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Gust-aerofoil coupling with a loaded aerofoil∗

Anna M. Young†

University of Bath, Claverton Down Road, BA2 7AY, UK.

Amanda S. M. Smyth‡

University of Cambridge, Cambridge, CB3 0DY, UK

The unsteady load response of an aerofoil encountering a gust is often modelled using an-

alytical transfer functions, which assume idealised behaviour of both the flow and the aerofoil.

One such transfer function is the Sears function, which models a pure transverse gust interact-

ing with a flat-plate aerofoil at zero mean incidence. The function was extended by Goldstein

and Atassi to account for camber and incidence as well as the presence of a streamwise gust

component. Atassi showed that the effects of camber and incidence (i.e. non-zero mean aero-

foil loading) are not negligible when there is a streamwise gust component. In this work, new

experimental data is shown for an aerofoil with non-zero loading encountering a gust with both

streamwise and transverse components. As well as giving validation to the Atassi model, the

flow physics behind the model is shown, including the superposition of the gust onto the aerofoil

potential field and the propagation of the gust along the aerofoil surface.

Nomenclature

�N, �N = Fourier Coefficients

2 = Aerofoil chord

�P =
%−%in

%0in−%in
= Pressure coefficient

�L =
!

1
2
d*∞

= Lift coefficient

5 = Frequency (Hz)

:1 = 2c
5 2

*∞
= Reduced frequency of transverse gust

:2 = Reduced frequency of streamwise gust

! = Lift (N)

< = Aerofoil camber (% chord)

% = Pressure

' = Unsteady lift normalised by quasi-steady lift

∗An earlier version of this paper was published at the AIAA SciTech as Paper AIAA 2020-0558
†Lecturer, Department of Mechanical Engineering
‡Research Associate, Whittle Laboratory



( = Sears function

C = Time

D = Streamwise velocity perturbation (m/s)

E = Transverse velocity perturbation (m/s)

U = Angle of incidence

n = Atassi gust magnitude

q = phase

d = Density (kg/m3)

Z = Wind tunnel correction factor

Accents and brackets

ˆ = Amplitude

′ = Value when distorted by potential field

| | = modulus

Subscripts

A = As modelled by Atassi

AS = Atassi function normalised by Sears quasi-steady lift

corr = Corrected for wind tunnel height

d = Distortion due to aerofoil

flap = Pertaining to the flaps

G = Gust

GM = Measured Gust

GP = Predicted Gust

QS = Quasi-steady

S = As modelled by Sears

∞ = Freestream quantity

I. Introduction

I
n many of the applications of fluid mechanics, it is necessary to know the unsteady load response of an aerofoil to

a gust, but computing the response using a high-fidelity CFD code or undertaking detailed experimental analysis is

often prohibitively expensive and time-consuming. For this reason, engineers tend to use analytical transfer functions,
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which assume idealised behaviour of both the flow and the aerofoil. One such transfer function is the Sears function [1],

which assumes a pure transverse gust (i.e. an incidence variation) interacting with a flat-plate aerofoil at zero mean

incidence. The Sears-type gust is shown in Fig. 1(a): a uniform streamwise flow of velocity *∞ and a transverse

sinusoidal gust of amplitude Ê and reduced frequency :1 encounters a flat plate at zero mean incidence, giving rise to

an unsteady incidence variation ÛG.

An extension to the Sears function was derived by Goldstein and Atassi [2][3]. The Atassi function models the

flowfield shown in Fig. 1(b), which has a transverse gust similar to the Sears gust, but an additional streamwise gust of

magnitude D̂ and reduced frequency :2 is introduced. Further to this, the Atassi function models an aerofoil with both

camber and incidence and thus takes into consideration the coupling effect between the gust and the potential field

of the loaded aerofoil. Recent work by Wei et al. [4] studied an unloaded aerofoil in a gust with both transverse and

streamwise components. They showed that the Atassi function gives good agreement with wind tunnel data, and that

in the absence of aerofoil loading (as is the case for their un-cambered aerofoil at zero angle of attack), the difference

between the Sears and Atassi functions is simply a matter of normalisation. This is because the second order terms in

the Atassi function are only present when the mean aerofoil load is non-zero, as will be discussed in Section II.

Given the increased applicability of the Atassi function over the Sears function, it is perhaps surprising that little

work has been undertaken on its validation and limitations. Furthermore, wind tunnel facilities that aim to generate a

Sears-type gust will often use a series of flaps, or louvres. These flaps will either introduce a vertical variation in the

flow due to the wakes from the flaps (if they are closely spaced) or allow deviation of the flow far from the flaps, and

thus a smaller gust amplitude than expected (if the flaps are spaced widely apart). If a vertical variation is introduced

to the flow, the gust will resemble the flow modelled by Atassi as opposed to that modelled by Sears. Wei et al. [4]

demonstrated the switch from Sears-type to Atassi-type flow by varying the flap spacing, while Jancauskas et al. [5]

tested a gust generator with only two widely-spaced flaps and found generally good agreement with the Sears function.

As an alternative to using flaps to generate an unsteady inflow, Holmes [6] created a closed wind tunnel with

flexible walls that could move either in or out of phase with each other. This enabled the generation of pure Sears-type

(transverse) gusts, or pure Theodorsen-type (streamwise) gusts. The gusts could also be combined to give an Atassi-

type flow. The work was undertaken prior to the advent of most modern unsteady flow measurement techniques and

so information about the gusts themselves is sparse, but the results showed good agreement with the theoretical values

for unsteady load amplitude.

One of the applications in which the Sears function can be used is the estimation of tidal turbine blade fatigue

life [7]. In this paper, therefore, an aerofoil representative of a tidal turbine blade is used for the experiments. This

aerofoil is thicker (21% chord) than those typically used in aerodynamics experiments, and has significant camber (2%

chord). Some data of a loaded aerofoil encountering a harmonic gust was presented by Cordes et al. [8], who tested

a cambered Clark-Y section at different angles of attack. However, it was later stated by Traphan et al. and Wei et al.
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Fig. 1 Sketch of the aerofoil gust encounters modelled by the Sears and Atassi functions, including the defini-

tions of :1, :2 and ÛG used in this work.

that the gust in their facility varies substantially in the spanwise direction (i.e. the gust is three-dimensional) [9][4],

and so the Atassi function would not be expected to apply.

The data shown in this paper therefore gives new information on how an aerofoil with camber and at non-zero

angle of attack responds to an Atassi type gust. These are the conditions (i.e. when the aerofoil loading is non-zero) in

which the Atassi function differs significantly from the Sears function, and so these experiments provide new insights

into the flow behaviour.

