
        

Citation for published version:
Singh, P, Verma, VK, Rai, P & Namboodiri, VP 2020, Leveraging filter correlations for deep model compression.
in Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020., 9093331,
Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, IEEE, pp. 824-
833, 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village,
USA United States, 1/03/20. https://doi.org/10.1109/WACV45572.2020.9093331
DOI:
10.1109/WACV45572.2020.9093331

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1109/WACV45572.2020.9093331
https://doi.org/10.1109/WACV45572.2020.9093331
https://researchportal.bath.ac.uk/en/publications/leveraging-filter-correlations-for-deep-model-compression(de6d3c5e-d80c-4b90-ac57-ea7c9d3426b8).html


Leveraging Filter Correlations for Deep Model Compression

Pravendra Singh∗ Vinay Kumar Verma∗ Piyush Rai Vinay P. Namboodiri
Department of Computer Science and Engineering, IIT Kanpur, India

{psingh, vkverma, rpiyush, vinaypn}@iitk.ac.in

Abstract

We present a filter correlation based model compression
approach for deep convolutional neural networks. Our ap-
proach iteratively identifies pairs of filters with the largest
pairwise correlations and drops one of the filters from each
such pair. However, instead of discarding one of the fil-
ters from each such pair naı̈vely, the model is re-optimized
to make the filters in these pairs maximally correlated, so
that discarding one of the filters from the pair results in
minimal information loss. Moreover, after discarding the
filters in each round, we further finetune the model to re-
cover from the potential small loss incurred by the compres-
sion. We evaluate our proposed approach using a compre-
hensive set of experiments and ablation studies. Our com-
pression method yields state-of-the-art FLOPs compression
rates on various benchmarks, such as LeNet-5, VGG-16,
and ResNet-50,56, while still achieving excellent predictive
performance for tasks such as object detection on bench-
mark datasets.

1. Introduction

Recent advances in convolutional neural networks
(CNN) have yielded state-of-the-art results on many com-
puter vision tasks, such as classification, detection, etc.
However, training data and storage/computational power re-
quirements limit their usage in many settings. To address
this, one line of research in this direction has focused on
training CNNs with limited data [10, 57, 21, 42, 40, 60].
Another line of work has focused on model compression
to make it more efficient in terms of FLOPs (speedup) and
memory requirements. The memory requirement in CNNs
can be viewed either as runtime CPU/GPU memory usage
or storage space for the model. A number of recent works
[7, 1, 53, 54, 49, 50, 64, 14, 17, 48, 33, 55, 52, 51, 31, 25]
have explored such possibilities for efficient deep learning.

Most existing model compression/pruning methods can
be divided into three categories. The first category [5, 11]
has broadly considered introducing sparsity into the model

∗Equal contribution.

parameters. These approaches give a limited compression
rate on FLOPs and Total Runtime Memory (TRM), and
need special software (sparse libraries) support to get the
desired compression. These approaches provide a good
compression rate in terms of weights storage, but provide
limited FLOPs and TRM compression.

The second category of methods [11, 41, 30, 39, 35]
has broadly focused on quantization based pruning. Spe-
cial hardware is needed to provide the acceleration for the
final compressed model. These kinds of model compression
techniques are primarily designed for IoT devices.

The third category of methods [7, 1, 64, 50, 49] fo-
cuses on filter pruning. These approaches are generic and
can be used practically without needing any special soft-
ware/hardware needed for acceleration. These approaches
provide a high compression rate in terms of FLOPs and
TRM because of pruning of the whole convolutional filters
from the model, which also reduces the depth of the fea-
ture maps. Sparsity and quantization based approaches are
complementary to these approaches.

Filter pruning approaches require some measure to cal-
culate the importance of the filter, which is a difficult task
in general, and many heuristics have been used to measure
filter importance. For example, [1] used a brute-force ap-
proach to discard the filters. They prune each filter sequen-
tially and measure the importance of filters based on their
corresponding accuracy drop, which can be impractical for
large networks. [25] uses the `1 norm (sum of absolute val-
ues) of the filter to measure the filter importance, assuming
that a high `1 norm filter is more likely to have a bigger
influence on the feature map. [37, 46] use Taylor expan-
sion based filter importance, which is motivated by the early
work on optimal brain damage [24, 12].

As discussed in [16], filter importance based pruning
methods have certain limitations in the form of require-
ments that are not always met. Compressed models pro-
duced by such methods suffer from redundancy because
these methods don’t consider filter redundancy while prun-
ing. Therefore, the filter importance based pruning method
is unable to reduce the redundancy present in the model and
achieve the optimal solution.



In this work, we propose iteratively removing the filters
containing redundant information and getting a subset of
filters that are minimally correlated. As also evidenced in
other recent work, uncorrelated filters help to reduce over-
fitting [6, 44] and give a compact model with minimal re-
dundancy. There are no benefits by keeping redundant fil-
ters in the model, and it will only result in overfitting or
reduced generalization performance [6, 44]. The works in
[3, 58] also eliminate the redundancy in convolutional fil-
ters by applying clustering to feature maps to perform filter
pruning. In contrast, we use filter correlation to measure the
redundancy present in the pairs of filters.

