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Abstract 25 

Background 26 

Periprosthetic tibial fracture after unicompartmental knee replacement is a challenging 27 

post-operative complication.  Patients have an increased risk of mortality after fracture, the 28 

majority undergo further surgery, and the revision operations are less successful.  29 

Inappropriate surgical technique increases the risk of fracture, but it is unclear which 30 

technical aspects of the surgery are most problematic and no research has been performed on 31 

how surgical factors interact.  32 

Methods 33 

Firstly, this study quantified the typical variance in surgical cuts made during 34 

unicompartmental knee replacement (determined from bones prepared by surgeons during an 35 

instructional course). Secondly, these measured distributions were used to create a 36 

probabilistic finite element model of the tibia after replacement. A thousand finite element 37 

models were created using the Monte Carlo method, representing 1000 virtual operations, and 38 

the risk of tibial fracture was assessed. 39 

Findings 40 

Multivariate linear regression of the results showed that excessive resection depth and 41 

making the vertical cut too deep posteriorly increased the risk of fracture. These two 42 

parameters also had high variability in the prepared synthetic bones.  The regression equation 43 

calculated the risk of fracture from three cut parameters (resection depth, vertical and 44 

horizonal posterior cuts) and fit the model results with 90% correlation. 45 
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Interpretation 46 

This study introduces the application of a probabilistic approach to predict the aetiology of 47 

fracture after unicompartmental knee replacement and has quantified the potential importance 48 

of surgical saw cut variations for the first time. Targeted changes to operative technique can 49 

now be considered to seek to reduce the risk of periprosthetic fracture. 50 

Keywords: Knee, Bone, Fracture, Unicompartmental, Finite Element. 51 

52 
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1 Introduction 53 

Periprosthetic tibial fracture after unicompartmental knee replacement (UKR) is a severe 54 

complication which can be challenging to treat and manage [1].  Fracture is associated with 55 

increased mortality and significant morbidity, and is increasing in incidence [2]. Of the cases 56 

of tibial fracture after UKR reported in the literature [1; 3-11], approximately half of the 57 

fractures occurred during the operation, and half occurred within 6 weeks post-operatively.  58 

More than 50% of the reported case studies end with revision to total knee replacement, 59 

requiring removal of the cruciate ligament(s) and leading to reduced knee function [1; 3-11].  60 

The reported incidence of tibial fracture after UKR ranges from 0.8% [1] to 5.0 % [11].  The 61 

absolute number of patients at risk of fracture is rising [2] as a result of increasing numbers of 62 

UKRs being performed each year [12], greater life expectancy [13], higher cases of 63 

osteoporosis [14], and increasing patient activity [15].  It is, therefore, important to identify 64 

which aspects of UKR surgery put patients at the greatest risk of fracture, so that the 65 

operative technique can be optimised to minimise the occurrence of this serious complication. 66 

The issue of periprosthetic fracture has been reported in several different unicompartmental 67 

knee designs, so it appears the issue is not design-specific [1; 3-4; 6; 8; 11], though one study 68 

suggested cementless components are at greater risk [16].  There is uncertainty in the 69 

literature regarding the most important surgical risk factors for tibial fracture after UKR. The 70 

surgical errors that have been proposed to cause tibial plateau fracture include:  71 

 excessive depth of surgical cuts made for the tray, tray keel, or pegs [1; 4; 9; 17; 18] 72 

 too many holes in the cortex for alignment guides [6; 10] 73 

 perforation of the tibial cortex [5] 74 
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 under-sizing of the tibial tray [1; 3] 75 

 use of excessive force when impacting the plateau [1] 76 

 excessive removal of bone [1].  77 

However, of these studies, Clarius et al. were the only authors to base their conclusions on 78 

experimental evidence and showed that extended vertical cuts reduced the force required to 79 

cause tibial fracture by 30% [18]. 80 

Finite element analysis (FEA) is a useful tool for predicting bone fracture, and it has been 81 

applied most commonly to fractures of the femoral neck. Schileo et al. proposed a Risk Of 82 

Fracture (ROF) criterion (Equation 1) which has been validated for hip fracture cases [19]. 83 

The ROF is calculated from the maximum principal strain () within the bone divided by 84 

elastic limit strain values. The criterion distinguishes between tensile and compressive 85 

loading states, and high ROF values in a localised region indicate a higher risk of fracture. 86 

ROF = {
𝜀

0.0073⁄           𝑖𝑓 𝑡𝑒𝑛𝑠𝑖𝑙𝑒
𝜀

0.0104⁄     𝑖𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒
 (1) 87 

An advantage of using FEA to examine risk factors for bone fracture is that the uncertainty 88 

resulting from confounding factors is removed, enabling the study to focus on the parameters 89 

of interest. The aim of this study was apply Schileo’s fracture criterion and utilise 90 

probabilistic FEA methods to assess which surgical parameters increase the risk of 91 

periprosthetic fracture after unicompartmental knee replacement. 92 

2 Methods 93 

The study first quantified the surgical variability in the preparation of tibia for UKR, then 94 

used the Monte Carlo method to virtually implant 1000 UKRs, representing that variability. 95 
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The risk of fracture for the finite element models was found and multivariate linear regression 96 

used to assess the influence of each surgical cut parameter.  97 

2.1 Quantification of variability in surgical cuts 98 

Twenty three right tibial Sawbones (custom anatomic design made for Zimmer-Biomet UK 99 

