of energy storage systems [74]. 

2.6 Summary 

This chapter reviews the relevant background of the superconducting materials and 

its application in SMES system. We first introduce the basic properties and theories, 

focusing on their macro aspects. Special attention is paid to the diamagnetism and E-J 

power law in Type II superconductor. This is followed by the tools for simulating 

superconductors. The control equations in different methods are described and 

explained in details. We also compare the different approaches to calculate the AC loss. 

In addition to the electromagnetism simulation, the previous work on thermal and 

mechanical simulation are also summarized. In the end, SMES system is introduced 

from the configuration, application in power system and existed projects. 
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Chapter 3. Superconducting Tape 

under Magnetic Field and 

Impregnation 

The ability to maintain a high current-carrying capability is the most important attribute 

of superconductors, which can be characterized by the critical current. Since the material 

and configuration are different from conventional LTS and 1G HTS, 2G coated 

conductors show quite different critical current characteristics. For example, contrary to 

LTS, the E-I curve of a 2G coated conductor is considerably smoother during the 

superconductor/non-superconductor transition. The columnar structure of a coated 

conductor and the weak link within the grain boundaries result in high anisotropy and 

easy degradation, which makes device design complex and challenging. Accordingly, 

further research into the critical current of 2G HTS conductors is very important, not 

only for practical applications, but also for understanding the underlying physics. 

The external magnetic field is one of the factors that influence the critical current 

density and cause anisotropy. Although the microscopic image of high temperature 

superconductivity is unclear at the moment, it is well accepted that the lossless current 

is related to the current vortex pinned by microscopic defects. The presence of an 

external field makes the flux flow easily, thus decreasing the critical current. At the same 

time, the critical current varies when the external field is in a different direction, which 

is named as anisotropy. As all superconducting devices operate under magnetic fields, 

whether a self field or an external field, it is of vital importance to understand and 

quantify the influence of the external magnetic field. 

Impregnation with epoxy resin is a necessary process for most superconducting 

components. Firstly, the impregnated conductor has better mechanical strength [75, 76], 

which can resist the Lorentz force and keep the superconducting unit stable. Another 

reason for impregnation is to improve the thermal conductivity [77]. More and more 
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superconducting components are cooled by cryocoolers. Insufficient thermal 

conductivity causes a temperature gradient and limits the performance of 

superconducting components. Filling the void of the superconducting unit can enhance 

the thermal stability. However, the impregnation process can also bring about 

degradation to the critical current of the superconductor. This degradation results from 

the thermal mismatch between the superconducting tape and the resins during the 

cooling process. In order to control the degradation, careful selection of the 

impregnation material requires further investigation.  

This chapter is dedicated to analysis of the influences of the external magnetic field 

and different impregnation materials on 2G HTS short samples, in order to pave the way 

for further application in energy storage design. The chapter is organized as follows. 

Section 3.1 introduces some concepts related to theoretical modelling. Section 3.2 

explains the experimental instrumentation system used to measure the critical current of 

the superconducting short samples. Section 3.3 continues to measure and discuss the 

influence of an external DC magnetic field on the critical current and the n value. In 

section 3.4, experiments are performed to study the effectiveness of the impregnation 

process. 

3.1 Theoretical model of tape 

3.1.1 Flux pinning and critical current 

The critical current of superconductors in most technical applications is largely 

determined by the properties of the superconducting vortices. These vortices are formed 

as tubular structures when a type II superconductor is exposed to a magnetic field, as 

shown in Figure 3-1. Each vortex is surrounded by encircling supercurrent and carries 

certain magnetic flux, or flux quanta, which acts as small solenoid magnets.  

Transporting current through the superconductor under an external magnetic field 

(for example, the superconducting winding in an electric motor) induces a Lorentz force, 

FL, on the vortices, which can be calculated by: 

 0LF J   Equation 3-1 

where J   is the applied current density and 0   is the magnetic flux carried by each 

vortex. 
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When superconductors contain normal inclusions due to structural defects, vortices 

can be struck by these “defected” sites, thereby preventing the movement of the vortices. 

This phenomenon in Type II superconductors, called flux pinning, forms the foundation 

for all technical superconductors. These vortices experience an attractive force, Fp. 

When the applied current is large enough that FL > Fp, the vortices move away from the 

pinning sites. A moving vortex induces a resistance which dissipates energy named as 

AC loss.  

 

Figure 3-1 Schematic view for two parallel vortices with the presence of an external 

magnetic field. When two vortices come close to one another, they repel each other. 

The current density at which FL= Fp is the critical current density, Jc, which can be 

defined as: 

 
p

c

F
J

B
  Equation 3-2 

where Fp denotes the pinning force and B is the applied magnetic field. 

Generally, Jc decreases with increasing temperature and magnetic field, and reaches 

zero when the temperature and magnetic field exceed the critical values. Beyond the 

critical temperature and critical magnetic field, the superconductor loses its ability to 

transport loss-free current. 

repelling force supercurrent 

magnetic field 
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Figure 3-2 (a) Schematic of fluxes moving under a Lorentz force (black arrow) induced 

by an applied current (green arrow) and an applied magnetic field (red arrow) in a 

defect-free superconductor; (b) Sections of fluxes pinned by point defects (including 

oxygen vacancies, precipitates, dislocations or defects induced by irradiation). (c) Entire 

sections of fluxes are pinned by line defects, such as amorphous columnar tracks 

induced by high-energy heavy ion irradiation [78]. 

High temperature superconductors contain a high concentration of natural pinning 

sites, such as oxygen vacancies, as shown in Figure 3-2(b). To improve the electrical 

properties of superconductors, one can also manufacture pinning centres artificially, 

optimizing their shape, size and arrangement. Linear defects, such as columnar defects 

as shown in Figure 3-2(c), produced by irradiating superconductors with high energy 

ions and dislocations, have proven to be among the most efficient pinning centres. 

Columnar defects are more effective in pinning vortices than randomly placed point 

defects, as they can be geometrically matched to the vortices. However, engineering the 

pinning sites to match with each superconducting vortex is still an ongoing question 

being addressed through recent advances in nanotechnology. 

3.1.2 The E-I relation, critical current and n-value 

The V-I relationship is more commonly used to characterize superconductivity from an 

engineering perspective. The voltage can be measured by applying a certain current to 

the superconductor. Figure 3-3 presents a typical V-I curve. If the voltage is divided by 

the distance between the voltage taps, this curve can be easily transformed to the more 

well-known E-I curve. 
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Figure 3-3 Typical curve of V-I measurement. Because of flux creep, there is finite 

resistance even at a current well below Jc at a finite temperature, in contrast to T=0. 

There are three different parts to the V-I curve: a creep region in the low current range, 

a flux flow region in the high current range and a critical region bridging the two. The 

critical current of the superconductor is defined by a certain voltage drop, normally 

1 µV/cm in the critical region. 

This curve can be explained from the view of flux pinning. In the creep region, after 

applying a finite current to the superconductor there is a finite resistance even at low 

temperatures. This is because thermal fluctuations can promote vortex jumps between 

neighbouring pinning sites in a process known as flux creep. Flux creep is enhanced by 

the fact that the pinning sites are randomly distributed. When the current is further 

increased to close to the critical current, the voltage enters the transition region. If the 

current is further increased and the Lorentz force becomes stronger than the pinning 

force, the flux flow stage begins and the pinning effect no longer works so that the flux 

flow regime becomes dominated by the Lorentz force [79]. 

Typical E-I curves have a highly non-linear transition process from the flux creep 

region to the flux flow region, which can be well fitted by a simple power-law relation: 

 n

c c

E I

E I

 
  
 

 Equation 3-3 

where E and I are the measured voltage and current, Ec is the voltage criterion and Ic is 

the critical current related to Ec.  
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According to this equation, if the relation between Ec and Ic is determined, the 

superconductivity can be characterized by Ic and the n-value, which is very important 

for numerical models. By varying the n-value from 1 to infinity, this relation can be used 

to cover most conductors from an ohmic metal to an ideal superconductor in the critical 

state. When n has some finite values, the flux creep region in Figure 3-3 can be well 

depicted. 

Although E-I curves for LTS and HTS are very similar in the formula, the physics 

behind the formula are different. For conventional LTSs, the E-I curve is widely believed 

to result from the non-uniformity of the critical current density. The transition process 

in LTS from the flux creep region to the flux flowing region is very swift compared to 

HTS. In other words, the n-values for LTS are usually much larger than that for HTS. 

For hard superconductors, including HTS, the E-I transition curve can be explained 

by the theory of thermally activated flux creep proposed by Anderson and Kim [80]. 

This theory showed that random thermal fluctuation can promote the vortex to migrate 

away from its equilibrium position, which has a minimum energy. The escaped vortices 

tend to move slowly, or creep, in order to relax the pinned energy. This relaxation 

process can be described by the escaped rate, R, which is related to the Boltzmann factor 

[81]: 
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  Equation 3-4 

where Up is the pinning potential energy, v0 is the attempt frequency, kB is the Boltzmann 

constant and Tn denotes the temperature. 

By extending the standard flux flow model, the E-J characteristic in the current 

condition can be found in Ref [81]: 
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 Equation 3-5 

where n  is the flux flow resistivity due to flux creep, Lp is the pinning potential range, 

and v0 is the attempt frequency of a flux bundle to hop a distance. 

Comparing Equation 3-3 to Equation 3-5, we can derive the microscopic explanation 

of the n value: 
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    Equation 3-6 

Equation (3-6) shows that the n value is proportional to the pinning energy, Up, given 

a constant temperature. 

3.1.3 Anisotropy of 2G HTS conductors 

The anisotropy of the 2G HTS conductor refers to the phenomenon in which the critical 

current not only depends on the magnitude of the external magnetic field, but also on its 

direction. This anisotropy should be considered when the superconducting component 

is being designed. Theoretical and experimental research into anisotropy is therefore 

necessary. 

According to the physics of 2G HTS conductors, two factors are influential to 

anisotropy: the layer structure of the oxide ceramic, and the boundaries between the 

grains. Since the layer structure is an intrinsic property of the material, more attention 

has been paid to the study of the effect of the grain boundaries on anisotropy. Meer et 

al. developed a model to describe the angular dependence of the critical current of a 

superconducting tape [82]. This model assumed that the Gaussian distribution of the 

misalignment angles of the grains and the critical current of the tape only depends on 

the magnetic field perpendicular to the surface. This model can be used to determine the 

critical current behaviour for all orientations of the magnetic field. Kiss et al. proposed 

a E-J relation based on a statistical analysis of the critical current by random flux 

pinnings to analyse the critical current dependence on external field angles [83, 84]. A 

comparison between this model and experiments shows that in a weak field and at small 

angles, the agreement is pretty good. 

Although these studies help us to understand the physics of anisotropy, from an 

engineering perspective another model, the Kim model, is more popular in dealing with 

real engineering problems [80]:  
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 Equation 3-7 

where Ic0 is the self field critical current, Ic
 (B) is the critical current under a magnetic 

field B, and B0 is a fitting parameter. For an isotropy superconductor this equation can 

be applied directly. But for a superconductor with anisotropy, such as 2G HTS, some 
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modification is needed to take into account the angular effect. Usually, the critical 

current is measured under parallel and perpendicular fields, so Equation 3-7 can be 

extended to parallel and perpendicular fields respectively: 
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 Equation 3-9 

where 0B    and 0B   are the fitting parameters under perpendicular and parallel fields 

similar to B0.  

Equation 3-8 and Equation 3-9 only give us the critical current in the parallel and 

perpendicular directions. In order to calculate the critical current other directions, we 

need to use another theory called the effective mass model. According to the effective 

mass model, an applied magnetic field H is equal to an effective magnetic field 
'H  

perpendicular to the ab-plane when the applied magnetic field H is tilted away from the 

c axis. Under the approximation of ma = mb = mab (ma and mb represent the effective 

mass along the a and b principal axes, respectively), the effective 
'H  obeys [85]: 
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 Equation 3-10 

where 
0

0

B

B




  is the parameter characterizing the anisotropy of the high-temperature 

superconductor (for YBCO, 5 7   , for BSCCO, 10  ).   is the angle between 

the magnetic field direction and the ab-plane.  

Assuming that the grains are well aligned in the HTS tape, and that the critical current 

of such a tape depends mainly on the component of the magnetic field applied 

perpendicular to the tape surface (ab-plane), from Equation 3-7 and Equation 3-8, the 

expression of the critical current for an arbitrary angle will be [85]: 

 
  1

2
2 2

2

0

,

1
1 sin cos

c
c

I
I B

B

B



 




 
  

 

 

Equation 3-11 
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If the critical current of such a tape depends mainly on the component of the magnetic 

field applied parallel to the tape surface (ab-plane), the expression of the critical current 

based on 0B  will be [85]: 
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Equation 3-12 

Equation 3-11and Equation 3-12 can be employed to calculate the critical current 

under a tilted magnetic field. The only unknown parameter, , can be determined by 

measurement of the critical current under parallel and perpendicular magnetic fields. 

3.1.4 Impregnation process 

Superconducting devices under high mechanical loads such as high field magnets, 

generators, motors and transformers should be stabilized by filling the voids in the 

structure so that they can resist the massive Lorentz force. Additionally, the use of 

cryocoolers requires impregnation of the superconducting tapes and coils to enhance the 

thermal stability. Many materials have been explored for both low temperature 

superconducting and high temperature superconducting coils. 

Animal wax, such as beeswax, as well as petroleum derived waxes and paraffin were 

used for a long time with low temperature magnets [75]. They were useful as magnet-

coil filling agents to minimize the probability of thermal runaway events that could 

result from micro fracturing during impregnation of superconducting coils. However, 

these waxes had high thermal expansion and low thermal conductivity, and cracks 

emerged and developed quickly if the temperature changed rapidly. Furthermore, due to 

their weak mechanical properties, the waxes could hardly contribute to the overall 

mechanical stability of the magnets [55]. 

Recently intensive research studies have been carried out to apply epoxy resins, such 

as Stycast 1266, Stycast 2850FT and Araldite as impregnation materials in HTS tapes 

and coils. These resins are preferred for their higher mechanical strength, good thermal 

conductivity and relatively small thermal expansion. Barth tested the critical current of 

short samples and Roebel cable with resin encapsulation [55]. Takematsu and Suzuki 

measured the critical current of YBCO coil with epoxy impregnation [86]. Their results 

revealed that the epoxies degrade the critical current of superconducting tapes and coils. 
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The mechanism for degradation due to impregnation has also been investigated. It is 

widely believed that this degradation is mainly due to the stress induced by the mismatch 

in thermal expansion. Petrie listed five basic stress types common to adhesive joints: 

tensile stress, shear stress, compressive stress, cleavage stress and peel stress [87]. 

Tensile stress corresponds to the transverse tensile stress. Cleavage occurs when an 

external force acts to open one edge of the adhesive assembly. Peel is similar to cleavage. 

In the case of cleavage and peel, the stress is concentrated on a small part of the adhesive 

bond and therefore their (cleavage and peel) strengths are much lower than the tensile 

strength. Therefore, both cleavage and peel are undesirable and are usually avoided in 

the adhesive bond assembly design. 

Some methods have been tried in order to remove the degradation, , including adding 

quartz powder to decrease the thermal expansion [55], depositing polyimide to wrap the 

tape, and winding the coil with tension [88]. Some other methods have also proposed to 

discuss the degradation. Zhang used a heat-shrink tube to insulate the HTS tape to 

prevent delamination due to epoxy impregnation [89]. Her experiment results showed 

that the insulated coil had no current degradation before or after the epoxy impregnation 

process. 

3.2 Experimental system 

3.2.1 Tested superconductors 

Samples were tested from several different commercial companies: SuperPower Inc, 

SuNAM Inc. and SuperOX. Major technical details of the samples are shown in Table 

3.1. 

Table 3-1 Paramters of the commerical 2G HTS conducotrs 

Sample type 

Total 

thickness 

mm 

Width 

mm 

Critical 

current 

A 

n-value 

SuperPower 

SCS4050 AP 
0.2 4 120 27 

SuNAM SCN 0.2 4 217 43 

SuNAM HCN 0.2 4 217 43 
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SuperOX 0.14 4 169 34 

Samples from SuperPower Inc. 

The SCS4050 AP superconducting tape from SuperPower was tested. This wire was 

manufactured by metal organic chemical vapour deposition (MOCVD) on an ion beam 

assisted deposition (IBAD) made MgO template. The YBCO layer had a thickness of 

1 µm and a width of 4 mm, as shown in Figure 3-4(a). The substrate was the non-

magnetic alloy Hastelloy, with a thickness of 50 µm. 2 µm silver layers were coated on 

both sides of the YBCO layer to enhance the electrical contact using the sputtering 

technique. 

Samples from SuNAM Inc 

 SuNAM tapes were produced by depositing GdBCO coated conductors (CCs) on a 

LaMnO3 (LMO)-buffered IBAD MgO template, produced by the Reactive Co-

Evaporation Deposition & Reaction (RCE-DR) process, as shown in Figure 3-4(b). The 

thickness of the superconducting layer in SuNAM tapes was 2–3 µm. Both tapes had a 

width of 4 mm. Two types of superconductors from SuNAM Inc were examined: SCN 

4050 and HCN 4050. The difference between these two tapes lied in the substrate. SCN 

employed stainless steel to enhance the mechanical strength, while HCN used copper to 

stabilize the GdBCO layer.  

Sample from SuperOX 

SuperOX was a commercial superconductor supplier located in Russia. The MgO 

template was made using IBAD and pulsed laser deposition was used for depositing the 

YBCO layer in Figure 3-4(c). The substrate was non-magnetic Hastelloy C276 tapes, 

which were annealed after cold rolling. 

 
(a) 
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(b) 

 
(c) 

Figure 3-4 Architecture of three different YBCO tapes: (a) SuperPower [90]; (b) 

SuNAM [91]; (c) SuperOX [92] 

3.2.2 Critical current test system 

The critical current is the maximum current that can be transported by the tape or the 

coil. It is usually defined using the voltage drop of 10-4 V/m in the E-I curve. The 

resistance of the superconductor is assumed to be negligible when the current is below 

the critical current. The superconductor is considered to be a normal conductor when 

the current exceeds the critical current. 

The standard method used for determining the E-I curve is the four-probe method. 

This measurement is implemented using LabVIEW with NI hardware to acquire the 
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physical signals. Figure 3-5 below outlines the measurement process: a DC current is 

applied to the YBCO tape and the voltage between the voltage taps is measured. This 

voltage is gauged by NI DAQ hardware and processed before it is sent to the computer. 

This voltage is divided by the distance between the voltage taps to calculate the electric 

field E. Then, the E-I curve is displayed on the screen in real time. The YBCO tape is 

held by G10 former. The configuration of the sample is shown in Figure 3-6.  

A direct current power supply (HP 6681A) with a maximum output voltage of 8 V 

and a maximum current of 580 A, is used as a current source. During the critical current 

tests the power supply operates in a linearly varying current mode. The amplitude and 

the duration of the current output is controlled either remotely by standard commands 

to the programmable instruments over an IEEE 4888 bus or locally by an analogue 

button. The card can be linked to LabVIEW and programmed to acquire or generate 

voltage signals. 

NI

DAQ

DC power 

supply

YBCO sample

 

Figure 3-5 The critical current measurement circuit for superconducting tape 

In the critical current measurements there are several sources of uncertainties. These 

uncertainties can be in the determination of the voltage gap distance, in the voltage 

signal and in the calibration of the shunt resistance. In order to improve the precision of 

the measurement, the voltage taps are carefully soldered by minimising the size of the 

joints. Before the measurements, the voltage range is selected to match the measured 
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signal. The current measured using the shunt resistance is compared with other 

techniques so as to verify the accuracy. 

 

Figure 3-6 The superconducting tape impregnated with resin. The blue part represents 

the filled resin. Two voltage taps are soldered onto the tape before impregnation. 

3.2.3 AC loss test system 

The AC losses of the coils are measured after the Ic characterization [93]. Figure 3-7 

shows the circuit diagram of the transport AC loss measurement using the electrical 

method with the high accuracy data acquisition (DAQ) system. The superconducting 

samples are supplied with an AC current using a power amplifier controlled by a signal 

generator. The voltage loss signal between the terminals of the coil is superposed with 

the inductive component, which can be eliminated using a cancellation coil. The voltage 

signal of the pancake coil after compensation is amplified and filtered to remove the 

harmonic components using a high accuracy DAQ measurement system with the 

LabVIEW program. The transporting AC loss of the pancake coil per cycle is given as: 

 rms rmsV I
Q

f
  Equation 3-13 

where f is the frequency, and Irms and Vrms are the in-phase current and the voltage, 

respectively. 

7.5cm 
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Figure 3-7 AC loss measurement circuit for tape sample. 

3.2.4 External magnetic generator 

The magnetic field dependency of the superconducting tape can be studied using a 

DXDP 6300 DC magnetic field generator. The superconducting samples are mounted 

on a G10 holder positioned in the centre of the poles of the DXDP 6300, using a liquid 

nitrogen bath. The DXDP 6300 has a maximum current of 28 A, which can generate a 

magnetic field of 1.5 T. A DC power supply is used to power the electromagnetic 

generator in the experiment. The current and voltage of the DC power supply are 

controlled by the programmable front panel. A DXAC5600B-R22 cooling water 

circulating machine is used to automatically cool the electromagnet. A Gauss meter is 

employed to calibrate the magnetic field and the applied current. This is a full-digital 

high-precision teslameter which provides a wide-range measurement.  

 

Figure 3-8 Schematic view of experimental set-up in which the cylinders represent the 

magnet poles. The tape is fixed by a non-magnetic block in the centre of the two magnet 

poles. 



