

Citation for published version:
Singh, P, Kadi, VSR & Namboodiri, VP 2020, 'FALF ConvNets: Fatuous auxiliary loss based filter-pruning for
efficient deep CNNs', Image and Vision Computing, vol. 93, no. 103857, 103857, pp. 1-14.
https://doi.org/10.1016/j.imavis.2019.103857

DOI:
10.1016/j.imavis.2019.103857

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/370406394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.imavis.2019.103857
https://doi.org/10.1016/j.imavis.2019.103857
https://researchportal.bath.ac.uk/en/publications/falf-convnets-fatuous-auxiliary-loss-based-filterpruning-for-efficient-deep-cnns(5ccfca04-121d-4f12-9aa2-a17c2aca2e6b).html

FALF ConvNets: Fatuous Auxiliary Loss based
Filter-pruning for Efficient Deep CNNs

Pravendra Singha,1,∗, Vinay Sameer Raja Kadib,1, Vinay P. Namboodiria

aDepartment of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
bCarnegie Mellon University, Pittsburgh, United States

Abstract

Obtaining efficient Convolutional Neural Networks (CNNs) are imperative to enable

their application for a wide variety of tasks (classification, detection, etc.). While sev-

eral methods have been proposed to solve this problem, we propose a novel strategy for

solving the same that is orthogonal to the strategies proposed so far. We hypothesize

that if we add a fatuous auxiliary task, to a network which aims to solve a seman-

tic task such as classification or detection, the filters devoted to solving this frivolous

task would not be relevant for solving the main task of concern. These filters could

be pruned and pruning these would not reduce the performance on the original task.

We demonstrate that this strategy is not only successful, it in fact allows for improved

performance for a variety of tasks such as object classification, detection and action

recognition. An interesting observation is that the task needs to be fatuous so that

any semantically meaningful filters would not be relevant for solving this task. We

thoroughly evaluate our proposed approach on different architectures (LeNet, VGG-

16, ResNet, Faster RCNN, SSD-512, C3D, and MobileNet V2) and datasets (MNIST,

CIFAR, ImageNet, GTSDB, COCO, and UCF101) and demonstrate its generalizabil-

ity through extensive experiments. Moreover, our compressed models can be used at

run-time without requiring any special libraries or hardware. Our model compression

method reduces the number of FLOPS by an impressive factor of 6.03X and GPU

∗Corresponding author.
Email addresses: psingh@iitk.ac.in (Pravendra Singh), vkadi@andrew.cmu.edu (Vinay

Sameer Raja Kadi), vinaypn@iitk.ac.in (Vinay P. Namboodiri)
1Equal contribution.

Preprint submitted to Image and Vision Computing February 6, 2020

memory footprint by more than 17X for VGG-16, significantly outperforming other

state-of-the-art filter pruning methods. We demonstrate the usability of our approach

for 3D convolutions and various vision tasks such as object classification, object detec-

tion, and action recognition.

Keywords: Filter pruning, Model compression, Convolutional neural network, Image

recognition, Deep learning

1. Introduction

After marking themselves as the state of the art solutions in a variety of fields such

as vision, NLP, speech, etc., CNNs (convolutional neural networks) are finding their

way to be deployed in the real world lately. However, this deployment is not straight-

forward due to high computation (FLOPS) and memory requirements of CNNs. While5

it may seem trivial to address this problem by using smaller sized networks, redun-

dancy of parameters seems necessary in aiding highly non-convex optimization during

training to find effective solutions. A similar line of works aimed at devising efficient

architectures [1, 2] to be trained from scratch on a given task. While they have shown

promising results, their generalizability across the tasks is not fully studied. Hence sig-10

nificant efforts are seen in recent days to address model compression. Prominent works

in this area [3] have focused on model compression to make CNNs more efficient in

terms of computations (FLOPS) and memory requirements (Run Time Memory usage

and storage space of the model). These methods first train a large model for a given

task and then prune the model until the desired compression is achieved.15

Model compression techniques can be broadly divided into the following cate-

gories. The first category [4, 5] aims at introducing sparsity in the parameters of the

model. While these approaches achieved a good compression rate in model parame-

ters, computations (FLOPS) and Total Runtime Memory (TRM) aren’t improved. Such

methods also require sparse libraries support to achieve the desired compression [4].20

The second category of methods are [4, 6, 7] based on model compression using

quantization. Often specialized hardware is required to achieve the required accelera-

tion. These model compression techniques are specially designed for IoT devices.

2

The third category of methods [8, 9, 10, 3, 11, 12, 13, 14] perform filter level prun-

ing in the model. These approaches prune an entire filter based on some criteria/metrics25

and hence provide a structured pruning in the model. As for pruning the whole con-

volutional filter from the model reduces the depth of the feature maps for subsequent

layers, these approaches give high compression rate regarding computations (FLOPS)

and Total Runtime Memory (TRM). Since the final pruned model using these meth-

ods are again CNNs, albeit smaller in size, sparsity and quantization based methods30

complement these methods to achieve better compression rates.

These methods are mainly differentiated by the ranking mechanism used to identify

important filters. The brute force approach has been addressed in [8] to prune the filters

from the model. They remove each filter sequentially and rank the importance of the

filter based on their corresponding drop in the accuracy. This approach seems to be35

impractical for large size networks on large-scale datasets.

The other works in this category can be further classified into two classes, Hand-

crafted metrics for calculating filter ranking and metrics calculated based on data and

architecture. [3, 15] fall under the former category. In the work of [3] they use l1

norm of a filter to identify the filter importance. In the latter category, [11, 16, 17] use40

data-driven metrics to identify the filter importance. [16] use the Taylor expansion to

calculate the filter importance, which is motivated by optimal brain damage [18, 19].

While the previously proposed techniques adopt heuristics such as sparsity or quan-

tization, in this paper we aim to identify the core set of filters that are pertinent for

solving a task. Towards obtaining this set of filters, it is important to qualify the im-45

portance based on some meaningful criterion. Our approach is based on the following

hypothesis: If a set of filters are crucial for performance on a particular task, then if

some other fatuous task is added as an auxiliary task, these filters would be minimally

perturbed by the network in an effort to solve the two tasks provided to the network,

the main task and the fatuous task. This simple observation guides our work, and we50

show that by allowing the network itself to figure out which weights it can use for the

other task, we are provided with the core set of filters necessary for the main task.

This approach is orthogonal to all other filter pruning methods or other compression

techniques prevalent in the literature. We evaluate our approach on a variety of tasks

3

and show an impressive reduction in FLOPS across different architectures. We further55

demonstrate the generalizability of our approach by achieving competitive accuracy

using a small model pruned for a different task. Our method does not place any re-

strictions and is augmented with other pruning methods such as quantized weights,

Low-rank approximation, connection pruning, etc., to further decrease the FLOPS and

memory consumption. We also demonstrate how our method complements the works60

of efficient design of CNNs, by pruning those architectures to achieve a further efficient

model.

In our work [20], we initiated the work by proposing filter pruning using stability

based criteria [20] in the classification problem, whereas in this work, we concretize the

notion of the requirement of a fatuous auxiliary loss function to understand our method.65

We further evaluate our proposed filter pruning approach on various vision tasks such

as object detection and action recognition. We also demonstrate the usability of our

approach to 3D convolutions. As the main contribution is based on adding auxiliary

loss function, the choice of auxiliary loss functions is considered in detail in this paper.

Further, in ablation study, we analyze the effect of fine-tuning on the compressed model70

rather than training from scratch and effect of jointly doing pruning and training from

scratch on the performance. We experimentally show that the proposed approach is

able to compress already compact model such as MobileNet with no loss in accuracy.

Our main contributions are as follows:

• We propose a novel approach based on fatuous task augmentation to obtain a75

ranking of importance of filters.

• We demonstrate the usability of our approach for various vision tasks such as

object classification, object detection, and action recognition.

