

Citation for published version:
Verma, VK, Singh, P, Namboodiri, VP & Rai, P 2020, A "network pruning network" Approach to deep model
compression. in Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020.,
9093391, Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, IEEE,
pp. 2998-3007, 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020,
Snowmass Village, USA United States, 1/03/20. https://doi.org/10.1109/WACV45572.2020.9093391
DOI:
10.1109/WACV45572.2020.9093391

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1109/WACV45572.2020.9093391
https://doi.org/10.1109/WACV45572.2020.9093391
https://researchportal.bath.ac.uk/en/publications/a-network-pruning-network-approach-to-deep-model-compression(02bffe47-0222-468d-b8ef-28611289ed96).html

A “Network Pruning Network” Approach to Deep Model Compression

Vinay Kumar Verma Pravendra Singh Vinay P. Namboodiri Piyush Rai
Department of Computer Science and Engineering, IIT Kanpur, India

{vkverma, psingh, vinaypn, rpiyush}@iitk.ac.in

Abstract

We present a filter pruning approach for deep model com-
pression, using a multitask network. Our approach is based
on learning a a pruner network to prune a pre-trained target
network. The pruner is essentially a multitask deep neu-
ral network with binary outputs that help identify the filters
from each layer of the original network that do not have any
significant contribution to the model and can therefore be
pruned. The pruner network has the same architecture as the
original network except that it has a multitask/multi-output
last layer containing binary-valued outputs (one per filter),
which indicate which filters have to be pruned. The pruner’s
goal is to minimize the number of filters from the original
network by assigning zero weights to the corresponding out-
put feature-maps. In contrast to most of the existing methods,
instead of relying on iterative pruning, our approach can
prune the network (original network) in one go and, more-
over, does not require specifying the degree of pruning for
each layer (and can learn it instead). The compressed model
produced by our approach is generic and does not need any
special hardware/software support. Moreover, augmenting
with other methods such as knowledge distillation, quanti-
zation, and connection pruning can increase the degree of
compression for the proposed approach. We show the effi-
cacy of our proposed approach for classification and object
detection tasks.
1. Introduction

Recent advances in deep learning have led to an im-
pressive and significant breakthroughs in various domains,
such as computer vision [12, 44, 41, 9, 53, 18, 54], NLP
[58, 35, 3], and information retrieval [29]. Pushing the per-
formance further typically leads to models with overly com-
plex, deeper architecture, which tends to increase the model
size (number of parameters, depth, and breadth of layers),
and FLOPs enormously, and such complex models may not
be ideal to be deployed on resource-constrained devices.

This had led to considerable interest in making the model
more efficient, in terms of storage as well as computa-
tion [7, 15, 50, 25, 47, 45, 33, 52, 13, 49, 48, 59]. A popular
approach to increase the efficiency of the model is via model

compression. Among the existing model compression ap-
proaches, the filter pruning based approaches usually show
superior performance regarding FLOPs and runtime memory
compression [15, 59, 7].

Selecting the most optimal subset of filters to prune from
a Convolutional Neural Network (CNN) model is a combi-
natorially hard problem. Therefore, the existing filter prun-
ing approaches are based on some heuristics to define filter
importances. Recent works [25, 15] have shown that the
strength of the feature map (output produced by a convolu-
tional filter) dominates the output of the network. Filters
with a feature map have minimal contribution to the final
decision of the model; therefore, the corresponding filters
can be removed from the network. In these approaches, the
objective is to find the filters that are likely to produce zero
(or near-zero) feature map1. In a pre-trained model, it is rare
to get zero feature map. Therefore we optimize the network
such that a majority of the filters (which are going to be
pruned) have their feature map value close to zero, while the
rest of the filters (that remain in the model) can still achieve
accuracy close to the original network. Therefore after dis-
carding the filters that produce zero feature-maps, the model
does not incur any significant performance drop.

Most of the existing filter pruning approaches are based
on heuristics to define filter importance. Defining filter im-
portance is itself a challenging task. Also, before discarding
the less important filters from the model, the representational
capacity of the less important filters should be transferred
to the remaining part of the model. This is a challenging
task, and most of the previous approaches [27, 13, 59] ex-
hibit poor performance in doing so and, consequently, these
approaches exhibit a sharp drop in accuracy after a moderate
pruning and require a high degree of finetuning, which can
be very time consuming in practice.

Another drawback in the previous approaches [7, 32, 19,
23] is that they are unable to decide the layer importance.
Performance of a CNN model may be very sensitive w.r.t.
some of the layers, and we cannot remove a large number
of filters from such layers. In contrast, some other layers

1A feature map is said to be zero feature map if its `1 norm is zero, i.e.,
all of its elements are zero.

may have a high degree of filter-level redundancy. It is a
very challenging task to define layer importance precisely.
Most previous methods [7, 15, 25, 13, 59] consider this
as a hyperparameter (i.e., how many filters to prune from
each layer). Therefore, these approaches take as input the
number of filters to be pruned from each layer. To set these
hyperparameters is an arduous task since, for K layers, we
have K such hyperparameters. Therefore it is desirable to
develop an automatic method that decides where to prune in
the model, which motivates our approach.

