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ITERATIVELY REWEIGHTED FGMRES AND FLSQR1

FOR SPARSE RECONSTRUCTION∗2

SILVIA GAZZOLA † , JAMES G. NAGY ‡ , AND MALENA SABATÉ LANDMAN§3

Abstract. This paper presents two new algorithms to compute sparse solutions of large-scale4
linear discrete ill-posed problems. The proposed approach consists in constructing a sequence of5
quadratic problems approximating an `2-`1 regularization scheme (with additional smoothing to en-6
sure differentiability at the origin) and partially solving each problem in the sequence using flexible7
Krylov-Tikhonov methods. These algorithms are built upon a new solid theoretical justification8
that guarantees that the sequence of approximate solutions to each problem in the sequence con-9
verges to the solution of the considered modified version of the `2-`1 problem. Compared to other10
traditional methods, the new algorithms have the advantage of building a single (flexible) approxi-11
mation (Krylov) subspace that encodes regularization through variable “preconditioning” and that12
is expanded as soon as a new problem in the sequence is defined. Links between the new solvers13
and other well-established solvers based on augmenting Krylov subspaces are also established. The14
performance of these algorithms is shown through a variety of numerical examples modeling image15
deblurring and computed tomography.16

Key words. Krylov Methods, Inverse Problems, Sparse reconstruction, Flexible GMRES, Flex-17
ible LSQR, augmented Krylov methods, Image Deblurring, Computed Tomography18

AMS subject classifications. 65F20, 65F22, 65F3019

1. Introduction. Large-scale linear ill-posed inverse problems of the form20

(1.1) Axtrue = btrue + e = b, A ∈ Rm×n,21

where xtrue is the desired unknown solution and e is some unknown Gaussian white22

noise that affects the data b, arise in the discretization of problems stemming from23

various scientific and engineering applications, such as astronomical and biomedical24

imaging, or computed tomography in medicine and industry. In particular, we are25

interested in the case where A is ill-conditioned with ill-determined rank, i.e., the26

singular values of A decay and cluster at zero without an evident gap between two27

consecutive ones to indicate numerical rank. In this case, due to the presence of noise28

in the measured data, the naive solution A†b of (1.1) (where A† is the Moore-Penrose29

pseudoinverse of A) can be very different from the desired solution, A†btrue, due to30

noise amplification; see, e.g., [23]. Therefore, to obtain a meaningful approximation of31

xtrue, problem (1.1) should be regularized, i.e., replaced by a closely related problem32

whose solution is less sensitive to perturbations in the data b (for a more detailed33

discussion on ill-posed and discrete ill-posed problems and regularization see, e.g.,34

[25]).35

One of the most well-known approaches for regularizing linear ill-posed problems36

is Tikhonov regularization, which, in its general formulation, computes a regularized37
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2 S. GAZZOLA, J. G. NAGY AND M. SABATÉ LANDMAN

approximation to the solution of (1.1) by solving the following minimization problem38

(1.2) xλ,L = min
x
‖Ax− b‖22 + λ‖Lx‖22 .39

Here, the regularization parameter λ > 0 balances the effect of the fit-to-data term40

‖Ax − b‖22 and the regularization term ‖Lx‖22. The regularization matrix L ∈ Rq×n41

has the effect of enhancing certain properties on the solution and it is usually chosen42

to be the identity (in this case, problem (1.2) is said to be in standard form) or a43

rescaled finite differences approximation of a derivative operator (to enforce smoother44

solutions); if the null space of A and the null space of L intersect trivially, the general-45

form Tikhonov solution xλ,L is unique.46

For large-scale problems, where A does not have an exploitable structure nor is47

even explicitly stored (i.e., may be defined as a function that efficiently computes the48

actions of A and, possibly, AT , on vectors), the only way to solve problem (1.1) is to49

apply an iterative method to obtain a sequence of approximated solutions {xk}k≥1.50

In fact, many well-known general iterative solvers, e.g., Landweber and Kaczmarz51

methods, and many Krylov subspace methods, leverage the so-called “semiconver-52

gence” phenomenon and lead to a regularized solution if the iterations are stopped53

sufficiently early, with the number of iterations playing the role of a discrete regular-54

ization parameter (see [25, Chapter 6] for a more accurate description). This paper55

will only consider the GMRES and LSQR iterative methods, and variations thereof:56

these are Krylov methods that compute a regularized solution by expanding an ap-57

proximation subspace for the solution and solving a projected least squares problem58

at each iteration. Note that LSQR is mathematically equivalent to CGLS.59

When regularization relies on semiconvergence only, a bad stopping criterion can60

lead to a big error in the approximated solution. Moreover, semiconvergence may hap-61

pen before the relevant basis vectors for the solution are incorporated in the Krylov62

approximation subspace for the solution; see [25, Chapter 6] and [28] for more details.63

These issues can be mitigated by applying further regularization within the iterations,64

e.g., by using schemes that combine an iterative Krylov solver and Tikhonov regu-65

larization, as detailed below. Consider, for simplicity, L = I in (1.2), i.e., Tikhonov66

regularization in standard form. Projecting (1.2) into a kth dimensional Krylov sub-67

space spanned by the columns of the matrix Vk leads to68

(1.3) xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖Vky‖22,69

which is sometimes referred to as “first-regularize-then-project” approach [25, Chap-70

ter 6]. Alternatively, a “first-project-then-regularize” approach can also be used,71

which involves projecting the original linear system (1.1) and then applying standard72

Tikhonov regularization, leading to73

(1.4) xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖y‖22.74

For fixed λ, and assuming the columns of Vk to be orthonormal, expressions (1.3)75

and (1.4) are equivalent and both schemes are interchangeable. Methods employing76

the latter approach are also known as hybrid methods [11, 37] and they have recently77

attracted a lot of attention in the case of large-scale problems where the regularization78

parameter λ is not known a priori; see [10, 19, 21, 30]. Indeed, hybrid methods79

allow for a very efficient (local) choice of the parameter λ = λk at each iteration80

k� min{m,n}; moreover, when k increases, λk seems to stabilize around a value that81

is suitable for the full-dimensional problem (1.2).82

This manuscript is for review purposes only.



ITERATIVELY REWEIGHTED FGMRES AND FLSQR 3

Tikhonov regularization as defined in (1.2) is rather restrictive, and more general83

regularization strategies can yield to better approximations of the solution of (1.1).84

In particular, this paper focuses on regularized problems of the form85

(1.5) min
x
‖Ax− b‖22 + λ‖x‖pp ,86

where, for 0 < p ≤ 1, the `p-norm regularization term enforces sparsity in the so-87

lution. Although sparse vectors have a small `0 “norm”, considering an `0 regu-88

larization term yields to an NP hard optimization problem (1.5); see [16]. There-89

fore, it is common to approximate the `0 regularization term by an `p term with90

0 < p ≤ 1, noting that for 0 < p < 1 problem (1.5) is nonconvex, and for p = 191

problem (1.5) approximates the desired `0-norm via convex relaxation but is non-92

differentiable at the origin; see, e.g., [27, 31, 32]. Note that, if sparsity of the so-93

lution is assumed in a different domain (e.g., wavelets or discrete cosine transform)94

a sparsity transform can be incorporated in the regularization term. The values95

0 < p ≤ 2 will be considered in this paper; when p = 2, problem (1.5) reduces to96