• We empirically show that the proposed approach works well on both 2D convo-

lutions and 3D convolutions.80

• We experimentally show that the proposed approach is able to compress already

compact model such as MobileNet with no loss in accuracy.

4

2. Related Work

The works on model compression can be divided into the following categories.

2.1. Connection Pruning85

In the connection pruning, they introduce sparsity in the model by removing unim-

portant connections (parameters). There are many heuristics proposed to identify the

unimportant parameters. Earliest works include Optimal Brain Damage [19] and Opti-

mal Brain Surgeon [18] where they used Taylor expansion to identify the significance

of the parameters. Later [4] proposed an iterative method where absolute values of90

weights below a certain threshold are pruned, and the model is fine-tuned to recover

the drop in accuracy. This type of pruning is called unstructured pruning as the pruned

connections have no specific pattern. This approach is useful when most of the param-

eters lie in the FC (fully connected) layers. Often, specialized libraries and hardware

are required to leverage the induced sparsity to save computation and memory require-95

ments. However, this does not typically result in any significant reduction in CNN

computations (FLOPS based SpeedUp) as most of the calculations are performed in

CONV (convolutional) layers. For example, in VGG-16, 90% of the total parameters

belong to FC layers, but they contribute to 1% of the overall computations, which im-

plies that CONV layers (having 10% of the total model parameters) are responsible for100

99% of the overall calculations.

Other works include [5] where they propose hashing technique to randomly group

the connection weights into a single bucket and then fine-tune the model to recover

from the accuracy loss.

SBP [21] propose a Bayesian model to provide structured sparsity by injecting105

noise to outputs of the neurons. The method provides structured sparsity by removing

elements with a low SNR from the computation graph. NISP [22] calculate NISP

(Neuron Importance Score Propagation) importance scores of final responses to every

neuron for neurons pruning and then fine-tuned to recover the performance loss.

Group-wise sparsity is also used in model compression. Lebedev and Lempitsky110

[23] used group-sparsity regularization to the loss function. [24] explored different

5

types of sparsity from irregular connection pruning to regular filter pruning. [25] pro-

posed the Structured Sparsity Learning (SSL) approach to regularize network structure.

The main limitation of methods mentioned above is the loss of the original network

structure. Therefore, some dedicated libraries are required to get speed-up in practice.115

2.2. Filter Pruning

In our work, we focus on filter level pruning. Most of the works in this category

evaluate the importance of an entire filter and prune them based on some criteria fol-

lowed by re-training to recover the accuracy drop. In the work [8], they calculate the

filter importance by measuring the change in accuracy after pruning the filter from the120

model. [13, 14] perform random filter pruning from deep CNNs. [3] used l1 norm to

calculate the filter importance. [26] calculate the filter importance on a subset of the

training data using activation of the output feature map. These approaches are largely

based on hand-crafted heuristics. Parallel to these works, ranking filters based on data-

driven approaches are proposed. [27] performed the channel level pruning by attaching125

a learnable scaling factor to each channel and enforcing l1 norm on those parameters

during the training. Recently, group sparsity is also being explored for filter level prun-

ing. CP [28] propose a channel pruning approach to accelerate Deep CNNs using an

iterative two-step algorithm. The method uses LASSO regression based channel selec-

tion and least square reconstruction to prune each layer in Deep CNNs. [29, 23, 25, 30]130

explored the filter pruning using group lasso.

RNP (Runtime Neural Pruning) [31] propose a framework to prune deep CNN

dynamically at the runtime. The pruning is performed in a bottom-up manner and

uses reinforcement learning for training. An agent calculates the importance of each

convolutional kernel. ThiNet [32] do filter pruning as an optimization problem based135

on statistics computed from its next layer. SFP (Soft Filter Pruning) [10] enables the

pruned filters to be updated when training the deep model after filter pruning.

GAL [33] proposes a structured pruning approach that jointly prunes filters along

with other structures using sparsity regularization. They solve the optimization prob-

lem by using generative adversarial learning (GAL). GDP [34] proposes a global and140

dynamic pruning method to prune unnecessary filters. SSS [35] proposes a framework

6

to learn and prune CNN in an end-to-end manner using a scaling factor parameter,

which is used to scale the outputs of specific structures. They safely prune the unnec-

essary parts of a deep model by forcing some of the scaling factors to zero.

Closest to our work is the work of [16] where they proposed filter rankings using145

a mean of absolute gradient values and demonstrated that it gives competitive results

to the brute-force method of checking loss deviation for each filter. In contrast to

their approach, we obtain a fatuous loss based ranking of importance of filters that is

semantically more meaningful and shows improved performance over such works.

2.3. Quantization150

Quantization based approaches aim to convert and store the network weights into

a comparatively low bit configuration. The reduction in memory and computational

requirements seems improbable after a certain level. However, these approaches can

be used as a complement to filter pruning based approaches to extend the compres-

sion rates. Notably, [4] compressed the model by combining pruning, quantization and155

Huffman coding. In the early works binarization [7] has been used for the model com-

pression. Extending this, [30] used ternary quantization learned from the given data.

Recently, [36] conducted network compression based on the float value quantization

for model storage.

At times, these quantization methods require specialized library/hardware support160

to reach desired compression rates. Some of the other notable works using different

approaches from quantization include [9, 12] and [37] where they used the low-rank

approximation to decompose tensors and reduce the computations.

Our method performs filter pruning using data-driven filter ranking. To the best

of our knowledge, our work is a primary effort to relate filter importance to its task165

importance and does not require any special hardware/software such as cuSPARSE

(NVIDIA CUDA Sparse Matrix library).

7

3. Proposed Approach

3.1. Terminology

Given a pre-trained CNN which contains K convolution layers, let Li denote the170

ith layer where i ∈ [1, 2, . . .K]. The set of filters in layer Li is denoted as FLi
.

WhereFLi = {f i1, f i2, . . . , f ini
} and ni denotes the number of filters in layer Li (which

is also the number of output channels for that layer). The dimension of each filter

fj is (hi, wi, cin), where hi, wi and cin(= ni−1) are height, width and number of

input channels respectively. |f ij | denotes the sum of absolute values of filter f ij (jth175

convolutional filter on ith layer) and f ij,l denotes the individual value of the filter (l ∈

{1, . . . , hiwicin}). Each filter on ith layer is of dimension hiwicin.

3.2. Approach

To calculate the filter importance, we propose a method based on the sensitivity of

the filter with respect to a fatuous auxiliary loss function. The high sensitivity of a filter

implies that it is less important for the current task and vice versa. Let C(Θ) denote

the loss function for the original task, where Θ are the model parameters. To modify

the loss function, we introduce an auxiliary loss. This auxiliary loss function can be

chosen based on the prior knowledge about the task or from a generic set of functions.

We refer the reader to section 5 for more details. One of the fatuous auxiliary loss

functions is designed such that it forces the negative values in filters to−1 and positive

values in filters to +1. The reason for such design will be made clear during the filter

ranking discussion in next section. The auxiliary loss for a layer i is given as:

SLi =

ni∑
j=1

hi∗wi∗cin∑
l=1

[|(−1− f ij,l)|.I(f ij,l < 0)

+|(1− f ij,l)|.I(f ij,l ≥ 0)] (1)

where I() denotes the function which equals 1 if the condition is satisfied else 0. Now

the complete loss can be given as:

L(Θ) = C(Θ) + λ

K∑
i=1

SLi (2)

8

where λ is a hyperparameter controlling the effect of auxiliary loss term. Having de-

fined the auxiliary loss, we now describe the procedure for pruning.180

3.2.1. Training the network

As we know that the deep networks have enough complexity to represent any func-

tion, the auxiliary loss may interfere with the optimization of an actual loss function.