We present a “network pruning network” approach for
deep model compression in which we learn a pruner network
that prunes a target (main) network. The pruner network is
essentially a deep multitask network that adaptively decides
which filters to prune in each layer of the target network. The
objective of the multitask network is to learn weights corre-
sponding to each output feature map of the main network
(which we are going to prune) such that most of the feature
maps are zero weighted without sacrificing the accuracy.
Therefore the filters that correspond to zero feature maps can
be safely removed from the main network without hurting
the main network performance. In the proposed approach,
the multitask network contains the same CNN architecture
as the main network (e.g., ResNet for ResNet) but contains
task-specific output layers consisting of binary outputs that
denote the filters that have close to zero feature maps. The
multitask network learns to maximize the number of zero
feature maps in the main network. The proposed approach
is end-to-end trainable using gradient descent. Our main
contributions can be summarized as follows:
• The proposed approach leverages the idea of multitask-

learning, which guides us on how to prune in each
layer. We can obtain a compressed model using just a
few epochs without any significant accuracy drop.
• The proposed approach uses a multitask network, which

adaptively learns the filter importance in an end-to-end
trainable manner in contrast to existing filter pruning
approaches that rely on ad hoc heuristics to calculate
the filter importances.
• Most of the existing approaches [7, 15, 25, 13, 59]

require specifying how many filters from each layer to
prune or require a threshold that is used to determine
which filters to prune. In the proposed approach, we do
not require any such input and can automatically learn
the layers importance, thereby reducing the number of
hyperparameters.

Note that, although our approach consists of two net-
works, i.e., a deep network to prune another deep network, it
is different from student-teacher based knowledge distilla-
tion approaches [16] to deep model compression where the
idea is to compress a teacher network into a simpler student
network. In contrast, our approach learns a deep multitask
network that prunes a target network.

2. Proposed Approach

2.1. Notation
Let us assume a CNN architecture with K convolutional

layers. Assume Li to be the ith layer and i ∈ [1, 2, . . .K].
The layer Li has ni filters which gives the ni feature-maps
that are used as input for the next layer. The set of filters at
layer Li is denoted as FLi where FLi = [f1, f2, . . . , fni].
Similarly, the feature maps at layer Li are represented as
MLi

= [m1,m2, . . . ,mni
]. Each feature map mi is of

dimension (hk, wk), where hk, wk are height and width,
respectively, of the feature map. Therefore the shape of
MLi

is (hk, wk, ni).

2.2. Model
This section briefly describes how the multitask network

is used to prune the filters from the main network (the CNN).
The core idea of our approach is to design a multitask net-
work that learns a weight for each filter in the main network,
and optimizes the main network such that most of the filters
produce zero feature maps after being weighted by the mul-
titask network. Corresponding filters in the main network
that produce zero feature maps do not have any significant
contribution to the model performance and can be discarded
from the main network without sacrificing the model’s per-
formance.

Our approach is based on learning the weights for each
filter in the main network. However, instead of associating
weights to each filter, we associate weights with each feature
map (the output produced by a filter of the main network).
The multitask network learns these weights. The objective
of the multitask network is to maximize the number of zero
weights corresponding to output feature maps in the main
network. The multitask network has the same architecture
as the main network that we would like to prune (e.g., for
pruning the ResNet main network, the multitask network
is also ResNet architecture with a modified output layer).
Essentially, to prune a model with K layers, we have a
multitask network with K outputs, where the K outputs
themselves have dimensions of size [n1, n2, . . . , nK]. Here
ni is the number of filters at layer Li. We refer the main
network as (O) while the multitask network is called the
pruner (P). Fig. 1 summarizes the complete architecture of
our proposed model compression framework.

Suppose the main network (O) has a cost function
CO(Θo), where Θo denotes the parameters of the network
O. Also assume that the pruner network (P) has a cost
function CP (Θm), where Θm denotes the parameters of the
network P . The architecture of the pruner is the same as
the main-network (O); the only difference is that the output
layer is replaced by a multitask network that has K outputs
(number of layers in theO), with each of theK outputs itself
being a binary vector. The size of the vector at layer Li is
ni (size equal to the number of filters at Li). The complete

Figure 1. The upper architecture is the main network that we wish to prune, and the lower model is the same as the original one, with the
only difference being that the multitask architecture replaces the output layer. Each has a task to prune a layer in the main network.

model is shown in Fig. 1.

2.3. Main-Network (O)

The main network corresponds to the original network
that we would like to prune. The only difference from the
original network is that feature maps MLi

on each layer
Li are replaced by weighted feature maps, and the weights
are given by the pruner network (P) (explained in the next
section). Let WLi = [w1, w2, . . . , wni] be the weights of
layer Li given by the P network. ThenO’s Lthi layer feature
maps are replaced as:

Mw = [w1m1, w2m2, . . . , wnimni] (1)

Here m1,m2, . . .mni
are the feature maps at layer Li in

original network. Now our objective is to optimize the net-
work with the help of P such that most of the wi’s are close
to zero, without sacrificing the accuracy. The complete
objective and joint loss are described in Section 2.5. The
modified network can be easily optimized with the help of
any gradient descent based optimizer.

Therefore, in the complete network, we represent each
feature map as m̃j = wjmj , here wj ∈ [0, 1] i.e. each
feature map mj is weighted by a weight wj . The pruner net-
work learns these weights. In the main network, ∀wj : wj →
0 does not have any significant contribution to the overall
network performance, implying that mj can be pruned from
the model.

