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Abstract

The aim of this thesis is to investigate the vibrational properties of a range of uranium

based materials and to demonstrate the benefit of using vibrational data to identify and

distinguish these materials in a forensic scenario. The ability to rapidly detect and iden-

tify radioactive samples is of particular importance to countries interested in controlling

the distribution of nuclear material, as well as environmental scientists investigating the

remediation of nuclear sites. The materials of interest to this study are U3O8 and UO3,

which are the two primary oxidation products of UO2, and a range of minerals contain-

ing the uranyl UO2+
2 cation that readily form from UO2 in the environment. Raman

spectroscopy is a promising technique, with experimental data indicating that it may be

used to distinguish between uranyl minerals, hence it is a particular focus of this thesis.

Earlier work used group theory to interpret the spectra, whereas in this study the vibra-

tional properties have been compared with density functional theory (DFT) simulations.

This strategy has provided both an interpretation of vibrational modes and insight into

how the vibrational properties change in response to structural or compositional changes.

Chapter 1 provides background information on binary uranium oxides, uranyl minerals

and strategies that may be used to study them. Furthermore, the aims of this thesis

are discussed. A summary of the theory of Raman and IR spectroscopy is described in

Chapter 2 and the computational methods used are detailed in Chapter 3. Chapters 4

and 5 are focused on the simulation of vibrational spectra for the various polymorphs

of U3O8 and UO3, with comparisons made to experimental Raman and IR spectra. In

Chapter 6 experimental Raman spectra for a range of uranyl minerals from Cornwall,

UK are presented, with an emphasis on identifying differences that may be used to

discriminate between samples. In Chapter 7 DFT is used to simulate the vibrational

spectra for a set of uranyl phosphate and arsenate minerals, known as autunite minerals,

with systematic variations in composition. Finally, the conclusions from all chapters are

collated and discussed in Chapter 8, alongside possible areas of continued research.
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Chapter 1

Introduction

All countries that utilise nuclear technology are required to control the distribution of

radioactive materials and prevent it from being illegally obtained by nations or organ-

isations that are not recognised as ‘nuclear states’ by the Nuclear Non-Proliferation

Treaty [1]. The field of nuclear forensics has emerged to track, detect and identify sus-

pect radioactive material, using a variety of analytical techniques [2]. The knowledge and

methods used for forensics can also be applied to follow the contamination and remedia-

tion of nuclear sites and to investigate the processes affecting waste storage [3–6]. In this

thesis, the value of using vibrational spectroscopy to identify and distinguish between

uranium based minerals and materials is explored. Raman spectroscopy has been shown

as capable of rapidly collecting data for samples in situ without damaging or changing

the material. Maintaining an extensive database of spectra for known materials would be

a powerful tool when analysing unknown samples [7]. This chapter provides context for

the project, with background information on nuclear power generation, uranium oxides

and minerals and the application of Raman and infrared (IR) spectroscopies. A more

detailed review is given in each chapter, which includes previously published structural

and vibrational information. The major aims of this thesis are given in Section 1.4.

1.1 Nuclear Fission and Power Generation

The generation of electricity in nuclear reactors is centred around the process of nuclear

fission (Figure 1.1). This can occur spontaneously in some heavy element isotopes, but

these atoms decay more readily through α or β emission. In nuclear reactors, fission is

induced by bombarding the heavy atoms with neutrons, resulting in the former separating

into two smaller nuclei, known as fission products, and the emission of neutrons and γ

radiation. The heat generated by this reaction is then absorbed by the reactor coolant,

usually water, which produces steam that drives a set of turbines to produce electricity.

Some of the neutrons released by fission reactions have sufficient energy to induce fur-

ther fission reactions, which may be sustained as a nuclear chain reaction, providing a

constant supply of electricity. The most common design of reactors in use today, thermal

reactors [8], utilise control rods to maintain the chain reaction, but avoid overheating the

1



1.1. Nuclear Fission and Power Generation

Figure 1.1: Schematic showing the process of nuclear fission. A neutron (red) collides
with a fissile nucleus (green), which separates into two fission products (purple) and
releases neutrons and γ radiation.

core. These are composed of neutron moderators or poisons, which absorb a portion of

the free neutrons, reducing the number of fission reactions and, by extension, the power

output when pushed deeper into the core. The reactor coolant may also be used as an

alternative form of control, where reducing the temperature of the coolant increases its

density and allows more neutrons to be absorbed.

To be viable as a nuclear fuel, a heavy element isotope must be fissile, which means it

is capable of sustaining a nuclear chain reaction. These isotopes are almost exclusively

actinide elements, with 235U and 239Pu the most commonly used. Naturally occurring

uranium only contains ∼0.72% 235U, compared to 99.28% 238U [9]. While 238U can un-

dergo an induced fission reaction, the majority of neutrons it emits do not have sufficient

energy to induce further reactions. Therefore, the fuel is typically enriched to 3.5–5%
235U, with the exact proportion depending on the requirements of the reactor [9].

The nuclear fuels used in modern reactors are typically metal oxides, which have higher

melting points and a lower risk of burning than the pure metals that were used previ-

ously [10]. Uranium dioxide (UO2) is currently the most commonly used fuel, but it is

susceptible to oxidation, forming a wide range of other oxides, including U3O8 and UO3.

PuO2 has a contrasting problem, as it readily reduced to Pu2O3. Mixed oxide (MOX)

fuels are a more recent alternative, containing varying proportions of U and Pu oxides [9].

ThO2 has also been shown as a promising fuel material, with greater chemical stabil-

ity and natural abundance than UO2 and PuO2. Furthermore, the only major isotope

(232Th) is fertile, meaning it forms the fissile 235U upon absorbing neutrons. As the fissile

material is immediately used in the reactor, the risks of proliferation are reduced [11].

2



1.2. Oxidation of Uranium Dioxide

1.2 Oxidation of Uranium Dioxide

In UO2, uranium is found in the U4+ oxidation state. However, during the processes

involved in preparing the fuel, generating electricity and disposing or storing the waste,

known collectively as the nuclear fuel cycle [12], it is regularly exposed to oxidising

conditions. This allows a variety of uranium oxides to form, with oxidation states that

include U4+, U5+ and U6+ [13]. Many of these oxides are also found naturally, associated

with deposits of uraninite (UO2, also known as pitchblende). The major uranium oxides

are discussed in Section 1.2.1.

Figure 1.2: The uranyl cation, UO2+
2 , where U6+ and O2− are shown as green and red

spheres, respectively.

When released into the environment, uranium is commonly found in the U6+ oxidation

state. U6+ often forms two strong collinear U-O bonds, 1.7–1.9 Å in length, known as

uranyl bonding (Figure 1.2). In contrast to UO2, the uranyl cation (UO2+
2 ) is soluble in

water, so it can readily contaminate soil and groundwater [14, 15], which poses risks to

the environment and to the health of humans and animals [16–18] and requires regular

monitoring [4, 5, 19]. One commonly used method of remediation is the immobilisation

of UO2+
2 by its reaction with inorganic minerals, such as apatite (Ca5(PO4)3(OH,F)),

forming a variety of uranyl minerals [6, 20–28]. Uranyl minerals also occur naturally

as secondary minerals, formed by the weathering of pitchblende deposits [29]. These

minerals are introduced in Section 1.2.2, with more specific details on selected minerals

in Chapter 6.

1.2.1 The Uranium-Oxygen System

The uranium-oxygen system is complex [30], with a large number of intermediate oxides

forming between UO2 (U4+) and UO3 (U6+). The phase diagram is reproduced in Figure

1.3 from a publication by Hoekstra et al. [30]. UO2 crystallises in a cubic fluoride

structure, which is retained for the oxides up to UO2.5 (U2O5). Four phases of U2O5 have

been reported, with α-, β- and γ-U2O5 described as adopting the fluorite structure. In

contrast, the structures of δ-U2O5, U3O8 and UO3 are found to adopt layered structures.

3



1.2. Oxidation of Uranium Dioxide

Figure 1.3: Reproduction of the phase diagram for the binary uranium oxygen system
between UO2 and UO3 stoichiometries, as published by Hoekstra et al. [30].

U3O8 and UO3 are the most stable uranium oxides [31, 32] and have both been studied

as feasible nuclear fuels [33].

The cubic fluorite structure of UO2 [34] (Figure 1.4.a) has been reported to incorpo-

rate oxygen hyperstoichiometry (UO2+x) with very little change in structural properties.

The clustering of oxygen interstitials is well known in UO2+x. The first type of defect

cluster described for UO2+x was the Willis cluster [35–37] (Figure 1.4.b), in which inter-

stitial oxygen ions displace lattice oxygen ions, producing additional interstitial ions and

oxygen vacancies. A second cluster arrangement proposed for UO2+x is known as the

cuboctahedral cluster [38–40] (Figure 1.4.c), where a cube of oxygen lattice sites become

vacant and are replaced by a cuboctahedral cage-like structure of oxygen interstitials,

of which four are in excess of the perfect UO2 stoichiometry. Another group of defect

clusters are the split interstitials [41–44], which consist of an oxygen vacancy and three

oxygen interstitials in an equilateral triangle arrangement. The structures of U4O9 and

U3O7 have been described as a cubic fluorite UO2 supercell with periodic arrangements

of defect clusters [45].

4



1.2. Oxidation of Uranium Dioxide

Figure 1.4: a) The crystal structure of UO2, b) the 2:2:2 Willis cluster, c) the cubocta-
hedral cluster and d) the split di-interstial cluster. Green and red represent the uranium
and oxygen ions, respectively, while yellow represents the interstitials. The dashed black
lines represent the unit cells.

U2O5 (UO2.5) is known to be the stoichiometry at which the cubic fluorite based oxides

transition to the layered structures. Atomic coordinates are only available for the layered

orthorhombic structure of δ-U2O5 [46] (Figure 1.5.a), but the experimentally determined

densities have indicated that α-, β- and γ-U2O5 adopt fluorite type structures [30].

Experiments originally suggested that a mixture of U4+ and U6+ exist in U2O5 [47], but

a more recent XPS study has suggested that all uranium ions are in the U5+ oxidation

state [48], which has been supported by computational work [12, 49]. The relative paucity

of experimental information on U2O5 arises from the difficulty in stabilising it; previous

computational studies have shown it is thermodynamically unstable [50].

U3O8 is the kinetically stable oxidation product of UO2 [31]. It adopts a similar layered

structure to δ-U2O5, but as it is significantly more stable, it has been studied more

extensively than any other uranium oxide, with the exception of UO2. Of the three

known polymorphs, α-U3O8 is the most common [40] (Figure 1.5.b), but β-U3O8 forms

after heating and slowly cooling the α polymorph [51], suggesting that these phases are

in competition at room temperatures. In contrast, γ-U3O8 has been reported to form

under high pressure conditions [40, 52]. The focus of Chapter 4 is on simulating the

vibrational properties of the α and β phases, so more detailed structural information is

provided there.

UO3 has been reported as the thermodynamic oxidation product of UO2 [32]. There are

seven reported crystalline polymorphs and one amorphous phase [30, 53], of which the

γ polymorph is the most stable (Figure 1.5.c). Two of the more common structures, α-

and β-UO3, have been described as defective [54, 55], demonstrating that pure stoichio-

metric phases are difficult to synthesise experimentally. The structural and vibrational

properties of α-, β-, γ-, δ- and η-UO3 are discussed in Chapter 5.
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1.2. Oxidation of Uranium Dioxide

Figure 1.5: The layers found in a) δ-U2O5 and b) α-U3O8 and a cross section of the
layers in γ-UO3. For each structure, red and green polyhedra represent symmetrically
distinct uranium environments.

1.2.2 Uranyl Minerals

Over 200 uranyl minerals have been reported [56]; however, in many cases aspects of their

structure, composition, stability or occurrence are not fully characterised. The known

structures may be arranged into five categories, based on their topology: structures

based on isolated polyhedra; finite clusters; chains of polyhedra; 2D sheet structures and

3D frameworks. The minerals studied in this investigation are autunite, torbernite, ze-

unerite, nováčekite, andersonite, schröckingerite, johannite, natrozippeite, uranophane,

cuprosklodowskite, kasolite and compreignacite. The majority of these minerals adopt a

2D sheet of polyhedra, with the exception of the uranyl carbonate minerals andersonite

and schröckingerite, which are based around finite clusters of UO2 and CO3 polyhedra.

In addition to their topological differences, uranyl minerals may be categorised based

on their composition. The minerals in this study are uranyl phosphates, arsenates, car-

bonates, sulphates, silicates and hydrates. Uranyl phosphates are the largest and most

diverse category of uranyl minerals, with the majority adopting either the autunite or

phosphuranylite type sheet structure [56]. The autunite minerals are particularly com-

mon, adopting the general formula M(UO2)2(XO4)2·nH2O, where M is a cation (e.g.

Cu2+ or Mg2+), X is P, As or V and n is the number of water molecules. [57] The

sheet is comprised of uranyl and phosphate polyhedra, while the divalent cations and

water are found in the interlayer space. Many uranyl minerals have a variable level of

hydration, which depends on their physical environment. For autunite minerals, the de-

hydrated forms are typically referred to as meta-autunite minerals [58]. This propensity

to dehydrate means that intrusive experimental methods may change the sample as it is

observed, therefore, low impact analytical techniques are valuable. Uranyl minerals are
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described in more detail in Chapter 6, while autunite minerals are the focus of Chapter

7.

1.3 Analysis of Uranium Containing Minerals

The unambiguously identification of an unknown mineral sample in a forensic investiga-

tion requires the application of multiple techniques, including mass spectrometry (MS),

scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and

X-ray diffraction (XRD). However, some information can be obtained rapidly, allowing

a provisional assignment to be made. First, a visual inspection of the sample provides

the colour and morphology of any crystals, in addition to the presence of associated

minerals. Second, vibrational spectra can be rapidly obtained, providing information on

its structure or composition, without causing significant damage or changing the sam-

ple [59, 60]. Of particular value is Raman spectroscopy, which can be performed on a

sample without prior preparation and, with the addition of an optical microscope, can

study very small sample sizes, even dust particles [61]. Furthermore, handheld Raman

devices have been developed, allowing samples to be analysed in situ, which is especially

valuable for investigations where the samples are fragile or difficult to transport [62, 63].

Consequently, Raman has proven to be a valuable technique for initial detection and

screening of unknown samples.

Each mode in the Raman and IR spectra directly corresponds to the vibration of one

or more bonds, with the frequency (typically plotted as wavenumber, ν̄, in cm−1) af-

fected by the nature and strength of the bonds. Consequently, the vibrational spectra

of different crystal structures provide unique fingerprints. Furthermore, Raman and IR

spectroscopies have different selection rules, so both techniques are typically used to ob-

tain a complete picture of the vibrational properties. The uranyl minerals in particular

contain a variety of distinct polyions, such as PO3−
4 , SiO4−

4 , CO2−
3 and the uranyl cation

itself (UO2+
2 ), which all produce characteristic modes in the Raman and IR spectra. In

many cases, it may be possible to predict what modes should be seen in both Raman

and IR spectra, based upon the crystal structure and symmetry, while predictions of the

peak positions may be made if the vibrational spectra of free ions are known (Section

1.3.2). Raman and IR spectroscopy, EDX and scanning electron microscopy (SEM) have

all been utilised in this investigation and are discussed in Chapter 2.
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1.3.1 Interpretation of Vibrational Spectra

Traditional methods for interpreting vibrational spectra are based around the use of

group theory [64, 65]. This approach uses knowledge of the crystal symmetry and atomic

coordinates to predict the set of vibrational modes, the symmetry group of each mode

and whether they are Raman or IR active. The set of predicted peaks may then be

used to interpret experimental Raman or IR spectra. In general, stretching modes are

found at higher wavenumbers than bending modes and motions involving heavier atoms

are found at lower wavenumbers. These trends may allow the spectra of structures with

small or highly symmetric unit cells (e.g. UO2 and α-UO3) to be interpreted using group

theory alone, but for larger and more complex systems, an alternative approach may be

more appropriate. The interpretation may be complicated further by overlapping peaks

or a deviation from perfect symmetry in the real system.

Computational modelling is a useful approach to predict the vibrational spectra of theo-

retically pure crystals and to interpret experimental data. Such calculations may be ex-

pensive in terms of computer resource, but they can produce both a predicted wavenum-

ber and a vibrational motion, allowing the structural and vibrational properties to be

linked. Furthermore, using the same model for multiple structures provides a base for in-

vestigating the trends in vibrational properties that result from small changes in structure

or composition. This approach has been used to investigate how different proportions of

phosphorus and arsenic affect the Raman and IR spectra of autunite minerals in Chapter

7.

As UO2 has the simplest structure of all uranium oxides, it has been the subject of many

computational investigations [43], including those analysing the defect clusters found

in UO2+x. Similarly, U3O8 [49] and selected phases of UO3 [55] have been simulated in

previous investigations. Few computational based investigations have focused on the less

stable uranium oxides or the uranyl minerals and no studies have used DFT to predict

the vibrational properties of uranyl minerals.

The two strategies used within most modern electronic structure simulation codes for

calculating the vibrational modes and motions are the frozen phonon approach and

density functional perturbation theory (DFPT) [66, 67]. Computation of the Raman

and IR activities requires additional information: for IR, the Born effective charges need

to be calculated and for Raman the dielectric response to each vibrational motion must

be determined. Chapter 3 provides background information on the use of DFT, including
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the calculation of vibrational properties.

1.3.2 Vibrational Properties of Free Ions

If the uranyl minerals are considered to be a sum of their individual components (i.e.

the distinct polyanions and cations), it is possible to use a group theory approach to

determine the set of vibrational modes associated with each component. For example,

the linear uranyl cation (UO2+
2 ) has D∞h symmetry, so three fundamental vibrational

modes are predicted. These are the ν1 symmetric stretch, the ν2 doubly degenerate

bending mode and the ν3 antisymmetric stretch. As the D∞h symmetry group contains

an inversion centre, the rule of mutual exclusion applies, such that the ν1 mode is only

Raman active, whereas ν2 and ν3 are only IR active. However, within the environment

of a mineral, the uranyl cation often becomes distorted from perfect symmetry, leading

to a relaxation of this rule. In literature Raman and IR spectra of aqueous uranyl ions,

the positions of ν1, ν2 and ν3 are typically seen around 750–900 cm−1, 200–300 cm−1 and

850–1000 cm−1, respectively.

Figure 1.6: The vibrational motions predicted for (a) the uranyl cation (UO2+
2 ), (b)

polyanions with tetrahedral symmetry (XO4), (c) the carbonate anion (CO2−
3 ) and (d) the

water molecule. Red arrows show the vector of each atom within each vibrational motion
(labelled v). (d) and (t) indicate the mode is doubly or triply degenerate, respectively.
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A group theory approach predicts that free tetrahedral ions (Td symmetry) have four

fundamental vibrational modes. These are the ν1 symmetric stretch, ν2 doubly degener-

ate bending mode, ν3 triply degenerate antisymmetric stretch and ν4 bending mode. ν1

and ν2 are predicted to be only Raman active, whereas ν3 and ν4 are both Raman and

IR active. Literature positions for these vibrational modes in the four tetrahedral ions

of interest to this chapter (PO3−
4 , AsO3−

4 , SiO4−
4 and SO2−

4 ) are presented in Table 1.1.

Table 1.1: The positions seen in literature Raman and IR spectra for the symmetric
stretch (ν1), antisymmetric stretch (ν3) and bending modes (ν2 and ν4) of the tetrahedral
ions of interest in this chapter.

Ion ν1 ν2 ν3 ν4 Ref(s)
(cm−1) (cm−1) (cm−1) (cm−1)

PO3−
4 938 420 1017 567 [68–70]

AsO3−
4 780–815 320–350 780–830 380–450 [71–73]

SiO4−
4 819 340 956 527 [74]

SO2−
4 950–1020 350–560 1040–1280 560–680 [75]

In addition to the tetrahedral polyanions, two minerals in this investigation contain

carbonate (CO2−
3 ) anions. CO2−

3 has D3h symmetry and four fundamental vibrational

modes are predicted using group theory. These are ν1 symmetric stretching mode, the ν2

out-of-plane bending, the ν3 doubly degenerate antisymmetric stretching mode and the ν4

doubly degenerate in-plane bending mode. The ν1, ν2, ν3 and ν4 modes have been found

around 1060–1100 cm−1, 800–900 cm−1, 1400 cm−1 and 680–700 cm−1, respectively, in

previously published vibrational spectra of uranyl carbonates [76, 77].

All uranyl minerals in this investigation contain water molecules, with some also con-

taining hydroxyl ions. The ν1 symmetric and ν3 antisymmetric stretching modes are

typically observed between 2900–3700 cm−1 (the hydroxyl O-H stretch is also seen here)

and the ν2 bending mode between 1590–1700 cm−1 [78]. These positions are typically at

lower wavenumbers if there is more hydrogen bonding in the structure. As the quantity

of water molecules in uranyl minerals is generally variable, these peaks have not been

considered in this investigation, with the focus on peaks corresponding to the uranyl

cation and polyanions that may allow the minerals to be distinguished.

1.4 Aims of Thesis

The first objective of this thesis is to investigate how vibrational properties vary for

different uranium oxides and uranyl minerals. To this end, a selection of uranyl min-

erals from Cornwall were studied with Raman spectroscopy in Chapter 6 and the most
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significant peaks and trends are noted. Furthermore, any differences to previously pub-

lished spectra are described, as this may provide opportunities to differentiate samples

from different locations. The observed trends and variations could contribute to a fu-

ture database on radioactive materials, which would be a valuable tool for forensic and

environmental studies, where samples need to be rapidly identified.

The second major aim of this investigation is to determine whether computational tech-

niques can be used to simulate vibrational properties and interpret features of exper-

imental Raman and IR spectra. In Chapters 4 and 5, the Raman and IR spectra are

simulated for the structural models of U3O8 and UO3, developed by Brincat et al. [49, 55],

and then compared against experimental spectra [79, 80]. In Chapter 7, models of four

autunite minerals are discussed, with the goal of interpreting the experimental Raman

and IR spectra.

The final goal of this investigation is to use computational techniques to probe how

changes in structure and composition affect the vibrational properties, including the

characteristic uranyl symmetric stretching mode, the position of which varies in different

materials. This is presented in Chapter 7 by modelling a series of autunite minerals

with systematic changes in composition, then simulating the vibrational properties of

each. The observed trends are then applied to the experimental spectra of samples

with a known composition, to determine if information about the composition can be

obtained. The position of the uranyl symmetric stretching mode is also considered for

many uranium oxides and the differences are discussed.
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Chapter 2

Experimental Theory and

Methodology

The vibrational properties of uranium materials is the primary focus of this investiga-

tion, so the theory and experimental details of infrared (IR) and Raman spectroscopy

is described in Section 2.1. Scanning electron microscopy (SEM) and energy-dispersive

X-ray spectroscopy (EDX) were also used to study the samples, so these techniques are

discussed in Section 2.2. Section 2.3 notes some general safety concerns related to the

samples.

2.1 Vibrational Spectroscopy

Vibrations can be induced in systems when they interact with electromagnetic radiation

of an appropriate frequency. Vibrational spectroscopy is employed to study this inter-

action and provide information about the bonding within the molecule, including bond

strengths, bond lengths, force constants and dissociation energies [81].

The three strategies for collecting vibrational spectra are emission, absorption and Ra-

man spectroscopy [81]. In emission spectroscopy, the system transitions from an excited

vibrational state to the ground state, emitting the difference in energy as a photon, which

is detected. Absorption spectroscopy works by irradiating the sample with a range of

frequencies and determining the frequencies that are absorbed. The absorbed radiation

causes the molecule to transition to a more excited vibrational state. In Raman exper-

iments, a monochromatic incident source is used and the radiation scattered from the

surface of the sample is detected.

A typical potential energy curve for the vibration of a diatomic molecule is given in

Figure 2.1.a [81], where V is the potential energy and R is the bond distance. At bond

distances close to the equilibrium (Re), the potential energy curve may be represented

by a parabola, where

V =
1

2
k(R−Re)

2 (2.1)
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2.1. Vibrational Spectroscopy

Figure 2.1: a) A parabola (red) can be used to approximate a molecular potential
energy curve (blue) close to the equilibrium bond distance (Re) [81]. b) The vibrational
energy levels of a harmonic oscillator, which have a uniform separation of hν.

and k is the bond force constant. The energy levels (Ev) of a parabolic potential, in

which the oscillations are harmonic, are

Ev = (v +
1

2
)hν, (2.2)

where v is the vibrational quantum number (v = 0, 1, 2, ...), h is Planck’s constant,

ν =
1

2π

√
k

µ
and µ =

mAmB

mA +mB

. (2.3)

µ is known as the effective mass (or reduced mass), while mA and mB are the masses of

the two atoms forming the diatomic molecule.

The vibrational energy levels of a harmonic oscillator are shown in Figure 2.1.b [81]

and have a uniform separation of hν. IR and Raman spectra are typically reported in

terms of wavenumber (ν̄, measured in cm−1), which is related to the frequency ν = cν̄

(where c is the speed of light), so the separation can also be written as hcν̄. The specific

selection rule for vibrational spectroscopy states that a transition between energy levels

can only occur if ∆v = ±1, which means that the change in energy (∆E) for any allowed

vibrational transition is ∆E=hcν̄. Therefore, in absorption spectroscopy, only photons

with an energy that matches ∆E can be absorbed by the molecule [81, 82]. In general,

vibrations of bonds with a higher force constant (k) and bonds between lower mass

atoms (lower µ) lead to larger wavenumber modes. For example, the vibrational spectra

of organic molecules are typically recorded between 600–4000 cm−1, whereas the modes
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2.1. Vibrational Spectroscopy

of bonds involving metal ions are often observed between 200–400 cm−1.

At room temperature, the ground state (v = 0) is typically the only occupied vibrational

energy level, meaning the v = 0→1 transition is the most significant [81, 82]. However,

in situations where molecules are initially at more excited vibrational energy levels, the

parabolic approximation provides a poorer representation of the actual potential energy

curve. This vibrational motion is described as anharmonic, because the restoring force

is not proportional to the increase in bond length. One consequence of anharmonicity is

that the spacing between energy levels becomes smaller at high excitation. Furthermore,

the specific selection rule may be broken, as it was derived from the harmonic oscillator,

so transitions where ∆v = +1,+2, ..., known as overtones, may be found in the spectra.

Polyatomic molecules and crystalline solids contain multiple bonds, which leads to a

large number of combined vibrational modes. A molecule with N atoms has 3N − 6

modes of vibration if it is non-linear, or 3N − 5 modes if it is linear [81]. Each mode is

known as a normal mode and is described as a synchronous motion of atoms that can

be excited independently of other normal modes. These motions may be localised in a

small group of atoms or may encompass the entire system. Normal modes behave in a

similar manner to the harmonic oscillator, with vibrational energy levels as described in

Equation 2.2. In these cases, the effective mass depends upon the relative contribution of

each atom to the vibration and the force constant depends on the extent of bending and

stretching motions within the mode. In general, stretching modes are found at higher

wavenumbers because the motions involve a significant distortion of the electron density

located within the bond, which does not occur during bending vibrations.

Raman and IR spectroscopy are the two techniques used in this investigation to measure

the vibrational spectra [81, 82]. The IR spectra were collected using absorption spec-

troscopy. Both methods follow the specific selection rule for vibrational spectroscopy,

but have different gross selection rules, meaning that the techniques can provide com-

plementary information.

2.1.1 Infrared Spectroscopy

Infrared (IR) spectroscopy is the traditional method for recording vibrational spectra.

It is performed as absorption spectroscopy, where a sample is irradiated by a range of

frequencies and the absorption at each frequency is monitored [81, 82]. In some IR

spectrometers, this is achieved by scanning sequentially with radiation of different fre-
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quencies, while most modern spectrometers irradiate the sample with many wavelengths

simultaneously, then use a Fourier transform to deconvolute the spectrum.

An incident photon can only be absorbed by the sample if its energy matches the tran-

sition between vibrational energy levels (∆E=hcν̄) and it obeys the gross selection rule

for absorption spectroscopy. The gross selection rule states that the electronic dipole

moment of the molecule must change during the vibration [81, 82]. This can be exempli-

fied using the symmetric and antisymmetric stretching modes of the free uranyl cation

(UO2+
2 , Figure 2.2). The initial dipole moment of a UO2+

2 cation with two equivalent

U-O bonds is zero. During the symmetric stretch, a simultaneous extension or com-

pression of the two U-O bonds occur, which retains the overall dipole moment of zero,

meaning this vibration is IR inactive. In contrast, the antisymmetric stretch involves

one bond extending and the other compressing, generating a temporary dipole moment

and meaning this mode is IR active.

Figure 2.2: The uranyl a) symmetric and b) antisymmetric stretching motions. Ura-
nium and oxygen atoms are represented by green and red spheres, respectively.

IR spectrometers conventionally collect data by transmitting the incident radiation

through the sample and detecting the proportion of each frequency that has not been

absorbed. The absorption (A) of light can be related to the concentration of absorbing

species (c) by the Beer-Lambert Law [81],

A = log

(
I0

It

)
= εcl, (2.4)

where I0 and It are the intensities of incident and transmitted light, l is the path length

and ε is the molar absorption coefficient. ε is dependent upon the frequency of incident

radiation and is at a maximum at frequencies that correspond to a vibrational energy
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level transition.

One drawback in using transmission IR spectroscopy to study solid materials is that the

samples must be crushed into a powder or pellet that is thin enough for the radiation to

pass through. However, this can be circumvented by using an attenuated total reflectance

(ATR) geometry, which relies on the property of total internal reflection to reflect the

light that is not absorbed within a crystalline window that is in contact with the sample.

This allows a solid or liquid sample to be studied without prior preparation and avoids

potential problems with strong attenuation of the IR signal. In order to reflect the IR

signal, the ATR crystal must be composed of a material with a higher refractive index

than the sample under investigation. Typical materials used include germanium, zinc

selenide and diamond.

Experimental IR Methodology

The IR spectra in this investigation were collected using a Perkin-Elmer spectrometer

equipped with a diamond coupler and set in the attenuated total reflection (ATR) con-

figuration. All wavelengths in the 650–4000 cm−1 region were scanned simultaneously

and a Fourier transform (FTIR) was used to deconvolute the data. The resolution of the

instrument was ±10 cm−1.

2.1.2 Raman Spectroscopy

In Raman spectroscopy, the monochromatic incident radiation is directed through the

sample, but only light scattered from collisions with molecules at the surface are de-

tected [81, 82]. The majority of collisions between photons and molecules are elastic,

meaning the scattered photons have the same energy as the incident photons. However,

approximately 1 in 107 collisions are inelastic, with some energy transferred between the

photon and molecule. This process is known as Raman scattering. It is the low proba-

bility of inelastic scattering that necessitates the use of high intensity lasers in Raman

experiments.

The energy transferred in Raman scattering corresponds to the difference between vi-

brational energy levels, ∆E=hcν̄ [81, 82]. However, this only corresponds to a fraction

of the initial energy of the photon, so the change in energy (reported as a wavenumber,

ν̄) is measured. This energy change is known as the Raman shift and is often small,

necessitating the use of a monochromatic incident raditation source.

16



2.1. Vibrational Spectroscopy

In a Raman experiment, each scattered photon may retain the same energy, lose energy

to molecules in the sample or gain energy from the sample [81, 82]. When photons are

scattered elastically and have the same energy as the incident radiation, it is known

as Rayleigh scattering; the Rayleigh line is found at zero on the Raman spectrum. In

collisions where incident photons lose energy, the molecule increases to a more excited

vibrational energy level (∆v = +1). The corresponding peaks on the Raman spectrum

are known as Stokes lines and are traditionally reported as a positive Raman shift. In

contrast, anti-Stokes lines correspond to collisions where the molecule moves to a less

excited vibrational energy level (∆v = −1) and the scattered photon has more energy

than the incident radiation. Anti-Stokes lines are reported as a negative Raman shift,

but have the same magnitude of shift as the corresponding Stokes lines. However, as

the majority of molecules are in the ground state vibrational energy under ambient

conditions, anti-Stokes lines are typically weaker than Stokes lines, so only the latter are

reported.

The gross selection rule for Raman spectroscopy is that vibrations must change the

molecular polarisability [81, 82]. Polarisability describes how easily the electron cloud

can be distorted and while it is difficult to determine directly, the electron density can

provide an indication. To illustrate, the uranyl symmetric and antisymmetric stretching

modes may be considered (Figure 2.2). The symmetric stretching mode is Raman active

and involves a simultaneous extension or compression of the two U-O bonds, leading to

a change in electron density. In contrast, the antisymmetric stretching mode involves

one U-O bond extension and one compression, resulting in no overall change in electron

density and no Raman activity.

2.1.3 Porto Notation

A Raman experiment may be described using Porto’s notation, kI(eIeS)kS, which de-

scribes the directions of propagation k and polarisation e of the incident I and scattered

S light [83, 84]. For example, a Raman experiment in which incident light follows

the z-axis of the crystal coordinates and is polarised in the x-direction, then scattered

light polarised in the y-direction is detected in the reverse z-direction, is described as

Z(XY )Z̄. Raman experiments may be parallel polarised (e.g. Z(XX)Z̄), cross-polarised

(e.g. Z(XY )Z̄) or unpolarised (e.g. Z(UU)Z̄), in which case the Raman intensity is a

sum of the intensities for the parallel and cross polarised experiments.
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2.1.4 Raman Tensors

The intensity (I) of a mode in the Raman spectrum is largely dependent upon three

factors [84],

I ∝
∣∣eSj ·Rjk,l · eIk

∣∣2 . (2.5)

eIk and eSj are vectors that represent the polarisation direction of incident and scattered

light, respectively. Rjk,l is a Raman tensor, which determines the amplitude of the

scattered waves and is unique to each vibrational mode, l.

Every Raman tensor is composed of nine elements, which may be zero or non-zero and

some non-zero elements may be equivalent to others [84]. Non-zero and equivalent ele-

ments of a Raman tensor are distinct to the symmetry label of a vibration, for example,

the Raman tensor for an A1g mode in a tetragonal crystal symmetry isa 0 0

0 a 0

0 0 b

 , (2.6)

where a and b are non-equivalent and non-zero elements. Non-zero and non-equivalent

elements in a Raman tensor can be determined from group theory if the crystal and

vibrational symmetries are known. An example for calculating the Raman activity in a

backscattered parallel polarised Raman experiment (Z(XX)Z̄) for the mode which has

the Raman tensor given in Equation 2.6 is

I =
(

1 0 0
)a 0 0

0 a 0

0 0 b


1

0

0

 = a. (2.7)

In an equivalent unpolarised Raman experiment (Z(UU)Z̄), the Raman activity is the

sum of Raman intensities for the parallel and cross polarised (Z(XY )Z̄) experiments.

As the Raman intensity depends on the polarisation of incident and scattered light

and the Raman tensor, studying the crystal from alternative orientations may result in

different Raman activities for the same mode. If the polarisation of the incident radiation

is known, this can provide the shape of the Raman tensor and allow the symmetry label

to be assigned to some modes.
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2.1.5 The Rule of Mutual Exclusion

It has been noted in the previous sections that the uranyl symmetric stretch is Raman

active and the uranyl antisymmetric stretch is IR active, but neither mode is found in

both spectra. This is a result of the rule of mutual exclusion, which applies to molecules

with a centre of inversion as a symmetry element and prevents coincidences between its

IR and Raman spectra [82]. As the uranyl cation has a centre of inversion, this rule

applies. Other polyions, such as the tetrahedral PO3−
4 anion, do not have centres of

inversion, therefore, some of the modes may be both Raman and IR active.

2.1.6 Experimental Raman Methodology

The Raman spectra presented in this investigation were recorded using a Renishaw inVia

Raman spectrometer. Three lasers were used to excite the spectra: 785 nm (Renishaw,

diode laser, 370 mW at source), 532 nm (Renishaw, diode laser, 380 mW at source) and

325 nm (KIMMON, He-Cd laser, 270 mW at source). A different diffraction grating was

also used for each source, resulting in spectral resolutions of ±0.2, ±1.2 and ±5 cm−1

for the 785, 532 and 325 nm lasers, respectively. The microscope objectives used to

collect the scattered light were ×5 and ×50 long-focus objectives (LEICA) for the 532

and 785 nm lasers and a ×15 long-focus fused silica objective (THORLABS) designed

for the 325 nm laser. The spectrometer was calibrated for the 532 and 785 nm lasers

using the 520 cm−1 line of silicon, while the 1332 cm−1 peak of a cubic diamond was used

to calibrate for the 325 nm laser. To obtain spectra with a good signal-to-noise ratio,

the acquisition time and number of accumulations were varied. Furthermore, more than

95% of the laser power was typically attenuated to prevent damage to the surface of the

sample. Data was acquired using the Renishaw WiRE software package, while a custom

Python script, written by J. Skelton, was used to fit peaks to the spectra (Appendix

A) [85].

2.2 Scanning Electron Microscopy and

Energy-Dispersive X-ray spectroscopy

Scanning Electron Microscopy (SEM) is a technique that may be used to produce images

of a surface, with a possible resolution better than 1 nm. This is performed by directing

a beam of electrons at the sample, which then interact with the atoms, producing a

variety of different signals that can be detected. The two most common imaging modes

involve collecting secondary electrons (SE) and backscattered electrons (BSE) and are
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used to study topology and composition, respectively.

Secondary electrons are low energy (<50 eV) electrons ejected from atoms after an

inelastic collision and are detected orthogonal to the incident beam. The relatively low

energy of these particles mean that only surface atoms are studied, while electrons from

the bulk cannot escape the sample. Steep surfaces and edges increase the number of

electrons that can be detected, increasing the brightness of these surface features in SE

images. This leads to well defined images with a large depth of field, allowing surface

features smaller than 1 nm to be examined.

Backscattered electrons are high energy electrons from the incident beam that elastically

scatter from atoms in the sample and are detected above the sample. As heavy elements

scatter electrons more readily than lighter atoms, the former appear brighter in a BSE

image, allowing the distribution of different compositions to be examined. One downside

to BSE is that electrons emerging from deeper in the sample can be detected, reducing

the image resolution. Many modern SEM machines compensate for this by employing

both SE and BSE detectors.

In conventional SEM experiments, the surface of the sample must be electrically con-

ducting and grounded, to prevent both charge and heat from building at the surface.

This is straightforward for metal samples, which just require cleaning and mounting

before study. In contrast, non-conductive samples must be coated with an electrically

conducting material, such as gold, chromium or graphite. Heavy metals may also be

used to coat samples studied in secondary electron experiments, increasing the number

of collisions and improving the signal-to-noise ratio for elements with a low atomic num-

ber. An alternative is to set the SEM to low voltage or vacuum mode, which allow the

charge to dissipate before it heats the surface of the sample.

Energy-dispersive X-ray (EDX) spectroscopy is often performed in conjunction with SEM

experiments. It is performed by directing a beam of charged particles, such as electrons,

or X-rays, onto the surface of a sample. When an incident particle or photon collides

with an atom, it excites an inner shell electron, which is ejected from the atom and leaves

an electron hole in its place. An electron from an outer shell then fills this hole, releasing

the energy of this transition as an X-ray, which is detected. As the transition energy

is characteristic to the electronic structure of the element, each atom has a distinct

fingerprint of peaks in the EDX spectrum, allowing the composition to be measured.
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A number of factors can affect the accuracy of an EDX experiment. X-rays are emitted in

all directions, so not all escape the sample and are detected. The more material that an

X-ray has to pass through, the more likely it will be reabsorbed by other molecules and

the chance of it escaping and being detected is lowered. Furthermore, some elements have

transitions with similar energies, so some peaks may overlap, making their assignment

difficult.

2.2.1 Experimental SEM and EDX Methodology

The SEM images and EDX spectra in this investigation were collected using a JEOL

6480 LV Scanning Electron Microscope, equipped with an Oxford Instruments INCA

X-act silicon drift detector. SEM images were generated using both secondary and

backscattered electrons, providing images that described the topology and the location

of heavy elements. EDX spectra were collected using the INCA softwareand optimised

using a copper standard and internally stored empirical standards were used to determine

the ratios of atoms in each mineral, accurate to ±1% [86]. Samples were studied as

single crystals or aggregates and fixed to an aluminium mount using carbon tape (Agar

Scientific), then dried in a dessicator for 24 hours. The analysis was performed under

low vacuum (∼45 Pa), preventing the build up of charge on the surface of the sample

and the subsequent heat damage. This also allowed the samples to be studied without

coating them with a conductive material.

A number of limitations were associated with collecting quantative EDX data in this

investigation. First, the percentages of carbon and oxygen were always higher than

anticipated from the chemical formula; the former likely results from the carbon tape

used to secure the samples, but both may be related to contaminants on the surface

of the sample. An additional difficulty is the close association of the uranyl mineral

samples with the host rock, resulting in the detection of certain elements, including

silicon, aluminium and iron, that would not be expected by the chemical formula.

2.3 Practical Considerations

The two primary health risks presented by the uranyl mineral samples studied in this

investigation were the toxicity and radioactivity of uranium. Standard personal safety

equipment was employed to handle the materials, including a lab coat, goggles and gloves.

Contamination and dose meters were also available to help determine the risk posed by

the samples, while a personal radiation monitor was used to track the dose accumu-
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lated over time. The contamination meter was also available to check the workspace for

spillages of radioactive material after finishing an experiment. The samples were stored

in separate airtight bags within a locked metal cupboard, which was found to block all

radioactivity from the samples, lowering the risk to others using the laboratory.

For the majority of mineral samples, the dose was measured as less than 5 µSv/h, with

the largest doses measured for uranophane and compreignacite, which were both below

20 µSv/h. This low level of radiation meant that small spillages of material could be

disposed with standard waste. The university exposure limit for ionising radiation is

1 mSv per year, whereas the overall dose detected by the personal radiation monitor was

insignificant.