In particular, we present a filter pruning approach based
on the correlation coefficient (Pearson correlation coeffi-
cient) of filter pairs. Unlike other prior works [14, 17, 31,
25] on filter pruning, instead of measuring individual fil-
ter importance, we measure importance for each pair of fil-
ters. Filter pairs that have the largest correlation (high re-
dundancy) are given the lowest importance and are chosen
for further optimization, before eventual pruning. In the op-
timization step, we further increase the correlation between
each chosen filter pair and then finally prune (discard) one
filter from the pair. This optimization step helps to trans-
fer the knowledge of the filter to another one before dis-
carding it. For example, suppose two filters f1, f2 in a pair
have 60% pairwise correlation. If we discard one filter, we
lose some of the information. However, suppose prior to
pruning, we optimize the model in a way such that the fil-
ter pair’s correlation increases to 99%. If we now discard
one of the filters, we lose little information, and it would be
safe to prune one of the filters from the pair (since the two
filters in the pair have a high degree of similarity), and fine-
tuning can quickly recover it. Our approach starts with the
pre-trained model and then iteratively prunes the redundant
filters as shown in Figure 1.

2. Related Work
Most of the recent work on deep model compression can

be categorized into three broad categories.

2.1. Connection Pruning

Connection pruning is a direct way to introduce spar-
sity into the CNN model. One approach for CNN com-
pression is to prune the unimportant parameters. How-
ever, it is challenging to define the importance of parame-
ters quantitatively. There are several approaches to measure
the importance of the parameters. Optimal Brain Damage
[24] and Optimal Brain Surgeon [12] used the second order
Taylor expansion to calculate the parameters importance.
However, the second order derivative calculations are very
costly. [5] used hashing to randomly group the connection
weights into a single bucket and then finetune the network.
[62] proposed the skip layer approach for network compres-

Figure 1. Correlation-based filter pruning where strongly corre-
lated filter pairs are selected for optimization. The compression
of the model depends on the user-defined error tolerance limit (ε).
Hence ε can be seen as the stopping criteria in our approach.

sion. [11] proposed an iterative approach where absolute
values of weights below a certain threshold are set to zero,
and the drop in accuracy is recovered by finetuning. This
approach is very successful when most of the parameters
lie in the fully connected layer. The main limitation of these
approaches is the requirement of special hardware/software
for acceleration at run-time.

2.2. Filter Pruning

Filter pruning approaches (which is the focus of our
work too) do not need any special hardware or software for
acceleration. The basic idea in filter pruning [14, 17, 31, 25]
is to get an estimate of the importance of the filters and dis-
card the unimportant ones. After that, at each pruning step,
re-training is needed to recover from the accuracy drop.
[19] evaluates the importance of filter on a subset of the
training data based on the output feature map. [1] used a
greedy approach for pruning. They evaluated the filter im-
portance by checking the model accuracy after pruning the
filter. [37, 25] used similar approach but different measure
for filter pruning. [7, 64, 20] used the low-rank approxima-
tion. [49] used a data-driven approach for calculating filter
importance and pruning. [29] performed the channel level
pruning based on the scaling factor in the training process.
Recently, group sparsity is also a popular method for filter
pruning. [50, 22, 61, 65, 2] explored the filter pruning based
on the group sparsity.

2.3. Quantization

Weight quantization based approaches have also been
used in prior works on model compression. [11, 9, 56]
compressed CNN by combining pruning, quantization, and
huffman coding. [34] conducted the network compression
based on the float value quantization for model storage.
Binarization [41] can be used for the network compres-
sion where each float value is quantized to a binary value.
Bayesian methods [30] are also used for the network quanti-
zation. The quantization methods require special hardware
support to get the advantage of the compression.

Our method is generic and does not require any special
hardware/software, with the special support we can further



increase the FLOPs and memory compression because our
method is complementary to other pruning methods such as
binary/quantized weights, connection pruning, etc.

3. Proposed Approach
3.1. Terminology

Let Li be the ith layer and i ∈ [1, 2, . . .K] where
K is the number of convolutional layers. The layer Li

has co filters which is the number of output channels.
The set of filters at layer Li is denoted as FLi

, where
FLi

= {f1, f2, . . . , fco}. Each filter fi is of dimension
(hk, wk, cin), where hk, wk and cin are height, width and
number of input channels, respectively.

3.2. FLOPs and Memory Size Requirements

Here we provide a brief analysis to help illustrate the
effect of architecture hyperparameters on the FLOPs and
memory consumption (which we will use in our experimen-
tal results to compare the various approaches).

For a CNN model, the total number of FLOPs on the
layer Li (convolutional (FLOPsconv) or fully connected
(FLOPsfc)) with the batch size B can be given as:

FLOPsconvi = cinwkhkwohoco ∗B (1)

FLOPsfci = cinco ∗B (2)

Here (win, hin, cin) is the input feature map, (wk, hk, cin) is
the convolutional filter and (wo, ho, co) is the output feature
map. The total FLOPs across network can be defined as:

FLOPs =

K∑
i=1

FLOPsconvi
+

N∑
j=1

FLOPsfcj (3)

Here K,N is the number of convolutional and fully con-
nected layers respectively. Convolutional filter of dimen-
sion (wk, hk, cin) is applied wohoco times to the input fea-
ture map of dimension (win, hin, cin) to produce output fea-
ture map of dimension (wo, ho, co). Also, there are two
sources of memory consumption: 1- feature map size, 2-
parameter weight size. There are some other memory con-
sumptions as well, but these are not feasible to estimate like
those that are related to the implementation details of the
model, the framework used, etc. So we can estimate the
lower bound of memory size. The estimated memory re-
quirement for layer Li can be calculated as

Mfmi
= 4wohoco ∗B (4)

Mwi = 4wkhkcinco (5)

Where Mfmi
is memory required for the feature map

(wo, ho, co) and Mwi
is the memory required for parame-

ter storage at layer Li. So the total memory requirement

across each layers can be calculated as:

TRM =

K+N∑
i=1

Mfmi +

K+N∑
j=1

Mwj (6)

For the fully connected layer wk, hk, wo, ho = 1 and
cin, co are the number of incoming and outgoing connec-
tions respectively. For the convolutional layer cin, co is the
number of input and output channel respectively. Please
note that Mfmi depends on the batch size. Therefore the
methods that are based on sparsity but not filter pruning only
reduce Mwi

. For such approaches, the feature map size re-
mains the same and grows linearly with respect to the batch
size.