- 51 - 

3.2.5 Impregnation process 

Three epoxies, Stycast 2850FT, Stycast 1266 , Araldite, and commercial liquid metal 

Galinstan were selected to impregnate the superconducting tape, due to their superior 

performance in cryogenic environments. These three resins were chosen as they had 

been well studied and had many reliable physical parameters. All the epoxies were two 

component resins. They were prepared according to the instructions provided in the 

manuals. Table 3-2 below shows the mixture ratios and cure conditions. Galinstan was 

supplied by German company Geratherm Medical AG, which had the melting 

temperature of -19 °C. 

Table 3-2 The curing methods for three resins during the impregnation process 

Resin Ratio in weight Cure condition 

Stycast Black 
Stycast 2085 FT 100 

24h 

Catalyst 9 4 

Stycast 1266 
Stycast 1266 Part A 100 

16h 

Stycast 1266 Part B 28 

Araldite DBF 
Araldite DBF 100 

48h 

Hardener HY951  10 

All the superconducting tape samples are prepared using identical methods. The tapes 

were first cleaned with Acetone and Ethanol. Then they were encapsulated into a U-

shape former made of glass-fibre-reinforced-plastics (G10) using the glue or resin 

mixture. Two pieces of copper plate were fixed to the holder at both ends and were 

connected to the current lead. The liquid metal or resin mixture was distributed 

homogeneously and the resin was curing under vacuum conditions. The schematic graph 

and final entity were shown in Figure 3-6. Voltage tapes were soldered to the tapes on 

the upper surface leaving a 10 cm gap. The critical current was measured in a liquid 

nitrogen bath at 77 K in a self-field condition. The critical current of the sample was 

defined by a critical electrical field Ec of 1μV/cm.  
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3.3 Experimental results under an external field 

3.3.1 Field dependency 

In order to analyse the relationship between the critical current of the tape and the 

angle between the external field and the tape, E-I curves of a single tape were measured 

under a DC magnetic field. Figure 3-9 presents the E-I curves of the superconducting 

tapes from SuperPower, and Figure 3-10 shows SuNAM tapes under different magnetic 

fields. All the E-I curves were in power law shapes, as shown in Figure 2-1. According 

to the 1 µV/cm criterion, the SuNAM tape has a critical current of 217 A in a self field, 

while the SuperPower tape has a critical current of 120 A. In the rest of this paper, the 

perpendicular field was referred as B , which was perpendicular to the surface of the 

conductor. Similarly, the parallel field was denoted as B .  

 
Figure 3-9 E-I curve of SuperPower tape under different external fields in the parallel 

direction 

Figure 3-11 shows measured field dependency for SuNAM tape and SuperPower 

tape.These two graphs reveal that the SuperPower tape behaves quite differently from 

the SuNAM tape in a magnetic field, where the critical current of the SuperPower tape 

in a parallel field is smaller than the critical current under a perpendicular field, whereas 

the other tapes have a smaller critical current under a perpendicular field, like the 

SuNAM tape.  
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Figure 3-10 E-I curve of SuNAM tape under different external fields in the 

perpendicular direction 

New progress has recently been made to YBCO tape fabrication by SuperPower, 

which shows a different magnetic field dependency. This wire is an AP (Advanced 

Pinning) type which has zirconium doping that forms BaZrO3 nanocolumnar particles 

in the film. These BaZrO3 nanocolumns are aligned in parallel to the c-axis of REBCO. 

The result is the flux pinning for H//c is greatly enhanced. When the pinning from the 

nanocolumns is strong enough, the Ic(H//c) becomes higher than the Ic(H//ab). 

Anisotropy of the YBCO tape under an external magnetic field would greatly 

influence the current and magnetic field distribution inside the coil. We used a modified 

Kim model to consider anisotropy of YBCO tapes in the simulation. This method avoids 

the complicated optimization process of determining variables. The modified Kim 

model is: 
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Equation 3-14 

where B1 is the lower curve of each tape in Figure 3-11 and B2 is the higher curve. B10 

is the field when the current is half of the critical current on the B1 curve, and similarly 

B20 is the corresponding field on the B2 curve. k is the ratio between B10 and B20, which 

describes the anisotropy of B1 and B2. The data used was based on the measured 

parameters of the SuNAM tape and the SuperPower tape at 77 K. Table 3-3 summarizes 

the derived values from the measured data. 
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Having discussed the critical current dependency of on the magnitude of external 

field, the next step is to analyse the n value dependency on the external field. Figure 

3-12 presents a comparison of the normalized critical current and normalized n-value 

under magnetic fields for the SuNAM and SuperPower tapes. Here the SuNAM tape is 

under a perpendicular field, while SuperPower tape is under a parallel field.  

 

  

Figure 3-11 Measured field dependency for SuNAM tape and SuperPower tape. B1 

represents the lower curve, and B10 is the field when the current is equal to half of the 

critical current on the B1 curve. B2 represents the upper curve, and B20 is the field when 

the current is equal to half of the critical current on the B2 curve. 

According to the Anderson flux creep theory, the pinned flux, which transports 

macroscopic current, is only in the metastable state when the temperature T > 0 K. 

Thermal fluctuation causes the flux to move slowly and randomly, which breaks the 

balance between the pinning force, Fp, and the Lorentz force, FL. Here, the pinning force 

(a) 

(b) 
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prevents the migration of the vortex and therefore acts as an energy barrier. This barrier, 

Up, is proportional to the critical current: 

                           c pJ U  Equation 3-15 

Comparing Equation 3-6 and Equation 3-15, both critical current Ic and the n value 

are expected to be proportional to Up, which can be verified by Figure 3-12.  Figure 3-12 

shows that the critical current and the n value have very similar relationships with the 

external field, decreasing continuously when the external field increases. For the 

SuperPower tape, the n-value is a bit larger than the normalized Ic, probably because the 

enhanced pinning in c-axis increases the n-value. 

Table 3-3 Field dependency parameters for SuNAM and SuperPower tapes. These 

values are derived from Figure 3-11 

Type of tapes SuNAM SuperPower 

B1 Perpendicular Parallel 

B10 (T) 0.140 0.115 

B2 Parallel Perpendicular 

B20 (mT) 0.360 0.180 

k 0.140/0.360 0.115/0.180 

 

Figure 3-12 Comparison of normalized critical current and normalized n-value under 

magnetic fields: SuNAM tape is under perpendicular field; SuperPower tape is under 

parallel field. 
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3.3.2 Angular dependency  

Figure 3-13 present the experimental and calculated critical current of a short 

SuperPower tape under different magnetic fields. The critical current curves are 

normalized by the critical current values obtained under parallel external magnetic field 

( 0   ). 0B   and 0B   are determined by the E-I curves under the parallel and 

perpendicular fields, as shown in Figure 3-11. The ratio between 0B  and 0B   is equal 

to . With these values, the critical current under an arbitrary angle and the magnitude 

of external field can be calculated using Equation 3-11 and Equation 3-12. 

From Figure 3-13, we can find that under a weak magnetic field, the angular 

dependency of critical current with the tape surface is small. When the external field 

reaches a certain value (i.e. 0.2 T), the critical current decreases sharply as the angle 

increases from 0° to 40°. When the angle is between 50° and 130°, the critical current 

vary less dramaticaly. For a single tape under a magnetic field, the measured critical 

currents show good agreement with the calculated results, when the external field is 

small. However, the difference between the experimental and theoretical results 

becomes quite obvious when the external field is large. This is because the Kim model 

has a greater error under a strong field, while a weak external field can be well fitted by 

the Kim model. It also means that Kim model is suitable to apply in numerical modelling 

when the magnetic field is small. When the magnetic field is larger than 0.2T, for 

example in Figure 3-13 Comparison of normalized critical current under different DC 

magnetic fields and different angles.Figure 3-13, other field dependency model is 

preferred [127].  

Figure 3-14 shows a comparison of the normalized experimental n value under 

different DC magnetic fields and different angles. Generally speaking, the angular 

dependency of n value is quite similar to the angular dependency of the critical current, 

which can also be partially explained by Equation 3-6 and Equation 3-15, because this 

pattern is quite similar to the critical current trend shown in Figure 3-13 (a). When the 

external field reaches a certain value (i.e. 0.2 T), the n value decreases sharply as the 

angle increases from 0°to 40°. When the angle is between 50° and 130°, the critical 

current remains almost constant.  
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Figure 3-13 Comparison of normalized critical current under different DC magnetic 

fields and different angles. 

3.4 Experimental results with impregnation process 

3.4.1 Critical current 

Different impregnation materials have different Ic and n value degradation effects for 

SuperPower’s 0.1 mm tape. Figure 3-15(a) shows the E-I curves of samples with 

Gallinstan impregnation. The critical currents and n values are almost the same as the 

unimpregnated sample, which means that Gallinstan hardly degrades the YBCO tape. 

There are two possible reasons for this. The first reason is that the thermal mismatch is 

not big enough to induce cracks on the YBCO layer. In order to support this argument, 

further research is needed to determine the thermal expansion coefficient. The second 

reason may be the wettability of Gallinstan with copper is not very high [94], which will 

reduce the bonding between the Gallinstan and the tape, thus reducing the tension in the 

tape. 

Unlike Gallinstan, other resins show degradation at different levels. Among the three 

samples in the group of Stycast Black (Figure 3-15(b)), one shows no degradation, while 

the other two show decrease critical currents from 107 A to about 80 A. The degraded 

tapes have different n values. The n value of one degraded tape is 86, even larger than 

the original n value of 31. The other tape has an n value of 21. In the group of Stycast 

1266 (Figure 3-15(c)), two of the samples degrade to less than 30 A. For Araldite (Figure 

3-15(d)), the samples degrade to critical currents of 32 A, 45 A and 76 A. In conclusion, 
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that Stycast Black decreases the Ic slightly, however, Stycast 1266 and Araldite degrade 

the critical current substantially. 

 

Figure 3-14 Comparison of normalized n value under different DC magnetic fields and 

different angles by experiment. 

  
(a) (b) 

  
(c) (d) 

Figure 3-15 E-I curves of SuperPower SCS4050 tape with different material 

impregnation: a) Gallinstan; b) Stycast Black; c) Stycast 1266; d) Araldite 

Degradation is due to the thermal expansion coefficient. According to the literature, 

the thermal contractions from room temperature to 77 K are 0.45% for Stycast Black 

[95], about 0.9% for Stycast 1266 [96], and 1.2% for Araldite [96]. However, the thermal 

shrinkage for the YBCO stabilizer, copper, is about 0.26%. Thus, the thermal mismatch 
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between the resins and stabilizer induces strain within the superconductor tape, and thus 

degrades the Ic. This degradation is related to the degree of thermal mismatch. The larger 

the mismatch is, the more degradation occurs. Stycast Black slightly degrades the tape, 

while Stycast 1266 and Araldite degrade more seriously. According to these tests, 

Stycast Black and Gallinstan are relatively preferable for the purpose of impregnating 

the coil, in terms of critical current degradation. 

Table 3-4 Critical currents and n values of SuperPower SCS 4050 tape samples under 

different impregnation materials. These values are derived from Figure 3-15 

Material 
Gallinstan Stycast Black Stycast 1266 Araldite 

Ic n Ic n Ic n Ic n 

Sample 1 106.2 29 105.9 29 105.3 33 45 14 

Sample 2 106.7 31 78 21 28 27 76 75 

Sample 3 106.4 31 75 86 27 5 32 8 

Bare sample 106.8 31 106.8 31 106.8 31 106.8 31 

The degradation was further studied using different configurations of the 

superconductor tapes. Two kinds of SuperPower tapes were selected to implement the 

impregnation process. One tape had a thickness of 0.1 mm, with a copper stabilizer of 

20 μm thickness on both sides. The other had a thickness of 0.18 mm, with a copper 

stabilizer of 60 μm thickness on both sides. A comparison of Figure 3-15(b) and Figure 

3-16 shows that the first tape degraded obviously, not only in Ic but also in n value. 

However, the second tape showed hardly any degradation. The E-I curves of the 0.18 

mm tape are almost the same as those of the unimpregnated tape. This is because the 

thicker copper stabilizer can protect the YBCO layer and reduce the strain imposed on 

the superconducting layer. 

In order to test the influence of thermal cycle, the E-I curves of the 0.18 mm tape 

were compared to those of a tape with Stycast Black impregnation. Here one thermal 

cycle means that the sampled was quickly submerged into liquid nitrogen and held under 

for 10 minutes, and then taken out and warmed up to room temperature. Figure 3-16 and 

Figure 3-17 show that after five thermal cycles one of the samples degraded in critical 
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current and n value. This means that the resin may crack during thermal cycles and 

degrade the tape. 

 

Figure 3-16 E-I curve of SuperPower 0.18 mm tape with Stycast Black impregnation 

 

Figure 3-17 The E-I curve of SuperPower 0.18 mm tape with Stycast Black 

impregnation after five thermal cycles. 

In our experiments, two E-I curve patterns are observed, as shown in Figure 3-18. 

The first one is pattern 1 in the graph. This pattern features in the resistivity 

transformation during the ramping up process. Resistivity begins to appear when the 

tape ramps above 20 A. The voltage increases continuously as the current increases, 

until the current approaches the critical current, shown by the vertical dashed line. This 

is a resistive pattern. The second pattern has a very swift superconducting transition. 

Before the tape reaches Ic = 118 A, the voltage curve rockets up at 84 A. This transition 

happens within 0.1 s, the electric field increasing from 0 to several thousand V/m. This 

is a skyrocketing pattern.  

Different ramp rates were tested using SuperOX tape, as shown in Figure 3-19. The 

critical currents varies with different current ramping rates in the same sample. The 
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rocketing up current increases considerably as the ramp rates increase. When the ramp 

rate was 2 A/s the critical current was about 138 A, however this critical current 

increased to 158 A at 10 A/s.  

Based on this ramp rate dependency, we infer that this transition is related to the 

thermal phenomenon. When the current reaches the transition current, the sample 

quickly quenches and the temperature quickly rises beyond the critical temperature, and 

the sample shows a swift transition. The quicker the ramp rate, the slower the heat 

generated by the disturbance, and the higher the transition current. Similar results were 

reported by Yaginasiwa [97]. The heat probably has two sources and the first one is the 

cracks due to the resin shrinkage between the voltage taps. The cracked region reaches 

quench quickly and initializes the whole quench. The second source could be the current 

lead as the impregnation material insult the tape from liquid nitrogen and hinder the 

process of heat transfer, finally cause the tape to quench. Further research is needed and 

is beyond the context of this thesis. 

 

Figure 3-18 Two types of degradation patterns in the E-I curve: pattern 1 is a resistive 

pattern, and pattern 2 is a skyrocketing pattern. These patterns are based on SuperPower 

tape with a current ramp rate of 2 A/s. 

In order to verify the influence of Stycast Black on coil impregnation, we wound two 

coils with the same geometry and number of turns. One was impregnated using Stycast 

Black, and the other was not. Each coil had 13 turns with an inner diameter of 56 mm. 

The tapes were non-insulated by SuperPower, which has a thickness of 0.18 mm. The 

two coils had almost the same E-I curve, as shown in Figure 3-20. The critical current 

Ic 
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was 65 A and the n value was 18. This experiment confirms that degradation can be 

minimized by using a thicker tape with Stycast Black impregnation. 

 

Figure 3-19 SuperOX tape with different current ramp rates. As the ramp rates increase, 

the rocketing up current increases. 

 

Figure 3-20 Tests on two 13-turn coils with Stycast Black using non-insulated tape and 

insulated tape. The critical current and n value show similar results.  

3.4.2 AC loss 

The results of transporting current loss measurements in a self field are presented for 

unit length by dividing the distance between the voltage taps. The measured values were 

compared to predictions from the Norris equation for an infinite-slab [28]. This equation 

calculates the loss in isolated wires of rectangular cross-section. The AC losses 

measured for a single bare tape is shown in Figure 3-21 as a function of the magnetic-

field amplitude. Each series of symbols with a different style corresponds to a different 
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frequency. The tape has a critical current of 110 A in a self field. Figure 3-21 shows that 

the measurement results correspond fairly accurately to the model description.  

 

Figure 3-21 AC losses with non-insulated tape compared to the Norris equation 

AC loss measurement results obtained using Gallinstan impregnation are displayed 

as symbols in Figure 3-22, compared to bare tape with the same parameters as before. 

For impregnated tape, at high frequencies there were clear differences between the 

different applied frequencies, from 80 Hz to 600 Hz. The measured AC loss increased 

non-linearly with the applied current frequency. This increase is explained by the 

induced eddy current in the Gallinstan. 

 

Figure 3-22 AC losses with Gallinstan impregnated tapes compared to non-insulated 

tape 
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Figure 3-23 Measured AC losses with Gallinstan impregnated tapes compared to 

calculated losses 

Figure 3-24 shows the comparison between measured AC losses and the calculated 

AC losses. The calculated AC losses consist of two parts: the hysteresis loss and eddy 

loss 

                 
means e hQ Q f Q             Equation 3-16 

where 
eQ is eddy loss, f is frequency, 

hQ  is hysteresis loss which can be calculated by 

Norris eqation. Eddy loss can be calculated as [142] 
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where Ip is the applied current,   is the reisistivity, which is , d is the thickness of the 

GaInSn and L is the perimeter of the GaInSn crosssection. 

We further measured the AC losses of degraded tape by resin impregnation in Figure 

3-25, where two groups are compared. All the samples were prepared using the same 

HTS tape, and the losses were measured using a transporting current with the same 

magnitude and frequencies. The first group had a critical current of 80 A and the second 

group has a critical current of 40 A. They were compared to the theoretical results from 

the Norris equation. For a single sample, the loss curves show quite good agreement 

under different frequencies, meaning that the loss is frequency independent. However, 

the samples with the same degraded current showed obvious discrepancies in the losses, 

which cannot be well predicted by the Norris equation. This suggests that the Norris 

equation can’t be directly applied to calculate the degraded tape. The reason for this may 
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be that the degraded tape is no longer homogenous, which contradicts with the 

assumption in the Norris equation. 

 
(a) 

 
(b) 

Figure 3-25 AC loss measurement for degraded tapes a) Ic=80A; b) Ic=40A 

3.5 Summary 

This chapter studied the tapes which are used to fabricate superconducting coils. The 

properties of the tape are the key factors in superconducting magnet design. Firstly, the 

critical currents of different tapes under external magnetic fields were measured and 

these data were fitted using the Kim model, which showed good agreement. Two field 

dependencies were found according to the experimental results. YBCO tapes from 

SuNAM shows a normal pattern which exhibits a larger critical current decrease in a 

perpendicular field than a parallel field. However, the latest SuperPower tapes behave 

differently, showing a greater decrease in the parallel direction. The field dependency of 

the n-value was also discussed, and it was found that the n-value decreases when the 
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external magnetic field increases, similar to the magnitude of the critical current. This 

similarity was discussed based on the flux flow theory. 

The second part of Chapter 3 experimentally compared the influence of different 

impregnation materials on coated conductors. These impregnation materials included 

one liquid metal, Gallinstan, and three epoxy resins: Stycast Black, Stycast 1266 and 

Araldite. The experimental results showed that Gallinstan hardly degrades the tape, 

while resins result in different degrees of degradation. Comparatively, Stycast Black 

caused slight degradation in the tape, however, the other two resins degraded the tapes 

substantially. The degradation was closely related to the mismatch in thermal expansion. 

We further discussed the factors that affect the degradation. A thicker stabilizer can 

reduce the degradation, but thermal cycles may decrease the critical current. Two E-I 

curve patterns were observed: one behaves like a resistive transition, and the other like 

a skyrocketing transition. When the current reaches the transition current, the sample 

quench quickly and the temperature quickly rises beyond the critical temperature, so the 

sample shows a swift transition. Finally, the AC losses after impregnation were 

discussed. The Gallinstan impregnation experiments showed that AC losses are 

frequency dependent, due to the eddy loss within the Gallinstan. The AC losses with 

degraded tape were also measured, which showed that they cannot be predicted by the 

Norris equation. This is because the degraded tapes are no longer homogenous, which 

is the prerequisite of Norris equation. 
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Chapter 4. Modelling and 

Experiments of Single 

Superconducting Coils 

It is well recognized that the superconductor is capable of transporting high current 

losslessly. Nowadays, many electrical devices and high magnetic field devices are 

developed to take advantage of the superior properties of superconductors. 2G HTS is 

the state-of-the-art conductor, for their high operating current and good behaviour under 

external magnetic field. Therefore, they attract intensive research.  

2G HTS coils are the primary units for many applications. There are two types of coils 

in real applications: pancake coil (Figure 4-1 (a)) and racetrack coil (Figure 4-1 (b)). 

The pancake coil is parallel wound in a flat circular shape. This is the ideal configuration 

for homogeneous magnet, such as NMR, MRI and SMES magnets. 

 
(a) 

 
(b) 

Figure 4-1 Two types of typical 2G HTS coil: (a) pancake coil; (b) racetrack coil 
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This chapter studies pancake superconducting coils both experimentally and 

numerically. First, a short introduction summarizes existing research in single pancake 

coils. Then the critical current and AC loss of several single-pancake coils are measured, 

and compared to simulation results based on minimization of the magnetic energy. The 

superconducting coil is further investigated under a DC magnetic field to simulate the 

critical current. 

4.1 Introduction 

The efficient operation of superconducting devices is highly related to the critical 

current and AC losses in the coils. Most superconducting coils involve a high self field 

or high external magnetic field. However the critical current in the coils is constrained 

by the intrinsic anisotropy of the magnetic field. The AC loss calculation plays an 

important role in the cryogenic design, and they can be calculated through current and 

magnetic field distribution. Therefore understanding the electromagnetic behaviour of 

single coil is essential for optimizing the designs of superconducting devices.  

Analytical and numerical studies have been carried out and many numerical methods 

have been developed to simulate the electromagnetic fields of superconducting coils. 

Clem et al. proposed a model by dividing the superconducting region into two parts with 

a straight line and numerically calculating the current distribution where the magnetic 

field in subcritical region is minimum[43]. Once the stable state is reached, the AC loss 

and magnetic field cab be computed. This method was further extended by Yuan as a 

parabolic line was introduced to separate the critical region and the subcritical region in 

both infinite stacks and cylindrical coils. The critical state was reached by minimizing 

the magnetic field in the subcritical region.  