Therefore, by discarding all the filters fi corresponding to
the wi ≈ 0 (feature-maps weights) from the network O, do
not significantly degrade the model’s performance. Hence
we can remove all such filters and corresponding feature
maps from the model.

2.4. Pruner Network (P)

The pruner network is the network that is responsible for
the filter pruning in the main network. The pruner network
maximizes the number of zero feature-maps in the main
network. The corresponding filters that produce the zero
feature-maps can be discarded from the main network. The
pruner network give weights to each feature-maps in the
main network and tries to optimize weights such that most of
the wi → 0. Our pruner network P is a multitask network,
with the base network being the same as the main-network,
and the fully connected output layer replaced by multitask
output layers. The number of output in multitask output
layers is same as the number of layers in the model O, i.e.,
K. The dimension of each multitask output is ni (number of
filters on layer Li). The pruner multitask network is shown
in Fig. 2.

Let’s assume that the pruner network has the cost function
CP (Θm), where Θm denotes its parameters. We need to
optimize the model such that each of the outputs in the
multitask output layer is binary, i.e., ∀wi : wi ∈ {0, 1}. To
retain differentiability, we approximate the Bernoulli outputs
using a scaled sigmoid on the output values. This scaled
sigmoid gives a sharp change between 0 and 1. A moderate-
scale value of the sigmoid can approximate the Bernoulli
distribution. The scale of the sigmoid is increased gradually
since experimentally we found that, if initially, we set high
scale value in the network then the network is unable to
learn.

Let f(Θm) be the output of the network P . i.e.:

f(Θm) = [WL1 ,WL2 , . . . ,WLK] ∀WLi ∈ [0, 1]ni (2)

Here WLi denotes the ith output of the multitask network
and is of size ni (number of filters on layer Li). In the next

Algorithm 1 Multitask Network for Model Compression
Require: CMP (Θo,Θm): The complete model
Require: α and β: learning rate and N : #epoch

1: Initialize Θo and Θm from pretrained model
2: while epoch≤ N do
3: if epoch%2==0 then
4: Calculate Θ′

m by Eq:4
i.e. Θ′

m ← Θm − α 5Θm (Ct
MP (Θo,Θm) +

λ||f(Θm)||l1)

5: else
6: Update [Θo,Θm] using latest value [Θo,Θ

′
m] by

Eq:5 i.e. [Θo,Θm] ← [Θo,Θ
′
m] − β 5[Θo,Θ′

m]

(Ct+1
MP (Θo,Θ

′
m) + λ||f(Θ′m)||l1)

7: end if
8: end while
9: Remove all the filters and corresponding feature maps

having w → 0 from the main network (O)
10: Finetune the pruned model with the remaining filters

section, we briefly explain how we can achieve the objective
of Eq. 2 without affecting the model performance. Eq. 2
gives the weights to each feature maps on every layer. The
output that has the zero value gives the zero weight to the
corresponding feature-map, and we can discard this feature-
map and corresponding filter from the main-network without
degrading the model performance. The objective of this net-
work is to maximize the number of zeros in the multitask
output space. The alternate optimization of the O and P
ensure that the accuracy drop is minimal in the filter prun-
ing process. In the first round, only P is optimized, while
the parameters of O are kept frozen. In the second round,
P and O is optimized jointly. Optimizing P tries to mini-
mize the number of filters/feature-maps in the main network
while optimizing O recovers the accuracy. Notably, our
proposed approach essentially transforms the model com-
pression problem as an end-to-end optimization problem.
This can be easily optimized using stochastic gradient de-
scent (SGD). The proposed approach automatically select
the filters from each layer based on the layer importance.
This fact can be easily verified since in our final compressed
model’s different layers have different compression rates.
In contrast, other existing approaches [15, 25, 13, 59] need
the number of filters to be pruned from each layer as the
hyperparameters. The multitask pruner network is shown in
Fig. 2.

Producing the Binary Weights: Generating the binary
weights on the multitask output layer is a key point that
controls the pruning rate. A high zero cardinality results in
a high pruning at the cost of accuracy drop, while low zero
cardinality produces a low pruning. We have to make a trade-
off between the number of zeros and the accuracy drop. To
produce values close to 0/1, we adopted the scaled sigmoid

Figure 2. Multitask pruner network: Multitask Network has the
same base model as main network but the output later is replaced
by layer specific multitask network.

on the multitask output space, along with l1 regularizer. The
l1 regularizer produces the sparsity on the output space, and
sparsity can be controlled by the regularization constant.
Initially, we set the scale as 1, and after a few epochs, we
changed it to 30; it helps to convert the sigmoid function to
nearly a step function for 0/1. The main advantage of the
scaled sigmoid is that it is differentiable. The more details
for each architecture are given in the experiments section.

2.5. The Complete Model

This section explains how the complete objective is de-
fined and the optimization is performed over the main net-
work O and pruner network P . The section also explains
how the multitask network learns to prune the main-network.