3.3. Our Approach

Our approach iterative prunes a pre-trained model. In
each iteration, we choose correlated filter pairs from each
layer and optimize the selected filter pairs such that filters
in each selected pair are as highly correlated as possible.
This enables us to safely discard, without information loss,
one of the filters (which is redundant) from each of the se-
lected pairs. We finetune the compressed model after prun-
ing. This constitutes one iteration of pruning (Figure 1),
which can be further repeated to more iterations until we
could recover accuracy with in the tolerance limit.

In our approach, we consider the importance of filter
pairs for pruning. We use the correlation coefficient of the
filter pair to quantify their importance. The filter pair that
has the largest correlation coefficient is defined as the least
important. It is considered as the least important filter pair
because of the presence of redundancy (one of the filters
from the pair is redundant). However, if we drop one of the
filters from this pair, we might also be losing their mutually-
complementary information, which may or may not be cap-
tured by the other filters. Therefore, before discarding one
of the filters from the pair, we need to transfer this infor-
mation to the other filters by optimizing the model before
pruning. There may be the case when a filter belongs to
multiple highly correlated pairs, then that filter is pruned
in the process. It may also be possible that both filters are
important in highly correlated filter pair, and accuracy may
drop after pruning, but the small finetuning (1-2 epoch) will
recover it as we have only removed a redundant filter from
the pair.

Some of the previous approaches like [8, 11, 25] used the
`1 or `2 regularizer for defining the filter importance. How-
ever, using the `1 or `2 regularizer typically works well only
when there is significant redundancy in the model. These
approaches are unable to give a highly compressed model
without sacrificing accuracy. If we try to get a highly com-
pact model with these approaches, the system performance
degrades rapidly because the strong `1 or `2 regularizer



Figure 2. Strongly correlated filters are selected and make them
highly correlated. Finally, one redundant filter is pruned.

starts penalizing the important filters as well and, therefore,
cannot achieve a significant compression. If we increase
the `2 penalty, it starts controlling the model complexity.
Large `2 penalty results in underfitting. Therefore these ap-
proaches can only lead to limited levels of filter pruning. In
contrast, in our proposed approach, we learn a minimal ba-
sis of filters that are highly uncorrelated. Figure 2 illustrates
the basic idea of our approach.

Correlation is the most common and one of the simplest
statistical measures to quantify data dependence or associ-
ation. Correlation often refers to how close two variables
are to have a linear relationship with each other. Let X and
Y are two random variables with expected values µX and
µY and standard deviations σX and σY respectively. The
correlation ρXY can be defined as

ρXY =
E[(X− µX)(Y − µY )]

σXσY
(7)

Here ρXY ∈ [−1, 1], with a high negative or high positive
value indicates a high degree of linear dependence between
the two variables. When the correlation is near zero, the two
variables are linearly independent.

3.3.1 Episode Selection

Let us define the two terms which we will use in the
proposed pruning process - “Ready-to-prune (Ri)” and
“Pruned (Pi)”. Here Ri denotes filter pairs selected from
the layer Li for the optimization process (details in the next
section). Pi denotes the filters that are eventually selected
(one from each pair of Ri) for pruning from the model after
optimization. Therefore if N filter pairs are selected in Ri

then |Pi| = N , i.e., from the layer Li, N filters will get
pruned.

In each layer Li, we find out the filter pairs that have
the maximum correlation. For calculating the correlation,
we select all filters FLi

= {f1, f2, . . . , fco} on a layer Li

with co output channels. Each filter fi on the layer Li is

of dimension (wk, hk, cin) is flattened to a vector of size
wk × hk × cin. Now we can calculate the correlation co-
efficient for filter pair by using Eq. 7. In our approach,
we have considered the magnitude of the correlation coeffi-
cient, thereby giving the same importance for positive and
negative correlation values. Based on the magnitude of the
correlation coefficient of each pair, filter pairs are ordered.

The filter pair with the largest correlation value has the
minimum importance. Some least important filter pairs are
selected for the ready-to-prune set Ri (select the filter pair
(fa, fb) such that a 6= b). Let Ii are the remaining filter pairs
at layer Li. Then:

PFLi = Ri ∪ Ii s.t. Ri ∩ Ii = φ (8)

Here PFLi
= {(fa, fb) : a ∈ {1, 2, . . . co}, b ∈

{1, 2, . . . co}}. The same process is repeated for each layer.
This selected set of filter pairs from all the layers (St) is
called one episode. Where St is the set of filter pairs se-
lected at tth episode from all K convolutional layers.

St = {R1,R2, . . . ,RK} (9)

This set St is the collection of the ready-to-prune filter pairs
from all the layers and used for further optimization such
that both filters in each pair contain similar information af-
ter optimization. Therefore we can safely remove one filter
from each pair. The optimization process is explained in the
next section.

