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Abstract 20 

Precious metals such as platinum group metals (PGMs) with distinct catalytic 21 

activity are widely used as active components in various industrial catalysts. It is, 22 

therefore, highly desirable to recover these valuable components from end-of-life 23 

products. We explored the treatment of refining wastewater from precious metals 24 

recovery using direct contact membrane distillation (DCMD). The role of various 25 

initial pH of refining wastewater on DCMD performance was assessed. Results 26 

suggest that hydrochloride acid (HCl) and high-quality water can be reclaimed from 27 

the real refining wastewater by adjusting initial pH. Furthermore, DCMD water flux 28 

decline was mainly caused by silica and chromium (III) scaling, which was dependent 29 

on initial pH of refining wastewater. Silica scaling was responsible for the decrease of 30 

DCMD performance when the initial pH of refining wastewater shifted from original 31 

0.03 to 5 and 7. Silica oligomers in the concentrated feed with various initial pH were 32 

identified using mass spectra. Whereas chromium (III) scaling was discovered, 33 

resulting in the used polytetrafluoroethylene (PTFE) membrane surface in green when 34 

the initial pH of refining wastewater was 3. Dichlorotetraaquochromiun, 35 

[Cr(H2O)4Cl2]Cl·2H2O was identified by X-ray photoelectron spectroscopy and 36 

ultraviolet and visible absorbance spectra as the main species contributing to the green 37 

colour of the scaled PTFE membrane surface. Our results suggest that DCMD can be 38 

used as a promising and feasible solution for resource recovery from acidic refining 39 

waste stream.  40 
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1. Introduction 44 

Precious metals such as platinum group metals (PGMs) are widely used as the 45 

active components of various industrial catalysts due to their distinct catalytic activity, 46 

chemical inertness, corrosion resistance and thermoelectric stability, which were 47 

considered as “Vitamin of modern industry” [1-5]. The loading of precious metals in 48 

catalysts ranged from 0.02 to 100% [1]. The most significant applications of precious 49 

metals are electronics and catalystic industry, consuming over 90% of precious metals 50 

[2]. It was reported that about 65% of palladium (Pd, 182.65 tons), 45% of platinum 51 

(Pt, 98 tons) and 84% of rhodium (Rh, 25.6 tons) were used in catalytic converters [1, 52 

2].  53 

However, the global reserve of PGMs is only 66,000 tons and their reserve in 54 

Earth’s crust is extremely low. For instance, In China, natural PGMs resources are 55 

extremely limited with total reserve of only about 350 tons. Only less than three tons 56 

of PGMs were mined in China annually, but demands for Pt and Pd were over 141 57 

tons. Therefore, there is urgent demand to recycle these precious metals from 58 

end-of-life products to realize the sustainable development of precious metals [6, 7]. 59 

By 2016, about 30% of PGMs were recovered from spent catalysts, namely 34 tons of 60 

Pt, 61 tons of Pd and 7.2 tons of Rh. Precious metals in the spent catalysts are often 61 

leached in hydrochloric acid medium with oxidizing agents like HNO3, Cl2, NaClO, 62 

NaClO3, H2O2, etc. through hydrometallurgical process [1, 8-10]. Besides precious 63 

metals, spent catalysts also contain many heavy metals [11]. Therefore, wastewater 64 

simultaneously generated from precious metals recovery process often contained high 65 
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concentrations of acids and various kinds of heavy metal ions, which has been 66 

regarded as huge challenge [12]. From the perspective of resource recovery and 67 

environmental protection, waste stream from precious recovery is crucial to be treated 68 

before discharging into environment.  69 

It has been reported that wastewater containing precious metals can be treated by 70 

membrane filtration [13], electrochemical approach [14] and biosorption [15, 16]. For 71 

example, forward osmosis (FO), an osmotically driven membrane technology, was 72 

widely used in treatment of various industry wastewater [17-23] and was also capable 73 

of Pd accumulation from printed circuit board (PCB) plant wastewater using an 74 

electroless nickel plating solution as draw solution [13]. In addition, microbial fuel 75 

cell (MFC) as one kind of bioelectrochemical systems was also employed for 76 

recovery of precious metals such as silver. High silver removal rate (83±0.7%) and 77 

recovery (67.8±1%) efficiencies were achieved from MFC fed with silver laden 78 

artificial wastewater (MFC-Ag) after 72 h operation. COD removal rate of MFC-Ag 79 

was up to 82.7±1.5% [14]. Furthermore, biosorption with advantages of low cost and 80 

high effectiveness at low concentrations and environmentally friendly nature has been 81 

widely developed for the recovery of metals ions from aqueous and waste solutions. A 82 

range of bioadsorbents, such as Escherichia coli [24, 25], Shewanella oneidensis 83 