Let CMP be the joint loss of the main network and the
pruner network, andCO(Θo) andCM (Θm) be the cost func-
tions defined for O and P , respectively. The joint objective
can be defined as:

min
Θo

min
Θm

CMP (Θo,Θm) + λ||f(Θm)||1 (3)

Here CMP is the joint loss w.r.t parameters Θo and Θm. λ is
the regularization constant and ||f(Θm)||1 is the `1 penalty
on the output of the pruner network. The epoch t updates for
the pruner network is given by

Θ′
m ← Θm − α5Θm

(
Ct

MP (Θo,Θm) + λ||f(Θm)||1
)

(4)

In Eq. 4, the gradients are calculated only w.r.t. pruner
network parameters Θm. The optimal parameters for pruner
network Θ′m are obtained in epoch t will be used as input
in the next epoch (t + 1) to train the main-network. The
optimization of the main network can be given as:

[Θo,Θm]← [Θo,Θ
′
m]−β 5[Θo,Θ′

m] (Ct+1
MP (Θo,Θ

′
m)

+λ||f(Θ′m)||l1)
(5)

Here [Θo,Θm] denotes the joint parameters of both mod-
els and Eq. 5 uses the most recent values Θ′m of the optimal

parameters of the pruner network. α and β are the learning
rate for Eq. 4 and 5, respectively. The optimization of Eq. 5
is performed jointly w.r.t. parameters Θo and Θm. The op-
timization in Eq. 4 maximizes the number of zeros in the
output of the pruner network because of `1 penalty. At the
same time, it also minimizes the loss; therefore, the model
performance is maintained. Eq. 5 optimizes the model w.r.t.
all parameters. Therefore, the main network has the flexibil-
ity to transfer representational capacity of the less important
filters to the remaining part of the model (so as to maintain
the representational capacity).

It is interesting to note that the two-step update defined
by Eq. 4 and 5 is akin to the updates of a model-agnostic
meta-learning (MAML) framework [8]. The only difference
is that, in MAML, the optimization of meta-learner and
main-learner are done over the same set of parameters. In
contrast, in our proposed model compression approach, the
pruner network parameters are a subset of the main learner’s
parameters. Unlike the original MAML [8] framework, there
is also no “task distribution” over a dataset since here the
model pruning is a single, stand-alone task that we wish to
solve.

3. Related Work
Most of the recent work on model compression can be

categorized into three broad categories: connection prun-
ing, filter pruning, and quantization. The filter pruning ap-
proach has been more popular as compared to the other
methods since it gives the maximum practical speedups and
minimizes runtime memory, without requiring special hard-
ware/software support. The other methods usually require
special hardware/software support.
3.1. Connection Pruning

In deep CNNs, most of the weights are redundant in the
model. The connection pruning is a simple method to intro-
duce sparsity in CNN model parameters. It prunes the redun-
dant connections from the model. One approach to compress
the CNN architecture is to prune the unimportant/redundant
parameters. However, it is challenging to define the impor-
tance of the parameters quantitatively. There are many ap-
proaches to rank the importance of the parameters. Optimal
Brain Damage [24] and Optimal Brain Surgeon [11] used the
second-order Taylor expansion to calculate the parameters
importance. These approaches are based on the calculation
of the second-order derivative and therefore are very costly.
Blockdrop [57] proposed the skip layer approach for net-
work compression. Using the hashing function, the method
proposed in [5] randomly groups the connection weights into
a single bucket and then finetunes the network to recover
the performance. [10] proposes an iterative approach where
absolute values of weights below a certain threshold are set
to zero, and the drop in accuracy is recovered by finetun-
ing. The connection pruning approach is very successful

when most of the parameters lie in the fully connected layer.
However, these approaches result in unstructured sparsity in
the model. Special hardware/software adds extra overhead.
Another disadvantage of these approaches is that they are
unable to save the runtime memory GPU memory.
3.2. Filter Pruning

Unlike the connection pruning approach, the filter prun-
ing approach [17, 46, 25, 59] discards the whole filter from
the model. As a result, the depth of feature maps is also re-
duced. The filter pruning approaches (which is the focus of
our work too) do not need any special hardware or software
for acceleration. Filter pruning approaches can be catego-
rized into two categories. One class of methods find out the
important filters in the model and discard the unimportant
ones. After that, at each pruning step, re-training is needed
to recover from the accuracy drop. [17] evaluates the impor-
tance of filters on a subset of the training data based on the
output feature maps. [1] used a greedy approach for prun-
ing. They evaluated the filter importance by checking the
model accuracy after pruning the filters. [37] and [25] used
a similar approach but a different metric for filter pruning.
The filter pruning approach in [25] is mostly based on the
weight magnitude of the filters. [6, 61, 20] used the low-rank
approximation which relies on matrix factorization and can
thus be costly in practice. [30] performed channel-level prun-
ing based on the scaling factor in the training process. The
pruning is done layer by layer; hence, it is very slow. The
group sparsity-based approaches have also become popular
for filter pruning. [22, 56, 62, 2] explored the filter pruning
based on the group sparsity.

In the same vein as our work, recently [26, 14, 39] pro-
posed automatic filter pruning approaches. [26, 39] proposed
a reinforcement learning-based approach; it finds a dynamic
routing path at run time to prune the model. In [14] an-
other reinforcement learning-based model has proposed that
leverage on the actor-critic model for the network pruning.
These approaches use a dynamic pruning policy, while in
the proposed approach, we use a single policy. Also, the
proposed model was not based on reinforcement learning-
based algorithms. Another popular approach are the design
the efficient CNN model that can train the network from the
scratch [60, 60, 51, 51]. Our work focus on the filter pruning
and the efficient CNN based approach are the out the scope
of this work.
3.3. Quantization

The method in [10] compressed the CNN by combining
pruning, quantization, and Huffman coding. In [34], the pro-
posed compression method was based on the floating point
value quantization for model storage. These approaches as-
sume that 32-bit float representation is redundant for the
model parameters. Here we can use a lower bit configuration
for model parameters without sacrificing the performance.