3.3.2 Optimization

Let C(Θ) be the cost function of the original model and Θ
be the model parameters. We optimize this cost function
with the new regularizer applied to the selected episode (set
of filter pairs) St. Our new regularizer (CSt) is as follows:

CSt = exp

− ∑
X,Y ∈Ri,∀Ri∈St

|ρXY |

 (10)

Here |ρXY | is the magnitude of correlation coefficient of
the filter pair (X,Y ) in Ri and Ri ∈ St. The idea is here to
make the strongly correlated filter pair highly correlated (as
illustrated in Figure 2). Note that Eq. 10 will be minimized
when

∑
X,Y ∈Ri,∀Ri∈St

|ρXY | term is maximum, i.e. each
filter pair’s magnitude of correlation coefficient |ρXY | → 1.
This new regularizer is added to the original cost function
so our new objective function is as follows:

Θ = arg min
Θ

(C(Θ) + λ ∗ CSt) (11)

Here λ is the hyper-parameter to control the regularization
term. Minimizing the Eq. 11 will optimize such that without
degrading the model performance, it increases the correla-
tion as high as possible between filters in each pair belong-
ing to Ri. Therefore we can safely remove one filter from
each pair.



3.3.3 Pruning and Finetuning

After increasing the correlation between filters in each pair
belonging to Ri, we can prune one filter from each pair be-
longing to Ri. Our model has a reduced set of the parameter
Θ′

Θ′ = Θ \ {p1,p2 . . .pk} (12)

Where pi is the set of filters finally selected to be removed
from the model.

Further, we finetune the model w.r.t. the parameter Θ′.
Since we discarded the redundant filters from the model,
the information loss from the model would be minimum.
Hence the finetuning process can easily recover from the
small loss, and the model’s performance can be brought
back to be nearly the same as the original one. Please note
that, if two filters are highly correlated, then their output
feature maps are also highly correlated because both filters
are applied to the same input feature maps.

4. Experiments
To evaluate our approach Correlated Filter Pruning

(CFP), we use three standard models, LeNet-5 [23], VGG-
16 [47] and ResNet-50,56 [13], for classification, and two
popular models, Faster-RCNN and SSD, for object detec-
tion. Our experiments were done on GTX 1080 Ti GPU
and i7-4770 CPU@3.40GHz. Through an extensive set of
experiments, we show that our proposed approach achieves
state-of-art compression results. In all our experiments,
we set λ = 1 to enforce a high correlation for optimizing
Eq. 11. We can also choose a smaller value of λ, but then
it would increase the number of epochs in the optimization
step. A very high value of λ may result in accuracy loss be-
cause now optimization gives more weight to CSt (Eq. 11)
than C(Θ). We empirically found λ = 1 is the right choice
for all our experiments. Filter pairs selection for the opti-
mization process (Ri) is proportional to the FLOPs on layer
Li to reduce the same % of FLOPs from every layer. We si-
multaneously prune filters across all layers. We continued
this filter pairs selection strategy until we can recover the ac-
curacy with in the tolerance limit. Ones the tolerance limit
is achieved, we start individual layer pruning. We pruned
each layer sequentially from start to end one by one until
we could recover accuracy with in the tolerance limit.

4.1. LeNet-5 on MNIST

MNIST is a handwritten digit dataset contains 60,000
images for training and 10,000 images for the testing. We
use the LeNet-5 architecture that contains two convolutional
layers and two fully connected layers. The complete archi-
tecture is 20-50-800-500, where 20, 50 are the number of
convolutional filters in first and second convolutional lay-
ers respectively. We trained the model from scratch and
achieved an error rate of 0.83%.

Method r1, r2 Error% FLOPs Pruned Flop %

SSL-2 [61] 5,19 0.80 5.97× 105 86.42
SSL-3 [61] 3,12 1.00 2.89× 105 93.42
SBP [38] – 0.86 – 90.47
SparseVD [36] – 0.75 – 54.34
Baseline 20,50 0.83± 0.09 4.40× 106 0.0
CFP-1 (Ours) 4,5 0.91± 0.07 1.95× 105 95.56
CFP-2 (Ours) 3,5 0.95± 0.05 1.58× 105 96.41
CFP-3 (Ours) 3,4 1.20± 0.09 1.39× 105 96.84
CFP-4 (Ours) 2,3 1.77± 0.08 0.89× 105 97.98

Table 1. Pruning results for the LeNet-5 architecture on MNIST.
Here r1, r2 are used to denote the number of remaining filters in
first and second convolutional layers respectively. We run each
experiment three times and report the “mean±std”.

To show the effectiveness of our proposed approach, we
conduct the first experiment on LeNet-5 for the MNIST
dataset. As compared to the previous approaches, we
achieve a much higher FLOPs compression rate with a rel-
atively small accuracy drop. In prior work, SSL-3 [61],
report an error of 1.0% on 93.42% FLOPs pruning while
we achieve 96.41% FLOPs pruning with only 0.95% er-
ror. Also, note that, as compared to SBP [38], that has only
90.47% FLOPs pruning with 0.86% error, our approach has
95.56% FLOPs pruning with the negligible (0.05%) error
difference. Please refer to Table 1 for a detailed compari-
son. CFP-1 denotes the first compressed model in this iter-
ative pruning scheme when it shows a competitive accuracy
as compared to other approaches. We can repeat the pro-
cess for more iterations to compress the model further and
can monitor the accuracy after each pruning iteration. This
helps us assess our approach’s ability to compress the model
further. CPF-2,3 and 4 denote the compressed models ob-
tained by such iterative pruning after 2, 3, and 4 iterations,
respectively.