Tikhonov regularization in standard form. The `2-`p regularization problem (1.5)97

can be solved by a variety of optimization methods [4, 22, 33, 46], or by employing98

iterative schemes that approximate the regularization term in (1.5) by a sequence99

of weighted `2 terms [39]. Methods of the second kind come equipped with (local)100

convergence proofs for most values of p > 0, but usually rely on inner-outer schemes101

so they can become very expensive computationally; see, e.g., [5, Chapter 4].102

More recently, solvers for the `2-`p regularization problem that avoid nested loops103

of iterations by combining reweighting techniques and modified Krylov methods have104

gained popularity. Namely, generalized Krylov subspaces are considered in [31, 27,105

6], and hybrid solvers based on the flexible Arnoldi and the flexible Golub-Kahan106

decompositions are considered in [9, 18, 20].107

In this paper, we propose two new iterative Krylov-Tikhonov methods that use108

the flexible Arnoldi and the flexible Golub-Kahan decomposition, respectively, to solve109

the `2-`p regularization problem (1.5) by building a single approximation subspace110

through the iterations. Both algorithms are essentially different from the strategies111

already available in the literature. On the one hand, differently from [31, 27, 6],112

the approach proposed in this paper is based on flexible Krylov subspaces. On the113

other hand, differently from the “first-project-then-regularize” scheme corresponding114

to hybrid methods implicitly adopted in [9, 18], the approach proposed in this pa-115

per exploits a “first-regularize-then-project” scheme. In fact, another contribution of116

this paper is to show that regularizing and projecting are not interchangeable any-117

more in the flexible Krylov subspace setting, and properties derived from using the118

“first-regularize-then-project” approach are used to provide theoretical justification of119

convergence for the newly proposed algorithms. An original interpretation of the new120

algorithms in the general framework of augmented and recycled Krylov subspaces is121

also given. It should be stressed that both the new algorithms are inherently “matrix-122

free” (i.e., they only require the action of A on vectors, and additionally the action123

of AT if the flexible Golub-Kahan decomposition is considered), and allow for an124

iteration dependent choice of the regularization parameter.125

The paper is organized as follows. In Section 2 background material on `2-`p reg-126

ularization is reviewed. In particular, Section 2 explains how to approximate the `p127

regularization term in (1.5) using an iteratively reweighted scheme, and how the trans-128

formation of the resulting problem into standard form leads to iteration-dependent129

right preconditioning for a Tikhonov problem of the form (1.2). In Section 3 two new130
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4 S. GAZZOLA, J. G. NAGY AND M. SABATÉ LANDMAN

algorithms for sparse reconstruction (called IRW-FGMRES and IRW-FLSQR) are131

introduced, along with a solid theoretical proof of convergence and links with aug-132

mented Krylov subspace methods. Finally, numerical results are presented in Section133

4, and general conclusions are given in Section 5.134

2. Background on `2-`p regularization. Iteratively reweighted schemes for135

the `2-`p regularization problem intrinsically rely on the interpretation of problem136

(1.5) as a non-linear weighted least squares problem of the form137

(2.1) min
x
‖Ax− b‖22 + λ‖x‖pp = min

x
‖Ax− b‖22 + λ‖W (p)(x)x‖22,138

where the diagonal weighting W (p)(x) is defined as139

(2.2) W (p)(x) = diag
(

(|[x]i|
p−2
2 )i=1,...,n

)
,140

and [x]i denotes the ith component of the vector x. Note that, when 0 < p < 2,141

division by zero might occur if [x]i = 0 for any i ∈ {1, ..., n} and, in fact, this is a far142

from unlikely situation in the case of sparse solutions. For this reason, in this paper,143

instead of (2.2), the following closely related weights are considered144

(2.3) W̃ (p,τ)(x) = diag
(

(([x]2i + τ2)
p−2
4 )i=1,...,n

)
,145

where τ is a fixed parameter chosen ahead of the iterations, and problem (2.1) is146

replaced by147

(2.4) min
x
‖Ax− b‖22 + λ‖W̃ (p,τ)(x)x‖22︸ ︷︷ ︸

T (p,τ)(x)

,148

where τ 6= 0 also ensures that T (p,τ)(x) is differentiable at the origin for p > 0.149

Note that (2.4) should be considered a smooth version of problem (2.1) and, formally,150

problem (2.1) can be recovered from problem (2.4) setting τ = 0.151

A well established framework to solve problem (2.4) is the local approximation152

of T (p,τ) by a sequence of quadratic functionals Tk(x) that give rise to a sequence of153

quadratic problems of the form154

(2.5) xk,? = arg min
x
‖Ax− b‖22 + λ‖Wkx‖22 + ck︸ ︷︷ ︸

Tk(x)

,155

where Wk = W̃ (p,τ)(xk−1,?). Here, ck (a constant term for the kth problem in the156

sequence with respect to x), and λ (which has absorbed other possible multiplicative157

constants with respect to (2.4)) are chosen so that Tk(x) in (2.5) corresponds to a158

quadratic tangent majorant of T (p,τ)(x) in (2.4) at x = xk−1,?. By definition, this159

implies that Tk(x) ≥ T (p,τ)(x) for all x ∈ Rn, Tk(xk−1,?) = T (p,τ)(xk−1,?), and160

∇Tk(xk−1,?) = ∇T (p,τ)(xk−1,?); see also [27, 39]. Since p and τ are chosen ahead of161

the iterations, they are omitted from the notations for the weighting matrix Wk.162

The vector xk,? formally denotes the solution of (2.5). For moderate-scale prob-163

lems, or for large-scale problems where A has some exploitable structure, xk,? may be164

obtained by applying a direct solver to (2.5). For large-scale unstructured problems,165

only iterative solvers can be used in different fashions to approximate the solution of166

(2.5), naturally leading to an inner-outer iteration scheme for the sequence of problems167

This manuscript is for review purposes only.
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(2.4). This is the case considered in the present paper, so that xk,? corresponds to the168

approximate solution xk,l of the kth problem of the form (2.5) (or ‘at the kth outer169

iteration’) at the lth iteration of the inner cycle of iterations. Iteratively Reweighted170

Least Squares (IRLS) or Iteratively Reweighted Norm (IRN) methods based on an171

inner-outer iteration scheme are very popular [12, 39] and have been used in com-172

bination with different inner solvers, such as steepest descent and CGLS. Typically173

xk,? = xk,l is obtained when a stopping criterion is satisfied for problem (2.5) to174

indicate convergence of the approximate solution; alternatively, problem (2.5) can be175

partially solved and xk,? = xk,l denotes the latest available approximation of x. In any176

case, Tk(x) in (2.5) is a quadratic tangent majorant of T (p,τ)(x) in (2.4) at x = xk−1,?,177

and IRLS or IRN approaches are particular instances of majorization-minimization178

(MM) schemes: for fixed λ, it is known that solving a sequence of problems of the179

form (2.5) produces a sequence of approximate solutions that converge to the mini-180

mizer of problem (2.4); see, e.g., [12]. Fully solving each problem (2.5) can result in181

a computationally demanding scheme.182

For Wk square and invertible (note that this can be assumed for any fixed p > 0183

when the weights are defined as in (2.3) with τ > 0), problem (2.5) can be easily and184

conveniently transformed into standard form as follows185

(2.6) x̄k,? = arg min
x̄
‖AW−1

k x̄− b‖22 + λ‖x̄‖22 , so that xk,? = W−1
k x̄k,?.186

The interpretation of the matrix W−1
k as a right preconditioner for problem (2.5) can187

be exploited under the framework of prior-conditioning [7]. The simplest way to use188

formulation (2.6) in combination with Krylov methods is to rely on an inner-outer189

scheme (e.g., with an inner loop of (hybrid) GMRES or LSQR iterations [9, 18]) so190

that, at each outer iteration, a new Krylov subspaces is built. Let Vk,l ∈ Rn×l be the191

matrix whose columns, at the lth inner iteration of the kth outer cycle, span a Krylov192

subspace Kk,l of dimension l. Then, problem (2.6) can be projected and solved in193

