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Computing the wave equation with multifrequency

oscillations

Marissa Condon, Arieh Iserles, Karolina Kropielnicka & Pranav Singh

September 26, 2019

Abstract

We explore a new asymptotic-numerical solver for the time-dependent wave
equation with an interaction term that is oscillating in time with a very high
frequency. The method involves representing the solution as an asymptotic se-
ries in inverse powers of the oscillation frequency. Using the new scheme, high
accuracy is achieved at a low computational cost. Salient features of the new
approach are highlighted by a numerical example.

1 Introduction

In this paper, we consider the time-dependent wave equation [2]

∂2t u(x, t) = ∆u(x, t)− gω(x, t)u(x, t) x ∈ Rd, t ≥ 0, (1.1)

where u(x, t) is the wavefunction and gω(x, t) is a real-valued highly oscillatory term.
The initial and boundary conditions are

u(x, 0) = φ(x), x ∈ [−L,L],

∂tu(x, 0) = Φ(x), x ∈ [−L,L],

u(−L, t) = u(L, t), t ≥ 0,

∂tu(−L, t) = ∂tu(L, t), t ≥ 0.

Such equations are considered when computing scattering frequencies [6, 12, 13].
Highly oscillatory interaction terms present a difficulty for numerical simulations as
a small time step and fine space discretisation are typically required to obtain an
accurate solution. The present contribution involves representing the solution as an
asymptotic series in inverse powers of the temporal oscillation frequency of gω(x, t).
The coefficients of the terms in the series are independent of the oscillation frequency
and hence, the computational effort in determining these coefficients and the associ-
ated asymptotic series is greatly reduced. The coefficients are determined from either
recursion or partial differential equations and the solutions of the latter do not depend
on the oscillation frequency of gω(x, t). Consequently, the proposed method achieves
high accuracies despite using extremely large time steps. In principle, it might ap-
pear that the error of the computation is independent of the frequency of oscillation
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but, actually, the situation is often even better! The more rapid the oscillation, the
smaller the error of the numerical scheme. An example illustrates salient features of
the underlying method.

Before we describe our numerical approach, it is important to discuss briefly the
well posedness of (1.1). This is a linear hyperbolic equation and, in general, we expect
it to be well posed, but it is always a good idea to confirm this.

Letting v(x, t) = ∂tu(x, t), we obtain a first-order hyperbolic system

∂t

[
u
v

]
=

[
v

∂2xu− gu

]
, (1.2)

with the above initial and boundary conditions. Denote by E the semigroup associated
with the wave equation – in other words, we consider the solution of the standard wave
equation

∂t

[
ũ
ṽ

]
=

[
ṽ
∂2xũ

]
with the same initial conditions and zero Dirichlet boundary conditions by[

ũ(t)
ṽ(t)

]
= E(t)

[
ũ(0)
ṽ(0)

]
, t ≥ 0,

we recall that ‖E(t)‖ ≤ 1 in the H1 Sobolev norm on u, which is identical to the

standard L2 norm on

[
u
v

]
.

Applying the Duhamel principle to (1.2), we have[
u(t)
v(t)

]
= E(t)

[
u(0)
v(0)

]
−
∫ t

0

E(t− τ)

[
0

gω(x, τ)u(x, τ)

]
dτ

therefore, by the integral form of the Grönwall Lemma and bearing in mind that
‖E(t)‖ ≤ 1,∥∥∥∥[u(t)

v(t)

]∥∥∥∥
≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∥∥∥∥∫ t

0

E(τ)E(t− τ)

[
0 0

gω(x, τ) 0

]
exp

(∫ t

τ

E(τ − ξ)
[

0 0
gω(x, ξ) 0

]
dξ

)
dτ

∥∥∥∥
≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∫ t

0

∥∥∥∥[ 0
gω(x, τ)

]∥∥∥∥ exp

(
‖
∫ t

τ

E(τ − ξ)‖
∥∥∥∥[ 0
gω(x, ξ)

]∥∥∥∥dξ

)
dτ

≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∫ t

0

|gω(x, τ)| exp

(∫ t

τ

|gω(x, ξ)|dξ
)

dτ

which, provided that maxt≥0 ‖gω( · , t)‖L∞(−L,L) is bounded, demonstrates that the
solution of (1.2) is uniformly L2-bounded in every compact interval t ∈ [0, T ]. Hence
well posedness.