MR-1[26], Enterococcus faecalis [27], Phomopsis sp. XP-8 [28], Enterobacter 84 

cloacae SgZ-5T [29], Galdieria sulphurariaetc [30] etc., have been reported towards 85 

biorecover Pd (II), Pt and Au from synthetic solutions. However, it is noteworthy that 86 

the majority of the studies above were focused on precious metals recovery or 87 
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accumulation from synthetic solutions. Till now, treatment of real wastewater derived 88 

from precious metals recovery has been not reported. Therefore, it is necessary to 89 

investigate the treatment of real wastewater generated from process of precious metals 90 

recovery. However, in economically undeveloped and remote area in China, the actual 91 

solution for removing heavy metal ions in the real wastewater derived from precious 92 

recovery was precipitation in alkali environment. This traditional physicochemical 93 

method not only increases cost of wastewater treatment but also produces large 94 

amount of physical and chemical sludge. Therefore, the dewatered sludge always 95 

contains various kinds of heavy metal ions and is a potential big threat to environment. 96 

In addition, China is a serious water shortage country, which is one of the 13 countries 97 

that lack of water all over the world [31]. From the perspective of water reclamation 98 

and environmental protection, if water reuse and heavy metal ions removal to an 99 

acceptable level is realized in application including industrial reuse, municipal green, 100 

and agricultural irrigation, which would have a great significant impact on cost 101 

reduction and decrease the negative influence on environment. An alternative 102 

technology that promises to achieve this objective is membrane distillation (MD).  103 

Membrane distillation (MD) emerged as an advanced membrane technology was 104 

used to recover valuable salts [32, 33] as well as treatment of high salinity solution 105 

[34-36]. Compared with other membrane technologies such as reverse osmosis, MD 106 

possesses several advantages for brine minimization, such as low operating pressure, 107 

high water recovery, potential for 100% rejection of non-volatile solutes and small 108 

footprint [37]. However, it is well known that MD is a very energy intensive process. 109 
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To reduce or replace extra energy input, industrial waste heat and solar energy were 110 

used in MD process [38-40]. However, in the field of treatment of industrial waste 111 

stream via MD process, there was no report on the application of MD technology in 112 

treatment of the real wastewater generated from process of precious metals recovery. 113 

The aim of this work was to assess the treatment of the real refining wastewater with 114 

strong acidity from precious metals recovery through DCMD process. Effects of 115 

various initial pH of wastewater on DCMD performance and membrane scaling were 116 

systematically assessed. The changes of membrane surface color and morphology 117 

caused by silica and chromium (III) scaling under various pH values were recorded 118 

and interpreted, respectively. Various characterization techniques were employed to 119 

elucidate the underlying mechanisms of membrane scaling during the DCMD 120 

filtration. 121 

2. Material and methods 122 

2.1. MD membrane and wastewater 123 

Commercial flat sheet MD membrane (PTFE-PVDF/PET) with mean pore size 124 

of 0.45 μm was purchased from Shanghai Minglie New Material Co., Ltd. The detail 125 

properties of commercial PTFE membrane were listed in Table S1. The structures of 126 

brine side facing feed solution and permeate side were shown in Fig. S1.  127 

The real refining wastewater produced from the recovery of precious metals in 128 

spent catalysts was kindly provided by Sino-Platinum metals resources (Yimen) Co., 129 