Kk,l by computing194

(2.7) ȳk,l = arg min
ȳ
‖A

x︷ ︸︸ ︷
W−1
k Vk,lȳ︸ ︷︷ ︸

x̄

−b‖22 + λ‖Vk,lȳ︸ ︷︷ ︸
x̄

‖22 ,195

so that x̄k,l = Vk,l ȳk,l and xk,l = W−1
k x̄k,l = W−1

k Vk,l ȳk,l. Note that, since Vk,l has196

orthonormal columns, solving equation (2.7) is equivalent to solving197

(2.8) ȳk,l = arg min
ȳ
‖A

x︷ ︸︸ ︷
W−1
k Vk,l︸ ︷︷ ︸
Zk,l

ȳ−b‖22 + λ‖ȳ‖22,198

which is consistent with the idea of “first-regularize-then-project” being equivalent to199

“first-project-then-regularize” for hybrid solvers (cf. [25, Chapter 6]). An alternative200

interpretation of this scheme is that, at the lth inner iteration of the kth outer cycle,201

an approximate solution to the original problem is sought in the preconditioned space202

R(Zk,l) = R(W−1
k Vk,l), where R(·) denotes the range of a matrix. Note that, when203

applying preconditioned GMRES,204

R(Zk,l) = W−1
k Kl(AW

−1
k , b)(2.9)205

= span{W−1
k b,W−1

k (AW−1
k )b, ...,W−1

k (AW−1
k )l−1b} ,206
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6 S. GAZZOLA, J. G. NAGY AND M. SABATÉ LANDMAN

while, when applying preconditioned LSQR,207

R(Zk,l) = W−1
k Kl(W

−1
k ATAW−1

k ,W−1
k AT b)(2.10)208

= span{(W−1
k )2AT b, , ..., ((W−1

k )2ATA)l−1(W−1
k )2AT b} .209

With respect to preconditioned GMRES, preconditioned LSQR naturally applies the210

inverse of the weight matrix Wk twice for every new direction included in the search211

space, and hence, twice at each iteration.212

It should be stressed that, for both (2.7) and (2.8) to be equivalent to (2.6),213

the regularization term in (2.7) has to be ‖Vk,lȳ‖22, where Vk,l ȳ = x̄ in (2.6), and214

not ‖Zk,lȳ‖22. Using ‖Zk,lȳ‖22 as a regularization term would in fact be equivalent to215

solving a different problem, namely: Tikhonov problem (1.2) with the identity as a216

regularization matrix (i.e., in standard form), in the preconditioned Krylov subspace217

R(Zk,l). It is important to note that R(Zk,l) incorporates regularization through218

preconditioning.219

Flexible Krylov methods provide a natural framework to efficiently avoid nested220

loops of iterations by regarding the inverse of the regularization matrix (stemming221

from an iteratively reweighted regularization term) as iteration-dependent right pre-222

conditioning in (2.6). In this setting, at the kth iteration, the weights Wk are updated223

using the most recent approximation of the solution, i.e., the one at the (k −1)th iter-224

ation of the flexible solver, and incorporated in the construction of the flexible Krylov225

space in the form of the adaptive preconditioner W−1
k . Flexible Krylov subspaces226

based on either the flexible Arnoldi or the flexible Golub-Kahan decompositions are227

summarized below.228

Flexible Arnoldi decomposition. The flexible Arnoldi decomposition of A ∈ Rn×n229

was first introduced in [40], and it is commonly employed in different settings to incor-230

porate adaptive or increasingly improved preconditioners into the solution subspace;231

see [42, Chapter 9] and [43, 44]. Given A (square), b and right iteration-dependent232

preconditioning matrices W−1
k , the partial factorization233

(2.11) AZk = Vk+1H̄k,234

is updated at iteration k (for k ≤ n), where H̄k ∈ R(k+1)×k is upper Hessenberg, Vk+1235

has orthonormal columns with v1 = b/‖b‖2, and Zk = [W−1
1 v1, ...,W

−1
k vk] ∈ Rn×k.236

Note that, when the preconditioning is fixed, i.e., Wi = W , flexible Arnoldi reduces237

to standard right-preconditioned Arnoldi (see equation (2.9)).238

Flexible Golub-Kahan decomposition. The flexible Golub-Kahan decomposition239

of A ∈ Rm×n has been recently introduced in [9] to solve `p-regularized least squares240

problems. GivenA, b, and iteration dependent right preconditioning matrices (W−1
k )2,241

the partial factorizations242

(2.12) AZk = Uk+1Mk and ATUk+1 = Vk+1Sk+1243

are updated at iteration k (for k ≤ min{m,n}). In the first equation of (2.12),244

Mk ∈ R(k+1)×k is upper Hessenberg, Uk+1 ∈ Rm×(k+1) has orthonormal columns245

with u1 = b/‖b‖2, and Zk = [(W−1
1 )2v1, ..., (W

−1
k )2vk] ∈ Rn×k. Moreover, Sk+1 ∈246

R(k+1)×(k+1) is upper triangular and Vk+1 ∈ Rn×(k+1) has orthonormal columns.247

Note that, for fixed preconditioning, i.e., Wi = Wk, FLSQR with preconditioner248

(W−1
k )2 reduces to right preconditioned LSQR, which is mathematically equivalent249

to CG applied to the normal equations with split preconditioner W−1
k . Although this250

relation is not stressed in [9], it can be observed in the definition of the search space251
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for preconditioned LSQR in equation (2.10). The cost of computing these partial252

factorizations is dominated by one matrix vector product with A and one matrix253

vector product with AT per iteration.254

Detailed computations to update the partial flexible Arnoldi and flexible Golub-255

Kahan decompositions at the kth iteration are reported below. Notation-wise, [·]i,j256

denotes the (i, j)th entry of the a matrix, and the vectors vi, ui, and zi denote the257

ith column of the matrices Vk, Uk, and Zk, correspondingly.

Flexible Arnoldi update

1: zk = W−1
k vk

2: w = Azk
3: Compute [H]i,k = wT vi for i = 1, . . . , k and set w = w −

∑k
i=1[H]i,kvi

4: Set [H]k+1,k = ||w||2 and, if [H]k+1,k 6= 0, take vk+1 = w/[H]k+1,k

Flexible Golub-Kahan update

1: w = ATuk
2: Compute [S]i,k = wT vi for i = 1, . . . , k − 1 and set w = w −

∑k−1
i=1 [S]i,kvi

3: Set [S]k,k = ||w||2 and, if [S]k,k 6= 0, take vk = w/[S]k,k
4: zk = (W−1

k )2vk
5: w = Azk
6: Compute [M ]i,k = wTui for i = 1, . . . , k and set w = w −

∑k
i=1[M ]i,kui

7: Set [M ]k+1,k = ||w||2 and, if [M ]k+1,k 6= 0, take uk+1 = w/[M ]k+1,k

258

Flexible methods to solve `p-regularized least square problems have already been259

used in [18, 9], where, at the kth iteration, the following projected problem is solved:260

(2.13) ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖ȳ‖22 , so that xk = Zkȳk .261

Note that ȳk corresponds to the coefficients of the solution of (1.2) (in standard262

form) in the basis given by the columns of Zk, which span a flexible Krylov space of263

dimension k with iteration dependent preconditioner W−1
k and (W−1

k )2 for FGMRES264

and FLSQR, respectively, where Wk = W̃ (p,τ)(xk−1). Although extensive numerical265

tests show that methods (2.13) are efficient and deliver excellent reconstructions when266

compared to other Krylov solvers and other state-of-the-art methods for (1.5), it267

should be noted that solving problem (2.13) is not equivalent to solving problem268