To avoid this possibility, we first train the network using actual loss functionC(Θ). Let

the filters at the end of training be denoted by FLi = {f i1, f i2, . . . , f ini
}. We then train185

the network using the total loss function L(Θ). To prevent the weights from drifting

away from optimal weights for the actual task, we train the model using L(Θ) only for

the limited number of epochs (typically 1-3 epochs will be enough as the auxiliary loss

is data independent). Let theMLi = {mi
1,m

i
2, . . . ,m

i
ni
} be the set of filters at layer

Li after optimizing equation-2.190

3.2.2. Ranking the filter Importance

The sensitivity of a filter to auxiliary loss can be written as the magnitude of dif-

ference of filter weights before and after training using auxiliary loss. Mathematically,

we define sensitivity of a filter as S(f ij) = |mi
j-f

i
j |. As the weight values differ in scale

for different filters in a layer, we normalize the difference to make the ranking criteria195

invariant to scaling. Thus the filter ranking (FILi
) of Li is defined as:

FILi =

{
|mi

j − f ij |
|f ij |

: ∀j ∈ {1, 2, ..., ni}

}
(3)

Now, as per the design of auxiliary loss function, if a filter tries to contribute to the

minimization of this loss, then its weight values will increase in magnitude compared

to their previous value. i.e, if a filter is sensitive to the introduction of auxiliary loss

function, then the ratio term in (3) will be high. As per our hypothesis, the filter that

has a strong contribution to the original task has the least sensitivity, hence low ratio.

Let P = [p1, p2, . . . , pK] be the number of filters to be pruned form each layer, where

K is the number of convolutional layers. Now, based on the filter importance given

by equation-3, we select p1, p2, . . . , pK least important filters from the corresponding

9

Figure 1: Fatuous auxiliary loss function based filter pruning approach where filters are pruned iteratively

based on sensitivity to the auxiliary loss.

layers in the model and prune them. The pruned set is given as:

P tset = {σp1(FL1
), σp2(FL2

), . . . , σpk(FLK
)} (4)

Here σ is the select operator that selects pi least important filters from the layer Li.

P tset is the set of filters that are discarded from the model.

3.2.3. Pruning and fine-tuning

F t is the set of remaining filters in the model with parameters Θt after tth pruning

iteration.

F t = F t−1 \ P tset (5)

Where \ is the set-difference symbol. In each pruning iteration, after discarding the200

filter, we observe a small drop in accuracy. To avoid the accumulation of such accuracy

drops, we fine-tune the pruned network for 2-5 epochs. During fine-tuning, we use the

actual loss (without auxiliary loss). This process of alternative pruning and finetuning

is continued until the desired compression rate is achieved as shown in Figure-1.

3.3. Relationship with the previous approaches205

Though our approach is based on fatuous auxiliary loss functions for obtaining im-

portance is quite different from the approaches proposed so far, we can always interpret

the proposed approach in terms of earlier work such as that by Molchanov et al. [16].

10

In the work by Molchanov et.al. [16], they proposed to prune the channels using

|∆C(hi)|(= |C(D,hi = 0)− C(D,hi)|)

criteria. They used the Taylor series expansion to calculate the metric. They demon-

strate the difference between their work and the Optimal Brain Damage (OBD) [19] by

arguing that the variance of the gradients serves as an important metric for pruning.

Their argument, in brief, states that after the completion of training, as per OBD,

∂Ex∼p(x)[C]

∂Wi
= Ex∼p(x)

[
∂C(x)

∂Wi

]
= 0 (6)

Although, the expected value of the gradient of loss w.r.t a parameter, say Wi, may

tend to zero, the individual samples need not have their cost function (cost function

for that particular sample) indifferent to Wi. This is effectively captured in variance

of ∂C(x)
∂Wi

. So, if the variance is higher then it is possible that the weight Wi is indeed

useful even thoughEx∼p(x)
[
∂C(x)
∂Wi

]
= 0. On the other hand, if the variance is low, and

with the expectation also tending to 0, it is evident that the weight is useless and thus

can be removed. Now, instead of calculating the variance explicitly, it can efficiently

calculated by

Ex∼p(x)

[∣∣∣∣∂C(x)

∂Wi

∣∣∣∣] (7)

As stated in [16] this term is proportional to the variance of gradients over data distribu-

tion and hence can be used to rank filters. This implies that an unconscious assumption210

is made that Ex∼p(x)
[
∂C(x)
∂Wi

]
= 0 when they start pruning.

Let us call this assumption A1 for the rest of the paper. We first describe one

scenario where the above method has issues with robustness. In their analysis, they

considered that assumption A1 holds. However, in practical scenarios, this may not

hold as practitioners follow different strategies such as early stopping, etc., where they215

stop training based on validation error. This implies that there is no guarantee that the

assumption A1 holds for the training dataset. So, if we prune the weights according to

equation-7 in such scenarios, it may remove important weights since Ex∼p(x)
[
∂C(x)
∂Wi

]
may not be zero but Ex∼p(x)

[∣∣∣∂C(x)
∂Wi

∣∣∣] may be minimum.

11

Our proposed approach can be observed to remove such disadvantages. In formu-220

lating our approach, we provide a general framework which includes the reasoning of

[16] as a special case. We argue that as the networks are often over parameterized and

it is obvious from the previous works that only a few of them contribute to an actual

loss, the rest of the weights gets modified when an auxiliary loss function is added to

existing loss function during the training. i.e., important weights for the actual task225

remain the same whereas the unimportant weights try to fit the auxiliary loss function

if it is not related to the present task when trained using both loss functions. We now

formulate it mathematically.

Notation:

Let the random variable X denote data distribution, and parameter W denote net-230

work weights, andR be a scalar random variable. Let C denote the actual loss function,

D denotes the auxiliary loss function, and L be the total loss function.

Formulation:

The total loss function L is given by

L = C +R ∗D (8)

Now, the gradient of cost function w.r.t. a parameter, say wi, depends on two random

variables, X , and R. According to our hypothesis, the important weights for the actual

task do not change due to the introduction of an auxiliary fatuous loss function, and

this implies that for a given data sample Xi, the following holds:

ER

[∣∣∣∣∂L(Xi)

∂wi

∣∣∣∣] ≈ 0 (9)

To understand it better, compare it with the argument given by Molchanov et al., where

the variance (over the data distribution) of the gradients w.r.t. unimportant weights235

will be low because they do not contribute to the loss function for the majority of the

samples. Whereas the variance of gradients w.r.t. important weights will be high due

to their contribution in loss function for all the samples. Here, we follow the same

logic but with a minute change of taking the expectation over the joint probability

12

distribution of (X ,R). Since the importance weights for the actual task are indifferent240

to auxiliary loss function (by our hypothesis), they contribute less to the update term

during training with an auxiliary loss. So, when the R is varied, the resulting variance

(of ∂L
∂wi

) should be low. On the other hand, the unimportant weights for the actual task

are the ones who try to fit the auxiliary loss function (by our hypothesis). So, when

R is varied, the variance of ∂L
∂wi

will be high because when R = 0, ∂L
∂wi

=0 and when245

R 6= 0, ∂L
∂wi
6= 0 (by our hypothesis of unimportant weights). Hence resulting in a

high mean and variance w.r.t. R. As stated earlier, we do not train the network until

the auxiliary loss is completely minimized as this may affect the actual task. But, as

the gradients are proportional to change in weight values, we use the change in weight

values criteria for pruning instead of mean of absolute gradient values. In practice, we250

found this approach to be effective.

4. Results

To evaluate our proposed work, we perform experiments on seven standard models,

LeNet-5 [38], VGG-16 [39], ResNet-50 [40] and MobileNet [41] for classification task,

Faster-RCNN [42] and SSD [43] for object detection task and C3D [44] for action255

recognition task (clip level). All the experiments are performed on GTX-1080 Ti GPU

and i7-4770 CPU@3.40GHz.

4.1. LeNet-5 on MNIST

MNIST dataset contains 60,000 training images and 10,000 testing images. Two

convolutional (20,50) and two fully connected layers (800,500) are present in the LeNet-260

5 model. The error rate that we obtained on training the model is 0.83%.