Ltd. by Sawbones, Pacific Research Laboratories Inc., Vashon Island, Washington, USA) 100 

were prepared for medial mobile UKR (Oxford Partial Knee, Biomet, Bridgend, UK) as part 101 

of an instructional course. The attendees were a mixture of experienced and inexperienced 102 

orthopaedic surgeons who each prepared a Sawbone tibia after receiving training in the 103 

operative technique. Measurements were then taken of the positions and depths of the 104 

surgical cuts (Figure 1). The parameters examined were:  105 

 the resection depth (the superior-inferior distance from the tibial plateau on the lateral 106 

side to the resected medial horizontal cut, where the distance was parallel to the 107 

mechanical axis) 108 

 the angle between the horizontal and vertical cuts 109 

 the depth of the vertical cuts, both at the posterior and anterior cortex 110 

 the depth of the horizontal cuts, both at the posterior and anterior cortex 111 

 the depth of the pin hole (used to hold the cutting guide) 112 

2.2 Finite element model 113 

2.2.1 Geometry 114 

The finite element model was based on a previously published UKR tibial model that was 115 

validated against cadaveric tests [20]. The tibial geometry was segmented from a CT scan of 116 

a cadaveric tibia obtained from a male donor aged 60 years with a body mass index of 22.5. 117 
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The geometry was segmented using Mimics software (version 14.1, Materialise, Leuven, 118 

Belgium) and smoothed using the Scanto3D function in SolidWorks software (version 2012, 119 

Simulia, Waltham, MA, USA). The tibia was aligned so that the tibial mechanical axis was 120 

the Z-axis, anterior-posterior was the X-axis, and medial-lateral was the Y-axis. Previous 121 

work verified that use of a shortened tibia improves computational speed without affecting 122 

the strain in the periprosthetic region [21]. Therefore, the length of the tibia was shortened to 123 

100 mm proximally.  124 

The UKR was implanted virtually using Boolean functions within ABAQUS software 125 

(Version 6.12, Dassault-Systèmes, Rhode Island, USA). A Python script (version 2.6, Python 126 

Software Foundation) was created to automate the implantation for different surgical and 127 

loading parameters. The width of all saw cuts used was 1 mm, which is the width of the saw 128 

blade used during surgery [22].  The base of the Oxford Unicompartmental Knee tibial tray 129 

was fully fixed to the tibia, and frictionless contact was defined between the tray wall and the 130 

bone. Neither the effect of interference fit nor loosening was examined in this study. 131 

2.2.2 Mesh 132 

The finite element mesh was created using ABAQUS software. Quadratic tetrahedral 133 

elements (C3D10) were used to mesh the bone and the tibial tray was meshed with 134 

quadrilateral rigid elements (R3D4). A smaller element size (a third of the overall element 135 

size) was assigned to; the muscle attachment sites, the edges created by the saw cuts, and the 136 

drilled pin-hole.  137 

A mesh convergence study was performed to determine the optimal mesh density, where 138 

convergence was defined as when the output was within 5% of the next three finer element 139 
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sizes (0.1 mm mesh size intervals). The model converged for both output parameters at an 140 

overall element size of 2.4 mm. 141 

2.2.3 Material properties 142 

The tray was modelled as a rigid cobalt chromium-molybdenum alloy with a density of 143 

8.4 g cm-3 [23]. The tibia was modelled as a heterogeneous linear elastic material, where the 144 

modulus of each element was assigned based on the corresponding gray scale value of that 145 

element in the CT scan of the tibia. The bone material assignment was performed with 146 

Mimics software (400 material intervals with a modulus range of 1 to 22 GPa, consistent with 147 

previous work [20]).  148 

2.2.4 Musculoskeletal model 149 

The muscle and contact loads applied to the tibia throughout the gait cycle were estimated 150 

using data from an instrumented total knee replacement (TKR) implanted in a male subject 151 

(age: 83 years, BMI: 22.5, alignment: neutral) at the Shiley Center for Orthopaedic Research 152 

and Education at the Scripps Clinic in California  [24]. The data were recorded while the 153 

patient performed overground walking trials at a self-selected speed [25; 26] and included the 154 

following quantities: contact forces on the tibial tray, ground reaction forces and moments, 155 

surface marker positions, and electromyographic (EMG) data. Medial and lateral tibial 156 

contact forces were calculated from the implant load cell data using an elastic foundation 157 

contact model [27]. Muscle force estimates were generated using static optimization of a 158 

subject-specific knee model which minimized (the sum of the squares of) muscle activations. 159 

