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Abstract

Convolutional neural networks (CNNs) have been the source of recent breakthroughs

in many vision tasks. Feature pooling layers are being widely used in CNNs to reduce

the spatial dimensions of the feature maps of the hidden layers. This gives CNNs

the property of spatial invariance and also results in speed-up and reduces over-fitting.

However, this also causes significant information loss. All existing feature pooling

layers follow a one-step procedure for spatial pooling, which affects the overall perfor-

mance due to significant information loss. Not much work has been done to do efficient

feature pooling operation in CNNs. To reduce the loss of information at this criti-

cal operation of the CNNs, we propose a new EDS layer (Expansion Downsampling

learnable-Scaling) to replace the existing pooling mechanism. We propose a two-step

procedure to minimize the information loss by increasing the number of channels in

pooling operation. We also use feature scaling in the proposed EDS layer to highlight

the most relevant channels/feature-maps. Our results show a significant improvement

over the generally used pooling methods such as MaxPool, AvgPool, and StridePool

(strided convolutions with stride > 1). We have done the experiments on image clas-

sification and object detection task. ResNet-50 with our proposed EDS layer has per-

formed comparably to ResNet-152 with stride pooling on the ImageNet dataset.
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1. Introduction and Related Works

Convolutional Neural Networks (CNNs) have attracted the attention of the re-

searchers in recent years due to its outstanding performances in various computer

vision tasks [1]. The CNNs consist of many different types of layers, such as con-

volutional layer, fully connected layer, and feature pooling layer, each having its own

functionality. The feature pooling layer, when applied to the feature maps of a hidden

layer in CNN, reduces the spatial dimension of the feature maps. This results in the

benefits of a reduced number of parameters, computational speed up, and regularizes

overfitting [2]. One more subtle benefit of feature pooling is that it increases the spatial

invariance property of CNNs towards various image transformations [3].

There are different pooling methods proposed in the literature, such as max pool-

ing, average pooling, mixed pooling [4], stride pooling (strided convolutions with stride

> 1) [5], fractional pooling [6], and stochastic pooling [7]. In the feature pooling oper-

ation, the main aim is to downsample the input feature maps size with some factor. Av-

erage pooling averages out the features in the neighborhood, creating a blurring effect.

One common thing in most of the pooling operations, such as max pooling, average

pooling, and stochastic pooling, is that they are similar to nearest neighbor interpola-

tion. Neighborhood interpolation might cause data discontinuities due to artifacts such

as blurring [8].

Max pooling performs well but is known to cause over-fitting over the training data.

To overcome this issue, other pooling methods such as mixed pooling [4] and stochastic

pooling [7] are proposed in the literature. Mixed pooling at each run randomly selects

either max pool or average pool during the training. The stochastic pool, on the other

hand, randomly samples a feature in the pooling window depending upon the probabil-

ity values of the features. These probabilities are calculated by normalizing the feature

values in the window. However, other than these pooling methods, there are other

methods proposed to overcome the over-fitting problem, such as dropout [9], and batch

normalization [10]. Due to this, max pooling and average pooling are most commonly

used in practice due to their simplicity, ease in implementation, and having comparable
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Figure 1: Figure (A) shows a one-step procedure for spatial pooling. Figure (B) shows the proposed two-

step procedure for spatial pooling, where we have increased the number of channels (E times) in the pooling

operation to preserve more information.

results with other pooling methods [11]. DFT pooling [12] uses 2D DFT over feature

maps and then selects the magnitudes of the low frequencies as the new features. Vari-

ous other feature pooling methods such as FBN [13], SORT [14], MPN-COV [15], and

iSORT-COV [16] have been proposed in literature. The method iSORT-COV+EP [17]

proposes an entropy-based feature weighting for semantics-aware feature pooling op-

eration. In GFGP [18], pooling parameters are estimated by means of global statistics

in the input feature map. Detail-preserving pooling (DPP) [19] proposes an adaptive

pooling method that magnifies spatial changes and preserves important structural de-

tail.

In most of the pooling operations, such as max pooling and stochastic pooling, a

significant amount of features are simply discarded. In 2×2 max pooling with stride 2,

75% of the features are discarded, which affects the overall performance [20]. Thus,

feature pooling is a very critical operation in the CNNs, where a significant amount

of information might be lost, and data discontinuities might occur. We aim to design a

more efficient way of feature pooling, which tries to reduce the information loss and do

learning based feature scaling while maintaining the computational cost within budget.