Another method was applying the finite element method coupled with a smooth E-J 

relationship to solve the electromagnetic field of superconducting coils. Grilli compared 

the measured transport AC losses in YBCO coils with the H formula results [39]. 

Nguyen implemented the H formula to calculate AC losses for a YBCO coil with 

different background AC magnetic fields [98]. Zhang analysed the magnetic substrate 

and intrinsic anisotropy in YBCO coil behaviours, paying special attention to the 

determination of critical current and voltage measurement [40, 41, 99]. The third 

approach was established by Prigozhin who proposed an efficient method to solve the 
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current distribution across the superconducting region using the variation method [49, 

100]. This method was considered to be efficient and fast because only the 

superconducting regions are computed during the process and this will reduce the mesh 

number. However, the prediction of critical currents and AC loss was especially difficult 

when taking into account the field dependency of the critical current density in the 

presence of external magnetic fields. 

Some experimental studies have also been performed to validate the modelling 

methods. The research of superconducting coils using coated conductors started as early 

as 2006, when Polak measured the magnetic field and AC loss of a YBCO coil [101]. 

The following year, H. Fukushima et al. fabricated four GdBCO coils and measured the 

critical current in a self field [102]. Their experiments showed that the critical current is 

determined by the magnetic field with 45° to c-axis of GdBCO layer in the middle of 

the coil edge. In 2009, J Souc et al. measured the critical current of a YBCO coil under 

a self field with different numbers of turns, with these measurements showing good 

agreement with the numerical results [103, 104]. M Chudy rotated a racetrack coil under 

a DC field and analysed the critical current at different angles [105]. Recently, D Hu et 

al. characterized an epoxy-impregnated, triangle-shaped superconducting coil [106]. 

Although intensive research has been done on the critical current of 2G HTS coils, little 

attention has been paid to considering the influence of an external DC field.  

4.2 Experiments 

4.2.1 Critical current and AC loss under self field experiment 

The coils were wound on a G10 tube with an outer diameter of 89 mm using a winding 

machine under constant tension, as shown in Figure 4-2. During the winding process, 4 

voltage taps were soldered on the tape surface with 10-turn gaps. The voltage taps were 

denoted as V0, V3, V4 and V5. V0 represented the innermost turn voltage, while V5 

denoted the voltage on the outermost turn. Figure 4-3 demonstrates the voltage tap 

configuration. The total length of the tape is 15.9 m.  

2G HTS coated conductors (Or 2G HTS tapes) show better performance in a 

magnetic field, and are more cost-effective compared to their first generation 

counterparts. Table 4-1 summarizes the specification of the YBCO tapes used for self-

field tests.  
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Table 4-1 Specification of a superconducting coil using SuperPower SCS4050 tape 

Parameter Value 

Ic in self field 120A 

Thickness 0.21mm 

Inner diameter 89mm 

Turns 50 

Width 4mm 

A short 20 cm piece of tape was stripped off to measure the self-field critical current 

before winding the pancake coil. The short sample was mounted on a G10 holder. The 

holder with the YBCO short sample was then placed between the two poles of an 

external magnetic field in a liquid nitrogen bath, as shown in Figure 3-8. The magnetic 

field was adjusted by controlling the current and voltage of the mangeic field generator. 

The magnetic field ranged from 0 T to 0.7 T. Figure 4-4 presents the critical current 

curve of the short sample under external magnetic field.  

The critical current of the coil was measured using a control program developed 

based on LabVIEW and the NI data acquisition module [107]. The DC power supply 

was controlled by a LabVIEW interface panel, and the ramp rate of the applied current 

was set at 2 A/s. The upper limit voltage across the HTS coil, beyond which the ramping 

current would be stopped, was set at 10 times the critical voltage, so as to prevent 

damage to the HTS samples. 

The AC losses of the coils were measured after characterization of the Ic [93]. Figure 

4-5 shows the circuit diagram of the transporting AC loss measurement using the 

electrical method with a high accuracy data acquisition (DAQ) system. The pancake coil 

was supplied with an AC current using a power amplifier controlled by a signal 

generator. The voltage loss signal between the terminals of the coil was imposed with 

an inductive component that was eliminated using a cancellation coil. The voltage signal 

of the pancake coil after compensation was amplified and filtered to remove the noise 

using a high accuracy DAQ measurement system in the LabVIEW program. The 

transport AC loss of the pancake coil per cycle was given as:  
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 rms rmsV I
Q

f
  Equation 4-1 

where f is the frequency, and Irms and Vrms are the in-phase current and voltage, 

respectively. 

 

Figure 4-2 The 50-turn coil with SuperPower tape for self field experiments. The inner 

diameter of the coil is 89 mm and the outer diameter is 110 mm. 

r

z

V0 V3 V4 V5

 

Figure 4-3 Configuration of the voltage taps. V0 stands for the voltage on the innermost 

turn, while V5 denotes the voltage on the outermost turn. Section V0–V3 is 8.98 m, 

Section V3–V4 is 3.25 m and Section V4–V5 is 3.38 m. 
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Figure 4-4 Measured critical current of the Superpower YBCO tape under an external 

field in the parallel and perpendicular directions. 

After performing the critical current measurement and measuring the AC loss 

measurement of a pancake coil with 50 turns, the outer 10 turns were removed to 

obtain a new pancake coil with 40 turns. All the tests for critical current and AC loss 

characterization were repeated. Another 10 turns were then removed to produce a 30-

turn pancake coil. 

 

Figure 4-5 Measured E-I curve of the 50-turn coil. 
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Figure 4-6 AC loss measurement circuit for the YBCO coil. 

4.2.2 Critical current under external field experiment 

In this part, another two pancake coils with 20 turns was prepared, as shown in Figure 

4-7. One coil was made from HCN4045 coated conductors from SuNAM [91]. The other 

coil was wound with SCS4050 tape from SuperPower [90]. Both coils had the same 

geometry and winding method. The coils were wound on a G10 tube with diameter of 

56 mm using a winding machine under constant tension. Two small voltage taps were 

soldered on both ends of the coil to measure the voltage drop along the whole coil. This 

E-I curve was used to determine the critical current of the coil. Another two voltage taps 

were soldered on the 5th turn and 15th turn respectively to measure the voltage drop of 

the inner 5 turns and the outer 5 turns. A detailed list of parameters for the coils is shown 

in Table 4-2. 

The schematic of the magnetic field experimental set-up is presented in Figure 4-8. 

The pancake coil was fixed in the gap between two poles of the external magnet. The 

coil and the rod were connected by non-magnetic nuts. The axis of the coil was along 

the direction of the magnetic field, thus the coil was parallel to the external parallel 

field. It was challenging to ensure a homogeneous field in the rather large gap between 

the poles of the magnet. For this purpose, the position of the coil was carefully aligned 

to the axis of the cylindrical poles. Furthermore, the circumferential fields along the 

coil were calibrated before the experiments to make sure that the field distribution 
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difference was within 5%. This result was sufficiently uniform for our experiments. 

Given that the maximum permissible current of the electromagnet of 28 A, a 

maximum field of 0.54 T could be generated with only an 18 cm gap between the 

poles. 

 

Figure 4-7 The 20-turn coils: (Left) SuNAM coil; (Right) SuperPower coil. 

Table 4-2. Specification of the SuNAM and SuperPower coils. 

Parameter SuNAM SuperPower 

Tape Ic 217 A 120 A 

Tape thickness 0.20 mm 0.20 mm 

Inner diameter 56 mm 56 mm 

Total turns 20 20 

Tape width 4 mm 4 mm 

Insulation Kapton tape Kapton tape 

A liquid nitrogen bath, in which the coils were immersed, was placed between the 

magnet poles. The simple four-point method was used to measure the critical current of 

the coil with two voltage taps on both ends. A TDK-Lambda DC power supplier was 

used as a current source, and the voltages were acquired by an NI SCXI 1328 card. The 

measurement set-up was controlled by the LabVIEW program [107]. Figure 4-9 shows 
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the E-I curves of both coils under different fields. The field dependencies of these two 

tapes are presented in Figure 3-11. 

 

Figure 4-8 Schematic view of experimental set-up in which the cylinders represent 

magnet poles. The coil is fixed by non-magnetic nuts in the centre between the two 

magnet poles. 

 

Figure 4-9 E-I curves under DC fields of 0.2 T, 0.1 T and 0 T for SuNAM and 

SuperPower coils.  
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4.3 Numerical model of single coils 

4.3.1 Assumptions 

Most commercial 2G HTS tapes has the width of 4mm and the thickness of 1 µm. This 

special geometry brings huge difficulty in numerical modelling using FEM. Because 

accurate FEM modelling requires the meshes have equal sizes in all directions. The 

small size in thickness means the mesh size in width is very small, increasing the mesh 

number greatly. Within such a narrow space of 4 mm by 1 µm, the current distribution 

can vary in the scale of 8 orders of magnitude (the current density ranging from -1e8 

A/m2 to 1e+8 A/m2). Figure 4-10 shows the cross-section of a stack of coated tapes. The 

thin superconducting YBCO layers are represented by the line in the centre. This 

approximation refers to the sheet current model, which integrates the current across the 

thickness as:   

 
   2

2

,
w

wJ z J r z dr


   Equation 4-2 

The width of the tape is w. The sheet current model is especially suitable for large coil 

configurations for its avoidance of the 2D element in superconducting region during the 

simulation. This approach assumes the current in the thickness is evenly distributed, 

which is reasonable since the thickness is extremely small. These tapes are all separated 

from each other by a copper layer for simplicity, and all carry the same current, Iapp. The 

thickness of the insulation is t. 
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Figure 4-10 A coil of N length tapes with a width of w and a thickness of t. 
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This section extends Prigozhin’s model from stacks of superconduting tape to 

cylindrical geometry and multiphysics. This model is based on Bean’s critical state 

model, which can be used to deduce to these three conclusions: 

(1) The sheet current in each tape cannot exceed the critical value, that is, J(z,t)≤Jc. 

(2) The electric field E  is equal to zero until the critical state is reached.  

(3) E  has the same direction as J, when E  is not equal to zero. 

Prigozhin proposed the variational method in 1997 to calculate the current 

distribution in bulk superconductor [48]. This method introduced the minimization of 

energy within superconductor to simulate the current density distribution. In 2011 

Prigozhin extended this model to stacks of 2G superconducting tapes using the sheet 

current model and gained good results. 

This model has many advantages compared to other differential models. Firstly, the 

sheet current model exploits the variational method to transform a complicated physical 

problem into a mathematical problem that is simple and easy to solve. Secondly, since 

it uses the sheet element to replace the extremely small elements in the H-formula, the 

sheet current model speeds up the calculation dramatically. Finally, when compared to 

other homogenous models, the sheet current model can be easily extended to simulate 

the multiphysics coupled field. 

4.3.2 Implementation of single coil modelling 

Based on these hypothesis, in each tape we have [49]: 

  ' 0E J J    Equation 4-3 

where J' is the testing current function. 

According to Maxwell theory, the electric field E and magnetic vector A can be 

calculated: 

 dA
E V

dt
     Equation 4-4 
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where r is the distance between two points, S is the element area, 𝑑 = 𝑧 − 𝑧′, and K and 

E are complete elliptic integrals of the first and second kind. 

Bring Equation 4-4 and Equation 4-5 to Equation 4-3 and apply the variational 

process, we can reach this equation: 

 1
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for each tape:  
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for all the elements:   , , ,i c r zJ J B B T   

Equation 4-6 

where M is the mutual inductance matrix derived from the Green integral function [108, 

109], Ω is the set of all elements, Ai and Ji are the vector potential and current in the 

circumferential direction in the ith element, 𝑓𝑖
𝑚 = −𝐴𝑖

𝑚−1, Cj is the voltage due to the 

source in the jth tape, and 𝐽𝑐(𝐵𝑟 , 𝑇, 𝜀)  is the critical current density with field 

dependencies. This equation can be optimized by iterations and is implemented using 

the constrained quadratic minimization function in MATLAB [110]. 

The critical current density of superconducting tape is highly dependent on the 

surrounding multiphysics fields. This field dependency plays an important role in the 

current transporting abilities of the tape. These models are incorporated in the 

calculation: 

Magnetic field dependency model at 77K: 
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Equation 4-7 

Thermal dependency model: 
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 Equation 4-8 

where Tc=88 K, and Tref =77 K, which is the operating temperature, and α = 1.5 [111].  

Strain dependency model: 

     , , , , , 1
b

c r z c r zJ B B T J B B T ac    Equation 4-9 

for a YBCO tape under tension at 77 K, 𝜀 ≪ 1, ac=3397, and b=1.9 [112]. 

After the current density distribution is calculated, the electric field E in each tape 

can also be calculated: 

 
i

i j

dA
E C

dt
    Equation 4-10 

where Ei is the electric field in circumferential direction for the ith element.  

Then the AC loss in the coil can be integrated: 

 , ,2 i t i t i

t i

Q S E J r t   
Equation 4-11 

where Ei,t and Ji,t are the electrical field and the current density for the ith element at the 

time of t, ri is the radius of the ith element, and ∆t is the time taken for one step. 

The above model provides the current distribution in the superconducting region, 

which is the central issue in simulating superconductivity. However, a finite element 

analysis (FEA) is still required to calculate the electromagnetic, thermal and mechanical 

fields. The FEA can be considered to be an approximation to the real fields. The error 

between the FEA approximation and the real field distribution can be safely ignored. 

There are five typical steps in a FEA simulation. Firstly, the whole space should be 

meshed into small elements. Then a trying field function should be specified for each 

element, followed by derivation of the shape function for all elements. In our simulation, 

the linear element was chosen as the trying field function. That means in each element, 

the field can be represented by: 
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 Equation 4-12 

where u is the field variable, Ni, Nj, Nk is the shape function of the certain point, and ui, 

uj, uk is the field parameter. Thus the stiffness matrix can be yielded for every element 

from the control PDEs. The PDEs for each element can be transformed to the matrix 

format: 

 ku f  Equation 4-13 

where k is the element stiffness matrix, and f is the external source or external force. 

Through variational methods, k can be expressed by: 

 
ij i jk N N dxdy    Equation 4-14 

Assembling all the kij and f variables according to their positions produces the global 

stiffness matrix, and the control PDE can be represented as: 

 KU F  Equation 4-15 

where K, U and F stand for the global stiffness, global field vector and global force 

vector. Finally, the field variable can be found by matrix operations: 

 \U K F  Equation 4-16 

This is the general process for FEM modelling. Different fields have different control 

partial differential equations and different state variables. For a 2D electromagnetic field, 

the control equation is related to Ampere’s law: 

 2

0A J   Equation 4-17 

The magnetization flux density B can then be calculated by curl of magnetic vector 

potential: 

 A B   Equation 4-18 

The thermal field of the coil under operation is of significant importance for quench 

protection. The governing equation for heat transfer in 2D is the Fourier equation [11]: 

 
2

1

T
C k T E J

t



   


 Equation 4-19 

where T is the temperature, C is the heat capacity, k1 is thermal conductivity, and Ez   J 

represents the AC loss during the varying current process. 
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The Lorentz force can be analysed to ensure the mechanical stability of the magnet. 

The mechanical force field, due to the electromagnetic field, is calculated using FEM. 

Similarly, for a mechanical field, the control PDE has the shape: 

 J B    Equation 4-20 

where σ is the stress tenor in the coil, J is the current density in the section area, and B 

is the local magnetic flux density. 

The whole calculation process is presented in Figure 4-11. During the multiphysics 

modelling, the first step is to calculate the current distribution along the tapes. Then the 

results are applied in FEM to simulate the magnetization flux across the substrate section. 

Finally, the thermal and mechanical fields are calculated with the solved current and 

magnetization flux distribution, respectively.  

Considering the boundary condition, it is assumed that the outer air boundary of the 

area is magnetically insulated. The applied current is in the shape of sine wave. For 

thermal and mechanical simulation, the field value on the boundary of the coil is fixed, 

which means that the temperature of the boundary is fixed and the axial and radial 

displacements are equal to zero. The stabilizer is assumed to be copper, for which the 

specific heat capacity and thermal conductivity are 6.23e5 J/(m3K) and 1100 W/(mK), 

respectively [113]. 

 

Figure 4-11 Flow chart of direct-coupled multiphysics modelling based on the sheet 

current model. 
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4.4 Results analysis under self field 

We compared the numerical results with experimental measurements to verify the 

model. This verification includes two parts. First, the critical current of the coils with 

different turns are discussed, followed by the discussion of AC losses. 

4.4.1 Critical current  

Similar to a superconducting tape, we can measure the electric field across the 

superconductor when continually ramping up the current, commonly known as the E-I 

curve, as shown in Figure 4-5. The critical current is usually defined before the voltage 

reaches a certain value, such as 1 µV/cm, 0.5 µV/cm and 0.1 µV/cm [114]. 

In our simulation, we applied a linearly increasing current in each tape, and checked 

the current distribution in each turn step by step. When one of the tapes was fully 

penetrated with a certain applied current, the calculation was stopped and this applied 

current was considered to be the critical current of the coil, as shown in Figure 4-12 (b).  

Table 4-3 compares the modelling results with the experimental measurements. The 

simulations provided a good estimate for the critical current of the superconducting 

coils. The simulations taking the value of Jc from Equation 3-14 showed excellent 

agreement with the criterion of 0.5 µV/cm. The maximum discrepancy between the 

experimental results and simulated critical current was 2.7% when the coil had 30 turns.  

The popular criterion for experimental Ic determination is 1 µV/cm. The simulated Ic 

tended to estimate a lower the critical current than the more accepted criterion of 1 

µV/cm. However, it has been reported that 1 µV/cm is a too high criterion to define the 

coil critical current for long term safe operation [99]. Our simulation technique is 

conservative and hence safer estimation of the critical current for coils. 

To further understand the behaviour of the coils during the ramping up process, we 

took a 50-turn coil as an example. A varying current with a sine shape was applied to 

the coil with a peak amplitude of 50 A. The frequency of the applied current was 1 Hz. 

Figure 4-13 shows the current distribution within the coil for four time steps: 15 A, peak 

current 50 A, -15 A and 0 A. Each line represents one tape and the z axis is the magnitude 

of the current density for the thickness of 1 µm. 
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(a) 

 
(b) 

Figure 4-12 (a) The cross section of the 30-turn coil; (b) When the applied current is 

59.0 A in the 30-turn coil, the innermost turn is fully penetrated. The critical current of 

the coil is thus defined as 59.0 A. 

 Table 4-3 The critical current of different coils by experiment and calculation 

Turns 50 40 30 

Experimental (0.5 µV /cm) (A) 53.5 54.8 58 

Simulated (A) 53.1 55.0 59.0 

Experimental (1 µV /cm) (A) 55.6 57.3 60.3 

Load line calculated (A) 53 56 59 

Figure 4-13(b) clearly shows two regions in the superconducting parts: the penetrated 

region and the unpenetrated region. These are also denoted as the critical region and the 

subcritical region, consistent with the assumptions made by Clem [43]. The penetration 

region extends from both ends into the central region. In the penetrated region, the 

innermost turn is fully penetrated 
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current density is bounded by the critical current density. As previously mentioned, the 

critical current decreases in external field, and showing as a clear slope of current 

density in the penetrated region. In Figure 4-13(d), the total applied current in each tape 

is zero, however, the current density is not homogenously zero as there is both positive 

and negative current within the region. This shows the hysteretic nature of the 

superconductivity after magnetization. 

To clearly show the field dependency on the magnetic field, the magnetic field and 

flux line of the same time step are presented in Figure 4-14. The colour represents the 

magnitude of the magnetic flux density, while the contours show the isolines of vector 

potential. According to the magnetic field contours and directions, the strong magnetic 

field locates in the innermost turn, called the weak turn. This explains that the innermost 

turn is the first tape to be fully penetrated, as shown in Figure 4-12, and the innermost 

turn determines the critical current of the coil. Also, we can find that the innermost turn 

and the outermost turn are more penetrated and this makes the separation between the 

critical region and subcritical region as a parabola, which is the assumption of Yuan’s 

paper [44]. From Figure 4-14, we can also find that the magnetic field is smaller than 

0.15T, thus, Kim model can well fit the field dependency as shown in Figure 3-13. 

From Figure 4-14 shows that only Bz exists in the subcritical region (the magnetic 

field is parallel to the tape width direction). This is due to the intrinsic property of a 

superconductor, which expels the magnetic field. This is consistent with Yuan’s paper 

which solves the electromagnetic field by minimization of (Br)
 2 across the subcritical 

region [44]. 

4.4.2 AC loss  

First we measured the transporting losses of different coils at two frequencies. We 

limited the maximum current to 50 A for safety considerations, and decreased the 

current in steps to 5 A. These measurements were done at the frequencies of 30 Hz and 

40 Hz. Figure 4-15 shows the losses measured with the voltage contacts soldered at both 

ends of the coils. For certain coils, we found that different frequencies have similar AC 

losses per cycle, confirming the hysteretic nature of the loss. Figure 4-16 compares the 

losses between measured results and simulated results. The simulated results using a 

Kim-law model show good agreement with the experimental results. 
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(b) 

 
(c) 

 
(d) 

Figure 4-13 Current distribution for 50 turns at: (a) ramping up to 15 A; (b) ramping up 

to 50 A; (c) ramping down to 15 A; (d) ramping down to 0 A. 



- 86 - 

  
(a) (b) 

  
(c) (d) 

Figure 4-14 Magnetic field distribution and flux line plot of a 50-turn coil at: (a) ramping 

up to 15 A; (b) ramping up to 50 A; (c) ramping down to 15 A; (d) ramping down to 

0 A. The rectangle with the black line represents the region occupied by 

superconductors. (unit: T) 

Figure 4-17 presents the transporting loss per unit length in the coil, compared to the 

analytical results by Norris. The losses increased continuously when the number of turns 

in the coils increased. These results confirm the fact that the more the turns, the larger 

the magnetic field, and thus the larger the magnetization loss. The losses increased 

almost linearly with the applied current and the curves show a similar power exponent 

in log-log scale plot and the slopes are between 2.8 to 3.1 in a wider range of measured 

peak current, near a cubic behavour. These curve slopes indicate a good agreement with 

the loss curve of a superconducting strip predicted by the Norris equation [28]. 