Ltd. The key characteristic of the refining wastewater used is shown in Table 1. The 130 

refining wastewater is a clear yellow solution with a conductivity of 199.2 mS/cm and 131 
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initial pH of 0.03. Sodium and potassium ions are the major cations with 132 

concentrations of 11.36 g/L and 10.06 g/L, respectively. The major anion is chloride 133 

ion with concentration of 48.99 g/L.  134 

Table 1 Key characteristic of refining wastewater used in this study 135 

Analyzed items Unit Concentration 

Conductivity mS/cm 199.2 ± 1.4 

pH - 0.03 ± 0.02 

COD mg/L 3620 ± 200 

Phosphate  mg/L 400 ± 80 

Chloride  mg/L 48993.8 ± 1200.7 

Nitrate mg/L 1107.32 ± 50.82 

Silicon mg/L 11.92 ± 3.50 

Sodium mg/L 11364 ± 200 

Potassium mg/L 10058 ± 300 

Zinc  mg/L 536.71 ± 8.75 

Aluminum mg/L 196.22 ± 3.05 

Calcium mg/L 64.07 ± 1.56 

Iron mg/L 46.50 ± 0.37 

Magnesium mg/L 36.80 ± 1.28 

Copper mg/L 14.46 ± 0.62 

Chromium mg/L 9.48 ± 1.13 

Nickel mg/L 6.27 ± 0.52 
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Manganese mg/L 4.82 ± 0.21 

Silver mg/L 0.99 ± 0.12 

Barium mg/L 0.79 ± 0.15 

Platinum mg/L 0.57 ± 0.08 

 136 

2.2. DCMD setup and experiments 137 

A DCMD module made of transparent Perspex with a channel depth of 4 mm 138 

and effective area of 30 cm2 (i.e. length 10 cm, width 3 cm) was used for experiments. 139 

Two same polyester spacers with diamond mesh were used to support the membrane 140 

and to promote the flow turbulence in both sides. The detail information of the 141 

module and spacer can be available in the previous report [34]. The schematic 142 

diagram and photo of the lab-scaled DCMD system used in this work is presented in 143 

Fig. S2 and Fig. S3 as reported previously [41-43]. The real refining wastewater with 144 

various initial pH was used as feed. Before experiments, feed and ultrapure water 145 

were put in the jacketed glass bottles with total volume of 1.5 liters, respectively. The 146 

effective volume of feed and ultrapure water was 1.2 and 1.5 liters for all experiments, 147 

respectively. Temperature of permeate side and brine side was maintained at 20±1oC 148 

and 60±1oC by circulating water cooler and thermostat circulating water bath, 149 

respectively. The flow rate for both sides was controlled at 300 mL/min 150 

(corresponding to the cross flow velocity of 8.3 cm/s) for all experiments by two same 151 

peristaltic pumps (Langer, BT600).  152 
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To investigate the influence of various initial pH of wastewater on MD 153 

performance, the initial pH of wastewater as the feed was adjusted from original 0.03 154 

to 3, 5 and 7 using sodium hydroxide (23 wt%). Before experiments, the wastewater 155 

with various initial pH was first filtered by filter paper with mean pore size of 40 μm 156 

to remove visible species and then filtered again using 0.45 μm filter membrane to 157 

remove the small sized particles to maximally reduce membrane fouling during 158 

DCMD process. The permeate flux (J, kg/m2h) was calculated by measuring the 159 

weight changes of permeate (Δm, kg)) with a precision balance (OHAUS, AR4202CN) 160 

divided by time intervals (Δt, h)) and membrane area (A, m2), which was described in 161 

equation (1). Additionally, the conductivity of the accumulated permeate was online 162 

monitored by a conductivity meter (SUNTEX, EC-4110RS). Both the data of balance 163 

and conductivity meter was recorded by a computer equipped with a data logging 164 

system. 165 

𝐽 =
∆𝑚

∆𝑡·𝐴
                (1) 166 

 167 

2.3. Analytical methods 168 

Key element concentration of refining wastewater was determined with 169 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The 170 

concentrations of chloride, phosphate and nitrate in refining wastewater were 171 

measured by ion chromatography (IC, LC20AT, Shimadzu, Japan). Field-emission 172 

scanning electron microscopy (FESEM, Hitachi S-4800) equipped with energy 173 

dispersive X-ray fluorescence spectrometer was used for analyzing the morphologies 174 
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of membranes and elementary composition of scalants. X-ray photoelectron 175 

spectroscopy (XPS) (Escalab 250Xi) was employed to analyze element chemical 176 

bonding. Fourier Transform Infrared Spectrometer (Nicoletln 10MX/Nicolet6700) 177 

was employed to analysis the ultraviolet and visible absorbance of the blank and 178 