The approach of this paper is a mixture of numerical and asymptotic methodology.
It continues and expands the scope of previous work in this area, both on ODEs and
evolutionary PDEs [1, 4, 5, 8, 14].
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A word about the stability of the underlying asymptotic-numerical approach –
something essential in the context of the Lax Equivalence Theorem. The expansion
itself cannot be a source of instability. Yet, once it is solved by a time-stepping
numerical method (which would be the usual state of affairs) its stability is inherited
from the method in question.

2 The proposed solution

We consider equation (1.1) with

gω(x, t) =

∞∑
m,n=−∞

gm,n(x, t)ei(d1m+d2n)ωt.

where d1
d2

/∈ Q and d1ω � 1, d2ω � 1 are the frequencies of interest. We assume
that

∑
m,n |gm,n| is bounded. As a matter of principle, we could have added more

frequencies, d1ω, d2ω, . . . , dqω, say, but the current setup is sufficient to highlight all
the salient points.

To expand asymptotically, we assume that there exist functions p0,0(x, t), pr,m,n(x, t),
r ≥ 2, n ∈ Z such that

u(x, t) ∼ p0,0(x, t) +

∞∑
r=2

1

ωr

∞∑
m,n=−∞

pr,m,n(x, t)ei(d1m+d2n)ωt

In other words, we expand u in modulated Fourier expansion [9]. Note one potential
problem with our expansion: the mechanism used to produce the pr,m,ns recursively
might lead to resonances because of the occurrence of small denominators. This is
well known in asymptotic analysis and, at least in principle, might restrict the range
of r ≥ 2 and m,n ∈ Z. Yet, given that a realistic numerical method, as described in
Section 3, necessarily restricts this range, we do not anticipate this to be a substantive
issue.

Differentiating term-by-term, we have

∂tu(x, t) ∼ ∂tp0,0(x, t) +
i

ω

∞∑
m,n=−∞

(d1m+ d2n)p2,m,n(x, t)ei(d1m+d2n)ωt

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

[∂tpr,m,n(x, t) + i(d1m+ d2n)pr+1,m,n(x, t)] ei(d1m+d2n)ωt,
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∂2t u(x, t) ∼ ∂2t p0,0(x, t)−
∞∑

m,n=−∞
(d1m+ d2n)2p2,m,n(x, t)ei(d1m+d2n)ωt

+
1

ω

∞∑
m,n=−∞

[2i(d1m+ d2n)∂tp2,m,n(x, t)

− (d1m+ d2n)2p3,m,n(x, t)
]

ei(d1m+d2n)ωt

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

[
∂2t pr,m,n(x, t) + 2i(d1m+ d2n)∂tpr+1,m,n(x, t)

− (d1m+ d2n)2pr+2,m,n(x, t)
]

ei(d1m+d2n)ωt

∆u(x, t) ∼ ∆p0,0(x, t)

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

∆pr,m,n(x, t)ei(d1m+d2n)ωt.

We further observe that

gω(x, t)u(x, t) ∼ p0,0(x, t)

∞∑
m,n=−∞

gm,n(x, t)ei(d1m+d2n)ωt

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

∞∑
k,l=−∞

gk,l(x, t)pr,m−k,n−le
i(d1m+d2n)ωt.
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Once these equations are substituted into (1.1), we have

∂2t p0,0(x, t)−
∞∑

m,n=−∞
(d1m+ d2n)2p2,m,n(x, t)ei(d1m+d2n)ωt

+
2i

ω

∞∑
m,n=−∞

(d1m+ d2n)∂tp2,m,n(x, t)ei(d1m+d2n)ωt

− 1

ω

∞∑
m,n=−∞

(d1m+ d2n)2p3,m,nei(d1m+d2n)ωt

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

[
∂2t pr,m,n(x, t) + 2i(d1m+ d2n)∂tpr+1,m,n(x, t)

]
ei(d1m+d2n)ωt

−
∞∑
r=2

1

ωr

∞∑
m,n=−∞

(d1m+ d2n)2pr+2,m,n(x, t)ei(d1m+d2n)ωt

∼ ∆p0,0(x, t)− p0,0(x, t)

∞∑
m,n=−∞

gm,n(x, t)ei(d1m+d2n)ωt

+

∞∑
r=2

1

ωr

∞∑
m,n=−∞

∆pr,m,n(x, t)ei(d1m+d2n)ωt

−
∞∑
r=2

1

ωr

∞∑
m,n=−∞

∞∑
k,l=−∞

gk,l(x, t)pr,m−k,n−le
i(d1m+d2n)ωt.