The extreme case of this approach can be binary bit quanti-
zation. Binarization [40] for model parameters can be used
for the network compression where each floating point value
is quantized to a binary value. Bayesian methods [31] have
also been used for the network quantization. Most quanti-
zation methods require special hardware support to get the
advantage of the compression.

4. Experiments and Results
To show the effectiveness of our proposed approach, we

perform extensive experiments on large as well as small-
scale datasets. We perform experiments on ResNet-50 [12]
and VGG-16 [44] architecture over the large-scale dataset
ImageNet [43]. We also conduct experiments on ResNet-
56 [12] and VGGLike [44] architecture over the small scale
dataset CIFAR-10 [21] . To show the generalization ability of
our proposed approach, we also conduct an experiment over
the large scale MS-COCO [28] dataset using Faster-RCNN
object detector. Our experimental results demonstrate that
the proposed approach yields state-of-art model compression.

4.1. Implementation Details

The proposed framework consists of two networks,
pruner network P and main network O. The pruner network
P gives the weights to the feature maps of main-network O.
The objective of P is to maximize the number of zeros in the
multitask output space, whereas O maintains the accuracy
drop because of P . The task given to P is easier than the task
given to the O. The pruner network can quickly maximize
the number of zeros in the output space, but empirically, we
find that this gives the sharp accuracy drop in the model.
Since the quick optimization is irrecoverable for O, we have
to make a balance between the two networks such that the
loss that occurs because of P can be recovered by O. To
solve this problem, we use alternating optimization; we give
an equal chance to O to recover from the loss. Hence P and
O networks are optimized by one epoch iteratively.

Our model contains binary variables. To make it differen-
tiable, we use the scaled sigmoid 1/(1 + e−αx) where α is
a hyperparameter; we increase α after a few epochs once the
weights produced by the output layer of P is uniformly dis-
tributed in [0,1]. The high α value pulls the weights close to
0/1. This helps to get the approximate Bernoulli distribution
in the pruner network output space.
4.2. Results

4.2.1 VGG-16 on CIFAR-10

CIFAR-10 is a widely used benchmark dataset, consisting of
50000 RGB images for training and 10000 images for testing.
Each image is of size 32 × 32. For the data augmentation,
we used a horizontal flip and random crop. The VGG-16
for CIFAR-10 contains the same architecture as [44]; the
only difference is that a single 512-dimensional layer is used

Method Error% FLOPs Pruned Flop%

Li-pruned [25] 6.60 2.06× 108 34.20
SparseVD [36] 7.20 – 55.95
SBP [38] 7.50 – 56.52
SBPa [38] 9.00 – 68.35
NN-1 (Ours) 6.74 6.44× 107 79.47
NN-2 (Ours) 7.14 5.33× 107 83.00
NN-3 (Ours) 7.47 4.11× 107 86.90

Table 1. Pruning result on the VGG-16 over the CIFAR-10 dataset
(the baseline accuracy is 93.49%).

in place of the fully connected layers. We follow the same
settings as in [25]. For the base model, the network is trained
for 120 epochs and has an error rate of 6.51%. The result of
the proposed approach is shown in Table 1.

The rate of model compression depends on the regular-
ization constant. Three different compressed models (NN-1,
NN-2, and NN-3) can be obtained by just varying the regu-
larization constant value that controls how many zeros we
want in the multitask network. We use 0.001, 0.002 and
0.005 sparse regularization constant values in the pruner net-
work to obtain NN-1, NN-2 and NN-3 compressed models,
respectively. Training of the network P and O is done in
an alternating fashion. P tries to minimize the number of
filters/feature-maps in the main network, while O recovers
the accuracy.

Table 1 shows that the proposed approach has a high
pruning rate while still maintaining accuracy. In Table 1, we
can see that SBP [38] has 7.5% error on the 56.52% pruning
while SBPa shows the 68.35% pruning with the 9.0% error.
Our proposed approach has only 7.47% error with a high
pruning rate of 86.9%.

4.2.2 ResNet-56 on CIFAR-10

Next, we experiment on ResNet-56 over the CIFAR-10
dataset. It contains three stages of convolutional layers.
Each layer is connected by projection mapping and followed
by the average pooling and one fully connected layer. We
use the same architecture and settings as described in [25].
The same alternate optimization, as described in the previous
section, is performed for maximizing the filter pruning or
maximizing the zero weights produced by the pruner net-
work. The network P is trained with the scaled sigmoid.
Initially, we use scale α = 1, and after 30 epoch, we change
the scale to α=30. This new scale forces the output space
of the pruner network to be close to 0/1. Therefore we do
not have any significant accuracy drop after discarding the
filters corresponding to zero weights.

Table 2 shows that the proposed approach achieves high
compression rates while also giving the lowest error rate.
In particular, SFP [13] has error 6.65% with the 52.6% of
FLOPs pruning while the proposed approach shows the sig-
nificantly better pruning 61.51% with the 6.61% error rate.