We optimized equation-2 for one epoch with λ = 0.00001 to calculate filter im-

portance in each pruning iteration. Learning rate is varied in the range [0.001, 0.0001]

for this experiment. As compared to the previous approaches (Table-1), we have a sig-

nificantly higher FLOPS compression with the less drop in the accuracy. This proves265

the effectiveness of our proposed metric for filter importance ranking over the previous

methods.

13

Table 1: Table showing results for the LeNet-5 model on the MNIST dataset. SSL and SBP are proposed by

[25] and [21] respectively. Bold values indicate the best results obtained by our method in the comparison.

Method Filter Error (%) FLOPS Pruned (%)

Baseline 20,50 0.83 4.40× 106 –

SSL [25] 5,19 0.80 5.97× 105 86.42

SBP [21] – 0.86 – 90.47

SSL [25] 3,12 1.00 2.89× 105 93.42

Prun-1 (ours) 4,14 0.79 3.97× 105 90.98

Prun-2 (ours) 3,8 0.92 2.14× 105 95.14

4.2. VGG-16 on CIFAR-10

We experiment with the VGG-16 model on the CIFAR-10 dataset. We use the same

VGG-16 model and settings as mentioned in [3], and after each layer, batch normal-270

ization is deployed. The model is trained from scratch. Layerwise FLOPS distribution

is shown in Figure-2. It is clear from Figure-2 that CONV1 2, CONV2 2, CONV3 2,

CONV3 3, CONV4 2, CONV4 3 layers have much higher FLOPS as compared to the

remaining layers. Hence, to compress FLOPS, we need to remove more filters from

Figure 2: Figure shows the original and pruned model layer-wise FLOPS for the VGG-16 model on the

CIFAR-10 dataset.

14

Table 2: Table shows the layer-wise pruning results and pruned model details for VGG-16 model on CIFAR-

10 dataset.

Baseline VGG-16 Prun 1 VGG-16 Prun 2

Input Size 32x32x3 32x32x3 32x32x3

Layers

CONV1 1 64 31 20

CONV1 2 64 53 50

CONV2 1 128 84 71

CONV2 2 128 84 71

CONV3 1 256 146 116

CONV3 2 256 146 116

CONV3 3 256 146 116

CONV4 1 512 117 87

CONV4 2 512 62 42

CONV4 3 512 62 42

CONV5 1 512 62 42

CONV5 2 512 62 42

CONV5 3 512 62 42

FC6 512 512 512

FC7 10 10 10

Total parameters 15.0M 1.0M (15X) 0.62M (24.2X)

Model Size 60.0 MB 4.1 MB (14.6X) 2.5 MB (24X)

Accuracy 93.49 93.43 93.02

FLOPS 313.7M 78.0M (4.02X) 52.0M (6.03X)

such layers. We optimized equation-2 for one/two epochs with λ = 0.00001 to calcu-275

late filter importance ranking in each pruning iteration. We vary the learning rate in the

range [0.001, 0.0001] for this experiment. We get our first pruned model (Prun-1) after

82 epochs.

Table-2 shows the detailed results for VGG-16 pruning. Table-3 shows the com-

parison of our pruned model with previous approaches. Our method prunes 95.9% of280

parameters on CIFAR10, significantly larger than 64.0% pruned by [3]. Furthermore,

our method reduces the FLOPS by 83.43% compared to 34.2% pruned by [3]. Layer-

15

Table 3: Table shows the FLOPS pruning result for VGG-16 on the CIFAR-10 dataset. Weight-Sum and SBP

are proposed by [3] and [21] respectively. SSS* is the results based on [33] implementation. Bold values

indicate the best results obtained by our method in the comparison.

Method Error (%) Parameters Pruned (%) FLOPS Pruned (%)

Baseline 6.51 – –

Weight-Sum [3] 6.60 64.0 34.20

SSS* [35, 33] 6.37 66.7 36.30

GAL-0.05 [33] 6.23 77.6 39.60

SSS* [35, 33] 6.98 73.8 41.60

GAL-0.1 [33] 6.58 82.2 45.20

SBP [21] 7.50 – 56.52

SBP [21] 9.00 – 68.35

Prun-1 (ours) 6.57 93.3 75.14

Prun-2 (ours) 6.98 95.9 83.43

wise FLOPS distribution for the original and pruned model are shown in the Figure-2.

4.3. Ablation study

In this section, we present various ablation studies to show the importance of the285

proposed criteria to evaluate filter importance. Next, we are training a compressed

model with randomly initialized weights to show the effectiveness of the proposed

approach. Since our approach starts with the pretrained model, we also show that

pruning and training can be done jointly, but it results in some drop in accuracy.

4.3.1. Ablation study on filter importance ranking criteria290

We next show an ablation study on VGG-16 to demonstrate the effectiveness of the

proposed filter importance ranking. Here, we pruned filters from 6 layers; Conv4 1

to Conv5 3 simultaneously. Since each layer from Conv4 1 to Conv5 3 contains 512

filters, therefore, a total of 512*6 filters are available for pruning. If we remove X filters

in each layer from Conv4 1 to Conv5 3, then a total of 6*X filters gets pruned from295

the model. Figure-3 horizontal axis shows the 6*X prune filters, and the vertical axis

16

Figure 3: Effect of filter pruning with respect to accuracy for VGG-16. Filters are pruned from 6 Layers

CONV4 1 to CONV5 3 simultaneously.

shows the accuracy without fine-tuning. We optimize equation-2 for three epochs with

λ = 0.00001 to calculate filter importance ranking. Figure-3 shows that if we prune

filters from the low ratio (important filters), there is a sharp accuracy drop. A similar

pattern is observed if we prune a filter randomly. In contrast, if we prune the filters300

from the high ratio (unimportant filters), then it results in a small accuracy drop even

when we prune 1200 filters.

4.3.2. Training compressed model with randomly initialized weights

To show the importance of pruning, we analyze the performance difference between

models, which are obtained by training the compact/pruned model (with weights reset305

to random values) from scratch and finetuning the compact/pruned model. On CIFAR

10 dataset, using the two models VGG-16 Prun 1 and VGG-16 Prun 2 (same archi-

tecture as given in Table-2), we observed that the errors obtained, 6.89% and 7.58%

respectively, by training from scratch are high compared to finetuning the pruned model

as shown in Table-4. A similar trend is also observed in [3]. We surmise that the in-310

volvement of a highly non-convex optimization problem, for which a certain degree of

parameter redundancy is required during training, is the reason for this behavior. But

after the training, as the role of these redundant parameters is accomplished, they can

be removed without affecting the performance.

17

Table 4: Table shows the Parameters Pruned (PP), and FLOPS Pruned (FP) results for VGG-16 on the

CIFAR-10 dataset in different setups.

Model Error (%) Method PP (%) FP (%)

Baseline 6.51 – – –

Prun-1 6.89 training from scratch 93.3 75.14

Prun-2 7.58 training from scratch 95.9 83.43

Prun-1 (ours) 6.57 pretrained model used 93.3 75.14

Prun-2 (ours) 6.98 pretrained model used 95.9 83.43

Table 5: Table shows the results for VGG-16 on the CIFAR-10 dataset in jointly doing pruning and training

from scratch (PP: Parameters Pruned, FP: FLOPS Pruned).

Model Error (%) Method PP (%) FP (%)

Baseline 6.51 – – –

Prun-1 6.75 jointly pruning-training 93.3 75.14

Prun-2 7.27 jointly pruning-training 95.9 83.43

Prun-1 (ours) 6.57 pretrained model used 93.3 75.14

Prun-2 (ours) 6.98 pretrained model used 95.9 83.43

4.3.3. Jointly doing pruning and training from scratch315

We can also do jointly pruning and training from scratch but, the errors are only

6.75%, 7.27% for Prun-1, Prun-2 models respectively, which are much worse than our

pruned models as shown in Table-5. The reason for the same is straight forward. Our

filter pruning criteria are solely based on sensitivity towards a fatuous auxiliary loss

and since the model is not optimal during training; hence our criteria is not well suited320

for jointly pruning and training from scratch.