We next define coefficients in two levels. Firstly we consider orders of magnitude
(inverse powers of ω – signified by the values of r), and then frequencies (values of m
and n) within each order of magnitude.

• The first level is when r = 0.

∂2t p0,0(x, t)−
∞∑

m,n=−∞
(d1m+ d2n)2p2,m,n(x, t)ei(d1m+d2n)ωt

∼ ∆p0,0(x, t)− p0,0(x, t)

∞∑
m,n=−∞

gm,n(x, t)ei(d1m+d2n)ωt.

(a) When (m,n) = (0, 0) then

∂2t p0,0(x, t) = ∆p0,0(x, t)− p0,0(x, t)g0,0(x, t). (2.1)

5



The initial and boundary conditions are

p0,0(x, 0) = φ(x), x ∈ [−L,L],

∂tp0,0(x, 0) = Φ(x), x ∈ [−L,L],

p0,0(−L, t) = p0,0(L, t), t ≥ 0,

∂tp0,0(−L, t) = ∂tp0,0(L, t), t ≥ 0.

Practical computation of p0,0 and other quantities of this kind is done best
in a step-by-step manner. In other words, initial conditions are in general
given not at the origin but at some tn ≥ 0. This presents no problem
insofar as p0,0 is concerned but a degree of care is required in computing
∂tp0,0 which, typically, can be computed with finite differences, consistently
with the temporal order of the underlying time-stepping method. We will
encounter a similar problem with other coefficients, e.g. p3,m,n.

(b) Otherwise when (m,n) 6= (0, 0)

p2,m,n(x, t) =
1

(d1m+ d2n)2
p0,0(x, t)gm,n(x, t).

Note that ω plays no role in the formation of p0,0, which is the only differential
equation that we need to compute by that stage of the algorithm.

• In the case r = 1,

2i

∞∑
m,n=−∞

(d1m+ d2n)∂tp2,m,n(x, t)ei(d1m+d2n)ωt

∼
∞∑

m,n=−∞
(d1m+ d2n)2p3,m,nei(d1m+d2n)ωt.

Let us observe, that for r = 1 and (m,n) 6= (0, 0):

p3,m,n(x, t) =
2i

(d1m+ d2n)
∂tp2,m,n(x, t)

• In the case r = 2,

∞∑
m,n=−∞

[
∂2t p2,m,n(x, t) + 2i(d1m+ d2n)∂tp3,m,n(x, t)

]
ei(d1m+d2n)ωt

−
∞∑

m,n=−∞
(d1m+ d2n)2p4,m,n(x, t)ei(d1m+d2n)ωt

∼
∞∑

m,n=−∞
∆p2,m,n(x, t)ei(d1m+d2n)ωt

−
∞∑

m,n=−∞

∞∑
k,l=−∞

gk,l(x, t)p2,m−k,n−le
i(d1m+d2n)ωt.
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(a) when (m,n) = (0, 0) then

∂2t p2,0,0(x, t) ∼ ∆p2,0,0(x, t)−
∞∑

k,l=−∞

gk,l(x, t)p2,−k,−l. (2.2)

with initial and boundary conditions

p2,0,0(x, 0) = −
∑

(m,n) 6=(0,0)

p2,m,n(x, 0), x ∈ [−L,L],

∂tp2,0,0(x, 0) = −
∑

(m,n) 6=(0,0)

∂tp2,m,n(x, 0), x ∈ [−L,L],

p2,0,0(−L, t) = p2,0,0(L, t), t ≥ 0,

∂tp2,0,0(−L, t) = ∂tp2,0,0(L, t), t ≥ 0.