scaled membrane surface. Electrospray ionization mass spectrometry (ESI-MS, 179 

Agilent 11000) was used to identify the silica oligomers formed in the concentrated 180 

solution with various initial pH. ESI negative ionization mode was used and the direct 181 

injection flow of the sample was 0.15 mL/min.  182 

 183 

3. Results and discussion 184 

3.1 DCMD performance 185 

Fig. 1(A) shows the permeate flux patterns under various initial pH of refining 186 

wastewater. The curves of permeate flux displayed the similar trend, gradually 187 

decreased with the increasing of recovery. The initial flux for the original pH of 0.03 188 

and 7 of refining wastewater were the same of 13 kg/m2h, which is a little higher than 189 

that for pH of 3 and 5 also with same flux of 11.5 kg/m2h. Then, the corresponding 190 

permeate flux for the initial pH of refining wastewater adjusted from original pH of 191 

0.03 to 3, 5 and 7 declined to 8.4, 4.7, 4.6 and 5.9 kg/m2h, respectively, when 192 

recovery reached to 60%. One reason for the decrease of fluxes is that feed solution 193 

concentrated and the partial vapor pressure of water in the feed solution decreased as 194 

increasing of recovery. Another reason is possibly that membrane scaling occurred 195 

under various initial pH of wastewater, which resulted in membrane scaling in varying 196 
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degree, thus caused various initial flux and flux at recovery of 60%. The changes of 197 

permeate conductivity were depicted in Fig. 1(B). The permeate conductivity for 198 

original pH of 0.03 and 3 increased exponentially, while the curves of permeate 199 

conductivity for pH of 5 and 7 were much smoother. It was found amazingly that the 200 

permeate conductivity increased from initial 7.6 μS/cm to 18.3 mS/cm when recovery 201 

reached to 67% for the wastewater with original pH of 0.03. However, for the 202 

wastewater with initial pH of 3, 5 and 7, the corresponding final permeate 203 

conductivity was 338, 57.5 and 31.5 μS/cm, when the recovery went up to 66%, 60% 204 

and 60%, respectively. These results indicated that high-quality permeate can be 205 

reclaimed by controlling initial pH of feed solution. However, it is noteworthy that the 206 

permeate conductivity for the pH of 3 spiked after recovery of 60%, indicating that 207 

the PTFE membrane was possibly wet.  208 

The pH values of the solution in permeate and feed tanks were also tested before 209 

and after experiments. As shown in Fig. 2, compared with ultrapure water with 210 

original pH of 5.46 in the permeate tank, the pH of the solution in the permeate tank 211 

after experiment first decreased from 5.46 to 1.31 and 3.41, then increased to 6.45 and 212 

7.2 as the initial pH of wastewater as feed shifted from original 0.03 to 3, 5 and 7, 213 

respectively. In order to reveal the reason for the pH changes, water quality of the 214 

solution in the permeate tank after experiment was characterized when original 215 

refining wastewater was used as feed. The majority of anion is chloride ions (Cl-) with 216 

concentration of 545 mg/L and only small amount of cations such as Ca2+ (4.78 mg/L), 217 

K+ (0.38 mg/L), Na+ (0.36 mg/L), Mg2+ (0.56 mg/L) coexists in the permeate (Table 218 
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2). It can be concluded from the data in Table 2 that the permeate for wastewater with 219 

original pH of 0.03 mainly consisted of hydrochloric acid (HCl). The reason for 220 

collection of HCl from waste stream with pH of 0.03 via DCMD process is possibly 221 

that under feed temperature of 60oC, the partial pressure of HCl over aqueous solution 222 

increased, resulting in Henry’s law constant of HCl increase and solubility of HCl 223 

decline. Therefore, during DCMD filtration of wastewater with original pH of 0.03, 224 

HCl fast volatilized from feed solution with temperature of 60oC and passed through 225 

PTFE membrane into permeate, which resulted in permeate conductivity fast 226 

increased (Fig 1 B). These results above indicated that refining wastewater can be 227 

well treated as well as recovery of hydrochloric acid and high-quality water via 228 

DCMD process through adjusting initial pH of wastewater.  229 

 230 
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 231 

Fig. 1. DCMD experiment performance, permeate flux (A) and conductivity (B) as a 232 

function of recovery for refining wastewater (Temperature of feed side and permeate 233 

side was maintained at 60±1oC and 20±1oC, respectively; both the volumetric flow 234 

rates of feed and permeate were controlled at 300 mL/min; the sodium hydroxide with 235 

concentration of 23 wt% was used to adjust the feed pH). 236 
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 237 