Although we can measure the total AC loss of the coils by soldering the voltage tap 

in both ends, it is very difficult to understand further details about the AC loss in 

different turns. The simulation technique is a powerful tool to explore the behaviour of 

different turns. This is very important for thermal design, as greater cooling power is 

required in the region with higher AC loss density which can lead to high risk of a 

quench. 
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Figure 4-15 Measured AC losses of three different coils under 30 Hz and 40 Hz 

transporting current. 

 

 

Figure 4-16 Measured and calculated AC losses of three different coils. 

 

Figure 4-17 Comparison of measured, simulated and calculated AC loss per unit length. 

We applied different currents to a 50-turn coil and plotted the AC loss for each turn 

as shown in Figure 4-18. It can be observed that for the same geometry, different 

currents have different loss distributions. Although the transporting current is the same 

in each tape, the total loss is quite different, meaning the magnetisation loss plays the 

major part. As the magnetic field across the section is quite different, this will lead to 

different loss distribution. When the applied current is small (below 20 A), the turns at 
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the boundaries have higher losses and the turn with the smallest loss is located in the 

middle region. This is because when current is small, the innermost and outermost 

turns are more penetrated and have more losses. When the applied current increases to 

35 A, the loss tends to decrease linearly from the innermost turn to the outermost turn. 

In this situation, the magnetic field in the middle region increase more quickly than the 

outermost turn, leading to higher losses in the middle turns than the outermost turn. 

When the current increases further, the losses increase initially and then decrease from 

turn 1 to turn 50, as shown in Figure 4-18(d). When the innermost turn is further 

penetrated, the magnetic field will decrease the current and decease the losses. Thus 

the tape with highest loss moves to the tapes in the middle region. 

Figure 4-19 presents the AC losses for a unit length of each turn. The loss distribution 

is very similar to that shown in Figure 4-18 with different transporting currents. The 

turns with the highest loss and lowest loss vary. The highest loss turn changes from the 

innermost turn to the middle turn, while the smallest turn moves from the middle region 

to the outermost turn. A comparison of Figure 4-18(d) and Figure 4-19(d) show that the 

turn with the highest loss differs slightly. In the first graph, turn 8 is the peak turn, 

whereas in the second picture, turn 7 is the peak turn. 

In order to analyse the influence of geometry on the peak loss turn location, Table 

4-4 presents the peak loss turn with coils ranging from 10 turns to 50 turns. When the 

applied current is 50 A, for the 10 turn and the 20 turn coil the innermost turn is the 

peak loss turn, while for the 30 turn, 40 turn and 50 turn coil, the peak loss turn is turn 

5, turn 7 and turn 8, respectively. The peak loss turn changes when considering tape 

length. 

Figure 4-20 shows the instantaneous AC losses varying with time during two AC 

cycles. At the beginning the instantaneous loss power is zero, and then the loss goes up 

as the current increases. However, the loss reaches its first peak before the current 

peaks. This is because when the current peaks its derivation with time is zero and 

means electric field minimizes. So the product of current density and electric field, 

which is defined as the loss, reaches maximum before the current peaks. After the first 

loss peak, the second loss peak of loss appears in the second half of the cycle. The 

second peak of the loss is larger than the first peak. This is because the first peak 
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begins from the virgin state while the second peak begins with the reversed current as 

shown in Figure 4-13(d). 

 
(a) Transporting current is 5A 

 
(b) Transporting current is 20A 

 
(c) Transporting current is 35A 

 
(d) Transporting current is 50A 

Figure 4-18 AC losses for each turn in a 50-turn coil during one cycle with different 

applied currents: (a) 5 A; (b) 20 A; (c) 35 A; (d) 50 A. Turn 1 denotes the innermost turn 

and Turn 50 is the outermost turn. 
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(a) Transporting current is 5 A 

 

(b) Transporting current is 20 A 

 

(c) Transporting current is 35 A 

 

(d) Transporting current is 50 A 

Figure 4-19 AC losses per turn per metre in a 50-turn coil during one cycle with different 

applied currents: (a) 5 A; (b) 20 A; (c) 35 A; (d) 50 A. Turn 1 denotes the innermost turn 

and Turn 50 is the outermost turn. 
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Table 4-4 The turn number with peak loss in different geometries. 

Coil geometry Turn number with peak loss Turn number with peak loss 

per length 

10 turn 1 1 

20 turn 1 1 

30 turn 5 2 

40 turn 7 6 

50 turn 8 7 

 

Figure 4-20 Instantaneous AC losses during the first two cycles.  

4.4.3 Temperature and stress distribution 

Figure 4-13 shows that the current density in the tape is very uneven. The outside region 

reaches the critical state quickly and generates an AC loss while the middle region 

remains subcritical until it is penetrated. This is the mechanism of heat generation in the 

coil during charging and discharging, which can be evaluated by considering the 

distribution of current density. 

Figure 4-21 presents the thermal source and the temperature distribution along the 

cross-section. From Figure 4-21 (a), the heat is generated along the tape in the critical 

state region while no heat is generated in the subcritical region, which can be confirmed 
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by Figure 4-13. Figure 4-21 (b) presents the temperature distribution in the coil section 

after 100 cycles’ charging and discharging. The contours of the temperature have a 

hyperbolic shape because the temperature of the node on the boundary is fixed at 77 K, 

and the heat exists at the outside end of the tape. 

 
(a) 

 
(b) 

Figure 4-21 Thermal source across the superconductor section when the current peaks 

at 50A (the unit is W/m3) (b) Temperature distribution across the superconductor section 

after 100 cycles’ charging and discharging (the unit is K). 

The mechanical stress in the coil is mainly due to Lorentz force. Figure 4-22 presents 

the von Mises stress distribution along the cross-section when the current is at peak 

value of 50 A. The strongest axial direction field component in the middle of coil 

produces a maximum outward radial force on the conductors, which causes a maximum 

radial and circumferential hoop stress in the HTS wire. Evaluation of the maximum 

stress during charging and discharging process is especially important in order to 

prevent the destruction of the HTS wire. 
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Figure 4-22 von Mises stress distribution across the superconducting section when the 

current peaks. 

4.5 Results analysis under an external field 

4.5.1 Critical current validation 

Figure 4-8 presents the setup of external magnetic field. In this section, only the 

influence of a parallel field, Hz, on the coil critical current is studied. There are two types 

of external magnetic field. The in-phase field is defined while the background field is in 

the same direction as the self-field of the HTS pancakes as shown in Figure 4-23(a), and 

the anti-phase field Hz has the opposite direction to the self-field inside the pancakes as 

shown in Figure 4-23(b). Here we selected the criterion of 0.5 µV/cm to define the 

critical current of the coils, as shown in Figure 4-24. The results shows that the 

simulations provide a good estimation of the critical current of the superconducting 

coils. 

Both the experiment and simulation showed that the coil critical current decreased 

linearly when the in-phase external field increased in Figure 4-24. This is because the 

background field combined with the self field reduces the critical current of the 

innermost turn. However, the situation is quite different for an anti-phase external field. 

While the magnitude of anti-phase external field is increasing from 0, the critical current 

of the coil is initially increased and then decreased. This is because the self-field 

produced by the coil is cancelled by the external field, thus the total field is lower 

compared to in a same magnitude of the in-phase field. If the magnitude of the anti-

phase external field increases further, the critical current begins to decrease, because the 

overall field starts to increase again.  
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The existence of the external field also changes the current penetration pattern. The 

results from the simulation showed that under the in-phase field, the critical current is 

determined by the innermost turn, which is the first to be fully penetrated as shown in 

Figure 4-26. On the other side, the anti-phase external field shifts the weak turn position 

from the innermost to the outermost turn when the magnitude of the external field 

exceeds 0.04 T. This shifting can also been verified by measuring the E-I curve. Figure 

4-27 presents the measured voltages on different sections under an external field of -0.2 

T. The voltage within the inner 5 turns rises earlier than the outer 5 turns under an in-

phase field, while voltage of the outer 5-turns rises earlier under an anti-phase field. This 

coincides with the simulation results. 

YBCO coil

External magnetic field Coil magnetic field
 

(a) 

YBCO coil

External magnetic field Coil magnetic field
 

(b) 

Figure 4-23 Definition of external magnetic field: (a) in-phase (b) anti-phase [99]. 
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(a) 

 
(b) 

Figure 4-24 Comparison between measured and simulated critical current for (a) 

SuNAM and (b) SuperPower coils with 20 turns in different external fields. The 

measured critical currents are defined by 0.5 µV/cm in the E-I curves. 

 

Figure 4-25 When the applied current was 107.5 A, and the external field was anti-phase 

0.2 T, the outmost turn of the SuNAM coil, turn 20, was fully penetrated. This current 

was defined as the critical current of the coil. This method is referred to as the 

penetration method in the following section. 

In-phase Anti-phase 

Anti-phase In-phase 
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Figure 4-26 When the applied current is 101 A and the external field is in-phase 0.2 T, 

the inner turn of the SuNAM 20-turn coil is fully penetrated. 

 

Figure 4-27 E-I curves of different sections of the SuNAM coil with in-phase and anti-

phase 0.2 T magnetic fields. 

4.5.2 Comparison of two coils with different tapes 

Recently, SuperPower has made progress on YBCO tape fabrication, which shows a 

different magnetic field dependency. The old tape has a smaller critical current when the 

external field is perpendicular to the field than that when the same amount of field is 

parallel to the tape. However, this new tape has an opposite dependency, meaning that 

the perpendicular field has a larger critical current, as shown in Figure 3-11. This wire 

is an AP (Advanced Pinning) type which has zirconium doping to form BaZrO3 

nanocolumnar particles in the film. These BaZrO3 nanocolumns are aligned in parallel 

to the c-axis of REBCO with the result that the flux pinning for H//c is greatly enhanced. 

When the pinning from the nanocolumns is strong enough, the Ic(H//c) becomes higher 

than the Ic(H//ab).  
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It is, therefore, of practical interest to analyse the difference when this new 

SuperPower tape is used in pancake applications under a DC magnetic field compared 

to tape with a normal magnetic field dependency, such as SuNAM tape. This field 

dependency is approximated by a modified Kim model which is shown in Equation 

3-14. 

This new tape was incorporated into the numerical model and compared to the critical 

current under a DC field with the SuNAM coil as presented in Figure 4-24(a). In order 

to compare the performance of coils consisting of different tapes, both models had the 

same geometry, and the critical current of the tapes was normalized by the critical 

current under a self field. Figure 4-28 shows the simulated critical current under a DC 

field. A similar trend was seen for the critical current with an external field. That is, the 

anti-phase field increased the critical current first. 

However, the difference in the critical current is also obvious, that is, the SuperPower 

coil has a lower critical current. Under a self field, the critical current difference for 

these two coils is 14%, while this difference increases to 18% when the external field is 

0.2 T. The reason for this is that the weak turns for these two coils are either innermost 

turn or outermost turn, which have a large parallel field. As SuperPower is more 

sensitive to a parallel field, the critical current is smaller than the tapes which are less 

influenced by a parallel field, such as a SuNAM coil. Figure 4-29 presents the 

perpendicular and parallel components of the self field of a coil with an applied current 

of 100 A. This graph verifies that the average parallel field is larger than the 

perpendicular field where a weak turn appears. The existence of a parallel external field 

decreases the critical current further for a SuperPower coil, which may not be good for 

applications such as insert coils in high magnetic field devices. 

4.5.3 Extension of load line 

The performance of a coil winding with a low temperature superconductor is usually 

characterized by means of a diagram like that shown in Figure 4-30 [75], which is called 

the load line method. This method is employed in magnet design for its simple 

implementation and straightforward physical image. The straight line, usually known as 

the “load line”, represents the peak field as a function of the transporting current. The 

intersection point between this load line and the in-field critical current line of the 

superconductor is thus the expected critical current of the coil.  
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Figure 4-28 Simulated critical currents of coils after normalization with self-field tape 

Ic. The coils are wound with SuNAM and SuperPower tapes, which have different field 

dependencies. The SuNAM field dependency is presented in Figure 3-11(a) and the 

SuperPower field dependency is presented in Figure 3-11(b). 

  

a) Br b) Bz 

Figure 4-29 Perpendicular field and parallel field distribution for a 20-turn coil. This 

coil has a uniform current distribution and each tape transports a current of 100 A. (unit 

is T.) 

The same idea can be extended to HTS coils, which can be found in [115]. However, 

the HTS situation is a bit more complex, owing to the intrinsic anisotropy of the critical 

current. For one thing, the critical current under parallel and perpendicular external 

fields is quite different, as shown in Figure 3-11. So, for HTS, the in-field critical current 

line has two options, the parallel curve and the perpendicular curve. In the literature, for 

BSCCO and some YBCO conductors, the critical current line is often chosen as the 

perpendicular curve, since the perpendicular curve is lower than the parallel curve given 

a magnetic field with the same magnitude for normal HTS conductors. There is also 

another ambiguous point, being how to select the magnetic field to define the load line. 

anti-phase in-phase 
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The load line usually stems from the maximum axial field at the inner turns. Some other 

literature adds a second load line representing the radial field at the coil end [116]. All 

these methods define the load line by the local peak field.  

 

Figure 4-30 Schematic diagram for the load line method. The critical current line is 

usually based on measurement of a short sample under an external field. The load line 

represents the peak field as a function of the transporting current. 

We built an equivalent model of Figure 4-10, only replacing the YBCO conductor 

with copper whilst keeping the geometry and mesh the same. Figure 4-29 presents the 

magnetic field in both the parallel and perpendicular directions. The load line of the 

local maximum Bz consists of two parts: the self field and the external field, so this curve 

has this equation:  

  c z z eI B kB B   Equation 4-21 

The current is assumed to be uniform across the section, so that the maximum of self 

field Bz and the applied current is linearly related, and k is the linear coefficient, as 

defined in Equation 3-14. Be is the external field along z axis, which is -0.08T for Figure 

4-31. 

Figure 4-32 shows the Ic with different external fields by the load line method with 

local maximum Bz. Generally speaking, the calculated results based on the load line 

showed a similar trend, varying with the applied external field. However, some 

differences still existed when the external field ranged from -0.1 T to 0 T. This 

difference mainly results from the fact that the influence of the perpendicular field was 

ignored. Based on the measured field dependency of the critical current, the 

perpendicular field plays a non-trivial role. Additionally, only the local field was 
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employed to define the load line, which unavoidably introduces errors, as the magnetic 

field is not uniform along the weak turn, as shown in Figure 4-29.  

 

Figure 4-31 Two load curves for the SuNAM coil under a -0.08T external field. The 

cross points between the load lines and the critical current line represent the estimated 

critical currents. The critical current of the tape is 217 A. The predicted critical currents 

are 140 A (Bz) and 120 A (averaged B). 

In order to improve the accuracy, a new method is proposed to define the load line. 

Rather than utilizing the maximum field in the weak turn, the new load line is defined 

by the normalized field in the weak turn. This averaged field takes into account both the 

parallel and perpendicular fields, normalized by Kim model: 

 

   
2 22

normalized r z eB B k B B    Equation 4-22 

we used the averaged Bnormalized to replace the maximum local Bz in Equation 4-21. 

Figure 4-31 shows the new load line. Figure 4-33 shows that the modified load line 

method has a much improved Ic calculation among the whole range of external fields. 

This agreement confirms the necessity of considering Br when using the load line 

method to estimate the critical current of a conductor with anisotropy. 

4.6 Summary 

Chapter 4 investigated a single YBCO coil to determine the critical current and AC 

losses. The first part of the chapter was devoted to study of the coil under a self field. 

Starting from Progozhin’s model dealing with stacks of superconducting strips with 

infinite length, this chapter gave a more detailed model for 2G HTS coils, adapted it for 

transport current, and then calculated the critical current and AC loss taking into account 
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the measured variation of Jc with magnetic field dependency. The calculated results were 

consistent with the experiments, and also offered some other insights into the 

transporting current of HTS coils. Our model predicted critical currents for coils with 

different numbers of turns within a 2.7% discrepancy with the measured critical current, 

if the criterion was selected as 0.5 μV/cm. Compared to the critical current defined by 

1 μV/cm, our model gave a conservative estimation of the critical current for 

superconducting coils. Regarding the measurement of AC losses, this model showed 

very good agreements for different coils, not only verified by the total loss in the coil, 

but also from the good agreement with experimental results for the innermost 10 turns. 

This demonstrated that our model was a powerful tool for simulating AC losses of the 

transporting current. We presented the load line and critical current line of a parallel 

magnetic field in the same graph and received very good Ic predictions. Finally, we 

discussed the instantaneous AC losses within the coil and presented the AC losses for 

different turns of the coil. 

 
(a) 

 
(b) 

Figure 4-32 Comparison of the critical current predicted by the penetration method and 

the Bz load line method with different external magnetic fields ranging from -0.2 T to 
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0.2 T. The critical current is normalized by the critical current of the tape. (a) SuNAM 

20-turn coil; (b) SuperPower 20-turn coil. 

 

Figure 4-33 Comparison of the critical current of the coils predicted by the penetration 

method and the average B load line method with different external magnetic fields 

ranging from -0.2 T to 0.2 T. The critical current is normalized by the critical current of 

the tape. 

The second part of Chapter 4 continued to study the coil under an external field. 

Two types of commercial superconductor were used to wind the coils. Both tapes 

could be approximated by the modified Kim model. We investigated the critical 

current of the coils under different magnetic fields both experimentally and 

numerically. It was found that the in-phase external field decreased the critical current 

of the coils due to the enhancement of the magnetic field of the weakest turn, thus 

reducing the critical current. However, the anti-phase field at first increased the critical 

current of the coils before driving it down. The initial increase was because the 

external field initially canceled the magnetic field. We also found that the existence of 

the external field may change the position of the weak turns. When the anti-phase field 

exceeded a certain limit, the outermost turn was the weakest turn, rather than the 

innermost. This can also be confirmed by measurement of the voltage in the 

corresponding sections. With the help of the numerical model, we further compared 

the tapes with different field dependencies of critical current for application in coils. 

Our results showed that the parallel field played a more important role in determining 

the critical current. This was because the parallel field was a bit larger than the 

perpendicular field, and even more so on the weakest turn. Thus, the tape that was less 
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sensitive to a parallel field was more attractive for application in coils. This was 

especially true for a small diameter coil. Finally, the load line method for calculating 

the critical current of a coil was extended to the consideration of HTS. We first 

employed the local maximum Bz field to define the load line. The errors under certain 

fields were quite large, showing the necessity of considering Br We therefore used the 

averaged normalized magnetic field to define the load line, and this new method gave 

very good critical current estimation. 

 



- 104 - 

Chapter 5. Modelling of 

Superconducting Coil Stacks 

Superconducting coils with thousands of turns using REBCO coated conductors have 

been the object of extensive investigation in recent years [117-119]. HTS magnets begin 

to be used as insert magnets for their high current density under extreme high magnetic 

fields [120, 121]. They are also used in energy storage and transformers [115, 122, 123]. 

All these applications share a same key component: a stack of superconducting pancake 

coils. Thus, a thorough understanding of the electromagnetic fields involved is of vital 

importance for designing and evaluating their performance, especially estimating of AC 

losses. Although there is no AC electromagnetic field during normal operation for some 

devices, the charging/discharging process and other transient conditions could also 

produce AC losses, which will determine the cryogenic design and normal operating 

parameters.  

However, AC loss calculation is still a challenging problem for superconducting 

devices with large numbers of turns due to the high aspect ratio and non-linearity in the 

electromagnetic relation [124]. Modelling and simulation of superconducting coil stack 

has already been tried by assuming a constant current distribution in the turns [125] and 

using a homogenized bulk equivalent to approximate the coils [43, 44, 49]. 

Although H formula is widely accepted in superconducting simulation, the huge 

meshes and high non-linearity makes it very unefficient in real superconducting coil 

simulation. Chapter 4 solves the modelling of single coil, however, for stack of coils, 

this model is still not efficient enough. Following the model of minimisation of magnetic 

energy in previous chapter, we develop a new efficient model to calculate the current 

distribution and AC losses for multi pancakes using the line front track approximation 

in this chapter.  
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The structure of this chapter is as follows: the second section introduces the model, 

in which the geometry, assumption and model establishment process are introduced in 

detail. This model is validated using a COMSOL model, taking a 1200-turn magnet as 

an example. Section 5.3 discusses the design of a 2 kJ superconducting pancake coil 

currently under construction in our laboratory.  

5.1 Numerical modelling 

5.1.1 Assumptions 

Figure 5-1 shows the cross-sectional view of a stack of pancakes. Before we go to the 

details of the model, three assumptions are made at the beginning. 

...
 

r

z
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a2n
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Jm
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Figure 5-1 The cross-section view of a stack of pancakes with line front track for the 

critical region. The red parts stand for the critical region which has a current density of 

Jc and the middle parts are the subcritical regions with a current density of Jm. The 

superconducting regions are meshed by the lines. The parameters a1, a2,.. a2n are the 

critical region widths.  
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Firstly, the penetration front boundary of the critical region is considered to be a 

straight line in all pancakes. When the critical regions emerge within the 

superconducting section, the widths are noted by a1, a2,…, a2n, respectively, as shown 

in Figure 5-1.  

Secondly, the critical state model is used to allocate the current in different regions, 

i.e. the critical region has a current density of Jc and the subcritical region current density 

is marked by Jm. In this chapter, Jc is considered to be independent of the field and 

remains constant along the critical region. Since the magnetic field can’t penetrate the 

superconductor in subcritical region, we can derive the Bz = 0. As 0B  , we can find 

that 0x z
B B

x z

 
  , thus 0xB

x


 , that is Bx is constant along x axis. Also Ampere’s 

law tells that 
0

x z
m

B B
J

z x


 
  , therefore, Jm is constant along x axis. Then, Jm can be 

calculated when each tape carries a fixed current, as shown in the following section. 