4.2. VGG-16 on CIFAR-10

We next experiment with the VGG-16 architecture on
CIFAR-10. Each image size is of size 32× 32 on the RGB
scale. The VGG-16 convolutional layers architecture is the
same as [47], and after each convolutional layer, batch nor-
malization layers are added. We use the same architecture
and settings as described in [25]. The network is trained
from scratch and achieves a 6.51% error rate. Figure 3
shows the layer-wise FLOPs distribution for the original
and pruned model.

Like the LeNet-5 pruning results, we observe the same
pattern for the VGG-16 pruning on the CIFAR-10 dataset.
We have 80.36% FLOPs pruning with a 6.77% error while
previous state-of-art approach SBPa [38] has only 68.35%
FLOPs pruning with 9.0% error. SparseVD [36] has
55.95% pruning with 7.2% error, while we have 81.93%
pruning with significantly less (7.02%) error. Please refer
to Table 2 for detail comparison. In the Table 2, CFP-1, and



Figure 3. The original and pruned model FLOPs on each layer for
VGG-16 on CIFAR-10.

Method Error% FLOPs Pruned Flop%

Li-pruned [25] 6.60 2.06× 108 34.20
SBPa [38] 9.00 – 68.35
SBP [38] 7.50 – 56.52
SparseVD [36] 7.20 – 55.95
Baseline 6.51± 0.23 3.137× 108 0.0
CFP-1 (Ours) 6.77± 0.19 6.16× 107 80.36
CFP-2 (Ours) 7.02± 0.16 5.67× 107 81.93

Table 2. Pruning results for VGG-16 architecture on the CIFAR-
10 dataset. We run each experiment three times and report the
“mean±std”.

CPF-2 denote the first and second compressed models re-
spectively (in this iterative pruning scheme). The original
and pruned FLOPs are shown in Figure 3.

4.3. Results on ResNet

4.3.1 ResNet-56 on CIFAR-10

We use the ResNet-56 architecture [13] on the CIFAR-10
dataset, which contains the three stages of the convolu-
tional layer of size 16-32-64, where each convolution layer
in each stage contains the same 2.36M FLOPs. We trained
the model from scratch using the same parameters proposed
by [13] and achieve the error rate of 6.43%. The network
is pruned into two cycles. In the initial cycle, we selected
1 filter pair from each convolutional layer in the first stage
(total 9 filter pairs), 2 filter pairs from each convolutional
layer in the second stage (total 18 filter pairs) and 4 filter
pairs from each convolutional layer in the third stage (total
36 filter pairs) to prune the same amount of FLOPs from
each stage for St and pruned one filter from each pair (total
9, 18 and 36 filters pruned from first, second and third stage
respectively), till we can recover the accuracy drop with the
ε tolerance. In the second cycle, we selected one filter pair
(total nine filter pairs from all convolutional layers in a par-
ticular stage) in a particular stage for the St and pruning
continue till we can recover the model accuracy with the
ε tolerance. The results are shown in Table 3. It is clear

Method r1, r2, r3 Error% FLOPs Pruned Flop %

Li-A [25] — 6.90 1.12× 108 10.40
Li-B [25] — 6.94 9.04× 107 27.60
NISP [63] — 6.99 – 43.61
CP [17] — 8.20 – 50.00
SFP [14] — 6.65 – 52.60
AMC [15] — 8.10 – 50.00
Baseline 16,32,64 6.43± 0.15 1.26× 108 0.0
CFP-1 10,20,38 6.68± 0.12 4.85× 107 61.51
CFP-2 9,18,36 6.93± 0.10 4.08× 107 67.62
CFP-3 8,16,27 7.37± 0.17 2.95× 107 76.59

Table 3. Pruning results for ResNet-56 architecture on CIFAR-10.
We run each experiment three times and report the “mean±std”.

from the table that as compared to the previous approach,
our method shows the state of art result. CP [17] has 50.0%
FLOPs pruning with a 8.2% error, while with only 7.37%
error, we have significantly higher 76.56% FLOPs pruning.
Similarly, SFP [14] has 52.6% pruning with a 6.65% er-
ror, and our model has 61.51% pruning with the same error.
Here r1, r2, r3 are used to denote the number of remaining
filters in each convolutional layer within the three stages.
We use the same approach as [8] to resolve the skip connec-
tion inconsistency during the filter pruning.

4.3.2 ResNet-50 on ImageNet

We experiment with the ResNet-50 model on the large-scale
ImageNet [45] dataset. The results are shown in Table 4.
We follow the same settings as mentioned in [17]. As com-
pared to ThiNet-50, we have similar FLOPs pruning with
significantly better accuracy.

Other proposed approaches, such as channel pruning
(CP) [17] and structured probabilistic pruning (SPP) [59]
have ∼ 50% FLOPs pruning, but their error rate is high.
In particular, CP has a 9.2% error, and SPP has a 9.6% er-
ror. Our proposed approach is highly competitive with these
approaches in terms of FLOPs pruning, while also yield-
ing significantly better accuracy. Please refer to Table 4 for
more details.

4.4. Ablation Study

In the following section, we present an ablation study on
how our correlation-based criterion helps in preserving the
information in the model during filter pruning, how finetun-
ing helps after discarding one of the filters from the filter
pair and analyze the correlations among the filters retained
in the final model.