One further safety consideration was the possible presence of radon gas formed from the

decay of uranium within the minerals. Therefore, the sample containers were opened

inside a fume cupboard, to prevent inhalation of accumulated radon.

Long term storage of the uranyl mineral samples also had to be considered, as they are

known to be susceptible to dehydration in warm and dry conditions. However, the water

content was not a major focus of this investigation and since previous studies by Frost

et al. have shown that no significant structural deviations occur below 400 ◦C [58, 70,

87, 88], storage at room temperature was considered suitable.

22



Chapter 3

Computational Theory and

Methodology

Computational modelling has been a major part of this investigation; the methodology

is described in this chapter. First, quantum theory is introduced (Section 3.1). Sections

3.2 and 3.3 focus on the theory and implementation of density functional theory (DFT),

which has been the primary computational technique used for this study. Section 3.4

describes the energy minimisation procedure, which has been used extensively in our

calculations. As the main goals of this investigation involve the vibrational properties

of uranium materials, the methods used to compute vibrational modes and motions and

the corresponding IR and Raman activities are given in Section 3.5. Lastly, Section

3.6 provides specific details on the methods and software used in this investigation, in

addition to the relevant parameters required for the simulations.

Two major approaches may be used to model chemical systems: quantum mechanics

(QM) explicitly simulates the electronic structure, while classical techniques represent the

interatomic forces as a set of functions, known as potentials. As electrons are explicitly

represented in QM calculations, the largest systems that may be represented are smaller

than those that may be studied in classical methods. However, QM methods allow

properties depending on the electronic structure to be predicted. The basis of quantum

theory is given in Section 3.1. Two commonly used QM methods are Hartree-Fock (HF)

and density functional theory (DFT); the latter is the primary technique used in this

investigation, so it is described in detail in Section 3.2.

3.1 Quantum Theory

The primary difference between quantum and classical mechanics approaches to simu-

lating atomic systems is that electrons are explicitly represented in the former, but not

in the latter [89]. This has the advantage of allowing properties that depend on the

electronic structure to be derived, but limits the size of the systems that can be simu-

lated. According to the Heisenberg uncertainty principle, the position and momentum

of a quantum particle, such as an electron, cannot be known simultaneously. Therefore,

23



3.1. Quantum Theory

an electron is typically described using a wavefunction (Ψ), which represents how it is

distributed across space [81]. The probability of finding an electron within a specific

region of space may be obtained by integrating Ψ2 over that volume.

The Schrödinger equation [81, 89],

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t), (3.1)

describes how the quantum state of a quantum system, represented by its wavefunction

Ψ, changes with respect to time t and spacial coordinates r. Ĥ is the Hamiltonian

operator, which is applied to the wavefunction in order to determine the energy of a

quantum system. It is comprised of kinetic T̂ and potential V̂ energy components,

Ĥ = T̂ + V̂ . (3.2)

In situations where the Hamiltonian does not depend on time, the wavefunction may be

separated into spacial (ϕ(r)) and temporal (φ(t)) parts, Ψ(r, t) = ϕ(r)φ(t) [81, 89]. The

Schrödinger equation can then be rewritten in the time independent form,

ĤΨ(r) = EΨ(r), (3.3)

where E is the energy eigenvalue. Mathematically, an infinite number of combinations of

E and Ψ can be used to satisfy the Schrödinger equation, but only some wavefunctions

are physically accepted, depending on the restrictions of the system. Consequently, only

specific values of energy are allowed.

Exact solutions to the Schrödinger equation cannot be found for any system with three

or more interacting particles (i.e. larger than the hydrogen atom), so many sophisticated

methods have been developed to find approximate solutions. These include the Hartree-

Fock method (HF) and density functional theory (DFT), which is a major part of this

investigation and described in Section 3.2.

The energy of a system with multiple nuclei and electrons can be represented as a sum

of kinetic and potential parts,

E = Tn + Te + Vn−n + Vn−e + Ve−e. (3.4)
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Tn and Te are the kinetic energy contributions of the nuclei and electrons, respectively,

while the V terms arise from the potential energy acting between each type of particle.

The Born-Oppenheimer approximation [81, 89, 90] allows the energy to be separated fur-

ther, into a sum of nuclear and electronic components, Etotal = Enuclear +Eelectronic. This

is due to the significant difference in mass between nuclei and electrons, as the electrons

can react to any change in the positions of the nuclei almost instantaneously. Hence,

the electronic energy is comprised of the kinetic and potential energy of the electrons

moving in the potential field of the fixed nuclei and the electron-electron repulsions.

Hartree-Fock Method

The Hartree-Fock method is a strategy for approximately determining the wavefunction

and energy of a quantum many-body system in a stationary state. An exact solution

cannot be found for many-body systems, but the variation theorem states that the energy

calculated by an approximated wavefunction will always be greater than that calculated

by the exact wavefunction [89]. Consequently, a lower energy solution may be considered

more accurate than a higher energy solution. The lowest energy configuration may be

considered as being in an energy minimum, at which point the first derivative of the

energy is zero. The Hartree-Fock equations are obtained by imposing this condition on

the expression for energy.

In the Hartree-Fock approach, the N -electron wavefunction is replaced by N single-

electron wavefunctions, known as Hartree-Fock orbitals. The aim is to locate a set of

electronic wavefunctions that correspond to the lowest energy configuration [89]. To

accomplish this, each electron is treated individually, operating under the effect of a

combined potential. This potential encompasses the nuclear-electron interactions and the

interactions between the electron of interest and an average of all remaining electrons in

the system. The electron-electron interactions consist of both Coulombic and exchange

components; these interactions, alongside the nuclear-electron interactions, contribute to

an effective one-electron Hamiltonian operator, also known as the Fock operator, that

may be used to find solutions to the Hartree-Fock orbitals.

The strategy for solving the Hartree-Fock system is known as a self-consistent field (SCF)

approach [89]. To start, a trial set of solutions to the Hartree-Fock orbitals are generated

and used to obtain the Coulomb and exchange operators. The Hartree-Fock equations

can then be solved, providing a new set of orbitals for the next iteration. In this way,

the energy of the system is reduced until the orbital occupations no longer change and

the energy has reached a minimum.
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3.2. Density Functional Theory (DFT)

Calculations that use the full Hartree-Fock approach are known as ab initio and are

fully theoretical simulations [89]. However, these calculations are very computationally

expensive, so some parameters may be approximated, fitted to empirical data or other

fully ab initio calculations. Another drawback is that Hartree-Fock fails to treat the

electron correlation effects, potentially leading to large deviations from experimental

data. Correlation effects have been incorporated into a number of other approaches, such

as Møller-Plesset perturbation theory [91], which are known as post-Hartree methods.

3.2 Density Functional Theory (DFT)

Density functional theory (DFT) is a quantum mechanical method used to simulate the

electronic structure of many-body atomic systems. In contrast to the Hartree-Fock ap-

proach, the full wavefunction of an N -electron system is not calculated in DFT; the

total energy and other properties of the system are instead determined from the electron

density distribution as a function of the electronic coordinates ρ(r) [89]. The first formu-

lation of DFT was the Thomas-Fermi model [92, 93], in which the kinetic energy density

TTF is approximated using a non-interacting electron gas of uniform density. An electron

exchange functional was added later by Dirac [94], which satisfies the Pauli exclusion

principle [95] by changing the sign of the total wavefunction if a pair of electrons are

interchanged. However, errors remained in the approximation of kinetic and exchange

energies, while neither approach accounted for the electron correlation energy, which

arises from quantum entanglement and prevents the quantum states of electrons from

being described independently.

3.2.1 The Hohenberg-Kohn Theorems

All modern DFT calculations depend upon two theorems formalised and proven by Ho-

henberg and Kohn [96]. The first demonstrated that the electron density uniquely defines

the ground state energy and other properties of a system [89]. The second describes a

functional that uses the electron density to calculate the total energy (E[ρ(r)]),

E[ρ(r)] =

∫
Vext(r)ρ(r)dr + F [ρ(r)] = Ene[ρ(r)] + F [ρ(r)], (3.5)

where the first term (Ene[ρ(r)]) arises from the interaction of the electrons with an

external potential Vext(r), typically resulting from Coulomb interactions with the nuclei.

F [ρ(r)] is known as the Hohenberg-Kohn functional and is comprised of the kinetic

energy of the electrons (Te[ρ(r)]), the interelectronic Coulomb interactions (J [ρ(r)]) and
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non-classical contributions from electron exchange and correlation (Encl[ρ(r)]),

F [ρ(r)] = Te[ρ(r)] + J [ρ(r)] + Encl[ρ(r)]. (3.6)

3.2.2 The Kohn-Sham Equations

Following the Hohenberg-Kohn theorems, Kohn and Sham developed a stategy for utilis-

ing them [97]. Combining Equations 3.5 and 3.6 gives an expression for the total energy

of an N -electron system [89],

E[ρ(r)] = Ene[ρ(r)] + Te[ρ(r)] + J [ρ(r)] + Encl[ρ(r)]. (3.7)

As noted, the terms Ene[ρ(r)] and J [ρ(r)] are readily defined as classical Coulomb inter-

actions, whereas the remaining terms cannot be easily defined.

To determine the electronic kinetic energy Te[ρ(r)], the Kohn-Sham scheme defines a

reference system of non-interacting electrons, which have an identical electron density to

the real system and move through an effective external potential VRef . This allows the

total wavefunction to be represented as a Slater determinant comprised of single electron

wavefunctions, ϕi, known as Kohn-Sham orbitals. For each electron, the orbital with the

lowest energy solution can be found independently,[
−1

2

∂2

∂r2
+ VRef(r)

]
ϕi(r) = εiϕi(r), (3.8)

where εi is the energy of the orbital. The kinetic energy of the non-interacting reference

system can then be defined as

TRef [ρ(r)] = −1

2

N∑
i=1

∫
ϕi(r)

∂2ϕi(r)

∂r2
dr, (3.9)

where the electron density is in the ground state,

ρ(r) = 2

N/2∑
i=1

|ϕi(r)|2 . (3.10)

Equation 3.7 can then be modified to describe the energy of the Kohn-Sham system,

EKS[ρ(r)] = Ene[ρ(r)] + TRef [ρ(r)] + Eee[ρ(r)] + Exc[ρ(r)]. (3.11)
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The exchange and correlation energies are grouped into the Exc[ρ(r)] term, known as the

exchange-correlation functional, along with the remaining kinetic energy (Tcorr[ρ(r)]),

which arises from the correlation effects between electrons,

Exc[ρ(r)] = Tcorr[ρ(r)] + Encl[ρ(r)]. (3.12)

The final requirement is to generate an effective external potential VRef(r) that produces

the same electron density in the non-interacting system as in the real system. At the

ground state energy, the electron density is at a minimum energy configuration. There-

fore, the calculated energy corresponding to any trial electron density ρ̄(r) will be higher

than the true ground state energy, unless ρ̄(r) is the same as the ground state electron

density ρ(r). This allows an expression to be developed for the reference potential in

terms of the interacting system,

VRef(r) = Vext(r) +

∫
ρ(r′)

|r− r′|
dr′ + Vxc(r), (3.13)

where Vxc(r) is the exchange-correlation potential,

Vxc(r) =
δExc

δρ(r)
. (3.14)

The system can then be solved self-consistently by generating an initial set of Kohn-Sham

orbitals, using them to produce an effective potential (Equation 3.13), which is then used

to minimise the energy of the orbitals within the non-interacting system (Equation 3.9).

The minimised orbitals can then be used to generate a new effective potential and the

process is continued until the system reaches convergence (subsequent iterations no longer

change).

3.2.3 Approximate Exchange-Correlation Functionals

In the Kohn-Sham DFT scheme, the remaining uncertainties from electron exchange and

correlation have been grouped into the exchange-correlation potential, Exc[ρ(r)]. This

functional is only known exactly for the free electron gas, but the choice of approximation

can influence the success of the model [89]. These approximations can be fully theoretical

or semi-empirical. The simplest approach is known as the local density approximation

(LDA), which is a theoretical approximation. A commonly used extension of LDA is

known as the generalised gradient approximation. Other types of functionals also exist,

such as hybrid functionals, which combine the exchange energy from Hartree-Fock with
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a correlation contribution from either ab initio or empirical sources.

The Local Density Approximation

The local density approximation (LDA) is based on the uniform gas model [96], in which

all electrons are evenly distributed through space [89]. The total exchange-correlation

energy Exc[ρ(r)] can then be found by integrating over all space,

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr, (3.15)

where εxc[ρ(r)] is the exchange-correlation energy per electron, in the uniform electron

gas. In LDA, it is assumed that for a small volume around point r in the system of inter-

est, the electron density is constant and εxc[ρ(r)] is identical to that of the homogeneous

electron gas with the same density. Values of εxc[ρ(r)] for uniform electron gases of most

densities have been accurately determined [98]. One drawback to this approach is that

the functional only depends on the local electron density around each point and is not

influenced by long range effects. Furthermore, the LDA cannot accurately represent the

electron density in systems where it changes significantly within a small volume [99].

Modern LDA functionals can be applied to spin polarised systems, in an approach known

as the local spin density approximation (LSDA),

ELSDA
xc [ρα(r), ρβ(r)] =

∫
drρ(r)εxc(ρα(r)ρβ(r)), (3.16)

where ρα(r) and ρβ(r) are the electron densities of the two opposing electron spin states,

which sum to the total electron density of the system ρ(r) [100].

The exchange-correlation energy is comprised of exchange and correlation components.

A commonly used expression for the exchange component is [94]

ELDA
x [ρ(r)] = −3

4

(
3

π

) 1
3
∫
ρ(r)

4
3dr. (3.17)

The correlation component is less readily defined and in most modern LDA functionals

this is fitted to data from high accuracy simulations of the uniform electron gas [98, 101,

102].
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The Generalised Gradient Approximation

Despite its relative simplicity, LDA often performs well, but in some situations it is inad-

equate. The generalised gradient approximation (GGA) improves upon LDA exchange-

correlation functional by adding a correction that depends on the gradient of electron

density at each point, allowing inhomogeneous chemical systems to be represented more

accurately,

EGGA
xc [ρ(r)] =

∫
ρ(r)εxc

(
ρ(r),

∣∣∣∣∂ρ(r)

∂r

∣∣∣∣) dr. (3.18)

As with LDA, the GGA exchange-correlation functional may be separated into exchange

and correlation contributions [89]. One commonly used correction to the exchange func-

tional was proposed by Becke [103, 104] and includes an empirical parameter that was

fitted to experimental data for noble gas atoms. The PW91 functional [105] uses the

same form, but is modified to remove the dependence on the empirical parameter. The

correlation functional proposed by Lee, Yang and Parr is also widely used [106] and is

often used in combination with Becke’s exchange correction, known as the BLYP func-

tional. The functional used in this investigation, the Perdew-Burke-Ernzerhof (PBE)

functional [107], corrects the exchange energy using a rational function with computa-

tionally determined components. This approach typically causes the binding energies to

be underestimated in the simulations, resulting in greater lattice parameters and volumes

compared to experimental data. To counteract this overestimation for densely packed

solids, a revision of the PBE functional was developed, known as PBEsol [108]; however,

this approach predicts other properties less accurately, such as the dissociation energies.

Another variation of the GGA functionals, known as meta-GGA functionals, use the sec-

ond derivative of the electron density to improve the prediction of the lattice parameters

and band gaps [109, 110].

Hybrid Functionals

One advantage that DFT has over Hartree-Fock theory is that correlation effects are read-

ily incorporated, while including it in Hartree-Fock significantly increases the required

computational resources [89]. However, the Hartree-Fock treatment of the exchange

contribution to the energy is considered exact. The addition of correlation energy from

DFT to the energy from Hartree-Fock calculations or empirical sources is the basis of

hybrid functionals, such as PBE0 [111], B3LYP [106, 112] and HSE [113]. Hybrid func-

tionals can improve the prediction of atomisation energies, bond lengths and vibrational

frequencies.
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3.2.4 DFT +U

One notable issue with DFT is in how it treats transition metal or actinide oxides that

contain some ions with partially filled d - or f -orbitals, such as NiO and UO2 [114–

116]. For these systems, the most common exchange-correlation functionals (e.g. LDA

and GGA) predict the electrons to be delocalised, in contrast to the insulating prop-

erties observed experimentally [117, 118]. This originates from the strong Coulomb

repulsions between the localised d - or f -electrons, which are not adequately described

by most exchange-correlation functionals [119]. Furthermore, the lattice constants and

binding energies of these systems are typically underestimated and overestimated, re-

spectively [120].

The behaviour of the strongly correlated electrons may be represented using the Hub-

bard model [121], in which electrons can only move between atomic sites (by tunneling)

if they have sufficient energy to overcome the Coulomb repulsions from other electrons

on the neighbouring site [118]. To determine the energy contribution of these electrons,

the Hubbard Hamiltonian is used, which is comprised of a kinetic energy term allowing

electron tunneling and a Coulomb repulsion term with a strength dictated by the Hub-

bard parameter U . When implemented in DFT, this approach is known as DFT +U, in

which the total energy of a system (EDFT+U) becomes

EDFT+U = EDFT + EU. (3.19)

EDFT is the energy calculated using a standard exchange-correlation functional and EU is

a contribution that involves the interelectronic interactions modelled with the Hubbard

Hamiltonian. It should be noted that the Hubbard correction is only applied to strongly

localised electrons, with the remainder simulated using the standard DFT approach.

Two of the most widely used implementations of DFT +U are the Liechtenstein [122]

and Dudarev [114, 115] schemes. The first approach uses two parameters to calculate

EU, known as the effective on-site Coulomb and exchange interactions, U and J , re-

spectively [118]. The second approach is a simplified formulation of the first, which

disregards J , but typically replaces U with an effective value Ueff = U − J . Values of U

and J are often tuned so that they can reproduce the desired properties from experimen-

tal data, such as the band gap. The parameters used for uranium in this investigation are

U = 4.50 eV and J = 0.54 eV and were derived from X-ray photoelectron spectroscopy

(XPS) experiments on UO2 [123, 124].
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3.3 Implementation of DFT

In addition to the theoretical treatment of DFT detailed in Section 3.2, there are a

number of practical considerations involved when using DFT to study solid state crystal

structures. These concepts are introduced in this section and include periodic boundary

conditions, reciprocal space, plane waves, Bloch’s theorem, k -points and pseudopoten-

tials.

3.3.1 Periodic Boundary Conditions

Routine DFT simulations are limited to∼ 200 atom systems, which presents a problem in

representing real systems of ∼ 1023 atoms. Periodic boundary conditions are employed

to simulate large systems using a small number of particles, by generating images of

the unit cell in all directions [89]. Hence, the particles within the primary unit cell

experience forces as if they were within a bulk structure. The coordinates of particles

within the replicated unit cells are found by adding or subtracting multiples of the

lattice parameters and each replicated particle performs the same motion as the one in

the initial unit cell. Therefore, if a particle leaves the boundaries of the initial cell, a

corresponding image enters from the opposing boundary. An example of this effect is

given in Figure 3.1, which demonstrates periodic boundary conditions in two dimensions.

A drawback to simulating large systems in this way is that fluctuations of the system with

a greater wavelength than the length of the unit cell cannot be represented. Furthermore,

the long-range interactions can cause some long-range ordering to be imposed on the

system. Nevertheless, periodic boundary systems have been used successfully in many

DFT simulations of crystalline systems.

3.3.2 The Reciprocal Lattice

The reciprocal lattice is a representation of the real (direct) lattice in reciprocal space

(k -space) that is important in electronic structure calculations of periodic systems. The

reciprocal lattice vectors (a∗, b∗ and c∗) can be obtained from X-ray diffaction experi-

ments [89]; an inverse Fourier transform can then be applied to transition between the

reciprocal and direct lattice parameters (a, b and c). The relationship between the direct

and reciprocal lattice vectors is

a∗ = 2π
b× c

a · b× c
; b∗ = 2π

a× c

b · a× c
; c∗ = 2π

a× b

c · a× b
. (3.20)
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Figure 3.1: A schematic to show periodic boundary conditions in two dimensions,
where green and red spheres represent atoms and the dashed black line represents the
unit cell boundaries. The central unit cell is replicated in all directions and the atom
images within the replicated cells perform the same motions as those in the original cell.
When an atom leaves the unit cell (represented by the blue arrow), an image of the same
atom enters from the opposing boundary.

a, b and c have units of 1
length

, which means that larger unit cells have smaller reciprocal

lattices.

As with the real space lattice, the reciprocal lattice is comprised of multiple symmetrically

equivalent units. The smallest symmetrically inequivalent unit is known as the primitive

cell and, in the reciprocal lattice, this is known as the first Brillouin zone. The first

Brillouin zone is useful in electronic structure calculations of periodic systems because

the wavefunction can be completely characterised within this volume.

3.3.3 Plane Waves, Bloch’s Theorum and k-Points

A plane wave is a wave of constant frequency with parallel wavefronts (planes where

the wave has the same value) normal to the vector of propagation (Figure 3.2) [89].

Bloch’s theorem states that the wavefunction of an electron in a periodic potential may

be expressed as the product of a plane wave and a periodic function with the same
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periodicity as the unit cell (fn(r)), known as a Bloch wave,

Ψn(r) = eik·rfn(r), (3.21)

where Ψn(r) is the wavefunction of electron n at coordinates r, k is the wave vector that

represents the direction and frequency of the plane wave within the first Brillouin zone

and i is the imaginary unit.

The periodic function provides a basis set of plane waves between all equivalent lattice

points in other primitive cells [89]. However, in practice the number of plane waves may

be reduced, as those with greater wave vectors have higher kinetic energy and contribute

less to the wavefunction. Therefore, a cut-off energy is specified for the calculation

and plane waves with a higher kinetic energy are discarded. An appropriate cut-off

energy may be determined by convergence testing, in which several calculations with

different cut-off energies are performed. Values below the optimum cut-off will change

the calculated energy significantly, whereas the energy will not change for values above

the cut-off.

Figure 3.2: A plane wave, where wavefronts (in-phase planes) are normal to the direc-
tion of propagation. In a Bloch wave, the periodicity ω is equivalent to the periodicity
of the unit cell.

As the form of the wavefunction is continuous, at two nearby points in reciprocal space

the value is very similar [89]. Therefore, the wavefunction can be evaluated at a discrete

set of points, each of which represent a small volume of reciprocal space. These points

are known as k -points and the value of the wavefunction at each is multiplied by a

weighting factor, which is related to the volume it represents. A denser set of k -points
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will result in a more accurate calculation, but it is also more computationally demanding.

Convergence testing may be performed to determine the most computationally efficient k -

point density. The distribution of k -points must also be considered. The Monkhorst-Pack

scheme is a popular method, distributing k -points evenly throughout the first Brillouin

zone and typically centered at the middle of the reciprocal lattice (Γ-point) [125]. This

has the advantage that many k -points are related by symmetry, futher reducing the

number of positions that must be evaluated. The homogeneous distribution of k -points

is represented by

k = x1a
∗ + x2b

∗ + x3c
∗, (3.22)

where,

xi =
1

ni
and l = 1, ..., ni. (3.23)

ni is known as the folding parameter and dictates the density of the k -point grid in

direction i. There are three directions, corresponding to the reciprocal lattice vectors a∗,

b∗ and c∗, meaning three folding parameters are reported (n1 × n2 × n3). In conducting

materials, more k -points need to be evaluated, so a larger folding parameter is required.

In contrast, insulating materials require a smaller folding parameter. Furthermore, to

maintain a consistent k -point density, systems with larger unit cells, which have smaller

reciprocal lattice cells, require a smaller folding parameter.

3.3.4 Pseudopotentials

In most chemical systems, valence electrons typically contribute to bonding and other

properties, while core electrons remain unaffected by the environment [89]. Therefore,

DFT simulations commonly consider the core electrons as part of the nuclear potential

and only explicitly represent the valence electrons. However, the wavefunctions of valence

electrons oscillate rapidly near the atomic core, meaning that a large number of plane

waves are required to accurately represent this behaviour, increasing the computational

expense of the calculation. This is further compounded in simulations of heavy elements,

which contain more core electrons, resulting in more oscillations of the valence electron

wavefunctions. A common technique to overcome this problem is to replace the strong

potential within the core region with a weaker one, known as a pseudopotential.

A pseudopotential is a potential function that represents how valence electrons interact

with the combined nucleus and core electrons [89, 126]. Inside the core region, the

pseudopotential gives wavefunctions with far fewer oscillations, but does not change

the form of wavefunctions outside the core region. This approach reduces the number of
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plane waves required to represent the wavefunction and, by extension, the computational

expense. An example of how a wavefunction changes under the influence of the real

potential and the pseudopotential is shown in Figure 3.3.

Figure 3.3: Examples of wavefunctions Ψ acting under a real potential and a pseu-
dopotential [127]. Outside the core region (r > rcutoff) both wavefunctions have the same
form, but within the core region (r < rcutoff) the wavefunction under the psudopotential
(Ψpseudo) has fewer nodes than the one under the real potential (Ψreal).

Most pseudopotentials are derived from ab initio calculations that include all the elec-

trons, but some are fitted to empirical data. In either case, the pseudopotential must

then reproduce the behaviour and properties of the valence electrons in the full calcu-

lation [89]. The two main types of pseudopotential are known as norm-conserving and

ultrasoft. Ultrasoft pseudopotentials require fewer plane waves, which improves the effi-

ciency of the calculation, whereas norm-conserving pseudopotentials maintain the same

valence electron density within the core region as the all-electron calculation and are more

transferrable. Therefore, the choice of pseudopotential depends on the requirements of

the calculation [99, 128]. Systems with lighter elements are generally better represented

by norm-conserving pseudopotentials, because the valence electrons are closer to the

core, while ultrasoft pseudopotentials may be used for heavier elements. In this work,

the projector augmented wave (PAW) method [129] is used, which reduces the number

of plane waves required in the same way as ultrasoft potentials and allows all-electron

properties to be calculated from the smoother wavefunctions.

3.4 Simulation Methods

Within both classical and quantum mechanical simulations, there are three primary tech-

niques used: energy minimisation, also known as geometry optimisation or mechanical

minimisation (MM), molecular dynamics (MD) and Monte Carlo (MC) [89]. In all three
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procedures, the atomic coordinates are iteratively adjusted to generate new sets of co-

ordinates. In energy minimisation, successive iterations are performed to reduce the

potential energy of the system and locate stable configurations, where the energy is at a

minimum. One major application for energy minimisation procedures is in validating the

computational model, which can be done by comparing the minimised properties, often

structural parameters, to the experimentally obtained values. Energy minimisation pro-

cedures have been used extensively in this investigation and are detailed in Section 3.4.1.

In molecular dynamics, the positions and velocities are updated at each step according

to Newton’s equations of motion. This provides a trajectory, which describes how dif-

ferent variables change over time and can be used to provide thermodynamic averages

over all time steps. In Monte Carlo simulations, each new configuration is generated by

randomly moving some of the atoms in the current structure. The new configuration is

then accepted or rejected according to Boltzmann’s equation. Desired properties are cal-

culated for each accepted configuration and used to obtain the average of that property

over all configurations.

3.4.1 Energy Minimisation

The potential energy of a chemical system is dependent on the coordinates (degrees of

freedom) of its component atoms [89]. This relationship between energy and atomic co-

ordinates is typically referred to as the potential energy surface. Positions of minimum

energy on the surface correspond to stable configurations of atoms. The configuration

with the lowest energy is known as the global minimum, but higher energy minima often

exist and are known as local minima. The purpose of energy minimisation procedures is

to identify a minimum energy configuration by iteratively adjusting the atomic coordi-

nates.

The start of any energy minimisation procedure is to select an initial structure, which is

often obtained from experimental data, such as X-ray crystallography [89]. An algorithm

is then used to locate the nearest energy minimum, which may be the global or a local

minimum; the minimum found may be influenced by the initial configuration.

An energy minimum is located where the first derivative of the potential energy is zero

and the second derivatives are positive values [89]. The first and second derivatives

are a vector corresponding to the forces acting upon each atom and a matrix of force

constants known as the Hessian matrix, respectively. These derivatives may also be used

to increase the efficiency of a minimisation algorithm. The first derivative may be used
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Figure 3.4: An example of a potential energy surface, where rx and ry represent two
different degrees of freedom. The objective of an energy minimisation procedure is to
adjust the degrees of freedom such that the potential energy is at a minimum.

to indicate the direction of the energy minimum, while the second derivative can be used

to estimate its location. The latter is performed by approximating the potential energy

surface as a quadratic function, which is very efficient when close to a minimum energy,

but poorer where the approximation is less valid. In contrast, first derivative methods

are typically more robust when used further from the minimum, but can be less efficient

when the minimum is located in a narrow valley.

The choice of minimisation algorithm primarily depends on the size of the system, the

availability of computer resources and storage and the distance from an energy minimum.

Calculation of the Hessian matrix in second derivative methods requires significant mem-

ory, so these methods are typically reserved for systems with relatively small numbers of

atoms [89]. First derivative methods are less computationally intensive, so can be used

for larger systems, but they tend to be less efficient, requiring more steps to minimise.

They are also more robust, so these are typically used to start a calculation, while second

derivatives are used closer to the energy minimum. Four types of minimisation algorithm

are discussed in this section: the steepest descent and conjugate gradient approaches are

first derivative methods while the Newton-Raphson and quasi-Newton approaches are

second derivative methods.

Steepest Descent Minimisation

The steepest descent method calculates the first derivative of the potential energy (gi)

at the current position on the energy surface [89]. This indicates the direction of the
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energy minimum (si = −gi), which is used to update the atomic coordinates (ri),

ri+1 = ri + aisi. (3.24)

In some implementations, the magnitude of each step (ai) starts with a predetermined

value, but is increased with successive decreases in energy and lowered if the energy

increases. An alternative approach is to use a line search procedure, where three positions

along the vector determined by the gradient are found, such that the outer positions are

at higher energies than the central position. This means that an energy mimimum is

bracketed by the outer points, so the bracketed region is iteratively reduced until the

minimum is located. Following the line search, a second procedure must be performed

orthogonal to the first to find the minimum energy configuration. In general, using an

arbitrary step method requires more iterations than the line search, but the latter is

more computationally intensive.

The direction of adjustment in a steepest descent approach is determined by the largest

interatomic forces acting upon the structure, meaning this method is particularly good at

relieving the highest energy features of the configuration [89]. Furthermore, the method

is robust, so can be used with configurations that are far from the energy minimum.

Therefore, steepest descent is a very useful strategy to begin an energy minimisation

procedure. However, the number of steps required to reach a minimum using this ap-

proach can be larger, particularly when the energy minimum is located within a narrow

valley on the energy surface. In this situation, the algorithm often oscillates between

points on the slope either side of the minimum until the step size has been sufficiently

reduced.

Conjugate Gradient Minimisation

The conjugate gradients minimisation procedure begins with a steepest descent step [89].

Each subsequent iteration uses both the calculated first derivative of the potential energy

(gi) and the direction of the previous step (si−1) to determine the direction of the next

displacement [130, 131],

si = −gi + γisi−1. (3.25)

γi is a scalar constant, originally given as

γi =
gi · gi

gi−1 · gi−1

, (3.26)
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but a number of other variations also exist. Inclusion of the direction from previous

iterations allows the conjugate gradient method to locate a minimum more efficiently

than the steepest descent approach.

Newton-Raphson Minimisation

The Newton-Raphson method is the simplest minimisation procedure that uses the sec-

ond derivative of the energy, known as the Hessian matrix, which provides information

about the curvature of the potential energy surface [89, 132]. The first derivative of the

potential energy (gi) at configuration j can be written as

gj = gi + (rj − ri)Wi, (3.27)

where ri and Wi are the atomic coordinates and Hessian matrix at for iteration i. As-

suming the potential energy surface is a purely quadratic function, the Hessian will be

the same for all positions on the energy surface (Wi = Wj). At the lowest energy config-

uration, the first derivative of the energy is known to be zero (gj = 0), so the minimum

energy configuration (rj) may be directly calculated as

rj = ri −
gi
Wi

= ri − gi ·W−1
i , (3.28)

where W−1
i is the inverted Hessian matrix. However, the energy surface is only ap-

proximately quadratic close to the energy minimum, so multiple iterations of calculating

and inverting the Hessian must be performed. These procedures require significant com-

puter memory, particularly for larger systems, limiting the Newton-Raphson approach

to smaller systems. Furthermore, this method can fail for configurations further from

the energy minimum, where the quadratic approximation is not valid.

A number of variations of Newton-Raphson exist, primarily designed to avoid calculating

the Hessian matrix every iteration [89]. One approach is to use the same Hessian for

multiple steps, recalculating it at intervals. An alternative is the quasi-Newton methods,

which only calculate the first derivative, but construct the Hessian with successive steps.

Block-diagonal Newton-Raphson techniques instead only move one atom each iteration,

so only a 3×3 Hessian matrix must be inverted at each step; however, this is less efficient

in situations where the motions of two or more atoms are closely related.
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Quasi-Newton Minimisation

Quasi-Newton minimisation procedures are an adaption of the Newton-Raphson ap-

proach, but instead of calculating and inverting the Hessian matrix at every iteration,

the inverse Hessian is built up gradually over successive steps [89]. At each step, a new

set of atomic coordinates can be determined as in Equation 3.28, but using the current

approximated inverse Hessian W−1
i ,

ri+1 = ri − gi ·W−1
i , (3.29)

where ri and gi are the current positions and first derivative, respectively.

A number of formulae exist for updating the Hessian at each iteration, including the

Davidon-Fletcher-Powell (DFP) [130], Broyden-Fletcher-Goldfarb-Shanno (BFGS) [133–

136] and RMM-DIIS [137] approaches. The DFP formula is

W−1
i ≈ W−1

i−1 +
δr × δr
δr · δg

−
(W−1

i−1 · δg)× (W−1
i−1 · δg)

δg ·W−1
i−1 · δg

, (3.30)

where δr and δg represent the difference between the current and previous atomic coordi-

nates and first derivatives, respectively [89]. Other methods also incorporate information

from earlier iterations [138].

Quasi-Newton procedures are particularly common in quantum mechanical calculations,

as they can be more efficient than first derivative methods, but are not as computationally

expensive as the Newton-Raphson approach [89].

Convergence Criteria

In simulations of chemical systems, determining the precise location of a minimum is

rarely possible. Convergence criteria are used to terminate a calculation once the con-

figuration is sufficiently close to the energy minimum [89]. One simple strategy is to

monitor the difference in energy between successive steps and to stop the calculation

when the energy difference is below a specified threshold. A similar approach may be

taken by assessing the change in atomic coordinates at each step. Another consideration

is the force acting upon each atom (the first derivative of the energy), which should be

close to zero at an energy minimum.

In quantum mechanical minimisations, the electronic structure must also be minimised
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for each iteration of atomic (ionic) coordinates. Therefore, convergence criteria must be

provided for both ionic and electronic minimisation procedures.

When the vibrational properties (Section 3.5) are calculated after the energy minimisa-

tion procedure, the convergence criteria must be particularly rigorous. This is because

some methods used to perform the latter involve calculating the change in energy after

displacing some atoms within the system. The difference in energy between the min-

imised and displaced structures is small, so the convergence criteria for the minimisation

procedure must be smaller.

Constant Volume and Constant Pressure Minimisations

Two major implementations of energy minimisation are typically used: constant volume

and constant pressure. In constant volume, the unit cell dimensions are fixed, while the

atomic coordinates are adjusted to minimise the forces using the chosen algorithm. The

constant pressure approach performs the same procedure, then alters the lattice vectors

to minimise the bulk lattice strain.

3.5 Calculation of Vibrational Properties

Two of the primary goals of this investigation were to use simulated data to interpret

experimental Raman and IR spectra and to systematically study how a change in struc-

ture or composition affects the vibrational properties of uranium minerals. The first

step to calculating the vibrational properties is to construct a force constant matrix,

which describes how the system responds to each atom displacing from its equilibrium

position. This may be achieved using either the finite displacement approach (Section

3.5.1) or density functional perturbation theory (DFPT, Section 3.5.2). The vibrational

frequencies and associated motions can then be calculated. The relative infrared (IR,

Section 3.5.3) and Raman (Section 3.5.4) activities may subsequently be determined.

A concerted motion of atoms in a chemical system that can be independently excited

is known as a normal mode [89]. Each normal mode is approximated as a harmonic

oscillator, in which small displacements from the equilibrium configuration increase the

total energy of the system. This energy change can be very small, so before simulating the

vibrational properties the structure must be energy minimised with rigorous convergence

criteria.

The force constant matrix calculated in finite displacement or DFPT simulations is the
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second derivative of the total energy of the system, also known as the Hessian matrix

(W ) [89]. It is the same Hessian matrix used during Newton-Raphson energy minimi-

sation. To determine the vibrational frequencies, the Hessian matrix must be converted

into an equivalent matrix of mass-weighted force constants (D),

D = M− 1
2WM− 1

2 , (3.31)

where M is a 3N×3N matrix containing the atomic masses. All elements of M are zero,

except those on the leading diagonal, which correspond to the masses of each atom. The

mass of each atom must be incorporated because a force of a particular magnitude has a

different effect on atoms with a larger mass than atoms with a smaller mass. D is then

diagonalised to obtain a set of eigenvalues and eigenvectors. The frequency νn of each

normal mode may be calculated from the corresponding eigenvalue λn,

νn =

√
λn
2π
, (3.32)

while the eigenvectors describe the motion of each atom during the vibration.

In cases where the system is not in a stable energy minimum, some displacements will

not contain a restoring force. The corresponding normal modes have an imaginary

component, so are commonly described as imaginary modes. The imaginary mode may

be used to obtain a more energetically stable configuration, by adjusting the atomic

coordinates in the directions indicated by the eigenvectors.

3.5.1 The Frozen Phonon Approach

One strategy used to populate the force constant matrix W is the frozen phonon or finite

displacement approach. Individual elements of the matrix,

Wαβ
ij = −∂F

α
i

∂Rβ
j

, (3.33)

describe how the force F acting on atom i in direction α is affected by the change

in coordinates R of atom j in direction β [139]. Therefore, these elements may be

obtained by systematically displacing individual atoms from their equilibrium position

by a finite distance and calculating the forces acting upon every atom in the resulting

system [140, 141]. At the equilibrium configuration, the forces acting upon every atom

should be zero, so any new forces emerge from the atomic displacements. The Hellmann-

43



3.5. Calculation of Vibrational Properties

Feynman theorem may be used to determine the forces acting upon each atom [140],

Fi = −
∫
ρ(r)

∂νi(r−Ri)

∂Ri

dr− ∂EN({R})
∂Ri

, (3.34)

where ρ(r) is the electron density corresponding to atomic configuration {R}, Ri repre-

sents the coordinates of atom i, EN is the nuclear electrostatic energy and νi(r − Ri)

represents the Coulomb interaction between nucleus i and the electrons. Figure 3.5 shows

a supercell of UO2, with a single displaced atom highlighted.

Figure 3.5: An example of a displaced structure in the frozen phonon simulation of the
UO2 supercell, where the displaced uranium atom is shown as a yellow sphere. The other
uranium atoms and the oxygen atoms are shown as green and red spheres, respectively.

The primary advantage of using the frozen phonon approach is that no specialised com-

puter code is required to perform it; it may be implemented on any software that cal-

culates the force or energy of a system [139]. Furthermore, the calculation may be

modularised, with individual displaced structures analysed in independent simulations

and the force constant matrix constructed afterwards [142]. Modular calculations may

be performed in parallel, reducing the time required to obtain the vibrational properties.

The calculation time may be further reduced by employing the symmetry elements of

the unit cell, as some displacements may be symmetrically equivalent and provide the

same results.

One drawback to performing frozen phonon calculations is that the displacement of one

atom may affect all atoms within the periodic image of the primitive cell, including
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the image of the displaced atom [141]. This is particularly prominent for systems with

small unit cells. To prevent this, simulations are performed on supercell structures, with

dimensions large enough that the interatomic forces on the equivalent image atoms are

insignificant [139]. This approach increases the size of the system under investigation,

which also increases the computational expense of the calculation.

An important consideration when performing a frozen phonon calculation is the mag-

nitude of the atomic displacements. An appropriate displacement for heavier atoms

is larger than that of lighter atoms, but if the displacement is too large for the latter

then it may no longer be properly represented by the harmonic oscillator. The de-

fault values used by codes that implement the frozen phonon approach are typically

∼0.01 Å [142, 143].

3.5.2 Density Functional Perturbation Theory

The second strategy used to calculate the force constant matrix is known as density

functional perturbation theory (DFPT) [144, 145]. In this method, an explicit expression

for the force constants is found by differentiating the force with respect to the atomic

coordinates, as in Equation 3.33. This expression is dependent upon the electron density

ρ(r) and how it is affected by a distortion of the atomic coordinates [139, 140]. The

latter is evaluated in DFPT by approximating Equation 3.10 as a linear function,

∂ρ(r)

∂Ri

= 4

N/2∑
n=1

ϕ∗n(r)
∂ϕn(r)

∂Ri

, (3.35)

where ϕn are the Kohn-Sham orbitals. The linear response for each Kohn-Sham orbital

also need to be evaluated, which can be performed by linearising Equation 3.8,

(HRef − εn)
∂ϕn(r)

∂Ri

= −
(
∂VRef(r)

∂Ri

∂εn
∂Ri

)
ϕn(r), (3.36)

where HRef is the Hamiltonian for an electron under effective potential VRef and εn is the

corresponding energy eigenvalue. These equations may be solved self-consistently, in a

similar manner to the Kohn-Sham equations in Section 3.2.2, while linearising Equation

3.13 provides an expression for updating the the effective potential response ∂VRef(r)
∂Ri

.

In this approach, the matrix obtained is known as the dynamical matrix; this may be

transformed into the Hessian by performing a Fourier transform.