The third assumption is that the critical state equilibrium condition is reached by 

minimizing the magnetic energy in the superconducting regions. This process can be 

realized by minimizing the integration of A·J across the whole region, as we do in 

Chapter 4. 

5.1.2 Implementation of coil stacks 

The line front track method is different from other approaches [34, 103] in that it 

predefines the current distribution field before optimization. This will decrease the 

variables during optimisation. This makes the field calculation easier and saves 

computer memory, as fewer meshes and inductance matrices are stored during the 

simulation. Additionally, the loss is calculated based on the peak time field distribution, 

rather than on sequential steps from the beginning to the end of one cycle. This makes 

the AC loss calculation much quicker, because we only need to calculate the critical 

state at peak time directly.  

In Figure 5-1, both the penetrated and unpenetrated regions are meshed into elements 

with a uniform current density. Given that the widths of the penetrated regions are a1, 

a2,…, a2n, the elements belonging to the subcritical regions have a current density: 
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 Equation 5-1 

where  𝐽𝑚
𝑖  is the subcritical region current density of the ith pancake, 𝐽𝑐

2𝑖−1 and 𝑎2𝑖−1 

are the current density and the region width of the bottom critical region of the ith 

pancake, 𝐽𝑐
2𝑖 and 𝑎2𝑖 are the current density and the region width of the up side critical 

region, w is the width of tape width, and t is the thickness of the tape.  

Each element can be considered as a ring conductor along the z-axis, According to 

the Maxwell theory, the potential and magnetic fields can be integrated with the current 

distribution, that is: 

 k k

i i

i

A M I  
Equation 5-2 

where 𝐴𝑘   is the magnetic vector potential for the kth element,  𝑀𝑖
𝑘 is the mutual 

inductance matrix, and 𝐼𝑖  is the current in the ith element. The detailed equations for 

mutual inductance are found in [44]: 
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𝑘2 =
4𝑟𝑟′

𝑑2 + (𝑟 + 𝑟′)2
 

where where K and E are complete elliptic integrals of the first and second kind. 

According to the third assumption, the object function can be defined by potential A 

and J: 

 1

k k

k

f A I


  
Equation 5-3 

where 𝛺  contains all the elements in the superconductor. The condition with the 

minimum value of f1 represents the real current distribution. With the help of MATLAB 

optimization tool, the optimized width of critical region can be calculated. We can get 

the magnetic field and potential across the superconductor section after the current 

distribution is available.  
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AC loss calculation is a key question for superconductor simulation. There are 

several approaches to calculate the AC loss for a given field distribution. A common 

method is to sum the instantaneous losses over the whole period, from which the 

instantaneous loss is the integration of EJ in the conductor area [50]. This approach 

requires solutions for every time step, which makes the calculation inefficient. Another 

approach can be implemented by integration of Bz and Jy in the critical region at the peak 

time: 

 4
critical

i i i

r

i

Q B I d


 
 

Equation 5-4 

where 𝐵𝑟
𝑖 is the perpendicular field of the ith element at the peak time, and is solved 

through FEM, 𝐼𝑖  is the current of the ith element at the peak time, and 𝑑𝑖  is the flux 

moving distance when the current increases from zero to the peak. The physical 

interpretation of Equation 5-4 is the summation of the energy dissipated by vortices as 

they move a distance d from the edge to their final positions at peak time [43, 126]. The 

second method is employed in this chapter for its high efficiency and acceptable 

accuracy.  

5.2 Results and analysis 

A case study of a 12-pancake coil was calculated using this model and benchmarked 

against another established model. The benchmarked H formula model, described in Ref. 

[127], considered a fully featured stack of 12 YBCO pancake coils, in which each 

pancake contains 100 layers. Geometrical details of the model are presented in Table 

5-1. Figure 5-2 compares the AC losses in the coil between two models with different 

transporting currents, from 10 A to 50 A. This figure shows that the line front track 

model has quite good agreement with the H formula result for different amplitudes of 

the applied current during periodical cycles. Small deviations exist when the applied 

currents are 10 A and 40 A. These deviations have two causes: the first reason is that in 

real superconductors the separation between the critical region and the subcritical region 

is not an ideal straight line, and the second reason is that Equation 5-4 may introduce 

some errors. 

 

Table 5-1 Detailed parameters for the validation model 
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Parameter Value 

Tape Ic 100 A 

Tape width 4 mm 

Tape thickness 0.21 mm 

Pancake gap 0.57 mm 

Coil radius 42 mm 

 

 Figure 5-2 AC losses with different applied currents from COMSOL and the line front 

track model. 

After the line front track model was validated by the H formula in COMSOL, we 

used it to predict the electromagnetic field and current distribution. Figure 5-3 presents 

the distribution of the axial and radial fields in the coil when the operation current 

ramped up to the peak value of 50 A. According to Figure 5-3(a), as expected, the coil 

excited a positive axial field in the central region and negative fields outside the coil. 

According to Biot-Savart’s law and the superposition principle of the magnetic field, the 

magnitude of the radial fields increase along the z direction from the midplane. Figure 

5-3(b) shows that the radial fields peak at the top and bottom pancakes, and can therefore 

penetrate most of the top and bottom pancake. For this reason, the penetration proportion 

of a pancake decreases from the top and bottom pancakes to the middle two pancakes. 

Figure 5-3(c) shows that the contour of Bnormal is parallel to the tape surface and 

2
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field can’t penetrate the tape, which is the foundation for the Clem [43] and Yuan 

model [44, 45]. 

Figure 5-4 shows the current density distributions in the coil when the applied current 

is 50 A, calculated by H-formula and line front track method. Figure 5-4(a) and Figure 

5-4(b) show that the results are quite consistent with each other. The results using the H 

formula show that the penetration fronts between the critical region and the subcritical 

region are straight lines, although slight curve tracks can be found in the innermost and 

outermost turns of the 4th, 5th, 8th and 9th pancakes. These derivations can be attributed 

to the AC loss differences between our model and the H formula, as shown in Figure 

5-2.  

We also found that the opposite-direction shielding currents are induced in the coil 

in order to prevent the radial field from penetrating the pancakes. The penetration fronts 

in the pancakes are consistent with the radial field fronts in Figure 5-3(b). In the top and 

bottom pancakes, the shielding currents are obviously due to the high radial field. Figure 

5-5 gives the current density profile along the dashed line in Figure 5-4(b), and more 

clearly shows the shielding current.  

The AC losses in each pancake for one whole cycle with a peak current of 50 A are 

shown in Figure 5-6. The bottom pancake is represented by pancake No. 1 and the top 

pancake corresponds to pancake No. 12. There is obvious symmetry, and the top and 

bottom pancakes generate the maximum AC losses. This is because the top and bottom 

pancakes are penetrated more, which is consistent with Figure 5-5.  

Figure 5-7 compares the normalized AC loss distribution for the 12-pancake coil 

when the applied currents vary from 50 A to 10 A. All the values are normalized by the 

total AC loss of the coil in the corresponding cycle, to directly show the proportional 

contribution of each pancake to the total AC loss in the coil. It can be concluded that the 

bottom three pancakes and the top three pancakes contribute most of the total AC loss: 

these six pancakes generate more than 90% of the total AC losses. It is known that each 

pancake transports the same current and that the bottom and top pancakes have a higher 

magnetic field (shown in Figure 5-3), and therefore we can understand that the 

magnetisation loss is the dominant factor in the AC loss of the stack of coils in this case. 
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(a) 

 
(b) 

 
(c) 

Figure 5-3 Magnetic field distribution for the 12-pancake coil calculated by the line 

front track method. Each pancake has 100 turns. The applied current is 50 A. (a) Bz; (b) 

Br; (c) Bnormal 
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(a) 

 

(b) 

Figure 5-4 Current distribution of 12-pancake coils. Each coil has 100 turns calculated 

using the H-formula in COMSOL and the line front track method. The applied current 

is 50 A. The current distribution is normalized by the local critical current density. These 

pictures show that the superconducting regions can be categorized into two parts: the 

critical region and the subcritical region. The penetration front track can be effectively 

approximated using straight lines. 
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Figure 5-5 The current density profile along the dashed line in Figure 5-4(b). 

 

Figure 5-6 AC losses of individual pancakes for the 12-pancake coils. The applied 

current is 50 A. 
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Figure 5-7 The normalized AC loss distribution in the 12-pancake coil with different 

applied currents. Qpancake denotes the AC loss in each pancake, while Qtotal represents 

the total AC loss in the coil. 

5.3 Analysis of a 6-pancake coil with different temperature 

and configuration 

At the moment, a 2kJ SMES is under construction in the applied superconductivity lab. 

As has been demonstrated, the line front track is an efficient method for calculating the 

electromagnetic field of stacks of coils, and thus this method was further used to 

optimize the design of ongoing SMES magnet. In this section, some key parameters 

involving the performance of SMES will be discussed. The object of SMES design is to 

find the optimal configuration and operating conditions by raising the energy and 

reducing the AC loss. 

Operating temperature is one of the key working parameters, because the total energy 

of the coils, which is related to the critical current density, is largely determined by the 

temperature. Additionally, quench protection design also needs to take the temperature 

in account. However, the temperature is constrained by the cooling power of the 

cryogenic refrigerator, so the selection of the working temperature should balance these 

two aspects. 
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Figure 5-8 shows the critical current with temperature for 4 mm wide tape from the 

SuperPower product datasheet. The critical current of the tape is closely linked to the 

temperature. Roughly speaking, when the temperature decreased by 1 K, the 

corresponding critical current increased by about 20 A, showing that decreasing the 

working temperature is the one of most efficient approaches to enhance the energy and 

power capability .   

Figure 5-9 shows the AC loss of the coils at different temperatures with a fixed 

current. In this case, the applied current is 150 A, which enables the coils to hold the 

energy of 2 kJ. This is the rated current and rated energy for the SMES under design, 

which will be constructed in the near future. Figure 5-9 shows that raising the operating 

temperature from 20 K to 65 K could decrease the energy by 8%, however, the AC losses 

would increase by about 40%. This means that given a constant current, at different 

temperatures the stored energy is almost constant, however, a lower temperature has 

much smaller AC loss. This is because high critical current at lower temperature will 

lead to less penetration. 

 

 

Figure 5-8 The critical current of a 2G HTS conductor under a self field in different 

operating temperatures [124]. 

There are two important parameters for geometry design: coil radius and gap between 

the neighbouring coils. At the moment, the commercially availabe 2G HTS tape is 

supplied at a fixed length. As for convenicence, the tapes with the length of 50 m is 

discussed here. For other types of superconductor, the whole process is exactly the same. 
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This piece of conductor is wound into a pancake coil, so that coils with different radii 

have different numbers of turns, as shown in Table 5-2.  

 

Figure 5-9 AC losses and stored energy in the 2 kJ SMES at different temperatures. Each 

tape is transporting a current of 150 A. 

Table 5-2 The total turns for each pancake with different radii, given a 50 m length of 

conductor for each pancake 

Radius 28mm 35mm 44.5mm 60mm 76mm 

Turns 170 150 130 110 90 

In order to analyse the influence of the coil radius, it is assumed that each pancake 

coil had a length of 50 m and that the SMES was assembled by 12 stacked coils. Figure 

5-10 presents the stored energy and the AC loss with a transporting current of 150 A at 

a temperature of 50 K. This graph shows that given the total conductor length, increasing 

the radius decreases the stored energy as well as the loss. This is because a large radius 

decreases the magnetic field, which can decrease the energy density, also decrease the 

magnetisation part of AC losses. 

Another geometry parameter is the gap between coils. Figure 5-11 presents the 

energy and AC loss when the applied current is 150 A at a temperature of 50 K, where 

the gap varies from 1 mm to 8 mm, showing that the AC loss decreases continuously. 

This is because the bigger the gap is, the less the magnetization current is induced. 

Hence reducing the field created by the neighbouring pancakes. This will lead to a 

smaller penetration depth and smaller loss dissipation. While the energy decreases by 
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40%, the loss with an 8 mm gap is only 8% of that with a gap of 0.5 mm, showing a 

reduction of 92%. 

 

Figure 5-10 AC losses and stored energy in the 2kJ SMES with different radii. Each 

pancake coil is wound with a piece of 50-m YBCO conductor 

 

Figure 5-11 AC losses and stored energy in the 2 kJ SMES with different gaps. Each 

tape is transporting a current of 150 A. 

5.4 Summary 

Chapter 5 proposed a model for calculating the current distribution and AC loss for 

superconducting multi pancake coils. The critical state model was applied in the critical 

region, and each tape was constrained by a fixed current. The critical regions were 

optimized according to the minimization of the magnetic energy in the superconducting 

region. To validate the model, comparisons were made between H formula in COMSOL 

and our new model. The current distribution can be closely approximated by the line 
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front track method, as shown by the full detailed COMSOL simulation. We also found 

quite good agreement between the AC loss results. 

 We further applied this model in the design of 2 kJ SMES which was currently under 

construction. The AC losses and stored energy were calculated and analysed at different 

operating temperatures, coil radii and pancake gaps. Some guidelines were suggested 

for the design of SMES magnets. Key parameters, such as operation temperature, 

pancake radii, gap between neighbouring pancakes were compared based on the AC 

losses and stored energy. 
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Chapter 6. Design, Simulation 

and Application of SMES System 

 

SMES is able to smooth the fluctuations of renewable energy generation due to its 

advantage of high power density and fast response. This chapter firstly presents a 

conceptual design of a 60 kJ SMES for a renewable energy system. The main part of the 

SMES design involves optimisation of the coil configuration, AC loss estimation, 

current lead optimization and design of the cooling system. The application of SMES in 

a hybrid energy system for a wave energy generation system is then demonstrated using 

Matlab/Simulink model. The extension of the battery extension with the help of SMES 

is analyzed and quantified. Electronic inverters are proposed to investigate the 

feasibility of stabilizing frequent power fluctuation. Finally the economic prospects of 

large scale SMES systems are discussed for solenoid and toroidal configurations.  

6.1 Conceptual SMES design for renewable energy 
generation 

As penetration of renewable generation technology increases in the power grid, it is 

economically and environmentally beneficial to smooth the intermittent power and 

hence make the best use of local renewable energy sources. Due to the large variation 

in the load/generation balance of renewable energy sources, an energy storage system 

with the capability of fast response to power fluctuations over a short time scale of 

seconds to minutes will have the greatest value for renewable microgrids [128, 129]. 

Traditionally, batteries are widely used as energy storage systems in renewable 

energy generation. Their advantages include large energy density, mature technologies 

and cheap prices. However, the disadvantages of batteries include a small power density 

and short lifetime. Since the fluctuation of the power output of the renewable energy 

system is usually swift, batteries usually have too slow a response. 
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Therefore batteries are not able to address the challenges of balancing frequent power 

fluctuations over a short time scale of seconds. SMES, supercapacitors and flywheels 

have large power densities, large duty cycles and fast response speeds. Hybridized with 

batteries, they are able to compensate for the shortcomings of batteries. Compared to 

flywheels and supercapacitors, SMES systems have significantly larger power densities 

and module power ratings. In addition, they have advantages such as high round-trip 

efficiencies and solid-state operation. Therefore SMES systems are preferred to increase 

the performance of hybrid energy storage systems. 

6.1.1 Requirement of the SMES system for a wave energy converter 

Marine wave power is a vast and largely untapped source of energy. Direct Drive Linear 

Wave Energy Converters (DDLWEC) are one of the most promising technologies that 

can harness waves for electricity generation. Ocean waves, having periods ranging from 

5 to 15 seconds, normally have the feasibility and the potential for driving DDLWECs 

to generate electricity. SMES has a large power density and fast responding time, which 

could easily meet the system’s requirement in terms of power and speed. The available 

wave power that can be extracted from the ocean can be predicted from the weathercast 

over a certain time. Hence, the output power generated from a particular DDLWEC can 

be evaluated. The energy capacity of an SMES system is calculated to handle the 

difference between the maximum and average power from a DDLWEC at a specific 

location over a certain time. Taking the integration of the power difference over time 

gives the maximum energy that needs to be stored by the SMES. A 60 kJ SMES 

operating at 65 K is designed to handle the frequent power fluctuation caused by a 

particular DDLWEC during each wave period. 65 K is the lowest temperature of sub-

cooled liquid nitrogen. This cooling temperature is selected to minimize the cooling cost 

while increasing the energy density. 

6.1.2 Superconducting coil design methodology 

According to the principle of superconducting energy storage, increasing the operating 

current of SMES is an efficient way to increase the stored energy. However, as 

demonstrated in Chapter 3, the critical current density of 2G HTS has anisotropic 

characteristics under an external magnetic field, thus, the configuration parameters of 

the coil must be optimized carefully to maximize the energy. The fabrication of an 
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SMES system must also consider the fabrication cost, cryogenic system design, 

mechanical stability, current lead design, and magnetic field leakage, etc. 

The factors involved in an SMES design process include: 

1) Inductance of coils: The inductance of coils can be increased by varying the 

configuration. Two methods are available to calculate the inductance of the coil. The 

first is based on the analytical formula, which can only be applied to calculate the coils 

with simple geometries. The second method is to simulate the electromagnetic field 

using FEM and then use the field to calculate the inductance. The second method is 

comparatively more suitable and adaptable to complex geometries, and is applied in the 

following section. 

2) Critical current: The anisotropic properties of the superconducting tape cause the 

critical current to decrease dramatically under an external magnetic field. The coil 

design process should take this anisotropy into account and minimize the magnetic field. 

The load line method can be employed to determine the critical current given the field 

dependency. 

3) Cryogenic system. Superconductivity can only occur when the temperature is 

extremely low. The cryogenic system plays an important role in the operation of SMES. 

Liquid nitrogen and cryocooler are the two major cooling methods mostly used. 

Recently, cryocooler technology has attracted much attention for its advantage at lower 

temperatures, easier maintenance and better performance. In the following section, the 

cryocooler selection process is presented. 

4) Current lead. Superconducting coils are connected to an external circuit at room 

temperature via the current lead. The thermal load in the current lead is thus one of the 

thermal sources in the system. Decreasing the thermal flux through the current load is 

the objective of the current lead design. Here, we will present the design process of a 

copper current lead.  

5) Mechanical stress. There are two major sources which induce mechanical stress. 

The first is the Lorentz force, since the current circulating in the coil and the magnetic 

field is very large. The second is from the cooling process. An impregnation process is 

commonly used to enhance the coil, however the thermal expansion is different between 
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the superconducting material and the supporting component. The Lorentz force is 

analysed in this section. 

6) The leakage of magnetic field. According to the theory of electromagnetic 

compatibility, an external magnetic field with a magnitude of 10-3 T will make many 

electronic devices fail. Thus, proper measurements should be applied to prevent the 

magnetic flux from straying.  

7) Other factors. Real superconducting coils have other factors requiring 

consideration, such as limitations to installation space, the available length of 

superconducting wires, constraints on the volume and mass of superconducting coils 

and the current in different layers. 

Since this section focuses on the conceptual design of SMES system, only (1) ~ (5) 

will be discussed in detail.  

6.1.3 Material properties 

The 2G HTS YBCO tape SC4050 AP, produced by SuperPower, was used for the design 

process. The main properties of the tapes are listed in Table 6-1. The tapes have a width 

of 4 mm and a thickness of 0.1 mm. Figure 6-1 presents the critical current, Ic, in 

different external magnetic flux densities at 65 K. The critical current of the tape is 

400 A without an external magnetic field. The critical current varies widely under 

external magnetic fields, which should be considered in the magnet model. 

Table 6-1 Specification of the SuperPower SCS 4050 AP YBCO tape 

Specification Value 

Critical current (77 K, self field) 400 A 

Average thickness 0.1 mm 

Width 4 mm 

Maximum tensile stress >550 MPa 



- 123 - 

0 2 4 6 8 10

0

100

200

300

400

 B
⊥

 B
∥

C
ri

tic
al

 C
ur

re
nt

 / 
A

External Magnetic Field / T

 

 

 

Figure 6-1 The Ic(B) dependence of magnetic density flux in the parallel and 

perpendicular directions at 65 K [130]. 

6.1.4 Magnet design 

The aim of magnet design is to achieve a stored energy of 60 kJ with the shortest length 

of tape. Solenoid and toroid are two types of SMES configurations normally used. 

Solenoid coils are easy to build and have higher energy densities. In our design, a 

stacked double pancake structure, which is basically a solenoid, was selected.  

The energy stored in the coil can be calculated by: 

 21

2
SE LI  Equation 6-1 

where ES is the energy stored in the coil, L is the inductance of the coil and I stands for 

the transporting current. It is clear that the inductance and current in the coils determines 

their stored energy. The inductance of the coils depends on their configuration [75]. At 

the same time, the critical current is mainly constrained by the maximum magnetic field 

to which the tapes are subjected, according to Figure 6-1. Thus it is essential to optimize 

the coil configuration to store the maximum energy and make the full use of the tapes. 

A global optimization algorithm was incorporated into the finite element method 

(FEM) model using the COMSOL Multiphysics package and MATLAB. The flow chart 

of the algorithm is shown in Figure 6-2. One configuration for the magnet was first 
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chosen, to include the tape length, the inner radius and the number of pancakes. 

According to the Maxwell theory:  

 
0B J   Equation 6-2 

If a certain current density J is applied to the section area, the magnetic flux density 

B and magnetic field H can be calculated by implementing FEM in COMSOL. The 

energy stored can be integrated over the section area since:  

 
SE BdH   Equation 6-3 

Also, the critical current of this configuration can be determined by the magnetic flux 

density combined with the data given in Figure 6-1, using the modified load line method 

introduced in Chapter 4. This process was repeated until the final configuration was 

calculated. Three optimized configurations of the SMES magnet are shown in Table 6-

2.  