4.4.1 Optimization w.r.t. Accuracy

Recall that, before discarding filters directly based on corre-
lation, we further optimize the filter correlation such that the



Method Error (%) Pruned Flop (%)

ThiNet-50 [32] 9.0 ∼ 50
CP [17] 9.2 ∼ 50
SPP [59] 9.6 ∼ 50
WAE [4] 9.6 46.8
Baseline 7.8 0.0
CFP (Ours) 8.6 49.6

Table 4. ResNet-50 Pruning results on the ImageNet with the other
state-of-art approaches. The baseline network’s top-5 accuracy is
92.2% (https://github.com/KaimingHe/deep-residual-networks).

Model OPT Error (%) PF (%)

LeNet-5 (CFP-3) No 1.81 96.84
Yes 1.20 96.84

LeNet-5 (CFP-4) No 2.32 97.98
Yes 1.77 97.98

VGG-16 (CFP-1) No 7.20 80.36
Yes 6.77 80.36

VGG-16 (CFP-2) No 7.61 81.93
Yes 7.02 81.93

Table 5. Effect of the correlation optimization given by equation-
[10] for the LeNet-5 and VGG-16 (OPT: Optimization, and PF:
Pruned Flop).

strongly correlated filter becomes even more strongly corre-
lated (using the regularizer based on Eq. 10). We have found
that if we discard the filter without optimization, the model
suffers from the significant accuracy drop due to the loss of
potentially mutually-complementary information. There-
fore, before discarding one of the filters from the pair, we
need to transfer this information to the other filters that re-
main in the model after pruning using Eq. 11.

Please refer to Table 5 to see the effect of the optimiza-
tion. LeNet and VGG-16 compressed models achieve better
accuracy with optimization.

4.4.2 Analysis of correlation among filters in the final
compressed model

In the case of VGG-16 on the CIFAR-10, initially, the max-
imum filter correlation is 0.7, but in the final compressed
model, the maximum filter correlation is nearly 0.1, which
shows that we have successfully removed the redundant fil-
ters. At the same time, the fact that the classification accu-
racy does not drop much (Table 2), indicates that the useful
discriminative filters are preserved. Here, we find a subset
of filters that are minimally correlated but preserves maxi-
mal information for our finally compressed model. These
uncorrelated filters help to reduce the overfitting [6, 44] and
give a compact model with the least possible redundancy.

4.5. Speedup and Memory Size

The pruned FLOPs is not necessarily equivalent to prac-
tical model speedup because FLOPs give the theoretical

Figure 4. Model performance on the CPU (i7-4770
CPU@3.40GHz) and GPU (TITAN GTX-1080 Ti) for VGG-16
on CIFAR-10.

Figure 5. Increase in the total memory size w.r.t. batch size for
VGG-16 on CIFAR-10.

speedup. The practical speedup can be very different from
the result reported in terms of pruned FLOPs percentage.
The practical speedup depends on the many other factors,
for example, parallelization bottleneck on intermediate lay-
ers, I/O operation, etc. Also, total run-time memory (TRM)
does not depend only on the compressed model parameters
size but also on the feature maps (FM), batch-size (BS), the
dynamic library used by Cuda, all the supporting header-
file, etc. Here we don‘t have control over all the parameters
but Model parameters size (MPS), FM, and BS. To show the
practical speedup and Memory size, we experiment with the
VGG-16 model over the CIFAR-10 dataset. The result for
the speedup and TRM are shown in the Figure 4 and Fig-
ure 5 respectively.

FM is the most important factor for reducing the run-
time memory since it grows linearly w.r.t. batch size and
quadratic w.r.t. image size while MPS is fixed. The filter
pruning approach reduces the model parameters as well as
feature maps memory size while all the approaches based
on sparsity in the model are reducing only the MPS, and the
size of the FM remains the same. Hence batch size has the
bottleneck. If we have a limited batch size, this reduces the
parallelism in the GPU, resulting in the speed drop. TRM
can be defined as:

TRM =MPS + (FM ∗ 4 ∗BS) (13)



Model AP Size Parametersprohibitory mandatory danger mAP
SSD512-O 96.83 86.93 87.05 90.27 98.7 MB 24.7M
SSD512-P 98.35 88.45 89.01 91.94 4.0 MB (24.7×) 0.99M (4.0%)

Table 6. Class wise AP for SSD512-original(O) and SSD512-pruned(P) model on GTSDB dataset.

Model data Avg. Precision, IoU: Avg. Precision, Area Avg. Recall, #Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

F-RCNN original trainval35K 27.5 48.7 28.1 12.4 31.5 38.7 25.7 38.8 39.8 21.2 45.5 55.0
F-RCNN pruned trainval35K 27.8 48.4 28.5 13.3 31.6 38.6 26.1 39.5 40.6 22.6 45.7 55.4

Table 7. Generalization results are shown on the MS-COCO dataset. Pruned ResNet-50 (CFP) used as a base model for Faster-RCNN.
Where S, M, and L are the small, medium, and large area ranges respectively for evaluation. 1, 10, and 100 denotes thresholds on max
detections per image (http://cocodataset.org/#detection-eval).

It is clear from Figure 5 that with the increase in BS, TRM
memory increases. Therefore we cannot go for a big batch
size. While Figure 4 shows that for the small batch size
system performance (speedup) degraded. Therefore for the
speedup, we have to choose a bigger BS, but there is a mem-
ory bottleneck on the GPU or CPU. Hence in the proposed
approach, we prune the whole convolutional filter so that
FM memory can be reduced.