All existing feature pooling operations follow a one-step procedure for spatial pool-

ing (Figure 1 (A)). As shown in Figure 1 (A), a significant amount of information is

simply discarded in the pooling operation (75% in the case mentioned in Figure 1 (A)),

which affects the overall performance. We propose a two-step procedure to minimize

the information loss in pooling operation, as shown in Figure 1 (B). In the first step, we
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increase the number of channels by a factor E (termed as expansion ratio) simultane-

ously with a reduction in the spatial dimension, in order to preserve more information.

In the second step, we down-sample the number of channels. We have shown experi-

mentally that the proposed two-step procedure is much more efficient than the one-step

procedure for feature pooling. This two-step procedure for feature pooling, that mini-

mizes the information loss, is the major contribution of our work.

In existing feature pooling operations, feature selection is made across the spa-

tial dimension only. We use learning based feature scaling to make feature selection

across the channels (to highlight the most relevant feature-maps). Other work [21, 22]

explores feature scaling only for non-pooling layers while we explore feature scaling

especially only for pooling layers. For example, in the case of ResNet-56 on the CIFAR

dataset, Squeeze-and-Excitation Networks (SE) [21] will perform feature re-calibration

at 27 layers (one layer in each block) while we perform feature scaling for only 2 layers

(pooling layers). Further, SE feature re-calibration can be augmented with the proposed

approach for further accuracy improvement.

The following are our contributions:

• We propose a two-step procedure for feature pooling to minimize the information

loss, which results in a significant performance improvement.

• We show that by increasing the number of channels in the pooling operation, we

can preserve more pieces of information.

• We propose a learning based feature scaling to make feature selection across the

channels in pooling operation to highlight the most relevant feature-maps.

• We show that by replacing the conventional pooling with a proposed EDS pool-

ing method, the accuracy can be increased significantly. This is an interesting

finding because pooling layers only constitute a small part of a deep CNN.

• We show that our proposed approach works well for various networks not only

for classification but also for detection. The proposed EDS layer is demonstrated

to improve the performances on various models (VGG, ResNet, WideResNet,

MobileNet, and Faster R-CNN) and datasets (CIFAR, ImageNet, and MS-COCO).
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Figure 2: A toy example, Left: Max pool discards the important features, and Right: Max pool preserve the

features.

2. Background

The objective of the feature pooling layer is to discard redundant information and

preserve the more useful information. To decide which features are informative and

which are irrelevant/redundant is very crucial for any feature pooling method. Max

pool and average pool are known to perform well and are much used in practice due to

their simplicity [11]. But which pooling method can perform better than others depends

upon the input data and features [2].

This can be understood by a toy example given in Figure 2. In the case of Figure

2 (left), the relevant feature is black, and the background is white. Max pooling com-

pletely wipes out the features while downsampling the feature map and average pooling

preserves the feature information, though it causes a blurring effect. On the other hand,

in the case of Figure 2 (right), max pooling preserves the features in downsampling the

feature map. The problem with these pooling methods is that they are fixed in nature

and do not involve any learnable parameters to improve their performance depending

upon the input dataset. Our pooling method involves learnable parameters. Hence

it does not suffer from these defects. The pooling parameters are learned end-to-end

during backpropagation, depending upon the input data.
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Figure 3: Block diagram of our proposed EDS layer.

3. Proposed Method

3.1. Implementation

Our proposed EDS layer has three important aspects. First, its parameters are not

fixed but are end-to-end learnable during backpropagation, unlike other pooling meth-

ods such as max pooling and average pooling, which have fixed parameters. Sec-

ondly, we are using a two-step procedure for feature pooling to minimize information

loss, which results in a significant performance improvement. Thirdly, we are doing

channel-wise feature scaling, which highlights the important channels/feature-maps

and suppresses the unimportant channels/feature-maps. To the best of our knowledge,

no such prior work has been done in case of a feature pooling layer. Figure 3 depicts

the block diagram of our proposed EDS layer.

Let’s say we have an input tensor (feature maps) of size Hi × Wi × Ci, where

Hi,Wi, Ci are the height, width, and the number of channels respectively. Then as the

first part of our EDS layer, depthwise separable convolutions [23, 24] are applied in

the DWC+PWC form (depthwise convolution followed by a pointwise convolution).