Fig. 2 pH changes of concentrated feed solution and permeate after experiments under 238 

various initial pH of wastewater as feed. 239 

 240 

Table 2 Water quality of permeate from DCMD process using original refining 241 

wastewater as feed. 242 

Analytes Concentration (mg/L) 

Chloride 545 ± 10 

Potassium 0.38 ± 0.08 

Sodium 0.36 ± 0.05 

Calcium 4.78 ± 0.22 

Magnesium 0.56 ± 0.13 

 243 

3.2 Membrane surface color and contact angle 244 



16 

The colour of membrane surface facing feed has not changed significantly before 245 

and after experiments and was still white when the initial pH of the feed was adjusted 246 

from original 0.03 to 5 and 7 (Fig. 3). However, significant derivation of membrane 247 

surface colour was observed under the condition of wastewater as feed with initial pH 248 

of 3. As shown in Fig. 3, the membrane surface facing the feed and the permeate side 249 

of membrane facing cold side were both green, which was unexpected. Furthermore, 250 

the permeate side of membrane was more green than that of the brine side of 251 

membrane, meant that the greenish scalant possibly penetrated into membrane surface. 252 

This phenomenon was interpreted and the greenish scalant was identified in the 253 

following sections. 254 

The contact angles of the brine side of PTFE membrane after experiments were 255 

shown in Fig. 4. For the refining wastewater with original pH of 0.03, the contact 256 

angle of PTFE membrane surface decreased from 112o to 72o, which provided clear 257 

evidence that the PTFE membrane surface after usage was partially wet. In contrary, 258 

the contact angle increased a little to 116o when the initial pH of the feed solution 259 

shifted to 7. However, for the refining wastewater with initial pH of 3 and 5, it was 260 

found that the contact angles of PTFE membrane surface were not obtained due to 261 

water droplet spreading, resulted from membrane wetting. These results indicated that 262 

the brine side of PTFE membrane surface after treatment of the real refining 263 

wastewater with initial pH of 3 and 5 were thoroughly wet. The phenomenon of 264 

contact angle changes was possibly related to the change of membrane surface 265 

morphologies and scalants deposited on membrane surfaces, which was observed as 266 
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below. 267 
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 268 

 269 

Fig. 3. The photos of brine and permeate sides of PTFE membrane surfaces after experiment under various initial pH of feed solution 270 

.271 
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 272 

Fig. 4. Contact angle of brine side of PTFE membrane after treatment of refining 273 

wastewater with various initial pH.  274 

 275 

3.3 Membrane surface morphology 276 

To elucidate the microscopic changes of membrane surface, SEM-EDX has been 277 

conducted on each scaled brine side of PTFE membrane surface. As shown in Fig. 278 

5(A), the morphologies of various membrane surfaces were distinct. There is 279 

considerable amount of small white particles on the surface fibers of PTFE membrane 280 

after treatment of refining wastewater with original pH of 0.03. The corresponding 281 

result of EDX (Table 2) showed that the main metallic element was K with ratio of 282 

1.66 wt%, followed by Al (1.32 wt%) and Na (0.94 wt%). Apart from inherent C 283 

element of the PTFE membrane, the main non-metallic element was Si with ratio of 284 

42.41 wt%, followed by O (37.53 wt%) and Cl (1.70 wt%). It was reported that Si 285 
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species in solution with pH less than 9 was mainly in the form of H4SiO4 in previous 286 

work [44-46]. The polymerization of silica takes place via condensation mechanism in 287 

the presence of hydroxide ions. It started with a dimerization reaction that is typically 288 

considered to involve a non-ionic silicic acid molecule and an ionic silicic acid 289 

molecule (Eqs. (2) - (3)). The dimerization also occurs in an acidic solution but in a 290 

much slower rate via the reaction scheme in Eq. (4). Additionally, it was also reported 291 

that in the presence of metal ions such as Na+, Mg2+, Al3+, Ca2+ and Fe3+, dimerization 292 

was facilitated by neutralizing the surface charge of silica and allow aggregation of 293 

particles [47-50]. Based on the analysis from the perspective of elementary 294 

composition of scalant and silica polymerization, it can be concluded that the white 295 