4.6. Generalization Ability

4.6.1 Compression for Object Detection

To show the generalization ability of our approach, we also
show the result on the detection network. In this experiment
we have taken two most popular object detector SSD [28]
on GTSDB dataset and Faster RCNN [43] on MS-COCO
[27]. In the case of SSD, we achieve ∼25× compression
in terms of model parameters with significant improvement
in AP. For faster RCNN, we have used ResNet-50 as a base
network.

4.6.2 SSD512 on German traffic detection benchmarks

In this experiment, we evaluate the generalization ability
of our pruned model, VGG-16 CFP-2, which is pruned
on CIFAR-10. First, we trained original SSD512 on Ger-
man traffic detection benchmarks (GTSDB) [18] dataset,
In which ImageNet pre-trained base network was used. In
the second case, we replace the base network of SSD512
with our pruned model, VGG-16 CFP-2. After training, we
analyzed the model and found the model is over-fitted be-
cause GTSDB is a small scale dataset. Our pruned SSD512
model detects the object from the initial layer only, which is
CONV4 3, and we removed all other remaining layers af-
ter CONV4 3. After doing this, we observed a significant
improvement in the mAP and ∼25× compression in model
size. Hence our pruned model successfully generalizes the
object detection task on the GTSDB dataset. Refer to Ta-
ble 6 for the detailed experimental results.

4.6.3 Faster RCNN on COCO

We experiment on the COCO detection datasets with 80
object classes [27]. 80k train images and 35k val images
are used for training (trainval35K) [26]. We report the de-
tection accuracies over the 5k unused val images (mini-
val). In this first, we trained Faster-RCNN with the Ima-
geNet pre-trained ResNet-50 base model. The results are
shown in Table 7. In the second experiment, we used
our pruned ResNet-50 model (CFP), which is pruned on
the ILSVRC-2012 dataset as given in Table 4. Then we
used our pruned ResNet-50 (CFP) model as a base network
in Faster-RCNN. In the Faster-RCNN implementation, we
used ROI Align instead of ROI Pooling. We found that the
pruned model shows slightly better performances in some
cases (mAP@0.75, mAP@0.5:0.95). Refer to the Table 7
for more details.

5. Conclusion

We have proposed a novel approach for filter pruning,
which is guided by pairwise correlations of filters. Un-
like the previous heuristics for measuring individual filters
importance for pruning, we proposed a new approach for
considering filter pairs importance based on the redundancy
present in the pair. In the pruning process, we iteratively
reduce the redundancy in the model. Our approach, as com-
pared to the existing methods, shows state-of-art results.
The efficacy of our method is demonstrated via a compre-
hensive set of experiments and ablation studies. We have
shown the generalization capability of our approach for the
object detection task.

Acknowledgment:

PS is supported by the Research-I Foundation at IIT
Kanpur. VKV acknowledges support from Visvesvaraya
PhD Fellowship and PR acknowledges support from
Visvesvaraya Young Faculty Fellowship.



References
[1] R. Abbasi-Asl and B. Yu. Structural compression of convolu-

tional neural networks based on greedy filter pruning. arXiv
preprint arXiv:1705.07356, 2017.

[2] J. M. Alvarez and M. Salzmann. Learning the number of
neurons in deep networks. In NIPS, pages 2270–2278, 2016.

[3] B. O. Ayinde and J. M. Zurada. Building efficient convnets
using redundant feature pruning. ICLR, 2018.

[4] T. Chen, L. Lin, W. Zuo, X. Luo, and L. Zhang. Learning
a wavelet-like auto-encoder to accelerate deep neural net-
works. AAAI, 2018.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In
ICML, pages 2285–2294, 2015.

[6] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-
tra. Reducing overfitting in deep networks by decorrelating
representations. ICLR, 2016.

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-
gus. Exploiting linear structure within convolutional net-
works for efficient evaluation. In NIPS, 2014.

[8] X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced filter
pruning for efficient convolutional neural networks. AAAI,
2018.

[9] A. Dubey, M. Chatterjee, and N. Ahuja. Coreset-based neu-
ral network compression. 2018.

[10] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning. NIPS, 2018.

[11] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding. ICLR, 2016.

[12] B. Hassibi and D. G. Stork. Second order derivatives for
network pruning: Optimal brain surgeon. In NIPS, 1993.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[14] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter
pruning for accelerating deep convolutional neural networks.
IJCAI, 2018.

[15] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:
Automl for model compression and acceleration on mobile
devices. In The European Conference on Computer Vision
(ECCV), September 2018.

[16] Y. He, P. Liu, Z. Wang, and Y. Yang. Pruning filter via geo-
metric median for deep convolutional neural networks accel-
eration. CVPR, 2019.

[17] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-
ing very deep neural networks. In ICCV, page 6, 2017.

[18] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and
C. Igel. Detection of traffic signs in real-world images: The
German Traffic Sign Detection Benchmark. In IJCNN, num-
ber 1288, 2013.

[19] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trim-
ming: A data-driven neuron pruning approach towards effi-
cient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

[20] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

[21] T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn.
Bayesian model-agnostic meta-learning. NIPS, 2018.

[22] V. Lebedev and V. Lempitsky. Fast convnets using group-
wise brain damage. In CVPR, pages 2554–2564, 2016.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[24] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-
age. In NIPS, pages 598–605, 1990.