One of the major advantages to the DFPT approach is that it is flexible and may be
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applied to evaluate the response of many properties, including phonons and polarisability,

that results from perturbations to the atomic coordinates, electric field or other variables.

In addition, the perturbations are infinitesimal, so the harmonic oscillator approximation

remains valid. Furthermore, this method does not require a supercell to be generated, as

in the frozen phonon approach, so the overall computational expense may be lower than

the latter. The primary disadvantage compared to the frozen phonon approach is that

implementating DFPT requires specialised DFT code, which is not readily parallelised.

3.5.3 Simulation of Infrared Activities

As noted in Section 2.1.1, the gross selection rule for IR spectroscopy states that a

vibrational mode is IR active if it causes a change in the overall dipole moment [81, 82].

The relative intensity of each IR active mode I IR
ν may be determined based on how the

overall polarisation of the structure P changes with respect to the displacement of atoms

during the vibration [146],

I IR
ν =

∑
α

∣∣∣∣∣∑
i,β

Z∗i,α,βεi,ν,β

∣∣∣∣∣
2

, (3.37)

where εi,ν,β is the normalised vibrational eigenvector of atom i in cartesian direction β

during normal mode ν, calculated in the previous frozen phonon or DFPT simulation.

Z∗i,α,β is an element of the Born effective charge tensor,

Z∗i,α,β =
Ω

|e|
∂Pα
∂Ri,β

, (3.38)

which describes how a displacement in direction β of atom i affects the overall polarisation

in direction α [147]. Ω is the unit cell volume and e is the elementary charge.

The Born effective charge tensor may be obtained using a finite displacement or DFPT

approach, in a similar manner to how the force contants were calculated. Indeed, the

Born tensors may be determined alongside the force constants, reducing the overall cost

of the calculation.

3.5.4 Simulation of Raman Activities

The relative Raman intensity IRamanν of each vibrational mode is given by [84],

IRaman
ν ∝

∣∣eSj ·Rjk,ν · eIk
∣∣2 . (3.39)
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Rjk,ν is the Raman tensor of normal mode ν, which describes how the amplitude of the

Raman scattered wave depends on the polarisation direction of the incident and scattered

light, represented by the vectors eIk and eSj , respectively. Therefore, a Raman tensor must

be constructed for each unique normal mode. This may be achieved by calculating the

linear response of the electric polarisability χjk that results from atomic displacements

uν , using a similar DFPT approach to that for determining the force constants and Born

effective charge tensors,

Rν,jk =

∣∣∣∣∂χjk∂uν

∣∣∣∣2 . (3.40)

The major difference in calculating the Raman tensors compared to the force constants

and Born effective charge tensors is that a different tensor is required for each normal

mode, meaning the frozen phonon or DFPT calculation must be performed beforehand.

Consequently, calculation of the Raman tensors can be computationally expensive, de-

pending on the size of the system and the number of normal modes that need to be

investigated.

In systems where the preferred crystal geometry and the polarisations of the incident and

scattered light are known, Equation 3.39 may be used to directly calculate the relative

Raman intensities of each normal mode (Section 2.1.4). This was the approach used

to study the Raman activities for the autunite minerals saléeite, torbernite, nováčekite

and zeunerite. However, for polycrystalline and liquid samples, no preferred orientation

exists. A well established approximation is commonly used to calculate the Raman

intensities for an average of orientations in an assumed 90◦ scattering geometry [148],

IRamanν = 45α2 + 7β2, (3.41)

where

α =
R11 +R22 +R33

3
(3.42)

and

β2 =
((R11 −R22)2 + (R11 −R33)2 + (R22 −R33)2)2 + 6(R2

12 +R2
13 +R2

23)

2
. (3.43)

This approximation is used in the vasp raman.py code [149] and has been utilised for

calculating the Raman intensities of UO2, U3O8 and UO3, which are known to exist as

polycrystalline deposits.
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3.6 Computational Details

At the start of this project, a number of trial calculations on uranyl carbonates and

phosphates were performed using classical techniques. These were implemented in the

METADISE [150] and GULP [151] codes and utilised potentials derived by Kerisit and

Liu [152], Rabone and de Leeuw [153] and de Leeuw and Parker [154]. However, the

complexity of the possible oxidation states and mineral compositions meant that the

primary focus of this project became the application of DFT.

In this investigation, the VASP code [155, 156] (version 5.3.5) has been used extensively

for DFT calculations. The PBE exchange-correlation functional [107] was used, which is

a formulation of the generalised gradient approximation (GGA). Pseudopotentials were

implemented with the projector augmented wave (PAW) method [129] and convergence

testing demonstrated that a plane wave cut-off energy of 500 eV was sufficient. Each

calculation used an automatically generated Monkhorst-Pack k -point mesh, centered

around the Γ-point [125]. To represent the strong localisation of f -electrons at uranium

atom sites, DFT +U was implemented using the Dudarev scheme [115], with values

of U = 4.50 eV and J = 0.54 eV (Ueff = 3.96 eV) derived from X-ray photoelectron

spectroscopy (XPS) experiments on UO2 [123, 124]. This DFT +U set-up has been

recently used to investigate a range of binary uranium oxides. [43, 49, 55]

The primary computational method used was energy minimisation, which is directly

implemented within the VASP code. This procedure took initial crystal structure data

from previously published experimental investigations. The constant pressure approach

was used, which allowed the atomic positions and the unit cell volume and shape to

change. Furthermore, the minimisation was not constrained by maintaining the unit cell

symmetry. A conjugate gradients method was typically used to begin the procedure,

while the quasi-Newton algorithm RMM-DIIS [137] was applied closer to the energy

minimum. Convergence criteria were chosen to be rigorous, as the minimised structure

was then used to calculate the vibrational properties. The criteria were 10−6 eV/atom for

electronic relaxation and 0.01 eV/Å for ionic relaxation. Molecular dynamics (MD) was

also performed in VASP for a small number of procedures, to locate appropriate starting

configurations for water molecules where no experimental data for hydrogen atoms was

available.

Both the frozen phonon approach [139–141] and density functional perturbation theory

(DFPT) [139, 140, 144, 145] were used to calculate the vibrational frequencies and their
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corresponding eigenvectors in this investigation. These methods are implemented within

the VASP code, but the frozen phonon approach was also performed using the Phonopy

code [142], which generates a set of displaced crystal structures, uses VASP to calculate

the energies and forces for each, then diagonalises the force constant matrix to obtain

the vibrational modes. The default atomic displacements for the frozen phonon method

in VASP and Phonopy are 0.015 Å [143] and 0.01 Å [142], respectively.

The Born effective charge tensors, used to calculate the IR intensity of each vibrational

mode, were generated during the DFPT procedure within the VASP code. A script

was then employed to calculate the IR intensities from the computed eigenvectors, using

Equation 3.37. To evaluate the Raman activities, a Raman tensor was generated for each

vibrational mode after the initial frozen phonon or DFPT calculation. These simulations

were implemented using the vasp raman.py code [149], which also used VASP to calculate

the elements of the Raman tensor.

The majority of DFT simulations were performed on the UK national high performance

computing (HPC) service ARCHER, provided by UoE HPCx Ltd, Cray Inc and NAG

Ltd at the University of Edinburgh. Its predecessor, HECToR, was also used for some

earlier work. Access to both systems was provided via our membership of the UK’s HPC

Materials Chemistry Consortium (MCC), which is funded by EPSRC (EP/F067496 and

EP/L000202). Other calculations were performed on the University of Bath’s HPC fa-

cilities Aquila and Balena. The simulations were typically run using 6–12 nodes and

optimised with the NPAR and KPAR settings in VASP. Calculation of the vibrational

frequencies within VASP often took 24–48 hours on 6–12 nodes, but the Raman simu-

lations were task farmed on ∼400 nodes for 2–3 hours. The Raman simulations were

ideal candidates for task farming as they involved running a large number of very similar

calculations, which finished in approximately the same amount of computer time.

Structural figures were generated using the VESTA program [157], while the motions

corresponding to each vibrational mode were analysed and drawn using POVRAY [158].

Plots were generated using the Python module matplotlib [159].
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Chapter 4

Triuranium Octaoxide U3O8

U3O8 has been described as the kinetic oxidation product of UO2 [31]. Its inherent

stability makes it the second most widely studied uranium oxide in the nuclear fuel

cycle, after UO2 [40]. Indeed, the viability of both U3O8 and UO3 as nuclear fuels

has recently been investigated, which have the potential to avoid the need for 235U

enrichment [33]. Three polymorphs of U3O8 have been reported [40, 51, 160], of which the

α and β structures are stable under ambient conditions and γ-U3O8 is the high pressure

form [49]. A brief literature review on U3O8 is given in Section 4.1. The computationally

determined structural properties of α and β-U3O8 have been previously reported by

Brincat et al. [49] and are detailed in Section 4.2. The focus of this investigation is on

calculating the vibrational properties, which are reported in Section 4.3.

4.1 U3O8 Background

U3O8 is often found as an oxidation product of UO2 at different stages of the nuclear fuel

cycle [13, 31]. It has also been reported to form during the reduction or decomposition of

UO3 [32, 161]. The oxidation of UO2 to U3O8 is accompanied by an increase in volume

of approximately 36%, potentially leading to stress or damage to the fuel rods [31]. Con-

sequently, the reactivity of UO2, particularly the oxidation process, has been the focus

of many experimental [31, 40, 162–164] and computational [43, 165, 166] investigations.

A variety of techniques, including neutron and X-ray diffraction, have been used to

characterise the structures of α-U3O8 [160, 167–170], β-U3O8 [51, 171] and γ-U3O8 [172].

α-U3O8 was reported to crystallise in the Amm2 [160] and C222 space groups, β-U3O8 in

the Cmcm [51] and P21/m [171] space groups and γ-U3O8 in the P 6̄2m space group [172].

Experimental investigations have shown that U3O8 (UO2.67) can accomodate considerable

variation in composition, retaining the structure with oxygen loss down to UO2.61 [79].

Thermodynamic studies indicate that α-U3O8 is the most common polymorph under

ambient conditions and may be formed by heating UO2 up to 900 K in dry air [40].

β-U3O8 is considered the high temperature polymorph and can be formed by heating

α-U3O8 to 1623 K in air and then slowly cooling to room temperature [51]. γ-U3O8

is described as the high pressure polymorph and is reported to form after heating α-
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4.1. U3O8 Background

U3O8 to 473–573 K at high oxygen partial pressure (∼16 kbar) [40, 52, 173]. Recent

DFT+U simulations predict that α- and β-U3O8 are competitive at low temperatures,

suggesting that the polymorph formed is dependent upon the synthesis conditions [49].

The structures of each phase are described in more detail in Section 4.2.

The electronic properties, including the binding energies [174], band gap [175, 176] and

the nature of bonding [177, 178] have been studied using XPS, electron spin resonance

spectroscopy, XANES and a range of other techniques. Two distinct assignments have

been given for the distribution of valence states within the structure, with older inves-

tigations suggesting a 2:1 ratio of U6+:U4+ [47, 179] and newer studies indicating a 2:1

ratio of U5+:U6+ [48, 180]. Computational techniques have also been employed to de-

termine the preferred configuration, with initial potential-based and DFT simulations

using an averaged charge of U5 1
3

+ showing the best agreement with experimental struc-

tures [181, 182]. However, the U5+/U6+ configuration was supported by more recent

DFT+U calculations [32, 49, 183].

Figure 4.1: Reproductions of previously published experimental Raman spectra of
U3O8 by Palacios and Taylor [65], Senanayake et al. [163] and Pointurier et al. [184], and
an IR spectrum by Tsuboi et al. [64]. The intensity and absorption axes are given in
arbitrary units.

The present investigation is focused on simulating the vibrational properties of U3O8,

including determination of the Raman and IR activities for each mode. Previously pub-

lished Raman and IR spectra are reproduced in Figure 4.1 [64, 65, 163, 184], while those
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4.2. Structures and Models

reported by Allen et al. [79, 80, 185, 186] are given alongside the simulated spectra in

Figure 4.4. The modes have been conventionally assigned using a simple model pro-

posed by Ohwada and Soga, based on two non-interacting uranium environments and

combined with a group theory analysis of the two clusters [79, 187]. The first environ-

ment was treated as octahedral UO2, while the second is the hexagonal bipyramid in

α-UO3. Although the simplicity of this model may be useful, two major issues arise.

First, this model assumes that U3O8 adopts a U4+/U6+ oxidation state configuration,

with no strategy for accomodating the U5+ environments expected from more recent

experiments. Second, vibrations that involve multiple uranium environments are not

predicted. In contrast, the DFT simulations used in this investigation allow vibrations

that encompass multiple uranium environments within the unit cell and does not fix the

oxidation states. Approximate positions and relative intensities for each peak are also

calculated with DFT, whereas the original model relies upon experimental spectra of

UO2 and UO3.

4.2 Structures and Models

Previously reported experimental studies show that α- and β-U3O8 crystallise in the

C222 [160] and Cmcm [51] space groups, respectively. However, individual layers of

U3O8 are equivalent in both phases, with a 2:1 ratio of pentagonal bipyramidal (UO7)

and distorted octahedral (UO6) type environments (Figures 4.3a and b). The variation

is in the stacking of adjacent layers, in addition to the distribution of uranium oxidation

states within the structure.

The distribution of uranium oxidation states in α- and β-U3O8 were determined using the

calculated magnetisation values for each uranium ion; U6+ and U5+ are known to have

magnetisation values of 0 and 1, respectively. This approach was also utilised by Brincat

et al. [49]. An alternative strategy would be to use the calculated charge distribution;

however, uncertainties arise when formally assigning bonding electrons to specific ions.

In contrast, the uranium ions have a magnetisation whereas oxygen ions do not, hence,

these values allow a clearer assignment to be made.

In α-U3O8, adjacent layers are aligned (Figure 4.2a), such that equivalent uranium en-

vironments form a chain perpendicular to the layers. All UO7 environments contain

uranium in the U5+ oxidation state, while U6+ ions occupy the UO6 environments (Fig-

ure 4.3a). Consequently, adjacent U6+ ions compete for axial oxygen atoms, meaning

all axial the U-O bonds are approximately 2.10 Å in length and uranyl bonds cannot
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4.2. Structures and Models

Figure 4.2: The stacking of adjacent layers in (a) α-U3O8 and (b) β-U3O8; dashed black
lines connect uranium polyhedra that share oxygen vertices. Equivalent environments
share vertices in adjacent layers in α-U3O8 whereas every second layer in β-U3O8 is offset
by a third of the unit cell in the b-direction.

form. In contrast, adjacent layers in β-U3O8 are offset by a third of the unit cell in the

b-direction (Figure 4.2b), so equivalent environments do not overlap and uranyl bonding

can form. In this structure, the U6+ ions are located in UO7 environments and form

uranyl bonds (∼1.91 Å), while the remaining UO7 and UO6 environments contain ura-

nium in the U5+ oxidation state (Figure 4.3b). As the U5+O6 environments are adjacent

to the uranyl bonded environments, these axial U-O bonds are longer to compensate

(∼2.32 Å). The equatorial U-O bonds in both environments are similar in both α- and

β-U3O8; all bond distances are provided in Figures 4.3c and d.

It should be noted that the experimentally determined unit cell of α-U3O8 that was

minimised by Brincat et al. [55] only comprised a single layer, whereas two layers con-

stitute in a single unit cell of β-U3O8. When simulating vibrational properties for the

latter structure, a number of motions were found to involve both layers and the bonds

connecting them. Therefore, a supercell of α-U3O8 was generated, to allow interlayer

vibrations to be investigated. This supercell retained the characteristic layers observed

in both U3O8 phases, in addition to the distribution of U5+ and U6+ ions found in the
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4.2. Structures and Models

Figure 4.3: The layers in (a) α-U3O8 and (b) β-U3O8; solid black lines connect uranium
polyhedra that share oxygen vertices and dashed black lines represent the unit cell. The
uranium environments in (c) α-U3O8 and (d) β-U3O8; U-O distances are given in Å.
Red polyhedra represent U5+O7 environments, green polyhedra represent U6+O6, blue
polyhedra represent U6+O7 and yellow polyhedra represent U5+O6.

original α-U3O8 structure. The bond distances in Figure 4.3c and the structural pa-

rameters and vibrational properties presented in Section 4.3 correspond to this supercell

structure. Other supercell structures of α-U3O8 were also minimised, which did not

retain the U5+/U6+ distribution and instead contained some U6+ ions in the UO7 envi-

ronment. All of these systems were found to be higher in energy and, since calculating

the vibrational properties is computationally expensive, the properties of these systems

were not predicted.

For both α- and β-U3O8, the unit cell volume and shape were fully relaxed with-

out constraining the symmetries. The electronic and ionic convergence criteria were

1x10−6 eV/atom and 0.01 eV/Å, respectively, and testing demonstrated that 500 eV

was a sufficient cutoff energy [49]. A Γ-centered k -point mesh of 4 x 2 x 4 was used for

both phases.
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4.3. Results and Discussion

Table 4.1: A comparison between experimental and relaxed (DFT) structural param-
eters for α and β-U3O8. The parameters for both the single unit cell and the supercell
of α-U3O8 are presented. The volume per uranium ion has been presented, to allow for
a comparison across all structures.

α-U3O8 β-U3O8

Expt. [160] DFTsingle DFTsupercell Expt. [51] DFT [49]

a (Å) 6.70 7.22 7.23 7.07 7.21
b (Å) 11.95 11.59 11.59 11.45 11.65
c (Å) 4.14 4.20 8.40 8.30 8.45

α=β=γ (◦) 90.0 90.0 90.0 90.0 90.0
Vol./U (Å3) 55.30 58.67 58.70 55.98 59.08
Space Group C222 Cmmm Cmmm Cmcm Cmcm

4.3 Results and Discussion

The minimisation procedure performed on α- and β-U3O8 resulted in structures with

slightly overestimated lattice parameters compared to those determined experimentally,

but the increase in volume remained less than 7%. U-O bond distances were also

found to be overestimated, which resulted in calculated vibrational modes being at lower

wavenumbers than corresponding experimental peaks. This discrepancy is a known effect

of the DFT functional used [107, 115]. Experimental [51, 160] and simulated structural

parameters for the two phases are given in Table 4.1.

The simulated Raman and IR spectra of α- and β-U3O8 are given in Figure 4.4, alongside

previously published spectra by Allen et al. [79, 80]. To facilitate the discussion, the

high, middle and low wavenumber regions of the spectra are discussed separately: 680–

820 cm−1, 360–550 cm−1 and <360 cm−1, respectively. The motions observed for each

mode are noted in Tables 4.2 and 4.2 for α- and β-U3O8, respectively. For clarity, each

vibration is separated into the effective motion at each uranium environment (UO6 and

UO7). This approach is similar to that described by Ohwada and Soga, [187], where

motions of the UO6 and UO7 were interpreted using non-interacting environments of

UO2 octahedra and α-UO3 hexagonal bipyramids, except that here the environments

may interact. Figure 4.5 illustrates the different motions observed and the labels assigned

in this figure (i.e. A1, B1 etc.) correspond to those given in the discussion and Tables

4.2 and 4.3.
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4.3. Results and Discussion

Figure 4.4: The simulated Raman (left) and IR (right) spectra of α- and β-U3O8 and
experimental spectra reproduced from data published by Allen et al. [79, 80]. Peak
positions are annotated in cm−1, while the intensity and absorption axes are given in
arbitrary units.

High Wavenumber Region

The high wavenumber region (680–820 cm−1) of the simulated Raman and IR spectra of

α-U3O8 are dominated by peaks at 721 and 720 cm−1, respectively. These correspond

to combination modes of equatorial stretching (Figure 4.5, A3 and B7) and scissoring

(A4 and B6) across both uranium environments. In β-U3O8, the presence of two distinct

UO7 environments results in a greater number of combination modes. Furthermore,

the axial uranyl bonds in the U6+O7 environments produce characteristic symmetric

stretching modes (B1 and B2) in the Raman and IR spectra at 789 and 802 cm−1,

respectively, as well as an antisymmetric stretching mode (B8) at 699 cm−1 in the IR

spectrum. The lack of uranyl bonding in the structure of α-U3O8 precludes the presence

of equivalent modes in its spectra. The observed uranyl vibrations are complex and

include additional equatorial motions in other environments (A2 and B3). The modes

at 732 and 729 cm−1 only contain vibrations involving the longer equatorial bonds (A2,

A3, B5, B3 and B4), so are found at lower wavenumbers than the combination modes.

Although the U-O stretching modes assigned here agree with the conventional assignment

of this region, based on Ohwada and Soga’s model [187], the complex motions are different

and emphasise that the two environments cannot be treated as non-interacting units.
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4.3. Results and Discussion

Table 4.2: The Raman and IR active modes in the simulated spectra of α-U3O8. The
labels correspond to the motions of environments shown in Figure 4.5. Eq indicates the
equatorial plane of the environment and ax represents the axial vector.

Freq Activity UO6 (U6+) UO7 (U5+)
(cm−1) (R/IR) motion motion

721 R A3) Eq sym str B6) Eq scissor
720 IR A4) Eq scissor B7) Eq sym str
515 IR A4) Eq scissor B9) Eq sym str
513 IR A5) Ax antisym str B8) Ax antisym str
511 IR A5) Ax antisym str B8) Ax antisym str
463 R A7) Eq antisym str B13) Eq scissor
453 IR A9) Eq antisym str B14) Eq twist
439 R A10) Eq scissor B15) Eq scissor
383 IR A11) Eq rocking B16) Eq O translate
357 R A8) Eq twisting B18) Eq scissor
314 R A13) Ax + Eq bending B22) Ax + Eq bending
290 IR A16) Eq bending B23) Eq bending
244 IR A14) Ax bending B21) Ax bending
236 IR — B10) Eq U-O bend
193 IR A18) Eq rocking B26) Eq bending
183 IR A20) Ax translate B28) U translate
178 R — B28) U translate
123 R — B28) U translate
115 IR A20) Ax translate B28) U translate

The modes in the high wavenumber region of the simulated Raman spectrum of β-U3O8

(789 and 729 cm−1) show good agreement to those observed at 752 and 798 cm−1 in

experimental Raman spectra of U3O8 [65, 79, 163, 184]. The mode at 721 cm−1 in the

simulated spectrum of α-U3O8 also corresponds well to the experimentally observed mode

at 752 cm−1. Similar observations may be made for the IR modes in this region, as a

strong and broad peak is observed in experimental spectra at 745 cm−1, with a shoulder

at 777 cm−1 [64, 185], that could correspond to the peaks in simulated β-U3O8 at 699

and 791 cm−1. The simulated spectrum of α-U3O8 also contains a peak at 720 cm−1

that may correspond to the experimental 752 cm−1 peak. The presence of peaks in the

experimental spectra that may be attributed to uranyl stretches suggests that β-U3O8

is be the dominant phase, or that an alternative configuration containing uranyl bonds

exists.

Middle Wavenumber Region

The middle wavenumber region (360–550 cm−1) of the simulated IR spectra for both α-

and β-U3O8 are dominated by three strong modes, which appear to be characteristic of
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4.3. Results and Discussion

Table 4.3: The Raman and IR active modes in the simulated spectra of β-U3O8. The
labels correspond to the motions of environments shown in Figure 4.5. Eq indicates the
equatorial plane of the environment and ax represents the axial vector.

Freq Activity UO6 (U5+) UO7 (U5+) UO7 (U6+)
(cm−1) (R/IR) motion motion motion (uranyl)

802 IR A1) Ax sym str B1) Ax sym str + eq str B1) Ax sym str + eq str
791 IR A2) Eq rocking B2) Ax sym str B3) Eq Scissor
789 R A1+2) Sym str + rocking B3) Eq Scissor B2) Ax sym str
732 IR A3) Eq sym str B3) Eq Scissor B4) Eq Scissor
729 R A2) Eq rocking B5) Eq sym str B3) Eq Scissor
699 IR A5) Ax antisym str — B8) Ax antisym str
524 R A2) Eq rocking B9) Eq sym str B9) Eq sym str
521 IR A2) Eq rocking B9) Eq sym str B9) Eq sym str
494 IR — B8) Ax antisym str B10) Eq U-O bend
479 R A1+6) Sym str + scissor B11) Eq antisym str B12) Sym str + scissor
474 R A7) Eq antisym str B13) Eq scissor B13) Eq scissor
450 IR A9) Eq asym str B14) Eq twist B14) Eq twist
426 R A10) Eq scissor B13) Eq scissor B15) Eq scissor
373 IR A11) Eq rocking B17) Eq scissor B16) Eq O translate
347 R A12) Eq rocking B17) Eq scissor B17) Eq scissor
329 IR A13) Ax + Eq bending B19) Ax + Eq bending B19) Ax + Eq bending
318 R A14) Ax bending B20) Eq bending B21) Ax bending
303 IR A14) Ax bending B21) Ax bending B21) Ax bending
293 IR A15) Eq wagging B23) Eq bending B24) Eq wagging
287 IR A15) Eq wagging B23) Eq bending B19) Ax + Eq bending
285 IR A14) Ax bending B25) Bend + twist B25) Bend + twist
263 IR A14) Ax bending B21) Ax bending B28) U translate
245 IR A14) Ax bending B21) Ax bending B21) Ax bending
196 IR A17) U translate — B28) U translate
189 IR A18) Eq rocking B26) Eq bending B26) Eq bending
189 IR A19) Eq bend + ax twist B27) Ax twist B27) Ax twist
185 R A20) Ax translate B28) U translate B28) U translate
169 IR A19) Eq bend + ax twist B27) Ax twist B27) Ax twist
140 R A17) U translate B28) U translate B28) U translate

the U3O8 layers. The highest wavenumber modes are seen at 511 and 513 cm−1 for α-

U3O8 and 494 cm−1 for β-U3O8 and primarily correspond to axial antisymmetric stretches

(Figure 4.5, A5 and B8). The second modes are at 453 and 450 cm−1 for α- and β-U3O8,

respectively, and involves an equatorial antisymmetric stretch in the UO6 environments

(A9) coupled with a twist in the UO7 environments (B14). The third modes involve a

rocking motion in UO6 (A11) and an in-plane equatorial bending in UO7 environments

(B17 or B16) and are observed at 383 and 373 cm−1 in α- and β-U3O8, respectively.

These three peaks demonstrate a general trend within this region, with stretching modes

at higher wavenumbers, bending modes at lower wavenumbers and combined modes
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4.4. Conclusions

between. Three peaks were also seen experimentally at 420, 487 and 529 cm−1 [64, 185].

The 420 and 529 cm−1 peaks were conventionally assigned to equatorial stretching in

the UO6 and UO7 environments, respectively, while the 487 cm−1 peak was attributed

to a combination of lower wavenumber modes [64, 185, 186]. The relative intensities

of these modes in the simulated spectrum of β-U3O8 and the experimental spectrum

decrease with increasing wavenumber, whereas α-U3O8 does not follow the same trend.

This supports the assignment of β-U3O8 as the dominant phase.

The simulated Raman spectrum of β-U3O8 shows three distinct modes in the middle

wavenumber region at 426, 474/479 and 524 cm−1. These modes correspond to equatorial

bending and stretching motions (A2, A6, A10, B9, B11 and B15), while the strong

479 cm−1 peak also involves a uranyl symmetric stretch (A1 and B12). In contrast,

the simulated Raman spectrum of α-U3O8 only contains two low intensity peaks in the

middle region at 439 and 463 cm−1, which correspond to the same motions as the 426 and

474 cm−1 modes in β-U3O8. In this region, the experimental Raman spectra demonstrate

similarities to the simulated β-U3O8 spectrum, containing three broad peaks at 342, 408

and 480 cm−1 [65, 79, 163, 184]. The conventional assignment of these modes were

equatorial stretching motions, which agrees with the simulations, but does not account

for the uranyl stretching modes.

Low Wavenumber Region

The vibrational motions in the low wavenumber region (<340 cm−1) of the simulated

Raman and IR spectra almost exclusively correspond to bending motions (Figure 4.5,

A14, A18, B19, B20 and B23–B27). These modes in this region are typically of lower

intensity compared to those in the high and middle regions, with the exception of the

peaks at 314 and 357 cm−1 in the Raman spectrum of α-U3O8. The corresponding mo-

tions are equatorial in-plane bending (A18 and B18) and combined axial and equatorial

out-of-plane bending modes (A13 and B22), respectively. The experimental Raman and

IR spectra contain significant peaks in this region, at 236 cm−1 [65, 79, 163, 184] and

279 cm−1 [64, 185, 186], respectively. These were conventionally assigned to bending

modes, which agrees with the simulations, but does not account for interactions between

uranium environments.

4.4 Conclusions

Density functional theory (DFT) simulations have been utilised to investigate the vibra-

tional properties of α- and β-U3O8. Both phases are comprised of equivalent layers, with
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4.4. Conclusions

Figure 4.5: Vibrations of the UO6 (A) and UO7 (B) clusters in the polymorphs of
U3O8. Depending on the orientation of the cluster, either the equatorial plane (eq) or
axial vector (ax ) is labelled. These images are referenced in Tables 4.2 and 4.3.
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differences in the spectral features emerging from the stacking of successive layers. One

major advantage of computational simulations is the ability to directly compare spectral

features with the structure and individual environments. These simulations have shown

that the majority of vibrational modes in both phases of U3O8 involve motions in ev-

ery environment. Therefore, the conventional model of non-interacting UO2 and α-UO3

units [187] was determined to insufficiently represent the vibrational properties.

Three distinct modes were found in the 360–550 cm−1 region of both α- and β-U3O8

simulated IR spectra, as well as the experimental U3O8 IR spectrum. This indicates

that these peaks are characteristic of the U3O8 layered structure and may be used to

distinguish it from other uranium oxide materials. One of the major features that may be

used to discriminate between the two phases is the presence of uranyl bonding in β-U3O8,

which is able to form due to the rotation of adjacent layers. The high wavenumber region

(680–820 cm−1) of β-U3O8 contains multiple Raman active modes, where only a single

mode was seen in α-U3O8. This results partly from inequivalent UO7 environments and

partly from uranyl bonding in β-U3O8. A further difference is in the middle wavenumber

region (360–550 cm−1) of β-U3O8, where three modes are observed, corresponding to

uranyl stretching motions. In contrast, α-U3O8 only contains weak modes in this region.

The experimental Raman spectra show similar peaks to the simulated spectrum β-U3O8,

suggesting that this phase is dominant, that both phases form in association, or that an

alternative configuration exists, where adjacent layers do not overlap and uranyl bonds

can form.
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Chapter 5

Uranium Trioxide UO3

UO3 is an oxidation product of UO2, forming in natural uranium deposits as well as

within the nuclear fuel cycle [12]. Seven crystalline phases have been reported for UO3,

in addition to an amorphous phase [30, 53, 55], and it has been noted that the formation

of different polymorphs is dependent on the method used to produce them [188]. There-

fore, a strategy for distinguishing these phases would be of great value to forensic and

environmental science investigations. However, it can be difficult to synthesise stoichio-

metric samples for experimental study because UO3 exhibits hypostoichiometry [189].

Further difficulties in synthesising a single stoichiometric sample arise from the ready

formation of multiple polymorphs [188, 190, 191] and hydrolysis products [52, 192, 193].

In this chapter, density functional theory (DFT) is used to simulate the structures and

vibrational properties of five stoichiometric UO3 phases, which are compared against

experimental spectra. The primary goal of this study is to determine whether Raman

and IR spectroscopy may be used to distinguish between the polymorphs.

The five UO3 polymorphs studied in this chapter are α-, β-, γ-, δ- and η-UO3; the synthe-

ses of two additional phases, ε-UO3 [194, 195] and ζ-UO3 [189, 190] have been reported,

but the atomic coordinates have not been resolved for these structures. A review of

literature for the five phases of interest to this study is given in Section 5.1. This investi-

gation utilises the DFT models prepared by Brincat et al. [55] and the major structural

features of each phase are described in Section 5.2, alongside some computational details.

The simulated Raman and IR spectra are given in Section 5.3, alongside published IR

data [80] and unpublished Raman spectra provided by Allen for the same samples. The

syntheses for the minerals studied by Allen are described briefly in Appendix B.

5.1 Review of UO3 Literature

γ-UO3

The most stable polymorph of UO3 under ambient conditions is γ-UO3 [32, 161]. This

phase is also the most thermodynamically stable binary uranium oxide. As such, it may

be synthesised by heating other UO3 polymorphs to 723 K in 40 atm O2, or by burning
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5.1. Review of UO3 Literature

Figure 5.1: Reproductions of previously published literature spectra: the Raman spec-
tra of γ-UO3 by Palacios and Taylor [65] and Sweet et al. [188], the IR spectra of α-,
β- and γ-UO3 by Ivanova and Spiteller [196], and the IR spectra of α- and β-UO3 by
Tsuboi et al. [64]. The intensity and absorption axes are plotted on an arbitrary scale.

uranyl nitrate hexahydrate in air at 673–873 K [197]. XRD experiments performed by

Engmann found that it adopted a tetragonal I41 structure [198], while Loopstra later

identified two closely related structures, tetragonal I41 and orthorhombic Fddd, ob-

served above 373 K and below 293 K, respectively [199]. A computational investigation

by He et al. used LSDA+U to simulate the I41 polymorph and found the volume to

be well reproduced, but did not publish any further structural information [176]. More

recently, Brincat et al. performed GGA+U simulations on both I41 and Fddd modifi-
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5.1. Review of UO3 Literature

cations of γ-UO3, finding the structural and energetic properties to be near identical on

relaxation [55].

As the most stable polymorph, several authors have presented Raman [65, 188] and

IR [80, 196] spectra of γ-UO3. The new Raman spectra presented in this chapter were

collected by Allen and correspond to the same samples for which the IR and XPS spectra

have been published [200]. A number of differences became apparent when comparing

the experimental spectra of equivalent phases from different literature sources. For ex-

ample, the Raman spectrum of γ-UO3 collected by Palacios and Taylor [65] and Sweet

et al. [188] (Figure 5.1) have a strong peak at 767 cm−1, while an additional peak at

838 cm−1 is only found in the former. In contrast, the unpublished spectrum by Allen

(Figure 5.7) is dominated by a strong peak at 690 cm−1 and smaller peaks at 820 and

830 cm−1. These differences may arise from variations in the stoichiometry, the level of

hydration or the presence of other uranium oxide phases, which may result from different

synthesis conditions, such as temperature, humidity or oxygen pressure. Furthermore,

some features of the spectra may be inconsistent if different excitation wavelengths or

powers were used to collect the Raman data, if ATR geometry was used for the IR

spectra or if different standards were used to calibrate the spectrometer. These differ-

ences emphasise that a standardised procedure is necessary when collecting vibrational

spectra, particularly when this data is compared against simulations.

The γ-UO3 model used in this chapter was the I41 structure minimised by Brincat et

al. [55]. It has been used to simulate the vibrational properties of γ-UO3, including

the vibrational modes and corresponding Raman and IR activities. A description of the

γ-UO3 structure and some pertinant computational details are provided in Section 5.2.1.

δ-UO3

δ-UO3 may be synthesised by hydrothermally reacting the γ- phase, then heating the

resultant β-UO3(OH)2 to 648 K. This polymorph has been reported to crystallise in

the Pm3̄m space group, in a structure equivalent to ReO3 [191]. Every uranium ion

is located in a perfectly octahedral environment, therefore, it is the most successfully

simulated polymorph using a variety of DFT functionals [55, 176, 182, 201].

While the IR spectrum of δ-UO3 has been published by Allen and Holmes [80], no Raman

spectrum for this phase has been published. Therefore, the spectrum provided by Allen

is considered the only Raman spectrum available for δ-UO3 (Figure 5.8). It should be

noted that a group theory analysis of the δ-UO3 structure found three triply degenerate
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vibrations, 2T1u and T2u, of which the first two are IR active, but none are Raman active.

This is in direct contrast to the experimental Raman spectrum collected by Allen, so

the Pm3̄m structure minimised by Brincat et al. [55] has been expanded to a supercell.

Details of the original and expanded structures are described in Section 5.2.2. The

supercell structure was used to determine the vibrational properties of δ-UO3.

α-UO3

α-UO3 is usually synthesised by heating uranyl peroxide to∼673–773 K [202]. It has been

described as being structurally similar to α-U3O8, with uranium deficiencies. Zachariasen

first characterised it as hexagonal P 3̄m1 using XRD [170]; however, further refinements

indicated C2mm [203] or C222 [54]. It was noted that the experimental densities of these

samples were significantly lower than the theoretical density, hence, Greaves concluded

that the structure was not stoichiometric and ∼12% of uranium lattice sites were va-

cant [54]. The structural parameters of the stoichiometric P 3̄m1 modification have been

well represented in previous simulations [55, 176, 201] and Brincat et al. found it to be

more energetically stable than the C2mm structure [55]. Consequently, it is the P 3̄m1

structure minimised by Brincat et al. that has been used in this chapter to evaluate

the vibrational properties of α-UO3. The structural properties of this polymorph are

presented in Section 5.2.3.

The vibrational properties of α-UO3 were first investigated by Tsuboi et al., who used a

combination of IR spectroscopy and group theory [64]. A group theory approach predicts

four IR active modes with symmetry labels 2A2u and 2Eu, which were observed in the

experimental spectra. Two Raman active modes were also predicted, A1g and Eg, the

positions of which were inferred by Tsuboi et al. based on the high wavenumber combi-

nation modes in the IR spectrum. More recently, the IR spectrum has been collected by

Ivanova et al. [196] and Allen and Holmes [80], while a Raman spectrum was provided

by Allen for this investigation. A comparison of the literature spectra is presented in

Figure 5.1 and the simulated spectra from this work are given in Section 5.3.3.

β-UO3

β-UO3 is the most complex UO3 polymorph studied, crystallising in a P21 monoclinic

unit cell with five distinct uranium environments [204, 205]. Its synthesis has been re-

ported as the calcination of ammonium diuranate in air at 732–773 K; lower temperatures

instead form γ-UO3. The first computational investigation of β-UO3 was performed by

Brincat et al., who found that relaxation of the structure resulted in significant changes
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to some bond lengths and uranium environments [55]. Indeed, the relaxed bond lengths

were more consistent with those seen for other uranium oxides. This suggests that β-UO3

is a defective structure. The relaxed structural properties are described in Section 5.2.4

and the vibrational properties are presented in Section 5.3.4.

Tsuboi et al. published the IR spectrum of β-UO3; however, due to the complexity of

the structure, they were unable to provide a group theory analysis and interpretation

of the peaks [64]. IR spectra were also published by Ivanova et al. [196] and Allen and

Holmes [80], while the only available Raman spectrum is that provided by Allen for this

investigation.

η-UO3

η-UO3 was first identified by Siegel et al., who noted the polymorph is formed at 1373 K

and 30 kbar, but did not present a detailed synthesis [53]. The calculated and measured

density is higher than the other phases (8.86 gcm−1 [30]), which fits with its description

as the high pressure polymorph. XRD found this phase to adopt an orthorhomic P212121

structure, with all uranium ions in a puckered pentagonal bipyramidal environment [53].

This structure has been reproduced well in simulations by Pickard et al. [201] and Brincat

et al. [55], with the latter investigation also showing this is the highest density phase,

confirming the high pressure description.

No experimental Raman or IR spectra are available for η-UO3, so the vibrational proper-

ties presented in this chapter are considered predictive (Section 5.3.5). Nevertheless, the

relaxed structural parameters and bond lengths (detailed in Section 5.2.5) are very close

to the experimentally determined properties, supporting the quality of this prediction.

5.2 Structures and Models

5.2.1 γ-UO3

γ-UO3 is the most thermodynamically stable polymorph of UO3 below 10 atm pO2 [161].

It has been described as crystallising in both Fddd and I41 space groups [198, 199]. How-

ever, Brincat et al. reported these to be modifications of the same structure, with near

identical lattice parameters, bond lengths and energies after minimisation [55]. There-

fore, the smaller I41 system has been used in this investigation (Figure 5.2). The struc-

tural properties do not change significantly upon minimisation, with both symmetry

and uranium coordination retained and the bond lengths remain within ±0.1 Å of the
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experimental distances. Two distinct uranium environments are present in this struc-

ture, a distorted octahedron (environment 1) and a distorted dodecahedron (environment

2). However, the distorted dodecahedra environment contains two longer U-O distances

(>2.8 Å), so these have not been considered as bonds in this investigation. Both envi-

ronments contain collinear uranyl bonds (U-O bond distance 1.7–1.9 Å), which produce

characteristic bands in both Raman and IR spectra [206]. It is notable that the uranyl

oxygens in environment 1 are also coordinated to the adjacent uranium ion, whereas

the uranyl oxygens in environment 2 remain uncoordinated. It is therefore possible that

water molecules will coordinate to environment 2 when γ-UO3 is hydrated, changing the

nature of the uranyl bond. The remaining four oxygen atoms (Oeq) are found within the

equatorial plane, at longer distances (2.23–2.34 Å).

Figure 5.2: (a and b) Two orientations of the minimised unit cell of I41 γ-UO3, with
the two distinct environments labelled. (c and d) Uranium environments 1 and 2, with
bond distances labelled (Å). The experimental structure of γ-UO3 is very similar, with
all U-O bond distances within 0.1 Å of the minimised distances. (e and f) Schematics of
environments 1 and 2, where the blue, green, red and brown circles represent uranium,
axial oxygens and two types of equatorial oxygens, respectively, the solid black line
represents the shorter U-O bond and the dashed pink, purple and green lines represent
the longer U-O bonds.

DFT calculations of γ-UO3 were performed using VASP 5.3.5 and parallelised over 20

nodes (480 cores) on ARCHER using KPAR 20 and NPAR 3 settings. The Γ-centered

k -point mesh used was 6 x 6 x 4 (76 irreducible k -points), the same as that used by

Brincat et al. [55].
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5.2.2 δ-UO3

The experimental structure of δ-UO3 was reported to crystallise in the Pm3̄m space

group, with a single symmetrically distinct uranium environment and one distinct oxygen

environment. [191] The structure minimised by Brincat et al. [55] maintains this sym-

metry; each uranium is in a perfectly octahedral environment, with U-O bond lengths

of 2.10 Å. However, the simulated vibrational spectrum for this structure does not con-

tain any Raman active modes, which directly disagrees with the experimental spectrum.