(b) Otherwise when (m,n) 6= (0, 0)

p4,m,n(x, t) = − 1

(d1m+ d2n)2
∆p2,m,n(x, t) +

1

(d1m+ d2n)2
∂2t p2,m,n(x, t)

+
2i

(d1m+ d2n)
∂tp3,m,n(x, t)

+
1

(d1m+ d2n)2

∞∑
k,l=−∞

gk,l(x, t)p2,m−k,n−l.

3 Constructing a numerical scheme

A common feature of eqs. (2.1) and (2.2) is that they are wave equations in their own
right, possessing a common form

∂2t u(t) = L(t)u(t) + f(t), t ≥ 0, (3.1)

where f(t) is a source term (present only in (2.2)) and L(t) is a linear differential
operator. Here we have deliberately suppressed the dependence on x and hidden
boundary conditions for the ease of notation.

Both f and L are characterised by slow variations. This slow variation in (3.1)
allows us to use low order methods and large time steps for its solution, in contrast to
(1.1). In particular, we will concern ourselves with order-two methods based on the
application of the Strang splitting. We describe how existing numerical solvers for the
wave equation

∂2t u(t) = L0u(t), t ≥ 0, (3.2)
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which work effectively for L0 = L(τ) for an arbitrary τ ≥ 0, can be leveraged for
solving (3.1) up to order-two accuracy.

Given initial conditions at time t = t0,

u(t0) = u0, ∂tu(t0) = u′0,

we assume that we have access to a solver S,

(u1, u
′
1) = S((u0, u

′
0),L0, h),

that provides an approximation to the solution (u(t0 + h), u(t0 + h)′) for (3.2).
In the following subsection, we outline the method S̃ which solves (3.1) utilising

S once. This scheme requires sampling L at the middle of the interval and f at its
endpoints.

3.1 S̃: the extended solver

For the purpose of deriving an order-two splitting, we rewrite the equation (3.1) as a
system of PDEs,

u′(t) = v(t) + w(t), u(t0) = u0,

v′(t) = L(t)u(t), v(t0) = u′0,

w′(t) = f(t), w(t0) = 0,

which are order one in time.
We expand the system by adding auxiliary time variables r, s,

u(r)
v(r)
w(s)
r
s


′

︸ ︷︷ ︸
p′

=


v(r) + w(s)
L(s)u(r)
f(r)

1
1


︸ ︷︷ ︸

W(p)

=


v(r) + w(s)
L(s)u(r)

0
1
0


︸ ︷︷ ︸

A(p)

+


0
0

f(r)
0
1


︸ ︷︷ ︸
B(p)

,

with the initial conditions p0 = (u0, u
′
0, 0, t0, t0)>. The solution of

p′ =W(p) = A(p) + B(p), p(t0) = p0,

is given by the flow Φ[W],

p(t0 + h) = Φ
[W]
h (p0).

We approximate the exact flow by a Strang splitting,

Φ
[W]
h ≈ Φ

[B]
h/2 ◦ Φ

[A]
h ◦ Φ

[B]
h/2,

so that the solution at time t0 + h is approximated by

p̃1 = Φ
[B]
h/2 ◦ Φ

[A]
h ◦ Φ

[B]
h/2(p0) = p(t0 + h) +O

(
h3
)
.
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The flow under B is straightforward to compute exactly. For the flow under A,

[u1, v1, w(ta), t0 + h, ta]> = Φ
[A]
h ([u0, v0, w(ta), t0, ta]>),

note that [u1, v1] is the solution of

u′(t) = v(t) + w(ta),

v′(t) = L(ta)u(t),

at t = t0 + h, with initial conditions u(t0) = u0 and v(t0) = v0. This system of
equations is also equivalent to

u′′(t) = L(ta)u(t), u(t0) = u0, u′(t0) = v0 + w(ta).