The paper is structured as follows. After an overview of the Sears and Atassi functions, the experimental facility

and method are described. The flowfield in the wind tunnel is examined under both steady and unsteady flow, with

and without the aerofoil, with the aim of testing the assertion of Goldstein and Atassi that the incoming gust and

the upstream aerofoil potential field will superpose linearly [2]. The physical definition of the Atassi gust and its

relationship, or otherwise, to the flap wakes is then discussed and it is shown that the streamwise component of the

gust is actually generated by a slight slanting of the wave front across the height of the wind tunnel. The unsteady lift

measured in the experiments is then compared with the predictions of the Sears and Atassi functions, and the effects of

both camber and incidence are examined. Some limits of agreement between the Atassi function and the experimental

data are also found. Finally, an examination is undertaken of the propagation of the gust down each surface of the

aerofoil, to see whether there is evidence of the gust being stretched on the suction surface due to the faster local flow,

as asserted by Goldstein and Atassi [2].

II. The Sears and Atassi functions
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A. Physical models

The Sears function [1] is used to find the unsteady lift caused on an aerofoil by a sinusoidal transverse gust, shown

in Fig. 1(a). The function was derived assuming zero mean aerofoil loading (zero thickness, camber and mean angle of

attack), but does not lose accuracy when applied to aerofoils with non-zero mean loading if the gust is purely transverse

(i.e. with no :2 component) [3]. The Atassi function was developed by Goldstein and Atassi [2][3] to account for the

coupling effect between the mean aerofoil potential field and the gust, for gusts with both transverse and streamwise

components (shown schematically in Fig. 1(b)).

The Sears function applies to gusts of the following form:

u = n*∞ exp[8(:1G − :1C)]i (1)

The Atassi function applies to gusts with an additional harmonic streamwise component. These gusts therefore

take the form:

u = (D̂i + Êj) exp[8(:1G + :2H − :1C)] = n*∞

(

−
:2

|: |
i +

:1

|: |
j

)

exp[8(:1G + :2H − :1C)] (2)

Here, |: | is defined as

√

:2
1
+ :2

2
. The aerofoil is assumed to be aligned with the horizontal axis, so the j-vector

represents the transverse gust component, and the i-vector the streamwise component. The definitions of :1 and :2 are

given in Fig. 1.

The notable difference between the Sears gust (Eq. 1) and the Atassi gust (Eq. 2) is the definition of gust amplitude.

In the case of the Sears gust, the amplitude is given by the variation in angle of attack, i.e.:

Ûg = n*∞ (3)

For the Atassi gust, the gust amplitude is a function of both gust components. Given that the gust amplitudes are

small (D̂ << *∞, Ê << *∞), Wei et al. [4] showed that the amplitude of the oscillating inflow angle is given by:

Ûg = tan−1

(

n*∞
:1

|: |

*∞ + n*∞
:1

|: |

)

≈
n :1

|: |
(4)

This means that for a fixed gust strength n in Atassi’s definition, and for nonzero :2, the actual measured variation

in angle of attack Ûg will increase with :1. As noted by Wei et al., "the gust strength [n] in the Atassi problem is not

strictly tied to the physical quantity [the gust angle Ûg]" [4].

The dependence of the gust amplitude on the harmonic frequencies :1 and :2 in Eq. 4 is a consequence of continuity.

From the definition of velocity in Eq. 2 the continuity equation becomes:
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3D

3G
+
3E

3H
= 8:1D̂ exp[8(:1G + :2H − :1C)] + 8:2Ê exp[8(:1G + :2H − :1C)] = 0 (5)

Cancelling out equal terms in Eq. 5 gives:

:1D̂ + :2Ê = 0 (6)

This means that the transverse and streamwise gust amplitudes must change in response to changes in the reduced

frequencies :1 and :2. The definitions of D̂ and Ê given in Eq. 2 satisfy continuity through Eq. 6. This analysis

demonstrates that the frequency-dependent definition of the gust amplitudes used by Atassi in Eq. 2 is appropriate and

has a physical origin.

B. Transfer functions

In order to obtain the unsteady lift amplitude from the transfer functions, in response to the unsteady gusts in Eq. 1

and 2, the transfer functions are multiplied by the quasi-steady lift, !̂QS. The Sears function gives the unsteady lift as:

!̂S = ((:1)
(

!̂QS

)

S
(7)

where ((:1) is the Sears transfer function. The Atassi function gives the lift as a combination of the Sears transfer

function and two additional terms:

!̂A =

[

((:1)
:1

|: |
+ U!̂U (:1, :2) + <!̂< (:1, :2)

]

(

!̂QS

)

A
(8)

The second and third terms in Eq. 8 are both zero if :2 is zero. The second term relates to the steady angle of attack,

U, in radians, and the third to aerofoil camber, <, as a fraction of the aerofoil chord length. The expressions !̂U (:1, :2)

and !̂< (:1, :2) are complicated functions of the gust frequencies, and can be found in the original work [3].

A recent study by Wei et al. [4] investigated the differences between Sears-style and Atassi-style gusts, and carried

out experimental validation of both transfer functions for a thin symmetric aerofoil at zero mean angle of attack. This

means that no aerofoil loading was included in the analysis, and any difference in load response between the Sears

and Atassi gusts was due to the nature of the gust – whether or not it had a significant :2 component. Wei et al.

provide valuable insight into the Atassi function, showing that one of the primary differences from the Sears function

is its definition of quasi-steady lift, (!̂QS). In the Sears function the quasi-steady lift is given as a function of the gust

amplitude, as:
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(

!̂QS

)

S
= 2cd2*∞Ê ≈ cd2*2

∞Ûg (9)

For the Atassi function, the quasi-steady lift is instead given by:

(

!̂QS

)

A
= cd2*2

∞n (10)

In this case, the gust amplitude is defined by the gust strength parameter n . Wei et al. showed that n and Ûg are

related through Eq. 4, showing that the difference between the quasi-steady lift as defined in the Sears and Atassi

functions lies in the factor :1/|: |. Wei et al. went on to show that for a symmetric aerofoil at zero mean angle of attack,

the Atassi function was equivalent to the Sears function if multiplied by |: | /:1, for any value of :2.