 

Figure 6-2 Flow chart for the optimization process. 

Table 6-2 summarizes three optimized design configurations for the 60 kJ SMES. 

The total lengths for each design are almost the same: about 6200 m. The differences 

are the double pancake number and the radius. Design 1 has four double pancakes, 

while the other two designs have six and eight double pancakes, respectively. The 

table shows that although these three designs have different configurations, the total 

lengths don't vary much. This will help the engineers to simplify the design process, 

since the total energy is roughly related to the length of superconductor.  
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Table 6-2 Optimized design configurations of the 60 kJ HTS magnet 

Parameters 
Values 

Design 1 Design 2 Design 3 

Conductor length 6200 m 6100 m 6200 m 

Inner radius 100 mm 140 mm 100 mm 

Outer radius 186 mm 189 mm 150 mm 

Number of double pancakes 4 6 8 

Height 40 mm 60 mm 80 mm 

Turns 5000 5880 7840 

Inductance 3.8 H 3.8 H 3.9 H 

Operating current 93 A 92.7 A 89 A 

AC loss is a major problem for superconducting magnet designs, since it represents 

the main thermal load and determines the operating conditions. So far, very few methods 

are available to determine the AC losses for superconducting coils with thousands of 

turns. In Chapter 5, an efficient model based on the line front track and homogenisation 

was developed, which can be used for AC loss estimation and accurate magnetic field 

calculation in large coils. This method is used here to calculate the AC losses of the coils. 

This AC loss is the energy dissipation in one whole cycle.  

Table 6-3 summarizes the AC losses, electromagnetic field and max von Mises stress 

for three different designs using the line front method when the applied currents are the 

critical currents of the coils. According to this table, Design 2 has 20% less magnetic 

field and 50% less von Mises stress, compared to Design 1 and Design 3. This is because 

Design 2 has a larger radius, 140 mm, while the other two designs have a radius of 

100 mm. The smaller radius designs have more compact geometry which increases the 

magnetic field and hence increases the von Mises stress. 

Based on the results in Table 6-3, Design 2 should be preferred in future construction, 

for several reasons. Firstly, the AC losses are smaller than the other two designs, which 

will render the thermal load easier to handle. Secondly, the magnetic and mechanical 
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fields are smaller, which makes the system safer to operate. Finally, as there are fewer 

winding turns in Design 2, the coil winding processes are less challenging. 

Table 6-3 AC losses, electromagnetic field and max von Mises stress for three different 

designs. The applied currents are the critical currents presented in Table 6-2 

Design No. Design 1 Design 2 Design 3 

AC loss 5204 J/cycle 5070 J/cycle 5562 J/cycle 

Max Bnorm 5.31 T 4.47 T 5.51 T 

Max Bz 5.31 T 4.40 T 5.38 T 

Max Br 3.32 T 3.30 T 3.77 T 

Max von Mises Stress 8.7 MPa 5.5 MPa 7.9 MPa 

Figure 6-3 shows the current density distributions in the coil of Design 2 when the 

applied current is 90 A calculated using the line front track method. Figure 6-4 presents 

the current penetration depth of each pancake for the same coil under different currents. 

Figure 6-4 shows that when the current is small the penetration depths from the top and 

bottom to the middle decrease almost linearly. When the current increases, the 

penetration depth of each pancake also increases. After the outside pancakes are fully 

penetrated, the penetration depth remains constant. From this penetration depth graph, 

it can be inferred that the top and bottom will generate more losses, which will be 

discussed later. 

Since the current running through the HTS is considerably large, the Lorentz force 

should be analysed to ensure the mechanical stability of the magnet. Figure 6-5 shows 

the maximum stress located on the inner edge of the coil for Design 2. The maximum 

von Mises stress was 5.4 MPa, which is within the permitted range of YBCO tape, so 

the SMES is mechanically stable in operation.  

Figure 6-6 presents the distribution of the radial, axial and normal fields in the coil 

when the operation current ramps up to the peak value of 90 A. According to Figure 

6-6(a), the radial fields peak at the top and bottom pancakes. Hence, it can penetrate 

most of the top and bottom pancakes. Also for this reason, the penetration proportion of 

a pancake decreases from the top and bottom pancakes to the middle two pancakes. 

Figure 6-6 (b), as expected, shows that the coil excites a positive axial field in the central 
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region and negative fields outside the coil. According to Biot-Savart’s law and the 

superposition principle of the magnetic field, the magnitude of the radial fields increase 

along the z direction from the midplane. Figure 6-6 (c) shows that the contour of Bnormal 

is parallel to the tape surface as the perpendicular field can’t penetrate the 

superconducting tapes. 

 

Figure 6-3 Current distribution of the Design 2 coil. Each pancake has 490 turns 

calculated by the line front track method. The applied current is 50 A. The current 

distribution is normalized by the local critical current density.  

 

Figure 6-4 Penetration depth of each pancake for the Design 2 coil under different 

currents. The penetration depth is calculated by a2i-1+a2i which is shown in Figure 5-1. 

Wtape is the width of the tape. 
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Figure 6-5 Stress distribution of Design 2 of the magnet (Pa). 

Table 6-4 summarizes the AC losses for Design 2 with different applied currents 

using the line front track method. Figure 6-7 compares the normalized AC losses 

distribution for the Design 2 coil when the applied current varies from 90 A to 30 A. All 

the values are normalized by the total AC loss of the coil in the corresponding cycle so 

that we can directly see the proportional contribution of every pancake to the coil’s total 

AC loss. It can be concluded that the bottom three pancakes and the top three pancakes 

contribute most of the total loss (these six pancakes generate more than 94% of the total 

AC losses). This is similar to the results in Figure 5-7. The AC losses distribution in the 

pancakes is partly related to the penetration depth distribution, as the larger the 

penetration depth, the higher the losses. However, comparison of Figure 6-4 and Figure 

6-7 shows that there is some difference in the shape of the curve. In Figure 6-4, the 

penetration depth varies linearly, while Figure 6-7 varies in a higher order curve. The 

reason is the AC losses are dependent on two parameters: the penetrated current regions 

and the magnetic fields, as shown in Equation 5-4. As the top and bottom pancakes not 

only have larger penetration depths, but also higher magnetic fields, the AC losses 

distribution will vary in higher order curves. 

Table 6-4 AC losses for Design 2 with different applied currents 

Applied Current 90 A 70 A 50 A 30 A 

AC loss 5436J/cycle 3089J/cycle 1176J/cycle 277J/cycle 
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(a) 

 
(b) 

 
(c) 

Figure 6-6 Magnetic field distribution of Design 2 (T): (a) Br; (b) Bz; (c) Bnormal. 
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Figure 6-7 The normalized AC loss distribution in the Design 2 coil with different 

applied currents. Qpancake denotes the AC loss in each pancake, while Qtotal represents 

the total AC loss in the coil. 

6.1.5 Current lead and cooling system design 

Current leads connect the superconducting coil to the room temperature power supply, 

which brings in heat from the ambient surroundings. Current leads are made from brass 

for their balanced conductivity between current and thermal flow. 

The aim for current lead design is to minimize the heat transferred along the lead. 

Heat sources can be divided into two parts: the heat due to the resistance and the heat 

flow due to the difference in temperature between the two ends. The high temperature 

end is at 300 K, while the low end is at 65 K. According to [10], thermal conduction 

along the lead can be minimized when the length/cross-area ratio of the conduction 

cooled current lead has the relation: 

 0.5

C T

l

S I



 
 
   

Equation 6-4 

where l is the length of the current lead, S is the cross-sectional area, C is the average 

thermal conductivity of the lead material, ΔT is the temperature difference between the 

warm and cold ends, and    is the electrical resistivity of the lead material. The 

minimum thermal flow through the current lead can be calculated as: 
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 2leadQ I C T   Equation 6-5 

According to Equation 6-5, the heat conduction through the current lead is 9 W. 

Cooling and thermal insulation systems are needed to maintain the cold temperature 

necessary for operation of the SMES. The total thermal load of the cryogen magnet 

includes four components: 

1. Conduction loss in the coils. This can be calculated using the E-J power law. The 

loss is the product of the voltage and the current, where the voltage is solved by the 

current and the n value. 

2. Radiation between the coil and the steel shell, i.e. heat flux through the vacuum. 

Based on the configuration of the cooling system in Figure 6-8, the radiation loss can 

be calculated. 

3. Thermal conduction through the current lead. 

4. Other thermal load through the mechanical support components. This part is 

estimated based on the configuration of the mechanical components. 

 

1. Superconducting coil; 2. Current lead (2nd stage); 3. Vacuum; 4. Dewar case; 5. Current lead (1st 

stage); 6. Cryocooler coldhead; 7. Cold plate; 8. Cold tube 

Figure 6-8 Schematic of the cooling and thermal insulation system. 
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All the thermal loads are listed in Table 6-5. The total thermal load in the SMES was 

28 W. Assuming that an efficiency of a cryogenic refrigerator is 20, the power of the 

refrigerator should be more than: 

P=20×28W=560W 

Table 6-5 Thermal loads for the 60 kJ SMES 

Thermal load Value (W) 

Conduction loss 8 

Radiation flow 3 

Current lead flow 9 

Holder flow 8 

Total 28 

6.2 Applications for renewable energy 

The formation of a hybrid energy storage combining a battery and SMES system, offers 

many benefits that will enable the system to make full use of the special properties of 

both technologies [131]. Firstly, such a combined system can be used to level the 

frequent fluctuations of output power on a short time scale, and to time shift energy over 

a longer term basis with a substantially reduced number of charge/discharge cycles and 

thus extending the battery life. Secondly, the system will also significantly reduce the 

volume of usage of electrochemical batteries in renewable energy integration. In 

addition, the size and the power losses of the main storage system will be considerably 

reduced. Therefore, several hybrid energy storages are under investigation to evaluate 

this technology for integration into renewable energy systems. 

6.2.1 SMES in hybrid energy systems 

A hybrid energy storage system using 60 kJ SMES and 15 AH (Amps*Hour) Li-ion 

battery is designed to balance the output power of a 10 kW wave generator. The 

DDLWEC generates electricity with varied frequency and amplitude. The generated AC 

power from DDLWECs is rectified to DC by an AC/DC converter as shown in Figure 

6-9.  
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Figure 6-9 A microgrid system of DDWECs with a hybrid energy storage system. 
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Figure 6-10 A microgrid system of DDWECs with a hybrid energy storage system. 

The SMES and battery need to use different DC/DC interface circuits for exchanging 

energy with the DC link, as shown in Figure 6-10. When the DDLWEC generates 

excessive power, the interface circuits control the SMES and battery to absorb the 

redundant power from the DC link and maintain the desired DC link voltage. When the 
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DDLWEC generates power that is smaller than the load demand, the interface circuits 

control the SMES and battery to release power to meet the load demand and maintain a 

constant DC link voltage.  

 Figure 6-11 shows the output waveforms of a particular DDLWEC driven by a wave, 

which has 1.2 m amplitude from 0–5 s, 0.8 m from 5–15 s and 1.2 m from 15–20 s. The 

fluctuating power from the DDLWEC is smoothed out at the DC link by the hybrid 

energy storage system, thus a stable output power can be further converted and 

dispatched to the grid or local load. 

 

Figure 6-11 Simulation results of the generator waveforms and maintained DC link 

voltage. 

6.2.2 Battery lifetime model 

The performance and lifetime of battery in energy storage system are important aspects 

of renewable based energy systems. And batteries usually make up the major 

expenditure when considering the whole lifecycle cost of the system. Precise prediction 

of the battery lifetime can, therefore, enhance the viability and stability of the system 

over the long term. 

The available capacity of all batteries drops during the charging/discharging 

processes. Failure of the battery is usually marked when the capacity of the fully charged 

batteries decreases to a predefined value, such as 80% of the original capacity. This 

degradation results from the wearing out of the cathode when the ions flow between the 

cathode and the anode. Battery calendar-life ageing is also heavily dependent on cell 
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chemistry, battery type and temperature. Avoiding a frequent charging/discharging 

process can therefore enhance the lifetime of a battery. 

Two approaches are common in studying the lifetime of batteries. The first is based 

on experiments. Repeated charging/discharging cycles can be performed and the cycles 

are counted until the batteries fail. This approach can provide the detailed voltage and 

current relationships under different condition and form the basis for theoretical analysis. 

However, the experimental process requires a large investment of money and time, 

which limits the scope of usefulness. The second approach uses experimental data to 

simulate the battery lifetime. The simulation approach has the advantages of being 

efficient and economical. This research uses the simulation method to verify the benefit 

of an SMES/battery hybrid energy storage system. 

There are several methods that can be used to characterize the lifetime of batteries. 

The first, known as “the FhG model” [132] employs an equivalent circuit to simulate 

the working process of batteries with the stated variables, such as voltage and internal 

resistance. In this way, the degradation in battery performance can be quantified to 

estimate the battery lifetime. The model varies significantly from the others considered 

due to its complexity and the need for input parameters and empirical test data.  

The second type of model is the cycle-counting model. This model is based on the 

assumption that the amplitude of a charge cycle determines the fraction of the battery 

lifetime consumed during the cycle. The consumed lifetime fraction can be derived from 

the battery life curve against the magnitude of discharge. Therefore, the lifetime aging 

should be calculated by summation of the contribution of individual charge/discharge 

cycles at their corresponding depths of discharge.  

Binder examined the results of real-life batteries and concluded that the FhG model 

significantly overestimates the battery lifetime when deployed with real renewable 

energy system data [132]. In contrast, the much simpler cycle counting algorithm 

provides a better prediction of battery lifetime with the same test data. Thus, the cycle 

counting method is used in this research and the FhG model is not considered any 

further. 

The depth of discharge, DOD, in a battery reflects the changes in battery capacity, 

defined as the ratio of the released charge and the total capacity: 
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  Equation 6-6 

where QI is the released charge from the battery, and CI is the capacity of the battery 

with the discharging current I. Another parameter which denotes the remaining charge 

in the battery is the state of charge, SOC. The SOC can be derived from the DOD as: 
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C
     Equation 6-7 

Figure 6-12 (a) shows a typical plot of cycles-to-failure against the depth of discharge 

for a typical lead-acid battery using the datasheet data. One problem is that 

manufacturers’ datasheets [133] do not provide information for cycle ranges less than 

0.1, so it is necessary to extend the battery life curve shown in Figure 6-12 (b). The 

existing manufacturer’s data was extrapolated as a straight line on a log/log scale by 

using the final gradient of the curve at the last manufacturer’s data point to extend to 

cycles in the range <10–3, which was proposed by Ruddell et al. [134]. 

The equation of the curve that fits the extrapolated data is a logarithmic polynomial 

of the formula: 

 1 2 3 4

1 2 3 4dC a d a d a d a d        Equation 6-8 

where Cd denotes the number of cycles-to-failure for a depth of discharge d. The fitting 

coefficients a1 to a4 are:  

a1 =601.5 

a2=-0.001507 

a3 =1.495 × 10-7 

a4=-1.345 × 10-12 
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Figure 6-12 (a) The charge/discharge times against depth of discharge for a typical 

battery; (b) The extrapolated curve of a typical battery in a logarithmic scale. 

6.2.3 Rainflow counting method 

The key issue in determining the battery life with the cycle-counting model is how to 

identify the charging/discharging cycles. This is more challenging considering the 

random fluctuations in the output of renewable energy generation. The rainflow 

counting method is widely used to convert a complex load spectrum into simple patterns 

[135, 136]. The rainflow counting algorithm is used in the analysis of fatigue data in 
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order to reduce a spectrum of varying load into a set of basic load reversals. It was first 

proposed for analysis of the fatigue process of metallic materials in engineering 

structures. The rainflow counting method was later used for lifetime predictions of 

batteries, and good agreement was obtained between experiments and theoretical 

calculations. 

Using the rainflow counting method to predict the lifetime of a battery involves two 

assumptions: 

1) The loads are independent and the order of the loads does not matter to the lifetime 

consumption.  

2). The cumulative damage model for battery failure caused by the 

charging/discharging process can be described by Miner’s rule [137]. This means that 

the battery life consumption Ctest during a certain test can be approximated by: 

 

1

k
i

test

i i

n
C

N

  Equation 6-9 

where Ni is the total number of cycles to failure at the ith depth of discharging, and Di, 

ni is the number of cycles accumulated at Di . 

Figure 6-13 presents the general process to determine the cycles using rainflow 

counting methods. These cycles include two categories: full cycles and half cycles. Two 

corresponding half cycles can be merged into one full cycle. These cycles are allocated 

into different groups by the magnitude of the depth of the discharge. Thereby, the 

numbers of simple charging/discharging cycles can be extracted from the complex 

loading profiles. 

There are several software packages available to carry out rainflow counting 

procedures to predict the lifetime during the fatigue or aging. This section selects the 

code based on the MATLAB platform [138]. This code was prepared according to the 

ASTM standard and optimized considering the calculation time. The algorithm takes an 

array of preprocessed state-of-charge variations as the major input. 

The rainflow counting method can count the number of simple loads with different 

magnitudes in complex conditions. With these simple loads, the total battery life time 

can be predicted using: 
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where Ttotal is the estimated battery lifetime, Ttest is the period length of the test, and Ctest 

is the lifetime consumed during the test period Ttest.  
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Figure 6-13 A simplified example to demonstrate rainflow cycle-counting algorithm.  

6.2.4 Application in wave generation systems 

Figure 6-9 presents a wave power generating system with a hybrid energy storage 

system. The SMES and battery are connected to the bus via a DC/DC converter to absorb 

and release energy, thereby compensating for the fluctuation in the output of the 

renewable energy power generation and maintaining the stability of the grid. In this 

wave generation system, the role of the hybrid energy system is to smooth the power 

fluctuations, where the SMES can smooth high-frequency power fluctuations and the 

battery energy storage can smooth low frequency fluctuations. 

Figure 6-14 is the output power of a wave generator in 18 minutes where the rated 

power of the generator is 2 kW. In order to simplify the calculation, the voltage of the 

output is assumed to be 400 V. Hybrid energy storage systems act as a supplement to 

the generator and stabilize the bus voltage. Thus the generator and the energy storage 

system can be regarded as a generator with constant power and voltage. 
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Figure 6-14 The output profile of a wave generator within 18 minutes. 

The basic idea of a SMES—battery hybrid energy system is that the low frequency 

portion is absorbed or released by the battery, while the SMES handles the high 

frequency portion, which is shown in Figure 6-15. The fluctuation of the power output 

is filtered to seprate the high frequency part and low frequency part. The current curve 

is then converted into the battery SOC (state of charging) curve, and finally through the 

raindrops algorithm so that the data for charging and discharging cycles can be 

calculated. 
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Figure 6-15 The power allocation algorithm for a hybrid energy system. 

6.2.5 Results and Analysis 

Figure 6-16 and Figure 6-17 compare the results of an energy storage system, including 

the charging/discharging curve, the SOC curve and the histogram of the cycles against 

different DODs. Figure 6-16 presents the battery only system, while Figure 6-17 shows 

the battery/SMES hybrid energy system with a filter time constant of 0.01 Hz. 

In terms of battery current, two major differences can be observed. Firstly, the peak 

value of the hybrid system is relatively smaller than that of battery only system. 

Secondly, the battery current in the hybrid energy system undergoes significantly fewer 

polarity reversals. There are more than 100 total cycles in Figure 6-16 (c), whereas there 

are fewer than 6 charging/discharging cycles in Figure 6-17 (c). Consequently, the 
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battery in the hybrid energy storage system experienced not only lower DODs but also 

fewer charge/discharge cycles. 

The prediction of battery lifetime for each system was calculated using the novel 

battery lifetime model in Figure 6-18. The batteries in a battery only system can be used 

for 96 hours, whereas in a hybrid energy system the battery lifetime can achieve a three 

times increase, reaching as high as 464 hours. A lower cut off frequency will generate a 

larger extension of battery lifetime, as shown in Figure 6-18. However, a lower cut off 

frequency requires a larger sized SMES, which means a higher initial investment and 

greater power losses. So the selection of lower cut off frequency needs some 

consideration to balance the AC losses and battery life extension. 

6.3 Rough estimation of costs of SMES with different energy 

scale 

Although many superconducting demonstration projects have been carried out for 

power system applications and their technical feasibilities are widely accepted, very few 

have been used commerically. One of the major obstructions is the economical 

consideration. For LTS-related projects, achieving a cooling temperature of 4 K is 

expensive, due to the scarcity of liquid helium. For HTS applications, the economic 

consideration is centred on the material cost of superconductors, since the fabrication of 

2G HTS conductors is not yet mature and the price of 2G HTS is tens of times expensive 

than LTS. Thus, further analysis on the cost of HTS SMES systems is necessary for their 

future application. 

The cost estimation of HTS SMES varies greatly depending on the designed capacity 

of the project, the status of the specific technology, as well as the particular materials. A 

standardized cost-breakdown structure for energy storage systems that would allow 

researchers to objectively compare the cost/benefit aspects of various storage 

technologies has been proposed by Sandia Laboratory [139]. According to this method, 

the cost of certain SMES system consists of three key components: superconductors, 

power conditioning system (PCS) and cryogenic system.  
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(a) 

 
(b) 

 
(c) 

Figure 6-16 Results for a battery only system: (a) Current curve; (b) SOC curve; (c) 

Histogram of cycles vs depth of discharge. 
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(a) 

 
(b) 

 
(c) 

Figure 6-17 Results for a time constant of 100 s: (a) Current curve; (b) SOC curve; (c) 

Histogram of cycles vs depth of discharge. 
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Figure 6-18 The estimated battery lifetime with different filter time constants. 