(2.5) projected onto an appropriate flexible Krylov subspace at the kth iteration.269

Indeed, assume that n iterations of a flexible algorithm (2.13) have been performed,270

so that R(Zn) = Rn: in this situation expression (2.13) corresponds to the Tikhonov271

problem (1.2) in standard form associated to (1.1) (and not the modification of the272

`2-`p problem in (2.4)). In other words, the “first-regularize-then-project” approach273

is not equivalent to the “first-project-then-regularize” approach for flexible Krylov274

solvers. Alternatively, this mismatch can be explained using the fact that, unlike in275

the case of (non flexible) preconditioned Krylov methods, in the problem projected276

using flexible Krylov subspaces there is no straightforward way of representing the277

variable x̄ in (2.6) before “back-transformation”. Note that [9] proposes to replace the278

regularization term ‖ȳ‖22 in (2.13) by ‖Zkȳ‖22: while (2.13) can be regarded as a hybrid279

regularization method that imposes additional standard form Tikhonov regularization280

on the projected solution ȳk, the regularization term ‖Zkȳ‖22 enforces standard form281
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Tikhonov regularization on xk = Zkȳk and does not lead to a scheme equivalent to282

the “first-regularize-then-project” one, either.283

In the following section, two algorithms exploiting flexible Krylov subspaces in284

connection with the “first-regularize-then-project” framework will be presented along285

with a proof of convergence of the resulting schemes.286

3. Iteratively Reweighted Flexible Krylov Subspace Methods. In this287

section, two new algorithms are presented to solve (2.4) using a sequence of approxi-288

mate problems of the form (2.5) and flexible Krylov subspaces (based on the flexible289

Arnoldi decomposition and the flexible Golub-Kahan decomposition respectively).290

Here and in the following, without loss of generality, no initial guess is considered291

for the solution of (2.4) in a “warm start” fashion; however, a possible initial guess292

x0 6= 0 may be purely used to initialize the weights (2.3) at the very first iteration293

of the algorithm. The presented algorithms are assumed to be breakdown-free, i.e.,294

at iteration k ≤ min{m,n}, the approximation subspace R(Zk) for the solution has295

dimension k.296

3.1. The new IRW-FGMRES and IRW-FLSQR methods. The kth iter-297

ation of the new IRW-FGMRES or IRW-FLSQR methods computes an approximate298

solution xk belonging to the space spanned by the columns of the matrix Zk appearing299

in (2.11) or (2.12), respectively. More precisely, problem (2.5) is solved partially (i.e.,300

in the space spanned by the columns of Zk) as a projected least squares problem of301

the form302

(3.1) ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖WkZkȳ‖22 , so that xk = Zkȳk .303

Let304

(3.2) WkZk = QkRk, with Qk ∈ Rn×k, Rk ∈ Rk×k305

be the reduced QR factorization of the tall and skinny matrix WkZk, which can be306

computed efficiently (see, for example, [13]). Then (3.1) is equivalent to307

(3.3) ȳk = arg min
ȳ
‖H̄kȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,308

for IRW-GMRES, or309

(3.4) ȳk = arg min
ȳ
‖Mkȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,310

for IRW-FLSQR. With a notation analogous to equation (2.13), ȳk corresponds to the311

coefficients of the solution of (2.5) in the basis formed by the columns of Zk, which312

span a flexible Krylov space of dimension k with iteration dependent preconditioning313

W−1
k for IRW-FGMRES and (W−1

k )2 for IRW-FLSQR (where Wk = W̃ (p,τ)(xk−1)).314

After the approximate solution xk to problem (3.1) has been computed, the weights315

Wk+1 = W̃ (p,τ)(xk) are (immediately) updated to be used in the next IRW-FGMRES316

or IRW-FLSQR iteration.317

Although (3.1) might seem a rather unnecessarily convoluted formulation, since
a change of variables for the regularization term is done and undone (i.e., an initial
transformation into standard form in (2.6) eventually leads to a Tikhonov problem in
general form), formulation (3.1) provides two main advantages over (2.8) and other
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IRN strategies based on Krylov subspaces. Firstly, the iteration dependent regular-
ization matrix Wk favorably affects the approximation subspace for the solution of
problems of the form (2.5), i.e.,

xk ∈ R(Zk) = R([W−1
1 v1, ...,W

−1
k vk]),

for a set of vectors vi that depend on the choice of IRW-FGMRES or IRW-FLSQR;318

see also [9, 20]. Secondly, problem (3.1) can be interpreted as a projection of the319

kth full-dimensional Tikhonov problem (2.5) (i.e., in a “first-regularize-then-project”320

framework). As a consequence, it can be proven that the sequence of approximate321

solutions {xk}k≥1 computed by IRW-FGMRES or IRW-FLSQR converges to the so-322

lution of problem (2.4).323

Remark 3.1. Note that, assuming n ≤ m in (1.1), the IRW-FGMRES and IRW-324

FLSQR methods can be extended to the case when the number of iterations exceeds325

n by considering326

(3.5) xk =

{
arg minx∈R(Zk) Tk(x), for k = 1, ..., n− 1

arg minx∈Rn Tk(x), for k = n, ...
327

where Tk(x) is defined in (2.5). Indeed, when n ≤ k, an iteration of IRW-FGMRES328

or IRW-FLSQR corresponds to an IRN iteration for `p regularization (1.5), where329

the solution of each subproblem (2.5) is computed in a ‘direct’ fashion because the330

approximation subspace for the solution coincides with Rn. Note however that this331

situation is not expected to happen in practice for large-scale problems.332

Remark 3.2. Some numerical instabilities might happen in generating WkZk in333

the regularization term in (3.1) when applying the new IRW-FGMRES and IRW-334

FLSQR methods, due to division by almost zeros in the weights component. Section335

4 presents an example where this happens, and discusses two possible fixes that can336

be adopted at implementation level to improve stability.337

338

The new IRW-FGMRES and IRW-FLSQR methods are sketched in Algorithm 3.1.339

Algorithm 3.1 IRW-FGMRES and IRW-LSQR methods.

1: Input: A, b, p, τ> 0, x0

2: Initialize: v1 = b/||b||2 for IRW-FGMRES, u1 = b/||b||2 for IRW-FLSQR

3: If x0 6= 0 W1 = W̃ (p,τ)(x0) else W1 = In
4: for k = 1, . . . , until a stopping criterion is satisfied do
5: Update (2.11) (for IRW-FGMRES) or (2.12) (for IRW-FLSQR)
6: Compute ȳk in (3.3) (for IRW-FGMRES) or in (3.4) (for IRW-FLSQR)
7: Compute xk = Zkȳk
8: Update the weights Wk+1 = W̃ (p,τ)(xk)
9: end for

If k � min{m,n}, the computational cost of the kth iteration of Algorithm 3.1 is340

dominated by the computational cost of updating the factorizations (2.11) or (2.12).341

Indeed, for IRW-FGMRES and assuming that A is dense, computing matrix-vector342

products with A amounts to O(mn) flops (but could be much less if A is sparse or has343

some structure), while performing the orthonormalization steps amounts to O(kn)344

flops. Forming the matrix WkZk and computing the QR factorization (3.2) amounts345
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to O(nk2) flops, while solving problem (3.3) and forming xk amounts to O(k3) flops.346