small scalants deposited on the fibers were possible mixture of mono-silicic acid and 296 

silica oligomers. 297 

H4SiO4 + OH– = H3SiO4
– + H2O                         (2) 298 

H3SiO4
- + H3SiO4

- = (OH)3Si – O – Si(OH)3 + OH–          (3) 299 

H4SiO4 + H4SiO4 = (OH)3Si – O – Si(OH)3 + H2O           (4) 300 

However, compared with surface morphology of the PTFE membrane after 301 

treatment of refining wastewater with original pH of 0.03, the surface of the PTFE 302 

membrane after treatment of refining wastewater with initial pH of 3 was seriously 303 

fouled by the evidence that a lot of small spherical particles not only deposited on the 304 

surface fibers (Fig. 5(B)), but also aggregated in the gap between the fibers. The 305 

corresponding EDX result (Table 2) showed that beside the C element the major 306 

non-metallic elements were P, O and Cl with ratio of 26.26 wt%, 24.37 wt% and 5.48 307 
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wt%, respectively. The highest content metallic element was Cr with ratio of 17.57 308 

wt%, followed by K (7.66 wt%), Na (5.33 wt%) and Al (5.08 wt%). Based on this 309 

result, it can be explained reasonably that the greenish scaled membrane surface 310 

showed in Fig. 4 was caused by trivalent chromium (Cr (III)) as the Cr (III) ions in 311 

water solution was green [51, 52].  312 

Surface fibers of membrane after treating refining wastewater with initial pH of 5 313 

were relatively clear, large massive scalants were mainly found at the crossing of 314 

surface fibers beside few small white particles deposited on the surface fibers (Fig. 315 

5(c)). According to the corresponding EDX results (Table 2), the major non-metallic 316 

elements were O (29.69 wt%), Cl (16.77 wt%), P (12.40 wt%), and Si (0.88 wt%). Na 317 

was the main metallic element with a ratio of 11.47 wt% followed by Cr (8.76 wt%), 318 

K (7.69 wt%) and Al (3.88 wt%). Based on the scalants morphologies and EDX 319 

elementary composition analysis, the main scalants was possible a mixture of 320 

amorphous silica and silica oligomers.  321 

The surface morphology of PTFE membrane after treatment of neutral (pH=7) 322 

refining wastewater looked similar to that of membrane after treatment of original 323 

refining wastewater (Fig. 5(D)). EDX result (Table 2) showed that the major 324 

non-metallic element was Cl with ratio of 28.49 wt%, followed by O (16.23 wt%), P 325 

(5.61 wt%), Si (1.62 wt%) and S (1.06 wt%). The metal elements in the order of 326 

content from high to low were Na (13.48 wt%), K (9.23 wt)%, Cr (5.1 wt%), Fe (2.55 327 

wt%) and Al (0.62 wt%). Compared with Si ratio on the membrane surface after 328 

treating original refining wastewater, the Si ratio on the membrane surface after 329 
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treatment of neutral (pH=7) refining wastewater was much lower. The membrane 330 

surface morphology was in line with Si ratio on the scaled membrane surface. Only 331 

few small white particles were found on surface fibers, resulting in the maximum 332 

contact angle the PTFE membrane after experiment.  333 

Overall, based on the shape of scalants and their EDX elementary composition 334 

analysis, it can be concluded that silica and chromium scaling were occurred on 335 

membrane surface. The membrane scaling caused by silica and chromium (III) of the 336 

PTFE membrane after treatment of refining wastewater with various initial pH values 337 

was in varying degree by evidence that the surface morphologies were distinct, which 338 

was possibly the main reason for the changes of DCMD fluxes and contact angles.  339 

However, it was noteworthy that silica and chromium scaling occurred and their 340 

impacts on system performance were dependent on initial pH of refining wastewater.  341 

 342 
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 343 

Fig. 5. SEM images of PTFE membrane surface at various initial pH of refining 344 

wastewater; (A), (B), (C) and (D) is SEM of scaled membrane treatment of refining 345 

wastewater with initial pH of original 0.03, 3, 5 and 7, respectively.  346 

 347 

Table 3 The corresponding element ratio of the scaled PTFE membrane surfaces 348 

characterized by SEM in Fig. 5 349 

pH 

 Element ratio (wt%) 