Method Error% FLOPs Pruned Flop %

Li-A [25] 6.90 1.12× 108 10.40
Li-B [25] 6.94 9.04× 107 27.60
NISP [59] 6.99 – 43.61
CP [15] 8.20 – 50.00
SFP [13] 6.65 – 52.60
AMC [14] 8.10 – 50.00
NN-1 (Ours) 6.61 4.85× 107 61.51

Table 2. Pruning result of ResNet-56 architecture over CIFAR-10
dataset (the baseline accuracy is 93.1%).

4.2.3 VGG-16 on ImageNet

We evaluate our approach over the large-scale ImageNet
dataset [43] using the VGG-16 architecture. The same
ResNet-56 alternative optimization technique is used for
pruning VGG-16 networks. We train P network with scaled
sigmoid at the output layer. We use scale α = 1 for an
initial 10 epochs, and then we set α = 30 for the rest of
the training schedules. In Table-3, we compare our result
with various other pruning approaches. As shown in Table-3,
our approach gives 75% FLOPs pruning with 89.71% top-5
accuracy. On the other hand, CP-4x [15] gives 75% FLOPs
pruning with only 88.9% top-5 accuracy.

4.2.4 ResNet-50 on ImageNet

ResNet-50 [12] is a deep CNN architecture that has 50 lay-
ers with the residual connection. We use the same setup
as proposed by the [12]. The previous approaches, such as
[59, 13, 7], etc., are unable to prune the skip connection
filters because of the matrix addition inconsistency. These
approaches only prune the middle layer filters, resulting in
limited compression. In our approach, we also prune the
skip connections. To solve the addition inconsistency, we
give the same weights to the output filters and the skip con-
nection filters. Therefore it prunes the same number of the
filters in the output layers and the previous skip connection
layers. Hence, the proposed approach can also prune the
skip connection layers. This may be very useful to prune
complex networks, such as ResNet. Please refer to Figure 3
for more details.

In ResNet-50 Pruning, the pruner is the multitask network
with the 50 tasks, because of the 50 layers in the main-

Method Acc%(Top-1) Acc%(Top-5) FLOPs Pruned %

Baseline 71.50 90.10 –
RNP (3X)[26] – 87.57 66.67
ThiNet-Conv [32] 69.74 89.41 69.04
RNP (4X)[39] – 86.67 75.00
CP 4x[15] – 88.90 75.00
NN-1 (Ours) 70.31 89.71 75.00

Table 3. Pruning results for the VGG-16 over ImageNet. Our
approach has minimum accuracy drop as compared to state-of-
art pruning approach. We use the result reported in MatConvNet:
http://www.vlfeat.org/matconvnet/pretrained/.

Method Error%(Top-1) Error%(Top-5) Pruned Flop %

Baseline 24.7 7.8 -
ThiNet-70 [32] 25.97 7.9 36.8
CP [15] – 9.2 ∼ 50
NISP [59] 28.0 – 44.0
SFP [13] 25.39 7.94 41.8
SPP [55] – 9.6 ∼ 50
WAE [4] – 9.6 46.8
NN-1 (Ours) 24.58 7.56 40.7
NN-2 (Ours) 24.82 7.64 49.1

Table 4. ResNet-50 Pruning results over the ImageNet dataset. The
accuracy of ResNet-50 is tested using official 1-crop validation set-
ting: center 224x224 crop from resized image with shorter side=256
(https://github.com/KaimingHe/deep-residual-networks).

Figure 3. Unlike the previous approaches, our proposed method
can also prune the skip connection filters. In the first two images,
the skip connection size is fixed to 256-D, same as the original,
while in the proposed approach, we also prune this to make it
R-dimensional.

network. We optimize the model in an alternating fashion
for P and O. In the first round, only P is optimized, while
the parameters of O are kept frozen. In the second round, P
and O is optimized jointly. The output dimension of each
multitask output layer is equal to the number of filters in
that layer. To get the output close to 0/1, scaled sigmoid is
used. Initially, we set α = 1 for 10 epochs, and later we use
α = 50 to get the Bernoulli weights (outputs of the multitask
pruner network) on the feature maps.

Empirically, we found that our approach yields com-
pressed ResNet-50 models (NN-1, NN-2) having signif-
icantly better accuracy as compared to other approaches
[59, 15, 4] because of skip connections pruning support. The
proposed approach gives a significantly better pruning rate
with the negligible accuracy drop. In Table 4, we show a
detailed comparison with other baselines.

4.3. Generalization
To show the generalization ability of the compressed

model produced by our proposed approach, we experiment
on the object detection task. In this experiment, we select
the popular Faster-RCNN [42] architecture on the large-
scale MS-COCO [28] dataset. Our experimental results
demonstrate that the compressed model produced by our
proposed approach has the same generalization ability as the
original model.

4.3.1 Compression for Object Detection
MS-COCO [28] is a large-scale dataset, which contains 80
object categories. The training set contains 80K images,

Model data Avg. Precision, IoU:
0.5:0.95 0.5 0.75

F-RCNN original trainval35K 30.3 51.3 31.8
F-RCNN pruned trainval35K 30.2 51.0 31.6

Table 5. Generalization results over MS-COCO [28] dataset for Faster-RCNN object detector. In the original Faster-RCNN, we use
ResNet-50 as the base architecture while in the Faster-RCNN pruned, pruned ResNet-50 model (NN-2) from Table 4 is used. We use a
publicly available implementation (https://github.com/jwyang/faster-rcnn.pytorch) for Faster R-CNN with ResNet-50 as the base network.