This suggests that the δ-UO3 system cannot be accurately represented using the 4-atom

unit cell, necessitating the use of a larger cell. A 16-atom supercell has been minimised,

which exhibits a rotation of the octahedral uranium environments, similar to that ob-

served in perovskite CaMnO3 [207]. As a result, three distinct pairs of collinear U-O

bonds distances emerge in each environment: a uranyl-like 1.90 Å bond and two longer

bonds (2.11 and 2.35 Å). The lattice energy of the 16-atom structure was calculated and

compared against the values for all five polymorphs presented by Brincat et al. [55]. The

16-atom structure was found to be 0.16 eV more stable per uranium than the 4-atom

structure and 0.03 eV less stable per U than γ-UO3, the most stable polymorph. This

is a significant increase in the relative stability of the delta phase, further emphasising

that it needs to be re-examined experimentally.

The unit cells and uranium environments for both 4- and 16-atom structures are illus-

trated in Figure 5.3, while structural and elastic parameters are given in Table 5.1. The

elastic constants (Cxy) were calculated using the finite displacement method and the

bulk modulus (B) was determined by averaging the first nine values (C11:C33). Brincat

et al. observed that UO3 phases containing uranyl bonding have a bulk modulus below

100 GPa [55], which holds true for the 16-atom system of δ-UO3 (67 GPa). This is

because the uranyl bond is very strong and rigid, weakening the surrounding U-O bonds

and making the system overall less resistant to compression (i.e. a lower bulk modulus).

DFT calculations of δ-UO3 were performed using VASP 5.3.5 and parallelised over 8

nodes (192 cores) on ARCHER using KPAR 8 and NPAR 3 settings. The Γ-centered

k -point mesh used for the 4-atom system was 12 x 12 x 12 (868 k -points), as used by

Brincat et al. [55], while the 16-atom system was modelled using a k -point mesh of

11 x 5 x 11 (303 k -points).
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Figure 5.3: (a) The lattice and (b) uranium coordination environment of the 4-atom
unit cell of δ-UO3. (c) The lattice and (d) uranium coordination environment of the
16-atom unit cell of δ-UO3. The unit cell is given as a dashed black line in the lattice
images and bond distances are given in Å for the uranium environment diagrams.

Table 5.1: Comparison of the structural and elastic properties in the 4- and 16-atom
unit cells of δ-UO3.

Lattice Parameters

System a (Å) b (Å) c (Å) α = γ (◦) β (◦) Symmetry †

4-atom 4.196 4.196 4.196 90.00 90.00 Pm3̄m (221)
16-atom 10.411 6.008 8.433 90.00 144.70 C2/c (15)

Elastic Constants (GPa)

C11 C22 C33 C12 C13 C23 C44

4-atom 387.6 - - 33.2 - - 27.3
16-atom 124.4 261.1 124.8 -20.5 93.6 -25.3 20.1

C55 C66 C16 C26 C36 C45 B

4-atom - - - - - - 151
16-atom 20.1 97.3 1.8 6.4 1.4 0.1 67

† Tolerance = 0.01 Å

5.2.3 α-UO3

The experimental and relaxed crystal structures of α-UO3 (space group P3̄m1) are shown

in Figure 5.4. Each uranium ion is located in an 8-coordinate distorted hexagonal bipyra-

midal environment, where two oxygen ions are bound by short collinear bonds (Oax) and

the remaining six are displaced above and below the equatorial plane (Oeq). Upon re-

laxation, the Oeq atoms are closer to the equatorial plane and the U-Oeq bonds are

shorter. Nevertheless, the space group of the relaxed structure remains the same as the

experimental structure.

DFT calculations of α-UO3 were performed using VASP 5.3.5 and parallelised over 1 node

(24 cores) on ARCHER using the default KPAR and NPAR settings. The Γ-centered

k -point mesh used was 5 x 5 x 5 (39 k -points), equivalent to that used by Brincat et
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Figure 5.4: (a) The lattice and (b) uranium environment of the minimised α-UO3

structure. (c) The schematic representation of the minimised uranium cluster, where
the blue, red and brown circlesrepresent uranium, equatorial oxygen and axial oxygen
ions, respectively. The solid black line represents the shorter U-Oax bonds and the
dashed green line represents the longer U-Oeq bonds. (d) The lattice and (e) uranium
environment of the experimental α-UO3 structure. The unit cell is given as a dashed
black line in the lattice diagrams and U-O bond distances are given in Å for the uranium
environment diagrams.

al. [55].

5.2.4 β-UO3

The structure of β-UO3 was experimentally determined to crystallise in the P21 space

group [204, 205], with five distinct uranium environments and fifteen unique oxygen sites

(Figure C.7). Four uranium ions are located in an irregular 7-fold coordination, with one

or two short U-O bonds (1.5–1.8 Å) and five or six longer bonds (2.1–2.8 Å) [55]. The

other uranium environment is a distorted octahedron, with six bonds between 1.7–2.2 Å.

The distortions present in these environments preclude the formation of collinear uranyl

bonding.

The relaxed structure of β-UO3 [55] was found to be more homogeneous than the exper-

imental one, but it retains the P21 symmetry and five distinct uranium sites. Collinear

uranyl bonding emerges in environments 1, 4 and 5 (Figure 5.5), each of which also
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Figure 5.5: (a) The minimised unit cell of β-UO3, with each environment labelled and
(b) a representative uranium environment, with bond distance ranges given in Å. (c) A
schematic representation of the uranium environments in the minimised β-UO3 structure,
where blue, red and brown circles represent the uranium and two oxygen environments,
respectively, the solid black line represents the uranyl-like bonds and the dashed green
lines represent the longer U-O bonds.

contains four U-O bonds 2.2–2.6 Å in length. The remaining environments are closer to

octahedral symmetry, with six U-O bonds between 1.9–2.2 Å.

DFT calculations of β-UO3 were performed using VASP 5.3.5 and parallelised over 4

nodes (96 cores) on ARCHER using KPAR 4 and the default NPAR settings. The Γ-

centered k -point mesh used was 4 x 4 x 8 (54 k -points), equivalent to that used by

Brincat et al. [55].

5.2.5 η-UO3

η-UO3 has been described as the high pressure phase of UO3 and reported to crystallise

in the P212121 space group [53]. The unit cell contains four formula units, with each

uranium ion located in a 7-fold puckered pentagonal bipyramidal environment (Figure

5.6). Both space group and uranium environment are retained upon minimisation [55].

Uranyl bonding is also present in the structures, with U-O lengths of 1.85 and 1.80 Å

experimentally and 1.84 and 1.82 Å when relaxed.
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Figure 5.6: (a) The four uranium environments in a unit cell of η-UO3. (b) The uranium
environment, with bond lengths labelled in Å and (c) a schematic representation of the
same, where the uranium environment is represented by a blue circle, the three oxygen
environments are represented by brown, green and red circles, the collinear uranyl bonds
(∼1.8 Å) are represented by solid black lines, bonds between 2.0–2.5 Å are represented
by dashed green lines and the longest bonds (2.7 Å) are represented by dashed pink lines.

DFT calculations of η-UO3 have been performed using VASP 5.3.5 and parallelised over

2 nodes (48 cores) on ARCHER using the default KPAR and NPAR settings. The Γ-

centered k -point mesh used was 6 x 7 x 7 (64 k -points), equivalent to that used by

Brincat et al. [55].

5.3 Results and Discussion

5.3.1 γ-UO3

The structural similarities between experimental and minimised γ-UO3 support the va-

lidity of the simulation. Bands in the simulated Raman and IR spectra agree with the

majority of peaks in each experimental spectrum [65, 80, 188, 196]. This indicates that

the simulations can reproduce the vibrational fingerprint of stable polymorphs well, al-

lowing the spectral and structural features to be linked. The simulated and experimental

Raman and IR spectra of γ-UO3 are presented in Figure 5.7. Figures C.1 and C.2 detail

each vibrational motion within the spectrum of this phase.

It should be noted that some differences were observed between the experimental Ra-

man spectra of γ-UO3 taken by Allen and other previously published spectra [65, 188].

These differences are likely to have arisen from variations in the synthetic and analytical

procedure used by each author, suggesting that these systems contain multiple phases

or contain a significant number of defects. For detailed comparisons between experi-

mental studies and modelling, it would be useful to see a standardised experimental

procedure and a more detailed analysis of the phases present and the extent of stoi-
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Figure 5.7: The experimental and simulated Raman and IR spectra of γ-UO3. Exper-
imental Raman and IR spectra of γ-UO3 show good agreement to previously published
spectra [65, 188, 196]. The experimental IR spectrum has been published by Allen et
al. [80]. The intensity and absorption axes are plotted on an arbitrary scale. An analysis
of the vibrational modes in this spectrum is given in Figures C.1 and C.2.

chiometry. In Allen’s γ-UO3 spectrum, the strongest peak is seen at ∼690 cm−1, while

a much smaller peak is seen at 770 cm−1 and three distinct peaks are found at 820, 830

and 890 cm−1. In contrast, previously published spectra show strong peaks at 767 cm−1

and 838 cm−1 [65, 188]. As UO3 is known to form a number of hydration products, the

three peaks at 820, 830 and 890 cm−1 in Allen’s spectrum may be attributed to those,

while the peaks at 690 and 770 cm−1 correspond to the uranyl symmetric stretches at

732 and 823 cm−1, respectively, in the simulated spectrum. An alternative explanation is

that the strong peak at 690 cm−1 peak in Allen’s spectrum corresponds to a contaminant

material. This means that the simulated uranyl stretches at 732 and 823 cm−1 would

correspond to the 770 cm−1 peak and the 820, 830 and 890 cm−1 group, respectively.

The presence of multiple modes corresponding to the 823 cm−1 simulated peak may be

explained by the coordination of water to the free uranyl oxygen in environment 2 (Figure

5.2), which would change the bond strength and thus peak position. This coordination is

not possible in environment 1 because the uranyl oxygen ions are also equatorial oxygen

ions in environment 2.

For an aqueous uranyl cation with collinear U-O bonds the symmetric and antisymmetric

stretching modes are only Raman and IR active, respectively. However, the strongest

mode in the simulated IR spectrum of γ-UO3 is a complex mode at 761 cm−1 with

contributions of symmetric and antisymmetric stretches from different environments.
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This emphasises the need to consider each band as a vibration that encompasses the

entire structure and not just the motions within a single environment. The peak at

726 cm−1 in Allen and Holmes’ spectrum [80] may be attributed to this mode.

Peaks within the low wavenumber region (<550 cm−1) are normally bending modes and

have a lower intensity compared to peaks at higher wavenumbers. The broad band seen

in the experimental IR spectrum at 437 cm−1 [80] likely corresponds to the low intensity

bending modes in the 250–500 cm−1 region of the simulated IR spectrum of γ-UO3.

5.3.2 δ-UO3

Figure 5.8: The experimental and simulated Raman and IR spectra of the distorted
C2/c structure of δ-UO3. No previous Raman spectra have been published for this phase.
The experimental IR spectrum has been published by Allen et al. [80]. The intensity and
absorption axes are plotted on an arbitrary scale. An analysis of the vibrational modes
in this spectrum is given in Figure C.3 and Table C.3.

As noted in Section 5.2.2, the simulated spectra for the 4-atom δ-UO3 structure did not

contain any Raman active modes, which directly contradicts the experimental Raman

spectrum provided by Allen. In contrast, the simulated Raman spectrum of the 16-atom

unit cell showed good agreement to the experimental spectrum, supporting the validity

of the distorted structure. This structure also contains short uranyl-like bonds, which

produce characteristic modes in the vibrational spectra. The simulated and experimental

Raman and IR spectra of δ-UO3 are presented in Figure 5.8, while Figure C.3 and Table

C.3 detail each vibrational motion within the spectrum of this phase.

The experimental and simulated Raman spectra δ-UO3 are dominated by peaks at 520
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and 488 cm−1, respectively. This band in the simulated spectrum is attributed to the

uranyl symmetric stretching mode. The lower wavenumber compared to aqueous uranyl

cations may be explained by the infinite chain of U-O bonds, which weakens the uranyl-

like bonds in this structure. A similar explanation can be made for the uranyl anti-

symmetric stretching mode at 704 cm−1 in the simulated spectrum, which is observed

as a broad band at ∼700 cm−1 in Allen’s IR spectrum and a lower intensity mode at

∼690 cm−1 in the corresponding Raman spectrum. A broad band is also observed in the

experimental IR spectrum at ∼540 cm−1, which may be attributed to the antisymmetric

stretching motion of the longer (2.1 Å) O-U-O bonds seen at 504 cm−1 in the simulated

spectrum. The correlation between experimental and simulated spectra supports the

existence of the distorted δ-UO3 structure, which may be proven by future structural

investigations.

5.3.3 α-UO3

Figure 5.9: The experimental and simulated Raman and IR spectra of α-UO3. The
experimental IR spectrum has been published by Allen et al. [80] and shows good agree-
ment to other experimental data [64, 196]. The Raman active peaks also agree with
those predicted by Tsuboi et al. [64]. The intensity and absorption axes are plotted on
an arbitrary scale. An analysis of the vibrational modes in this spectrum is given in
Figure C.4 and Table C.4.

The minimised crystal structure for α-UO3 retains the same space group as the experi-

mental equivalent, P3̄m1 [170]. The most notable structural differences are a shortening

of the equatorial U−Oeq bonds and less distortion of the Oeq ions from the equatorial

plane. The simulated Raman and IR spectra contain peaks in similar positions to those

seen experimentally, which supports the quality of the model. However, the structure of
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α-UO3 is known to be defective, so it may be inferred that the non-stoichiometry causes

a shortening in the U−Oeq bonds. The simulated and experimental Raman and IR

spectra of α-UO3 are presented in Figure 5.9, while Figure C.4 and Table C.4 detail each

vibrational motion within the spectrum of this phase.

The experimental Raman spectrum of α-UO3 provided by Allen is dominated by a broad

peak at ∼560 cm−1. This band is assigned to the simulated mode at 536 cm−1, which

corresponds to a U−Oeq stretching motion. The Eg symmetry label attribued to this

motion is equivalent to the interpretation given by Tsuboi et al. [64], who estimated

this mode to be at 545 cm−1 based on the combination modes in the IR spectrum. The

Raman peak at ∼240 cm−1 in Allen’s spectrum and the 244 cm−1 IR peak seen by Tsuboi

et al. both show good agreement to the simulated mode at 241 cm−1, which corresponds

to a Oax − U−Oax bending mode. It is possible that this peak became Raman active

due to deviation from perfect stoichiometry.

The peaks observed around 890 cm−1 in the experimental IR spectra published by Allen

and Holmes [80] and Tsuboi et al. [64] do not correspond to any bands in the simulated

spectra. It is possible is that these peaks correspond to low level contamination by

another phase, such as γ- or β-UO3, which contain modes in this region.

5.3.4 β-UO3

The minimised structure of β-UO3 retains the P21 space group and five symmetrically

distinct uranium environments found in the experimental structure [204, 205]. One dif-

ference is the greater homogeneity in the environments of the simulated structure, which

all adopt a distorted octahedral coordination [55]. Uranyl-like bonding also emerges in

three sites, resulting in characteristic uranyl stretching modes in the simulated vibra-

tional spectra. Similar modes are also present in the experimental spectra, despite the

lack of uranyl bonding reported. Simulated and experimental Raman and IR spectra

of β-UO3 are presented in Figure 5.10, while Figures C.5 and C.6 show the motions for

each vibration within the spectrum of this phase.

β-UO3 contains five symmetrically distinct uranium environments, which can perform

different motions at a single frequency. These are described here as complex vibrations

and are exemplified by the strong Raman active modes in the 680–878 cm−1 region of

the simulated spectrum, attributed to combinations of uranyl symmetric and antisym-

metric stretching modes. These modes may correspond to the strong bands in Allen’s
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Figure 5.10: The experimental and simulated Raman and IR spectra of β-UO3. No
previous Raman spectra have been published for this phase. The experimental IR spec-
trum has been published by Allen et al. [80]. The intensity and absorption axes are
plotted on an arbitrary scale. An analysis of the vibrational modes in this spectrum is
given in Figures C.5 and C.6.

experimental spectrum at ∼700, 770 and 790 cm−1. Another example is the strongest

IR active mode in the simulated spectrum, observed at 568 cm−1. This band involves

the antisymmetric stretching of collinear O-U-O bonds and the bending of other U-O

bonds.

Overall, there is less agreement between both structural and vibrational properties for

experimental and simulated β-UO3 compared to the other phases studied in this chapter.

Brincat et al. suggested that these differences arise from disorder in the structure [55].

As the simulations correspond to a β-UO3 structure with perfect stoichiometry, it is

possible that the simulated spectra represent a stoichiometric sample well, but experi-

mental samples may be stabilised by non-stoichiometry. Further computational studies

may be performed to assess how defects in this structure affect the vibrational prop-

erties, improving the comparison to experimental data; however, this is not the aim of

this chapter. Nevertheless, the presence of peaks in the experimental spectra that ap-

pear similar to simulated uranyl stretching modes suggest that uranyl bonding is present

experimentally, perhaps to compensate for vacancies within the crystal structure.
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Figure 5.11: The simulated Raman and IR spectra of η-UO3. No experimental spectra
are available for this phase; however, the structural parameters were well reproduced in
the simulation. The intensity and absorption axes are plotted on an arbitrary scale. An
analysis of the vibrational modes in this spectrum is given in Figures C.8 and C.9.

5.3.5 η-UO3

The space group of both experimental and minimised structures of η-UO3 is P212121 and

the seven coordinate uranium environments, including uranyl-like bonds, are maintened

after relaxation. These observed similarities suggest that the vibrational properties are

also well reproduced; however, since no experimental Raman or IR spectra are available,

these simulations are purely predictive. The simulated Raman and IR spectra are pre-

sented in Figure 5.11, while Figures C.8 and C.9 show the motions corresponding to each

vibrational mode.

The simulated spectra of η-UO3 display many trends observed for the other UO3 phases.

Uranyl symmetric stretching modes are found in the 658–780 cm−1 region, antisymmetric

stretches are within the 836–863 cm−1 region and bending modes are below 400 cm−1.

The symmetric stretch is at a lower wavenumber than that observed for γ-UO3, resulting

from the uranyl oxygen ions coordinating to neighbouring uranium ions, weakening the

uranyl bonds. However, these U-O interactions are at a significant distance (>2.5 Å)

and do not form an extended chain of bonds, so the peak is not found as low as the

corresponding mode in δ-UO3.

A single unit cell of η-UO3 contains four uranium environments, all symmetrically equiv-

alent but capable of independent vibrations. For every vibrational mode in the simulated

spectra, all environments undertake the same motion, but different environments may

vibrate in- or out-of-phase with one another. This often affects the Raman and IR activ-

ities for each mode, which depend on the changes in polarisability and dipole moment,
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respectively, that occur for the entire structure. For example, some modes expected to

be Raman active (e.g. uranyl symmetric stretching mode) may instead be IR active.

5.3.6 Characteristic Uranyl Vibrations in UO3 Polymorphs

Uranyl-like bonding has been found in the minimised structures of β, γ, δ and η-UO3.

Consequently, characteristic uranyl symmetric stretching modes have been observed in

the simulated Raman spectra for these phases. In free uranyl cations, the symmetric

stretch is typically found in the 750–900 cm−1 region; however, the exact position de-

pends upon the local environment around the uranyl cation. In the simulated spectra

of different UO3 phases, the uranyl symmetric stretching mode has been found between

478–878 cm−1 (Table 5.2); the environments that give rise to different shifts are discussed

here.

Table 5.2: The uranyl symmetric stretching modes in the simulated Raman and IR
spectra for the different uranium environments in four phases of UO3. The frequency
of each symmetric stretch is given alongside the uranium coordination number and U-O
bond distances for the environments.

Phase β-UO3 γ-UO3 δ-UO3 η-UO3

Environment 1 4 5 1 2 — —

U Coordination 6 6 6 6 6 6 7

U-O bond distance (Å) 1.81 1.76 1.76 1.87 1.78 1.90 1.83

856 856 878 732 823 478 780
Symmetric stretching 787 787 860 771

mode frequencies (cm−1) 535 761 687
658

The effect of different local environments on the uranyl symmetric stretching mode po-

sition may be described using the two distinct uranium sites in γ-UO3. The first envi-

ronment contains a uranyl group in which the uranyl oxygen ions are each coordinated

to a second uranium ion, which weakens the uranyl bond and results in a uranyl sym-

metric stretching vibration at 732 cm−1. In the second environment, the uranyl oxygen

ions are not coordinated to other ions, so the corresponding stretching mode is found at

823 cm−1. Similar shifts are seen in some environments of β-UO3, for which the uranyl

symmetric stretching modes are observed between 680–878 cm−1, and η-UO3, which pro-

duces a stretch at 658 cm−1. The lowest wavenumber uranyl symetric stretching mode is

found at 488 cm−1 in the spectrum of δ-UO3. Within the structure, an extended chain

of U-O bonds exist, so every uranyl oxygen ions is also strongly coordinated to a second

uranium ion. Therefore, the uranyl bonds are weakened significantly, which lowers the

wavenumber of the stretching mode.
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The trend observed across the UO3 phases that contain uranyl bonding is that the

position of the uranyl symmetric stretching mode in the spectrum shifts to a lower

wavenumber when the bond is weakened. A weakening of the uranyl bond has been

shown to occur when uranyl oxygen ions are coordinated to additional uranium ions. As

a consequence, the strongly coordinated oxygen ions in the δ-UO3 structure result in the

lowest uranyl symmetric stretching mode, while the free oxygen ions in γ-UO3 produce

the highest symmetric stretching mode.

5.4 Conclusions

In this chapter, vibrational properties have been simulated for α-, β-, γ-, δ- and η-UO3,

using density functional theory (DFT) and initial structures that were minimised by

Brincat et al. [55]. The simulated spectra were compared against unpublished experi-

mental Raman data, provided by Allen, and experimental IR data published by Allen

and Holmes [80]. Of note, no Raman spectra have been previously published for β- and

δ-UO3, so this is new data. Futhermore, no experimental spectra are available for η-UO3,

but since the structure is well reproduced, the simulated spectra are considered good pre-

dictions. Creating an extensive database of experimental and simulated properties for

every phase of UO3 would be valuable to forensic and environmental investigations. It

would allow unknown materials to be identified and, since the phase of UO3 is dependent

upon the conditions it was formed under, may allow the origin of an unknown sample

to be determined. In addition, a number of discrepancies were found between different

experimental spectra, which may arise from the presence of multiple phases; confidence

in the simulated spectra would provide a means to investigate what is present in a mixed

sample.

One of the most significant obervations was for the 4-atom structure of δ-UO3: the

simulated spectrum showed no Raman activity, in contrast to the experimental spectrum.

An alternative distorted 16-atom simulated unit cell was instead found to produce a set

of Raman active modes with good agreement to the experimental spectrum. Therefore,

an experimental revision of the δ-UO3 structure may be valuable.

The simulated spectra of the stable γ-UO3 phase were found to show good agreement

to experimental spectra, whereas spectra for the structures that changed significantly

when minimised (α- and β-UO3) were less well reproduced. The latter phases have been

reported as defective [54, 55], so it follows that simulations of the stoichiometric structure

do not accurately reproduce experimental data. However, some similarities are found,
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such as the presence of strong experimental peaks in the region where uranyl stretching

modes are observed in the simulated Raman spectrum of β-UO3. This indicates that

uranyl bonding is present in the structure, despite it not being detected experimentally.

In the spectra of δ- and η-UO3, the uranyl symmetric stretching modes are found at

lower wavenumbers compared to β-UO3, which results from neighbouring environments

coordinating to the uranyl oxygen ions, weakening the uranyl bond. Separate uranyl

stretches were also observed for γ-UO3, where one uranyl environment is constrained,

but the second is not.

One discrepancy in the simulated spectra is the peak positions, which are always shifted

relative to their experimental counterparts. This is an established effect of the DFT

functional used, so changing functional may improve the comparison for phases with

a well reproduced structure. However, this would not be an improvement for phases

where the structure is less well represented; for an improvement in these cases, the non-

stoichiometric structure would have to be simulated.

A major advantage of using computational methods to investigate vibrational properties

is the ability to determine the motion for each mode in the spectrum. This is particularly

valuable for larger phases, with multiple uranium environments per unit cell. In the cases

of β- and γ-UO3, there are symmetrically distinct uranium environments, which allow

different types of vibration to occur at a single frequency. An example of this is the

combined symmetric and antisymmetric stretching mode at 879 cm−1 in β-UO3. In

contrast, η-UO3 and the 16-atom unit cell of δ-UO3 contain symmetrically equivalent

uranium environments, which always undertake the same vibration, but may perform

them in- or out-of-phase. In both cases, the Raman or IR activity depends upon the

overall motion across the structure, emphasising the need to consider the structure as a

whole and demonstrating the value of computational techniques in analysing vibrational

properties.
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Chapter 6

A Raman Investigation of

Uranyl Minerals from Cornwall

Raman spectroscopy has proven to be a powerful tool for distinguishing between uranyl

minerals [29, 208–210]. The focus of this chapter is to investigate the possibility of

using Raman for nuclear forensic research. The minerals studied are uranyl minerals,

which are named for the uranyl cation (UO2+
2 ) they contain, where uranium exists in

the U6+ oxidation state. The cation forms from the weathering of uranium oxides,

both from natural deposits and products from the nuclear fuel cycle [29]. Its solubility

and mobility means that soil and water contamination presents a significant risk to the

health of humans and animals in the area [14–18]. However, the cation is susceptible to

reaction with many inorganic materials, which immobilise the cation by forming uranyl

minerals [6, 20–28].

Over 200 uranyl minerals have been observed in nature, where the exact composition

of the sample is dependent on the chemical environment [56]. Many of these minerals

adopt a layered structure, including the majority studied in this chapter, but others

are comprised of clusers or 3D frameworks. The relationship between local conditions

and the uranyl minerals formed presents a valuable opportunity for nuclear forensics,

as knowledge of the minerals formed, their composition and even the host rock may

be combined to build a unique dataset pertaining to the sample’s origin. For this in-

vestigation, a selection of uranyl minerals from Cornwall, UK were collected by Elton

and Hooper [211–213] and studied using Raman and EDX spectroscopy. A list of these

samples and corresponding chemical formulae taken from the literature is given in Ta-

ble 6.1. In this chapter, the possibility of using Raman to distinguish between different

uranyl minerals is discussed. To accomplish this, a consistent procedure (Section 2.1.6)

was used to collect and analyse Raman data for all samples. The research presented

here has been published in RSC Advances, in an article entitled ‘A Raman Spectroscopic

Study of Uranyl Minerals from Cornwall’ [206]. Before discussing the results, it is useful

to consider previously published literature pertaining to the concepts discussed in this

chapter.
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Table 6.1: The uranyl mineral samples investigated in the present study. The major-
ity of samples were collected from locations in Cornwall, UK. Chemical formulae from
literature sources are given for each mineral.

Mineral Name Literature Formula Provenance

Autunite Ca(UO2)2(PO4)2·11H2O [214, 215] Merrivale Quarry, Tavistock † [216]
Torbernite Cu(UO2)2(PO4)2·12H2O [217] Bunny Mine, Stenalees, St. Austell [218]
Zeunerite Cu(UO2)2(AsO4)2·12H2O [219] Wheal Gorland, Redruth [218]

Nováčekite Mg(UO2)2(AsO4)2·10H2O [220] Wheal Edward, St. Just [212, 221]
Phosphuranylite Ca(UO2)3(PO4)2(OH)2·6H2O [221] Wheal Edward, St. Just [221]

Andersonite Na2Ca(UO2)(CO3)3·6H2O [222] Geevor Mine, Pendeen [213, 221]
Schröckingerite NaCa3(UO2)(CO3)3(SO4)F·10H2O [223] Geevor Mine, Pendeen [213, 221]

Johannite Cu(UO2)2(OH)2(SO4)2·8H2O [224] Geevor Mine, Pendeen [213]
Natrozippeite Na5(UO2)8(SO4)4O5,(OH)3·8H2O [225] Geevor Mine, Pendeen [221]
Uranophane Ca(UO2)2(SiO3OH)2·5H2O [226] Wheal Edward, St. Just [211]

Cuprosklodowskite Cu(UO2)2(SiO3OH)2·6H2O [227] West Wheal Owles, St. Just [211]
Kasolite Pb(UO2)(SiO4)·H2O [228] Loe Warren Zawn, St. Just [229]

Compreignacite K2(UO2)6O4(OH)6·7H2O [230] West Wheal Owles, St. Just [211]

† Merrivale Quarry is located in the county of Devon, UK.

6.1 Review of Literature on Uranyl Minerals

In this section, the major structural features of each group of uranyl minerals are de-

scribed, in addition to a review of the literature pertaining to structural and vibrational

properties. The most extensive set of investigations using Raman spectroscopy have

been performed by Frost et al. [29, 208–210], which include low temperature studies [57]

and investigations into the dehydration process [58, 70, 87, 88]. They used a consis-

tent procedure when collecting Raman data, which is necessary if a comparison is to

be made between different samples. As the crystal structures adopted by uranyl miner-

als are comprised of subunits, specifically the uranyl cation and a variety of polyanion

groups, previous spectra have been interpreted as a combination of bands arising from

the component polyions. Therefore, the vibrational properties of aqueous ions have been

presented in Section 1.3.2. The position of the uranyl symmetric stretching mode has

also been linked to the length of the uranyl bond by the Bartlett and Cooney relation,

described in Section 6.1.1.

Autunite Group of Uranyl Phosphates and Arsenates

The largest and most diverse type of uranyl minerals are the uranyl phosphates and

arsenates [56, 231, 232]. These minerals may be separated into subcategories based

upon the topology of the layers, the most significant being the autunite minerals, also

known as the uranyl micas [219, 220, 233, 234]. Autunite minerals have been shown
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as promising candidates for immobilisation of the uranyl cation in contaminated sites,

due to their comparatively low solubility [25–28, 235, 236]. Therefore, understanding

the chemical processes of these minerals is of great value to studies involving nuclear

forensics and environmental remediation.

Autunite minerals adopt a layered structure, with uranium square bipyramidal environ-

ments sharing equatorial vertices with phosphate or arsenate tetrahedra [69, 214, 237–

240] (Figure 6.1). Charge compensating cations and water molecules are found in the

interlayer space. These minerals adopt the general formula M(UO2)2(XO4)2·nH2O, where

M are the cations, X is P or As and n represents the number of water molecules. The

level of hydration is variable and depends upon the local conditions. In a fully hydrated

autunite mineral, n ≈ 10 or 12, whereas the dehydrated equivalents, known as metaau-

tunite minerals, are typically n ≈ 8 or 6 [69, 241, 242]. This propensity for dehydration

necessitates the use of low impact analytical techniques, such as Raman spectroscopy,

that don’t change the hydration level during observation.

Figure 6.1: a) The characteristic autunite layered structure, found in autunite, tor-
bernite, zeunerite, saléeite and nováčekite. b) The uranium environment in autunite
minerals. Green, orange and blue represent uranium, phosphorus and oxygen, respec-
tively.

As noted, the autunite group of minerals is diverse, containing a range of uranyl phos-

phates, including torbernite [217], saléeite [243], autunite [214, 215] and sabugalite [233],

as well as uranyl arsenates, such as zeunerite [219], nováčekite [220], metauranospi-

nite [244] and metakirchheimerite [245]. Autunite minerals are also widespread, with

samples originating in Australia, the Czech Republic, France, America, the UK [69],

Portugal [236] and the Congo [14]. The minerals described in this chapter all originated

from mines in Cornwall, UK, with the exception of autunite, which was collected in
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the neighbouring county of Devon. The chemical formula and provenance for all uranyl

minerals studied in this chapter are given in Table 6.1.

The infrared spectra of many autunite minerals has been collected by a number of au-

thors [59, 73, 238–240, 246–248]. Čejka et al. commented that the oxyanions within

uranyl minerals lend them to vibrational spectroscopy [238]. More recently, Frost et al.

utilised Raman spectroscopy to study a selection of autunite minerals [57, 69, 244, 249,

250]. The major bands found in the Raman spectra were uranyl symmetric stretches in

the 809–833 cm−1 region, and phosphate antisymmetric stretches in the 957–1093 cm−1

region. Some difficulty was noted when interpreting the arsenate equivalents, as the arse-

nate symmetric and antisymmetric stretches overlap with the uranyl symmetric stretch.

Further investigations also used Raman to study the dehydration processes involved

in the formation of metaautunite minerals [58, 70, 87, 88]. Raman spectroscopy has

also been performed on synthetic samples of autunite minerals metatorbernite, metau-

ranocircite (Ba(UO2)2(PO4)2·nH2O) and a mixed phase by Sánchez-Pastor et al. [251].

The first Raman spectrum of the uranyl arsenate mineral nováčekite was published in

the paper corresponding to this chapter [206].

Phosphuranylite Group of Uranyl Phosphates and Arsenates

The second most common group of uranyl phosphate and arsenate minerals are those

with the phosphuranylite sheet structure [252]. There are 16 minerals in this group

with known crystal structures, including bergenite, phurcalite, dewindtite, dumontite,

phosphuranylite and yingjiangite [231, 232, 253, 254].

The phosphuranylite layered topology is more complex than that seen for the autunite

group; here, uranium is found in pentagonal and hexagonal bipyramids (Figure 6.2a and

c), which share edges with phosphate (or arsenate) tetrahedra and O2− anions [56, 252,

255–259]. Further uranium polyhedra are present in square bipyramids that connect

adjacent layers (Figure 6.2b and d), meaning all three types of uranyl coordination

environments are present [231, 260, 261]. Charge compensating cations (Ca2+ and K+

in phosphuranylite) and water are located in channels within the framework.

The composition of phosphuranylite appears to be variable, with multiple chemical for-

mulae reported:

• Demartin et al. [255] reported (K,Ca)(H3O)3(UO2)7(PO4)4O4·8H2O;
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Figure 6.2: (a and b) Two views of the phosphuranylite layered structure. c) The
hexagonal and pentagonal bipyramidal environments and d) the square bipyramidal en-
vironments found in phosphuranylite. Green, orange, blue and grey represent uranium,
phosphorus, oxygen and calcium, respectively.

• Piret et al. [262] reported Ca(UO2)7(PO4)4(OH)4·12H2O;

• Zhang et al. [260] reported (K2,Ca)(UO2)7(PO4)4(OH)6·6H2O;

• Ryback and Tandy [221] reported Ca(UO2)3(PO4)2(OH)2·6H2O.

The sample described by Ryback and Tandy was collected from Wheal Edward, St.

Just, Cornwall, UK, which is the same mine that the sample used in this study was

taken from. Therefore, the representative formula provided in Table 6.1 corresponds to

Ryback and Tandy’s formula. A similar mineral, yingjiangite, has been described by a

number of authors (K1.3Ca0.7(UO2)6(PO4)4(OH)2.7·8H2O) [253, 256, 260]; however, the

similarities in structure and composition have led to suggestions that yingjiangite and

phosphuranylite are identical [263, 264].

A number of authors have investigated the vibrational properties of phosphuranylite

and yingjiangite using IR spectroscopy [256, 265, 266]. A more recent set of studies

by Frost et al. has provided the Raman spectra for samples of phosphuranylite [267],

dumontite [268], bergenite [68] and phurcalite [269]. The investigation of phosphuranylite
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included three samples, originating from Minerva Heights and Saddle Ridge Mine in

South Australia and Ruggles Mine in the USA [267]. The Raman spectra for the Saddle

Ridge Mine and Ruggles Mine samples were dominated by uranyl symmetric stretching

modes in the 812–847 cm−1 region and phosphate antisymmetric stretching modes in the

1000–1056 cm−1 region. However, differences were found in the Raman spectrum taken

for the Minerva Heights sample, in which the uranyl and phosphate stretching modes

were in the 805–815 cm−1 and 992–1016 cm−1 regions, respectively. This corroborates

the variability observed in the composition of phosphoruranylite and emphasises the need

to study samples from a variety of locations.

Uranyl Tricarbonates

Uranyl carbonate minerals may be categorised based on the number of carbonate anions

(CO2−
3 ) within each formula unit [56]. For example, rutherfordine is a uranyl mono-

carbonate [61], zellerite is a uranyl dicarbonate [270] and voglite is a uranyl tricarbon-

ate [77]. The uranyl tricarbonates are the most thoroughly studied actinyl (VI) carbonate

solids [271, 272]; the two uranyl carbonate minerals described in this chapter, anderson-

ite and schröckingerite, are both uranyl tricarbonates. The samples studied here were

collected from Geevor Mine, Cornwall, UK, but uranyl carbonates from other locations,

including the Czech Republic and USA have been investigated [77, 270]. Furthermore,

many uranyl carbonates have been synthesised [273–275]. Table 6.1 contains the chemical

formulae for both andersonite and schröckingerite.

Uranyl tricarbonates are characterised by uranium in a hexagonal bipyramidal envi-

ronment, where the equatorial vertices belong to the three bidentate carbonate anions

(UO2(CO3)3) [276–279]. The uranyl tricarbonate clusters in andersonite form a complex

framework (Figure 6.3a), connected by cation polyhedra (Na and Ca) [222]. In contrast,

schröckingerite is a multi-anion mineral (Figure 6.3b), composed of layers of UO2(CO3)3,

SO4 and NaO6 [223]. Water molecules are found within channels in andersonite and the

interlayer space in schröckingerite, held in place by hydrogen bonding [222, 231, 280, 281].

The IR spectrum of many uranyl carbonates, including andersonite and schröckingerite,

have been extensively studied [275, 277, 280, 282–285]. More recently, Frost et al. have

performed Raman spectroscopy on samples of andersonite [286] and schröckingerite [76],

both from the USA, in addition to rutherfordine [61], zellerite [270], voglite [77], liebig-

ite [287], kamotoite-(Y) [288] and wyartite [289]. The Raman spectrum of andersonite

was found to be dominated by the uranyl symmetric stretch at 831 and 832 cm−1 and

the carbonate symmetric stretch at 1080 and 1092 cm−1 [286]. Equivalent modes in
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Figure 6.3: a) The complex framework structure in andersonite and b) the layered
structure found in schröckingerite. c) The uranyl tricarbonate cluster found in both
environments. Green, yellow, blue, red, pale green and grey represent uranium, carbon,
sulphur, oxygen, fluorine and the divalent cations (Ca and Na), respectively.

schröckingerite were found at 815 and 1092 cm−1, respectively, while the sulphate anion

gives rise to an additional symmetric stretch at 983 cm−1 [76].

Uranyl Sulphates

The two uranyl sulphate minerals studied in this chapter are johannite and natrozippeite

(also known as sodium zippeite). Table 6.1 includes chemical formulae for both minerals.

Natrozippeite is the most common member of the zippeite group of uranyl sulphates,

which includes the minerals potassium zippeite [290], pseudojohannite and magnesium-

zippeite [75]. Natrozippeite has been found in the Czech Republic [291, 292] and Switzer-

land [293], while the sample studied in this chapter originated from Geevor Mine, Corn-

wall, UK [294]. The sample of johannite used in this chapter was also collected from

Geevor Mine, but it has also been identified in Saint Agnes, Cornwall and Australia [295].

The uranium ions in johannite are all found in an identical pentagonal bipyramidal

environment (Figure 6.4a and c), where three vertices are shared with sulphate tetrahedra

and the remaining two are hydroxide anions that act as bridges between pairs of uranyl

polyhedra [56, 224, 295]. These groups form a layered structure, with copper cations

coordinating to uranyl oxygen atoms in adjacent layers. This structure and composition

have been confirmed for both natural and synthetic samples [296–299].

Zippeite minerals also contain uranyl pentagonal bipyramidal environments (Figure 6.4b

and d), but here two equatorial vertices are shared with sulphate tetrahedra and the

remainder are coordinated to oxygen or hydroxide anions [56]. These layers are topo-

logically identical in every zippeite mineral [225, 237, 281] and always contain a 2:1

ratio of U:S [75, 225, 300]. However, the exact distribution of O2− and OH− anions in

the layer can vary, allowing the sheets to accomodate cations with different charges in
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Figure 6.4: The layered structures found in a) johannite and b) natrozippeite. The ura-
nium environments in c) johannite and d) natrozippeite. Green, red and blue represent
uranium, sulphur and oxygen, respectively.

the interlayer (e.g. K+, Na+, Mg2+ and Zn+) [301]. It has also been noted that the

proportion of interlayer cations in zippeite minerals is always lower than expected [302],

possibly resulting from the relatively large interlayer, which is primarily held together by

a hydrogen bonding network [225]. The original chemical formula given for natural and

synthetic natrozippeite was Na4[(UO2)6(SO4)3(OH)10]·4H2O [303], while a more recent

synthetic study found the formula to be Na5(H2O)12[(UO2)8(SO4)4O5(OH)3 [225]. As

the sample in this investigation was collected from a naturally occurring deposit, the

former formula is presented in Table 6.1.

The IR spectra have been published for johannite [296, 304] and a number of natural and

synthetic zippeite samples [266]. Frost et al. have applied Raman spectroscopy to the

study of johannite from St. Agnes, Cornwall, UK [295], natrozippeite from Happy Jack

Mine, USA [300], pseudojohannite [75] and uranopilite [305]. The Raman spectrum of

potassium zippeite has also been presented by Plášil et al. [306]. Characteristic uranyl

symmetric stretching modes were observed at 786 and 811 cm−1 for johannite and in the

823–841 cm−1 region for natrozippeite [295, 300]. Bands corresponding to the symmetric

and antisymmetric stretch of the sulphate polyanion were found at 1042 and 1090–

1147 cm−1, respectively, for both johannite and natrozippeite.
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Uranophane Group of Uranyl Silicates

The mineral uranophane has been described as one of the most common uranium min-

erals, after uraninite [307]. Indeed, minerals with the uranophane layered topology have

been shown to form from the alteration of spent nuclear fuel under the conditions found

in a geological repository [308–311]. These minerals are of further importance as the

structure may incorporate a number of other radionuclides, such as Np, Cs or Sr [312–

314], potentially controlling the release of radionuclides into the environment surrounding

the repository [315–317].