Since depthwise separable convolutions are much cheaper (in terms of parameters and

FLOPS) than standard convolutions, we have got a tradeoff to increase the number of

depthwise convolutional filters by the factor E, which is termed as expansion ratio.

Why is the expansion ratio required? Let’s try to understand the intuition behind

using the expansion ratio (E). In CNN, a significant amount of information might be

lost due to decrements in the spatial dimension of the feature maps (i.e., pooling).

This loss of information can be minimized by increasing the number of channels. The
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increment in the number of channels helps to capture more features. However, this fact

is never used within the pooling operation. Therefore, we have increased the number

of channels by the factor E (termed as expansion ratio) at the place where the spatial

dimension is reduced. This can be visualized in Figure 4, where the number of channels

is increased from Ci to ECi when depthwise convolutions is applied to the input tensor.

However, the spatial dimension is decreased from Hi ×Wi to Ho ×Wo.

In our experiments, we have used different values of expansion ratio (E ∈ {1,2,4,8}).

As shown in Figure 4, corresponding to each channel in the input tensor (feature maps),

E number of depthwise convolutional filters are applied which produces E different

maps (channels) of size Ho × Wo. Thus corresponding to an input tensor of size

Hi ×Wi × Ci, we have an output of size Ho ×Wo × ECi. After that, pointwise con-

volutions [23] are applied which are similar to standard convolution operations with

1×1 filter size. With an appropriate number of such 1×1 filters (Ci), the pointwise

convolution operation produces an output tensor of size Ho×Wo×Ci (channel down-

sampling).

The second part of our EDS layer is feature scaling. In the pooling operation, the

aim is to discard unnecessary features and to keep only important features. Based

on this principle, our scaling function scales up important channels/feature-maps and

scales down the unimportant channels/feature-maps. This scaling is done on the feature

maps, which is end-to-end trainable.

Why is feature scaling required? The intuition behind doing channel-wise feature

scaling is that we also want a sense of feature selection across the channels. In tradi-

tional feature pooling operations, feature selection and pooling are done across the

spatial dimension only. In our case, first spatial pooling is done by depthwise separable

convolutions (stride> 1) with expansion ratio E followed by channel downsampling.

The second part of our EDS layer (feature scaling) does a kind of feature selection

across the channels.

In this feature scaling operation, as shown in the Figure 4, first global average

pooling (GAP) is applied on the tensor of size Ho×Wo×Ci which produces a vector of

size 1× 1×Ci. This vector is then convolved by depthwise 1×1 convolution followed

by batch normalization layer. The resulting output is then operated by the sigmoid
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activation operator to make the values in between 0 and 1. Based on these Ci values

(in between 0 and 1), each channel is scaled (up/down) by simple multiplication. The

final output of size Ho ×Wo ×Ci is obtained as shown in the Figure 4. Therefore, we

perform a learning based feature scaling to make feature selection across the channels

in pooling operation to highlight the most relevant feature-maps. In section 5, we

present an ablation on feature scaling to show it’s significance.

3.2. Complexity Analysis

Pooling layers only constitute a small part of a deep CNN. Therefore, the contribu-

tion of pooling layers parameters will be small in the total model parameters. Similarly,

the contribution of pooling layers FLOPS will be small in the total model FLOPS.

However, we are providing the number of FLOPS and parameters for the proposed

EDS layer.

3.2.1. FLOPS (Computational Complexity) calculation for the proposed EDS layer

Floating point operations per second (FLOPS) is a measure to estimate the compu-

tational complexity. The number of FLOPS for our EDS layer will be the summation

of the number of FLOPS in depthwise convolution, pointwise convolution, and feature

scaling. Let us say the size of input tensor is Hi ×Wi × Ci, and after pooling, the

output tensor size is Ho ×Wo × Ci, where the height and width are reduced, but the

number of channels remains the same.

For our proposed EDS layer, a depthwise convolutional filters (Hk × Wk ker-

nel size) with expansion ratio E are applied, therefore the total number of FLOPS

(FLOPST ) can be calculated as follow:

FLOPST = FLOPSDW + FLOPSPW + FLOPSR (1)

FLOPSDW is the number of FLOPS in depthwise convolutions, which can be

calculated as follow:

FLOPSDW = HkWkHoWoCiE (2)
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FLOPSPW is the number of FLOPS in pointwise convolutions, which can be

calculated as follow:

FLOPSPW = CiEHoWoCi (3)

FLOPSR is the number of FLOPS in the feature scaling component, which can

be calculated as follow:

FLOPSR = Ci (4)

Note that, the computational complexity of the sigmoid and scaling module is negli-

gible with respect to the other modules and FLOPSR<<(FLOPSDW + FLOPSPW ).