C O Cl Si S P K Na Al Cr Fe 

0.03 14.44 37.53 1.70 42.41 / / 1.66 0.94 1.32 / / 

3 8.15 24.37 5.48 / / 26.26 7.66 5.33 5.08 17.57 / 

5 8.46 29.69 16.77 0.88 / 12.4 7.69 11.47 3.88 8.76 / 

7 16 16.2 28.5 1.62 1.06 5.61 9.23 13.5 0.62 5.1 2.55 
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3.4 Mass spectra identified silica oligomers 350 

Mass spectra provided important information of silica oligomers during silica 351 

related scaling. The mass spectra of concentrated refining wastewater with various 352 

initial pH (Fig. 6) were compared and the mass/charge ration (m/z) and possible 353 

structure of silica oligomers were tabulated (Table 4). For the concentrated refining 354 

wastewater with original pH of 0.03 and 3, the major species in the concentrated 355 

solution were mono-silica acid with m/z of 113 and dimmer-linear silica acid with m/z 356 

of 136.9, 155 and 172.9 (Fig. 6 and Table 4). This result indicated that oligomerisation 357 

of monomer silica proceeded via formation of dimmer-linear silicates [53-55]. 358 

Therefore, the saclants deposited on the PTFE membrane surface was possibly 359 

mixture of mono- and dimmer-linear silica acid. The deposition of silica on PTFE 360 

membrane is likely to occur via a homogeneous nucleation process, with silica 361 

aggregates formed in refining wastewater prior to PTFE membrane surface. The 362 

explanation was also consistent with the silica scaling morphology, as distinct silica 363 

crystals, especially for original pH of 0.03 (Fig. 5). However, this situation was not 364 

for the concentrated refining wastewater with initial pH of 5 and 7. Besides the 365 

mono-silica acid with m/z of 113 and dimmer-linear silica acid with m/z of 155 and 366 

172.9, few trimer-cyclic or –linear and tetramer-cyclic or –linear were also found in 367 

the concentrated solution. This phenomenon could be interpreted that mono-silica 368 

acid firstly deposited on the PTFE membrane surface and then initiate silica 369 

polymerization on the membrane surface, resulting in an amorphous silica scaling 370 

morphology, especially for pH of 5.  371 
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 372 

Fig. 6. Mass spectra of the concentrated feed solution with various initial pH after DCMD treatment (A, original pH of 0.03; B, pH=3; C, pH=5; 373 

D, pH=7). 374 
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Table 4 Possible structures of silica oligomers determined by electrospray ionization mass spectrometry under various initial pH of wastewater. 375 

m/z Possible molecular formula Intensity (102) Possible structure Ref 

113.1 H4SiO4·(OH)- 

30 (original pH) 

19 (pH=3) 

18 (pH=5) 

37 (pH=7) 

 [53] 

136.9 Si2O4(OH)- 
13 (pH=3) 

15 (pH=5)  [55] 

155.1 Si2O3(OH)3
- 26 (pH=3)  [54] 

172.9 Si2O2(OH)5
- 

90 (original pH) 

78 (pH=3) 

67 (pH=7) 
 [53-55] 

252.8 Si3O5(OK)(OH)2
- 6 (pH=7) 

   
[54] 

270.7 Si3O5(OK)(OH)4
- 23 (pH=5) 

   
[54] 

292.8 Si4O6(OH)5
- 

7 (pH=5) 

7 (pH=7) 
     

[53, 54] 

 376 
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3.5 Chromium (III) scalant identification 377 

Based on the detailed analysis of membrane morphologies and elementary 378 

composition from section 3.3, the reason for the scaled PTFE membrane in green 379 

under initial pH of 3 was caused by chromium (III). To identify the green species on 380 

the scaled membrane surface, the brine side of the scaled PTFE membrane was 381 

examined by XPS and UV-Vis spectrophotometer to elucidate the interaction between 382 

chromium (III) and membrane and to identify the specific green species.  383 

3.5.1 Chromium (III)-membrane interaction 384 

Based on the results in sections 3.3 chromium (III) scaling was found on the 385 

surface of membrane after treating real refining wastewater with initial pH of 3. To 386 

elucidate chemical origin of chromium (III)-membrane interaction, high solution XPS 387 