4.4. ResNet-56 on CIFAR-10

We experiment on ResNet-56 model [40] over CIFAR-10 dataset. The ResNet-56

architecture contains three stages of the convolutional layer of size 16-32-64 where

each convolution layer in each stage contains the same 2.36M FLOPS. We trained the325

18

Table 6: Pruning results for ResNet-56 architecture on CIFAR-10 dataset. Bold values indicate the best

results obtained by our method in the comparison.

Method Error (%) FLOPS FLOPS Pruned (%)

Baseline 6.91 1.26× 108 –

Weight-Sum [3] 6.90 1.12× 108 10.40

Weight-Sum [3] 6.94 9.04× 107 27.60

GAL-0.6 [33] 6.62 7.83× 107 37.60

NISP [22] 6.99 – 43.61

CP [28] 8.20 – 50.00

GAL-0.8 [33] 8.42 4.99× 107 60.20

Prun-1 (Ours) 6.95 4.08× 107 67.62

model from scratch using the same parameters and settings proposed by [40, 3] and

achieve the error rate of 6.91%.

Our method significantly outperforms various state-of-the-art approaches on ResNet-

56 model over CIFAR-10 dataset. The results are shown in Table 6. Our compressed

model (Prun-1) contains three stages of the convolutional layer of size 9-18-36. We330

achieve high pruning rate 67.62% with the 6.95% error rate, while channel pruning CP

[28] has the error rate of 8.20% with only 50.00% FLOPS pruning.

4.5. VGG-16 on ImageNet

We now turn our attention to the performance of our algorithm on models that are

trained on large scale datasets. We first experiment with VGG-16 network which is335

trained on ILSVRC-2012 [45] dataset which contains 1000 classes with 1.5 million

images.

To enable a fair comparison, we follow the same setting as [32]. We perform con-

ventional data augmentation and pre-processing techniques such as random cropping

to obtain 224 x 224 images and random horizontal flipping. We use the Stochastic340

Gradient Descent (SGD) optimizer with momentum value as 0.9. Our experiments on

VGG-16 [39] using ImageNet dataset [45] shows the state-of-art results over the other

19

Table 7: Pruning results for the VGG-16 model on ImageNet dataset. Our approach has minimal ac-

curacy drop compare to state-of-art pruning approach. We use the result reported in MatConvNet:

http://www.vlfeat.org/matconvnet/pretrained/. Bold values indicate the best results obtained by our method

in the comparison.

Method Top-5 Accu. (%) Pruned FLOPS (%)

Baseline 90.10 –

GDP-0.7 [34] 89.16 51.61

GDP-0.6 [34] 88.77 58.71

Taylor criterion [16] 87.00 62.86

RNP (3X)[31] 87.57 66.67

Taylor criterion [16] 84.50 74.20

ThiNet-Conv-2 [32] 88.86 77.66

CP [28] 88.20 77.30

Prun-1 (Ours) 89.22 80.00

approaches for model compression as shown in Table-7, where Prun-1 (compressed

model) is obtained after 45 epochs.

4.6. ResNet-50 on ImageNet345

We perform experiment on the large-scale ImageNet [45] dataset for the ResNet-50

model. The results are shown in the Table-8 for the compressed model. Our pruned

model (Prun-1) achieved 44.45% FLOPS compression while the previous method,

ThiNet-70 [32], achieved 36.9% FLOPS compression with similar accuracy. Com-

pared to ThiNet-70 we have significant better FLOPS compression.350

Presence of identity mapping (skip connection) in ResNet model restrict pruning

on the few layers. Since the output (output = f(x) + x) involves addition of x and

f(x), hence x and f(x) need to be of same dimensions. This is the reason for pruning

only two convolutional layers in each block as shown in Figure-4.

We pruned ResNet-50 from block 2a to 5c iteratively. The number of remaining355

filters from each layer in block 2, 3, 4 and 5 are 40, 80, 160 and 320 respectively in

the pruned model. If a filter is pruned, then the corresponding channels in the batch-

20

Figure 4: Figure shows our ResNet pruning strategy, where we perform pruning on the first two convolutional

layers in each block to maintain the consistency over identity mapping.

normalization layer and all dependencies to that filter are also removed. We optimize

equation-2 for one epoch with λ = 0.000005 to calculate filter importance ranking in

each pruning iteration. We vary the learning rate in the range [0.001, 0.00001] for this360

experiment. Our pruned model (Prun-1) is obtained after 65 epochs. Our results on

ResNet pruning are shown in Table-8.

4.7. SpeedUp and Memory Size

The theoretical FLOPS based SpeedUp is not the same as practical GPU/CPU

SpeedUp. The practical SpeedUp depends on intermediate layers parallelization bot-

tleneck, the speed of I/O data transfer, etc. TRM (Total Run-time Memory) depends

on the number of parameters in the final compressed model, feature maps (FM) gener-

ated at run-time, batch-size (BS), the dynamic library used by Cuda, and all supporting

header-file. But from the theoretical point of view, only model parameters size and fea-

ture maps size are considered in the TRM calculations. Hence TRM can be calculated

as follows:

TRM = MPS + (FM ∗ 4 ∗BS) (10)

Here we don‘t have control over all the parameters barring model parameters size

(MPS), FM and BS. We experiment VGG-16 on the CIFAR-10 dataset to show the365

practical SpeedUp and Memory size. SpeedUp and TRM results are shown in the

Figure-6, 5 respectively.

21

Table 8: Table shows the comparison of our pruned model with [32, 10] for ResNet-50 FLOPS compression

on the Imagenet dataset. The accuracy of ResNet-50 is reported over validation set using 1-crop setting

(https://github.com/KaimingHe/deep-residual-networks). Bold values indicate the best results obtained by

our method in the comparison.

Model Top-5 (%) Parameters Pruned FLOPS (%)

Baseline 92.6 25.56M –

SSS-32 [35] 91.9 18.6M 31.1

CP [28] 90.8 – 33.3

ThiNet-70 [32] 92.1 16.94M 36.9

SFP [10] 92.0 – 41.8

GDP-0.7 [34] 91.1 – 42.0

SSS-26 [35] 90.8 15.6M 43.0

GAL-0.5 [33] 90.9 21.2M 43.0

GDP-0.6 [34] 90.7 – 51.3

ThiNet-50 [32] 90.9 12.38M 55.8

Prun-1 (Ours) 92.2 15.10M 44.45

Prun-2 (Ours) 91.7 12.38M 55.83

As shown in the above equation, TRM grows linearly with respect to Batch size.

Also, TRM linearly depends on FM; hence FM is the most critical factor for compress-

ing the run-time memory. Filter pruning methods compress the model parameters as370

well as the depth of the feature maps hence filter level pruning methods achieves good

compression for TRM. On the other hand, approaches based on inducing sparsity in the

model only reduce the MPS and the size of the FM remains the same making batch size

as the bottleneck. If we have constraints on batch size, this minimizes the parallelism

on the GPU which results in a drop in speed. Figure-5 explains that if we increase BS375

then TRM increases. Therefore we cannot afford large batches. The Figure-6 explains

that for the small batch sizes, SpeedUp is degraded. Therefore for SpeedUp, we have

to select a bigger BS, but then GPU or CPU memory bottleneck is there. Hence in the

proposed method, we are pruning at filter level to compress FM memory.

22

Figure 5: Figure shows Total Run Time (TRM) memory with respect to the batch size for VGG-16 models

on CIFAR-10 dataset.