Figure 4. Practical speedup for the compressed model (NN-3) pro-
duced by the proposed approach (table-1) w.r.t. batch size on
VGG-16 architecture over CIFAR-10 dataset.

and the validation set contains 35K images in total; both
are combined as used as the training set called trainval35K
[27]. The object detection results are reported over the 5K
unused validation images (minival). The Faster-RCNN [42]
is a highly popular object detection algorithm that takes
the standard CNN as the base architecture for the feature
extraction. For our experiments, we train the Faster-RCNN
architecture with the ResNet-50 (uncompressed) [12] as the
base network and the results are reported in Table 5. To
show the generalization ability, we replace the base network
ResNet-50 with the pruned ResNet-50 (NN-2) reported in
Table 4. Repeating the same procedure of the Faster-RCNN
with the pruned base model, we achieve similar results, as
shown in Table 5. Therefore our compressed model not only
has high FLOPs saving but also better generalization ability
and can be used to higher-level computer vision tasks. In the
Faster-RCNN implementation, we use ROI Align and stride
1 for the last block of the convolutional layer (layer 4) in the
base ResNet-50 model.

4.4. Practical Speedup

In Fig-4, we demonstrate the practical speedup for VGG-
16 compressed model (NN-3) given in the Table 1. As the
Table shows, NN-3 compressed model has 7.63× theoretical
FLOPs compression. We achieve 4.84×, 6.86× practical
speedup corresponding to GPU and CPU with 512 batch size.
Therefore, practical CPU speedup is close to the theoretical
speedup, while the GPU’s practical speedup is below the
theoretical speedup. This is because of the availability of
thousands of cores for computation in GPU. Here one can ob-
serve that, with the increase in batch size, the parallelization
ability of the model also increases; therefore, the practical
speedup is close to the theoretical FLOPs compression as

shown in Fig-4.

4.5. Ablation for Regularization Parameter

In Table-[1, 4] we conduct an ablation study over the λ
parameter mentioned in Eq. 3. The λ parameter is used to
control the pruning rate in the model. If we increase the
λ value, it forces a high l1 penalty to the multitask output
vector and produces more zeros, while for lower values of
λ, we get fewer zeros. These zero weight filters can be dis-
carded from the model. In Table 1, NN1, NN2 and NN3
are compressed models for λ = 0.001, 0.002 and 0.005, re-
spectively, and we achieve pruning rate 79.47%, 83.00% and
86.90% respectively. Similarly, in table-4, NN1 and NN2 are
compressed models for λ = 0.001 and 0.002, respectively.
The detail compression rate and corresponding accuracy can
be seen in table [1, 4]. If we use too high pruning rate, it can
dominate the model by discarding a large number of filters,
and the model is unable to recover the performance.

5. Conclusion
We presented a filter pruning approach based on a multi-

task pruner network. The multitask network learns where to
prune in the main network. Alternating optimization used in
the proposed approach helps to achieve high FLOPs pruning
rate. The multitask network tries to maximize the pruning
while the main network tries to maintain accuracy during
pruning. The multitask network gives approximate Bernoulli
weights to each feature map in the main-network and tries to
maximize the number of such zero weights. Feature maps
corresponding to the zero weights produce zero-valued fea-
ture maps in the output layer; therefore, these feature maps
have no contribution in the overall model. We can safely
remove these feature maps with corresponding filters from
the main network without degrading the model performance.
One of the appealing aspects of the proposed approach is
that it can automatically decide the layer importance (where
to prune). The proposed approach is end-to-end without any
heuristics, such as an ad-hoc specification of thresholds for
filter removal. The proposed approach yields state-of-art
FLOPS pruning results with minimal accuracy drop and also
shows a good generalization ability for the object detection
task.

Acknowledgment: PS is supported by the Research-I
Foundation at IIT Kanpur. VKV acknowledges support from
Visvesvaraya PhD Fellowship and PR acknowledges support
from Visvesvaraya Young Faculty Fellowship.

References
[1] R. Abbasi-Asl and B. Yu. Structural compression of convolu-

tional neural networks based on greedy filter pruning. arXiv
preprint arXiv:1705.07356, 2017.

[2] J. M. Alvarez and M. Salzmann. Learning the number of
neurons in deep networks. In NIPS, pages 2270–2278, 2016.

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question an-
swering. In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433, 2015.

[4] T. Chen, L. Lin, W. Zuo, X. Luo, and L. Zhang. Learning a
wavelet-like auto-encoder to accelerate deep neural networks.
AAAI, 2018.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In ICML,
pages 2285–2294, 2015.

[6] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for
efficient evaluation. In NIPS, 2014.

[7] X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced filter
pruning for efficient convolutional neural networks. AAAI,
2018.

[8] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, pages 1126–1135. JMLR. org, 2017.

[9] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning. arXiv preprint arXiv:1806.02817, 2018.

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding. ICLR, 2016.

[11] B. Hassibi and D. G. Stork. Second order derivatives for
network pruning: Optimal brain surgeon. In NIPS, 1993.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[13] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter
pruning for accelerating deep convolutional neural networks.
IJCAI, 2018.

[14] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:
Automl for model compression and acceleration on mobile
devices. In The European Conference on Computer Vision
(ECCV), September 2018.