As explained by Atassi [3] and by Wei et al. [4], significant differences between the Sears and Atassi functions only

emerge when there is both a :2 component in the gust, and non-zero mean aerofoil loading due to camber or angle of

attack. An example of a case where the Atassi and Sears functions give significant differences in response is given in

Fig. 2(a). This figure shows the response functions obtained from the Sears and Atassi functions, for an aerofoil with

2% camber and 3◦ mean angle of attack, undergoing oblique gust forcing (:1 = :2). The response function is defined

as follows for the Sears function:

'S =
!̂S

(

!̂QS

)

S

= ((:1) (11)

while for the Atassi function it is given by:

'A =
!̂A

(

!̂QS

)

A

= ((:1)
:1

|: |
+ U!̂U (:1, :2) + <!̂< (:1, :2) (12)

In order to show a more direct comparison between the Sears and Atassi functions, a third response function is

defined by multiplying the Atassi function by |: | /:1, thus normalising it by the same quasi-steady lift as is used in the

Sears function:

'AS =
!̂A

(

!̂QS

)

S

(13)

In order to illustrate the differing contributions of the incidence and camber effects, the functions !̂U (:1, :2) and

!̂< (:1, :2) are shown separately in Fig. 2(b) for the same aerofoil and gust conditions.

Unlike the work of Wei et al. [4], the experiments undertaken in this work use an aerofoil with camber at nonzero

angles of incidence. This will test the assertion that it is only in the presence of both a vertical (:2) gust component

and non-zero mean aerofoil loading that the results differ significantly from the Sears function.
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Fig. 2 Example Sears and Atassi response functions for an oblique gust (:1 = :2) interacting with an aerofoil

with 2% camber at 3◦aerofoil incidence.

Parameter Value

Tunnel height (m) 1.00

Flow speed (m/s) 18.0 - 26.0

Aerofoil chord (m) 0.115

Aerofoil aspect ratio 2.96

Aerofoil Reynolds number 1.41 - 2.08x105

Number of flaps 58

Flap chord (mm) 35

Flap frequency range (Hz) 0 - 8

Reduced frequency range 0 - 0.35

Table 1 Key parameters of the wind tunnel

III. Experimental Method

Schematics of the wind tunnel are shown in Fig. 3(a) and (b), alongside a photograph of the wind tunnel in Fig. 3(c).

The key parameters of the tunnel are given in Table 1. The working section has solid side walls but is open at the top

and bottom, to allow the flow to turn freely as it passes over the aerofoil. A 2D NACA aerofoil is mounted at mid-height

and two chords downstream of the tunnel inlet. The aerofoil profile was chosen to be representative of a tidal turbine

aerofoil, and so has moderate camber (2% chord) and is relatively thick (21% chord). The aerofoil is mounted on a

turntable in order to vary the angle of attack without moving the position of the leading edge in the tunnel. Circular

fillets of radius 3% span were fitted at the junction between the aerofoil and the wind tunnel endwalls. These fillets

were found to suppress the endwall corner separation and prevent it from affecting the flow over the majority of the

aerofoil span, thus giving the desired 2D flow at mid-span. Upstream of the working section there are a vertical series

of flaps which are designed to control the angle of the flow as it exits the wind tunnel. The flap cross-section is a

NACA-0012. The flaps are extruded Aluminium, and on both surfaces of each flap there is a carbon-fibre stiffener of
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Fig. 3 Diagrams and photograph of the wind tunnel test facility.

thickness 0.5 mm. The stiffeners prevent spanwise bending of the flap and were not found to have an adverse effect on

the flow quality downstream of the flaps. The flap chord was chosen as a balance between the need for stiffness (which

sets a minimum thickness) and the desire to minimise unsteady flow behaviour of the flaps (the reduced frequency of the

flap motion will be related to the reduced frequency of the gust encountered by the main aerofoil by :flap = :12flap/2).

The decision of how many flaps to install was made by considering the theoretical case of an infinite number of

flaps with infinitesimal loading. In this case, the flaps would generate a continuous vortex sheet as envisaged by Sears.

The flaps were therefore packed as tightly as possible which gave a ratio of 0.5 between the flap chord and the vertical

spacing of the flaps. Placing the flaps further apart would also risk introducing flow deviation away from the flap

surfaces.

The flaps are mounted in bearings on an Aluminium frame and attached to a DC motor via a cam and a connecting

rod. The mechanism can therefore generate a sinusoidal variation in flow incidence similar to the Sears-type gust. The

amplitude of the gust can be varied by changing the cam size, and the frequency is adjusted by changing the speed of

the motor. For steady-state tests, the flaps are held in either their fully up or fully down position.

The tunnel operating conditions are measured using a sidewall static pressure tapping and a rake of Pitot probes

between the flaps and the aerofoil, as shown on Fig. 3(a). The reference velocity from these probes is within 1% of

the average inlet velocity integrated over the central portion of the wind tunnel. The incoming flow has a turbulence

intensity of approximately 0.5%.

The aerofoil pressure distribution is measured using 43 aerofoil surface pressure tappings at midspan. The tappings

are connected to fast-response pressure transducers via a set of semi-infinite lines. The use of semi-infinite lines
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enables high-frequency measurements to be taken in confined spaces by removing the requirement for the transducers

to be mounted on the aerofoil surface [10]. For the work described in this paper, 1 mm bore tubing was used and a 1

m length was used between each tapping on the aerofoil surface and a 3-way connection. From the 3-way connector,

a short (<10 cm) length went to each transducer and a long (30 m) length was open to the atmosphere. With the

semi-infinite lines connected, the amplitude and phase of the response changes with frequency and so the tappings

with semi-infinite lines were calibrated against a surface-mounted fast-response transducer using a signal generator

and a loudspeaker. In these tests, the resonant frequency of the tappings was found to be over 200 Hz, which is above

the range of frequencies of interest in this work. For steady state tests, the tappings are connected to the transducers

without the semi-infinite lines.

An unsteady total pressure probe was traversed vertically through the flow at various axial locations upstream of

the aerofoil (see Fig. 3(a) for the positions). By measuring the flow three times with the probe oriented at three angles

(-45◦, 0◦, +45◦) the equivalent data from a fast-response three-hole probe could be reconstructed and thus the flow

angle and speed could be calculated. This enabled the gust to be characterised in space and time both with and without

the aerofoil installed. The error in the peak-to-peak gust magnitude measured using this method is approximately

±0.25◦, which is small in absolute terms but large relative to some of the gusts, as will be discussed in Section VI.

Data were sampled at 20 kHz for 20-30 seconds depending on the frequency of the flaps. All data were phase-locked

to the motor frequency using a once-per-revolution sensor on the shaft. This enabled the harmonic response to be

averaged over 50-150 cycles.

IV. Steady-state behaviour of the aerofoil

The wind tunnel generates a finite jet with a height of approximately 8 times the aerofoil chord. This means that the

aerofoil will behave slightly differently to an aerofoil in an ideal, infinite flow, as explained by Brooks et al. [11][12][13].