Figure 6: Figure shows the practical speed-up for the VGG-16 model on the CIFAR-10 dataset. Where

i7-4770 CPU@3.40GHz CPU and TITAN GTX-1080 Ti GPU is used to calculate speed-up.

The result for CPU and GPU SpeedUp over the different batch-size is shown in380

the Figure-6. It is clear from the Figure-6 that with the increase in batch size, GPU

has sharp SpeedUp, since on the small batch there it is not using its full parallelization

capability. Although there are a lot of cores, only a few are used because the available

23

data is limited whereas, on the bigger batch sizes, GPU uses its full parallelization

capability. On the VGG-16 with 512 batch size, we have achieved 3.61X practical385

GPU SpeedUp while the FLOPS base theoretical SpeedUp is 6.03X. This gap is very

close to CPU, and our approach gives the 5.81X practical CPU SpeedUp compare to

6.03X theoretical FLOPS base SpeedUp.

4.8. Generalization Ability

To show the generalization ability of our compressed model, we experimented on390

the object detection task. We have done experiments on two popular object detector

SSD [43] on GTSDB data-set and Faster RCNN [42] on MS-COCO [46]. In SSD, we

achieve ∼45× compression regarding model size with a slight improvement in AP.

In second experiment, we use the standard object detector Faster-RCNN [42] over

large-scale MS-COCO [46] dataset. We use ResNet-50 as the base network for Faster395

RCNN.

4.8.1. SSD512 on German traffic detection benchmarks

It is well known that CNNs learn generalized features that make the prominent in

applications like transfer learning. One potential doubt that could arise after pruning is

that does the compact network still generalize to other tasks or has it become dataset-400

specific (the dataset which is used in pruning). To address this question, we empirically

show that our algorithm preserves the generalization ability of the original models.

We first evaluate VGG-16 Prun-2, which is compressed on CIFAR-10, as shown in

Table-2. Specifically, we first train SSD512 on German traffic detection benchmarks

(GTSDB) [47] dataset with ImageNet pre-trained base network. Then we substitute405

our pruned/compressed VGG-16 Prun 2 model as a base network and evaluate the

performance.

SSD accounts for multiple object scales by adding a connection from shallow lay-

ers to the final layer. Generally, initial layers are responsible for detecting the smaller

object as their receptive field is small, and the deeper layers are responsible for de-410

tecting bigger objects. As the object sizes are small in the GTSDB dataset, we found

that the model overfits badly after training because of deeper layer feature maps were

24

Table 9: Class wise AP for SSD512-original(O) and SSD512-pruned(P) model on GTSDB dataset. Bold

values indicate the best results obtained by our method in the comparison.

Model
AP

Size Parameters
prohibitory mandatory danger mAP

SSD512-O 96.8 86.9 87.1 90.27 98.7 MB 24.7M

SSD512-P 97.2 87.3 87.5 90.67 2.2 MB (44.9×) 0.56M (2.3%)

unable to capture the objects for detection. Therefore, in our pruned SSD512 model,

we discover the object from only the CONV4 3 layer (first detection layer in SSD512).

We observed a slight improvement in the mAP and ∼ 45× compression in model size415

as shown in Table 9.

4.8.2. Faster RCNN on COCO

We performed experiments on the large-scale COCO detection dataset which con-

tain 80 object categories [46]. Here all the 80k train images and a 35k val images are

used for training (trainval35K) [48]. We are reporting the detection accuracies over420

the 5k unused validation images (also known as minival). We trained Faster-RCNN

with the image-net pre-trained ResNet-50 as the base model to get F-RCNN original

as shown in Table-10.

For F-RCNN pruned, we used our pruned ResNet-50 model (Prun-1) as given in

Table-8 as a base network in Faster-RCNN. It is clear from Table-10 that F-RCNN425

pruned model shows similar performance in all cases. However, some minor improve-

ment in detection accuracies can be seen due to the reduction in over-fitting because of

filter pruning. We used ROI Align and the stride 1 for the last block of the convolutional

layer (layer4) in the base network (ResNet-50) in the Faster-RCNN implementation.

Table-10 show the results in detail.430

25

Table 10: Table shows the generalization results for Faster-RCNN on the MS-COCO dataset. In Faster-

RCNN, we use our pruned ResNet-50 model (ResNet-50 Prun-1) as a base model.

Model data
Avg. Precision, IoU: Avg. Precision, Area Avg. Recall, #Dets: Avg. Recall, Area:

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

F-RCNN original trainval35K 30.3 51.3 31.8 13.8 34.6 42.6 27.3 41.3 42.4 22.4 47.9 58.5

F-RCNN pruned trainval35K 30.6 51.0 32.2 14.7 34.7 42.5 27.7 42.0 43.2 23.8 48.1 58.9

4.9. C3D on UCF101

While most of the works on pruning have concentrated on 2D CNN architectures,

pruning performance on 3D CNNs are not analyzed. We show the effectiveness of our

algorithm by pruning C3D architecture using UCF 101 dataset. C3D [44] is a popular

architecture using 3D convolutions with temporal dimension as the 3rd dimension. It435

takes 16 frames (let us call it as clip) of a video and outputs the activity going on in that

clip. These clip predictions are further processed through either feedforward networks,

simple consensus or pipeline methods like SVM for video action classification. C3D

can come with different base architectures such as VGG, ResNet, etc., where it replaces

2D filters with 3D filters. We used VGG as a base network, and due to computation440

limitations, we constrained ourselves to clip level action classification task in which 16

frames constitutes a single clip. The network architecture details are shown in Table

11.

UCF 101 dataset contains 13320 total videos, and we used split 1 in our experi-

ments. We used a publicly available pre-trained model with 80.2% test accuracy. For445

finetuning and rank computation, we used sgd optimizer with momentum. During

pruning, we remove the entire 3D kernel whose gradients vary by a large amount. Con-

sidering the additional complexity in this task due to the temporal dimension in filters,

our model performed very well resulting in 32.56% reduction in flops. The accuracy

of the pruned model after marginal finetuning is 80% as shown in Table 11.450

4.10. MobileNet on CIFAR-100

The experiments till now have shown the performance of our algorithm on consider-

ably large models. We now show the adaptability of our algorithm even on architectures

designed specifically to be compact. We picked MobileNet V2 for our experiments on

26

Table 11: Table shows the layer-wise pruning results and pruned model details for C3D on UCF101 (split1).

Baseline C3D Prun

Input Size 112x112x3x16 112x112x3x16

Layers

CONV1 1 64 31

CONV1 2 64 64

CONV2 1 128 128

CONV3 1 256 176

CONV3 2 256 176

CONV4 1 512 352

CONV4 2 512 352

CONV5 1 512 352

CONV5 2 512 512

FC6 4096 4096

FC7 4096 4096

FC8 4096 101

Total parameters 78.4M 65.6M

Model Size 313.6 MB 262.6 MB

Accuracy 80.2% 80%

FLOPS 3857M 2601M

CIFAR100 dataset. To obtain the initial trained model, we used color jittering, horizon-455

tal flip, and rotation as preprocessing steps. We used sgd with momentum and learning

rate scheduler during optimization. Our trained model was able to achieve 66.86% test

accuracy as shown in Table 12.

Due to the structure of the Inverse Residual module in MobileNet V2, we can prune

filters from the middle layer. Since the middle layer used group wise convolutions, re-460

moving a specific filter in the middle layer will lead to the removal of the corresponding

filter in the previous layer. Upon pruning, we achieved an impressive reduction in flops

by 36.8% even on such a compact model. We finetuned the pruned model for 1 epoch

after every pruning iteration. Refer to Table 12 for more details on compressed model.

27

Table 12: Table shows the layer-wise pruning results and pruned model details for MobileNetV2 on CI-

FAR100 dataset.