Similar estimates can be derived for IRW-FLSQR.347

3.2. Convergence of IRW-FGMRES and IRW-FLSQR. Note that, even if348

in practice IRW-FGMRES and IRW-FLSQR allow for an iteration-dependent choice349

of the regularization parameter λ in the functional T (p,τ)(x) in (2.4), in this section350

λ is assumed to be known a priori and fixed throughout the iterations.351

Lemma 3.3. Assume that no breakdown happens in the flexible Arnoldi and352

Golub-Kahan algorithms. Then the sequence {T (p,τ)(xk)}k≥1 for 0 < p ≤ 2, where353

T (p,τ)(x) is defined in (2.4), and where xk is the approximate solution computed after354

k steps of the IRW-FGMRES or the IRW-FLSQR methods, is decreasing monotoni-355

cally and it is bounded from below by zero.356

Proof. Consider a fixed p ∈ (0, 2] and τ > 0. Since T (p,τ)(x) ≥ 0, only the fact357

that T (p,τ)(xk) is monotonically decreasing needs to be proved, i.e., that T (p,τ)(xk) ≤358

T (p,τ)(xk−1) for every k ≥ 1. Consider Tk(x) defined in (2.5) (note that it is defined359

with respect to Wk = W̃ (p,τ)(xk−1)) and recall that Tk(x) is a quadratic tangent360

majorant of T (p,τ)(x) at point xk−1, i.e.,361

T (p,τ)(xk−1) = Tk(xk−1) and T (p,τ)(x) ≤ Tk(x) ∀x.(3.6)362

In particular, for xk,363

(3.7) T (p,τ)(xk) ≤ Tk(xk).364

Moreover, recalling the definition of xk in (3.1), and since xk−1 ∈ R(Zk−1) ⊂ R(Zk),365

(3.8) Tk(xk) = min
x∈R(Zk)

Tk(x) ≤ Tk(xk−1),366

so, combining equations (3.6), (3.7) and (3.8),367

(3.9) T (p,τ)(xk) ≤ Tk(xk) ≤ Tk(xk−1) = T (p,τ)(xk−1) ,368

which concludes the proof.369

Theorem 3.4. Under the same assumptions of Lemma 3.3, the sequence370

{xk}k≥1, where xk is the approximated solution computed after k steps of IRW-371

FGMRES or IRW-FLSQR with p > 0, is such that372

lim
k→∞

‖xk − xk−1‖2 = 0.373

Moreover, it converges to a stationary point of T (p,τ) and, if p ≥ 1, this is the unique374

solution of (2.4).375

Proof. Thanks to Lemma 3.3, {T (p,τ)(xk)}k≥1 has a stationary point. The con-376

vergence result for {xk}k≥1 proved in Theorem 5 of [27] for majorization-minimization377

methods based on Generalized Krylov subspaces, when k ≥ n, can be applied in this378

setting as the same majorization for T (p,τ) is used.379

It should be stressed that, although the regularization parameter λ in (3.1) is380

assumed fixed, the IRW-FGMRES and the IRW-FLSQR methods naturally allow for381

an iteration-dependent regularization parameter λk to be adaptively set at the kth382

iteration (e.g., at line 6 of Algorithm 3.1). Indeed, when considering inner-outer383
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iterative schemes for (2.6) or flexible Krylov methods for (2.13), one can employ ap-384

proaches typically used for hybrid methods (e.g., projected versions or approximations385

of well-known regularization parameter rules for Tikhonov problem (1.2); see [9, 18]).386

For IRW-FGMRES and IRW-FLSQR to be consistent with the “first-regularize-then-387

project” framework, one should make sure that the parameter λk selected at the kth388

iteration according to the adopted rule is a suitable λ for problem (2.5) and, eventually,389

for problem (1.5): although for projection methods based on standard Krylov sub-390

spaces convergence of λk to a λ can be guaranteed in some situations (e.g., when using391

standard Golub-Kahan bidiagonalization and the discrepancy principle, see [21]), it is392

not immediate to generalize these results to IRW-FGMRES and IRW-FLSQR. In the393

numerical experiments displayed in Section 4 the discrepancy principle is employed to394

select the regularization parameter at each IRW-FGMRES or IRW-FLSQR iteration.395

3.3. Alternative interpretation of IRW flexible methods. Augmented396

Krylov subspaces are most commonly used to incorporate an initial ‘guess’ subspace397

of moderate dimension within a (traditional) Krylov subspace for the approximation398

of the solution of a linear system. In the framework of ill-posed problems, this ap-399

proach is extremely beneficial if the initial ‘guess’ vectors are chosen to model known400

features of the solution (see, e.g, [1, 2, 3, 15]); a combination of Tikhonov regular-401

ization and projection onto augmented Krylov subspaces has been considered in [24].402

When performing iteratively reweighted schemes, a sequence of different but closely403

related problems of the form (2.5) or, equivalently, (2.6), is considered. Potentially,404

an augmented Krylov subspace method could be used to solve each of the problems405

if one had a good initial set of ‘guess’ vectors. In this setting it is argued that IRW406

flexible Krylov methods can be regarded as particular instances of augmented Krylov407

methods where, when approximating the solution of the kth problem of the form (2.5)408

(i.e., at iteration k ≤ min{m,n}), the initial ‘guess’ subspace is taken to be R(Zk−1)409

(i.e, the flexible Krylov subspace available from the previous iteration) and only one410

iteration of a (standard) Krylov method is performed (so that, in particular, the size411

of the augmentation subspace for the kth problem of the form (2.5) is k − 1). This412

interpretation also draws similarities with the idea of recycling Krylov methods for413

sequences of linear systems [29, 38], and can be extended to flexible Krylov methods414

in general. Indeed, some analogies between flexible GMRES and augmented GMRES415

were already established in [8, 41]. Although the following derivations are specified416

for IRW-FGMRES and for augmented methods based on GMRES, they can be easily417

extended to handle IRW-FLSQR and augmented methods based on LSQR.418

Consider the kth IRW-FGMRES iteration. Using the identity419

Zk = [Zk−1,W
−1
k vk] = W−1

k [WkZk−1, vk] ,420

the flexible Arnoldi partial factorization (2.11) can be reformulated as421

(3.10) A[Zk−1,W
−1
k vk] = AW−1

k [WkZk−1, vk] = [Vk, vk+1]H̄k,422

and the kth minimization problem (3.1), solved at the kth iteration of IRW-FGMRES,423

can be expressed as424

ȳk = arg min
ȳ
‖AW−1

k [WkZk−1, vk]ȳ − b‖22 + λ‖[WkZk−1, vk]ȳ‖22 .(3.11)425

Then, x̄k = [WkZk−1, vk]ȳk is an approximate solution of the kth problem of the form426

(2.6) that belongs to the space R([WkZk−1, vk]), and xk = W−1
k x̄k is an approximate427

solution of the kth problem of the form (2.5) that belongs to the space R(Zk).428
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Now consider a single step of the augmented Arnoldi process with augmentation429

space R(Zk−1) and with starting vector430

(3.12) v̂k = (I−Vk−1V
T
k−1)rk−1/‖(I−Vk−1V

T
k−1)rk−1‖2, with rk−1 = b−Axk−1 ,431

so that v̂k = vk. This leads to an approximation subspace for the solution of dimen-432

sion k, and can be written as433

1: Define v̂k as in (3.12) and set Vk = [Vk−1, v̂k].434

2: Compute ẑk = W−1
k v̂k.435

3: Compute ŵ = (I − VkV Tk )Aẑk.436

4: Take [Ĥ]k+1,k = ‖ŵ‖2.437

5: Compute v̂k+1 = ŵ/[Ĥ]k+1,k.438

In the above algorithm, the matrix Vk in line 1 coincides with the matrix Vk in (3.10)439

because v̂k = vk. Lines 3 to 5 can be rearranged as440

[Ĥ]k+1,k v̂k+1 = (I − VkV Tk )Aẑk , so that Aẑk = Vk(V Tk Aẑk) + v̂k+1[Ĥ]k+1,k .441