Assuming that the numerical solution of this wave equation is given by

[ũ1, ũ
′
1] = S([u0, v0 + w(ta)]),L(ta), h) ≈ [u(t0 + h), u′(t0 + h)],

we may approximate [u1, v1] by [ũ1, ṽ1], where ṽ1 ≈ ũ′1 − w(ta). In other words,

Φ
[A]
h


u0
v0

w(ta)
t0
ta

 ≈

S([u0, v0 + w(ta)],L(ta), h)> − [0, w(ta)]>

w(ta)
t0 + h
ta

 .
Composing the flows, we find that

p̃1 = [ũ1, ṽ1, w̃1, t0 + h, t0 + h]>,

w̃1 = h
2 [f(t0) + f(t0 + h)],

(ũ1, ṽ1) = S([u0, u
′
0 + (h/2)f(t0)],L(t0 + h/2), h)− [0, (h/2)f(t0)],

and the solution of (3.1) at time t0 + h is approximated by [ũ1, ṽ1 + w̃1]. The second-
order scheme for (3.1) is

S̃([u0, u
′
0],L, f, t0, h) := S([u0, u

′
0 + (h/2)f(t0)],L(t0 + h/2), h) + [0, (h/2)f(t0 + h)].

This scheme only requires the knowledge of f(t) at the end points of the interval, i.e.
at t0 and t0 + h, and is therefore suitable for the solution of (2.6–7).

3.2 A complete numerical scheme

For a practical numerical example, we restrict ourselves to the case where I is a finite
index set. The solution is (2.1), i.e.

∂2t p0,0(t) = ∆p0,0(t)− p0,0(t)g0,0(t),

is approximated using S̃,

[p̃0,0(tn+1), p̃′0,0(tn+1)] = S̃([p0,0(tn), p′0,0(tn)],∆− g0,0, 0, tn, h),
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with the initial conditions

p0,0(0) = u(0), p′0,0(0) = u′(0).

Following this, we compute the terms

p̃2,k,l(tn) =
p̃0,0(tn)gk,l(tn)

(d1k + d2l)2
, (k, l) ∈ I \ {(0, 0)},

and are in a position to approximate (2.2), namely

∂2t p2,0,0(t) = ∆p2,0,0(t)− g0,0(t)p2,0,0(t) + f(t)

using S̃,

[p̃2,0,0(tn+1), p̃′2,0,0(tn+1)] = S̃([p2,0,0(tn), p′2,0,0(tn)],∆− g0,0, f̃ , tn, h),

with the initial conditions

p2,0,0(0) = −
∑
(k,l)∈

I\{(0,0)}

p2,k,l(0), p′2,0,0(0) = −
∑
(k,l)∈

I\{(0,0)}

p′2,k,l(0),

where
f̃(tn) = −

∑
(k,l)∈

I\{(0,0)}

gk,l(tn)p̃2,−k,−l(tn).

Note that S̃ only samples p̃2,−k,−l at tn, where they are either known or have already
been computed. We impose periodic boundaries in all these cases and, provided this
is respected by the solver S, it is also respected by the respective extensions.

Combining these, an O
(
ω−3

)
asymptotic approximation at tn is then constructed

as

ũ(tn) = p̃0,0(tn) +
1

ω2

∑
(k,l)∈I

p̃2,k,l(tn)ei(d1k+d2l)ωtn . (3.3)

4 Numerical results

To illustrate the proposed approach, we consider two numerical examples.

Example 1 Firstly, we consider equation (1.1) with

gω(x, t) =
x2

8
− cos(d1ωt) + 2 sin(t) sin(d2ωt)x, d1 = e−1, d2 = π−1,

i.e.

g0,0 =
x2

8
, g1,0 = g−1,0 = −1

2
, g0,1 = −i sin(t)x, g0,−1 = i sin(t)x.

The spatial domain considered is [−L,L], with L = 10. The temporal domain of
interest is [0, T ], with T = 10. The initial conditions of the problem are

u(x, 0) = e−(x−1)
2/2, ∂tu(x, 0) = 0,

and we impose periodic boundaries on the domain.
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Example 2 The proposed technique is applicable to higher dimensions. To illustrate
this, we consider a second example with

gω(x, y, t) =
x2 + y2

8
−cos(d1ωt) sin(πx)+2 sin(t) sin(d2ωt)(x+y), d1 = e−1, d2 = π−1,

i.e.

g0,0 = x2+y2

8 , g1,0 = g−1,0 = − sin(πx)
2 , g0,1 = −i sin(t)(x+y), g0,−1 = i sin(t)(x+y).