Baseline MobileNetV2 Prun

Input Size 32x32x3 32x32x3

Layers

CONV1 32 32

InvResidual-1 (32,32,16) (32,32,16)

InvResidual-2 (96,96,24) (82,82,24)

InvResidual-3 (144,144,24) (117,117,24)

InvResidual-4 (144,144,32) (127,127,32)

InvResidual-5 (192,192,32) (127,127,32)

InvResidual-6 (192,192,32) (119,119,32)

InvResidual-7 (192,192,64) (162,162,64)

InvResidual-8 (384,384,64) (168,168,64)

InvResidual-9 (384,384,64) (178,178,64)

InvResidual-10 (384,384,64) (175,175,64)

InvResidual-11 (384,384,96) (192,192,96)

InvResidual-12 (576,576,96) (238,238,96)

InvResidual-13 (576,576,96) (245,245,96)

InvResidual-14 (576,576,160) (318,318,160)

InvResidual-15 (960,960,160) (448,448,160)

InvResidual-17 (960,960,160) (420,420,160)

InvResidual-18 (960,960,320) (462,462,320)

CONV2 1280 1280

FC/1x1CONV 100 100

Total parameters 2.41M 1.47M

Model Size 9.9 MB 6 MB

Accuracy 66.86% 67.03%

FLOPS 22.9M 14.4M

28

5. Choice of auxiliary loss functions465

In this section, we revisit the equation (8) and analyze the choice of auxiliary loss

functions. We address in detail the derivation of ranking criteria and show empirically

how the choice of different loss functions affects the pruning.

5.1. Auxiliary loss function

We broadly classify the choice of auxiliary loss functions into two classes namely470

data dependent loss functions which depend on the distribution of input data and data

independent loss functions which are functions of only weight values. Before explain-

ing the pros and cons of these two classes, we formulate the terms required to compute

the ranking.

As we are interested in calculating the variance of the gradients, the variance of

gradients of the total loss function (L) w.r.t a specific weight (wi) in equation (8) is

given by:
∂L

∂wi
=

∂C

∂wi
+R

∂D

∂wi
(11)

V ar(X,R)

(
∂L

∂wi

)
= V ar(X,R)

(
∂C

∂wi

)
+ V ar(X,R)

(
R
∂D

∂wi

)
+2 ∗ Cov(X,R)

(
∂C

∂wi
, R

∂D

∂wi

)
(12)

From the above equation, the first term becomes independent of R upon marginal-475

ization. For a given distribution of X and R, if the covariance is high in the last term,

then the overall variance is dominated by the last term and verifying our hypothesis that

if the addition of auxiliary loss function increases the overall variance or not become

difficult (as the covariance term dominates those terms). So, an auxiliary loss functions

with zero covariance in the last term will be ideal. Now, if we take D to be task depen-480

dent loss function, then it is hard to ensure the zero covariance property as we don’t

know the exact distribution of input data. On the other hand, any data independent loss

function can easily satisfy that property.

Before moving on to show how to compute this variance efficiently, we address

one more important factor. Since, our algorithm involves training the model again

29

(with auxiliary loss) using mini-batches, the order in which the mini batches are passed

can result in different weight updates and hence a different ranking of filters at the end

of training with auxiliary loss which in turn affects the pruning. To address this, we

make a slight change in modeling the variance above to incorporate the ordering of

mini-batches. Let us say that the dataset contains n samples; then we define a vector of

random variables (X1, X2, ..., Xn) denoted by Y. Each ordering of mini-batches thus

becomes a sample of Y. This type of modeling accounts for variance due to data dis-

tribution and ordering of mini-batches. When the effective gradient of weight (weight

after passing all the mini-batches - weight before) follows a normal distribution, we

can rewrite equation (12) as

V ar(Y,R)

(
∂L

∂wi

)
= V ar(Y,R)

(
∂C

∂wi

)
+ V ar(Y,R)

(
R
∂D

∂wi

)
+2 ∗ Cov(Y,R)

(
∂C

∂wi
, R

∂D

∂wi

)
(13)

The above decomposition of variance is used for analysis purpose, but in practice,

there is an effective method for computing variance using folded normal distribution

property as stated in [16]. Specifically, the mean of the folded normal distribution is

given by:

µfold = σ

√
2

π
e(−µ

2/2σ2) + µ
(

1− 2Φ
(
−µ
σ

))
(14)

where µ and σ are the mean and variance of original distribution respectively. Now,

µfold tends to σ
√

2
π if either of the conditions are met:485

1. µ tends to 0

2. µ non-zero but µσ tends to 0 due to high variance

In our case, we are interested in the distribution of gradients. While, theoretically,

it is safe to assume that the mean of gradients tends to zero by the end of the training,

in practice, this need not be the scenario due to some regularization methods like early490

stopping. In such cases, the condition (2) helps in approximating the variance and is in

line with our hypothesis/loss function formulation. Hence, we use the expectation of

absolute values of gradients to approximate the variance. As the gradients are propor-

30

tional to change in weights and from the modeling used in equation (13), we formulate

the ranking criteria for any general (data independent) loss function as:495

FILi
=

{
|mi

j − f ij |+
∑
perm

∣∣uij − vij∣∣
|f ij |

: ∀j ∈ {1, . . . , ni}

}

where vij is filter before training with certain permutation of the dataset and uij is

filter after training with certain permutation of dataset. The denominator in the above

formulation is to compensate for the weight magnitude differences among the filters in

a layer. In practice, if the training converges for the pretrained model, then only the

first term in the numerator remains. With a little manipulation, it can be seen that the500

ranking criteria in equation (3) is a special case/approximation when the auxiliary loss

function is chosen as in equation (1) and when training converges.

5.2. Loss function experiments

While any task independent loss should ideally work for the role of the auxiliary

loss function, we observed that some loss functions are more robust compared to others505

in terms of the coefficient tuning of auxiliary loss term. We show our findings on

VGG16 for CIFAR 10 dataset. We plot the accuracies for each cycle, where a cycle is

a combination of 1 pruning iteration followed by 3 finetuning iterations. We used three

loss functions l1, l2, and l3, where l1 loss is defined in equation (1), l2 loss pushes all

weight values to 1, and l3 loss pushes all weight values to 0 (same as L1 norm). We510

analyze the effect of these loss functions using three different values of λ as shown in

fig 7, 8 and 9.

From the above plots, one can observe the consistency of l1 auxiliary loss function

across different beta values whereas l2 and l3 loss functions perform poorly compared

to l1 on increasing the beta value. We hypothesize that this may be due to activation515

preserving nature (in case of ReLU) of l1 auxiliary loss whereas l2 has high potential

to drag zero activations (negative input values of ReLU) to positive values. As the

role of an ideal auxiliary function is to preserve the accuracy of the original task while

perturbing the unimportant weights, such change of activations (in case of l2) would

affect the performance on the original task and hence lower accuracy as the number of520

31

Figure 7: Pruning results for λ = 1e-2.

Figure 8: Pruning results for λ = 1e-3.

pruning iterations increase. The effect of l3 is similar to l1 as it also preserves activation

sign barring a few instances (when the weights are close to 0) where optimizer factors

like momentum can alter the activations.

32

Figure 9: Pruning results for λ = 1e-4.

6. Conclusion

In this work, we have proposed a novel strategy that allows for the pruning of fil-525

ters using the idea of the ranking of filters using fatuous auxiliary loss functions. This

method we believe obtains a meaningful measure of filter importance that is based on

the robustness of the filters to the fatuous loss function. We have demonstrated a signif-

icant compression in terms of FLOPS and Run Time GPU memory footprint. We have

evaluated our method on various architectures like LeNet, VGG, Resnet, MobileNet,530

SSD512, Faster-RCNN, and C3D. Our method can be used in conjunction with other

pruning methods such as binary/quantized weights, and Low-rank approximation to

get further boost in SpeedUp. The experimental results show that our method achieves

state-of-art results on LeNet, ResNet and VGG architecture. Moreover, we demon-

strated that our pruning method generalizes well across tasks by pruning an architecture535

on one task and achieving competitive results using the same pruned model on another

(but related) task. The use of data independent loss function allows for our approach to

be flexible and can be easily adapted for a new task by using the fatuous auxiliary loss

functions described in the paper.