Therefore, the total number of FLOPS (FLOPST ) can be approximated as follow:

FLOPST ≈ FLOPSDW + FLOPSPW (5)

Using Equations 5, FLOPST can be calculated as follow:

FLOPST = (HkWkE + CiE)HoWoCi (6)

3.2.2. FLOPS comparison with stride pooling

The number of FLOPS for the stride pooling (strided convolutions with stride > 1)

would be HkWkCiHoWoCi. The ratio of number of FLOPS in our EDS layer and the

number of FLOPS in stride pooling would be as follow :

FLOPSOurs

FLOPSstride
=

(HkWkE + CiE)
HkWkCi

(7)

In the practical implementation, the depthwise convolutional filters with 3×3 kernel

size is chosen (Hk = Wk = 3).

For depthwise convolutional filters (3×3 kernel size) with expansion ratio E = 4,

equation 7 would be:

FLOPSOurs

FLOPSstride
=

4

9
+

36

9Ci
≈ 4

9
(8)

The ratio is approximated to 4
9 as 36

9Ci<< 4
9 , when number of channels Ci ∈ {128,

512, 1024, 2048}.
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Similarly, for depthwise convolutional filters (3×3 kernel size) with expansion ratio

E = 8, equation 7 would be:

FLOPSOurs

FLOPSstride
=

8

9
+

72

9Ci
≈ 8

9
(9)

It can be concluded that the number of FLOPS in our method is not greater than

the number of FLOPS in stride pooling. Particularly it is much lesser for E = 4. But

the performance of our EDS layer is superior to stride pooling, which is discussed in

the results section. Also, In section 5.1 it is shown that expansion ratio E = 4 and E

= 8 performed comparably but EDS layer with E = 4 has approximately 55% lesser

FLOPS than stride pooling.

3.2.3. Parameters comparison with stride pooling

The number of parameters for the stride pooling (strided convolutions with stride >

1) layer would be HkWkCiCi. The total number of parameters in our EDS layer would

be equal to HkWkCiE (depthwise convolutions) + CiECi (pointwise convolutions) +

Ci (feature scaling component). The ratio of the number of parameters in our EDS

layer and the number of parameters in stride pooling would be as follows :

#PARAMOurs

#PARAMstride
=

HkWkE + CiE + 1

HkWkCi
(10)

For depthwise convolutional filters (3×3 kernel size) with expansion ratio E = 4,

equation 10 would be:

#PARAMOurs

#PARAMstride
=

37 + 4Ci

9Ci
(11)

The values of the above ratio are equal to 0.5, 0.45 when the number of channels

(Ci) is 64, 512 respectively. Therefore, in the setting mentioned above, the number of

parameters in the EDS layer would be at least 50% less than stride pooling.

4. Experiments

The proposed approach is tested with various CNN architectures by replacing their

pooling methods with our proposed EDS layer. Network architectures such as VGG-
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16 [25], ResNet-56, ResNet-50 [26], WideResNet-28-10, Wide-ResNet-18-2 [27], Mo-

bileNet [28], and Faster R-CNN [29] are used. Datasets such as CIFAR [30], ImageNet

[31], and MS-COCO [32] are used for the experiments. Different network architectures

use one or a combination of different pooling methods such as max pooling, average

pooling, or stride pooling. In EDS, expansion ratio E ∈ {1,2,4,8} and depthwise con-

volutional filters of 3×3 kernel size with stride 2 are taken in all experiments.

4.1. Image Classification on CIFAR-10

CIFAR-10 dataset [30] designed for image classification problem which consists

of 60,000 colour images with 10 classes. We have used 50,000 images for the training

and 10,000 images for the testing. We have done extensive number of experiments

with CIFAR-10 dataset using various network architectures such as VGG-16, ResNet-

56, MobileNet, and WideResNet-28-10 [25, 26, 28, 27].

For optimization, Stochastic Gradient Descent (SGD) [33] is used with momentum

0.9 and 128 minibatch size. Initially, the learning rate is set to 0.1 and is decreased

by a factor of 5 every 50 epochs. The models are trained from scratch for 250 epochs.