[25] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient convnets. ICLR, 2017.

[26] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detec-
tion. In CVPR, page 4, 2017.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV, pages 740–755. Springer,
2014.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
ECCV, pages 21–37. Springer, 2016.

[29] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.
Learning efficient convolutional networks through network
slimming. In ICCV, pages 2755–2763. IEEE, 2017.

[30] C. Louizos, K. Ullrich, and M. Welling. Bayesian compres-
sion for deep learning. In NIPS, pages 3288–3298, 2017.

[31] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level prun-
ing method for deep neural network compression. In ICCV,
pages 5058–5066, 2017.

[32] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and
W. Lin. Thinet: pruning cnn filters for a thinner net. IEEE
transactions on pattern analysis and machine intelligence,
2018.

[33] P. Mazumder, P. Singh, and V. Namboodiri. Cpwc: Con-
textual point wise convolution for object recognition. arXiv
preprint arXiv:1910.09643, 2019.

[34] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Towards
unified data and lifecycle management for deep learning. In
ICDE, pages 571–582. IEEE, 2017.

[35] A. Mishra and D. Marr. Apprentice: Using knowledge dis-
tillation techniques to improve low-precision network accu-
racy. arXiv preprint arXiv:1711.05852, 2017.

[36] D. Molchanov, A. Ashukha, and D. Vetrov. Variational
dropout sparsifies deep neural networks. In ICML, pages
2498–2507, 2017.

[37] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.
Pruning convolutional neural networks for resource efficient
inference. ICLR, 2017.

[38] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov.
Structured bayesian pruning via log-normal multiplicative
noise. In NIPS, pages 6775–6784, 2017.

[39] A. Polino, R. Pascanu, and D. Alistarh. Model com-
pression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

[40] S. Qiao, C. Liu, W. Shen, and A. Yuille. Few-shot image
recognition by predicting parameters from activations. 2018.



[41] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In ECCV, pages 525–542. Springer, 2016.

[42] S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Es-
lami, D. Rezende, O. Vinyals, and N. de Freitas. Few-shot
autoregressive density estimation: Towards learning to learn
distributions. In ICLR, 2018.

[43] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, pages 91–99, 2015.

[44] P. Rodrı́guez, J. Gonzàlez, G. Cucurull, J. M. Gonfaus, and
X. Roca. Regularizing cnns with locally constrained decor-
relations. ICLR, 2017.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
IJCV, 115(3):211–252, 2015.

[46] A. Sharma, N. Wolfe, and B. Raj. The incredible shrink-
ing neural network: New perspectives on learning repre-
sentations through the lens of pruning. arXiv preprint
arXiv:1701.04465, 2017.

[47] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

[48] P. Singh, V. S. R. Kadi, and V. P. Namboodiri. Falf convnets:
Fatuous auxiliary loss based filter-pruning for efficient deep
cnns. Image and Vision Computing, page 103857, 2019.

[49] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.
Stability based filter pruning for accelerating deep cnns. In
2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1166–1174. IEEE, 2019.

[50] P. Singh, R. Manikandan, N. Matiyali, and V. Namboodiri.
Multi-layer pruning framework for compressing single shot
multibox detector. In 2019 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 1318–1327.
IEEE, 2019.

[51] P. Singh, P. Mazumder, and V. P. Namboodiri. Accu-
racy booster: Performance boosting using feature map re-
calibration. arXiv preprint arXiv:1903.04407, 2019.

[52] P. Singh, M. Varshney, and V. P. Namboodiri. Coopera-
tive initialization based deep neural network training. arXiv
preprint arXiv:2001.01240, 2020.

[53] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-
conv: Beyond homogeneous convolution kernels for deep
cnns. International Journal of Computer Vision, pages 1–
21, 2019.

[54] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-
conv: Heterogeneous kernel-based convolutions for deep
cnns. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4835–4844, 2019.

[55] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play and
prune: Adaptive filter pruning for deep model compression.
International Joint Conference on Artificial Intelligence (IJ-
CAI), 2019.

[56] F. Tung and G. Mori. Clip-q: Deep network compression
learning by in-parallel pruning-quantization. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[57] V. K. Verma, G. Arora, A. Mishra, and P. Rai. Generalized
zero-shot learning via synthesized examples. CVPR, 2018.

[58] D. Wang, L. Zhou, X. Zhang, X. Bai, and J. Zhou. Explor-
ing linear relationship in feature map subspace for convnets
compression. arXiv preprint arXiv:1803.05729, 2018.

[59] H. Wang, Q. Zhang, Y. Wang, and H. Hu. Structured prob-
abilistic pruning for convolutional neural network accelera-
tion. BMVC, 2017.

[60] W. Wang, Y. Pu, V. K. Verma, K. Fan, Y. Zhang, C. Chen,
P. Rai, and L. Carin. Zero-shot learning via class-conditioned
deep generative models. AAAI, 2017.

[61] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In NIPS, pages
2074–2082, 2016.

[62] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis,
K. Grauman, and R. Feris. Blockdrop: Dynamic inference
paths in residual networks. In CVPR, pages 8817–8826,
2018.

[63] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,
M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning networks
using neuron importance score propagation. CVPR, 2018.

[64] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient
and accurate approximations of nonlinear convolutional net-
works. In NIPS, pages 1984–1992, 2015.

[65] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards
compact cnns. In ECCV, pages 662–677. Springer, 2016.