33

References540

[1] G. Huang, S. Liu, L. Van der Maaten, K. Q. Weinberger, Condensenet: An ef-

ficient densenet using learned group convolutions, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761.

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer,

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb545

model size, arXiv preprint arXiv:1602.07360.

[3] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient

convnets, in: International Conference on Learning Representations, 2017.

[4] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding, arXiv preprint550

arXiv:1510.00149.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural net-

works with the hashing trick, in: International Conference on Machine Learning,

2015, pp. 2285–2294.

[6] C. Louizos, K. Ullrich, M. Welling, Bayesian compression for deep learning, in:555

Advances in Neural Information Processing Systems, 2017, pp. 3288–3298.

[7] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classifi-

cation using binary convolutional neural networks, in: European Conference on

Computer Vision, Springer, 2016, pp. 525–542.

[8] R. Abbasi-Asl, B. Yu, Structural compression of convolutional neural networks560

based on greedy filter pruning, arXiv preprint arXiv:1705.07356.

[9] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, Exploiting linear

structure within convolutional networks for efficient evaluation, in: Advances in

neural information processing systems, 2014, pp. 1269–1277.

34

[10] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating deep565

convolutional neural networks, in: Proceedings of the 27th International Joint

Conference on Artificial Intelligence, AAAI Press, 2018, pp. 2234–2240.

[11] J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural

network compression, in: Proceedings of the IEEE international conference on

computer vision, 2017, pp. 5058–5066.570

[12] X. Zhang, J. Zou, X. Ming, K. He, J. Sun, Efficient and accurate approximations

of nonlinear convolutional networks, in: Proceedings of the IEEE Conference on

Computer Vision and pattern Recognition, 2015, pp. 1984–1992.

[13] D. Mittal, S. Bhardwaj, M. M. Khapra, B. Ravindran, Recovering from random

pruning: On the plasticity of deep convolutional neural networks, in: 2018 IEEE575

Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018,

pp. 848–857.

[14] D. Mittal, S. Bhardwaj, M. M. Khapra, B. Ravindran, Studying the plasticity in

deep convolutional neural networks using random pruning, Machine Vision and

Applications 30 (2) (2019) 203–216.580

[15] J.-H. Luo, J. Wu, An entropy-based pruning method for cnn compression, arXiv

preprint arXiv:1706.05791.

[16] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural

networks for resource efficient inference, in: International Conference on Learn-

ing Representations, 2017.585

[17] J. Ye, X. Lu, Z. Lin, J. Z. Wang, Rethinking the smaller-norm-less-informative

assumption in channel pruning of convolution layers, in: International Conference

on Learning Representations, 2018.

[18] B. Hassibi, D. G. Stork, Second order derivatives for network pruning: Optimal

brain surgeon, in: Advances in neural information processing systems, 1993, pp.590

164–171.

35

[19] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage, in: Advances in neural

information processing systems, 1990, pp. 598–605.

[20] P. Singh, V. S. R. Kadi, N. Verma, V. P. Namboodiri, Stability based filter pruning

for accelerating deep cnns, in: 2019 IEEE Winter Conference on Applications of595

Computer Vision (WACV), IEEE, 2019, pp. 1166–1174.

[21] K. Neklyudov, D. Molchanov, A. Ashukha, D. P. Vetrov, Structured bayesian

pruning via log-normal multiplicative noise, in: Advances in Neural Information

Processing Systems, 2017, pp. 6775–6784.

[22] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin,600

L. S. Davis, Nisp: Pruning networks using neuron importance score propagation,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 9194–9203.

[23] V. Lebedev, V. Lempitsky, Fast convnets using group-wise brain damage, in: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,605

2016, pp. 2554–2564.

[24] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, W. J. Dally, Exploring the

granularity of sparsity in convolutional neural networks, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017,

pp. 13–20.610

[25] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep

neural networks, in: Advances in neural information processing systems, 2016,

pp. 2074–2082.

[26] H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: A data-driven

neuron pruning approach towards efficient deep architectures, arXiv preprint615

arXiv:1607.03250.

[27] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolu-

tional networks through network slimming, in: Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2017, pp. 2736–2744.

36

[28] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural net-620

works, in: Proceedings of the IEEE International Conference on Computer Vi-

sion, 2017, pp. 1389–1397.

[29] J. M. Alvarez, M. Salzmann, Learning the number of neurons in deep networks,

in: Advances in Neural Information Processing Systems, 2016, pp. 2270–2278.

[30] H. Zhou, J. M. Alvarez, F. Porikli, Less is more: Towards compact cnns, in:625

European Conference on Computer Vision, Springer, 2016, pp. 662–677.

[31] J. Lin, Y. Rao, J. Lu, J. Zhou, Runtime neural pruning, in: Advances in Neural

Information Processing Systems, 2017, pp. 2181–2191.

[32] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, W. Lin, Thinet: pruning cnn

filters for a thinner net, in: IEEE transactions on pattern analysis and machine630

intelligence, IEEE, 2018.

[33] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann, Towards

optimal structured cnn pruning via generative adversarial learning, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,

pp. 2790–2799.635

[34] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, B. Zhang, Accelerating convolutional net-

works via global & dynamic filter pruning., in: IJCAI, 2018, pp. 2425–2432.

[35] Z. Huang, N. Wang, Data-driven sparse structure selection for deep neural net-

works, in: Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 304–320.640

[36] H. Miao, A. Li, L. S. Davis, A. Deshpande, Towards unified data and lifecycle

management for deep learning, in: 2017 IEEE 33rd International Conference on

Data Engineering (ICDE), IEEE, 2017, pp. 571–582.

[37] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural net-

works with low rank expansions, arXiv preprint arXiv:1405.3866.645

37

[38] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning applied

to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324.

[39] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv preprint arXiv:1409.1556.

[40] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,650

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016, pp. 770–778.

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: In-

verted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.655

[42] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detec-

tion with region proposal networks, in: Advances in neural information process-

ing systems, 2015, pp. 91–99.

[43] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg,

Ssd: Single shot multibox detector, in: European conference on computer vision,660

Springer, 2016, pp. 21–37.

[44] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal

features with 3d convolutional networks, in: Proceedings of the IEEE interna-

tional conference on computer vision, 2015, pp. 4489–4497.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,665

A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recogni-

tion challenge, International journal of computer vision 115 (3) (2015) 211–252.

[46] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L.

Zitnick, Microsoft coco: Common objects in context, in: European conference

on computer vision, Springer, 2014, pp. 740–755.670

[47] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, C. Igel, Detection of traffic

signs in real-world images: The german traffic sign detection benchmark, in: The

38

2013 international joint conference on neural networks (IJCNN), IEEE, 2013, p.

1288.

[48] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyra-675

mid networks for object detection, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 2117–2125.

39

	Introduction
	Related Work
	Connection Pruning
	Filter Pruning
	Quantization

	Proposed Approach
	Terminology
	Approach
	Training the network
	Ranking the filter Importance
	Pruning and fine-tuning

	Relationship with the previous approaches

	Results
	LeNet-5 on MNIST
	VGG-16 on CIFAR-10
	Ablation study
	Ablation study on filter importance ranking criteria
	Training compressed model with randomly initialized weights
	Jointly doing pruning and training from scratch

	ResNet-56 on CIFAR-10
	VGG-16 on ImageNet
	ResNet-50 on ImageNet
	SpeedUp and Memory Size
	Generalization Ability
	SSD512 on German traffic detection benchmarks
	Faster RCNN on COCO

	C3D on UCF101
	MobileNet on CIFAR-100

	Choice of auxiliary loss functions
	Auxiliary loss function
	Loss function experiments

	Conclusion