We set weight decay to 0.0005 for model parameters. The standard data augmentation

strategy of random crop and horizontal flip is used.

VGG-16 uses five 2×2 max pooling layers in its architectures. We replaced all

five max pool layers with our proposed EDS and other pooling methods. As shown in

Table 1, EDS (E = 4) outperforms all other pooling methods by a significant margin.

ResNet is the first network architecture that uses skip connections to train deeper

networks with layers of more than a hundred. Otherwise, deeper networks are hard to

train due to the vanishing gradient problem. ResNet-56 has two stride pool layers with

stride value two, where pooling happens (32×32 to 16×16 and 16×16 to 8×8). We

replace both of these pooling layers with our proposed EDS and other pooling methods

while keeping all other parameters same. Similarly, we replace stride pooling used

in Wide-ResNet-28(depth)-10(widen) with our EDS and other pooling methods. As

shown in Table 2 and 3, we achieve a significant accuracy gain by just using EDS (E =

4) pooling at two layers.

MobileNet is a computationally efficient CNN architecture design for mobile and
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Table 1: Comparison of different models and pooling methods on the CIFAR-10 dataset for VGG-16.

Model Pooling Method Accuracy

VGG-16 (Baseline) Max 93.6

VGG-16 (Baseline) Stride Pool 93.0

VGG-16 (Baseline) Average 93.8

VGG-16 (Baseline) Mixed 93.7

VGG-16 (Baseline) Stochastic 93.4

VGG-16 (Ours) EDS (E = 1) 93.9

VGG-16 (Ours) EDS (E = 2) 94.1

VGG-16 (Ours) EDS (E = 4) 94.4

VGG-16 (Ours) EDS (E = 8) 94.2

Table 2: Comparison of different models and pooling methods on the CIFAR-10 dataset for ResNet-56.

Model Pooling Method Accuracy

ResNet-56 (Baseline) Max 93.2

ResNet-56 (Baseline) Stride Pool 93.5

ResNet-56 (Baseline) Average 93.4

ResNet-56 (Baseline) Mixed 93.6

ResNet-56 (Baseline) Stochastic 93.8

ResNet-56 (Ours) EDS (E = 1) 94.2

ResNet-56 (Ours) EDS (E = 2) 94.4

ResNet-56 (Ours) EDS (E = 4) 94.6

ResNet-56 (Ours) EDS (E = 8) 94.6

13



Table 3: Comparison of different models and pooling methods on the CIFAR-10 dataset for WideResNet-

28-10.

Model Pooling Method Accuracy

WideResNet-28-10 (Baseline) Max 95.4

WideResNet-28-10 (Baseline) Stride Pool 95.6

WideResNet-28-10 (Baseline) Average 95.5

WideResNet-28-10 (Baseline) Mixed 95.7

WideResNet-28-10 (Baseline) Stochastic 95.8

WideResNet-28-10 (Ours) EDS (E = 1) 96.0

WideResNet-28-10 (Ours) EDS (E = 2) 96.2

WideResNet-28-10 (Ours) EDS (E = 4) 96.3

WideResNet-28-10 (Ours) EDS (E = 8) 96.2

embedded systems. MobileNet uses stride pooling layers (stride = 2) with 3×3 kernel

size. We replaced each of these stride pooling with our proposed EDS and other pooling

methods while keeping all other parameters same. EDS (E = 4) outperforms all other

pooling methods by a significant margin, as shown in Table 4.

4.2. Image Classification on ImageNet

ImageNet [31] is a large scale dataset mainly popularized by Large Scale Visual

Recognition Challenge (ILSVRC) containing 1.28 million training images and 50000

validation images from 1000 different classes. The training is done on the training

set, and the Top-1 errors on the validation set are reported. We experimented with our

proposed EDS layers on the ImageNet dataset using ResNet-50 and Wide-ResNet-18-2

network architectures.

For these experiments, we perform standard data augmentation methods of random

cropping to a size of 224 × 224 and random horizontal flipping. For optimization,

Stochastic Gradient Descent (SGD) is used with momentum 0.9 and a mini-batch size

14



Table 4: Comparison of different models and pooling methods on the CIFAR-10 dataset for MobileNet.