The most obvious consequence of the finite jet is that the lift is lower than expected and thus the lift curve does not

follow the ideal 2cU rule. This can be rectified by dividing the apparent angle of attack by a correction factor Z .

Correlations for Z were developed for a zero-camber aerofoil by Brooks et al. [11][12]. For the aerofoil used in this

work, the correction factor was found to be 1.19, which agrees with their correlation. In tests with a larger aerofoil

(which will be discussed briefly in Section V), however, the correlation was found to be 5% higher than the value given

by Brooks et al. This may be due to the fact that the aerofoil used in this work has non-negligible camber and thickness.

Steady-state measurements of aerofoil lift were made with the flaps at the working section inlet in both the ‘up’ and

‘down’ positions, such that the true incidence was:

Ucorr =

(

U − Uflap

)

Z
(14)
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A graph of lift coefficient against incidence corrected using Eq. 14 with the flaps in two positions is shown in

Fig. 4(a). The data from the wind tunnel is compared with results from MSES (a coupled Euler-boundary layer

solver [14]). It can be seen that both the flaps up (blue) and flaps down (red) data follow the same line with gradient 2c

as the MSES prediction (black line) at angles below the stall angle. The errors in �L are estimated to be smaller than

the markers in Fig. 4(a), and the agreement between the two sets of data with the flaps in the up and down positions

supports this assertion. The stalling behaviour of the aerofoil differs between MSES and the experiments; this is due

to the large blockage generated when the aerofoil is at angles far from zero and the presence of aerofoil-endwall corner

separations at high incidence. From this point onwards, all incidence values given for experimental data have been

corrected using Eq. 14.

The reason for the reduction in lift in a finite jet is explained by Brooks et al. [11] as being due to the restriction of

the aerofoil potential field: there is a condition of zero velocity potential at the jet boundary and so the aerofoil can be

considered to be in an infinite cascade. The correction found above will only match the total aerofoil lift - the surface

pressure distribution will still be different in the finite jet case, and the potential field around the aerofoil will not match.

For the aerofoil considered here, the error in pressure distribution is quite small. This is shown in Fig 4(b), where

the measured surface pressure (dots) is compared with data from MSES (solid lines) at three different incidences. It

can be seen that there is good agreement between the simulations and the experiments. This is may be due to fact that

the jet height ratio of 8 used in this work is towards the upper end of those used in the literature (Brooks et al. [13]

undertook tests with jet ratios from 0.5 to 11).

The aerofoil potential field will distort an incoming vortical gust, due to the differing convection speeds in different

parts of the flow field, and this may affect the resulting unsteady load, as modelled by Goldstein and Atassi [2]. In

the case of a Sears-type gust, the potential field and the gust will behave independently, but Atassi [3] argues that the

presence of vertical non-uniformities in the gust will cause coupling between the gust and the potential field. Goldstein

and Atassi [2] state that the incoming gust and potential field will superpose linearly, but that the gust convection

speed will be different across the two surfaces of the aerofoil (in contrast to the frozen gust hypothesis, which is valid

for an un-loaded aerofoil). This difference in convection speed is what causes the discrepancy between coupled and

uncoupled gust response. These points will be discussed in the next three sections.

V. Unsteady gusts and their interaction with the aerofoil potential field

The flow angle variation due to the aerofoil potential field is shown in Fig 5(a), which is taken from an MSES

simulation in infinite flow at zero angle of attack. As expected, the most substantial changes in flow angle are close

to the aerofoil, but the aerofoil also exerts a non-negligible influence on the upstream flow. To see this more clearly,

the change in flow angle relative to the mean incidence is shown in Fig. 5(b); this distortion is defined as Ud. The data

is taken from 0.5 chords upstream of the aerofoil and from simulations at incidences from -8◦ (black) to +4◦ (red).
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Fig. 4 Lift curve and surface pressure distributions from MSES and experimental data showing good agreement

when the wind tunnel correction factor is applied to the incidence.

Distortions of up to 4◦ from the mean incidence are observed, with the flow being deflected up on the top surface of

the aerofoil and down on the bottom surface. The distortion in the flowfield is not linear with average incidence or with

vertical position, and the maximum distortion increases with aerofoil loading.

The flow angle measured in the wind tunnel with the aerofoil in place will be affected by this distortion. If the

assertion of Goldstein and Atassi [2] is correct, then the measured distorted gust, U′
GM

, will be the sum of the gust

measured in the empty wind tunnel UG and the distortion due to the quasi-steady aerofoil potential field, Ud. The quasi-

steady distortion, Ud, can be found from the data shown in Fig. 5(b), by interpolating for the measured empty-tunnel

incidence (this interpolation is done after the wind tunnel correction factor, Z , has been applied to the empty tunnel

data). We denote this predicted gust incidence as U′
GP

:

U′
GP
= UG + Ud (15)

Figure 6 shows the incidence variation (flow angle) measured by a probe 0.5 chords upstream of the aerofoil with

the aerofoil in place at a nominal incidence of 0◦∗, U′
GM

, (black lines). The same data is alsow shown from the empty

wind tunnel measurements, UG, (blue) and for the predicted distorted gust, U′
GP

, as defined in Eq. 15 (red).

Figure 6(a) shows the flow angles with flaps stationary in two different positions. Considering first the empty wind

tunnel data (blue), it can be seen that with the flaps in the ‘up’ position, the flow angle oscillates around a mean of

approximately -0.4◦, while the angle reduces to -5.8◦ when the flaps are moved to the ‘down’ position. In both cases,

the wakes from the flaps are visible, causing a 1-2◦ variation in flow angle, but the mean angle over each flap pitch

remains constant between the top and the bottom of the traverse. When the aerofoil is in the wind tunnel, the measured

angle, U′
GM

, is indeed different from UG. As expected from Fig. 5, the effect of the aerofoil potential field is different

∗This corresponds to a corrected mean incidence of -3.2◦, using Eq. 14

12



at the two mean incidences shown in Fig. 6(a): in the flap up case, the incidence is increased at positions above the

aerofoil and reduced slightly below the aerofoil, while the flap down case shows a large reduction in incidence below

the aerofoil, reducing to nothing at the top of the measurement plane. The trend in the predicted flow, U′
GP

(shown in
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Fig. 6 Traverses at x/c = -0.5 with the flaps in the up and down position showing the effect of the aerofoil on the

steady-state flow compared with the no-aerofoil case superposed on the predicted potential field from MSES.

red), is approximately correct, but the magnitude of the distortion is over-predicted. This is particularly apparent in the

data from the top half of the traverse plane with the flaps up, where the distortion predicted by MSES, Ud (the difference

between the blue and red lines), is approximately twice the size of the measured distortion (the difference between the

blue and black lines). When averaged over the traverse plane, U′
GP

for the flaps up case is 1.0◦ higher than the measured

angle, U′
GM

, while the difference in the flaps down cases is 0.2◦ (this smaller value is within the experimental error

bounds). This discrepancy between the distortion predicted by MSES and the measured data suggests that the aerofoil
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potential field is, indeed, affected by the boundaries of the finite jet, despite the agreement of the surface pressure

distributions with MSES (Fig. 4(b)).