The spatial domain considered is [−L,L]2 with L = 10. The temporal domain of
interest is [0, T ], with T = 5. The initial conditions of the problem are

u(x, y, 0) = e−((x−1)2+y2)/2, ∂tu(x, y, 0) = 0,

and we impose periodic boundaries on the domain.

N 1 2 4 8 16 64 256 1024
h 10 5 2.5 1.25 0.625 0.156 0.039 0.010

Calls S 1 2 4 8 16 64 256 1024
to S A 2 4 8 16 32 128 512 2048

Error S 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
ω = 25 A 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248

Error S 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
ω = 50 A 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032

Error S 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
ω = 100 A 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001

Table 1: [Example 1] Error and cost for the proposed asymptotic method A compared
to the Lanczos solver S. Note that each step of A uses S twice. N is the number of
time steps (h = T/N , T = 10).

For the solver
[u1, u

′
1] = S([u0, u

′
0],L0, h),

we write the solution of the wave equation as

u1 = cos
(
h
√
−L0

)
u0 +

sin
(
h
√
−L0

)
√
−L0

u′0.

u′1 = −
√
−L0 sin

(
h
√
−L0

)
u0 + cos

(
h
√
−L0

)
u′0.

following [7]. In practice, the operator L0 is discretised to a matrix L0 and the
functions of this matrix are computed using Lanczos iterations. In all our examples,
we utilise 25 Lanczos iterations.

The proposed method A, i.e. (3.3), utilises the solver S twice – once directly and
once in the form of S̃ (cf. Section 3). Table 1 compares the accuracy and costs of A
with directly using the solver S for solving (1.1). The reference solution is computed
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N 1 2 4 8 16 32 64 128 256
h 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02

Calls S 1 2 4 8 16 32 64 128 256
to S A 2 4 8 16 32 64 128 256 512

Error S 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
ω = 25 A 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388

Error S 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
ω = 50 A 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039

Error S 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
ω = 100 A 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003

Table 2: [Example 2] Error and cost for the proposed asymptotic method A compared
to the Lanczos solver S. Note that each step of A uses S twice. N is the number of
time steps (h = T/N , T = 5).

using the sixth-order method Φ11
[6] proposed in [2]. The number of spatial grid points

is M = 50 for all computations.
The error for A should be O

(
ω−3

)
for sufficiently small h. In practice, we already

see this behaviour for very large time steps in Table 1 – very few calls to S suffice
within the asymptotic scheme A for reaching the asymptotic accuracy (roughly 32
calls in the examples considered), while directly utilising S typically requires a very
small time step to resolve high oscillations.

This highlights the low costs of the proposed scheme, which is particularly appeal-
ing in the context of large ω. For ω = 100, for instance, the method A requires two
time steps (four calls to S) for reaching an accuracy of 0.1 for Example 2 (cf. Table 2).
Direct utilisation of S requires 64 time steps for similar accuracy. For Example 1 un-
der ω = 100, the accuracy achieved using two time steps of A (four calls to S) is not
achieved even with 256 time steps of S (cf. Table 1).

In contrast to S, however, smaller time steps do not increase accuracy in the case
of A once asymptotic accuracy is attained. Thus, once very high accuracy is required
for small-to-moderate ω, the method S remains an appealing candidate. Of course,
once we desire higher accuracy, we are perfectly free to use a numerical-asymptotic
solver along the lines of (3.3) that incorporates larger inverse powers of ω.

Note that the error with respect to the reference solution is well approximated as
the L1 error,

err(u) =
2|L|
M

M∑
k=1

|uref(xk, t)− u(xk, t)|.

where M is the number spatial grid points.

5 Comments

We have described in this paper an asymptotic-numerical approach for the solution of
wave equations with external multifrequency high-oscillatory forcing. The results in-
dicate that for large values of ω, the proposed method presents significant advantages
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over existing time-stepping numerical methods. A major advantage of the proposed
approach is that it works equally well regardless of the frequency of oscillation (pro-
vided, paradoxically, that the oscillation is rapid enough): this represents the main
advantage of methods based upon asymptotic analysis over more conventional time-
stepping methods.
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