Within the uranophane layers, uranium is found in a pentagonal bipyramidal environ-

ment (Figure 6.5), which shares equatorial verices with three silicate tetrahedra and an

edge with a fourth anion [56, 226, 318, 319]. This provides a 1:1 ratio of U:Si. The sili-

cate anion in most uranophane minerals has been described as acidic (SiO3OH), with the

hydroxyl group oriented into the interlayer space [246, 266, 272, 320] and participating

in the hydrogen bonding that links the layers [231, 237, 321]. An exception is the min-

eral kasolite, which instead contains SiO4−
4 anions [228]. Charge compensating cations

(Ca2+) and water are located in the interlayer space, held by interatomic forces [226].

Figure 6.5: a) The layered structure and b) the uranium environment found in the
uranophane minerals. Green, purple and blue represent uranium, silcon and oxygen,
respectively.

It should be noted that uranophane forms two polymorphs [231]. The polymorph of

interest here is α-uranophane, whereas β-uranophane adopts a different structure. In

addition to α-uranophane [226], the minerals kasolite [228] and cuprosklodowskite [227]

are studied in this chapter. The chemical formulae for all three minerals are given in Table

6.1. Other members of the uranophane group include sklodowskite, boltwoodite and

oursinite [237, 281]. These minerals have been located in the USA, Congo [307], Australia
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and Namibia [78], while the samples studied in this chapter originated from West Wheal

Owles, Wheal Edward and Loe Warren Zawn in St. Just, Cornwall, UK [211, 229]. A

number of synthetic uranyl silicates have also been described [322, 323].

IR spectra have been reported for a selection of natural uranyl silicates and synthetic

equivalents [324], as summarised by Čejka [266]. The Raman spectra have also been

published [78, 325], with an investigation by Frost et al. studying uranophane (with

traces of boltwoodite) from the USA and Congo [307]. The characteristic uranyl sym-

metric stretching mode is typically found between 750–850 cm−1 for uranyl silicates, with

reported values of ∼797, 787–812 and 759 cm−1 for uranophane, cuprosklodowskite and

kasolite, respectively [78]. The silicate symmetric stretching mode was also observed in

the Raman spectra at 961, 974 and 904 for uranophane, cuprosklodowskite and kasolite,

respectively.

Uranyl Oxide Hydrates

The mineral compreignacite, studied in this chapter (chemical formula in Table 6.1), is

a rare uranyl oxide hydrate [211, 326–328], found to form from the oxidation of UO2

in spent nuclear fuel [308, 310, 315, 329]. It has also been observed as a product of

the transformation of schoepite (UO3·2.25H2O), another uranyl oxide hydrate [330, 331],

while other investigations have found products like compreignacite form from the inter-

action of uranyl ions and synthetic zeolites [328]. Compreignacite is also suspected to

incorporate other actinide elements, such as Cs, which may control their release into the

local environment [315].

The layered structure seen in compreignacite and several other uranyl oxide hydrate

minerals (Figure 6.6) is topologically similar to α-U3O8 (Figure 4.3), with uranium ions

in a 2:1 ratio of pentagonal bipyramidal and square biyramidal environments [56, 230,

231, 332–334]. The equatorial vertices are a combination of O2− and OH− anions, with

the exact distribution affecting the net charge of the layers and allowing the sheet to

accomodate interlayer cations of various charges. Adjacent layers are held together

through hydrogen bonding, which also determines the mobility of interlayer cations [281].

In addition to compreignacite and schoepite [335, 336], the α-U3O8 type layered topology

is found in the minerals becquerelite [237, 337], billietite [338–340], curite [322, 341, 342]

and vandendriesscheite [321]. A synthetic mineral, known as metaschoepite (UO3·2H2O),

has also been studied [343].
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Figure 6.6: a) The layered structure and b) the square and pentagonal bipyramidal
uranium environments found in the uranophane minerals. Green and blue represent
uranium and oxygen, respectively. Note that the layered structure in compreignacite is
equivalent to that found in U3O8 (Figure 4.3).

The IR spectra of compreignacite, becquerelite and schoepite and a number of synthetic

phases have been presented [304, 344–347], while a variety of phases in the UO3-H2O

system have been reviewed by Hoekstra and Siegel [348]. The Raman spectra of schoepite

and a synthetic compreignacite equivalent have also been published [266, 349–351]. More

recently, Frost et al. have performed Raman spectroscopy on a sample of compreignacite

from Margna Mine, France [29], as well as on samples of becquerelite, billietite, curite,

schoepite and vandendriesscheite from Australian sources [352]. The characteristic uranyl

symmetric stretching mode was observed at 824 and 848 cm−1 for compreignacite [29].

While no polyanion groups are present in compreignacite, several modes were found in the

153–778 cm−1 region and attributed to the vibrations of a variety of subunits comprised

of uranium, oxygen and hydrogen (e.g. U3O and UOH). The sample of compreignacite

studied in this chapter was collected from West Wheal Owles, Cornwall, UK [211].

6.1.1 The Bartlett and Cooney Relation

The Raman spectra of uranyl minerals are typically dominated by the uranyl symmetric

stretching mode (ν1(UO2)2+). This peak may be found between 750–900 cm−1, but the

exact position varies with the strength and length of the uranyl bond and, by extension,

the local chemical environment. The Bartlett and Cooney relation [353],

RUO = 106.5[ν1(UO2)2+]−
2
3 + 0.575 Å, (6.1)

was established to allow the length of a uranyl bond (RUO) to be estimated from the

position of the uranyl symmetric stretching mode seen in the Raman spectrum. This is

particularly valuable when crystallographic techniques are unavailable or cannot be used

to study a sample.
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6.2 Results

The majority of uranyl mineral samples investigated were collected from Cornwall, UK,

by Elton and Hooper, who used a combination of X-ray powder diffraction and EDX to

identify the samples [211–213]. Table 6.1 shows the names, a chemical formula taken

from literature sources and the provenance for each mineral sample. In Section 6.2.1,

a physical description is provided for the mineral samples, alongside photographs. The

EDX data collected in this investigation is presented and discussed in Section 6.2.2.

The Raman spectra are then presented for each set of uranyl minerals. The uranyl and

polyanion vibrations are of primary interest, hence, the 100-1200cm−1 region of each

spectrum is illustrated. As discussed in Section 6.1, Frost et al. have published the

Raman spectra of many uranyl minerals, so this information was used to verify the

identity of the corresponding samples in this investigation. The trends observed for the

uranyl and polyanion vibrations are the focus of Sections 6.3.1 and 6.3.2, respectively.

Spectra obtained with different excitation wavelengths were found to produce varying

proportions of background noise and fluorescence, so the spectrum presented for each

mineral was chosen to minimise these effects. A discussion on spectra obtained using

different wavelengths is given in Section 6.3.3. Multiple spectra were obtained for each

sample and average values of peak positions are presented in the tables of Appendix D.

The most relevant features are described in this section.

6.2.1 Physical Description

A short description of the observable physical features for each mineral sample studied

in this chapter is given in this section, with photographs given in Figure 6.7. Brief

comments on each crystal’s habit are also made, based on SEM images, presented in

Figure 6.8. The SEM images were collected as described in Section 2.2.

The sample of autunite from Merrivale Quarry, Tavistock, Devon, UK, appears as fine,

yellow crystals on a white, grey and black host rock, which is ∼6 cm in diameter (Figure

6.7.a). Individual crystals are observed in the SEM in a foliated (layered) square plate

habit, ∼100 µm across (Figure 6.8.a).

The sample of torbernite from Bunny Mine, Stenalees, St. Austell, Cornwall, UK, ap-

pears as green, tabular crystals, ∼600 µm across, on a grey and brown host rock, which

is ∼11 cm in diameter (Figure 6.7.b). A foliated tabular crystal habit is observed in the

SEM, with individual crystals ∼600 µm across (Figure 6.8.b).
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Figure 6.7: Photographs of the mineral samples studied in this chapter: a) yellow
crystals of autunite; b) green crystals of torbernite; c) yellow flakes of nováčekite; d)
green crystals of zeunerite; e) yellow crust of phosphuranylite; f) yellow aggregates of
andersonite; g) pale yellow aggregates of schröckingerite; h) yellow crust of natrozippeite;
j) yellow crust of uranophane; k) dark yellow crystals of compreignacite; m) pale green
crystals of cuprosklodowskite; n) orange-red crust of kasolite and o) green crystals of
johannite. The majority of samples are ∼4–7 cm in size.

The sample of nováčekite from Wheal Edward, St. Just, Cornwall, appears as yellow

and green flakes on a black and brown host rock, which is ∼5 cm in diameter (Figure

6.7.c). The crystal habit appears as foliated plates in the SEM, ∼600 µm across (Figure

6.8.c).

The sample of zeunerite from Wheal Gorland, Redruth, Cornwall, appears as fine green

crystals on a light brown host rock, which is ∼7 cm in diameter (Figure 6.7.d). Individual

crystals appear in a foliated tabular habit, at least 300 µm across (Figure 6.8.d).

The sample of phosphuranylite from Wheal Edward appears as a yellow crust on a brown

rock, which is ∼7 cm across (Figure 6.7.e). Individual crystals appear in a columnar

(long, slender prisms) habit, ∼30 µm long, when observed in the SEM (Figure 6.8.e).

Fine, green crystals are also found associated with the mineral.

The minerals andersonite and schröckingerite from Geevor Mine, Pendeen, Cornwall,

appear as yellow aggregates on a brown host rock, ∼4 cm in diameter (Figure 6.7.f and
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Figure 6.8: SEM images of the minerals studied in this chapter: a) autunite at x200;
b) torbernite at x110; c) nováčekite at x220; d) zeunerite at x350; e) phosphuranylite
at x650; f) andersonite at x160; g) schröckingerite at x200; h) johannite at x120; j)
natrozippeite at x400; k) uranophane at x120; l) cuprosklodowskite at x350; m) kasolite
at x500 and n) compreignacite at x500.

g). A thin, transparent layer of gypsum crystals are also found, associated with both

minerals. SEM images of both minerals show tabular habits, ∼50–100 µm across (Figure

6.8.f and g).

The sample of johannite from Geevor Mine appears as pale green crystals on a yellow-

brown host rock, which is ∼5 cm in diameter (Figure 6.7.o). It appears as foliated tabular

crystals in the SEM, ∼100 µm across (Figure 6.8.h).

The sample of natrozippeite from Geevor Mine occurs as a yellow crust on a black and

brown host rock, which is ∼7 cm in diameter (Figure 6.7.h). Aggregates of plate-like

crystals (lenticular) are observed in the SEM, ∼50 µm in size (Figure 6.8.j). Small, green

crystals are found in association with this sample, but these did not present any uranyl

peaks in the Raman spectrum.

The sample of uranophane from Wheal Edward appears as a pale yellow crust on a light

brown host rock, which is ∼6 cm in diameter (Figure 6.7.j). Individual crystals are seen

to adopt a columnar habit in the SEM, ∼50 µm long (Figure 6.8.k). This sample is also

associated with a black vein of pitchblende.
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Table 6.2: The atomic percentages obtained from an EDX analysis for the uranyl
minerals in this chapter

Mineral Name
Atomic Percentage (±1%), averaged over multiple spectra

U O P As Si S Cu Ca Mg Na K Pb F

Autunite 7.5 81.1 5.9 0.8 - - - 3.7 - - - - -
Torbernite 8.3 80.3 7.6 0.2 - - 3.7 - - - - - -
Nováčekite 6.3 86.8 0.9 3.8 - - - - 2.2 - - - -
Zeunerite 8.4 80.0 1.7 6.3 - - 3.6 - - - - - -

Phosphuranylite 8.7 77.5 5.5 0.4 - - - 3.8 - - 2.2 - -
Andersonite 3.2 74.4 - - - 4.1 - 9.6 - 3.2 - - 5.5

Schröckingerite 4.9 69.5 - - - 4.1 - 13.7 - 2.6 - - 5.1
Johannite 6.1 80.4 - - 2.0 5.6 4.2 - - - - - -

Natrozippeite 12.2 77.1 - - - 5.6 - - - 5.1 - - -
Uranophane 7.5 80.7 - - 7.7 - - 3.0 - - - - -

Cuprosklodowskite 7.3 77.1 1.5 1.4 9.2 - 2.6 - - - - - -
Kasolite 7.1 76.4 - - 7.0 - - - - - - 6.8 -

Compreignacite 12.1 80.7 - - 1.9 3.0 - - - - 2.3 - -

The sample of kasolite from Low Warren Zawn, St. Just, appears as an orange-red crust

on one face of a large grey host rock, ∼12 cm in diameter (Figure 6.7.n). It adopts a

fibrous crystal habit (extremely slender prisms), observed to be ∼40 µm long in the SEM

(Figure 6.8.m).

The samples of compreignacite and cuprosklodowskite from West Wheal Owles, St. Just,

are present as associated minerals on a brown, black and grey host rock (Figure 6.7.k and

m). Compreignacite occurs as dark yellow crystals, in a blocky crystal habit ∼10–20 µm

in size (Figure 6.8.n). Cuprosklodowskite occurs as green crystals in a fibrous habit,

∼50 µm long (Figure 6.8.l).

6.2.2 EDX Analysis

EDX spectra were collected for the uranyl minerals investigated in this chapter using the

method described in Section 2.2. Table 6.2 shows the atomic percentages obtained using

EDX for each mineral, averaged over 2–4 individual spectra. In general, only minerals

with an atomic percentage above 1% are reported, with those of lower concentration

considered as contaminants or components of the host rock. Also, the percentage of

carbon is not presented, as the proportion was always found to be very high. This

is likely a result of carbon in the host rock and the carbon tape used to mount the

samples. In general, collecting EDX spectra for the mineral samples is challenging and

only provides limited information; however, when additional data is available, valuable
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Table 6.3: The chemical composition taken from literature sources and an estimate
from the EDX analysis for the minerals in this chapter.

Mineral Literature Composition Estimate from EDX

Autunite Ca(UO2)2(PO4)2·11H2O [214, 215] Ca(UO2)2(PO4)1.6(AsO4)0.2

Torbernite Cu(UO2)2(PO4)2·12H2O [217] Cu0.9(UO2)2(PO4)1.8

Nováčekite Mg(UO2)2(AsO4)2·10H2O [220] Mg0.7(UO2)2(PO4)0.3(AsO4)1.2

Zeunerite Cu(UO2)2(AsO4)2·12H2O [219] Cu0.9(UO2)2(PO4)0.4(AsO4)1.5

Phosphuranylite
Ca(UO2)3(PO4)2(OH)2·6H2O [221]

K0.7Ca1.3(UO2)3(PO4)1.9(K,Ca)(H3O)3(UO2)7(PO4)4O4·8H2O [255]
Andersonite Na2Ca(UO2)(CO3)3·6H2O [222] NaCa3(UO2)(SO4)1.3F1.7

Schröckingerite NaCa3(UO2)(CO3)3(SO4)F·10H2O [223] Na0.5Ca2.8(UO2)(SO4)0.8

Johannite Cu(UO2)2(OH)2(SO4)2·8H2O [224] Cu1.4(UO2)2(SO4)1.8

Natrozippeite Na5(UO2)8(SO4)4O5,(OH)3·8H2O [225] Na2.5(UO2)6(SO4)2.7

Uranophane Ca(UO2)2(SiO4)2·5H2O [226] Ca0.8(UO2)2(SiO4)2.1

Kasolite Pb(UO2)(SiO4)·2H2O [228] Pb(UO2)(SiO4)
Cuprosklodowskite Cu(UO2)2(SiO4)2·6H2O [227] Cu0.7(UO2)2(SiO4)2.5

Compreignacite K2(UO2)6O4(OH)6·7H2O [230] K1.2(UO2)6

conclusions may be made.

Table 6.3 presents the literature chemical formula for each mineral, in addition to a

formula estimate based on the EDX data. The EDX estimate has been normalised to

integer values of uranium atoms. In most cases, the presence and proportion of atoms

is similar to that expected based on literature data [211–213, 221]; however, there are

some discrepancies. The water content has not been reported, as hydrogen cannot be

observed in the EDX spectrum and the hydration state of the samples may change as a

result of the experiment.

The proportion of uranium to polyanion tends to be slightly higher than expected, with

the exception of the silicate minerals. These observations may be a result of both el-

ements existing at low concentrations in the host rocks. A similar explanation may

be made for the concentration of copper in johannite being higher than expected, as

the area around Geevor Mine has been mined for copper. In contrast, the samples of

natrozippeite, uranophane, cuprosklodowskite and compreignacite are cation deficient.

This has been observed for many zippeite minerals [302] and explained as the ready

diffusion of cations through the large interlayer space.
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6.2.3 Autunite Group of Phosphate and Arsenate Minerals

The autunite minerals analysed in this investigation were identified from EDX spectra

as the uranyl phosphates autunite and torbernite and the uranyl arsenates nováčekite

and zeunerite. In most cases, both phosphorus and arsenic were present in the mineral

samples, suggesting that both isostructural phosphate and arsenate minerals exist in close

association or that mixed crystal structures are present in the sample. Therefore, the

name assigned for each sample was based on the phosphorus to arsenic ratio determined

from the EDX spectrum. Prior to this investigation [206], no Raman spectra were found

in the literature for nováčekite, so the spectrum for this sample has been compared

against that for its phosphate analogue, saléeite. The spectra are presented in Figure

6.9 and compare well to previously published spectra [69, 70, 87]. The spectrum of

nováčekite also follows the trends seen for the other autunite minerals. All peaks in the

autunite minerals’ Raman spectra are given in Tables D.1–D.4.

The 785 nm excitation source was found to produce Raman spectra for autunite and

nováčekite with little fluorescence, whereas the 532 nm source typically produced a

significant amount and hence prevented some peaks from being observed. In contrast,

the spectra obtained for torbernite and zeunerite had little fluorescence under all three

lasers (325, 532 and 785 nm), although the peaks in torbernite were better resolved using

the 532 nm laser. One issue with the 325 nm excitation wavelength is that no modes

were visible in the bending region of the Raman spectrum (below 600 cm−1) for any

mineral, whereas the other lasers showed these peaks.

The Raman spectrum of each autunite mineral was dominated by the uranyl symmetric

stretching mode (ν1(UO2)2+), seen at 830 cm−1 in autunite, 825 cm−1 in torbernite,

817 cm−1 in nováčekite and 821 cm−1 in zeunerite. In the 785 nm spectra of the phosphate

minerals autunite and torbernite, a low intensity shoulder was also observed. The uranyl

antisymmetric stretch (ν3(UO2)2+) is seen around 900 cm−1 in the majority of spectra,

which suggests that the uranyl cations in the minerals no longer retain the perfect D∞h

symmetry observed for free uranyl cations. The uranyl bending mode (ν2(UO2)2+) is

seen in the 200–300 cm−1 region of the 532 and 785 nm Raman spectra, but is absent in

the 325 nm spectra.

The Raman spectra for both autunite and torbernite show a strong peak corresponding

to the phosphate antisymmetric stretching mode (ν3(PO4)3−) around 1000 cm−1. In

some spectra, it is instead found as two separate bands, most notably in the 785 nm
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Figure 6.9: Representative Raman spectra of a) autunite (785 nm excitation laser), b)
torbernite (532 nm), c) nováčekite (785 nm) and d) zeunerite (532 nm) mineral samples.
The 100–700cm−1 regions have been rescaled by a) ×5, b) ×12, c) ×4 and d) ×18,
to emphasise the bands in this region. The excitation laser wavelengths shown were
determined to be the optimum for each mineral. The major peaks are annotated, while
all bands are listed in Tables D.1–D.4.

spectrum of autunite. This splitting may result from the polyanion losing tetrahedral

symmetry. In the spectrum of nováčekite, a low intensity peak is also found around

1000 cm−1, but this can be explained by the low proportion of phosphorus detected in

the EDX spectrum.

The phosphate symmetric stretching mode (ν1(PO4)3−), expected between 930–950 cm−1,

is absent in the autunite and torbernite spectra. The exact cause is unknown, but its

absence has been previously reported by Frost et al. [57].
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The phosphate and arsenate bending modes were observed as low intensity bands in the

300-650 cm−1 region of the Raman spectra collected using 532 and 785 nm excitation

sources. In general, the arsenate bending modes are found at lower wavenumbers than

the phosphate equivalents.

6.2.4 Phosphuranylite

The EDX spectrum collected for phosphuranylite in this study has a very similar U:P

ratio (3:1.9) to that reported by Ryback and Tandy for a sample from Wheal Edward

(3:2) [221]. However, both potassium and calcium are found, as described by Demartin

et al. [255] and Zhang et al. [260].

Figure 6.10: A representative Raman spectrum of the mineral phosphuranylite (785 nm
excitation laser). The 100–700cm−1 region has been rescaled by ×2, to emphasise the
bands in this region. The 785 nm excitation source produced the best spectrum. The
major peaks are annotated, while all bands are listed in Table D.5.

The best excitation wavelength for collecting Raman spectra of phosphuranylite was

found to be 785 nm, as the fluorescence was minimal and the resolution of many peaks

is better than with other wavelengths (Figure 6.10). Indeed, the only visible mode in

the 325 nm spectrum corresponds to the uranyl symmetric stretch and in the 532 nm

spectrum the phosphate antisymmetric stretch (ν3(PO4)3−) is very low intensity. All

peaks are given in Table D.5.

The strongest Raman active mode in the spectrum of phosphuranylite is the uranyl

symmetric stretch (ν1(UO2)2+), seen at 801 cm−1. This spectrum bears similarities to a

previously published spectrum of phosphuranylite from Minerva Heights, Australia [267],

for which the ν1(UO2)2+ mode was found at 768, 793, 805 and 815 cm−1. However, the

spectra collected for other samples of phosphuranylite differed, with the ν1(UO2)2+ modes

for a sample from Saddle Ridge Mine, Australia at 816, 837, 843 and 847 cm−1 and for
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a sample from Ruggles Mine, USA at 817, 832 and 841 cm−1 [267]. The uranyl bending

mode was found in some 785 nm spectra around 216 cm−1, but no peaks were found to

correspond to the uranyl antisymmetric stretch, which may be expected at ∼900 cm−1.

The ν3(PO4)3− mode was found at ∼1000 cm−1 in the Raman spectra of phosphuranylite.

In some 785 nm spectra, this split into two bands at 992 and 1017 cm−1. As noted for

the autunite minerals, the phosphate symmetric stretch (ν1(PO4)3−) was not observed

in the Raman spectrum. A strong mode ∼435 cm−1 in 532 and 785 nm spectra has been

interpreted as the phosphate bending mode (ν2(PO4)3−).

6.2.5 Uranyl Carbonates

The EDX spectra of the uranyl carbonate minerals andersonite and schröckingerite can-

not be used to accurately determine the proportion of carbon in the samples, as carbon

was found to be very abundant in all mineral samples studied. This may be explained

by its presence in the host rocks and the carbon tape used to hold the samples in place.

A further issue with the andersonite sample is the proportion of calcium, is significantly

higher than expected, while fluorine and sulphur are found but not part of the litera-

ture composition. These observations may be explained by the presence of transparent

Figure 6.11: Representative Raman spectra of the uranyl carbonate minerals a) an-
dersonite (785 nm excitation laser) and b) schröckingerite (785 nm). The 100–700cm−1

regions have both been rescaled by ×5, to emphasise the bands in this region. The
785 nm excitation source was found to be the optimum for both minerals. The major
peaks are annotated, while all bands are listed in Tables D.6 and D.7.
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gypsum crystals (CaSO4), which were reported by Elton and Hooper [213], and possibly

fluorspar (CaF2), which is a common component of host rocks.

No significant differences were found between the three excitation wavelengths for the

Raman spectra of andersonite and schröckingerite (Figure 6.11). Some fluorescence was

observed in the 532 nm spectra, but the peaks remained distinct. All peaks are given in

Tables D.6 and D.7.

The uranyl symmetric stretching mode (ν1(UO2)2+) dominates the Raman spectra of

both carbonate minerals and is seen at 833 cm−1 in andersonite and 815 cm−1 in

schröckingerite. These values show close agreement to the peaks observed in published

spectra [76, 286]. An additional low intensity shoulder is also seen for schröckingerite.

The uranyl antisymmetric stretch is seen in some spectra as a low intensity band∼900 cm−1,

but no uranyl bending modes have been consistently identified.

The Raman spectra of both andersonite and schröckingerite contain a carbonate sym-

metric stretch at 1092 cm−1, with a lower wavenumber shoulder observed in andersonite.

Carbonate bending modes are also observed at ∼743 cm−1. The schröckingerite spec-

trum also contains a sulphate symmetric stretch at 984 cm−1 and a second band at

1009 cm−1 in the 532 and 785 nm spectra.

6.2.6 Uranyl Sulphates

Johannite

The EDX spectrum obtained for the sample of johannite agrees well with the composition

reported in the literature, where the atomic percentages of U and S are equivalent [295].

It differs from the other uranyl mineral samples in that the cation concentration is higher

than expected from the chemical formula. As copper has been mined in many locations

in Cornwall, it is likely present in the host rock.

There were no significant differences between the three excitation wavelengths when

collecting Raman spectra of johannite, with the exception of the bending modes not

being observed in the 325 nm spectrum.

The Raman spectrum of johannite was dominated by the uranyl symmetric stretch at

836 cm−1 (Figure 6.12). This is significantly different to the peaks reported by Frost et

al. for a sample collected from St. Agnes, Cornwall (756, 788 and 812 cm−1) [295]. The

102



6.2. Results

Figure 6.12: Representative Raman spectra of the uranyl sulphate minerals a) johan-
nite (785 nm excitation laser) and b) natrozippeite (785 nm). The 100–700cm−1 regions
have been rescaled by a) ×20 and b) ×2, to emphasise the bands in this region. The
785 nm excitation source was found to provide the best spectrum for both minerals. The
major peaks are annotated, while all bands are listed in Tables D.8 and D.9.

variation is likely due to differences in the mineral composition. The uranyl antisym-

metric stretch was not seen in the Raman spectrum; however, low intensity modes were

seen in the 532 and 785 nm spectra corresponding to the uranyl bending mode.

The sulphate stretching modes were observed at 1045 and 1095 cm−1 region of the 532

and 785 nm spectra. In the 532 nm spectrum, the 1095 cm−1 peak also has a shoulder.

Some spectra contain a low intensity mode at 1012 cm−1. Sulphate bending modes are

also found as low intensity bands in the 350–500 cm−1 region.

Natrozippeite

The EDX spectrum for natrozippeite from Geevor mine demonstrates the 2:1 U:S ratio

and a sodium deficiency, which are well known features of zippeite minerals.

The 785 nm excitation source was found to provide Raman spectra with little background

fluorescence (Figure 6.12), whereas 532 nm spectra contained large fluorescence bands.

Spectra obtained using the 325 nm laser were typically weak and noisy and only contained

the uranyl symmetric stretching mode.
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The uranyl symmetric stretching mode in natrozippeite was seen as an asymmetric peak

at ∼840 cm−1. The asymmetry indicates the presence of multiple bands, which agrees

with the peaks observed at 813, 823, 834, 840 and 841 cm−1 in a published spectrum [300].

No uranyl antisymmetric stretching mode was present, but a low intensity mode at

∼250 cm−1 may correspond to the uranyl bending mode.

A sulphate symmetric stretching mode was identified at 1013 cm−1 and a sulphate bend-

ing mode was observed at 397 cm−1.

6.2.7 Uranyl Silicates

The EDX spectra obtained for the uranyl silicate minerals showed a composition that

agreed with the expected chemical formulae. The only notable deviation is the proportion

of silicon, which was found to be higher than anticipated, but this may be attributed to

the host rock.

All silicate minerals produced good spectra using the 532 and 785 nm excitation wave-

lengths; however, a stronger signal was obtained for cuprosklodowskite with the 532 nm

laser and some background fluorescence was found in the 532 nm spectrum of urano-

phane. No bending modes were visible in the 325 nm spectra, but the most significant

stretching modes were observed.

Raman spectra of the uranyl silicates (Figure 6.13) were dominated by the uranyl sym-

metric stretching mode (ν1(UO2)2+), which was found at a lower wavenumber than

previous minerals. The ν1(UO2)2+ mode was seen as a sharp peak at ∼800 cm−1 in

uranophane, as a broader, asymmetric peak at ∼792 cm−1 in cuprosklodowskite and as

a sharp peak at ∼760 cm−1 in kasolite. Low intensity modes were observed for the uranyl

antisymmetric stretching mode in the 850–920 cm−1 region and for the uranyl bending

mode in the 200–300 cm−1 region.

The silicate antisymmetric stretching modes have been assigned to peaks in the 939–

974 cm−1 region of all three silicate minerals. In the 532 and 785 nm spectra of kasolite,

this mode resolves into two peaks. The silicate symmetric stretching modes were not

observed for any uranyl silicate mineral, but low intensity bands in the 350–550 cm−1

region have been assigned to the silicate bending modes.
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Figure 6.13: Representative Raman spectra of the uranyl silicate minerals a) urano-
phane (785 nm excitation laser), b) cuprosklodowskite (532 nm) and c) kasolite (785 nm).
The 100–700cm−1 regions have been rescaled by a) ×3, b) ×4 and c) ×3, to emphasise
the bands in this region. The excitation laser wavelengths shown were determined to
be the optimum for each mineral. The major peaks are annotated, while all bands are
listed in Tables D.10– D.12.

6.2.8 Uranyl Oxide Hydrates

The EDX spectrum of compreignacite shows a significantly lower proportion of potassium

than expected, suggesting a cation deficiency. However, this observation may be a result

of excess uranium in associated minerals or the host rock. No assessment of the layer

composition can be made from EDX, as it is constructed from oxygen, which appears as

very abundant in the EDX, and hydrogen, which does not appear at all.

Both 532 and 785 nm excitation wavelengths provided good Raman spectra for com-

preignacite, although a low level of fluorescence was seen in the 532 nm spectrum. Peaks

in the 325 nm spectrum tended to be significantly weaker.

The most significant peak seen in the Raman spectra of compreignacite (Figure 6.14) is

the uranyl symmetric stretch, visible at ∼834 cm−1. A smaller peak or shoulder is also
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Figure 6.14: A representative Raman spectrum of the uranyl hydrate mineral com-
preignacite (785 nm excitation laser). The 100–700cm−1 region has been rescaled by
×3, to emphasise the bands in this region. The 785 nm excitation source was found to
produce the best spectrum. The major peaks are annotated, while all bands are listed
in Table D.13.

observed at ∼804 cm−1 in the 785 nm spectrum or ∼858 cm−1 in the 325 nm spectrum.

Other bands were seen in the 532 and 785 nm spectra, most consistently at 549, 460,

402, 329 and 204 cm−1. The 204 cm−1 peak may be attributed to the uranyl bending

mode, while the others may be assigned to the bending and stretching of equatorial

uranium-oxygen interactions.

6.3 Discussion

Raman spectra have been collected for a selection of uranyl minerals originating from

Cornwall, UK. In this section, the trends observed in the position of the uranyl symmetric

stretching modes are discussed (Section 6.3.1), the peaks corresponding to the polyanions

in each mineral are described (Section 6.3.2) and an analysis of the different excitation

wavelengths is given (Section 6.3.3).

6.3.1 The Uranyl Symmetric Stretching Mode

The most prominent peak in most Raman spectra of uranyl minerals is the uranyl sym-

metric stretch (ν1(UO2)2+). This peak is seen in the 750–900 cm−1 region, but the exact

position was shown to vary for different minerals, providing a possible strategy for dis-

criminating between them. Table 6.4 contains the measured ν1(UO2)2+ peak positions

and literature values for comparison. The standard error is also given, which was calcu-

lated by dividing the standard deviation of all the spectra for that sample by the square

root of the number of spectra. Most peak positions observed in this investigation show

good agreement with the corresponding literature values. The main discrepancies are in
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the spectra of johannite and compreignacite and may be due to a variation in sample

composition.

The charge on the polyanions coordinated to the uranyl cation in the equatorial plane

were found to influence the position of the uranyl symmetric stretching mode (ν1(UO2)2+).

Polyanions with a more negative charge (e.g. SiO4−
4 ) shift ν1(UO2)2+ to a lower wavenum-

ber compared to less negatively charged polyanions (e.g. SiO4−
4 ). Differences in structure

may also have an effect on ν1(UO2)2+, arising from the nature and coordination of the

cations and water in the interlayer space.

The uranyl antisymmetric stretching and bending modes were observed in many spectra

within the 850–950 cm−1 and 200–300 cm−1 regions, respectively. In contrast to the

symmetric stretch, these modes were typically low intensity (they should be IR active

and Raman inactive) and the position did not shift across the series of minerals.

Table 6.4: The uranyl symmetric stretching modes observed in this investigation are
displayed, alongside a standard error calculated for each set of spectra. The poly-anions
that coordinate to the equatorial plane of the uranyl group are given for each mineral.
Published values are also shown. An estimation of the U-O bond distance (RUO) is made
from the uranyl symmetric stretch using the Bartlett and Cooney relation (Equation
6.1) [353].

Mineral Equatorial This study Std. Literature Estimated
Name Poly-anion(s) (cm−1) Error (cm−1) RUO (Å)

Kasolite SiO4
4− 760.4 0.2 759 [78] 1.85

Cuprosklodowskite SiO3OH3− 791.8 0.4 787 [78] 1.82

Uranophane SiO3OH3− 800.0 0.3 797; [78] 1.81
796; 797; 794 [307]

Phosphuranylite PO4
3− and 801.1 0.9 805; 847; 844 [267] 1.81

O2−/OH−

Schröckingerite CO3
2− 815.3 0.2 815 [76] 1.80

Saléeite PO4
3− — — 833; [69] —

827 [70]

Nováčekite AsO4
3− 817.5 0.3 — 1.79

Zeunerite AsO4
3− 821.0 0.6 818 [87] 1.79

Torbernite PO4
3− 826.0 0.3 826 [69] 1.78

Autunite PO4
3− 829.6 0.5 833 [69] 1.78

Andersonite CO3
2− 833.5 0.1 830 [286] 1.78

Compreignacite O2− and OH− 834.0 0.7 848 [29] 1.78

Johannite SO4
2− and OH− 835.6 0.2 812 [295] 1.78

Natrozippeite SO4
2− and 840.1 0.7 841 [300] 1.77

O2−/OH−
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The ν1(UO2)2+ peak in the autunite group of minerals was observed in the 817–830 cm−1

region. It was found at a higher wavenumber for the phosphate samples than for the

arsenate samples. The measured position of nováčekite and the literature position of

saléeite were significantly different, indicating the minerals may be distinguished in this

way; however, there was little difference in the measured positions for torbernite and

zeunerite, preventing an identification using this trend alone.

The ν1(UO2)2+ peak for the mineral phosphuranylite is found at a lower position (801 cm−1)

compared to the autunite minerals, despite the phosphate dominant composition. This

may be attibuted to the different uranyl environments in phosphuranylite, as square,

pentagonal and hexagonal bipyramids are present, which affect the local charge around

the cation differently. Furthermore, some uranyl cations are also coordinated to O2− or

OH− anions in the equatorial plane. Differences in the proportion of each anion may

cause the ν1(UO2)2+ peak to shift in samples from different locations, as observed by

Frost et al. [267]. In their investigation, one sample from Minerva Heights, Australia had

a similar Raman spectrum to the one described in this chapter (ν1(UO2)2+ at 805 cm−1),

whereas the other two samples from Saddle Ridge Mine, Australia and Ruggles Mine,

USA were significantly different (ν1(UO2)2+ at 847 and 844 cm−1, respectively), stressing

the importance of studying samples from a variety of locations.

The uranyl silicate minerals in this investigation adopt the uranophane sheet structure,

in which the uranyl cations are coordinated by four silicate anions in the equatorial plane,

with an equatorial coordination of five. The ν1(UO2)2+ peaks are observed in the 790–

800 cm−1 region for uranophane and cuprosklodowskite, whereas the equivalent peak for

kasolite is found at 760 cm−1. The positions seen in this study show good agreement

with those previously reported [78, 307]. A possible explanation for the difference in peak

position is that the silicate groups in uranophane and cuprosklodowskite are SiO3OH3−,

which provide a less charged environment compared to the SiO4−
4 groups in kasolite.

The uranyl cations in johannite and natrozippeite are both found in pentagonal bipyra-

midal environments, where the equatorial vertices are shared with sulphate, O2− and

OH− anions. A similar arrangement is also found in compreignacite, with the exception

that all equatorial vertices are O2− or OH− anions. These anions have a lower charge

than those found in the other uranyl minerals, resulting higher wavenumber ν1(UO2)2+

peaks. However, these peaks in the spectra for johannite and compreignacite show sig-

nificant deviation from published literature values [29, 295], which may result from the

variable composition and local charge in different samples.
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The ν1(UO2)2+ peak positions in andersonite and schröckingerite, the uranyl tricar-

bonate minerals, are found at 833 and 815 cm−1, respectively. The equatorial uranyl

environment in both minerals is equivalent, with three edge-sharing carbonate anions

forming a hexagonal bipyramidal coordination environment. Therefore, the difference in

peak position must result from other aspects of the mineral structure. In andersonite,

the mineral forms a complex framework structure, which is significantly different to the

layered structures seen in the other uranyl minerals described in this chapter. In con-

trast, uranyl cations in the schröckingerite structure may be coordinated by F− anions

in the axial direction, weakening the U-O bonds and lowering the wavenumber of the

ν1(UO2)2+ peak.

6.3.2 The Poly-anion peaks

The polyanions that exist in the structure of uranyl minerals have their own distinct set

of associated vibrational modes. These bands can act as a fingerprint, allowing the ions

present in the structure to be identified.

The phosphate antisymmetric stretching mode (ν3(PO4)3−) was seen as a strong peak or

pair of peaks in the 990–1020 cm−1 region of the Raman spectrum for uranyl phosphate

minerals. Phosphate bending modes have also been identified in the 370–480 cm−1 (ν2)

and 560–660 cm−1 (ν4) regions for many spectra collected with a 532 or 785 nm laser.

The phosphate symmetric stretch (ν1) has been reported as absent in previous Raman

investigations of autunite minerals [57], which is confirmed in this investigation. The

exact cause of this absence remains unknown.

The arsenate symmetric (ν1(AsO4)3−) and antisymmetric (ν3) stretching modes were

not observed in the Raman spectra of the arsenate members of the autunite group.

However, the expected position for these peaks is in the 810–840 cm−1 region and Frost

et al. have suggested that these peaks overlap with the uranyl symmetric stretching

mode [57]. This absence provides a strategy for distinguishing between phosphate and

arsenate members of the autunite group of minerals, as the ν3(PO4)3− peak is seen for

the phosphate minerals, but no peaks are seen in the same region of the Raman spectrum

for the arsenate minerals. The arsenate bending modes (ν2 and ν4) are typically observed

as low intensity bands in the 320–470 cm−1 region.

The characteristic vibrational modes of the silicate anion adopt a different fingerprint

to the phosphate and arsenate groups. The silicate antisymmetric stretching mode
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(ν3(SiO4)4−) is a strong band observed in the 930–980 cm−1 region, while the sym-

metric stretch (ν1) is absent, but may coincide with the uranyl symmetric stretch. Low

intensity bending modes have been seen in the 390–480 cm−1 (ν2) and 500–580 cm−1

(ν4) regions.

All four sulphate vibrational modes are typically visible in the Raman spectra of the

uranyl sulphate minerals in this study. The sulphate symmetric (ν1(SO4)2−) and anti-

symmetric (ν3) stretching modes are observed as strong modes in the 980–1050 cm−1

and 1080–1150 cm−1 regions, respectively. The bending modes are often seen as low

intensity modes in the 370–500 cm−1 (ν2) and 480–670 cm−1 (ν4) regions. The range

in peak position is broader for the sulphate minerals than those in other polyanions,

which may be due to the differences in sulphate environment found in the three uranyl

minerals studied. In johannite and natrozippeite, sulphate anions are coordinated to the

equatorial plane of the uranyl group, whereas those in schröckingerite are closer to the

axial uranyl oxygens.

The carbonate symmetric mode (ν1(CO3)2−) was observed in the 1080–1100 cm−1 region

of the Raman spectrum for the minerals andersonite and schröckingerite. The antisym-

metric stretch (ν3) was not visible in this study, but has been previously observed in

the 1370–1410 cm−1 region. A carbonate bending mode has been observed in the 690–

750 cm−1 region (ν4), but the ν2 bending mode, expected within the same region as the

uranyl symmetric stretch, was not seen. It is possible that the two bands overlap.

6.3.3 Choice of Excitation Wavelength

An important consideration when collecting the Raman spectra of uranyl minerals is

the wavelength chosen for exciting the sample. Certain wavelengths may result in a

spectrum where the bands of interest are overwhelmed by fluorescence. Furthermore,

the diffraction grating, chosen for the wavelength used, affects the resolution of the

spectrum. Portable Raman devices typically only contain a single laser, so a wavelength

that consistently produces good quality spectra must be chosen.