The effect of finite jet height on the upstream potential field has not been studied in much detail, perhaps due to

the historically greater difficulty in measuring the flowfield as opposed to the aerofoil forces and pressure distribution.

A CFD study was conducted by Moreau et al. [15], in which they compared the potential field of an aerofoil in an

infinite jet with those obtained with finite height to chord ratios of 1.0 and 3.8. Their results show qualitatively that

the incoming flow behaves differently as the jet height changes but they do not suggest any means of correcting for this

effect.

When the flaps are moving, a similar gust distortion is observed to that discussed above, i.e. the gust is larger when

the aerofoil is installed than in the empty wind tunnel case. An example of this is shown in Fig. 6(b), which shows

the gusts generated by the flaps at a reduced frequency, :1, of 0.13. The data is taken from the same traverse plane as

Fig. 6(a) and the incidence has been averaged over the whole vertical range at each time-step.

The moving flaps generate a sinusoidal gust, resulting in time-warying incidence. The blue line in Fig. 6(b) gives

the gust amplitude, ÛG, needed for normalising the Sears and Atassi response functions (Eq. 3 and 4). With the aerofoil

in place at a nominal incidence of 0◦ (black line)†, the gust is distorted such that the minimum incidence is reduced

by approximately 2◦ while the maximum incidence increases by under 0.5◦. The gust also deviates from a perfect

sinusoid, with a slight skewing of the peak to a later time than that in the empty tunnel case. The predicted distorted

gust, U′
GP

(Eq. 15) is shown in red. Both the increase in gust magnitude and the skewing of the peak are predicted by

this superposition. As in the steady case, however, the amplitude of the gust is over-predicted relative to the measured

data.

Gusts of three different amplitudes were generated at a variety of reduced frequencies from 0 (steady) to 0.35,

and the gust was measured with and without the aerofoil in place at its nominal zero incidence as in Fig. 6(b). The

peak-to-peak amplitude of the predicted distorted gust (2Û′
GP

) is plotted against the actual gust amplitude measured

with the aerofoil in place (2Û′
GM

) in Fig. 7(a). The data points from this set of tests are shown in red, with different

markers denoting each reduced frequency. The dotted black line denotes exact agreement between the measured and

predicted gusts (Û′
GP
= Û′

GM
), while the solid black line shows a straight line through the red points which has equation

Û′
GP
= 1.18Û′

GM
. The error between the predicted and measured gust size is shown in Fig. 7(b), where it can be seen that

it is between 10 and 20% for all but one case. This data therefore shows that the difference between the gust distortion

predicted by MSES and that measured in the wind tunnel is independent of gust amplitude or frequency. These results

suggest that the superposition of the two flowfields is linear and is not affected by unsteady coupling over the frequency

range tested.

The effect of reduced frequency on the amplitude of the gust both with and without the aerofoil is shown more

†This corresponds to a corrected mean incidence of -3.2◦, using Eq. 14
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clearly in Fig. 8(a), which is a plot of incidence change against reduced frequency for the cases with the largest cam

(which gives a peak-to-peak incidence variation of just under 6◦ in the empty wind tunnel case - Fig. 6). Considering

first the blue markers, which show the data from the empty wind tunnel, there appears to be a slight increase in gust

amplitude with reduced frequency (though the changes are of a similar size to the experimental error). This is in line

Eq. 4, which shows the dependence of gust amplitude on :1. Wei et al [4] saw a more marked increase in amplitude

with reduced frequency in their tests; this is likely to be due to the higher streamwise gust frequency, :2, in their tests.

The actual gust amplitude (black markers) follows the same trend as the empty tunnel results. When the empty gust

data is superposed with the potential field from MSES, the data represented by the red markers are obtained. The gap

between the blue and black markers remains approximately constant with reduced frequency, suggesting that there are

no unsteady effects in the superposition of the incoming gust with the aerofoil potential field.

The average error of 18% between the predicted and measured gust amplitude is very close to the wind tunnel

incidence correction factor discussed in Section IV, which is 1.19. This adjustment has, however, already been taken

into consideration in the calculations shown in Fig. 7(a). Also shown on Fig. 7(a) are three measurements taken with a

larger aerofoil of 230 mm chord (blue)‡. The wind tunnel correction factor for this aerofoil is 1.51, but the data lies on

the same line as that from the smaller aerofoil, with an average error of 18%, and so the error appears not to be directly

related to the ratio of wind tunnel height to aerofoil chord.

If the aerofoil incidence is changed, the quasi-steady potential field will change, as shown in Fig. 5(b). The effect

of this on the superposition of the gust with the potential field was investigated by measuring the gust with the aerofoil

at four different angles. The results of this are shown in Fig. 8(b), which is a plot of peak-to-peak amplitude change

against aerofoil incidence for the gust with a reduced frequency, :1 of 0.13 shown in Fig. 6(b). Restrictions in the

traverse slot arrangement meant that the flowfield had to be measured further upstream of the aerofoil (1.0 chords

instead of 0.5 chords), and so the overall distortion is lower than in the other cases. Nevertheless, the same trend is

observed - the blue line shows the magnitude of the gust in the empty wind tunnel, while the black squares show the

gust with the aerofoil in place at each incidence. There is very little change in the distortion of the gust by the aerofoil

across the incidence range tested, despite the lift coefficient changing by approximately 0.4 over this range. As with

all the previous data, the prediction from superposing the simulated quasi-steady potential field with the empty-tunnel

gust (red squares) gives a larger amplitude than the actual data.