Incorporating augmentation and considering the partial factorization (2.11) with k442

replaced by k − 1, the following decomposition is obtained443

(3.13) A[Zk−1, ẑk] = [Vk, v̂k+1]

[
H̄k−1 V Tk Aẑk

0 [Ĥ]k+1,k

]
= [Vk, v̂k+1]Ĥk.444

Comparing the above algorithm to the flexible Arnoldi algorithm in Section 2, it is445

immediate to see that ẑk = W−1
k v̂k = W−1

k vk = zk, and v̂k+1 = vk+1. Therefore,446

by inspection, it can be seen that this formulation is equivalent to (3.10), and that447

H̄k = Ĥk.448

As a consequence, the projection step performed to compute ȳk in (3.11) us-449

ing either the flexible or the augmented approaches is equivalent, so the same kth450

approximate solution xk of (3.1) is obtained.451

The augmented method (3.13) mainly differs from the available augmented meth-452

ods in the starting vector that is chosen for building the (standard) Krylov subspace:453

indeed, the latter either take the normalized right hand side b (i.e., the (standard)454

Krylov subspace is built first, and then enriched with the initial ‘guess’ subspace; see455

[15, 24]) or the orthogonal projection of b on the orthogonal complement of the initial456

‘guess’ subspace (i.e., the (standard) Krylov subspace is built preserving orthogonality457

to the initial ‘guess’ subspace; see [1, 2, 3]). Note that the choice of the initial vector458

(3.12) for IRW-FGMRES more radically stems from the fact that (I − VkV Tk )b = 0,459

as b ∈ R(Vk).460

The decomposition (3.13) associated to IRW-FGMRES is also analogous to the461

decompositions typically associated to recycling methods [38], the only difference be-462

ing in the way the solution is computed (recycling often considers ‘warm restarts’,463

where computing the solution at the kth iteration amounts to computing the correc-464

tion of an initial guess).465

4. Numerical Experiments. In this section the results of three experiments466

concerned with imaging problems are presented to illustrate the behaviour of the new467

methods. In all the experiments, x is the vector obtained by stacking the columns of a468

two dimensional discrete image. The new IRW-FGMRES and IRW-FLSQR methods469

are compared with other state-of-the-art solvers for (1.5) with 0 < p ≤ 2, including:470

other solvers based on generalized and flexible Krylov methods, first-order optimiza-471

tion methods or optimization methods based on quadratic separable approximations of472
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part of the objective function, solvers that employ standard or preconditioned Krylov473

methods based on the Arnoldi and the Golub-Kahan bidiagonalization algorithms. To474

the best of our knowledge, comparisons between methods based on flexible and gen-475

eralized Krylov subspaces have never been considered before. Table 1 summarizes the476

methods considered in this section, providing acronyms and brief descriptions thereof.477

Note that, for all the considered examples, the computation of matrix-vector products478

with A and, possibly, AT dominates the computational cost of each iteration of all479

the methods listed in Table 1. In particular, Krylov methods based on the (flexible)480

Golub-Kahan algorithm (i.e., IRW-FLSQR, IRN-hLSQR, (hybrid) FLSQR) have the481

same computational cost per iteration as GKSpq, FISTA, and SpaRSA, since they482

require one matrix-vector product with A and AT ; Krylov methods based on the (flex-483

ible) Arnoldi algorithm (i.e., IRW-FGMRES, IRN-hGMRES, (hybrid) FGMRES) are484

the ones with the lowest cost per iteration, since they require only one matrix-vector485

product with A. As a consequence, in the following tests, methods that require fewer486

iterations to compute solutions of comparable qualities have to be regarded as more487

efficient.488

Table 1: Summary of the methods considered in this section for approximating the
solution of problem (1.5).

Method Description Note References Marker

IRW-FGMRES
IRW-FLSQR

the new Algorithm 3.1
adaptive reg. parameter
selection

–
blue
line

IRN-hGMRES
IRN-hLSQR

IRN strategy
within an inner-outer
scheme

preconditioned hybrid
GMRES or LSQR
is used to solve (2.6)
at each outer iteration;
adaptive reg. parameter
selection

[39]
green
line

hybrid FGMRES
hybrid FLSQR

hybrid versions
of FGMRES or FLSQR

standard form
Tikhonov regularization
applied on the projected
solution;
adaptive reg. parameter
selection

[9, 18]
pink
line

FGMRES
FLSQR

Flexible GMRES or LSQR
with sparsity-enforcing
iteration-dependent
preconditioning

no Tikhonov regularization
for the projected problem

[9, 18]
dark red
line

GKSpq
Generalized Krylov
Subspace methods

initial subspace
Kl(A

TA,AT b)
with l = 5;
adaptive reg. parameter
selection

[31]
light blue
line

FISTA Fast ISTA
accelerated first-order
optimization method

[4]
purple
line

SpaRSA
Sparse Reconstruction
by Separable
Approximation

quadratic separable
approximations of part of the
objective function

[46]
orange
line

When a method allows the regularization parameter λ to be adaptively set at each489

iteration, this is done according to the discrepancy principle [34] as described below.490

Assuming that a good approximation of the 2-norm of the noise vector e appearing in491

(1.1) is available, a zero-finder is employed to solve the following nonlinear equation492
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with respect to λ ≥ 0 at the kth iteration493

(4.1) ‖Axk(λ)− b‖2 = η‖e‖2 ,494

where xk(λ) is the approximate solution at iteration k given as a function of the495

regularization parameter λ, and η≥ 1 is a safety parameter. Note that equation (4.1)496

is guaranteed to have a solution as soon as ‖Axk(0)−b‖2 ≤ ‖e‖2. For IRW-FGMRES,497

xk(λ) = Zkȳk = Zk(H̄T
k H̄k + λRTkRk)−1H̄T

k ‖b‖2e1498

= Zk(H̄T
k H̄k + λRTkRk)−1H̄T

k V
T
k+1b,(4.2)499

where H̄k is defined in equation (2.11) and Rk is obtained computing the reduced QR500

factorization of WkZk; see (3.2). Then501

‖Axk(λ)− b‖2 = ‖AZk(H̄T
k H̄k + λRkR

T
k )−1H̄T

k V
T
k+1b− b‖2502

= ‖Vk+1H̄k(H̄T
k H̄k + λRkR

T
k )−1H̄T

k V
T
k+1b− b‖2503

= ‖H̄k(H̄T
k H̄k + λRkR

T
k )−1H̄T

k ‖b‖2e1 − ‖b‖2e1‖2,(4.3)504

so that applying the discrepancy principle (4.1) does not require performing any505

additional matrix-vector product with A per iteration. An analogous argument can506

be made specifically for IRW-FLSQR (as expression (4.3) formally holds for IRW-507