Model Pooling Method Accuracy

MobileNet (Baseline) Max 91.0

MobileNet (Baseline) Stride Pool 91.1

MobileNet (Baseline) Average 91.0

MobileNet (Baseline) Mixed 91.1

MobileNet (Baseline) Stochastic 91.2

MobileNet (Ours) EDS (E = 1) 91.1

MobileNet (Ours) EDS (E = 2) 91.6

MobileNet (Ours) EDS (E = 4) 92.3

MobileNet (Ours) EDS (E = 8) 92.3

of 256. Initially, the learning rate is set to 0.1 and is decreased by a factor of 10 every

30 epochs. The models are trained from scratch for 100 epochs.

We replace stride pooling (stride = 2) used in ResNet-50 and WideResNet-18(depth)-

2(widen) [26, 27] with our propose EDS layers (3×3 kernel size), while keeping other

settings same as [26, 27]. As shown in Table 5, ResNet-50 with our EDS layers now

has accuracy comparable to ResNet-152 [21, 26] (with stride pooling). Results are

shown in the Table 5 for ResNet-50 and Table 6 for WideResNet-18-2.

Our pooling approach outperforms various state-of-the-art approaches on ResNet-

50 model over ImageNet dataset as shown in Table 5.

4.3. Object Detection on MS-COCO

The above set of experiments shows improvement in accuracy due to our proposed

EDS layer in classification tasks over various popular datasets on various CNN archi-

tectures. In this section, we show that our proposed EDS layer not only perform well

on image classification task but also for other tasks such as object detection.
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Table 5: Experiments on ImageNet dataset for ResNet-50 (https://github.com/KaimingHe/deep-residual-

networks) network architecture (Top-1 classification accuracy on the validation set is reported). We are

using the same settings and hyperparameters as mention in [17] for a fair comparison. Bold values indicate

the best results obtained by our pooling method in the comparison.

Model Pooling Method Accuracy

ResNet-50 (CVPR’16) Stride Pool [26] 75.3

ResNet-50 (ECCV’18) DFT-Pooling [12] 75.9

ResNet-50 (ICCV’17) FBN [13] 76.0

ResNet-50 (ICCV’17) SORT [14] 76.2

ResNet-50 (CVPR’18) DPP [19] 76.6

ResNet-50 (ICCV’17) MPN-COV [15] 77.3

ResNet-50 (ICCV’19) GFGP with DPP [18] 77.4

ResNet-50 (ICCV’19) GFGP with Gate [18] 77.8

ResNet-50 (CVPR’18) iSORT-COV [16] 77.9

ResNet-50 (ICCV’19) iSORT-COV+EP [17] 78.0

ResNet-50 (Ours) EDS (E = 4) 78.2

MS-COCO dataset [32] is designed for object detection and segmentation task. It

consists of around 80,000 training and 40,000 validation images. We use the MS-

COCO object detection dataset with a Faster R-CNN object detector. In our experi-

ment, Faster R-CNN uses ResNet-50 (with stride pooling layers) as a base architecture.

We replace each of its stride pooling layers with our proposed EDS layer while keep-

ing all other parameters and settings same as [21, 29, 26]. EDS (E = 4) outperforms

baseline by a significant margin as shown in Table 7.
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Table 6: Experiments on ImageNet dataset for WideResNet-18-2 [27] network architectures (Top-1 classifi-

cation accuracy on the validation set are reported).

Model Pooling Method Accuracy

WideResNet-18-2 (Baseline) Stride Pool 74.4

WideResNet-18-2 (Ours) EDS (E = 4) 75.3

Table 7: Experiments on MS-COCO dataset for Faster R-CNN object detector with ResNet-50 as a base

network [21, 29, 26].

Pooling Method AP@IoU=0.5 AP@IoU=0.5:0.95

Stride Pool (Baseline) 45.2 25.1

EDS E = 4 (Ours) 47.3 26.8

5. Ablation Studies

We validate the proposed approach using extensive ablation studies. We perform

ablation experiments to examine the effect of the expansion ratio and feature scaling.

5.1. Effect of Expansion Ratio

Our pooling method uses depthwise separable convolution operations, which is

computationally much cheaper (in terms of parameters and FLOPS) than standard con-

volution operations. This gives us the flexibility to increase the number of channels/feature-

maps in the intermediate step of pooling operation in the EDS layer (See Figure 1,4).

Each output channel/feature-map is a unique representation of the input tensor.