The data from the cases with varying aerofoil incidence is denoted by the green stars on Figs 7(a) and (b). It

can be seen that the error is consistent with all the other cases, suggesting that aerofoil incidence does not affect the

superposition of the gust with the potential field (at least for attached flow). Taken as a whole, the data in Figs 7 and 8

show that the gust and the aerofoil potential field superpose linearly regardless of gust reduced frequency, aerofoil

chord and angle of attack. There is a consistent error between Û′
GP

(the prediction obtained by addition of the simulated

‡This data is taken from 0.5 chords upstream of the larger aerofoil, i.e. twice as far away in absolute terms.
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Fig. 8 Effect of reduced frequency and aerofoil mean incidence on the magnitude of the gust in the empty wind

tunnel and with the aerofoil in place (both predicted and measured).

quasi-steady field to gust measured in the empty wind tunnel) and 2Û′
GM

, (the gust measured with the aerofoil in place),

but the fact that the error is unaffected by the magnitude of the aerofoil potential field or by the reduced frequency

shows that there is no non-linear coupling of the two flowfields upstream of the aerofoil over the range of variables

tested here.

The finding that the gust distortion is independent of reduced frequency is in line with the theory of Goldstein and

Atassi [2], who state that the incoming gust will not have its amplitude changed by the steady-state flowfield. Goldstein

and Atassi do state, however, that the wavelength of the gust will change over the aerofoil chord, and this will be

discussed briefly in Section VII. Now that the gusts generated have been quantified, the aerofoil lift response will be

compared with that predicted by the models of Sears and Atassi.
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VI. Aerofoil lift response

A. Measuring unsteady lift

The unsteady component of lift was found by direct integration of the Fourier coefficients, �N and �N, for each

surface pressure measurement at the gust frequency, 5gust:

�N =
2

"

∫ "

0

%(C) sin
(

2c 5gustC
)

3C; (16)

�N =
2

"

∫ "

0

%(C) cos
(

2c 5gustC
)

3C; (17)

where %(C) is the pressure signal and " is the length of the sample (which was set to be many gust cycles, see

Section III). The two Fourier coefficients combine to give the phase and amplitude of the response at each location

(once a calibration has been applied to take into account the phase lag and attenuation due to the semi-infinite lines).

The unsteady pressure difference is then integrated along the aerofoil chord to give the lift. This measured value of

unsteady lift can then be compared with the load predicted by the Sears and Atassi functions.

B. Calculating :2 and n

The frequency of the streamwise gust component, :2, has a significant impact on the result of evaluating the Atassi

function. This means that it is vital to obtain an accurate estimate of :2 when comparing experimental results with the

Atassi function. It is tempting to estimate the spatial frequency in the vertical plane from Fig. 6(a) and the definition of

:2 given in Fig. 1(b). By this process, :2 appears to be approximately 20. However, this method of visually estimating

:2 from the wake spacing in Fig. 6(a) may not be appropriate, as there is no guarantee that the gust corresponds to

the ideal Atassi gust as defined in Eq 2. Instead, the more accurate approach of Wei et al. [4] should be taken and :2

and n must be calculated from the measured values of :1 and ÛG via a two-parameter fit to Eq. 4. The results of this

two-parameter fit for :2 and ÛG are shown in Fig. 9.

Figure 9(a) shows the relationship between the gust amplitude parameter, n and measured gust amplitude ÛG. It

can be seen that n increases linearly with ÛG, as would be expected from Eq. 4. Figure 9(b) shows the calculated :2

values (blue stars), against measured gust amplitude, ÛG. The measured ranges of :1 are included in red for comparison.

Figure 9(b) shows that :2 is reduces slightly with increasing gust amplitude, and that it has a mean value of 0.035.

The two-parameter fit method therefore gives a significantly lower value of :2 than that which was calculated from the

visual estimate of :2 from Fig. 6(a).

The effect of :2 on the physical nature of the gust can be seen by visualising the Atassi function. Figure 10

shows space-time contour plots of flow angle for gusts with the same :1 but different values of :2. On the x-axis
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Fig. 9 Results of the two-parameter fit for n and :2 from measured values of ÛG and :1.

is non-dimensional time, while the y-axis is vertical position and the contours normalised by the gust amplitude, ÛG.

Figures 10(a) and (b) show the ideal Atassi gust obtained from Eq. 2, while Fig. 10(c) is experimental data from the

empty wind tunnel (1 chord upstream of the aerofoil position). It can be seen that the value of :2 makes a marked

difference to the physical shape of the gust. The gust in Fig. 10(a) corresponds to :2 = 0.035 (the value from the

two-parameter fit), while the higher value of :2 = 20 from the visual estimate is used in Fig. 10(b). At low values of :2

(Fig. 10(a)), the gust is almost uniform over the whole vertical range of the plot, so the flow almost exactly resembles a

Sears-type gust. As :2 is increased, the wave front becomes shifted in phase at different vertical locations (Fig. 10(b)).

When :2 is very high (Fig. 10(b)), the gust front is slanted to such an extent that the gust repeats with a very short

wavelength in the vertical direction.

Considering now the space-time plot for the measured gust (Fig. 10(c)), the wave front is visually most similar

to the ideal low-:2 gust in Fig. 10(a). The effect of the flap wakes is to introduce a small spatial variation along the

vertical axis, but this appears as a stationary disturbance, and the main wave front is not significantly slanted. This

result provides visual confirmation that the two-parameter fit is the appropriate method for determining :2.

The finding that :2 is determined by the angle of the wave front as opposed to the flap spacing suggests that the flap

wakes are not the cause of the "Atassi component" of the gust. It is more likely that there is a variation in the vertical

direction due to a slight asymmetry in the wind tunnel, which causes a small shift in the wave front, as shown in Fig. 10.

It is interesting to note that Wei et al.[4] also found a far lower value of :2 than the value suggested by the physical

spacing of the flaps. This suggests that the use of many, closely-spaced flaps does not in and of itself preclude the

generation of a Sears-type gust, despite their wakes generating some spatial variation in the inflow, but that conditions

in the wind tunnel must be extremely uniform to prevent any slanting of the wavefront.

In the analysis below, it will be shown that the lower value of :2 also gives far closer agreement between the Atassi
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function and experimental data. In the following analysis, the Atassi function will be evaluated at the appropriate value

of :2 for each gust amplitude.
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Fig. 10 Space-time plots of flow angle (normalised by ÛG) for theoretical Atassi-type gusts with two different

values of :2 compared with experimental data.

C. Comparing analytical theory and experiments

Figure 11 shows the amplitude of the unsteady lift against :1, calculated from the unsteady transfer functions and

measured in experiments. Figure 11(a) shows the load amplitude normalised by the quasi-steady lift as defined by

Sears (Eq. 9), while Fig. 11(b) uses the quasi-steady lift defined for the Atassi function (Eq. 10). The data is taken

from tests at -0.7◦ mean angle of attack, which was the closest to zero of the available data range. The Atassi function

is evaluated for the same aerofoil parameters, with :2=0.035. Fig. 11(a) shows that in these conditions the Sears

and Atassi functions are nearly identical when normalised consistently, and only diverge at low reduced frequencies
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(:1 <0.1).