FLSQR after replacing the matrix H̄k by Mk), as well as for most of the algorithms508

listed above; see also [30, 19]. Note that, although synthetic noise e with known ‖e‖2509

is always used in the following, estimates of the noise level or alternative parameter510

choice strategies that do not require an estimate of ‖e‖2 can be used if ‖e‖2 is not511

immediately available; see, e.g., [21, 45]. When no adaptive regularization parameter512

choice is supported (e.g., for FISTA and SpaRSA), the value of the regularization513

parameter computed by IRW-FGMRES or IRW-FLSQR (upon iteration termination)514

is used. Alternatively, such solvers can be run from scratch for different preselected515

values of the regularization parameter and the best solution can be picked according516

to some criterion, resulting in a very computationally demanding strategy.517

Throughout all the experiments, if not stated otherwise, the values p = 1 and518

τ = 10−10 are chosen in (2.3), η = 1 is chosen in (4.1), and all the solvers are set519

to perform 200 (total) iterations. Although, provided that a suitable value of the520

regularization parameter is set at each iteration, the quality of the reconstructions521

computed by the new methods does not significantly deteriorate as the iterations522

proceed, one or more stopping criteria should be set in practice. A reasonable choice523

is to stop at the first iteration k such that524

(4.4)
|λk − λk−1|

λk
< θ1 or

|s(xk)− s(xk−1)|
s(xk)

< θ2525

where θ1, θ2 > 0 are user-selected thresholds, and where s(·) is a (practical) measure526

of the sparsity of the solution. In the following, given a vector y,527

(4.5) s(y) = #
{
i : |[y]i| ≥ 10−3||y||2

}
, where # denotes cardinality.528

Stopping criteria (4.4) monitor the stabilization of some relevant quantities for the529

solution, so that one can expect xk not to vary too much once they are satisfied;530

see [19]. In all the graphs presented below, the iteration satisfying the first stopping531

criterion in (4.4) with θ1 = 10−4 is marked by a circle, and the iteration satisfying532

the second stopping criterion in (4.4) with θ2 = 10−10 is marked by a triangle.533
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Experiment 1. The first experiment is concerned with image deblurring. The534

star cluster test problem from Restore Tools [35] is used to generate an exact535

test image of size 256 × 256 pixels (so n = 65536 in (1.1)) and a square blurring536

matrix modelling spatially variant blur (we refer interested readers to [36] for a dis-537

cussion of how the matrix A is represented, and how matrix-vector products can be538

done efficiently). The measurements are corrupted by Gaussian white noise e of level539

‖e‖2/‖btrue‖2 = 10−2. The setting for this example can be observed in Figure 1. Note540

that s(xtrue) = 470, i.e., only approximately 0.07% of the pixels can be regarded as541

different from zero in practice, according to definition (4.5). This example has been542

mimicked from [18]. Since A is square, the performance of IRW-FGMRES can be543

tested.544

(a) (b)

Fig. 1: Experiment 1. Setting for the star cluster test problem. (a) True image
xtrue, (b) Noisy measurement b.

Figure 2 displays the behavior of the relative errors versus the number of iter-545

ations for the methods listed in Table 1. It can be observed in Figure 2 (a) that546

IRW-FGMRES shows a faster and more stable convergence when compared to other547

standard methods for `2-`p regularization. In particular, the new method stabilizes548

to roughly the same value of the relative error as IRN and FISTA, while SpaRSA549

converges to a reconstruction of worse quality. Even restricting the comparisons to550

other methods that build only one generalized or flexible Krylov subspace for the551

solution, the new IRW-FGMRES method shows a more desirable behavior. Indeed,552

it can be observed in Figure 2 (b) that the solver based on FGMRES displays some553

semiconvergence; this feature is shared by the hybrid version of FGMRES and may554

appear because a Tikhonov problem in standard form is solved, so that sparsity is only555

enforced through the construction of a suitable flexible Krylov subspace. Also, within556

the maximum number of allowed iterations, the quality of the solution computed by557

the solver based on generalized Krylov subspaces is lower than the IRW-FGMRES one:558

this shows that, for this test problem, the approximation subspace for the solution559

computed by IRW-FGMRES is better than the one computed by GKSpq.560

Figure 3 (a) displays the values of the relative residuals ‖b−Axk(λ)‖2/‖b‖2 versus561

the number of iterations k. One can clearly see that, since λ is adaptively set at each562

iteration using the discrepancy principle (for all the displayed methods except for563

FGMRES), the relative residual eventually stabilizes around the noise level, as it564

This manuscript is for review purposes only.



16 S. GAZZOLA, J. G. NAGY AND M. SABATÉ LANDMAN
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Fig. 2: Experiment 1. History of relative error norms (i.e., ‖xk(λ)− xtrue‖2/‖xtrue‖2
against iteration number k) for the new IRW-FGMRES, compared to (a) other stan-
dard solvers for the `2-`1 problem; (b) other flexible and generalized Krylov-based
solvers. The circle and triangle markers correspond to stopping criteria (4.4) based
on the stabilization of λ and s(xk), respectively.
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Fig. 3: Experiment 1. Methods based on Krylov subspaces. (a) History of the rela-
tive residuals. (b) History of the regularization parameters. The circle and triangle
markers correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk),
respectively.

should happen for regularization methods applied to ill-posed problems: this happens565

quite quickly for methods based on the flexible Arnoldi algorithm, but sensibly later566

for the GKSpq method (coherently to what is observed in Figure 2 (a)). Figure567

3 (b) displays the values of the regularization parameters λ = λk selected at each568

iteration versus the number of iterations k. It can be observed that the regularization569

parameter chosen by the new IRW-FGMRES method quickly stabilizes to a value570

that is similar to the one eventually selected by the IRN and the GKSpq methods.571

The regularization parameter chosen by the hybrid version of FGMRES stabilizes to572
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450
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Fig. 4: Experiment 1. (a) History of the IRW-FGMRES relative error norms for
different values of p in the `p regularization term. (b) History of s(xk) for IRW-
FGMRES and for different values of p in the `p regularization term.

a different value, which is more similar to the one selected during the first IRN outer573

iteration, i.e., when a Tikhonov problem in standard form is solved. This behavior574

is consistent with the arguments presented in Sections 2 and 3. Indeed, similarly to575

IRN and GKSpq, IRW-FGMRES can be proved to converge to a stationary point of576

(2.4): therefore it should be expected that the regularization parameter adaptively577

selected by these methods according to the discrepancy principle also stabilizes around578

a common value. On the contrary, hybrid FGMRES imposes additional standard form579

Tikhonov regularization on the projected solution: therefore it should be expected580

that the regularization parameter stabilizes around a value suitable for standard form581

Tikhonov regularization.582

Finally, Figure 4 (a) displays the history of relative errors obtained using IRW-583

FGMRES for different values of p in the `p regularization term. Note that, since the584

quality of the solution generally improves when taking p < 1 (coherently with the fact585

that xtrue is very sparse), one can expect that IRN-FGMRES is converging to a global586

minimum when started with x0 = 0 for this test problem. Correspondingly, Figure 4587

(b) displays the values of s(xk) versus the number of iterations k. It can be observed588

that, when the value of p in the `p regularization term is 2, the recovered solution is589

considerably less sparse than xtrue, whereas for smaller values of p, the value of s(xk)590

approximates s(xtrue) = 470. In particular, note that, when p = 1, s(xk) converges591

to s(xtrue) = 470 when using IRW-FGMRES. Even if not shown, this is also true592

for FISTA, SpaRSA, IRN-hGMRES, FGMRES, and hybrid FGMRES. Similarly, the593

solution obtained using the GKSpq method at the end of the iterations had a s(xk)594

of 472.595

Experiment 2. The second test problem uses the so-called hst (Hubble space tele-596

scope) test image together with the spatially invariant speckle medium blur linear597

operator available within IR Tools [17]. The noise level is ‖e‖2/‖btrue‖2 = 10−2 and598

η = 1 is chosen in (4.1). The setting for this experiment can be observed in Figure599

5. The object displayed in this test image is not as sparse as in the previous test600

problem; the overall sparsity is associated to the uniform (zero) background. Note601

that, in this example, the square matrix A ∈ Rn×n (where n = 65536) is generated602
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by a highly anisotropic blur (see Figure 5 (b)): in this situation, there is no guarantee603

that GMRES can perform well; see [14]. For this reason, only the performance of604

methods based on LSQR will be compared.605

(a) (b)

Fig. 5: Experiment 2. Setting for the hst test problem. (a) True image xtrue, (b)
Noisy measurement b.
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Fig. 6: Experiment 2. History of relative error norms for the new IRW-FLSQR,
compared to (a) other standard solvers for the `2 − `1 problem; (b) other flexible
and generalized Krylov-based solvers. The circle and triangle markers correspond to
stopping criteria (4.4) based on the stabilization of λ and s(xk), respectively.