To understand how some of the components of SMES affect the cost, the group at 

the University of Wisconsin established the empirical scale law which describes how 

various magnet parameters are related to the magnetic field intensity (B) and stored 

energy (E) [140]. Cost components based on the scaling law for LTS SMES projects 

were plotted and can be used to guide the design process. An analysis of SMES costs 

was discussed in [139] based on two real projects: a commercial 8 MJ SMES developed 

by Superconductivity, Inc. and a 1,350 MJ SMES (375 kwh) in Anchorage. The 

commercial 8 MJ SMES revealed that the magnetic storage, PCS and balance of plant 

cost of this system accounted for approximately 30%, 30% and 40% of the total project 

cost, respectively. Schwartz J. estimated the cost of the International Thermonuclear 

Experimental Reactor (ITER) magnet system developed at Lawrence Livermore 

National Laboratory. This magnet held an energy of 43 GJ and the total cost was about 

$200 million[141]. 

This section aims to discuss the economic aspects of 2G HTS SMES with different 

energy scales: kJ, MJ and GJ. This discussion includes two parts: magnet configurations 

and energy capacities. In order to simplify the analysis, the assumption is that the cost 

only considers material cost of the superconductor. This is a reasonable assumption for 

YBCO conductors since the price is ten times more expensive than LTS conductors, 

making material consume most of the budget for large systems, and at the same time the 

cooling of 2G HTS is much cheaper. 
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6.3.1 Coil structure design 

There are two types of SMES magnets: solenoid configuration and toroid configuration. 

The unit cell of an SMES magnet is a double pancake coil as shown in Figure 6-19 [113]. 

In many small-scale and medium-scale SMES systems the solenoid configuration is 

preferable because it stores more energy than a toroidal SMES using the same amount 

of superconductor. The simple structure also makes it easier to manufacture. A drawback 

of the solenoid configuration is the stray field, which is a leakage magnetic field that 

presents threat to environment and human health. However, for small SMES, the stray 

field is not a major conern. 

 

Figure 6-19 Schematic view of a double-pancake coil. 

In a toroidal configuration several double pancake coils are placed in a circle, such 

as Figure 6-20. The magnetic field has been constrained within the coil, and therefore 

the stray magnetic field is significantly reduced. In this paper the SMES system is 

modelled as eight double pancake coils placed in the circumference of a circle with 

equal spacing between them to simplify the simulation work of the toroidal 

configuration. 

 

Figure 6-20 Illustration of toroidal SMES configuration. 
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The AC/DC module of COMSOL is good at tackling electro- and magnet-related 

problems, and at providing access to any derived field quantities and unlimited 

couplings to other physics. In this section, the AC/DC model in COMSOL is used to 

simulate various types and sizes of magnets, which is convenient for modelling the 

electrical and magnetic field. Figure 6-21 shows the magnetic field of solenoidal MJ and 

toroidal MJ SMES. 

 
(a) 

 
(b) 

Figure 6-21 Magnetic field for an MJ-scale SMES, in which arrows represent the current 

flow. (a) Solenoid configuration; (b) Toroid configuration. (Unit is T) 

For a small-capacity superconducting magnet the solenoid type configuration will be 

the prime consideration, because the magnetic field is small and the stray field is easy 

to handle.  The simulation result shows that a bigger radius helps to reduce the maximum 

magnetic field and increase the storage capacity for solenoidal coil. However, more 

superconductors are required as the coil radius increases. Applying a larger current into 
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a conductor is an efficient way to increase the stored energy. But the maximum possible 

current is limited by the magnetic field produced by the current. Thus, an optimization 

process is necessary and it is implemented as shown in Figure 6-2.  

For a medium or large SMES system, a toroidal configuration is a better option. This 

is because the modelling result indicates that a greater energy capacity could be achieved 

by a bigger radius of the toroid magnet, which would also reduce the magnetic flux 

density at the same time. However, more supporting structure materials and cryogenic 

costs would be required. 

According to Table 6-5, the magnetic field in a toroid magnet is much larger than that 

of a solenoid magnet. This is because a toroid can constrain the magnetic flux inside the 

magnet and achieve a higher magnetic energy density. The unit cost per quantity of 

stored energy decreases when the stored energy increases from kJ scale to GJ scale. 

Therefore, for a small SMES a solenoid configuration is a better option due to its simple 

structure and low magnetic field. For a large SMES, the toroid configuration is better 

since it has a significantly lower stray magnetic field and a higher energy density. 

Table 6-6 Current and maximum magnetic field in different SMES 

Parameter 
1.2 kJ 

(solenoid) 

1.6 MJ 

(solenoid) 

1.3 MJ 

(toroid) 

1 GJ 

(toroid) 

Current density 

(A/m2) 
2.5×108 2.05×108 1.00×108 5.3×107 

Critical current (A) 300 250 120 64 

Maximum Field (T) 1.91 2.9 7.6 14.3 

Operating 

Temperature 
65 K 65 K 65 K 65 K 

6.3.2 Cost analysis 

The specifications of the SMES magnets are shown in Table 6-6. According to 

Superpower Inc, the cost of a 12 mm wide YBCO tape is 85 $/m. Hence, the total 

expense of the tapes is calculated and shown in the table above. In Table 6-4, only the 

costs of the superconductors are presented. The unit costs for kJ, MJ (solenoid and toroid 

configuration) and GJ are $1,160 /kJ, $640 /kJ, $330 /kJ, and $45 /kJ, respectively, 
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showing that as the energy increases, the unit price of SMES systems decreases 

significantly.  

Due to the scope of this thesis, a complete analysis is not done. But for future 

reference, a complete economic analysis will include life cycle cost estimation, which 

consists of capital cost, operating cost and maintenance cost. For the capital cost, two 

main parts need to be considered: energy capacity-related cost and power conversion-

related cost. The former consists of the capital and construction costs of the 

superconductors, magnet structure components, cryogenics, protection systems, and 

control circuits. The latter is the cost of a required power electronics circuit. For different 

practical situations, different power electronics circuits are required. It is worth 

including all these factors in the calculations for a complete estimation.  

Table 6-7 Specficiation and cost of different scales of SMES systems 

Parameter 
1.2 kJ 

(solenoid) 

1.6 MJ 

(solenoid) 

1.3 MJ 

(toroid) 

1 GJ 

(toroid) 

Inner radius (cm) 4.5 20 8 34 

Outer radius (cm) 6.8 28 12 86 

Height (cm) 2.4 12 - - 

Total length of tape 

(km) 
0.17 12 5 533 

Cost (USD) 1.4×104 1.02×106 4.25×105 4.5×107 

Unit Price ($/kJ) 1 160 640 330 45 

6.4 Summary 

In Chapter 6, primary studies for applying superconducting magnets in energy 

storage systems were carried out. The optimal configuration of a 60 kJ SMES for a wave 

generator was achieved based on an electromagnetic field simulation. The stress due to 

the Lorentz force in the coil was calculated. Current leads were designed to minimize 

the thermal flow. The schematic chart of the cooling and insulation system was 

presented and the required cryocooler power was calculated. A hybrid SMES-battery 

energy storage system could be used to flatten out the power fluctuation of wave energy 

converters and ensure that a stable power output was dispatched to the grid or local load. 
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The control circuit was presented, and the simulation result showed that the fluctuating 

power from the DDLWEC was smoothed out at the DC link by the hybrid energy storage 

system. 

The hybrid energy storage was analysed to discuss extension to the lifetime of the 

battery component. A low pass filter (LPF) with specified time constant was used to 

allocate the power between the battery and the SMES. The rainflow counting method 

was employed to calculate the number of cycles that the battery experienced during the 

test period. The battery life model was fitted from the data sheet. Our result showed that 

the battery life can be extended by four times with the help of the SMES system. 

Different SMES systems were designed using YBCO tapes for different scales of 

energy capacity (kJ, MJ and GJ). The magnets of the SMES systems were designed 

using the global optimization algorithm, which took into account the properties of the 

YBCO tapes. Two types of SMES configurations were compared. It was shown that the 

solenoid configuration was easy to manufacture and install while having a large stray 

magnetic field, and was more suitable for small scale SMES systems. The toroid 

configuration confined the stray field inside the magnet, and was therefore more suitable 

for large SMES systems. The unit cost of energy for a SMES system was about 1200, 

330, and 45 $/kJ for kJ, MJ and GJ SMES, respectively. The cost per unit energy ($/J) 

falls as the stored energy in a system increases. 
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Chapter 7. Conclusion and future 

work 

7.1 Conclusion 

This thesis has studied superconducting coils with coated conductors experimentally 

and numerically, as well as their application in energy storage systems. This study has 

been performed in four steps: from a tape to a single coil, to multiple coils, and finally 

to a conceptual SMES system. The research has addressed two technical challenges: 

how much current the 2G HTS coils can carry, and how much heat they generate under 

AC conditions. The first issue is related to the critical current prediction of the system, 

which determines the performance and cost of the whole device. The second issue 

involves the cryogenic design and safe operation of the system. With these two issues 

being properly analysed and evaluated, a conceptual design of a 60 kJ SMES was 

performed as a case study. 

Chapter 3 studied the 2G HTS tapes which were used to fabricate superconducting 

coils. Firstly, the critical currents of different tapes under external magnetic fields were 

measured and these data were fitted using the Kim model. The field dependency of the 

n-value was also discussed, and it was found that the n-value decreases when the 

external magnetic field increases, similar to the magnitude of the critical current. This 

similarity was discussed based on the flux flow theory. The second part of Chapter 3 

showed that Gallinstan hardly degraded the tape, while resins resulted in different 

degrees of degradation. Comparatively, Stycast Black caused slight degradation in the 

tape, however, the other two resins, Stycast 1266 and Araldite, degraded the tapes 

substantially. The degradation was closely related to the mismatch in thermal expansion.  

In chapter 4, a fully multiphysics model of 2G HTS coils was proposed and validated 

using magnetic energy minimization, based on homemade finite element analysis code. 

This method coupled the magnetic energy minimization with magnetic, thermal and 

mechanical fields for the first time, and efficiently simulated the superconducting coils 
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using fewer elements and avoiding high non-linearity. The critical current and AC losses 

of the 2G HTS coils could be calculated accurately and efficiently. This model can be 

used to analyse the thermal and mechanical processes when the superconducting coil 

charges and discharges. Finally, the load line method for calculating the critical current 

of a coil was extended to the consideration of anisotropy in 2G HTS. The averaged 

normalized magnetic field was used to define the load line, and this new method gave 

very good critical current estimation. 

Chapter 5 presented efficient numerical modelling of a stack of HTS pancake coils 

with thousands of turns using the line front track approximation. Accurate current 

distribution, magnetic field and AC losses were calculated and compared to established 

H-formula methods. We further analysed the screening current and the AC losses in 

different pancakes, finding that the majority of the losses are generated in the top and 

bottom coils. This method was further applied to a real 2G HTS SMES design for the 

first time. Key parameters, such as operating temperature, pancake radii, and gaps 

between neighbouring pancakes were compared based on the AC losses and stored 

energy simulation results. 

Finally Chapter 6 presented a design for hybrid energy storage using an SMES 

system and battery. The full details were presented for the design of a 60 kJ SMES. The 

electromagnetic and mechanical fields were calculated using the line front 

approximation. This SMES was applied to a renewable energy system. Extension of the 

battery lifetime with the use of SMES in a hybrid energy system was discussed using 

the rainflow counting method. A rough cost estimation of the SMES system with 

different energy scales was presented and discussed. It was shown that the solenoid 

configuration was easy to manufacture and install while having a large stray magnetic 

field, and was more suitable for small scale SMES systems. The toroid configuration 

confined the stray field inside the magnet, and was therefore more suitable for large 

SMES systems. 

7.2 Future work 

Although some conclusions have been drawn in this thesis, further efforts are necessary 

for the future application of 2G HTS superconducting technologies.  
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In Chapter 3, field dependencies of critical current and n value of 2G HTS tape were 

investigated theoretically and experimentally, however, further work is needed to apply 

these results to the E-J power law in numerical simulations and to discuss their influence. 

For coil fabrication, the impregnation method should be researched more quantitatively 

to control the impregnation process. The impregnation material should be further 

applied to the coil to test the effects of Ic degradation and winding techniques. The 

differences in AC losses in the impregnated tapes should also be investigated further. 

Chapter 4 implemented the simulation of a single coil under a self field and an 

external field, more work is needed to speed up the simulation. This can be approached 

by using a homogenization technique. For a superconducting coil with complex shapes, 

such as racetrack coils in electric machines, a 3D modelling technique is necessary. 

Another interesting work is to extend the magnetic energy minimization to non-

insulated coils. Balancing the precision and the complexity of calculation is another 

issue worthy of deep consideration. It was demonstrated that the line front track 

approximation is efficient and accurate in a magnetic field for AC losses calculation, 

however additional work is necessary to optimize the parameters in the model, in order 

to further optimize the model. 

Chapter 6 outlined the general process of designing an SMES system and presented 

a preliminary study of superconducting coil application. For practical SMES design, 

special attention is needed for the joint technique and the voltage insulation. The quench 

process simulation and the protection scheme are also very important in the design stage. 

For battery life time extension, more typical fluctuation curves, including wind and solar, 

should be applied to validate the algorithm for renewal energy systems.  

 

 



- 153 - 

Publications 

1. Zhang, H., Yuan, W. etc., 2013.Design and simulation of SMES system using 

YBCO tapes for direct drive wave energy converters. IEEE Transactions on Applied 

Superconductivity, 23 (3), 5700704. 

2. Zhang Huiming, Zhang M, Yuan W. Measurement and calculation of critical 

current and transport AC loss in YBCO pancake coils. IEEE Transactions on Applied 

Superconductivity(Accepted) 

3. Zhu J, Zhang Huiming, Qiu M, Fu S, Zhang M, Yuan W. Electromagnetic Analysis 

of High Current-Carrying Superconducting Cable Consisted of YBCO Coated 

Conductor. IEEE Transactions on Applied Superconductivity(Accepted) 

4. Zhu, J. Zhang, H., Yuan, W. etc., 2013, Design and cost estimation of 

superconducting magnetic energy storage (SMES) systems for power grids, IEEE 

on power & energy society 

5. Nie, Z., Zhang, H. and Yuan, W. etc, 2013. SMES-battery energy storage system for 

conditioning outputs from direct drive linear wave energy converters. IEEE 

Transactions on Applied Superconductivity, 23 (3), 5000705. 

6. Zhang Huiming, Zhang M, Yuan W. Study of 2G HTS Superconducting Coils 

Using Line Front Track Approximation. IEEE Transactions on Applied 

Superconductivity (Submitted) 

 

 

 

 

 



- 154 - 

References 

[1]Reducing emissions and preparing for climate change: 2015 Progress Report to 

Parliament, 2015. 

[2]UK Renewable Energy Roadmap, Department for Energy and Climate Change, 

London, 2011. 

[3]Global Wind Report: Annual market update 2012, Global Wind Energy Council, 

2013. 

[4]“http://www.theguardian.com/environment/2012/feb/09/solar-power-ambition-uk,” 

[access online]20151012. 

[5]M. Ferrier, “Stockage d'energie dans un enroulment supraconducteur,” Proceedings 

Conference on Low Temperatures and Electrical Power, London, England, pp. 150, 

1969. 

[6]S. Kalsi, D. Aized, B. Conner et al., “HTS SMES magnet design and test results,” 

Applied Superconductivity, IEEE Transactions on, vol. 7, no. 2, pp. 971-976, 1997. 

[7]J. Paasi, R. Mikkonen, T. Kalliohaka et al., “Design and performance of A 5 kJ 

HTS u-SMES,” Advances in cryogenic engineering, vol. 45, pp. 779-786, 2000. 

[8]C. J. Hawley, and S. Gower, “Design and preliminary results of a prototype HTS 

SMES device,” Applied Superconductivity, IEEE Transactions on, vol. 15, no. 2, 

pp. 1899-1902, 2005. 

[9]H. Rogalla, and P. H. Kes, 100 years of superconductivity: CRC Press/Taylor & 

Francis Group, 2012. 

[10]S. S. Kalsi, Applications of high temperature superconductors to electric power 

equipment: John Wiley & Sons, 2010. 

[11]N. Atomura, T. Takahashi, H. Amata et al., “Conceptual design of MgB2 coil for 

the 100 MJ SMES of advanced superconducting power conditioning system 

(ASPCS),” Physics Procedia, vol. 27, no. 8, pp. 400-403, 2012. 

[12]S. Nomura, S. Akita, R. Shimada et al., “Design Considerations for SMES 

Systems Using and/or High-Temperature Superconductors,” IEEE Transactions on 

Applied Superconductivity, vol. 16, no. 2, pp. 590 - 593, 2006. 

[13]Y. Oga, S. Noguchi, and M. Tsuda, “Comparison of Optimal Configuration of 

SMES Magnet Wound With MgB2 and YBCO Conductors,” IEEE Transactions on 

Applied Superconductivity, vol. 23, pp. 5700204-5700204, 2013. 



- 155 - 

[14]E. A. Young, J. Pelegrin, I. Falorio et al., “Temperature and Background Field 

Dependence of a Compact React and Wind MgB2 Solenoid Coil,” Applied 

Superconductivity, IEEE Transactions on, vol. 25, no. 3, pp. 1-5, 2015. 

[15]S. Kwak, S. Lee, S. Lee et al., “Design of HTS magnets for a 2.5 MJ SMES,” 

Applied Superconductivity, IEEE Transactions on, vol. 19, no. 3, pp. 1985-1988, 

2009. 

[16]S. Noguchi, M. Yamashita, H. Yamashita et al., “An optimal design method for 

superconducting magnets using HTS tape,” Applied Superconductivity, IEEE 

Transactions on, vol. 11, no. 1, pp. 2308-2311, 2001. 

[17]D. C. Larbalestier, J. Jiang, ., U. P. Trociewitz et al., “Isotropic round-wire 

multifilament cuprate superconductor for generation of magnetic fields above 30 

T,” Nature Material, vol. 13, no. 4, pp. 375-381, 2014. 

[18]S. Foltyn, L. Civale, J. MacManus-Driscoll et al., “Materials science challenges 

for high-temperature superconducting wire,” Nature materials, vol. 6, no. 9, pp. 

631-642, 2007. 

[19]C. Bean, “Magnetization of hard superconductors,” Physical Review Letters, vol. 

8, no. 6, pp. 250, 1962. 

[20]C. P. Bean, “Magnetization of high-field superconductors,” Reviews of Modern 

Physics, vol. 36, no. 1, pp. 31-38, 1964. 

[21]D. Chen, and R. Goldfarb, “Kim model for magnetization of type-II 

superconductors,” Journal of Applied Physics, vol. 66, no. 6, pp. 2489-2500, 1989. 

[22]M. Tinkham, Introduction to superconductivity: Courier Corporation, 2012. 

[23]F. London, and H. London, "The electromagnetic equations of the 

supraconductor." pp. 71-88. 

[24]V. L. Ginzburg, “Nobel Lecture: On superconductivity and superfluidity (what I 

have and have not managed to do) as well as on the “physical minimum” at the 

beginning of the XXI century,” Reviews of Modern Physics, vol. 76, no. 3, pp. 981, 

2004. 

[25]L. N. Cooper, and D. Feldman, BCS: 50 years: World scientific, 2011. 

[26]J. Nagamatsu, N. Nakagawa, T. Muranaka et al., “Superconductivity at 

39|[thinsp]|K in magnesium diboride,” Nature, vol. 410, no. 6824, pp. 63-64 (1 

March 2001) | doi :10.1038/35065039, 2001. 

[27]S. Solutions, "Basic research needs for superconductivity." p. 11. 

[28]W. Norris, “Calculation of hysteresis losses in hard superconductors carrying ac: 

isolated conductors and edges of thin sheets,” Journal of Physics D: Applied 

Physics, vol. 3, no. 4, pp. 489, 1970. 



- 156 - 

[29]E. H. Brandt, and M. Indenbom, “Type-II-superconductor strip with current in a 

perpendicular magnetic field,” Physical Review B, vol. 48, no. 17, pp. 12893, 

1993. 

[30]F. Grilli. "[Lecture Note]http://www.ims.kit.edu/english/327_1357.php." 

[31]F. Grilli, S. Stavrev, Y. Le Floch et al., “Finite-element method modeling of 

superconductors: from 2-D to 3-D,” Applied Superconductivity, IEEE Transactions 

on, vol. 15, no. 1, pp. 17-25, 2005. 

[32]N. Amemiya, S.-i. Murasawa, N. Banno et al., “Numerical modelings of 

superconducting wires for AC loss calculations,” Physica C: Superconductivity, 

vol. 310, no. 1, pp. 16-29, 1998. 

[33]Z. Hong, A. Campbell, and T. Coombs, “Numerical solution of critical state in 

superconductivity by finite element software,” Superconductor Science and 

Technology, vol. 19, no. 12, pp. 1246, 2006. 

[34]R. Brambilla, F. Grilli, and L. Martini, “Development of an edge-element model 

for AC loss computation of high-temperature superconductors,” Superconductor 

Science and Technology, vol. 20, no. 1, pp. 16, 2007. 

[35]A. Campbell, “An introduction to numerical methods in superconductors,” 

Journal of superconductivity and novel magnetism, vol. 24, no. 1-2, pp. 27-33, 

2011. 

[36]A. Hauser, “Calculation of superconducting magnetic bearings using a 

commercial FE-program (ANSYS),” Magnetics, IEEE Transactions on, vol. 33, no. 

2, pp. 1572-1575, 1997. 

[37]A. Stenvall, and T. Tarhasaari, “An eddy current vector potential formulation for 

estimating hysteresis losses of superconductors with FEM,” Superconductor 

Science and Technology, vol. 23, no. 12, pp. 125013, 2010. 

[38]A. Stenvall, and T. Tarhasaari, “Programming finite element method based 

hysteresis loss computation software using non-linear superconductor resistivity 

and T-omega formulation,” Superconductor Science and Technology, vol. 23, no. 7, 

pp. 075010, 2010. 

[39]F. Grilli, and S. P. Ashworth, “Measuring transport AC losses in YBCO-coated 

conductor coils,” Superconductor Science and Technology, vol. 20, no. 8, pp. 794, 

2007. 