The experimental results in Fig. 11 have been categorised by gust amplitude. The data from the two smaller gust

amplitudes (blue dots ÛG = 1◦, and black dots ÛG = 2◦) agree relatively well with the transfer function, but consistently

have slightly higher amplitudes. The difference is, however, within the error margin of the experiment: as stated in

Section III the estimated error in the peak-to-peak gust amplitude measurements (by which the data is normalised) is

±0.25◦. Representative error bars have been added to the data in Fig. 11(a). It can be seen that the uncertainty becomes

larger as the gust size reduces. This shows that the normalisation of the data for comparison with the theoretical

transfer functions is very sensitive to gust amplitude, and that even with relatively accurate measurements of the gust

the uncertainty is large. It is important to note, however, that the error will be a constant percentage of all measurements

with a given gust size.

The data from the largest gust amplitudes (red dots ÛG = 3◦) consistently shows lift amplitudes that are substantially

lower than that predicted by Sears and Atassi. The reason for this is not apparent, but it may be caused by second-order

non-linear effects caused by the large forcing amplitude meaning that the linear approximation implicit in analytical

transfer functions is no longer valid. It could be that this largest gust amplitude (a peak-to-peak amplitude of 6◦) causes

viscous separation on the aerofoil. This, however, seems unlikely, as the mean angle of attack is far from the static stall

angle and there was no evidence of stall in the surface pressure measurements.
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Fig. 11 Comparison of experimental data with the Sears and Atassi transfer functions with the aerofoil at a

mean incidence of -0.7◦ across a range of gust amplitudes, ÛG, and reduced frequencies, :1.

The mean angle of attack (U = −0.7◦) for the results in Fig. 11 was chosen such that the distorting effects of the

aerofoil potential field were small, meaning that the Sears and Atassi functions gave similar results. Below, in Figs 12

and 13, the lift amplitude is shown against the changing mean angle of attack (U), in order to illustrate the effect of

changing the aerofoil potential field. In these figures the lift amplitude has been normalised by the quasi-steady lift

amplitude as defined by Sears (Eq. 9).
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Fig. 12 Amplitude of unsteady response against angle of attack, normalised by quasi-steady response as defined

by Sears compared with the Sears and Atassi functions (Û� = 2◦).

Figure 12 shows the results for experimental gust amplitude ÛG = 2◦. Figure 12(a) shows the results from a single

experimental run (blue circles), and compares the data with both the Sears (black line) and Atassi (red line) functions.

Figure 12(a) shows that there is a marked reduction in the unsteady load response as the angle of attack increases. The

Sears function does not model the effect of angle of attack, and therefore the solution is constant for all U. This means

that the Sears solution disagrees with the experimental data when the angle of attack is not negligible. The Sears and

Atassi solutions cross near the angle at which the aerofoil produces zero lift, as this is the point at which the effect of

the aerofoil potential field switches sign.

The Atassi function is evaluated at :2 = 0.064 in Fig. 12(a), which was the value obtained from the 2-parameter

fit for this gust amplitude (see Fig. 9). As an illustration, the Atassi function is also shown evaluated with :2 = 20

(red dashed line), which was the original visual estimate of :2 from Fig. 6(a). With the higher value of :2, the Atassi

function gives a much more dramatic variation in lift with changing U, indicating that the value of :2 calculated from

the two-parameter fit is the appropriate one to use, rather than the visual estimate.

The vertical dash-dot line in Fig. 12(a) indicates the static stall angle of the aerofoil (see Fig. 4(a)). Below this

angle, the agreement between the experiment and the Atassi function is good. After this the agreement deteriorates, as

is expected when the viscous effects of a stalled aerofoil impact the results. There is a peak in the unsteady response

at U = 20◦. This is observed in all tests and may be a coupling of the aerofoil dyanmic stall with the jet boundaries.

Figure 12(b) shows the data in Fig. 12(a) (red circles) along with measurements from tests at two higher values of

:1. The Atassi function evaluated at the respective values of :1 is shown as solid lines of corresponding colour. Again,

the trend of reducing lift amplitude with increasing
(

!̂QS

)

S
agrees with Atassi up to the static stall angle of the aerofoil,

though there is some disagreement at lower angles of attack.

Fig. 13 shows plots of unsteady load amplitude against angle of attack, for the experiments with gust amplitudes (ÛG)
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Fig. 13 The amplitude of the unsteady response, normalised by the quasi-steady response as defined for the

Sears function, for increasing mean angle of attack, compared with the Atassi function with two different gust

amplitudes.

of 1◦ (Fig. 13(a)) and 3◦ (Fig. 13(b)). In Fig. 13(a), the gradient of the unsteady lift response follows the Atassi function

very well, although the magnitude of the response is slightly under-predicted by the Atassi function. Again, this

difference is within the error margin for measurements of the gust amplitude, by which the response is normalised.

The deterioration in agreement at angles above the static stall angle previously observed in Fig. 12 is less clear with

the smaller gust amplitude, though the same peak is observed at 20◦ angle of attack.

Figure 13(b) shows the normalised lift against mean angle of attack for the largest gust amplitude (ÛG = 3◦). The

experimental results are consistently 50-70% of the unsteady lift amplitude predicted by Atassi, and the gradient of

the unsteady lift response is not well-predicted. As discussed in relation to Fig. 11, this is likely to be due to the

large-amplitude gust causing second-order non-linear effects. Beyond the static stall angle the unsteady effects are

dramatic, and some very large lift amplitudes suggest the presence of dynamic stall (which is also seen in Fig 13(a),

and in Fig. 12).

The results in Figs 12 and 13 suggest that the Atassi function correctly represents the coupling between the aerofoil

potential field and the gust, and its effect on the unsteady lift response. Furthermore, the results emphasise the

importance of correct evaluating :2, which should be found through a 2-parameter fit using Eq. 4, as shown by Wei et

al. [4].

It is also worth noting that the Atassi function does not account for thickness, even though Goldstein and Atassi

suggest that the effect of thickness may be of the same order of magnitude as that of camber and incidence angle [2].

Given that the aerofoil used in this work has significant thickness (21% chord), this may account for some of the

discrepancies observed.
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VII. Speed of gust propagation along the aerofoil

As discussed in Section V, the potential flow upstream of the aerofoil has been shown to superpose linearly onto

the gust, in line with the assertion of Goldstein and Atassi [2]. Goldstein and Atassi, however, predict that aerofoil

loading will cause a difference in the propagation of the gust along the two surfaces, and state that this has an important

effect on the unsteady response of the aerofoil. The effect of the aerofoil loading is to increase the convection speed of

the vortical gust on the suction surface, where the flow velocity is higher than the freestream velocity, while decreasing

the convection speed on the pressure surface, where the flow velocity is lower than the freestream velocity.