was conducted to examine the chemical bond of Cr 2p of the scaled membrane 388 

surfaces. The Cr 2p spectra ranging from 568 to 592 eV is shown in Fig. 7. The peaks 389 

of Cr 2p binding energy were found at 578.5 eV and 577.4 eV. Based on previous 390 

report [56, 57], the peak of Cr 2p binding energy at 578.5 eV and 577.4 eV was the 391 

characteristic bond of Cr-Cl and Cr-O, respectively. Further, the intensity of Cr-O was 392 

much higher than that of Cr-Cl, indicating that the number of Cr-O was more than that 393 

of Cr-Cl in the compounds. According to the analysis above and quality of the real 394 

refining wastewater (Table 1), it can be considered that the greenish compounds 395 

deposited on the brine side of membrane was chloroaquochromium (III) complexes 396 

that was possibly derived from the formation of hydrated isomers of chromic chloride 397 

hexahydrate (CrCl3·6H2O) [51, 52]. According to the color of the isomers, the scaled 398 
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membrane surface in green was caused by either dichloropentraaquochromiun, 399 

[Cr(H2O)5Cl]Cl2·H2O or dichlorotetraaquochromiun, [Cr(H2O)4Cl2]Cl·2H2O.  400 

 401 

 402 

Fig. 7. High solution Cr 2p scan by X-ray photoelectron spectroscopy of scaled 403 

membrane after treatment of refining wastewater with various initial pH of 3.  404 

 405 

3.5.2 UV-vis absorbance spectra identified dichloroaquochromium (III) 406 

complexes 407 

To identify the primary species responsible for the scaled membrane surface in 408 

green under condition of feed with initial pH of 3, the test of UV-Vis absorbance of 409 

the original and scaled membrane was carried out. In the visible region (380-780 nm), 410 

the spectrum of UV-Vis absorbance of the blank membrane was linear (Fig. 8). 411 
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However, two characteristic peaks at 450 nm and 635 nm with the maximum 412 

absorbance value of 0.088 and 0.096, respectively, appeared in the UV-Vis 413 

absorbance spectrum of the brine side of the scaled membrane in green. Since 414 

previous studies [51, 52, 58] demonstrated that the UV-vis absorption spectrum of 415 

[CrCl2(H2O)4]
+ showed the characteristic peaks at 450 and 635 nm in the region 416 

between 200 and 800 nm, the dichlorotetraaquochromiun, [Cr(H2O)4Cl2]Cl·2H2O, 417 

was the main species responsible for the appeared greenish color. It was reported that 418 

the structure of dichlorotetraaquochromiun was octahedral [59]. However, it should be 419 

pointed out that the dichlorotetraaquochromiun has two isomeric structures, namely 420 

cis and trans (Fig. 9). Therefore, green specie was possibly mixture of 421 

dichlorotetraaquochromium with two isomeric structures.  422 

 423 

Fig. 8. UV-Vis absorbance spectra of the blank membrane and scaled membrane after 424 

treatment of refining wastewater with initial pH of 3. 425 
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 426 

 427 

Fig. 9. The molecular space structure of isomeric dichlorotetraaquochromiun (a, cis; b, 428 

trans) 429 

 430 

4. Conclusion 431 

In this work, DCMD process was employed to treat real refining wastewater with 432 

strong acidity from recovery of precious metals in spent catalysts. System 433 

performance was assessed under condition of various initial pH of the real refining 434 

wastewater. The major findings and conclusions drawn from this work were 435 

summarized as follows. 436 

• High initial water flux ranged from 11.5 to 13 kg/m2h were obtained under 437 

various initial pH of refining wastewater as feed through DCMD process.  438 

• Relative pure hydrochloride acid was reclaimed from original refining 439 

wastewater through DCMD process. 440 
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• High-quality water was available from refining wastewater by adjusting pH 441 

from acidic to neutral. 442 

• Silica scaling was the main reason for the decrease of system performance 443 

over time when the pH of refining wastewater was adjusted from original 0.03 to 5 444 

and 7. 445 

• Chromium (III) scaling was detected, which resulted in the greenish surfaces 446 

of PTFE membrane when the initial pH of refining wastewater was 3. The identified 447 

dichlorotetraaquochromiun, [Cr(H2O)4Cl2]Cl·2H2O, was the main species responsible 448 

for the appeared greenish colour. 449 
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