[40]M. Zhang, J. Kvitkovic, S. Pamidi et al., “Experimental and numerical study of a 

YBCO pancake coil with a magnetic substrate,” Superconductor Science and 

Technology, vol. 25, no. 12, pp. 125020, 2012. 

[41]M. Zhang, K. Matsuda, and T. Coombs, “New application of temperature-

dependent modelling of high temperature superconductors: Quench propagation 

and pulse magnetization,” Journal of Applied Physics, vol. 112, no. 4, pp. 043912-

043912-8, 2012. 



- 157 - 

[42]V. K. Chari, and P. P. P. Silvester, Finite Elements in Electrical and Magnetic 

Field Problems: John Wiley & Sons, 1980. 

[43]J. R. Clem, J. Claassen, and Y. Mawatari, “AC losses in a finite Z stack using an 

anisotropic homogeneous-medium approximation,” Superconductor Science and 

Technology, vol. 20, no. 12, pp. 1130, 2007. 

[44]W. Yuan, A. Campbell, Z. Hong et al., “Comparison of AC losses, magnetic 

field/current distributions and critical currents of superconducting circular pancake 

coils and infinitely long stacks using coated conductors,” Superconductor Science 

and Technology, vol. 23, no. 8, pp. 085011, 2010. 

[45]W. Yuan, A. Campbell, and T. Coombs, “A model for calculating the AC losses of 

second-generation high temperature superconductor pancake coils,” 

Superconductor Science and Technology, vol. 22, no. 7, pp. 075028, 2009. 

[46]E. Pardo, J. Souc, and J. Kovac, “AC loss in ReBCO pancake coils and stacks of 

them: modelling and measurement,” Superconductor Science and Technology, vol. 

25, no. 3, pp. 035003, 2012. 

[47]E. Pardo, “Modeling of coated conductor pancake coils with a large number of 

turns,” Superconductor Science and Technology, vol. 21, no. 6, pp. 065014, 2008. 

[48]L. Prigozhin, “Analysis of critical-state problems in type-II superconductivity,” 

Applied Superconductivity, IEEE Transactions on, vol. 7, no. 4, pp. 3866-3873, 

1997. 

[49]L. Prigozhin, and V. Sokolovsky, “Computing AC losses in stacks of high-

temperature superconducting tapes,” Superconductor Science and Technology, vol. 

24, no. 7, pp. 075012, 2011. 

[50]F. Grilli, E. Pardo, A. Stenvall et al., “Computation of losses in HTS under the 

action of varying magnetic fields and currents,” Applied Superconductivity, IEEE 

Transactions on, vol. 24, no. 1, pp. 78-110, 2014. 

[51]N. Magnusson, S. Hörnfeldt, J. Rabbers et al., “Comparison between calorimetric 

and electromagnetic total ac loss measurement results on a BSCCO/Ag tape,” 

Superconductor Science and Technology, vol. 13, no. 3, pp. 291, 2000. 

[52]N. Magnusson, and S. Hörnfeldt, “Calorimetric apparatus for alternating current 

loss measurements on high-temperature superconductors,” Review of scientific 

instruments, vol. 69, no. 9, pp. 3320-3325, 1998. 

[53]R. Pei, A. Velichko, Y. Jiang et al., "High-precision digital lock-in measurements 

of critical current and ac loss in hts 2g-tapes." pp. 3147-3150. 

[54]W. Yuan, M. Ainslie, W. Xian et al., “Theoretical and experimental studies on Jc 

and AC losses of 2G HTS coils,” Applied Superconductivity, IEEE Transactions 

on, vol. 21, no. 3, pp. 2441, 2011. 



- 158 - 

[55]C. Barth, N. Bagrets, K. Weiss et al., “Degradation free epoxy impregnation of 

REBCO coils and cables,” Superconductor Science and Technology, vol. 26, no. 5, 

pp. 055007, 2013. 

[56]M.-J. Park, S.-Y. Kwak, W.-S. Kim et al., “Stress analysis of HTS magnet for a 

600 kJ SMES,” Applied Superconductivity, IEEE Transactions on, vol. 17, no. 2, 

pp. 1994-1997, 2007. 

[57]W. Hassenzahl, “Superconducting magnetic energy storage,” IEEE Trans. 

Magn.;(United States), vol. 25, no. CONF-880812-, 1989. 

[58]M. Beaudin, H. Zareipour, A. Schellenberglabe et al., “Energy storage for 

mitigating the variability of renewable electricity sources: An updated review,” 

Energy for Sustainable Development, vol. 14, no. 4, pp. 302-314, 2010. 

[59]W. Yuan, Second-generation high-temperature superconducting coils and their 

applications for energy storage: Springer, 2011. 

[60]Y. Tang, J. Shi, and L. Ren, Superconducting magnetic energy storage and its 

application in power system: China Electric Power Press, 2009. 

[61]J. Rogers, H. Boenig, J. Bronson et al., “30-MJ superconducting magnetic energy 

storage (SMES) unit for stabilizing an electric transmission system,” Magnetics, 

IEEE Transactions on, vol. 15, no. 1, pp. 820-823, 1979. 

[62]S. Schoenung, W. Meier, J. Hull et al., “Design aspects of mid-size SMES using 

high temperature superconductors,” Applied Superconductivity, IEEE Transactions 

on, vol. 3, no. 1, pp. 234-237, 1993. 

[63]A. Friedman, N. Shaked, E. Perel et al., “HT-SMES operating at liquid nitrogen 

temperatures for electric power quality improvement demonstrating,” Applied 

Superconductivity, IEEE Transactions on, vol. 13, no. 2, pp. 1875-1878, 2003. 

[64]C. J. Hawley, D. Cuiuri, C. D. Cook et al., "Characterisation and control of a 

prototype HTS SMES device." p. 809. 

[65]P. Tixador, M. Deleglise, A. Badel et al., “First tests of a 800 kJ HTS SMES,” 

Applied Superconductivity, IEEE Transactions on, vol. 18, no. 2, pp. 774-778, 

2008. 

[66]P. Tixador, B. Bellin, M. Deleglise et al., “Design and first tests of a 800 kJ HTS 

SMES,” Applied Superconductivity, IEEE Transactions on, vol. 17, no. 2, pp. 

1967-1972, 2007. 

[67]P. W. Parfomak, “Energy storage for power grids and electric transportation: A 

technology assessment,” Congressional Research Service, Tech. Rep. R, vol. 

42455, 2012. 

[68]B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage for the grid: 

A battery of choices,” Science, vol. 334, no. 6058, pp. 928-935, 2011. 



- 159 - 

[69]G. Ries, and H.-W. Neumueller, “Comparison of energy storage in flywheels and 

SMES,” Physica C: Superconductivity, vol. 357, pp. 1306-1310, 2001. 

[70]D. Rastler, Electricity energy storage technology options: a white paper primer on 

applications, costs and benefits: Electric Power Research Institute, 2010. 

[71]R. Howes, “Electrical Energy Storage and the Grid,” Bulletin of the American 

Physical Society, vol. 52, 2007. 

[72]E. Hoffmann, J. Alcorn, W. Chen et al., “Design of the BPA superconducting 30 

MJ energy storage coil,” Magnetics, IEEE Transactions on, vol. 17, no. 1, pp. 521-

524, 1981. 

[73]W. V. Hassenzahl, “Superconducting magnetic energy storage,” Proceedings of 

the IEEE, vol. 71, no. 9, pp. 1089-1098, 1983. 

[74]"Energy Storage Technologies for Distributed Energy Resources and Other 

Electric Power Systems," EPRI PEAC Corporation and Sandia National 

Laboratory, 2003. 

[75]M. N. Wilson, Superconducting magnets: Clarendon Press Oxford, 1983. 

[76]Y. Yanagisawa, K. Sato, R. Piao et al., “Removal of degradation of the 

performance of an epoxy impregnated YBCO-coated conductor double pancake 

coil by using a polyimide-electrodeposited YBCO-coated conductor,” Physica C: 

Superconductivity, vol. 476, pp. 19-22, 2012. 

[77]K. Mizuno, M. Ogata, and K. Nagashima, “An Innovative Superconducting Coil 

Fabrication Method with YBCO Coated Conductors,” Quarterly Report of RTRI, 

vol. 54, no. 1, pp. 46-51, 2013. 

[78]J. Sarrao, W. Kwok, I. Bozovic et al., Basic Research Needs for 

Superconductivity. Report of the Basic Energy Sciences Workshop on 

Superconductivity, May 8-11, 2006, DOESC (USDOE Office of Science (SC)), 

2006. 

[79]Y. Yoshida, M. Uesaka, and K. Miya, “Magnetic field and force analysis of high T 

c superconductor with flux flow and creep,” Magnetics, IEEE Transactions on, vol. 

30, no. 5, pp. 3503-3506, 1994. 

[80]P. W. Anderson, and Y. B. Kim, “Hard Superconductivity: Theory of the Motion 

of Abrikosov Flux Lines,” Reviews of Modern Physics, vol. 36, no. 1, pp. 39-43, 

01/01/, 1964. 

[81]E. Zeldov, N. M. Amer, G. Koren et al., “Flux creep characteristics in high‐
temperature superconductors,” Applied Physics Letters, vol. 56, no. 7, pp. 680-682, 

1990. 

[82]O. Van der Meer, B. Ten Haken, and H. Ten Kate, “A model to describe the 

angular dependence of the critical current in a Bi-2223/Ag superconducting tape,” 

Physica C: Superconductivity, vol. 357, pp. 1174-1177, 2001. 



- 160 - 

[83]T. Kiss, M. Inoue, S. Nishimura et al., “Angular dependence of critical current 

properties in YBCO coated tape under high magnetic field up to 18 T,” Physica C: 

Superconductivity, vol. 378, pp. 1113-1117, 2002. 

[84]T. Kiss, and H. Okamoto, “Anisotropic current transport properties and their 

scaling in multifilamentry Bi-2223 Ag-sheathed tapes,” Applied Superconductivity, 

IEEE Transactions on, vol. 11, no. 1, pp. 3900-3903, 2001. 

[85]G. M. Zhang, L. Z. Lin, L. Y. Xiao et al., “A theoretical model for the angular 

dependence of the critical current of BSCCO/Ag tapes,” Physica C: 

Superconductivity, vol. 390, no. 4, pp. 321-324, 7/15/, 2003. 

[86]T. Takematsu, R. Hu, T. Takao et al., “Degradation of the performance of a 

YBCO-coated conductor double pancake coil due to epoxy impregnation,” Physica 

C: Superconductivity, vol. 470, no. 17, pp. 674-677, 2010. 

[87]E. M. Petrie, Handbook of adhesives and sealants: McGraw-Hill Professional, 

2000. 

[88]H. Song, P. Brownsey, Y. Zhang et al., “2G HTS coil technology development at 

SuperPower,” Applied Superconductivity, IEEE Transactions on, vol. 23, no. 3, pp. 

4600806-4600806, 2013. 

[89]M. Zhang, W. Wang, Z. Huang et al., “AC Loss Measurements for 2G HTS 

Racetrack Coils With Heat-Shrink Tube Insulation,” Applied Superconductivity, 

IEEE Transactions on, vol. 24, no. 3, pp. 1-4, 2014. 

[90]"http://www.superpower-inc.com/." 

[91]"http://www.i-sunam.com/home/." 

[92]“http://www.superox.ru/en/products/42-2G-HTS-tape/,” [access online] 

20151014. 

[93]W. Yuan, M. Ainslie, W. Xian et al., “Theoretical and experimental studies on and 

AC losses of 2G HTS coils,” Applied Superconductivity, IEEE Transactions on, 

vol. 21, no. 3, pp. 2441-2444, 2011. 

[94]N. Morley, J. Burris, L. Cadwallader et al., “GaInSn usage in the research 

laboratory,” Review of Scientific Instruments, vol. 79, no. 5, pp. 056107, 2008. 

[95]G. Ventura, and M. Perfetti, Thermal Properties of Solids at Room and Cryogenic 

Temperatures: Springer, 2014. 

[96]B. Perea Solano, “Cryogenic Silicon Microstrip detector modules for LHC,” 

2004. 

[97]Y. Yanagisawa, E. Okuyama, H. Nakagome et al., “The mechanism of thermal 

runaway due to continuous local disturbances in the YBCO-coated conductor coil 

winding,” Superconductor Science and Technology, vol. 25, no. 7, pp. 075014, 

2012. 



- 161 - 

[98]D. N. Nguyen, F. Grilli, S. P. Ashworth et al., “AC loss study of antiparallel 

connected YBCO coated conductors,” Superconductor Science and Technology, 

vol. 22, no. 5, pp. 055014, 2009. 

[99]M. Zhang, J.-H. Kim, S. Pamidi et al., “Study of second generation, high-

temperature superconducting coils: Determination of critical current,” Journal of 

Applied Physics, vol. 111, no. 8, pp. 083902, 2012. 

[100]L. Prigozhin, “On the Bean critical-state model in superconductivity,” European 

Journal of Applied Mathematics, vol. 7, no. 3, pp. 237-248, 1996. 

[101]M. Polak, P. Barnes, and G. Levin, “YBCO/Ag boundary resistivity in YBCO 

tapes with metallic substrates,” Superconductor Science and Technology, vol. 19, 

no. 8, pp. 817, 2006. 

[102]H. Fukushima, A. Ibi, H. Takahashi et al., “Properties of long GdBCO coated 

conductor by IBAD-PLD method—The first GdBCO coil test,” Applied 

Superconductivity, IEEE Transactions on, vol. 17, no. 2, pp. 3367-3370, 2007. 

[103]J. Šouc, E. Pardo, M. Vojenčiak et al., “Theoretical and experimental study of 

AC loss in high temperature superconductor single pancake coils,” Superconductor 

Science and Technology, vol. 22, no. 1, pp. 015006, 2009. 

[104]F. Gomory, M. Vojenciak, E. Pardo et al., “AC losses in coated conductors,” 

Superconductor Science and Technology, vol. 23, no. 3, pp. 034012, 2010. 

[105]M. Chudy, Y. Chen, M. Zhang et al., “Anisotropy of 2G HTS racetrack coils in 

external magnetic fields,” Superconductor Science and Technology, vol. 26, no. 7, 

pp. 075012, 2013. 

[106]D. Hu, M. Ainslie, J. Rush et al., “DC characterization and 3D modelling of a 

triangular, epoxy-impregnated high temperature superconducting coil,” 

Superconductor Science and Technology, vol. 28, no. 6, pp. 065011, 2015. 

[107]J. Zhu, Z. Zhang, H. Zhang et al., “Electric Measurement of the Critical Current, 

AC Loss, and Current Distribution of a Prototype HTS Cable,” Applied 

Superconductivity, IEEE Transactions on, vol. 24, no. 3, pp. 1-4, 2014. 

[108]W. R. Smythe, and W. R. Smythe, Static and dynamic electricity: McGraw-Hill 

New York, 1950. 

[109]E. Weber, Electromagnetic Fields: Theory and Applications: Wiley, 1950. 

[110]T. F. Coleman, and Y. Li, “A reflective Newton method for minimizing a 

quadratic function subject to bounds on some of the variables,” SIAM Journal on 

Optimization, vol. 6, no. 4, pp. 1040-1058, 1996. 

[111]J. Duron, F. Grilli, L. Antognazza et al., “Finite-element modelling of YBCO 

fault current limiter with temperature dependent parameters,” Superconductor 

Science and Technology, vol. 20, no. 4, pp. 338, 2007. 



- 162 - 

[112]D. Van der Laan, and J. Ekin, “Dependence of the critical current of 

YBa2Cu3O7 coated conductors on in-plane bending,” Superconductor Science and 

Technology, vol. 21, no. 11, pp. 115002, 2008. 

[113]Y. Iwasa, Case studies in superconducting magnets: design and operational 

issues: Plenum Press New York, 2009. 

[114]J. Pitel, P. Kováč, M. Tropeano et al., “Study of the potential of three different 

MgB 2 tapes for application in cylindrical coils operating at 20 K,” Superconductor 

Science and Technology, vol. 28, no. 5, pp. 055012, 2015. 

[115]H. Zhang, Z. Nie, X. Xiao et al., “Design and Simulation of SMES System 

Using YBCO Tapes for Direct Drive Wave Energy Converters,” Applied 

Superconductivity, IEEE Transactions on, vol. 23, no. 3, pp. 5700704-5700704, 

2013. 

[116]M. Däumling, and R. Flükiger, “Factors determining the magnetic field 

generated by a solenoid made with a superconductor having critical current 

anisotropy,” Cryogenics, vol. 35, no. 12, pp. 867-870, 12//, 1995. 

[117]Q. Wang, J. Liu, S. Song et al., “High Temperature Superconducting YBCO 

Insert for 25 T Full Superconducting Magnet,” Applied Superconductivity, IEEE 

Transactions on, vol. 25, no. 3, pp. 1-5, 2015. 

[118]H. W. Weijers, W. D. Markiewicz, A. J. Voran et al., “Progress in the 

Development of a Superconducting 32 T Magnet With REBCO High Field Coils,” 

Applied Superconductivity, IEEE Transactions on, vol. 24, no. 3, Jun, 2014. 

[119]A. V. Gavrilin, L. Jun, B. Hongyu et al., “Observations from the Analyses of 

Magnetic Field and AC Loss Distributions in the NHMFL 32 T All-

Superconducting Magnet HTS Insert,” Applied Superconductivity, IEEE 

Transactions on, vol. 23, no. 3, pp. 4300704-4300704, 2013. 

[120]C. Senatore, M. Alessandrini, A. Lucarelli et al., “Progresses and challenges in 

the development of high-field solenoidal magnets based on RE123 coated 

conductors,” Superconductor Science and Technology, vol. 27, no. 10, pp. 103001, 

2014. 

[121]Y. Yanagisawa, Y. Kominato, H. Nakagome et al., “Magnitude of the screening 

field for YBCO coils,” Applied Superconductivity, IEEE Transactions on, vol. 21, 

no. 3, pp. 1640, Jun, 2011. 

[122]G. Wojtasiewicz, T. Janowski, S. Kozak et al., “Experimental Investigation of 

the Model of Superconducting Transformer With the Windings Made of 2G HTS 

Tape,” Applied Superconductivity, IEEE Transactions on, vol. 22, no. 3, pp. 

5500504-5500504, 2012. 

[123]M. Zhang, M. Chudy, W. Wang et al., “AC loss estimation of HTS armature 

windings for electric machines,” Applied Superconductivity, IEEE Transactions on, 

vol. 23, no. 3, pp. 5900604-5900604, 2013. 



- 163 - 

[124]"http://www.superpower-inc.com/content/2g-hts-wire," [access online] 

20151014. 

[125]H. Tonsho, M. Toyoda, S. Fukui et al., “Numerical evaluation of AC loss in high 

temperature superconducting coil,” Applied Superconductivity, IEEE Transactions 

on, vol. 14, no. 2, pp. 674-677, 2004. 

[126]J. Claassen, “An approximate method to estimate ac loss in tape-wound 

superconducting coils,” Applied physics letters, vol. 88, no. 12, pp. 122512, 2006. 

[127]M. Zhang, W. Yuan, D. K. Hilton et al., “Study of second-generation high-

temperature superconducting magnets: the self-field screening effect,” 

Superconductor Science and Technology, vol. 27, no. 9, pp. 095010, 2014. 

[128]A. F. d. O. Falcao, “Wave energy utilization: A review of the technologies,” 

Renewable and sustainable energy reviews, vol. 14, no. 3, pp. 899-918, 2010. 

[129]D. A. Halamay, T. K. Brekken, A. Simmons et al., “Reserve requirement impacts 

of large-scale integration of wind, solar, and ocean wave power generation,” 

Sustainable Energy, IEEE Transactions on, vol. 2, no. 3, pp. 321-328, 2011. 

[130]W. Yuan, W. Xian, M. Ainslie et al., “Design and test of a superconducting 

magnetic energy storage (SMES) coil,” Applied Superconductivity, IEEE 

Transactions on, vol. 20, no. 3, pp. 1379-1382, 2010. 

[131]A. G. Ter-Gazaran, Energy storage for power systems: The Institution of 

Engineering and Technology, 1994. 

[132]H. Bindner, T. Cronin, P. Lundsager et al., Lifetime modelling of lead acid 

batteries, 2005. 

[133]“http://www.trojanbattery.com/pdf/GEL_SS_Web.pdf,” [access online] 

20150714. 

[134]A. Ruddell, A. Dutton, H. Wenzl et al., “Analysis of battery current microcycles 

in autonomous renewable energy systems,” Journal of Power sources, vol. 112, no. 

2, pp. 531-546, 2002. 

[135]S. D. Downing, and D. Socie, “Simple rainflow counting algorithms,” 

International Journal of Fatigue, vol. 4, no. 1, pp. 31-40, 1982. 

[136]M. Matsuichi, and T. Endo, Fatigue of metals subjected to varying stress, 1968. 

[137]P. Edwards, Cumulative damage in fatigue with particular reference to the 

effects of residual stresses: Citeseer, 1969. 

[138]“http://www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-

counting-algorithm,” [access online] 20150714. 

[139]A. Akhil, S. Swaminathan, and R. K. Sen, Cost analysis of energy storage 

systems for electric utility applications, Sandia National Labs., Albuquerque, NM 

(United States), 1997. 



- 164 - 

[140]R. Giese, Superconducting energy storage, Argonne National Lab., IL (United 

States), 1993. 

[141]J. Schwartz, E. E. Burkhardt, and W. R. Taylor, Preliminary Investigation of 

Small Scale Superconducting Magnetic Energy Storage (SMES) Systems, 1996. 

[142]S. Stavrev, and B. Dutoit, “Frequency dependence of AC loss in Bi(2223)Ag-

sheathed tapes,” Physica C: Superconductivity, vol. 310, no. 1–4, pp. 86-89, 1998 

 

 

 


	20151023-Huiming Zhang-Thesis-front_page.pdf
	20160211-Huiming Zhang-Thesis-Version10.0_final.pdf