Thus increasing the number of channels of an intermediate step in the spatial pooling

operation gives a chance to preserve the more number of features at the place where a

large number of spatial features are simply discarded.

The next question which comes in mind is: What should be the value of the hyper-

parameter expansion ratio? We have experimented with expansion ratio values of 1,2,4

and 8. In section 3.2.1 through FLOPS calculation, we have demonstrated that our
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Figure 5: Effect of expansion ratio (E) on the performance of our EDS layers (best viewed in color).

pooling method with expansion ratio 4 is computationally much cheaper than stride

pooling. Plots in Figure 5 summarizes the effect of different values of expansion ra-

tio on the overall accuracy. The experiments use the CIFAR-10 dataset with three

different network architectures VGG-16, ResNet-56, and MobileNet. In the case of

VGG-16, EDS pooling with expansion ratio 4 has the best performance of accuracy

94.4 as compared to 94.2 with expansion ratio 8. The diminishes in performance in

case of expansion ratio 8 is due to overfitting. In the case of ResNet-56 and MobileNet,

experiments show that expansion ratios 4 and 8 perform equally good. From this, it

can be observed that expansion ratio 4 is the right choice, and increasing the value

of expansion ratio beyond four is not only computationally expansive but also doesn’t

improve the performance of CNN.

5.2. Ablation on Feature Scaling

Feature scaling has been used in our EDS layer to highlight the important channels/feature-

maps. In feature scaling, all the channels are scaled by a value in the range between 0
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Figure 6: ResNet-56 on CIFAR-10 dataset: Histogram plots of the average scale factor value for different

channels/feature-maps obtained on the whole test set (E = 4).

to 1. In this ablation, ResNet-56 architecture with the CIFAR-10 dataset is used. Our

proposed EDS layer is applied at two places to downsample from 32×32 to 16×16 and

16×16 to 8×8 in ResNet-56. Figure 6 shows the histogram plots of average scale factor

value obtained by different channels at the two different EDS layers (pooling layers)

with E = 4 on the whole test set. It can be observed from Figure 6 that the feature

scaling operation in our EDS layer is actually doing the scaling across channels.

Next, we show the efficacy of the feature scaling component in our EDS layer by

two means. First, by a direct experiment over the CIFAR-10 dataset using ResNet-56

architecture. In one experiment, feature scaling is being used within the EDS layer, and

in another experiment, feature scaling is absent in the EDS layer. The results of these

two different runs are shown in Table 8. The accuracy results indicate the efficacy of

the feature scaling component in our EDS layer. The improvement in accuracy due to

scaling is significant as our EDS layer (pooling operation) is applied at only two places

within the 56 layer network architecture. Whereas, the computational overhead due to

feature scaling operation is insignificant, as can be seen by equation 4 in section 3.2.1.

Now we show the efficacy of the feature scaling component by an evaluation study.

In the feature scaling operation, all the channels/feature-maps are scaled by a value in

the range between 0 to 1. We drop some percentage of the channels/feature-maps after

being scaled by the feature scaling component. Channels are dropped on different runs

during our experiments from 5% to 40% in increments of 5% in each run.

19



Table 8: ResNet-56 on CIFAR-10: Experimental results of our proposed EDS layer with and without feature

scaling.

Feature Scaling Pooling Method Accuracy

Absent (Baseline) Stride Pool 93.5

Absent EDS (E = 1) 93.4

Absent EDS (E = 2) 93.8

Absent EDS (E = 4) 94.1

Absent EDS (E = 8) 94.1

Present (Ours) EDS (E = 1) 94.2

Present (Ours) EDS (E = 2) 94.4

Present (Ours) EDS (E = 4) 94.6

Present (Ours) EDS (E = 8) 94.6

The dropping of channels/feature-maps is done in two ways. In one setting, the

most significant channels (high scale factor values) are dropped, and in another setting,

the least significant channels (low scale factor values) are dropped. Figure 7 depicts

the results of our evaluation study to show the efficacy of the learnable scaling function

in our proposed EDS layer. It is observed from Figure 7 that performance is dropped

lesser when least significant channels (low scale factor value) are dropped, and also the

other way performance is dropped more when most significant channels (high scale

factor value) are dropped. This shows that our proposed scaling function in the EDS

layer can learn the importance of the channels/feature-maps. Feature scaling operation

highlights the important channels/feature-maps by scaling them with high value and

suppresses the less important channels/feature-maps by scaling them with low value.