The uranyl cation produces fluorescence bands in the 450–600 nm region [354]. This

explains the strong background signal observed in the 532 nm spectra of some minerals,

such as natrozippeite (Figure 6.15a-c). In contrast, the spectra produced using the 325

and 785 nm excitation lasers typically had little fluorescence. The 785 nm spectra also

had a high resolution (±0.2 cm−1), making it the best choice of excitation wavelength for
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Figure 6.15: A comparison of the spectra obtained using the three excitation wave-
lengths for the uranyl sulphate mineral natrozippeite (a–c) and the uranyl silicate mineral
uranophane (d–f).

these minerals. In cases where little background fluorescence was observed in the 532 nm

spectrum (e.g. torbernite, Figure 6.16b), this wavelength also provided high resolution

spectra (±1.2 cm−1). The lowest resolution spectra were obtained using the 325 nm laser

(±5.0 cm−1), which prevented some low intensity modes from being observed, notably

those attributed to bending motions.

The most significant fluorescence was observed in the 532 nm spectra of natrozippeite

(Figure 6.15b), compreignacite and phosphuranylite. This is most significant for na-

trozippeite, where the Raman bands are completely overwhelmed by fluorescence. These

minerals always produced good Raman spectra with the 785 nm excitation laser, whereas

the 325 nm spectra were typically weak, only displaying the uranyl symmetric stretch.

Fluorescence was also a concern in the 532 nm spectra of the minerals autunite, nováčekite

and uranophane (Figure 6.15d–f), but it did not overwhelm the Raman bands. Bands

in the 325 nm spectra were seen with low intensity, but in these minerals the stretching

modes were clearly visible. The best excitation wavelength was found to be 785 nm.

The remaining seven minerals produced good Raman spectra with all three excitation

wavelengths. In general, the 532 and 785 nm spectra were very similar (Figure 6.16),

although some bands in cuprosklodowskite, torbernite and johannite were better resolved
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Figure 6.16: A comparison of the results obtained using the three excitation wave-
lengths for the uranyl phosphate mineral torbernite (a–c) and the uranyl silicate mineral
kasolite (d–f).

in the 532 nm spectra. Some bands were less well resolved in the 325 nm spectra, but

no stretching modes were absent.

6.4 Conclusions

Raman spectroscopy has been applied to thirteen uranyl minerals from Cornwall, UK,

including the uranyl arsenate mineral nováčekite, which was not published prior to this

investigation [206]. As a technique, Raman spectroscopy is fast, non-destructive and

portable, which is ideal for a forensic investigation, where delicate samples may need

to be studied in situ. Furthermore, the uranyl minerals in this study lend themselves

to vibrational spectroscopic techniques, as they contain ions that produce characteristic

vibrational bands and form a fingerprint for each mineral. These ions include phosphate,

arsenate and silicate polyanions, as well as the uranyl cation present in all uranyl miner-

als. In the majority of cases, the Raman spectra agreed with previously published data;

however, there were differences for some samples. This emphasises the importance of

studying samples from various locations and suggests it may be possible to determine

the origin of a sample by comparing its spectrum to a database of known information.

Three distinct excitation wavelengths have been used in this study: 325, 532 and 785 nm.

In the minerals autunite, nováčekite, phosphuranylite, natrozippeite, uranophane and
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compreignacite, the Raman spectrum collected using the 532 nm laser suffered from

fluorescence; in some cases, this effect overwhelmed the Raman bands. This was not a

problem for the other minerals, where both 532 and 785 nm spectra were comparable.

For the majority of minerals, the 325 nm spectrum was weak and noisy, with a low

resolution that meant some bands, including the bending modes, were not observed.

Consequently, the 785 nm excitation source was deemed best for studying the uranyl

minerals.

The uranyl cation produces a strong vibrational mode in the 750–900 cm−1 region of the

Raman spectrum, originating from the uranyl symmetric stretch (ν1(UO2)2+). The exact

position of this peak has been found to vary for different samples; for nováčekite, this

mode is seen at 817 cm−1, whereas the corresponding peak for its phosphate analogue,

saléeite, is ∼830 cm−1 [69, 70]. A variety of factors appear to influence the position of

this peak, including the electronegativity of anions in the equatorial plane of the uranyl

cation and the nature of the interlayer cations. Chapter 7 presents a computational

study on the autunite group of uranyl minerals, in which the polyanion (phosphate or

arsenate) is systematically varied to study the effect on the Raman and IR spectra.

113



Chapter 7

Simulations of the Autunite Minerals

In this chapter, density functional theory (DFT) has been used to simulate the structural

and vibrational properties of a selection of autunite minerals, with the aim of assigning

the peaks seen in experimental Raman and IR spectra. This is possible because the

motions corresponding to each vibrational mode are calculated during the simulations.

The second major aim of this investigation is to probe how the simulated vibrational

spectra vary with different mineral compositions. Chapter 6 showed that the vibrational

spectra may be used to distinguish between uranyl minerals, based on characteristic

polyanion bands and the position of the uranyl symmetric stretching mode [206]. The

latter effect is known to be directly related to the strength of the uranyl bond [355],

which is influenced by the groups that coordinate around the uranyl equatorial plane.

Therefore, determining the effect of different polyanions and uranium environments on

the vibrational spectra of uranyl minerals and combining this information with a database

of known experimental spectra would be valuable to forensic and environmental science

investigations, where rapid analysis of unknown samples is essential.

The uranyl minerals chosen for this investigation are from the autunite group, which

have been described in detail in Chapter 6. These minerals are ideal for a systematic

investigation, as they contain isostructural phosphate and arsenate members that exhibit

known differences in experimental Raman and IR spectra. The minerals simulated were

the uranyl phosphates torbernite and saléeite, their respective isostructural arsenates,

zeunerite and nováčekite, and five intermediate structures for each of the two series, con-

taining different proportions and distributions of phosphorus and arsenic. The simulated

vibrational spectra for the two series of minerals were used to identify a set of trends that

may be used to quickly estimate the ratio of phosphorus to arsenic within experimental

samples. A set of spectra for four experimental mineral samples were used as a trial to

estimate the P:As ratio, with EDX data used to corroborate the composition.

Many experimental investigations of the autunite minerals have been reported and are

reviewed in Chapter 6, but no computational studies have been forthcoming. However,

the link between local environment and the vibrational mode has been studied for a

range of uranyl complexes, so this is the focus of the review in Section 7.1. Details on
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the computational models used are given in Section 7.2, while the EDX data for the

experimental samples used for comparison is given in Section 7.3.

7.1 Review of Literature

In Chapter 6, the position of the uranyl symmetric stretching mode in the Raman spec-

trum was shown to vary in different uranyl minerals. The position of this stretching

mode depends upon the uranyl bond strength, which is influenced by the local electronic

environment [356]. As density functional theory (DFT) simulations explicitly model the

electron density, it is ideally suited to studying this relationship. It has shown that

uranyl groups which are strongly coordinated in the equatorial plane transfer electron

density away from the U-O bond, weakening it [356]. The equatorial binding strength is

dependent upon the nature and number of coordinated groups and has been primarily

investigated using uranyl complexes. Therefore, the effect caused by different coordi-

nated ligands on the position of the uranyl symmetric stretching mode in the Raman

spectrum may be used as a strategy for distinguishing between them [355].

The coordination environment for uranyl-water complexes has been extensively stud-

ied [357–361] and found to preferentially adopt an equatorial coordination number of

five. DFT studies support this configuration [360, 362–364], but also find that more

basic ligands, such as OH−, reduce this number [365–367]. Uranyl complexes with

CN−, NCS− and F− were also found to prefer an equatorial coordination number of

five [366, 368–370]. DFT simulations of CN− demonstrated that it preferentially coordi-

nates to the uranyl cation through the carbon atom [367, 371, 372]. The carbonate anion

(CO2−
3 ) is another ligand that has been extensively studied in uranyl complexes. The

uranyl tricarbonate cluster, UO2(CO3)3, is among the most significant uranyl species in

contaminated groundwater [271, 373], while UO2CO3 occurs naturally as the mineral

rutherfordine. The structural properties of uranyl carbonates have been studied us-

ing DFT techniques [374–376]. The general trends observed for uranyl complexes show

that an increase in coordination number and more electron donating ligands weaken the

uranyl bond, which in turn reduces the wavenumber of the uranyl symmetric stretching

mode [355, 377, 378].

The mobility of uranyl complexes is also an important consideration in remediation of

contaminated sites. Adding certain ligands to soil, such as citrate [355], may increase

the mobility of the uranyl cation, allowing it to be extracted [379, 380]. An alternative

approach relies on the uranyl cation reacting with inorganic materials, such as clays,
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forming immobile uranyl minerals [6, 20–28]. The diffusion and adsorption of uranyl

cations and uranyl carbonate complexes onto different mineral surfaces, such as mont-

morillonite, quartz, beidellite, pyrophyllite, goethite and calcite, have been the subject

of many potential model [152, 381–390] and DFT [391–400] investigations.

7.2 Structures and Models

Initial structures of the minerals saléeite (Mg(UO2)2(PO4)2·10H2O) and meta-torbernite

(Cu(UO2)2(PO4)2·8H2O) were taken from previously published crystal structure data [243,

401]. The isostructural arsenate minerals, nováčekite and meta-zeunerite, and the in-

termediate structures were generated by substituting appropriate phosphorus atoms for

arsenic. Meta-torbernite (n = 8 water molecules) was chosen as a base structure in-

stead of torbernite (n = 12 water molecules) because it is also a very common mineral

in uranium deposits [14, 251] and fewer water molecules reduced the number of vibra-

tional degrees of freedom. Furthermore, the uranyl and polyanion stretching modes of

primary interest to this study are typically found in the 650–1100 cm−1 region, which

does not vary significantly between torbernite and meta-torbernite [69], whereas water

vibrations tend to be at a significantly higher wavenumber. Therefore, minerals from

the meta-torbernite–meta-zeunerite series have been referred to as torbernite–zeunerite

throughout this chapter.

The saléeite and torbernite structures contain two formula units per unit cell. In both

cases, two layers exist within the unit cell, containing two inequivalent phosphate polyan-

ions in each. In addition to the pure phosphate and pure arsenate versions of each min-

eral, intermediate phases with P:As ratios of 3:1, 2:2 and 1:3 have been generated and

are labelled as PxAsy throughout this chapter, where x and y are the relative proportions

of P and As. Three distinct distributions of P2As2 are possible:

• Phosphate and arsenate polyanions are separated into alternating layers (P2As2a);

• Mixed layers of phosphate and arsenate polyanions are present and adjacent layers

can be superimposed (P2As2b);

• Mixed layers of phosphate and arsenate polyanions are present, but adjacent layers

cannot be superimposed (P2As2c).

Schematics showing the autunite type sheet structure, the environment of Mg2+ and
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Figure 7.1: (a) The autunite sheet structure and the cation environments in (b) saléeite
and (c) torbernite. The layers seen in (d) the P3As1 and P1As3 systems, (e) the P2As2a
alternating layers structure, (f) the P2As2b aligned layers structure, and (g) the P2As2c
offset layers structure. Dark blue polyhedra represent uranyl cations, while yellow and
red polyhedra represent PO4 and AsO4, as appropriate. Mg2+ and Cu2+ are shown in
grey and water molecules are shown in light blue.

Cu2+ cations in saléeite and torbernite, respectively, the P1As3 and P3As1 structure and

each P2As2 configuration are presented in Figure 7.1.

For each structure, the unit cell volume and shape were fully relaxed with uncon-

strained symmetry. The ionic and electronic convergence criteria were 0.01 eV/Å and

1x10−6 eV/atom, respectively, while testing showed that a cutoff energy of 500 eV is

appropriate. For the torbernite–zeunerite series, a 4 x 4 x 1 k -point mesh (10 irreducible

k -points) was used, while testing showed that a 4 x 1 x 2 mesh (6 k -points) gave the

same result as a 4 x 1 x 4 mesh (10 k -points) for the saléeite–nováčekite series, so the

smaller number of k -points was chosen.

The energy of forming each structure (Em) from γ-UO3 via the reaction

2(γ-UO3) + M3(XO4)2 + n(H2O)(s)→ M(UO2)2(XO4)2·nH2O + 2(MO), (7.1)

where M is the interlayer cation (Mg2+ or Cu2+), X is P or As and n is the number

of water molecules, was determined by summing the calculated lattice energies of the

reactants and subtracting them from the sum of lattice energies of the products. The

lattice energies for each material were calculated using the same computational settings

as the autunite materials; the minimised lattice parameters and volume and the k -point
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Table 7.1: The structural parameters and k -point meshes for the experimental and
minimised M3(XO4)2 and MO structures used to calculate Em for the simulated saléeite,
nováčekite, torbernite, zeunerite and mixed structures using Equation 7.1.

System Lattice Parameters Volume Z
a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦) (Å3)

Expt. Mg3(PO4)2 [402] 7.60 8.23 5.08 90.0 94.1 90.0 316.6 2
Mg3(PO4)2 7.73 8.34 5.12 90.0 94.2 90.0 164.8 2

Mg3(AsO4)2 † 7.94 8.46 5.36 90.0 95.7 90.0 179.0 2
Expt. Cu3(PO4)2 [403] 4.85 5.29 6.18 72.4 87.0 68.5 140.5 1

Cu3(PO4)2 4.96 5.75 6.23 74.1 87.5 66.6 156.6 1
Cu3(AsO4)2 † 5.10 5.64 6.45 71.8 86.8 67.8 162.9 1
Expt. MgO 4.22 4.22 4.22 90.0 90.0 90.0 75.0 4

MgO 4.26 4.26 4.26 90.0 90.0 90.0 77.6 4
Expt. CuO [404] 4.68 3.42 5.13 90.0 99.6 90.0 81.1 4

CuO 4.45 3.83 5.17 90.0 92.0 90.0 88.1 4

† The initial structures of Mg3(AsO4)2 and Cu3(AsO4)2 were adopted from the experimental
structures of Mg3(PO4)2 and Cu3(PO4)2, respectively.

mesh used for each material is given in Table E.1. The energy used for water corresponds

to the sum of the calculated energy for a single H2O molecule in VASP and the difference

between the experimentally determined enthalpies of formation of solid and gaseous H2O.

The energy for γ-UO3 was known from Chapter 5. These values allowed the most stable

P2As2 configurations to be determined.

The intermediate systems described in this study are mixed structures, containing an

even distribution of phosphorus and arsenic. However, an alternative model for these

systems contains discrete domains of the end minerals saléeite, nováčekite, torbernite and

zeunerite. To investigate the relative stabilities of these two types of system, appropriate

proportions of Em for the end minerals were summed to determine the corresponding

domain formation energies (Ed).

Following the successful minimisation of each structure, the vibrational modes were cal-

culated using density functional perturbation theory (Section 3.5.2). Raman and IR

activities were then calculated as described in Sections 3.5.4 and 3.5.3. As torbernite

and saléeite are known to adopt preferred orientations with respect to the host rock

(<001> and <010>, respectively), Equation 3.39 was used to calculate the Raman ac-

tivity directly.
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7.3 Experimental Samples for Comparison

The Raman and IR spectra have been collected for four autunite group minerals, with

the aim of providing a trial for estimating the P:As ratio based on the trends observed

in Section 7.4.2. Three of these minerals were torbernite–zeunerite samples from the

same collection that was studied by Elton and Hooper [212] and described in Chapter

6. The fourth was the nováčekite sample presented in Chapter 6. Raman, IR and EDX

spectra were collected using the methods described in Chapter 2 and chemical formulae

and P:As ratios determined from EDX data is given in Table 7.2.

Table 7.2: Estimated chemical formulae based on EDX data for autunite mineral sam-
ples from Cornwall, UK. The formulae are normalised to the proportion of uranium and
water content is not estimated. The P:As ratio is also provided.

Mineral Provenance Estimated P:As
formula ratio

torbernite Old Gunnislake Mine, Cu0.8(UO2)2(PO4)2.0(AsO4)0.1 36:1
Calstock

zeunerite South Wheal Basset, Cu1.0(UO2)2(PO4)0.1(AsO4)1.9 1:25
Redruth

mixed torbernite West Wheal Owles, Cu0.9(UO2)2(PO4)1.2(AsO4)0.7 2.5:1
St. Just

mixed nováčekite Wheal Edward, Mg0.7(UO2)2(PO4)0.3(AsO4)1.2 1:3.6
St. Just

7.4 Results and Discussion

Fourteen mineral structures have been simulated using DFT. These were the uranyl

phosphate minerals torbernite and saléeite, the isostructural arsenate minerals zeunerite

and nováčekite, respectively, and five intermediate phases for each series. The structural

and vibrational properties of these minerals are presented in Sections 7.4.1 and 7.4.2,

respectively, and a comparison is made to experimental spectra in Section 7.4.3.

7.4.1 Structural Parameters

The structural properties obtained from minimising the fourteen mineral structures are

given in Table 7.3. Experimental values are also given for the four end members, saléeite,

nováčekite, torbernite and zeunerite, which show that the structures have been well rep-

resented. The unit cell volume after minimisation is increased by less than 4% compared

to the experimental structure; a volume increase is a known effect of the GGA func-

tional. It should be noted that experimental nováčekite was described with a different
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Table 7.3: A comparison of experimental and simulated structural parameters for
saléeite, nováčekite, torbernite and zeunerite, in addition to the simulated stuctural
parameters for the intermediate phases. The general formula for these systems is
M(UO2)2(XO4)2 · nH2O, where M is Mg2+ or Cu2+, X is P or As and n represents a
variable number of water molecules. Two formula units are present in each unit cell for
these systems. The reaction energies for forming each phase from γ-UO3 via Equation
7.1 (Em) and the energies for forming domains of the end minerals instead of mixed
phases (Ed) are given.

Phase Lattice Parameters Volume Em Ed
a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦) (Å3) (eV) (eV)

Saléeite (Mg(UO2)2(PO4)2 · 10H2O) – Nováčekite (Mg(UO2)2(AsO4)2 · 10H2O)

Expt. P4 [243] 6.951 19.947 9.896 90.0 135.2 90.0 967.34 — —
Sim. P4 7.019 19.944 10.022 89.8 135.3 90.3 986.12 -0.78 —
P3As1 7.057 19.984 10.079 89.7 135.4 90.4 998.89 -0.89 -0.83
P2As2a 7.084 20.056 10.134 89.8 135.4 90.4 1011.86 -0.93 -0.88
P2As2b 7.093 20.033 10.153 89.8 135.4 90.5 1013.43 -0.67 -0.88
P2As2c 7.087 20.062 10.142 89.8 135.4 90.3 1013.14 -0.67 -0.88
P1As3 7.129 20.086 10.221 89.8 135.4 90.4 1027.21 -0.93 -0.93

Sim. As4 7.178 20.111 10.285 89.7 135.4 90.4 1042.33 -0.98 —
Expt. As4 [405] † 7.157 20.085 10.053 90.0 134.8 90.0 1025.22 — —

Torbernite (Cu(UO2)2(PO4)2 · 8H2O) – Zeunerite (Cu(UO2)2(AsO4)2 · 8H2O)

Expt. P4 [217] 6.98 6.98 17.35 90.0 90.4 90.0 845.27 — —
Sim. P4 7.047 7.047 17.395 90.0 90.0 90.0 863.78 -2.99 —
P3As1 7.084 7.084 17.423 90.0 90.0 90.0 874.24 -2.88 -2.93
P2As2a 7.124 7.124 17.487 90.0 90.0 90.0 887.50 -2.78 -2.86
P2As2b 7.122 7.122 17.486 90.0 90.0 90.0 886.99 -2.55 -2.86
P2As2c 7.124 7.124 17.482 90.0 90.0 90.0 887.27 -2.55 -2.86
P1As3 7.163 7.163 17.549 90.0 90.0 90.0 900.50 -2.74 -2.80

Sim. As4 7.210 7.210 17.562 90.0 90.0 90.0 912.97 -2.73 —
Expt. As4 [217] 7.109 7.109 17.416 90.0 90.0 90.0 880.27 — —

The experimental parameters for nováčekite, metatorbernite and metazeunerite correspond to
synthetic end members.

† The space group origin of experimental nováčekite (originally P21/c) [405] was changed to
allow a direct comparison with the saléeite structure (P21/n) [243].

space group origin (P21/c [405]) to saléeite (P21/n [243]), so the origin has been changed

for the former in Table 7.3, allowing the experimental structural parameters to be directly

compared with the simulated parameters.

The lattice parameters for nováčekite and zeunerite are approximately 0.2 Å greater than

for the corresponding phosphate minerals. This trend is also observed in the intermediate

phases; however, the average distances between uranium and the oxygen atoms in the

phosphate or arsenate groups remain ∼2.34 Å in all structures (Figure 7.4). Therefore,

to accomodate both phosphate and arsenate polyanions in the intermediate systems,
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Table 7.4: A comparison of average bond distances found in saléeite, nováčekite, tor-
bernite zeunerite and the intermediate phases. These are the P-O and As-O bonds found
in the PO4 and AsO4 polyanions and the U-O bonds between the uranium atoms and
the same polyanion oxygen ions.

Phase Average bond distance Phase Average bond distance
P–O (Å) As–O (Å) U–O (Å) P–O (Å) As–O (Å) U–O (Å)

saléeite–nováčekite torbernite-zeunerite

P4 1.55 — 2.34 P4 1.56 — 2.35
P3As1 1.56 1.71 2.34 P3As1 1.56 1.71 2.35
P2As2a 1.56 1.72 2.34 P2As2a 1.56 1.71 2.35
P2As2b 1.56 1.71 2.34 P2As2b 1.56 1.71 2.35
P2As2c 1.56 1.71 2.34 P2As2c 1.56 1.71 2.35
P1As3 1.56 1.72 2.34 P1As3 1.56 1.72 2.35

As4 — 1.72 2.33 As4 — 1.72 2.34

there must be a deviation in the bond angles.

The energies of formation (Em) have been calculated from Equation 7.1 for the energy

minimised structures and are presented in Table 7.3. These data indicate that the most

stable P2As2 mixed phase in both torbernite–zeunerite and saléeite–nováčekite series are

P2As2a, in which the phosphate and arsenate polyanions are found within alternating

layers of the structure. Therefore, only Raman and IR spectra corresponding to P2As2a

are presented and discussed in this chapter; spectra for the other configurations are given

in Appendix E.

The energies of forming intermediate systems comprised of distinct domains (Ed) of the

end minerals saléeite, nováčekite, torbernite and zeunerite have also been calculated for

each mixed system (Table 7.3). For the mixed phase saléeite–nováčekite minerals, values

of Ed were found to be less negative than the corresponding values of Em (with the

exception of the P2As2b and P2As2c systems), indicating that the mixed phase minerals

are more stable. In contrast, discrete domains (Ed) of torbernite and zeunerite were

found to be more stable than mixed systems (Em). However, for all mixed systems

(except the P2As2b and P2As2c systems), the difference in energy between Em and Ed

was less than ±0.1eV, suggesting that mixed phases and domains of end minerals may

be competitive.

The preference for domains of torbernite and zeunerite instead of mixed phases may be

rationalised by considering the volume of all four end members. saléeite, nováčekite,

torbernite and zeunerite all have the same number of formula units per unit cell, but the
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latter minerals have two fewer water molecules per formula unit. This may be corrected

by adding 120 Å3 to the calculated volume (the volume of a single water molecule is

∼120 Å3 [406]). The corrected volumes of the phosphate minerals saléeite (986.12 Å3) and

torbernite (983.78 Å3) are very similar, whereas the corresponding values for the arsenate

minerals nováčekite (1042.33 Å3) and zeunerite (1032.97 Å3) are significantly different.

The smaller volume indicates that the structure adopted by zeunerite is more efficiently

packed than nováčekite, so defects (e.g. the intermediate phases) are less favourable.

Hence, domains of the torbernite and zeunerite minerals are preferred over mixed phases,

whereas the saléeite–nováčekite systems can readily accommodate mixtures.

7.4.2 Simulated Raman and IR Spectra

The simulated Raman and IR spectra for structures in the torbernite–zeunerite and

saléeite–nováčekite are shown in Figures 7.2 and 7.3, respectively. As the most significant

peaks are found between 650–1050 cm−1 in both Raman and IR spectra, only this region

is displayed in this chapter. Extended spectra of the 100–1100 cm−1 region are provided

in Appendix E for all structures, alongside tables that describe the vibrational motions

calculated for each individual mode.

One notable deviation observed between experimental and simulated spectra is the shift

in peak positions to a lower wavenumber in the latter. This results from the DFT func-

tional being used and may be corrected using a scaling factor. Alternatively, a more

intensive quantum mechanical technique could be employed to improve the comparison,

but the size of the unit cells in this investigation mean that significant computer re-

sources would be required. An additional difference is found in the number of peaks in

simulated and experimental spectra. In simulations, every unit cell contains an iden-

tical set of environments, so every vibrational mode has a discrete value. In contrast,

equialent environments in different unit cells of experimental structures often have some

variation, leading to a distribution of vibrational modes. Analysis of individual modes

in the simulated spectra showed that modes with similar motions tend to be found close

together. The 700–850 cm−1 region was primarily occupied by uranyl and arsenate sym-

metric stretching and arsenate antisymmetric stretching modes, while the 900–1050 cm−1

region contains uranyl and phosphate antisymmetric stretching modes. Therefore, the

labels given in Figures 7.2 and 7.3 are weighted averages for the major peaks within each

of the two regions.

The uranyl symmetric stretching mode is observed in the simulated Raman spectra for
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Figure 7.2: The simulated Raman (left) and IR (right) spectra for saléeite, nováčekite
and the mixed P:As phases. The labels show the weighted average wavenumber of the
uranyl, phosphate or arsenate modes within each region.

all structures in the 750–850 cm−1 region. The position of these modes are found to

be higher in spectra of the phosphate end members than in the isostructural arsenate

end members. This trend has also been reported for experimental spectra of autunite

minerals [69, 206]. It is possible that this results from a weakening of the uranyl bond

when coordinated to the larger arsenate anions (e.g. average U-O bond length 1.788 Å

in saléeite, 1.792 Å in nováčekite). A further observation in experimental spectra is the

broadening of the uranyl symmetric stretching mode for arsenate minerals. This has been

explained as the uranyl symmetric stretch overlapping with the arsenate symmetric and

antisymmetric stretching modes [69], which fits with the presence of arsenate stretches

in this region. The intermediate phases for each series display a greater number of

discrete peaks within this region, which may be expected, since the presence of both

phosphate and arsenate groups increase the number of symmetrically distinct uranyl

environments. This might also broaden the peaks in experimental spectra; a lack of

significant broadening may instead indicate that the phosphate and arsenate minerals
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Figure 7.3: The simulated Raman (left) and IR (right) spectra for torbernite, zeunerite
and the mixed P:As phases. The labels show the weighted average wavenumber of the
uranyl, phosphate or arsenate modes within each region.

exist in distinct domains, rather than mixed phases.

The phosphate antisymmetric stretching mode is observed in the 940–1000 cm−1 region

of both simulated and experimental Raman spectra for the phosphate dominant autunite

minerals [206]. No peaks are observed in this region of the isostructural arsenate minerals

that correspond to phosphate stretches; however, the uranyl antisymmetric stretching

mode is sometimes observed as a low intensity mode here. The simulated intermediate

phases also carry this trend, with the intensity of the phosphate peak diminishing with

increasing arsenic content. It is observed in the P3As1 spectra of both series of structures,

but the only P2As2 phase it is found in is P2As2a of the saléeite–nováčekite series. This

structure contains phosphate and arsenate polyanions in alternating layers, suggesting

that a full layer of phosphate groups are required for this peak to be observed. The

phosphate symmetric stretch was found to be absent in both experimental [69, 206] and

our simulated Raman and IR spectra of the autunite minerals; this mode is expected at

124



7.4. Results and Discussion

∼920 cm−1, based on the experimental spectra of aqueous phosphate ions [73]. However,

the corresponding motions were located in a number of Raman and IR inactive modes.

Within these modes, the phosphate symmetric stretch was only present for the phosphate

ions in a single layer; therefore, the overall motion of the system does not fulfil the

selection rules required to be Raman or IR active.

Two major trends are observed in the simulated IR spectra of the autunite minerals.

First, the intensity of the combined uranyl and phosphate antisymmetric stretching

modes (940–1050 cm−1) diminish with increasing arsenic content, with only a weak

uranyl antisymmetric stretching mode in zeunerite and nováčekite. Second, the com-

bined uranyl symmetric stretch and arsenate symmetric and antisymmetric stretching

modes (750–800 cm−1) become more intense with a greater proportion of arsenic. This

peak is most significant in spectra of zeunerite, nováčekite and the P1As3 phases.

7.4.3 Experimental Comparison

Experimental Raman and IR spectra are shown in Figures 7.4–7.7 for samples of tor-

bernite, zeunerite, torbernite with some arsenic and nováčekite with some phosphorus.

The trends observed in the simulated spectra (Section 7.4.2) are used to estimate the

relative proportion of phosphorus and arsenic in each sample and simulated spectra for

structures with a similar P:As ratio is also presented in each Figure. The P:As ratios of

experimental samples were determined using EDX and are given in Table 7.2.

Figure 7.4: The experimental a) Raman and c) IR spectra of torbernite from Old
Gunnislake Mine, collected using a 532 nm excitation laser. The P:As ratio, determined
by EDX spectroscopy, is 36:1. Simulated b) Raman and d) IR spectra for the pure
torbernite structure (P4) is given as a comparison.

125



7.4. Results and Discussion

Figure 7.5: The experimental a) Raman and c) IR spectra of zeunerite from South
Wheal Basset, collected using a 532 nm excitation laser. The P:As ratio, determined by
EDX spectroscopy, 1:25. Simulated b) Raman and d) IR spectra for the pure zeunerite
structure (As4) is given as a comparison.

The EDX data for torbernite from Old Gunnislake Mine shows a 36:1 ratio of P:As, so

it is expected to produce Raman and IR spectra similar to the simulated P4 structure

(pure torbernite). Its Raman spectrum, shown in Figure 7.4, is dominated by a sharp

peak at ∼825 cm−1 and a broader peak at ∼990 cm−1, assigned to the uranyl symmetric

stretch and phosphate antisymmetric stretching modes, respectively. The relative inten-

sities of these modes correspond well with the equivalent peaks in the simulated Raman

spectra of both the torbernite and P3As1 structures. Similarly, the peaks at ∼845 and

960 cm−1 in the experimental IR spectrum agree well with the simulated modes at ∼759

and 945 cm−1, the first attributed to the uranyl symmetric stretch and the latter cor-

responding to the phosphate antisymmetric stretching mode. Therefore, both Raman

and IR spectra indicate that this sample is pure torbernite or the P3As1 intermediate

structure, which agrees with the 36:1 P:As ratio (P3.89As0.11) determined by EDX.

EDX data for zeunerite from South Wheal Basset shows a 1:25 P:As ratio, suggesting

that the Raman and IR spectra will be similar to those for the simulated As4 structure

(pure zeunerite). The Raman spectrum in Figure 7.5 is dominated by a broad peak at

∼820 cm−1, corresponding to the combined uranyl symmetric, arsenate symmetric and

arsenate antisymmetric stretching modes. This assignment is also given to the peak at

∼720 cm−1 in the IR spectrum. No peaks corresponding to the phosphate antisymmetric

stretch are observed in Raman or IR spectra, but a low intensity IR mode at ∼980 cm−1

may be attributed to the uranyl antisymmetric stretch, seen at 964 cm−1 in the simulated

spectrum. These assignments indicate that this sample is pure zeunerite or the P1As3
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Figure 7.6: The experimental a) Raman and c) IR spectra of a mixed torbernite–
zeunerite sample from West Wheal Owles, collected using a 532 nm excitation laser.
The P:As ratio, determined by EDX spectroscopy, 2.5:1. Simulated b) Raman and d)
IR spectra for the P3As1 mixed torbernite–zeunerite structure is given as a comparison.

intermediate structure, which fits with the 1:25 P:As ratio (P0.15As3.85) observed by EDX.

The EDX spectrum collected for torbernite from West Wheal Owles contains a 2.5:1

P:As ratio, suggesting the Raman and IR spectra will be similar to the simulated P3As1

spectra. The strongest Raman active mode in Figure 7.6 is seen at ∼820 cm−1 and is a

broad band attributed to the uranyl symmetric stretch. The phosphate antisymmetric

stretching mode is also present as a lower intensity band at ∼990 cm−1, which indicates

the proportion of phosphorus is greater than or equal to that of arsenic. Both observa-

tions suggest that more arsenic is present compared to the torbernite sample from Old

Gunnislake Mine. This is further supported by the strength of the ∼730 cm−1 band in

the IR spectrum, which corresponds to the uranyl symmetric, arsenate symmetric and

arsenate antisymmetric stretches. However, the strength of the ∼940 cm−1 phosphate

antisymmetric stretching mode in the IR spectrum indicates a high proportion of phos-

phorus is still present. These observations indicate that this sample of torbernite is a

mixed structure, either P3As1 or P2As2, which agrees with the EDX determined P:As

ratio of 2.5:1 (P2.86As1.14).

The sample of nováčekite from Wheal Edward has been described in Chapter 6 and was

found to contain a P:As ratio of 1:3.6, suggesting the Raman and IR spectra will be

similar to the simulated P1As3 spectra. Its Raman spectrum is shown in Figure 7.7 to

be dominated by a broad peak at ∼820 cm−1, assigned to the uranyl symmetric, arsenate

symmetric and arsenate antisymmetric stretching modes. An equivalent IR active mode
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Figure 7.7: The experimental a) Raman and c) IR spectra of a mixed saléeite–
nováčekite sample from West Wheal Owles, collected using a 785 nm excitation laser.
The P:As ratio, determined by EDX spectroscopy, 1:3.6. Simulated b) Raman and d)
IR spectra for the P1As3 mixed saléeite–nováčekite structure is given as a comparison.

is seen at ∼710 cm−1, while two weaker modes are seen at ∼850 and 960 cm−1, attributed

to the arsenate symmetric stretch and a combined uranyl and phosphate antisymmetric

stretch, respectively. The lack of phosphate modes in the Raman and its presence at low

intensity in the IR spectrum supports a P1As3 assignment, which agrees with the 1:3.6

P:As ratio (P0.87As3.13) determined by EDX.

7.5 Conclusions

The structural and vibrational properties of uranyl phosphates saléeite and torbernite,

the uranyl arsenates nováčekite and zeunerite and a set of intermediate structures with

various proportions of phosphorus and arsenic have been successfully simulated using

DFT +U methodology. The lattice parameters were well reproduced, with a resulting

volume increase of <4%. The calculated formation energies for these minerals suggest

that the most stable P2As2 mixed phase configuration is P2As2a, in which P and As

are located in alternating layers, for both saléeite–nováčekite and torbernite–zeunerite

series. Furthermore, the formation of mixed structures and discrete domains of the

end minerals were found to be competitive, with only small preferences for the former

in saléeite–nováčekite and the latter in torbernite–zeunerite. This is rationalised by

the more efficient packing in the torbernite and zeunerite structures, which less readily

accommodate defects.

One consistent deviation between experimental and simulated spectra was a shift in the
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peak positions of the latter to a lower wavenumber. This is a known effect of the func-

tional used and may be improved by applying a scaling factor. An alternative approach

would be to use a more intensive quantum mechanical technique, but the computational

resources required to simulate the large unit cells makes this impractical. A major ad-

vantage of using computational techniques is in linking features of the vibrational spectra

to specific motions within the structure. This allows the corresponding bands in exper-

imental spectra to be assigned to motions. It was found to be particularly valuable in

complex structures containing multiple symmetrically distinct environments, as different

motions may occur in each environment for a single vibrational mode.

In this investigation, the simulated spectra were used to determine a set of trends to

allow the ratios of phosphorus and arsenic to be estimated for autunite minerals. The

main trends observed are based on the relative intensities of two regions in both Raman

and IR spectra. In the 700–900 cm−1 region, the peaks in both Raman and IR spec-

tra are primarily uranyl symmetric stretches, which overlap with arsenate symmetric

and antisymmetric stretches in the arsenic dominant structures. The Raman peak is

found to broaden and the IR peak is more intense with increasing arsenic content. The

other region is 900–1050 cm−1, which includes both uranyl and phosphate antisymmetric

stretching modes. In both Raman and IR spectra, the corresponding peaks are weaker

with reduced phospate content, disappearing in the Raman but remaining at low inten-

sity in the IR. This is due to the uranyl antisymmetric stretch, which is only observed in

the IR spectra. These trends have been utilised to estimate the P:As ratio for a set of ex-

perimental minerals in Section 7.4.3. The estimated ratios compared well with the P:As

ratio obtained by EDX for the samples, demonstrating the value of using computational

techniques to predict vibrational trends and link them to structure and composition.

Combining simulated and experimental data into an extensive database would be valu-

able for forensic or environmental science investigations, where information is needed

rapidly for unidentifed samples.
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Chapter 8

Conclusions and Future Work

The major conclusions of the results chapters have been summarised here, separated

into four overarching areas covering the major observations and trends. The main goals

outlined in Chapter 1 have been achieved: Raman spectra were collected for a selection

of uranyl minerals and computational techniques were proven to be useful in the inter-

pretation of experimental spectra and in probing how compositional variations affect the

vibrational properties. Possible areas for future work have also been highlighted in the

appropriate sections.

8.1 Quality of the Simulations

The simulations of U3O8 and UO3, described in Chapters 4 and 5, respectively, utilised

the structures previously minimised by Brincat et al. [49, 55], who found the majority of

relaxed lattice parameters and volumes to be within 7% of the experimentally determined

values. The primary exceptions were α- and β-UO3, where the lattice parameters and

U-O bond distances changed upon minimisation, supporting previous reports that these

phases are non-stoichiometric and may be stabilised by the presence of defects [54, 55].

Structural parameters were also well reproduced for the four autunite group end member

minerals in Chapter 7, saléeite, torbernite, nováčekite and zeunerite. For each mineral,

the volume increased by <4% upon minimisation, which is a known effect of using the

PBE functional.

In general, the simulated vibrational properties were found to most closely represent

experimental spectra in cases where the structural parameters and local uranium en-

vironments were also well reproduced. Despite some discrepancies in the experimental

spectra of γ-UO3 (Section 5.1), the simulated Raman and IR contain bands that may

correspond to the major peaks in all experimental spectra (Section 5.3). Similarly, the

experimental Raman and IR spectra of U3O8 contain peaks that correspond well with

modes in both α- and β-U3O8 (Section 4.3). This gives credence to the spectra predicted

for η-UO3 and other materials for which the structural properties are well reproduced

but no experimental spectra are currently available.
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One notable discrepancy was observed in the simulated spectra of δ-UO3, which did

not contain any Raman active modes, in contrast to the experimental spectrum. This

prompted the use of a supercell structure with distorted uranium environments, which

produced a set of Raman modes that agreed with the experimental spectrum (Section

5.3.2). Another difference between the experimental and simulated spectra was found

for the autunite minerals, in which a much greater number of distinct bands were seen

in the latter (Section 7.4.2). This may be rationalised because each bond distance in the

experimental uranium environments can adopt a range of values, resulting in a single

broad band, whereas the corresponding simulated bonds adopt a fixed value, so each

vibrational mode corresponds to a distinct peak of infinitesimal width. In most cases,

groups of bands within the same region of the simulated spectra were found to correspond

to similar vibrational motions, allowing experimental peaks in each region to be assigned

and trends to be established.

One consistent deviation between experimental and simulated spectra is a shift to lower

wavenumbers in the peak positions of the latter. This is a known effect of the DFT

functional used and is related to the increase in volume. The comparison may be im-

proved by applying a scaling factor to the peak positions, but the focus of this work

has been on assigning the major peaks and determining trends across multiple spectra,

which has been accomplished without a scaling factor. Furthermore, defining a scaling

factor for all spectra in this investigation would be difficult, as an improvement for some

systems may be inappropriate for others. Using a hybrid functional or a Hartree-Fock

approach may improve the comparison; however, this would require more computational

resources, limiting the size of the unit cells that can be simulated. In addition, these

methods would not improve the comparison between simulated and experimental spectra

for structures which are known to be non-stoichiometric. A future investigation could

focus on establishing the nature of the defects in these systems and incorporating them

into the model.

8.2 Interpretation of Vibrational Properties

One of the major advantages of using computational techniques in this investigation is

that the motions corresponding to each vibrational mode are readily available. This

allows the simulated data to be utilised in assigning peaks found in the experimental

Raman and IR spectra. It is particularly valuable when studying structures that contain

multiple uranium environments per unit cell, as different motions may occur at each en-

vironment. In cases where all uranium environments are symmetrically equivalent, such
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as δ- and η-UO3, all environments perform the same motions in each mode, but may

operate in- or out-of-phase (Section 5.3). β-UO3 exemplifies a different type of complex

vibration, as the structure contains five symmetrically distinct uranium environments

that can perform different motions in the same mode. As Raman and IR activity are

related to the change in dipole moment and polarisability across the entire unit cell, com-

plex modes can result in activities that oppose those expected for the motion in a single

environment. The prediction of complex modes highlights the value of using computa-

tional methods to study vibrational properties, as previous interpretations were typically

based on non-interacting units [187] and could not predict vibrations that encompass the

entire system.

In systems where the experimentally determined structural parameters were poorly re-

produced in the simulations, the predicted spectra were also typically less well repre-

sented. However, some simulated modes were found to compare well with experimen-

tal data. This may indicate that structural features not observed experiementally, but

present in the simulation, are also present in the real systems. One example of this

is β-UO3, which was not described with uranyl bonding, but peaks in the experimen-

tal spectra correspond well to those originating from uranyl stretches in the simulated

spectra (Section 5.3.4). It is possible that uranyl bonding helps to stabilise the non-

stoichiometry in this structure. Short, uranyl-like bonding is also present in the min-

imised 16-atom structure of δ-UO3, but was not detected in experimental investigations.

However, the simulated Raman spectrum of the 16-atom unit cell is dominated by a sym-

metric stretch of the uranyl-like bonds at 488 cm−1, which agrees with the experimental

peak at 520 cm−1 (Section 5.3.2). In contrast, the simulated spectrum of the experimen-

tally derived 4-atom unit cell did not contain any Raman active modes, supporting the

distortion in the 16-atom cell. These observations may be proven in future experimental

investigations on the structures of β- and δ-UO3.