From the Fourier analysis described in Section VI, the phase of the pressure fluctuations at each point on the aerofoil

surface can be calculated:

q = tan−1

(

�N

�N

)

(18)

The phases calculated in this way are plotted against axial position for four selected cases in Fig. 14. It should

be noted that the pressure moves in opposite directions on the two surfaces (i.e. an increase in incidence causes a

reduction in the pressure on the suction surface and an increase on the pressure surface), so if the two surfaces were

responding ‘in phase’ with one another there would be an offset of c radians in their calculated phase. In order to aid

comparison, the suction surface data has been shifted by c radians. The data are all shown relative to the phase of the

leading edge pressure transducer. The unsteady loading is mainly concentrated over the front portion of the aerfoil,

and so the response magnitude is very low over the rear of the aerofoil. This means that the measurement accuracy is

low at the rear of the aerofoil, and so there is a large amount of scatter in the data in this region. For this reason, phase

data is only shown up to G/2 = 0.6, though measurements were taken up to 85% of chord.

Figure 14(a) shows the phase lag of the response at two different reduced frequencies. In both cases, the gust

amplitude, ÛG, is 2◦ and the aerofoil incidence is 1.8◦. For each case shown, a straight line fit has been applied to the

data from between the leading edge and G/2 = 0.34, and a dashed line shows the path of the gust if it were to convect

at the free-stream velocity, which is given by:

Δqfrozen = 2c
)gust

)conv
= 2c

2

*∞

:1*∞

2c2
= :1 (19)

where )gust is the gust timeperiod and )conv is the time taken for the freestream flow to pass over the aerofoil.

Considering first the data from :1 = 0.13 (denoted by circles), it can be seen that the phase follows a different

trajectory on the two surfaces. On the pressure surface (shown in blue), a small phase lag develops over the aerofoil,

which is roughly equal to that of a frozen gust (dash-dot line). On the suction surface (shown in red), however, the

increase in phase lag over the chord is much larger than that of a frozen gust. This is due to the stretching of the gust
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on the suction surface [2].

At the higher reduced frequency (:1 = 0.27, denoted by squares), the same trend is observed, with the pressure

surface data (green) lying close to the dashed line denoting the frozen gust propagation. The suction surface data

(cyan) shows a much greater phase lag, again due to the stretching of the gust. The difference between the two aerofoil

surfaces appears to be larger at the higher reduced frequency, but this is not always observed. Eq. 19 suggests that the

phase lag across the aerofoil should increase with reduced frequency, but the response of the aerofoil will also affect

the phase, and these effects are unlikely to superpose linearly.

Figure 14(b) shows the effect of aerofoil incidence on the phase change across the surfaces. The blue and red circles

denote the phase on the pressure and suction surfaces, respectively, from a test with the aerofoil at -0.7◦ incidence, while

the cyan and green squares are from a test with the aerofoil at 6.8◦ incidence. In these cases, the reduced frequency

was fixed at 0.13 and ÛG was 3◦. Again, the frozen gust phase is denoted by the dash-dot line. As in the previous cases,

the phase lag increases more on the suction surface than the pressure surface. In these cases, it seems that the pressure

surface phase lag is increasing more slowly than the frozen gust, and perhaps not at all in the higher incidence case.

A difference can also be observed between the two cases - the higher incidence case shows a larger difference in the

phase lag between the two aerofoil surfaces. This change between the two incidences can be attributed to the increase

in loading with increased mean incidence and the accompanying increase in flow velocity changes across the aerofoil

surfaces.

This analysis shows that there is a difference between the gust propagation across the aerofoil surfaces, with the

phase lag increasing more on the suction surface than the pressure surface. The differences in local flow speed cause the

gust to travel faster on the suction surface and slower on the pressure surface. This finding is in line with the argument

of Goldstein and Atassi [2], and suggests that their model therefore is capturing the major effect of the aerofoil potential

field on the unsteady load response.
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VIII. Conclusion

This paper has presented an examination of the unsteady load generated by an Atassi-type gust on an aerofoil with

non-zero mean load. The results presented above suggest that the Atassi function can predict the effect of changes in

mean aerofoil loading on the unsteady lift experienced by aerofoils, for transverse gusts with a streamwise oscillating

component. In cases with small-to-moderate gust amplitude, the trends in unsteady response are replicated accurately

in terms of the effects of both reduced frequency and aerofoil angle of attack. The agreement is good when the mean

angle of attack is smaller than the static stall angle of the aerofoil; at higher angle of attack the lift response is more

erratic and the agreement deteriorates.

With very small gust amplitudes, the experimental error in measuring the gust generates substantial uncertainty

in the quasi-steady response, and so the absolute magnitude of the data may not be reliable. With very large gust

amplitudes, the trends in the data are also not replicated by the Atassi function, suggesting that the second-order

non-linear effects have become significant.

One limitation of the Atassi function is that aerofoil thickness is not accounted for, although Goldstein and Atassi

suggest that the effect of thickness may be of the same order of magnitude as that of camber and incidence angle [2].

The aerofoil used in the experiments above is chosen to represent the aerofoil section of a tidal turbine blade, which

are generally thicker than those of for example wind turbines or aircraft. As such, discrepancies between the Atassi

function and experiments could be caused by thickness effects.

Examination of the flowfield upstream of the aerofoil has shown that the gust and the aerofoil potential field can

be considered to superpose linearly, i.e. there is no unsteady coupling of the incoming gust with the potential field.

This was shown by comparing gust measurements with the aerofoil in place with the gust obtained by adding the

quasi-steady potential field to the gust measured in the empty wind tunnel. This finding is in line with the analysis of

Goldstein and Atassi [2].

The phase of the surface pressure measurements was used to examine the propagation of the gust along each surface

of the aerofoil. Again, this data agrees with the statement of Goldstein and Atassi that the gust convection speed is

increased, elongating the gust, on the suction surface, and similarly compressing the gust on the pressure surface due

to the lower local convection speed.

Overall, this paper shows first-of-a-kind validation of the Atassi function for an aerofoil with non-zero mean load

encountering a gust with both streamwise and transverse components. Furthermore, the results presented here suggest

that gust generation through the use of many small vanes generates gusts with very low :2 values, despite some visual

images of the flow field suggesting otherwise. Because of this, the lift amplitude was a relatively weak function of the

mean angle of attack and camber, compared to what it would be at higher :2.
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