The relative error history associated to different solvers for (2.4) is displayed in606

Figure 6. It should be stressed that, when running IRW-FLSQR for this experiment,607

τ = 0.01 is set in (2.3) to avoid numerical instabilities happening in the generation of608

WkZk (as mentioned in Remark 3.2). As it can be seen in Figure 8 (a), a smaller value609

of τ would lead to solutions of worse quality. Alternatively, Figure 8 (b) shows the610

history of the relative errors when the components of the weights Wk = W̃ (p,τ)(xk−1,?)611

are set to 0 in (2.5) if they are higher than a certain threshold τW (as suggested in [39]).612
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Fig. 7: Experiment 2. Methods based on Krylov subspaces. (a) History of the rela-
tive residuals. (b) History of the regularization parameters. The circle and triangle
markers correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk),
respectively.
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Fig. 8: Experiment 2. Different strategies to stabilize the quality of the solution.
History of the relative error norms for the new IRW-FLSQR: (a) for different values
of τ , (b) for different values of τW .

As in the previous example, Figure 7 (a) displays the values of the relative residuals613

‖b − Axk(λ)‖2/‖b‖2 versus the number of iterations k and Figure 7 (b) displays the614

values of the regularization parameters λ = λk selected at each iteration k according615

to the discrepancy principle. The behavior of these quantities is very similar to the616

one observed in the previous example and it can be interpreted in the same way.617

Experiment 3. This test problem models sparse X-ray tomographic reconstruc-618

tion with oversampled data. The chosen test phantom is the ppower image from [26],619

generated in such a way that only 10% of its pixels are exactly non-zero; this phan-620

tom is also fairly smooth (see Figure 9 (a)). A measurement geometry consisting of621

362 equidistant parallel beams rotated around 224 equidistant angles between 1◦ and622
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180◦ is considered. This corresponds to a discrete forward operator A ∈ Rm×n with623

m = 81088 and n = 65536, so that only methods based on the Golub-Kahan decompo-624

sition can be compared. The noise level in this example is ‖e‖2/‖btrue‖2 = 1.5 · 10−2.625

(a) (b)

Fig. 9: Experiment 3. Setting for the ppower test problem. (a) True phantom xtrue,
(b) Noisy sinogram measurement b.
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Fig. 10: Experiment 3. History of relative error norms for the new IRW-FLSQR,
compared to (a) other standard solvers for the `2 − `1 problem; (b) other flexible
and generalized Krylov-based solvers. The circle and triangle markers correspond to
stopping criteria (4.4) based on the stabilization of λ and s(xk), respectively.

The convergence results for this tomography example with oversampled data are626

displayed in Figures 10 and 11. The methods based on flexible Krylov subspaces all627

perform similarly well. FISTA seems to deliver a solution of slightly better quality628

than IRW-FLSQR, but it takes more iterations to do so. SpaRSA seems to perform629

poorly for this test problem; it may be expected that experimenting with different630

values of the regularization parameter could lead to an improved solution.631
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Fig. 11: Experiment 3 Methods based on Krylov subspaces. (a) History of the rela-
tive residuals. (b) History of the regularization parameters chosen according to the
discrepancy principle. The circle and triangle markers correspond to stopping criteria
(4.4) based on the stabilization of λ and s(xk), respectively.

5. Conclusions. This paper presents two new algorithms, called IRW-FGMRES632

and IRW-FLSQR, that efficiently solve the `2-`p minimization problem (1.5) by par-633

tially solving a sequence of quadratic problems arising from the Iteratively Reweighted634

Norm (IRN) strategy. The new methods compute approximate solutions belonging to635

flexible Krylov subspaces of increasing dimension, that encode regularization through636

iteration-dependent “preconditioning”, so to avoid nested loops of iterations and build637

only one approximation subspace for the solution. With respect to other available IRN638

solvers, the new approach not only improves the efficiency of the algorithm, but also639

avoids the need of choosing stopping criteria for the inner iterations. Moreover, the640

regularization parameter can be set adaptively along the iterations (even using strate-641

gies other than the discrepancy principle, which is considered in this paper). The new642

flexible Krylov solvers are supported by a solid theoretical justification: indeed, the643

sequence of approximate solutions given by Algorithm 3.1 is guaranteed to converge644

to the solution of the smoothed formulation (2.4) of problem (1.5).645

Extensive numerical testing, involving large-scale inverse problems in imaging,646

shows that IRW-FGMRES and IRW-FLSQR are competitive with other standard647

implementations of IRN methods as well as other optimization methods. Moreover,648

although IRW-FGMRES can only be applied to a square coefficient matrix A and649

is not guaranteed to work well if A is highly non normal, it requires only a single650

matrix-vector product with A at each iteration, while IRW-FLSQR needs an addi-651

tional matrix-vector product with AT at each iteration. It is worth highlighting again652

that, although the hybrid implementations of FGMRES, FLSQR [18, 9] and IRW-653

FGMRES, IRW-FLSQR have a similar behavior in most of the performed numerical654

tests, the former still lack a solid theoretical justification of convergence.655

Future work will include a theoretical investigation of the convergence of IRW-656

FGMRES and IRW-FLSQR in presence of a variable regularization parameter that is657

automatically set at each iteration according to a given rule, and the extension of the658

new IRW flexible Krylov methods to handle more involved regularizers, such as total659

variation and generalizations thereof.660
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squares minimization for sparse recovery, Comm. Pure Appl. Math., 63 (2010), pp. 1–38,688
https://doi.org/10.1002/cpa.20303.689

[13] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and690
sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206–A239.691

[14] M. Donatelli, A. Neuman, and L. Reichel, Square regularization matrices for large linear692
discrete ill-posed problems, Numer. Linear Algebra Appl., 19 (2012), pp. 896–913.693

[15] H. Dong, Y.and Garde and P. Hansen, R3GMRES: Including prior information in GMRES-694
type methods for discrete inverse problems, Electron. Trans. Numer. Anal., 42 (2014),695
pp. 136–146.696

[16] M. Fornasier and H. Rauhut, Compressive Sensing, Springer New York, New York, NY,697
2011, pp. 187–228, https://doi.org/10.1007/978-0-387-92920-0 6.698

[17] S. Gazzola, P. Hansen, and J. G. Nagy., IR Tools: a MATLAB package of iterative regular-699
ization methods and large-scale test problems, Numer. Algorithms, 81 (2019), pp. 773–811,700
https://doi.org/10.1007/s11075-018-0570-7.701

[18] S. Gazzola and J. Nagy, Generalized Arnoldi-Tikhonov method for sparse reconstruction,702
SIAM J. Sci. Comput., 36 (2014), https://doi.org/10.1137/130917673.703

[19] S. Gazzola, P. Novati, and M. R. Russo, On Krylov projection methods and Tikhonov704
regularization, Electron. Trans. Numer. Anal., 44 (2015), pp. 83–123.705
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