The experimental Raman and IR spectra of U3O8 contains peaks that correspond well to

those observed in simulated spectra of both α and β phases (Section 4.3). In particular,

a number of modes originating from the uranyl bonding found in β-U3O8 suggest that

this phase is the dominant one, or that both phases exist as domains within each sample.

As uranyl bonding cannot exist in α-U3O8, due to the stacking of adjacent layers, an

alternate possibility is that an intermediate configuration of layer stacking is preferred.

This is another area of study for future experimental investigations on the uranium

oxides.
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Additional computational studies into the vibrational properties of other uranium oxides

and uranyl minerals would complement an extensive database of experimental Raman

and IR spectra of the same, allowing assignments to be made for peaks in the latter.

Furthermore, the patterns found in both experimental and simulated spectra may allow

features in samples with an unknown spectra to be identified. The structural properties

of some uranium oxides have already been investigated using DFT [12], making them

good initial candidates for vibrational study.

8.3 Variation in Vibrational Spectra

Previous experimental investigations of UO3 have found that each phase forms under

different conditions and may be linked to the type of reactor used. Similarly, different

uranyl minerals form depending on the ions available, which can be linked to the geology

of an area. This investigation has shown that the distinct uranium environments can

lead to differences in the Raman and IR spectra, providing information that can be used

to determine the sample origin. Therefore, an extensive database of spectra for well

established samples would be a valuable tool for identifying unknown samples and their

origin. This data can be complemented by using computational techniques to probe how

compositional differences affect the vibrational properties.

The simulated structures of α- and β-U3O8 are comprised of equivalent layers, with

differences arising from the stacking of adjacent layers (Section 4.2). In the simulated

IR spectra of both phases, three distinct bands were observed that correspond well with

a set of three modes in the experimental IR spectrum, suggesting that these bands are

characteristic to the structure of the layers (Section 4.3). This indicates that U3O8

may be distinguished from other uranium oxides using IR spectroscopy. Futhermore,

the two phases provide different Raman spectra, as the uranyl bonding in β-U3O8 leads

to characteristic stretching modes that are not present in α-U3O8. The five phases of

UO3 studied in this investigation have also been shown to produce different Raman and

IR spectra, arising from the varied uranium environments and bonding in each phase

(Section 5.3). In addition to constructing a database for identifying unknown materials,

studying the vibrational properties of other uranium oxides would provide a non-invasive

strategy for following the oxidation of uranium in situ. This could build on existing DFT

simulations of uranium oxides, such as those performed by Brincat et al. [12].

Experimental Raman spectra of the uranyl minerals showed the uranyl symmetric stretch

in every spectrum, but variations in its position and in the presence of other characteristic

133



8.3. Variation in Vibrational Spectra

bands allowed different minerals to be distinguished (Section 6.2). The overall vibrational

fingerprint arises from the combination of different polyions within the structure. For

example, the Raman spectra of uranyl phosphate minerals contain a uranyl symmetric

stretching mode and a phosphate antisymmetric stretching mode in the 750–850 and

950–1000 cm−1 regions, respectively. The Raman spectra of uranyl carbonate minerals

also contain a uranyl symmetric stretching mode, while the characteristic carbonate

symmetric stretch and bending modes are found at ∼1092 and ∼743 cm−1, respectively.

The consistent computational approach used in this investigation allowed the variations

in Raman and IR spectra resulting from a change in composition to be studied for the

autunite group of minerals using DFT simulations (Chapter 7). In particular, the relative

intensity of the combined uranyl and arsenate stretching modes have been shown to

increase for the arsenic dominant minerals, whereas the phosphate antisymmetric stretch

was found to be stronger in the phosphate minerals. These trends were used in Section

7.4.3 to estimate the relative proportions of phosphorus and arsenic in experimental

samples, resulting in a good agreement to the corroborating EDX data. This suggests

that further simulations of uranyl minerals could reveal other trends that can be used

to distinguish between different minerals using the Raman and IR spectra. These may

include systematic changes to the polyanion group, the interlayer cation, the actinyl

cation or the water content, within the autunite structure or other mineral systems.

The experimental Raman spectra of some uranyl minerals, particularly johannite and

phosphuranylite, displayed differences to previously published experimental spectra (Sec-

tion 6.2). In the structures of the uranyl sulphate minerals johannite and natrozippeite,

some of the oxygen ions coordinating to the uranium are O2− and OH−, but the exact

proportion of each is unknown. It is likely that samples from different locations have

different proportions of these ions, which could explain the observed variations in the

Raman spectra. The chemical formula of phosphuranylite has also varied in different

reports, suggesting that different compositions give rise to the observed variations in

spectral properties. This emphasises the need to study mineral samples from different

locations and indicates that hints to the origin of a sample may be found from Raman

and IR spectroscopy.
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8.4 Position of the Uranyl Symmetric Stretching Mode

One of the factors that makes Raman spectroscopy ideal for studying uranyl minerals

and uranium oxides containing the uranyl group is the characteristic uranyl symmetric

stretching mode (ν1(UO2)2+) found in the 750–900 cm−1 region of the spectrum. The

exact position of this mode has been shown to vary, in part due to the nature of the equa-

torial coordination environment. Previous literature studies on uranyl complexes have

indicated that an increased coordination number and more electron donating groups lead

to weaker uranyl bonding, which in turn lowers the wavenumber of ν1(UO2)2+. This is

exemplified in Chapter 6, where minerals with more negatively charged polyanion groups

coordinating to the uranium produced lower wavenumber ν1(UO2)2+. The minerals ka-

solite, torbernite and natrozippeite are primarily coordinated to SiO4−
4 , PO3−

4 and SO2−
4

polyanions, respectively, and produce ν1(UO2)2+ modes at 760, 826 and 840 cm−1. An

additional difference was seen for isostructural autunite minerals containing PO3−
4 and

AsO3−
4 polyanions, with a lower wavenumber ν1(UO2)2+ in the latter cases. This indi-

cates that the larger arsenate polyanions coordinate more strongly to the uranyl cation,

which weakens the uranyl bond.

The second major factor in determining the position of the ν1(UO2)2+ mode is the

coordination to the uranyl oxygen ions. γ-UO3 contains two symmetrically distinct

uranium environments that illustrate this difference (Section 5.3.1). In environment 2,

the uranyl oxygen atoms are only bound via uranyl bonding to a single uranium ion,

leading to a ν1(UO2)2+ mode in the simulated spectrum at 823 cm−1. In contrast,

the uranyl oxygen ions in environment 1 are also coordinated to the uranium atoms

in environment 2 by ∼2.4 Å bonds, weakening the uranyl bonding and leading to a

ν1(UO2)2+ mode at 732 cm−1. Similarly, the ν1(UO2)2+ mode in the simulated Raman

spectrum of η-UO3 is found at 658 cm−1, resulting from additional coordination of the

uranyl oxygen ions (Section 5.3.5). β-UO3 contains five distinct uranium environments,

of which three contain uranyl bonding, resulting in ν1(UO2)2+ modes ranging from 680

to 878 cm−1 (Section 5.3.4). The lowest wavenumber position of the ν1(UO2)2+ mode

is found in the simulated Raman spectrum of 16-atom δ-UO3 (Section 5.3.2). In this

structure, the uranyl oxygen ions are shared with a second uranium ion at 2.3 Å, forming

an extended chain of collinear U-O bonds. The associated ν1(UO2)2+ mode is observed

at 488 cm−1, indicating that the uranyl bonding is significantly weaker than that for β-,

γ- and η-UO3.
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These trends have shown that the differences in uranyl environment may allow vibrational

spectroscopy to be used as a tool for identifying or discriminating between uranyl based

materials. This is enhanced by other differences in the Raman and IR spectra, as noted in

Section 8.3, with the possibility of using this data to determine the origin of an unknown

sample. The application of computational techniques allows the link between vibrational

modes and structural features to be explored (Section 8.2), providing an interpretation

for peaks in experimental spectra. The reproduction of experimental properties in the

simulated spectra may be further improved by using more intensive methods (Section

8.1), but the majority of trends observed here would remain relevant. Collecting both

experimental and simulated data into an extensive database would provide a valuable

tool for use in forensic and environmental science investigations.
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uranyl mineral compreignacite, K2[(UO2)3O2(OH)3]2·7H2O. Journal of Raman

Spectroscopy, 39:1158 – 1161, 2008.

[30] H. R. Hoekstra, S. Siegel, and F. X. Gallagher. The uranium-oxygen system at

high pressure. Journal of Inorganic and Nuclear Chemistry, 32:3237 – 3248, 1970.

[31] G. Rousseau, L. Desgranges, F. Charlot, N. Millot, J. C. Niepce, M. Pijolat, F. Val-

divieso, G. Baldinozzi, and J. F. Berar. A detailed study of UO2 to U3O8 oxida-

tion phases and the associated rate-limiting steps. Journal of Nuclear Materials,

355:10 – 20, 2006.

[32] X. D. Wen, R. L. Martin, G. E. Scuseria, S. P. Rudin, E. R. Batista, and A. K.

Burrell. Screened hybrid and DFT plus U studies of the structural, electronic,

and optical properties of U3O8. Journal of Physics: Condensed Matter, 25:025501,

2013.

[33] C. V. Parks, B. D. Murphy, L. M. Petrie, and C. M. Hopper. Plutonium produc-

tion using natural uranium from the front-end of the nuclear fuel cycle. Technical

139



References

Report ORNL/TM-2002/118, Oak Ridge National Laboratory, Oak Ridge, Ten-

nessee, USA, 2002.

[34] S. A. Barrett, A. J. Jacobson, B. A. Tofield, and B. E. F. Fender. The preparation

and structure of barium uranium oxide BaUO3+x. Acta Crystallographica Part B,

38:2775 – 2781, 1982.

[35] B. T. M. Willis. Positions of oxygen atoms in UO2.13. Nature, 197:755 – 756, 1963.

[36] B. T. M. Willis. Structures of UO2, UO2+x and U4O9 by neutron diffraction.

Journal De Physique, 25:431 – 441, 1964.

[37] A. K. Cheetham, B. E. F. Fender, and M. J. Cooper. Defect structure of calcium

fluoride containing excess anions .1. Bragg scattering. Journal of Physics Part C:

Solid State Physics, 4:3107 – 3121, 1971.

[38] D. J. M Bevan, O. Greis, and J. Strahle. A new structural principle in anion-excess

fluorite-related super-lattices. Acta Crystallographica Part A, 36:889 – 890, 1980.

[39] D. J. M. Bevan, I. E. Grey, and B. T. M. Willis. The crystal-structure of beta-

U4O9−y. Journal of Solid State Chemstry, 61:1 – 7, 1986.

[40] L. Desgranges, G. Baldinozzi, G. Rousseau, J.-C. Niepce, and G. Calvarin. Neutron

diffraction study of the in situ oxidation of UO2. Inorganic Chemistry, 48:7585 –

7592, 2009.

[41] D. A. Andersson, T. Watanabe, C. Deo, and B. P. Uberuaga. Role of di-interstitial

clusters in oxygen transport in UO2+x from first principles. Physical Review B,

80:060101 – 060104, 2009.

[42] K. Govers, S. Lemehov, M. Hou, and M. Verwarft. Comparison of interatomic po-

tentials for UO2. Part I: Static calculations. Journal of Nuclear Materials, 366:161 –

177, 2007.

[43] N. A. Brincat, M. Molinari, S. C. Parker, G. C. Allen, and M. T. Storr. Computer

simulation of defect clusters in UO2 and their dependence on composition. Journal

of Nuclear Materials, 456:329 – 333, 2015.

[44] H. Y. Geng, Y. Chem, Y. Kaneta, and M. Kinoshita. Ab initio investigation on

oxygen defect clusters in UO2+x. Applied Physics Letters, 93:201903 – 201905, 2008.

[45] G. C. Allen and P. A. Tempest. Linear ordering of oxygen clusters in hyper-

stoichiometric uranium dioxide. Journal of the Chemical Society: Dalton Transac-

tions, 11:2169 – 2173, 1982.

140



References

[46] L. M. Kovba and N. I. Komarevtseva. On the crystal structures of U13O34 and

delta-U2O5. Radiokhimiya, 21:754 – 757, 1979.

[47] J. J. Pireaux, E. Thibaut, J. Riga, C. Tenretnoel, R. Caudano, and J. J. Verbist.

Shake-up satellites in X-ray photoelectron-spectra of uranium-oxides and fluorides

- band-structure scheme for uranium-dioxide, UO2. Chemical Physics, 22:113 – 120,

1977.

[48] Y. A. Teterin and A. Y. Teterin. The structure of the X-ray photoelectron spectra

of light actinide compounds. Uspekhi Khimii, 73:588 – 631, 2004.

[49] N. A. Brincat, S. C. Parker, M. Molinari, G. C. Allen, and M. T. Storr. Density

functional theory investigation of the layered uranium oxides U3O8 and U2O5.

Dalton Transactions, 44:2613 – 2622, 2015.

[50] D. A. Andersson, G. Baldinozzi, L. Desgranges, D. R. Conradson, and S. D. Con-

radson. Density functional theory calculations of UO2 oxidation: Evolution of

UO2+x, U4O9−y, U3O7, and U3O8. Inorganic Chemistry, 52:2769 – 2778, 2013.

[51] B. O. Loopstra. Structure of beta-U3O8. Acta Crystallographica B, 26:656 – 657,

1970.

[52] C. A. Colmenares. The oxidation of thorium, uranium, and plutonium. Progress

in Solid State Chemistry, 9:139 – 239, 1975.

[53] S. Siegel, H. Hoekstra, and E. Sherry. Crystal structure of high-pressure UO3. Acta

Crystallographica, 20:292 – 295, 1966.

[54] C. Greaves and B. E. F. Fender. The structure of α-UO3 by neutron and electron

diffraction. Journal of the Chemical Society, Dalton Transactions, B28:3609 – 3614,

1972.

[55] N. A. Brincat, S. C. Parker, M. Molinari, G. C. Allen, and M. T. Storr. Ab initio

investigation of the UO3 polymorphs: Structural properties and thermodynamic

stability. Inorganic Chemistry, 53:12253 – 12264, 2014.

[56] P. C. Burns. Uranium(6) minerals and inorganic compounds: Insights into an ex-

panded structural hierarchy of crystal structures. Canadian Mineralogist, 43:1839 –

1894, 2005.

[57] R. L. Frost and M. L. Weier. Raman microscopy of autunite minerals at liquid

nitrogen temperature. Spectrochimica Acta Part A, 60:2399, 2004.

141



References
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Cornwall. Mineralogical Magazine, 58:513 – 514, 1994.

[213] N. J. Elton and J. J. Hooper. Andersonite and Schrockingerite from Geevor Mine,

Cornwall: 2 species new to Britain. Mineralogical Magazine, 56:124 – 125, 1992.

[214] A. J. Locock and P. C. Burns. The crystal structure of synthetic autunite,

Ca[(UO2)(PO4)]2(H2O)11. American Mineralogist, 88:240 – 244, 2003.

[215] E. S. Makarov and V. I. Ivanov. The crystal structure of meta-autunite. Doklady

Akademiia Nauk SSSR, 132:601 – 603, 1960.

[216] R. S. W. Braithwaite, B. V. Cooper, W. H. Paar, and J. E. Chisholm. Phurcalite

from Dartmoor, southwest England, and its identity with ’nisaite’ from Portugal.

Mineralogical Magazine, pages 583 – 589, 1989.

[217] A. J. Locock and P. C. Burns. Crystal structures and synthesis of the copper-

dominant members of the autunite and metaautunite groups: Torbernite, zeuner-

ite, metatorbernite and metazeunerite. Canadian Mineralogist, 41:489 – 502, 2003.

[218] P. Golley and R. Williams. Cornish Mineral Reference Manual. Endsleigh Pub-

lishing, 1995.

154



References

[219] C. Frondel. Studies of uranium minerals (VII) - zeunerite. American Mineralogist,

36:249 – 255, 1951.

[220] C. Frondel. Studies of uranium minerals (IX) - saleeite and novacekite. American

Mineralogist, 36:680 – 686, 1951.

[221] G. Ryback and P. C. Tandy. Eighth supplementary list of British Isles minerals

(English). Mineralogical Magazine, 56:261 – 275, 1992.

[222] K. Mereiter. Neue kristallographische daten ueber das uranmineral andersonit.

Anzeiger der Oesterreichischer Akademie der Wissenschaften, Mathematisch-

Naturwissenschaftliche Klasse, 123:39 – 41, 1986.

[223] K. Mereiter. Crystal structure and crystallographic properties of a schröckingerite
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[280] J. Čejka, Z. Urbanec, and J. Čejka Jr. Contribution to the crystal-chemistry of

andersonite. Neues Jahrbuch fuer Mineralogie, Monatshefte, pages 488 – 501, 1987.

159



References

[281] P. C. Burns, R. C. Ewing, and F. C. Hawthorne. The crystal chemistry of hex-

avalent uranium: Polyhedral geometries, bond-valence parameters, and polymer-

ization of polyhedra. Canadian Mineralogist, 35:1551 – 1570, 1997.
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structure of the uranyl mineral andersonite - a Raman spectroscopic study. Journal

of Molecular Structure, 703:47 – 54, 2004.

[287] R. L. Frost, K. L. Erickson, M. L. Weier, O. Carmody, and J. Čejka. Raman spec-

troscopic study of the uranyl tricarbonate mineral liebigite. Journal of Molecular

Structure, 737:173 – 181, 2005.
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[340] J. Čejka, J. Sejkora, R. Skala, J. Čejka, M. Novotna, and J. Ederova. Contribution

to the crystal chemistry of synthetic becquerelite, billietite and protasite. Neues

Jahrbuch Fur Mineralogie-Abhandlungen, 174:159 – 180, 1998.
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Chapter A

Raman Spectral Analysis

To assist in the analysis of the Raman spectra, we used a peak-fitting algorithm written

by J. Skelton to identify and characterise the major spectral features [85]. The fitting

routine proceeds in two stages. In the first, the spectrum is divided into 5 equal segments,

each of which is fitted to a slope to approximate the average spectral intensity in that

region. Bands with intensities above 1.05 times this line are temporarily removed, and

the remaining complete spectrum is then smoothed with an 11-point median filter, and

the smoothed spectrum fitted to a 10-order polynomial to obtain a background function.

In the second step, the background polynomial is subtracted and the peaks in customis-

able regions of interest (ROIs) are found. In each ROI, the baseline intensity is again

fitted to a slope, with intensities 1.1 times the average within the region being excluded

from the fit. A 11-point triangle filter is applied, and candidate peaks are identified from

intensity maxima in the smoothed spectrum. Those within 1.5 multiples of the baseline

are discarded, and the remaining are fitted to a sum of Lorentzian functions, initialised

with one function positioned at the centre of each candidate peak, scaled to match the

peak height and with an initial full width at half maximum (FWHM) of 5.0. The peaks

are optimised against the unsmoothed spectrum with the baseline slope subtracted, us-

ing a least-squares algorithm. Finally, functions in the optimised set whose centres fall

outside their ROI are discarded.

The algorithm returns the coefficients of the background polynomial and peak functions,

the latter of which serve as a peak table providing the position, intensity, and FWHM

of major spectral features. By testing a subset of the spectra for each mineral sample

and visually comparing the original and fitted spectra, we confirmed that, with these

parameters and ROIs set to 100-1200 cm−1 this fitting routine could successfully identify

and characterise all the major peaks across a wide variety of spectra.
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Chapter B

Experimental Preparation of UO3

Samples

Unpublished Raman spectra for α, β, γ and δ-UO3 were provided by G. C. Allen for

the investigation in Chapter 5. XPS and IR spectra have been published for the same

samples [80, 200]. A brief description of the synthesis and Raman collection methods is

given in this section.

Finely powdered samples of the α, β and δ phases of UO3 were synthesised by Dickens

et al. [191, 407] using previously published methods [408–411]. γ-UO3 was produced by

heating a commercially supplied sample of γ-UO3·2H2O from Koch-Light Laboratories in

a stream of dry air at 300◦C for 24 hours [200]. All phases were identified by comparing

the X-ray diffraction pattern against previously published experimental data [198, 200].

Raman spectra were recorded using an Instruments SA Ramanor U-1000 spectrometer,

with a Spectra-Physics Model 164 5 W argon-ion laser source that provided a 514 nm

excitation [186]. The powdered samples were mounted on microscope slides and exam-

ined using 40x long-range microscope objectives with 180◦ scattering. In order to reduce

surface heating, the power at the sample was kept below 2 mW and defocused, illumi-

nating a spot of 10 µm in diameter. To improve the signal-to-noise ratio, a large number

of spectra were accumulated and averaged, using software provided by Instruments SA.
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Chapter C

Vibrational Analysis of UO3

Table C.1: The Raman active modes seen in simulated spectra of the five phases of
UO3. E1–E5 represents different uranium environments in β- and γ-UO3, which may
vibrate in different ways at the same frequency. The modes that only involve a single
environment and vibration are highlighted in bold.

U-O Motion α-UO3 β-UO3 γ-UO3 δ-UO3 η-UO3

length E1 E2 E3 E4 E5 E1 E2

Symm. str. - 856 - - 856 878 732 823 - 780
<1.9 Å 787 787 449 658

535

Asym. str. - - - - - - - - - 836

U-O str. - - - - - 680 - - - -

Bend (U) - - - - - - - 325 - -
366
205

Symm. str. - - 535 - - - - - 847 -
1.9 - 478
2.1 Å 171

Asym. str. - - 680 - - - - - - -

U-O str. - - 787 787 - - - - - -
711 711

680
535

Symm. str. 536 - - - - - - 732 847 -
2.1 - 449 171
2.3 Å 325

Asym. str. - - - - - - - 376 - -

U-O str. - - - - - - - - - 466

Bend (no U) 298 - - - - - - - - -
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Table C.2: The IR active modes seen in simulated spectra of the five phases of UO3.
E1–E5 represents different uranium environments in β- and γ-UO3, which may vibrate in
different ways at the same frequency. The modes that only involve a single environment
and vibration are highlighted in bold.

U-O Motion α-UO3 β-UO3 γ-UO3 δ-UO3 η-UO3

length E1 E2 E3 E4 E5 E1 E2

Symm. str. - - - - - - - 860 - 771
<1.9 Å 761 687

Asym. str. - 879 - - 996 996 860 950 - 863
761 854
758 845

U-O str. - - - - - - - - - 478

Bend (U) - - - - - - 290 335 - 310
268 282 310 307

291

Bend (no U) - - - - - - - - - 371
332

Symm. str. - - 727 727 - - - - - -
495 495

1.9 - Asym. str. 464 - 568 568 - - - - 698 -
2.1 Å 565 565

436 436

Bend (U) 241 - 281 - - - - - 277 -

Symm. str. - - - - - - - 465 - -

2.1 - Asym. str. 360 - 568 576 - - - - 504 -
2.3 Å 386

U-O str. - - - - - - - - - 478
443

Bend (U) 304 - 268 281 - - - - 250 -
268 158

Bend (U) - 268 - - - 281 397 - - -
>2.3 Å 368

300

U Lattice Mode - - - - - - 125 125 - -
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Vibrational Properties of γ-UO3

Figure C.1: Schematics showing the vibrational motions found in the simulated spec-
trum of γ-UO3. A1–7 refer to motions involving environment 1 (Figure 5.2.c) and B1–7
refer to motions involving environment 2 (Figure 5.2.d).
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Figure C.2: Diagrams to represent the vibrational motions on each environment at
each frequency for the simulated γ-UO3 spectrum. The numbers refer to the motions
given in Figure C.1 and the signs show whether motions are in- or out-of-phase. The
vibrations are considered Raman or IR active if the calculated activity is greater than
5 % of the highest intensity peak.

177



Vibrational Properties of δ-UO3

Figure C.3: Schematic diagrams showing the vibrational motions within the 16 atom
unit cell of δ-UO3 at each Raman or IR active vibrational frequency. Blue, red and
brown circles represent uranium and two oxygen environments, respectively, the solid
black lines represent uranyl bonds (1.9 Å) and the green (2.1 Å) and purple (2.3 Å)
dashed lines represent longer U-O bonds. (d) represents doubly degenerate vibrations.
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Table C.3: Calculated vibrational frequencies for the 16 atom unit cell of δ-UO3. The
first column links the motion to Figure C.3.

Motion Activity DFT (cm−1) Description

(1) R 850 Breathing
(2) IR 704/703 Antisymm. stretch (1.9 Å)
(3) IR 510 Antisymm. stretch (2.1 Å)
(4) R 488 Symm. stretch (1.9 Å)
(5) IR 284 Bending (1.9 Å and 2.3 Å)
(6) IR 255 Bending (All U–O)
(7) IR 253 Bending (1.9 Å)
(8) R 192 Breathing (Out-of-phase)
(9) IR 158 Bending (U-O-U-O chain)
(10) IR 156 Lattice mode (U)

Vibrational Properties of α-UO3

Table C.4: The calculated vibrational frequencies for α-UO3 compared with experimen-
tal values from Allen and Holmes [80] and this work. The labels in the motion column
indicate the illustration from Figure C.4.

This work (R) Allen [80] (IR) DFT Motion Symmetry
(cm−1) (cm−1) (cm−1) label

- 930 - - -
∼840 890 - - -
∼760 775 - - -

- 710 464 (IR) (C.4.5) Stretching A2u

∼560 - 536 (R) (C.4.1) Stretching Eg

- 500 360 (IR) (C.4.3) Stretching Eu

- 390 304 (IR) (C.4.6) Bending A2u

∼370 - 298 (R) (C.4.4) Bending A1g

∼240 - 241 (IR) (C.4.2) Bending Eu
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Figure C.4: (1–6) Schematic representation of the motions associated with each irre-
ducible representation of the α-UO3 coordination environment, which has D3d symmetry.
(2a, 5a and 6a) The three motions predicted by Tsuboi et al. [64] that differ from those
in this investigation.
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Vibrational Properties of β-UO3

Figure C.5: Diagrams representing the vibrational motions for uranium environments
in β-UO3; these motions refer to the schematics presented in Figure C.6.
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Figure C.6: Schematics representing the vibrational motions seen in each Raman or IR
active frequency in the simulated spectrum of β-UO3. The numbers refer to the motions
described in Figure C.5, while the sign shows which motions are in and out of phase
to one another. Environments 1 to 5 are coloured blue, green, red, yellow and purple,
respectively. The vibrations are considered Raman (R) or IR active if the calculated
activity is greater than 15 % of the highest intensity peak.
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Figure C.7: (a) The experimental unit cell of β-UO3, with the five environments la-
belled. (b–f) Uranium environments 1–5 of the β-UO3 experimental structure, with bond
distances given in Å. The structure after relaxation has been presented in Figure 5.5.
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Vibrational Properties of η-UO3

Figure C.8: The motions of uranium environments in the simulated spectrum of η-UO3,
associated with the vibrational frequencies shown in Figure C.9. The uranium environ-
ment is represented by a blue circle, the three oxygen environments are represented by
brown, green and red circles, the collinear uranyl bonds (∼1.8 Å) are represented by
solid black lines, bonds between 2.0–2.5 Å are represented by dashed green lines and
the longest bonds (2.7 Å) are represented by dashed pink lines. A circle with an arrow
illustrates the direction of vibrational motion for that atom, an empty circle indicates
that the atom is not moving and a filled circle represents an atom that is moving, but
the motion is more significant for a different U-O bond.
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Figure C.9: Diagrams describing the vibrational modes for each Raman or IR active
mode in the simulated spectrum of η-UO3. The numbers correspond to the motions
detailed in Figure C.8 and the signs indicate which environments are vibrating in- and
out-of-phase.
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Chapter D

Statistical Analysis of Experimental

Raman Spectra

The tables shown in this section detail the vibrational bands seen in the Raman spectra

for each mineral described in Chapter 6. The positions given are an average of the same

band seen in multiple spectra of the same sample, and both the standard deviation and

the number of spectra in which each peak is seen are given. Literature bands are given;

these have typically been deconvoluted. The assignment is based upon that given for the

published spectra. The figures shown here illustrate the Raman spectra collected using

all three excitation wavelengths for each mineral.
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Figure D.1: A comparison of the three laser wavelengths for the uranyl phosphate
mineral autunite. The left figure shows the raw spectra. Each section of the spectra
shown on the right has been independently rescaled, to emphasise the bands.

Table D.1: Raman spectral bands for the uranyl phosphate mineral autunite

This Study Literature [69]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

193 † 1.7 31 190, 222 Lattice Vibrations

283 * 4.2 19 291 v2(UO2)2+ bend

– – – 399, 406, 439, 464 v2(PO4)3− bend

– – – 629 v4(PO4)3− bend

830 3.6 60 816, 822, 833 v1(UO2)2+ symm. stretch

899 * 4.93 9 – v3(UO2)2+ antisymm. stretch

990 2.67 21 988
v3(PO4)3− symm. stretch1001 § 7.53 31 1007

1008 4.16 21 1018

Sixty individual spectra were analysed for this sample of autunite.
* Low intensity or broad bands, not always visible in spectra.
† The 193 cm−1 peak was most prominent within the 785 nm spectra.
§ The 1001 cm−1 peak was only visible when the 990 and 1008 cm−1 peaks were not.
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Figure D.2: A comparison of the three laser wavelengths for the uranyl phosphate
mineral torbernite. The left figure shows the raw spectra. Each section of the spectra
shown on the right has been independently rescaled, to emphasise the bands.

Table D.2: Raman spectral bands for the uranyl phosphate mineral torbernite

This Study Literature [69]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

191 * 2.3 26 – Lattice Vibrations

– – – 222, 290 v2(UO2)2+ bend

404 * 2.7 24
399, 406, 439, 464 v2(PO4)3− bend

440 * 3.9 9

– – – 629 v4(PO4)3− bend

825 1.8 38 808, 826 v1(UO2)2+ symm. stretch

903 * 2.1 10 900 v3(UO2)2+ antisymm. stretch

992 1.75 38 957, 988, 995, 1004 v3(PO4)3− antisymm. stretch

Thirty eight individual spectra were analysed for this sample of torbernite.
* Low intensity or broad bands, not always visible in spectra.
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Figure D.3: A comparison of the three laser wavelengths for the uranyl arsenate mineral
nováčekite. The left figure shows the raw spectra. Each section of the spectra shown on
the right has been independently rescaled, to emphasise the bands.

Table D.3: Raman spectral bands for the uranyl arsenate mineral novác̆ekite

This Study Literature [70] Literature [69]
AttributionPosition Standard Number Saléeite Peak

(cm−1) Deviation of spectra Positions (cm−1)

185 2.9 28 177, 196 – Lattice Vibrations

269 * 6.0 10 218, 234, 283 284 v2(UO2)2+ bend

325 * 4.3 14
376, 405, 446, 471 389

v2(PO4)3− bend
452 * 2.6 10 or
471 * 5.5 8 v2(AsO4)3− bend

– – – 573, 612 643 v4(PO4)3− bend

817 2.6 55 827, 843 818, 833, 847 v1(UO2)2+ symm. stretch

889 5.6 36 896 – v3(UO2)2+ antisymm. stretch

989 2.3 11
980, 994, 1007 982, 988, 1007 v3(PO4)3− antisymm. stretch

1034 * 2.6 7

Fifty five individual spectra were analysed for this sample of novác̆ekite.
No literature spectra are available for a direct comparison with novác̆ekite, so its spec-
trum has been compared against saléeite, its phosphate analogue.
* Low intensity or broad bands, not always visible in spectra.
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Figure D.4: A comparison of the three laser wavelengths for the uranyl arsenate mineral
zeunerite. The left figure shows the raw spectra. Each section of the spectra shown on
the right has been independently rescaled, to emphasise the bands.

Table D.4: Raman spectral bands for the uranyl arsenate mineral zeunerite

This Study Literature [87]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

– – – 182 Lattice Vibrations

– – – 218, 235, 275 v2(UO2)2+ bend

323 * 4.9 5 320, 380 v2(AsO4)3− bend

404 * 4.6 7 396
v4(AsO4)3− bend

463 6.6 19 446, 463

821 3.0 25 811, 818 v1(UO2)2+ symm. stretch

886 4.5 16 890 v3(UO2)2+ antisymm. stretch

987 1.7 9 – unknown

1029 * 2.8 4 – unknown

Twenty five individual spectra were analysed for this sample of zeunerite.
* Low intensity or broad bands, not always visible in spectra.
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Figure D.5: A comparison of the three laser wavelengths for the uranyl phosphate
mineral phosphuranylite. The left figure shows the raw spectra. Each section of the
spectra shown on the right has been independently rescaled, to emphasise the bands.

Table D.5: Raman spectral bands for the uranyl phosphate mineral phosphuranylite

This Study Literature [267]

Attribution
Minerva Saddle Ruggles

Position Standard Number Heights Ridge Mine
(cm−1) Deviation of spectra Position (cm−1)

148 * 2.3 16 111, 152, 117, 145, 112, 147, Lattice
175 166 161 Vibrations

216 * 4.2 13 211 205 208

v2(UO2)2+ bend
239 * 3.7 5 220 227, 240 238
260 * 3.9 13 263 267 267
283 * 3.4 5

295
294 287

312 * 5.3 6

435 6.0 25 404, 435, 368, 394, 396, 398, 421, v2(PO4)3−

452 417, 439 437, 452, 476 bend

558 * 2.7 7 564, 613, 500, 532, 511, 515, 536, v4(PO4)3−

655 566 569, 616 bend

801 4.9 29 768, 793, 816, 837, 812, 817, v1(UO2)2+

805, 815 843, 847 832, 841 symm. stretch

– – – – – 894 v3(UO2)2+

antisymm. stretch

992 † 2.8 10 992 1009 1005
1017 † 1.2 8 1016 1050 1032, 1050, v3(PO4)3−

1055 antisymm. stretch
– – – 1122 1125 1124

Twenty nine individual spectra were analysed for this sample of phosphuranylite.
* Low intensity or broad bands, not always visible in spectra.
† The 992 and 1017 cm−1 bands appear together, in a small number of 785 nm spectra.
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Figure D.6: A comparison of the three laser wavelengths for the uranyl carbonate
mineral andersonite. The left figure shows the raw spectra. Each section of the spectra
shown on the right has been independently rescaled, to emphasise the bands.

Table D.6: Raman spectral bands for the uranyl carbonate mineral andersonite

This Study Literature [286]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

130 3.1 7 164, 182 Lattice Vibrations

225 * 5.2 8
224, 242, 284, 299 v2(UO2)2+ bend

291 * 3.3 6

743 * 2.0 4 697, 732, 744 v4(CO3)2− bend

833 0.5 15 830, 833 v1(UO2)2+ symm. stretch

1092 2.3 15 1080, 1092 v1(CO3)2− symm. stretch

– – – 1370, 1406 v3(CO3)2− antisymm. stretch

Fifteen individual spectra were analysed for this sample of andersonite.
* Low intensity or broad bands, not always visible in spectra.
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Figure D.7: A comparison of the three laser wavelengths for the uranyl carbonate
mineral schröckingerite. The left figure shows the raw spectra. Each section of the
spectra shown on the right has been independently rescaled, to emphasise the bands.

Table D.7: Raman spectral bands for the uranyl carbonate mineral schröckingerite

This Study Literature [76]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

– – – 157 Lattice Vibrations

253 * 0.5 3
308 v2(UO2)2+ bend

307 * 2.9 4

416 * 3.8 5
471 v2(SO4)2− bend

496 * 3.6 6

743 2.1 16 707, 742 v4(CO3)2− bend

815 1.0 21 815 v1(UO2)2+ symm. stretch

984 2.0 14
983 v1(SO4)2− symm. stretch

1009 * 0.8 12

1093 1.8 12 1092 v1(CO3)2− symm. stretch

1136 3.3 9 1090, 1100, 1147 v3(SO4)2− antisymm. stretch

Twenty one individual spectra were analysed for this sample of schröckingerite.
* Low intensity or broad bands, not always visible in spectra.
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Figure D.8: A comparison of the three laser wavelengths for the uranyl sulphate mineral
johannite. The left figure shows the raw spectra. Each section of the spectra shown on
the right has been independently rescaled, to emphasise the bands.

Table D.8: Raman spectral bands for the uranyl sulphate mineral johannite

This Study Literature [295]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

– – – 184 Lattice Vibrations

203 * 3.0 13 205
v2(UO2)2+ bend

244 * 2.4 10 277

– – – 302 Cu-O stretch

352 * 0.8 6 384 v2(SO4)2− bend

448 * 1.7 7 481, 539 v4(SO4)2− bend

836 1.1 30 756, 788, 812 v1(UO2)2+ symm. stretch

– – – 948, 975 v3(UO2)2+ antisymm. stretch

1045 1.3 14 1042 v1(SO4)2− symm. stretch

1095 3.1 18 1009, 1100, 1147 v3(SO4)2− antisymm. stretch

Thirty individual spectra were analysed for this sample of johannite.
* Bands are only visible in a number of 532 and 785 nm spectra.
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Figure D.9: A comparison of the three laser wavelengths for the uranyl sulphate mineral
natrozippeite. The left figure shows the raw spectra. Each section of the spectra shown
on the right has been independently rescaled, to emphasise the bands.

Table D.9: Raman spectral bands for the uranyl sulphate mineral natrozippeite

This Study Literature [300]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

191 * 1.1 16 196 Lattice Vibrations

250 * 2.1 10 250 v2(UO2)2+ bend

397 1.8 28 373, 398, 431, 498 v2(SO4)2− bend

– – – 669 v4(SO4)2− bend

840 4.5 38 813, 823, 834, 840, 841 v1(UO2)2+ symm. stretch

1013 0.7 21 980, 1007, 1010 v1(SO4)2− symm. stretch

1094 * 1.5 15
1081, 1091, 1130 v3(SO4)2− antisymm. stretch

1159 * 4.1 12

Thirty eight individual spectra were analysed for this sample of natrozippeite.
No information was forthcoming from the 532 nm spectra, as a fluorescence band drowned
the region under investigation. The wavelength that gave the best spectra was 785 nm.
* Bands are not consistently visible in all spectra.
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Figure D.10: A comparison of the three laser wavelengths for the uranyl silicate mineral
uranophane. The left figure shows the raw spectra. Each section of the spectra shown
on the right has been independently rescaled, to emphasise the bands.

Table D.10: Raman spectral bands for the uranyl silicate mineral uranophane

This Study Literature [78]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

209 * 2.8 13
213, 250, 280, 288, 324 v2(UO2)2+ bend

283 * 3.4 6

399 * 2.0 6 398, 469 v2(SiO4)4− bend

544 * 0.9 6 544 v4(SiO4)4− bend

800 1.4 21 711, 786, 792, 796 v1(UO2)2+ symm. stretch

856 * 1.7 3 – v3(UO2)2+ antisymm. stretch

961 3.5 16 960, 963 v3(SiO4)4− antisymm. stretch

Twenty one individual spectra were analysed for the sample of uranophane.
* Bands are not consistently visible in all spectra.
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Figure D.11: A comparison of the three laser wavelengths for the uranyl silicate mineral
cuprosklodowskite. The left figure shows the raw spectra. Each section of the spectra
shown on the right has been independently rescaled, to emphasise the bands.

Table D.11: Raman spectral bands for the uranyl silicate mineral cuprosklodowskite

This Study Literature [78]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

203 2.4 13 205, 217

v2(UO2)2+ bend
273 * 3.1 5 267, 276
299 * 1.0 5

301
312 * 0.9 3

384 * 0.5 3 411, 476 v2(SiO4)4− bend

– – – 507, 535 v4(SiO4)4− bend

792 1.6 19 746, 758, 774, 787 v1(UO2)2+ symm. stretch

919 * 2.0 6 – v3(UO2)2+ antisymm. stretch

974 2.1 13 974 v3(SiO4)4− antisymm. stretch

Nineteen individual spectra were analysed for the sample of cuprosklodowskite.
* Bands are not consistently visible in all spectra.
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Figure D.12: A comparison of the three laser wavelengths for the uranyl silicate mineral
kasolite. The left figure shows the raw spectra. Each section of the spectra shown on
the right has been independently rescaled, to emphasise the bands.

Table D.12: Raman spectral bands for the uranyl silicate mineral kasolite

This Study Literature [78]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

196 8.5 8 154, 165, 185 Lattice Vibrations

230 0.5 8 217, 231, 234, 285, 302 v2(UO2)2+ bend

415 * 1.0 3 415, 454 v2(SiO4)4− bend

– – – 501, 533, 575 v4(SiO4)4− bend

760 0.5 9 721, 750, 758, 766, 793 v1(UO2)2+ symm. stretch

904 0.9 8 903 v3(UO2)2+ antisymm. stretch

939 0.9 6 – v3(SiO4)4− antisymm. stretch

Nine individual spectra were analysed for this sample of kasolite.
* Bands are not consistently visible in all spectra.
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Figure D.13: A comparison of the three laser wavelengths for the uranyl hydrate
mineral compreignacite. The left figure shows the raw spectra. Each section of the
spectra shown on the right has been independently rescaled, to emphasise the bands.

Table D.13: Raman spectral bands for the uranyl silicate mineral compreignacite

This Study Literature [29]
AttributionPosition Standard Number Position

(cm−1) Deviation of spectra (cm−1)

164 * 3.0 6 153 Lattice Vibrations

204 * 1.9 7 197, 253 v2(UO2)2+ bend

329 * 5.3 10 – unknown

402 * 3.7 8 439 v(U3O) stretch)

460 * 5.0 12 – unknown

549 1.1 7 602, 687
U-O-H bend and
water liberation

834 † 4.24 38 824, 848 v1(UO2)2+ symm. stretch

– – –
1010, 1050, 1080, 1110,

U-O-H bending
1160, 1190, 1330, 1454

Thirty eight individual spectra were analysed for this sample of compreignacite.
* Bands are not consistently visible in all spectra.
† A smaller peak or shoulder is sometimes present about 804 cm−1 in 785 nm spectra,
or about 858 cm−1 in 325 nm spectra.
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Chapter E

Vibrational Analysis of Autunite

Minerals

This appendix presents the vibrational analysis for the simulated autunite minerals in

Chapter 7. First, schematics illustrating the vibrational motions are given, followed by

tables and spectra for each individual phase.