[15] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating
very deep neural networks. In ICCV, page 6, 2017.

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[17] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trim-
ming: A data-driven neuron pruning approach towards effi-
cient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. 2016.

[19] L. N. Huynh, Y. Lee, and R. K. Balan. D-pruner: Filter-based
pruning method for deep convolutional neural network.

[20] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-
volutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. 2009.

[22] V. Lebedev and V. Lempitsky. Fast convnets using group-wise
brain damage. In CVPR, pages 2554–2564, 2016.

[23] G. Leclerc, M. Vartak, R. C. Fernandez, T. Kraska, and
S. Madden. Smallify: Learning network size while train-
ing. arXiv preprint arXiv:1806.03723, 2018.

[24] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In NIPS, pages 598–605, 1990.

[25] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient convnets. ICLR, 2017.

[26] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In
Advances in Neural Information Processing Systems, pages
2181–2191, 2017.

[27] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detection.
In CVPR, page 4, 2017.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common
objects in context. In ECCV, pages 740–755. Springer, 2014.

[29] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao. Deep sketch
hashing: Fast free-hand sketch-based image retrieval. In Proc.
CVPR, pages 2862–2871, 2017.

[30] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.
Learning efficient convolutional networks through network
slimming. In ICCV, pages 2755–2763. IEEE, 2017.

[31] C. Louizos, K. Ullrich, and M. Welling. Bayesian compres-
sion for deep learning. In NIPS, pages 3288–3298, 2017.

[32] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and
W. Lin. Thinet: pruning cnn filters for a thinner net. IEEE
transactions on pattern analysis and machine intelligence,
2018.

[33] P. Mazumder, P. Singh, and V. Namboodiri. Cpwc: Contextual
point wise convolution for object recognition. arXiv preprint
arXiv:1910.09643, 2019.

[34] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Towards
unified data and lifecycle management for deep learning. In
ICDE, pages 571–582. IEEE, 2017.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[36] D. Molchanov, A. Ashukha, and D. Vetrov. Variational
dropout sparsifies deep neural networks. In ICML, pages
2498–2507, 2017.

[37] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.
Pruning convolutional neural networks for resource efficient
inference. ICLR, 2017.

[38] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov.
Structured bayesian pruning via log-normal multiplicative
noise. In NIPS, pages 6775–6784, 2017.

[39] Y. Rao, J. Lu, J. Lin, and J. Zhou. Runtime network routing for
efficient image classification. IEEE transactions on pattern
analysis and machine intelligence, 2018.

[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural
networks. In ECCV, pages 525–542. Springer, 2016.

[41] S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Es-
lami, D. Rezende, O. Vinyals, and N. de Freitas. Few-shot
autoregressive density estimation: Towards learning to learn
distributions. In ICLR, 2018.

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, pages 91–99, 2015.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-
genet large scale visual recognition challenge. IJCV, pages
211–252, 2015.

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

[45] P. Singh, V. S. R. Kadi, and V. P. Namboodiri. Falf convnets:
Fatuous auxiliary loss based filter-pruning for efficient deep
cnns. Image and Vision Computing, page 103857, 2019.

[46] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri.
Stability based filter pruning for accelerating deep cnns. In
2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1166–1174. IEEE, 2019.

[47] P. Singh, R. Manikandan, N. Matiyali, and V. Namboodiri.
Multi-layer pruning framework for compressing single shot
multibox detector. In 2019 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 1318–1327. IEEE,
2019.

[48] P. Singh, P. Mazumder, and V. P. Namboodiri. Accu-
racy booster: Performance boosting using feature map re-
calibration. arXiv preprint arXiv:1903.04407, 2019.

[49] P. Singh, M. Varshney, and V. P. Namboodiri. Cooperative ini-
tialization based deep neural network training. arXiv preprint
arXiv:2001.01240, 2020.

[50] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Lever-
aging filter correlations for deep model compression. arXiv
preprint arXiv:1811.10559, 2018.

[51] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-
conv: Beyond homogeneous convolution kernels for deep
cnns. International Journal of Computer Vision, pages 1–21,
2019.

[52] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play
and prune: Adaptive filter pruning for deep model compres-
sion. International Joint Conference on Artificial Intelligence
(IJCAI), 2019.

[53] V. K. Verma, G. Arora, A. Mishra, and P. Rai. General-
ized zero-shot learning via synthesized examples. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

[54] V. K. Verma, D. Brahma, and P. Rai. A meta-learning frame-
work for generalized zero-shot learning. AAAI, 2020.

[55] H. Wang, Q. Zhang, Y. Wang, and H. Hu. Structured proba-
bilistic pruning for convolutional neural network acceleration.
BMVC, 2017.

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In NIPS, pages
2074–2082, 2016.

[57] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis,
K. Grauman, and R. Feris. Blockdrop: Dynamic inference
paths in residual networks. In CVPR, pages 8817–8826, 2018.

[58] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In International
conference on machine learning, pages 2048–2057, 2015.

[59] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,
M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning networks
using neuron importance score propagation. CVPR, 2018.

[60] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6848–6856, 2018.

[61] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and
accurate approximations of nonlinear convolutional networks.
In NIPS, pages 1984–1992, 2015.

[62] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards
compact cnns. In ECCV, pages 662–677. Springer, 2016.