Hence feature scaling helps in increasing the overall performance of the CNNs by

making feature selection across the channels.
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Figure 7: Results of an evaluation study for the feature scaling component use in our proposed EDS layer

with E = 4 (best viewed in color).

5.3. Separable Convolution vs. Expansion Ratio

The proposed EDS pooling layer uses separable convolution, i.e., depthwise con-

volution followed by a pointwise convolution. Therefore one may think that the im-

provements are coming because of depthwise and pointwise convolutions. Therefore,

to alleviate this concern, we also conduct experiments for different values of expansion

ratio without using feature scaling, as shown in Table 8.

As shown in Table 8, EDS (E = 1) without feature scaling has accuracy similar to

baseline. In both cases (with and without feature scaling), accuracy increase with the

increase in E value. Therefore expansion ratio also plays a major role in the proposed

EDS pooling layer.

5.4. Comparison with Heavier Models

It will be very logical to think that the additional parameters introduced by our

modifications are the sole reason for the performance improvement. Pooling layers
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Table 9: The table shows the comparison of different ResNet models on the CIFAR-10 dataset (Acc: Accu-

racy).

Models Acc(%) Params FLOPS

ResNet-56 (Baseline) 93.5 0.856M 0.126G

ResNet-56 (E = 1) 94.2 0.883M 0.128G

ResNet-56 (E = 2) 94.4 0.888M 0.129G

ResNet-56 (E = 4) 94.6 0.901M 0.130G

ResNet-56 (E = 8) 94.6 0.926M 0.133G

ResNet-164 (Baseline) 94.4 1.712M 0.247G

ResNet-56 1.5x (Baseline) 94.6 1.922M 0.283G

only constitute a small portion of a deep CNN, and we use depthwise separable convo-

lutions in the proposed EDS layer. Therefore, this will not increase the model parame-

ters significantly, as shown in Table 9. However, in order to alleviate this concern, we

also compare our results with different versions of networks having increased depth or

width. This is done in order to compare our approach to heavier networks that have

higher parameters/computation than ours.

ResNet-56 1.5x is the wider version of ResNet-56, where we increase the number

of filters to 1.5 times from each layer. ResNet-164 is the deeper version of ResNet. As

shown in Table 9, the performance of ResNet-56 (E = 4) is similar to ResNet-56 1.5x

and ResNet-164 while having almost half parameters and FLOPS than ResNet-56 1.5x

and ResNet-164.

Therefore from Table 9, we can conclude that our approach improves the perfor-

mance of deep CNNs without significantly increasing the number of parameters. Our

approach shows similar/better performance than a heavier version of models with con-

siderably higher parameters and computation.
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Table 10: The table shows the results for VGG-16 on CIFAR-10 dataset in different setups (Acc: Accuracy,

and TD: Training Data).

Model Pooling Method TD (Train-Test) Acc(%)

VGG-16 Max 100% 6.1

VGG-16 EDS (E = 4) 100% 5.2

VGG-16 Max 20% 15.6

VGG-16 EDS (E = 4) 20% 14.1

5.5. Effect of EDS pooling on Over-fitting

We perform experiments for VGG-16 on the CIFAR-10 dataset to test the effect

of EDS pooling on overfitting. We have conducted these experiments in two different

settings. In the first setting, the experiment is carried out over a full dataset (100% of

the training set). In the second setting, the experiment is carried out over 20% of the

training set.

We use the difference between the training and test accuracy as a measure of over-

fitting. Higher the difference, higher is the over-fitting. From Table 10, it is clear that

the proposed EDS layer is less prone to overfitting problem than the max pooling layer

since the gap between training and test accuracy is always lower.

6. Conclusion

In this work, we propose an EDS layer to substitute feature pooling layer in deep

CNNs. Added functionality in our pooling, such as expansion ratio and feature scaling

for feature selection across the channels, helps to improve the performance while not

adding a significant computational overhead as compared to stride pooling. ResNet-

50 with our proposed EDS layer has performed comparably to ResNet-152 with stride

pooling on the ImageNet dataset. We show that our proposed approach works well for

various networks not only for classification but also for detection. The proposed EDS
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layer is demonstrated to improve the performance on various models such as VGG,

ResNet, WideResNet, MobileNet, and Faster R-CNN.
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