Table E.1: The calculated energies and k -point meshes used in the simulations of
the M3(XO4)2 and MO structures. These systems were used to calculate Em for the
simulated saléeite, nováčekite, torbernite, zeunerite and mixed structures in Section 7.4.
The calculated energies of γ-UO3 and H2O are also given.

System k -point mesh Calculated Energy per
(no. k -points) 1formula unit (eV)

Mg3(PO4)2 2× 2× 4 (12) -79.93
Mg3(AsO4)2 2× 2× 4 (12) -89.26
Cu3(PO4)2 2× 2× 4 (12) -80.33
Cu3(AsO4)2 2× 2× 4 (12) -71.44

MgO 4× 4× 4 (36) -11.87
CuO 4× 4× 4 (36) -9.84
γ-UO3 — -34.94
H2O — -14.75
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Vibrational Motions

Figure E.1: The vibrational motions that involve the uranyl cations (str. = stretch;
sym. = symmetric; antisym. = antisymmetric). The labels refer to those given in Tables
E.2–E.15.
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Figure E.2: The vibrational motions that involve the phosphate and arsenate anions
(X = P/As; str. = stretch; sym. = symmetric; antisym. = antisymmetric). The labels
refer to those given in Tables E.2–E.15.
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Saléeite

Figure E.3: The simulated Raman and IR spectra of saléeite (Mg(UO2)2(PO4)2·10H2O)
from 100–1100 cm−1.

Table E.2: Analysis of the Raman and IR active modes seen in the simulated spectra of
saléeite. The frequencies are given in cm−1. The Raman (R) and infrared (IR) activities
are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 P3 P4

1058 IR A1 A1 A1 A1 B1 B1 B1 B1 U-O str.; PO4 antisym. str.
963 R/IR - A1 - A1 B4 B4 B4 B2 U-O str.; PO2 antisym. str.; P-O str.
958 IR - A2 - - B5 B2 B3 B1 UO2 antisym. str.; P-O str.; PO2 sym. str.; PO4 antisym. str.
957 IR - A2 A1 A2 B4 B3 B3 B3 UO2 antisym. str.; U-O str.; PO2 antisym. str.; PO2 sym. str.
955 R - - - - B1 - - B1 PO4 antisym. str.
954 R/IR - A2 A1 A2 - B3 B5 - UO2 antisym. str.; U-O str.; PO2 sym. str.; PO3 antisym. str.
951 IR A1 - - A2 B5 - - B1 U-O str.; UO2 antisym. str.; PO4 antisym. str.
950 IR A1 - - A2 B5 - - B5 U-O str.; UO2 antisym. str.; PO3 antisym. str.
947 R - A2 - - - B4 B5 - UO2 antisym. str.; PO2 antisym. str.; PO3 antisym. str.
937 IR A1 A1 - - B8 B2 B2 B2 U-O str.; PO4 sym. str.; P-O str.
935 IR - A2 - - B3 B8 B8 B8 UO2 antisym. str.; PO2 sym. str.; PO4 sym. str.
811 R A3 A1 - A3 - - - - UO2 sym. str.; U-O str.
810 R A3 A3 - A3 - - - - UO2 sym. str.
800 R - A1 A3 - - B2 - - U-O str.; UO2 sym. str.; P-O str.
792 R A3 A3 - A3 - - - B13 UO2 sym. str.; P translation
764 R - A3 A3 - - B13 - - UO2 sym. str.; P translation
722 IR - A1 - A1 - - - B13 U-O str.; P translation
583 IR - - - - B11 B10 B9 B9 PO3 bending; PO2 bending; PO4 bending
384 R - - - - B9 B9 B9 B9 PO4 bending
333 IR A5 A5 A5 - - - - - UO2 bending
278 IR - - A4 A4 B10 B9 B11 B9 U-O bending; PO2 bending; PO4 bending; PO3 bending
275 IR A4 - A4 A4 B9 - B10 - U-O bending; PO4 bending; PO2 bending
269 IR A4 - A4 - - B9 - B9 U-O bending; PO4 bending
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Saléeite-Nováčekite P3As1

Figure E.4: The simulated Raman and IR spectra of the P3As1 mixed phase of saléeite-
nováčekite (Mg(UO2)2(PO4)1.5(AsO4)0.5·10H2O) from 100–1100 cm−1.

Table E.3: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P3As1 mixed phase of saléeite-nováčekite. The frequencies are given in cm−1. The
Raman (R) and infrared (IR) activities are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 P3 As4

1071 IR A1 A1 A1 A1 B1 B13 B1 - U-O str.; PO4 antisym. str.
1018 R/IR - A1 A2 - B2 B1 B13 B1 UO2 antisym. str.; PO4 antisym. str.; AsO4 antisym. str.
953 IR - A1 - - - B5 - - U-O str.; PO3 antisym. str.
949 R - - - - B1 - B1 - PO4 antisym. str.
947 IR - - - - B1 - B5 - PO4 antisym. str.; PO3 antisym. str.
945 IR A2 A2 A1 A1 B5 B2 B3 - UO2 antisym. str.; PO3 antisym. str.; PO2 sym. str.
945 IR - A2 A1 A2 B3 B2 B3 - UO2 antisym. str.; U-O str.; PO2 sym. str.; P-O str.
936 IR A1 - - A1 B8 B2 B6 - U-O str.; PO4 sym. str.; P-O str.; PO3 sym. str.
933 IR - A1 - - B6 B7 B3 - U-O str.; PO4 antisym. str.; PO3 sym. str.; PO2 sym. str.
835 R - A1 A3 - - B5 - B1 U-O str.; UO2 sym. str.; PO3 antisym. str.; AsO4 antisym. str.
818 R A3 - - A3 B2 - - - UO2 sym. str.; P-O str.
809 R - A3 - A3 - - - B2 UO2 sym. str.; As-O str.
796 R A3 A3 A3 A3 - - - B2 UO2 sym. str.; As-O str.
772 IR - - - - - - - B1 AsO4 antisym. str.
768 IR - A3 - - - - - B1 UO2 sym. str.; AsO4 antisym. str.
759 R - A3 A3 - - - - B5 UO2 sym. str.; AsO3 antisym. str.
717 IR - A1 - - - - - B2 U-O str.; As-O str.
383 R - - - - B9 - B9 - PO4 bending
326 IR A5 A4 A5 A5 - - - B10 UO2 bending; U-O bending; AsO2 bending
322 IR A5 - - A5 - - - - UO2 bending
317 IR - A5 A4 - - - - B9 UO2 bending; U-O bending; AsO4 bending
277 IR A4 A4 - A4 B10 B11 B9 B9 U-O bending; PO2 bending; PO4 bending; AsO4 bending
262 IR - A4 A4 - - B9 B10 - U-O bending; PO4 bending; PO2 bending
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Saléeite-Nováčekite P2As2a

Figure E.5: The simulated Raman and IR spectra of the P2As2a mixed phase of saléeite-
nováčekite (Mg(UO2)2(PO4)(AsO4)·10H2O) from 100–1100 cm−1, in which phosphate
and arsenate ions are found in alternating layers.

Table E.4: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2a mixed phase of saléeite-nováčekite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1066 IR - A1 A1 - B1 B1 - - U-O str.; PO4 antisym. str.
979 IR A2 A2 A2 A2 B2 - - - UO2 antisym. str.; P-O str.
955 R/IR - A2 - A1 B4 B5 - - UO2 antisym. str.; U-O str.; PO3 antisym. str.; PO2 antisym. str.
953 IR - A2 A1 A2 B2 B6 - - UO2 antisym. str.; U-O str.; PO3 antisym. str.; P-O str.
948 IR - A2 - A1 B6 B1 - - UO2 antisym. str.; U-O str.; PO3 sym. str.; PO4 antisym. str.
940 R/IR - A1 - - B7 B5 - - U-O str.; PO4 antisym. str.; PO3 antisym. str.
935 IR - A2 - - B6 B1 - - UO2 antisym. str.; PO3 sym. str.; PO4 antisym. str.
929 R/IR - A2 A1 - B8 B8 - - UO2 antisym. str.; U-O str.; PO4 sym. str.
852 IR - - - A1 - - - - U-O str.
821 R - - A3 - - - - - UO2 sym. str.
804 IR - - A3 - - - - - UO2 sym. str.
803 R - A3 A3 - - - - B2 UO2 sym. str.; As-O str.
797 IR A1 A1 A3 - - - - B2 U-O str.; UO2 sym. str.; As-O str.
782 R - A3 - - B2 B7 - - UO2 sym. str.; P-O str.; PO4 antisym. str.
776 R - - - A3 - - B5 B1 UO2 sym. str.; AsO3 antisym. str.; AsO4 antisym. str.
756 IR - - - - - - B1 B5 AsO4 antisym. str.; AsO3 antisym. str.
751 IR - - - - - - B4 B1 AsO2 antisym. str.; AsO4 antisym. str.
743 IR A1 - - - - - B2 B5 U-O str.; As-O str.; AsO3 antisym. str.
738 IR - - - - - - B4 B1 AsO2 antisym. str.; AsO4 antisym. str.
717 IR A1 - - A1 - - B2 B2 U-O str.; As-O str.
375 IR A4 - - A4 - - B11 B9 U-O bending; AsO4 bending; AsO2 bending
318 IR A5 A5 - A5 - - B10 B10 UO2 bending; AsO2 bending
293 R - - - - - - B9 B9 AsO4 bending
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Saléeite-Nováčekite P2As2b

Figure E.6: The simulated Raman and IR spectra of the P2As2b mixed phase of saléeite-
nováčekite (Mg(UO2)2(PO4)(AsO4)·10H2O) from 100–1100 cm−1, in which phosphate
and arsenate ions alternate within the layers.

Table E.5: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2b mixed phase of saléeite-nováčekite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1032 R A2 A1 A2 A2 B1 B1 - - UO2 antisym. str.; U-O str.; PO4 antisym. str.
1007 IR A1 A1 A2 A2 B1 B1 - - U-O str.; UO2 antisym. str.; PO4 antisym. str.
1005 IR - - - - B13 B2 - - P translation; P-O str.
965 R A2 A2 - A2 B2 B1 - - UO2 antisym. str.; P-O str.; PO4 antisym. str.
950 IR - A2 A1 A2 B4 - - - UO2 antisym. str.; U-O str.; PO2 antisym. str.
942 IR - A1 A1 - B7 - - - U-O str.; PO4 antisym. str.
940 IR - - - - - B5 - - PO3 antisym. str.
937 IR - - - A1 - B5 - - U-O str.; PO3 antisym. str.
930 IR - A2 - - B5 - - - UO2 antisym. str.; PO3 antisym. str.
922 IR - - - - B2 B8 - - P-O str.; PO4 sym. str.
915 IR - A1 A1 - B8 B2 - - U-O str.; PO4 sym. str.; P-O str.
868 IR - - - - - - B2 B2 As-O str.
835 R A3 - - A3 - B3 - B3 UO2 sym. str.; PO2 sym. str.; AsO2 sym. str.
832 R A3 - - A1 - B1 - B1 UO2 sym. str.; U-O str.; PO4 antisym. str.; AsO4 antisym. str.
826 R - A1 A1 - B3 - B5 - U-O str.; PO2 sym. str.; AsO3 antisym. str.
813 IR - A1 - - B13 - B5 - U-O str.; AsO3 antisym. str.; P translation
803 R A3 - - A3 - - - B8 UO2 sym. str.; AsO4 sym. str.
801 R - A3 A3 - - - B7 - UO2 sym. str.; AsO4 antisym. str.
789 R A1 A3 A3 A3 - - B7 B4 U-O str.; UO2 sym. str.; AsO4 antisym. str.; AsO2 antisym. str.
787 IR A3 A3 A1 A3 - - B2 B7 UO2 sym. str.; U-O str.; As-O str.; AsO4 antisym. str.
777 IR - A1 - - - - B1 B3 U-O str.; AsO4 antisym. str.; AsO2 sym. str.
776 IR A3 - - A3 - - B4 B5 UO2 sym. str.; AsO2 antisym. str.; AsO3 antisym. str.
770 IR - A3 - - - - B5 B4 UO2 sym. str.; AsO3 antisym. str.; AsO2 antisym. str.
750 IR - A3 - - - - B4 B2 UO2 sym. str.; AsO2 antisym. str.; As-O str.
745 IR - - - - - - B1 B4 AsO4 antisym. str.; AsO2 antisym. str.
715 IR - - - A1 - - - B2 U-O str.; As-O str.
706 IR - - - - - - - B2 As-O str.

627/676 IR - - - - - - - - Water only
516 IR - - - - B9 B9 - - PO4 bending
468 R - - - - - - B9 B9 PO4 bending
381 IR A5 - - A5 - - B11 B9 UO2 bending; AsO4 bending; AsO3 bending
378 R - - - - B9 - B10 - PO4 bending; AsO2 bending
372 IR A5 A6 A4 A6 - - B9 B9 UO2 bending; U translation; U-O bending; AsO4 bending
324 IR A5 A5 A5 A5 - - - - UO2 bending
318 IR A5 A5 A5 - - - B9 - UO2 bending; AsO4 bending
259 IR A4 A6 A4 A4 - - B9 B9 U-O bending; U translation; AsO4 bending
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Saléeite-Nováčekite P2As2c

Figure E.7: The simulated Raman and IR spectra of the P2As2c mixed phase of saléeite-
nováčekite (Mg(UO2)2(PO4)(AsO4)·10H2O) from 100–1100 cm−1, in which the mixed
layers of phosphate and arsenate ions are offset from one another.

Table E.6: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2c mixed phase of saléeite-nováčekite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1008 R/IR A1 A1 A2 A1 B1 B1 - - U-O str.; PO4 antisym. str.
998 IR A2 - - A1 B4 B5 - - UO2 antisym. str.; U-O str.; PO2 antisym. str.; PO3 antisym. str.
950 IR - A2 A1 A2 B4 - - - UO2 antisym. str.; U-O str.; PO2 antisym. str.
947 IR A2 A2 - - B2 B4 - - UO2 antisym. str.; P-O str.; PO2 antisym. str.
942 IR - - A1 - B7 - - - U-O str.; PO3 antisym. str.
940 IR - - - - - B5 - - PO3 antisym. str.
933 IR - - - - - B7 - - PO4 antisym. str.
930 IR - A2 - - B5 - - - UO2 antisym. str.; PO3 antisym. str.
917 R/IR - A1 - - B8 - - - U-O str.; PO4 sym. str.
856 R - - A3 - - - - B8 UO2 sym. str.; AsO4 sym. str.
850 R A1 - A3 A3 B2 - B8 B3 U-O str.; UO2 sym. str.; P-O str.; AsO4 sym. str.; AsO2 sym. str.
833 R A3 - - A3 - B1 B1 - UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
826 R - A1 - - B3 - - B5 U-O str.; PO2 sym. str.; AsO3 antisym. str.
814 IR - - - - B13 - - B7 P translation; AsO4 antisym. str.
806 R A3 - - A3 - B2 B8 - UO2 sym. str.; AsO4 sym. str.; P-O str.
802 R - A3 A3 - - - - B6 UO2 sym. str.; AsO3 sym. str.
796 IR - A3 A3 - - - - B5 UO2 sym. str.; AsO3 antisym. str.
788 R - A3 A3 A3 - - B2 B7 UO2 sym. str.; As-O str.; AsO4 antisym. str.
784 R A3 - A3 A3 - - B5 B5 UO2 sym. str.; AsO3 antisym. str.
778 IR A3 - - A3 - - B5 B1 UO2 sym. str.; AsO4 antisym. str.; AsO3 antisym. str.
777 IR - - - A3 - - B5 B5 UO2 sym. str.; AsO3 antisym. str.
776 IR - - - - - - B1 B1 AsO4 antisym. str.
768 IR - A3 - - - - B1 B4 UO2 sym. str.; AsO4 antisym. str.; AsO2 antisym. str.
763 IR - A3 A3 - - - B4 B2 UO2 sym. str.; AsO2 antisym. str.; As-O str.
718 IR - - - A1 - - B4 - U-O str.; AsO2 antisym. str.
674 IR - - - - - - - - Water only
640 IR - - - - - - - - Water only
373 IR A6 A5 A4 A4 - - B9 B9 U translation; UO2 bending; U-O bending; AsO4 bending
318 IR - A5 A5 A5 - - - B9 UO2 bending; AsO4 bending
318 IR A5 A5 - A5 - - B9 - UO2 bending; AsO4 bending
258 IR A4 A4 A4 A4 - B9 B10 B9 U-O bending; PO4 bending; AsO2 bending; AsO4 bending
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Saléeite-Nováčekite P1As3

Figure E.8: The simulated Raman and IR spectra of the P1As3 mixed phase of saléeite-
nováčekite (Mg(UO2)2(PO4)0.5(AsO4)1.5·10H2O) from 100–1100 cm−1.

Table E.7: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P1As3 mixed phase of saléeite-nováčekite. The frequencies are given in cm−1. The
Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are labelled
by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 As2 As3 As4

1017 R/IR A2 A1 A2 A2 B1 - B1 - UO2 antisym. str.; PO4 antisym. str.; AsO4 antisym. str.
980 IR A2 A1 A2 A1 B1 - - - UO2 antisym. str.; U-O str.; PO4 antisym. str.
946 R/IR - A2 A1 A2 B4 - - - UO2 antisym. str.; U-O str.; PO2 antisym. str.
938 IR - - A1 - B7 - - - U-O str.; PO4 antisym. str.
927 IR - A2 - - B1 - - - UO2 antisym. str.; PO4 antisym. str.
863 IR - - - A1 - - B2 B3 U-O str.; As-O str.; AsO2 sym. str.
852 R - - A3 A1 B2 B3 B6 - UO2 sym. str.; U-O str.; P-O str.; AsO2 sym. str.
846 R A3 - A3 A3 B2 B8 B3 B3 UO2 sym. str.; P-O str.; AsO4 sym. str.; AsO2 sym. str.
822 R - A1 A3 - B1 - B5 - U-O str.; UO2 sym. str.; PO4 antisym. str.; AsO3 antisym. str.
808 R/IR - A1 - - B13 - B5 - U-O str.; P translation; AsO3 antisym. str.
800 R/IR A1 A3 A3 - - B2 B6 B2 U-O str.; UO2 sym. str.; As-O str.; AsO3 sym. str.
795 IR A3 - A3 A3 - B3 B5 B8 UO2 sym. str.; AsO3 antisym. str.; AsO4 sym. str.
792 R/IR A3 A1 A3 - - B2 B5 B3 UO2 sym. str.; U-O str.; AsO3 antisym. str.; AsO2 sym. str.
786 R - A3 A3 - - - B7 - UO2 sym. str.; AsO4 antisym. str.
777 R A3 - - A1 - B2 B3 B5 UO2 sym. str.; U-O str.; AsO2 sym. str.; AsO3 antisym. str.

775 (d) R/IR - - - A3 - B5 B4 B4 UO2 sym. str.; AsO3 antisym. str.; AsO2 antisym. str.
769 IR A3 A3 - A3 - B4 B1 B5 UO2 sym. str.; AsO2 antisym. str.; AsO4 antisym. str.
764 R A3 A3 - A3 - B2 B4 B4 UO2 sym. str.; As-O str.; AsO2 antisym. str.
764 IR A3 - - - - B5 - B5 UO2 sym. str.; AsO3 antisym. str.
754 IR - A1 - - - B1 B4 B4 U-O str.; AsO2 antisym. str.
746 IR - A1 - - - B4 B5 B4 U-O str.; AsO4 antisym. str.; AsO2 antisym. str.
714 IR A3 - - A3 - B4 - B4 UO2 sym. str.; AsO2 antisym. str.
630 IR - - - - - - - - Water only
463 R - - - - - B12 B9 B12 As-O bending; AsO4 bending
444 R - - - - - B9 - B9 AsO4 bending
372 IR A4 - - A4 - B11 B10 B11 U-O bending; AsO3 bending; AsO2 bending
366 IR A4 A6 A5 - - B11 B9 B11 U-O bending; U translation; UO2 bending; AsO4 bending
320 IR - A5 A5 A5 - - B10 B12 UO2 bending; AsO2 bending; As-O bending
317 IR A5 - - A5 - B11 - B10 UO2 bending; AsO3 bending; AsO2 bending
293 R - - - - - B9 - B9 AsO4 bending
253 IR A5 - - A5 B10 B9 - B9 UO2 bending; PO2 bending; AsO4 bending
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Nováčekite

Figure E.9: The simulated Raman and IR spectra of nováčekite
(Mg(UO2)2(AsO4)2·10H2O) from 100–1100 cm−1.

Table E.8: Analysis of the Raman and IR active modes seen in the simulated spectra
of nováčekite. The frequencies are given in cm−1. The Raman (R) and infrared (IR)
activities are noted.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 As1 As2 As3 As4

975 IR A2 - A2 - - - - - UO2 antisym. str.
948 IR A1 A2 - A2 - - - - U-O str.; UO2 antisym. str.
859 IR - A1 A1 A1 - - - B2 U-O str.; As-O str.
806 IR - A1 - A3 B2 - B2 B5 U-O str.; UO2 sym. str.; As-O str.; AsO3 antisym. str.
795 R - - A3 A1 B2 B8 B8 - UO2 sym. str.; U-O str.; As-O str.; AsO4 sym. str.
793 IR - - A3 - - B8 - - UO2 sym. str.; AsO4 sym. str.
790 IR A3 A3 - - B2 B4 - B3 UO2 sym. str.; As-O str.; AsO2 sym. str.; AsO2 antisym. str.
782 R/IR A3 - A3 A3 B3 B2 - B8 UO2 sym. str.; As-O str.; AsO4 sym. str.; AsO2 sym. str.
771 R A1 A3 A3 - B2 B6 B5 - U-O str.; UO2 sym. str.; AsO3 sym. str.; AsO3 antisym. str.
769 IR A3 A1 A1 A3 B3 B5 - B5 UO2 sym. str.; U-O str.; AsO2 sym. str.; AsO3 antisym. str.
761 IR - A1 - - - B2 - - U-O str.; As-O str.
760 R - - - A3 B5 B1 B4 B5 UO2 sym. str.; AsO4 antisym. str.; AsO2 antisym. str.
754 IR A3 - - - B5 B4 - B4 UO2 sym. str.; AsO2 antisym. str.; AsO3 antisym. str.
752 IR - A3 - A3 B2 B4 B2 B5 UO2 sym. str.; As-O str.; AsO2 antisym. str.; AsO3 antisym. str.
749 IR - A3 - - B4 B4 B5 B4 UO2 sym. str.; AsO2 antisym. str.; AsO3 antisym. str.
746 R - A3 - - B2 B4 B5 B5 UO2 sym. str.; As-O str.; AsO2 antisym. str.; AsO3 antisym. str.
740 IR - A3 A1 - B1 B4 B5 B1 UO2 sym. str.; U-O str.; AsO4 antisym. str.; AsO2 antisym. str.
623 IR - - - - B9 B9 B9 B9 AsO4 bending
430 IR A4 - - A4 B9 B9 B11 B9 U-O bending; AsO4 bending; AsO3 bending
369 IR - A3 A1 - B4 B4 B5 B5 UO2 sym. str.; U-O str.; AsO2 antisym. str.; AsO3 antisym. str.
360 IR A4 - A4 A5 B9 B10 B11 B9 U-O bending; UO2 bending; AsO4 bending; AsO2 bending
292 R - - - - B9 B9 B9 B9 AsO4 bending
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Torbernite

Figure E.10: The simulated Raman and IR spectrum of torbernite
(Cu(UO2)2(PO4)2·8H2O) from 100–1100 cm−1.

Table E.9: Analysis of the Raman and IR active modes seen in the simulated spectra
of torbernite. The frequencies are given in cm−1. The Raman (R) and infrared (IR)
activities are noted. Doubly degenerate modes are labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 P3 P4

1041 IR A1 A1 A1 A1 B1 B1 B1 B1 U-O str.; PO4 antisym. str.
1004 R - - - - - - - - Water only

963 (d) IR - - - - B4 B4 - - PO2 antisym. str.
962 IR A2 A2 A2 A2 - - - - UO2 antisym. str.
950 R - - - - - - B1 B1 PO4 antisym. str.
945 R - - - - B1 B1 - - PO4 antisym. str.
943 IR - - - - - - B5 B5 PO3 antisym. str.
943 IR - - - - - - B1 B1 PO4 antisym. str.

935 (d) IR - - - - B4 B4 - - PO2 antisym. str.
852 (d) IR - - - - - - - - Water only
829 (d) IR - - - - - - - - Water only

821 IR A1 A1 A1 A1 - - - - U-O str.
813 R A3 A3 A3 A3 - - - - UO2 sym. str.
809 R A3 A3 A3 A3 - - - - UO2 sym. str.
759 IR A3 A3 A3 A3 - - - - UO2 sym. str.
757 R A3 A3 - - - - - - UO2 sym. str.

755 (d) IR - - - - - - - - Water only
562 IR - - - - B9 B9 - - PO4 bending

518 (d) IR - - - - B9 B9 B9 B9 PO4 bending
440 R - - - - B9 B9 B9 B9 PO4 bending
421 R - - - - B9 B9 - - PO4 bending
389 R - - - - B9 B9 - - PO4 bending
370 R - - - - B9 B9 - - PO4 bending

326 (d) IR - - A5 A5 - - - - UO2 bending
322 (d) IR A5 A5 - - - - - - UO2 bending
281 (d) IR - - A4 A4 B10 B10 B9 B9 U-O bending; PO2 bending; PO4 bending
274 (d) IR A4 A4 - - B9 B9 B9 B9 U-O bending; PO4 bending
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Torbernite-Zeunerite P3As1

Figure E.11: The simulated Raman and IR spectrum of the P3As1 mixed phase of
torbernite-zeunerite (Cu(UO2)2(PO4)1.5(AsO4)0.5·8H2O) from 100–1100 cm−1.

Table E.10: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P3As1 mixed phase of torbernite-zeunerite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are
labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 P3 As4

1077 IR - - A1 A1 - B1 B1 - U-O str.; PO4 antisym. str.
1005 R - - - - - - - - Water only
1003 IR A2 A2 A1 A1 B1 B1 B1 B1 UO2 antisym. str.; U-O str.; PO4 antisym. str.; AsO4 antisym. str.
969 IR A1 A1 A2 A2 B1 B13 B13 - U-O str.; UO2 antisym. str.; PO4 antisym. str.; P translation
957 IR - - - - B4 - - - PO2 antisym. str.
944 R - - - - - B1 B1 - PO4 antisym. str.

939 (d) IR - - - - - B1 B1 - PO4 antisym. str.
927 (d) IR - - - - B4 - - - PO2 antisym. str.

895 IR A1 A1 A1 A1 - - - - U-O str.
853 (d) IR - - - - - - - - Water only

829 R A3 A3 A1 - B1 - - B1 UO2 sym. str.; U-O str.; PO4 antisym. str.; AsO4 antisym. str.
818 IR A1 A1 A1 A3 - - - - U-O str.; UO2 sym. str.
814 R A3 A3 A3 A3 - - - - UO2 sym. str.
810 IR - - A1 A1 - - - - U-O str.
793 R A3 A3 - - - - - B8 UO2 sym. str.; AsO4 sym. str.

774 (d) IR - - - - - - - B4 AsO2 antisym. str.
760 IR A3 A3 A1 A1 - - - B1 UO2 sym. str.; U-O str.; AsO4 antisym. str.
758 R A3 A3 - - - - - B3 UO2 sym. str.; AsO2 sym. str.
466 R - - - - - - - B9 AsO4 bending
438 R - - - - B9 B9 B9 B9 PO4 bending; AsO4 bending
384 R - - - - B9 B9 B9 - PO4 bending

382 (d) IR A5 A6 - - - - - B9 UO2 bending; U translation; AsO4 bending
368 R - - - - B9 B9 - - PO4 bending

321 (d) IR A5 A5 - A5 - - - B10 UO2 bending; AsO2 bending
314 R - - - - - - - - Water only
291 R - - - - - - - - Water only

276 (d) IR - - A4 A4 - B9 B9 - U-O bending; PO4 bending
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Torbernite-Zeunerite P2As2a

Figure E.12: The simulated Raman and IR spectra of the P2As2a mixed phase of
torbernite-zeunerite (Cu(UO2)2(PO4)(AsO4)·8H2O) from 100–1100 cm−1, in which phos-
phate and arsenate ions are found in alternating layers.

Table E.11: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2a mixed phase of torbernite-zeunerite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are
labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1001 R A2 A2 - - B13 - - - UO2 antisym. str.; P translation
990 IR A2 A2 A1 A1 B1 B1 - - UO2 antisym. str.; U-O str.; PO4 antisym. str.
955 IR A2 A2 A2 A2 B4 B1 - - UO2 antisym. str.; PO2 antisym. str.; PO4 antisym. str.
954 IR - - A1 - B4 - - - U-O str.; PO2 antisym. str.
953 IR A1 A1 - A2 B4 - - - U-O str.; UO2 antisym. str.; PO2 antisym. str.

928 (d) IR - - - - - B1 - - PO4 antisym. str.
923 (d) IR - - - - B1 - - - PO4 antisym. str.
855 (d) IR - - - - - - - - Water only
838 (d) IR - - - - - - - - Water only

832 R - - A3 A3 - B1 - B1 UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
826 R A3 A3 - - B1 - B1 B1 UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
822 IR A1 A1 - - - - - - U-O str.
821 IR A1 A1 - - - - - - U-O str.
809 R A3 A3 A3 A3 - - - - UO2 sym. str.
803 R/IR - - A1 A1 - - - - U-O str.
799 R - - A3 A3 - - - B8 UO2 sym. str.; AsO4 sym. str.
791 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.
785 R - - A3 A3 - - B1 B1 UO2 sym. str.; AsO4 antisym. str.

774 (d) IR - - - - - - B1 B4 AsO4 antisym. str.; AsO2 antisym. str.
761 (d) IR - - - - - - B4 - AsO2 antisym. str.

755 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.
752 IR A3 - A3 A3 - - - B1 UO2 sym. str.; AsO4 antisym. str.
462 R - - - - - - B9 B9 AsO4 bending
434 R - - - - B9 - B9 - PO4 bending; AsO4 bending
383 R - - - - B9 - - - PO4 bending

378 (d) IR A5 A4 - - - - B9 B10 UO2 bending; U-O bending; AsO4 bending; AsO2 bending
366 R - - - - B9 - - - PO4 bending

320 (d) IR A5 A5 A5 A4 - - B9 - UO2 bending; U-O bending; AsO4 bending
265 (d) IR A4 A4 A5 A5 - B9 B9 B9 U-O bending; UO2 bending; PO4 bending; AsO4 bending
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Torbernite-Zeunerite P2As2b

Figure E.13: The simulated Raman and IR spectra of the P2As2b mixed phase of
torbernite-zeunerite (Cu(UO2)2(PO4)(AsO4)·8H2O) from 100–1100 cm−1, in which phos-
phate and arsenate ions alternate within the layers.

Table E.12: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2 mixed phase of torbernite-zeunerite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are
labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1002 R A2 - - - B13 - - - UO2 antisym. str.; P translation
990 R/IR A2 A2 A1 A1 B1 B1 - - UO2 antisym. str.; U-O str.; PO4 antisym. str.
983 R A2 A2 - - B1 B3 - - UO2 antisym. str.; PO4 antisym. str.; PO2 sym. str.

970 (d) IR - - - - - - - - Water only
956 IR A1 A1 A2 A2 B4 B13 - - U-O str.; UO2 antisym. str.; PO2 antisym. str.; P translation
956 IR - - A1 - B4 - - - U-O str.; PO2 antisym. str.
954 IR A2 A2 A2 A2 B4 B1 - - UO2 antisym. str.; PO2 antisym. str.; PO4 antisym. str.

928 (d) IR - - - - - B4 - - PO2 antisym. str.
923 (d) IR - - - - B4 - - - PO2 antisym. str.
858 (d) IR - - - - - - - - Water only
842 (d) IR - - - - - - - - Water only

833 R - - A3 A3 - B1 - B1 UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
823 IR A1 A1 - - - - B13 - U-O str.; As translation
809 R A3 A3 A3 A3 - - - - UO2 sym. str.
805 IR - - A1 A1 - - - - U-O str.
798 R - - A3 A3 - - - B8 UO2 sym. str.; AsO4 sym. str.
792 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.
786 R - - A3 A3 - - B1 B1 UO2 sym. str.; AsO4 antisym. str.

776 (d) IR - - - - - - B4 B1 AsO2 antisym. str.; AsO4 antisym. str.
763 IR - - - - - - B5 - AsO3 antisym. str.
763 IR - - - - - - B1 - AsO4 antisym. str.
756 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.
753 IR - - A3 A3 - - - B1 UO2 sym. str.; AsO4 antisym. str.
462 R - - - - - - B9 B9 AsO4 bending
434 R - - - - B9 - B9 - PO4 bending; AsO4 bending
384 R - - - - B9 - - - PO4 bending

378 (d) IR A5 A6 - - - - B9 B9 UO2 bending; U translation; AsO4 bending
366 R - - - - B9 - - - PO4 bending
318 IR A5 A5 A4 - - - B9 - UO2 bending; U-O bending; AsO4 bending
318 IR A5 A5 - A5 - - B9 - UO2 bending; AsO4 bending

265 (d) IR A4 A4 A5 A5 - B9 B10 B9 U-O bending; UO2 bending; PO4 bending; AsO4 bending
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Torbernite-Zeunerite P2As2c

Figure E.14: The simulated Raman and IR spectra of the P2As2c mixed phase of
torbernite-zeunerite (Cu(UO2)2(PO4)(AsO4)·8H2O) from 100–1100 cm−1, in which the
mixed layers of phosphate and arsenate ions are offset from one another.

Table E.13: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P2As2c mixed phase of torbernite-zeunerite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are
labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 P2 As3 As4

1029 R A2 A2 A2 A2 B1 B1 - B1 UO2 antisym. str.; AsO4 antisym. str.
999 R - - - - - - - - Water only
993 IR A2 A2 A1 A1 B1 B1 - - UO2 antisym. str.; U-O str.; PO4 antisym. str.
962 R A1 A1 A2 A2 B1 B1 - - U-O str.; UO2 antisym. str.; PO4 antisym. str.

955 (d) IR - - - - B4 - - - PO2 antisym. str.
929 (d) IR - - - - - B4 - - PO2 antisym. str.
924 (d) IR - - - - B1 - - - PO4 antisym. str.

889 IR A1 A1 A1 A1 - - - - U-O str.
851 (d) IR - - - - - - - - Water only
847 (d) IR - - - - - - - B8 AsO4 sym. str.

834 R - - A3 A3 - B1 - B1 UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
830 (d) IR - - - - - - - - Water only

828 R A3 A3 - - B1 - B1 - UO2 sym. str.; PO4 antisym. str.; PO4 antisym. str.
814 IR A1 A1 - - - - - B13 U-O str.; As translation
810 R A3 A3 A1 - - - - - UO2 sym. str.; U-O str.
807 R - A1 - - - - - - U-O str.
801 R - - A3 A3 - - - B8 UO2 sym. str.; AsO4 sym. str.
792 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.

775 (d) IR - - - - - - B4 B4 AsO2 antisym. str.
770 (d) IR - - - - - - B4 B4 AsO2 antisym. str.

768 R A3 A3 A3 A3 - - B1 - UO2 sym. str.; AsO4 antisym. str.
754 R A3 A3 - - - - B8 - UO2 sym. str.; AsO4 sym. str.
752 IR A3 - A3 A3 - - B2 B1 UO2 sym. str.; AsO4 antisym. str.; As-O str.
434 R - - - - B9 - B9 - PO4 bending; AsO4 bending
384 R - - - - B9 - - - PO4 bending

383 (d) IR - - A5 A4 - - - B9 UO2 bending; U-O bending; AsO4 bending
366 R - - - - B9 - - - PO4 bending

318 (d) IR A5 A5 - A5 - - B9 - UO2 bending; AsO4 bending
265 (d) IR A5 A4 A4 A4 B9 B9 B9 B9 UO2 bending; U-O bending; PO4 bending; AsO4 bending
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Torbernite-Zeunerite P1As3

Figure E.15: The simulated Raman and IR spectra of the P1As3 mixed phase of
torbernite-zeunerite (Cu(UO2)2(PO4)0.5(AsO4)1.5·8H2O) from 100–1100 cm−1.

Table E.14: Analysis of the Raman and IR active modes seen in the simulated spectra
of the P1As3 mixed phase of torbernite-zeunerite. The frequencies are given in cm−1.
The Raman (R) and infrared (IR) activities are noted. Doubly degenerate modes are
labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 P1 As2 As3 As4

1009 IR A2 A2 A2 A2 B1 - - B1 UO2 antisym. str.; PO4 antisym. str.; AsO4 antisym. str.
998 R A1 - - - - - - - U-O str.
984 IR A2 A2 A2 A2 - - - - UO2 antisym. str.
968 IR A1 A1 A2 A2 - - - B1 U-O str.; UO2 antisym. str.; AsO4 antisym. str.

968 (d) IR - - - - - - - - Water only
956 IR - - - - - - - B4 AsO2 antisym. str.
955 IR A1 A1 A1 - - - - B4 U-O str.; AsO2 antisym. str.
953 IR A2 A2 A1 A2 - - - B5 U-O str.; UO2 antisym. str.; AsO3 antisym. str.

920 (d) IR - - - - - - - B1 AsO4 antisym. str.
854 (d) IR - - - - - - - - Water only

848 R - - A3 A3 - B8 B8 - UO2 sym. str.; AsO4 sym. str.
824 R A3 A3 - - B1 - - B1 UO2 sym. str.; PO4 antisym. str.; AsO4 antisym. str.
819 IR A1 A1 - - - - - - U-O str.
808 R A3 A3 - - - - - - UO2 sym. str.
791 R A3 A3 A3 A3 B8 - - - UO2 sym. str.; PO4 sym. str.
786 R A1 A1 A3 A3 - B8 B8 - U-O str.; UO2 sym. str.; AsO4 sym. str.
769 R - - - - - B1 B1 - AsO4 antisym. str.

767 (d) IR - - - - B4 B4 B4 - PO2 antisym. str.; AsO4 antisym. str.
762 (d) IR - - - - B4 B4 B4 - PO2 antisym. str.; AsO4 antisym. str.

753 R A3 A3 - - B8 - - - UO2 sym. str.; PO4 sym. str.
748 (d) IR - - - - - B1 B1 - AsO4 antisym. str.

745 IR - - A3 A3 - B1 B1 - UO2 sym. str.; AsO4 antisym. str.
431 R - - - - B9 - - B9 PO4 bending; AsO4 bending
383 R - - - - - - - B9 AsO4 bending

373 (d) IR - A4 A4 A4 B9 B9 B9 - U-O bending; PO4 bending; AsO4 bending
364 R - - - - - - - B9 AsO4 bending

319 (d) IR - A5 A4 A5 B9 - - - UO2 bending; U-O bending; PO4 bending
286 R - - - - - B9 B9 - AsO4 bending

263 (d) IR A5 A4 A4 A5 B9 B9 B10 B9 UO2 bending; U-O bending; PO4 bending; AsO4 bending
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Zeunerite

Figure E.16: The simulated Raman and IR spectrum of zeunerite
(Cu(UO2)2(AsO4)2·8H2O) from 100–1100 cm−1.

Table E.15: Analysis of the Raman and IR active modes seen in the simulated spectra
of zeunerite. The frequencies are given in cm−1. The Raman (R) and infrared (IR)
activities are noted. Doubly degenerate modes are labelled by ’d’.

Freq. Act. Motion
(cm−1) (R/IR) U1 U2 U3 U4 As1 As2 As3 As4

995 R - - - - - - - - Water only
983 IR A2 A2 A2 A2 - - - - UO2 antisym. str.
957 IR A2 A2 A2 A2 - - - - UO2 antisym. str.

850 (d) IR - - - - - - - - Water only
811 IR A1 A1 - - - - - - U-O str.
798 R A3 A3 A3 A3 B8 B8 - - UO2 sym. str.; AsO4 sym. str.
785 R A1 A1 A3 A3 - - B8 B8 U-O str.; UO2 sym. str.; AsO4 sym. str.
764 R - - - - - - B1 B1 AsO4 antisym. str.
757 R - - - - B1 B1 - - AsO4 antisym. str.

751 (d) IR - - - - B1 B1 B1 B1 AsO4 antisym. str.
751 R A3 A3 - - B8 B8 - - UO2 sym. str.; AsO4 sym. str.
746 IR - - A3 A3 - - B1 B1 UO2 sym. str.; AsO4 antisym. str.
459 IR - - - - B9 B9 B9 B9 AsO4 bending
435 R - - - - B9 B9 - - AsO4 bending
430 R - - - - - - - - Water only

369 (d) IR - - A4 A4 B10 B10 B9 B9 U-O bending; AsO2 bending; AsO4 bending
365 (d) IR A5 A5 - - B10 B10 B10 B10 UO2 bending; AsO2 bending

362 R - - - - B13 B13 - - As translation
318 (d) IR A5 A5 - A5 B9 B10 - - UO2 bending; AsO4 bending; AsO2 bending

282 R - - - - - - B9 B9 AsO4 bending
259 R/IR - - A5 A5 B13 B10 B9 B9 UO2 bending; As translation; AsO2 bending; AsO4 bending
259 R/IR - - A5 A5 B10 - B9 B9 UO2 bending; AsO2 bending; AsO4 bending
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