The measured tibio-femoral contact forces and net (inverse-dynamic) knee loads were also 160 

matched as part of this optimization, and muscle force estimates were generated using static 161 

optimization of a subject-specific knee model with two cost functions (based on muscle 162 
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activations and contact forces) [28] constructed in OpenSim [29].  The musculoskeletal knee 163 

model and muscle force estimation approach have been described in detail in a previous study 164 

[23].  165 

2.2.5 Boundary conditions 166 

The muscle and contact loads from the musculoskeletal model were applied to the FE model 167 

using distributed coupling to the tibial attachment site (Figure 2).  On the lateral side the 168 

compartment loads were applied to the tibial articular surface in the same manner, while on 169 

the medial side the compartment load was applied to the upper surface of the tibial tray using 170 

an equation derived in a previous study to represent the pressure field [23]. The distal end of 171 

the tibia was fixed in all degrees of freedom. 172 

The cadaveric tibia used for the finite element model in the present study was different from 173 

the instrumented knee subject tibia. Both tibias were from male subjects with a similar body 174 

mass index (instrumented tibia: 22.5 and cadaveric tibia: 25.9) and size (instrumented tibia: 175 

75.0 mm tibial width, and cadaveric tibia: 76.5 mm tibial width) but different age 176 

(instrumented tibia: 83, cadaveric tibia: 60). An iterative closest point (ICP) algorithm was 177 

used to register the two tibias and determine the muscle attachment sites and vectors for the 178 

new geometry.  179 

2.2.6 Post-processing 180 

The risk of fracture parameter described by Schileo et al. [19] (Equation 1) is not 181 

automatically calculated by ABAQUS software, so a custom Python script was written to 182 

interact with ABAQUS and calculate the new field output. The two outputs used for the 183 

analysis were: (1) the maximum ROF value (omitting artificially high results at muscle 184 
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attachment sites), and (2) the total volume of elements exceeding an ROF of 1 (threshold for 185 

fracture defined by Schileo). 186 

2.3 Application of the Monte Carlo method 187 

The measurements taken from the tibia prepared during the surgical training course (Section 188 

2.1, Figure 1) were used to define the envelope of surgical cut variation for the models. A 189 

thousand finite element models were then created to represent the variance in surgical 190 

technique. 191 

The distribution of each surgical cut parameter was categorised from the measured data using 192 

the Kernel Density function from the ‘scikit-learn’ machine learning module implemented in 193 

Python [30]. A Gaussian kernel (𝐾(𝑥; ℎ)) was applied with a bandwidth (ℎ) of 0.75, to create 194 

the function representing the distribution of cut parameters measured from the sawbones. The 195 

kernel has the form given in Equation (2) where the density estimate at point 𝑦 is found from 196 

the provided group of points 𝑥𝑖; 𝑖 = 1 ⋯ 𝑁. 197 

𝜌𝐾(𝑦) =  ∑ 𝐾 (
𝑦 − 𝑥𝑖

ℎ
)

𝑁

𝑖=1

 198 

(2) 199 

An ABAQUS-python script was then used to automate the creation of each finite element 200 

model. The script involved the following steps: 201 

1. Randomly select each surgical cut parameter from its calculated distribution, using 202 

Python ‘random’ and ‘scikit-learn’ packages. 203 

2. Prepare tibia using Boolean operations 204 

3. Assemble tibia and UKR components 205 

4. Apply muscle loading, joint loading, constraints. and materials 206 
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5. Mesh and solve 207 

To confirm that 1000 models were sufficient to achieve convergence of the Monte Carlo 208 

method, we used the method described by Fishman et al. [31].  Convergence was defined 209 

when the mean and coefficient of variance of both risk of fracture output parameters were 210 

within 3% of their values from the last 10% of valid instantiations [31; 32].  211 

2.4 Model verification 212 

The finite element model was verified two ways: (1) the location of elements at risk of 213 

fracture were compared to typical clinical fracture locations [1] and (2) the maximum ROF in 214 

the periprosthetic region was compared with failure loads reported by Clarius et al. [18]. To 215 

replicate the experiments performed by Clarius an increasing load (max 10 kN) was applied 216 

to the medial compartment while the two risk of fracture criteria were recorded. The tibia was 217 

analysed with, and without an extended vertical cut (cut angled at 10 degrees [18]). No 218 

muscle or lateral compartment loading was applied. 219 

2.5 Statistical analysis 220 

Which parameters influenced the risk of fracture was determined by performing an analysis 221 

of variance (ANOVA) test. The parameters which significantly (p<0.05) influenced the risk 222 

of fracture were then input into a generalised linear regression (GLM) model.  All statistical 223 

analyses were implemented in R (www.r-project.org). To ensure the dependent variables 224 

(maximum ROF and Volume of failed elements) were normally distributed for the ANOVA 225 

and GLM model, we transformed the data by taking the logarithm of the maximum ROF and 226 

the cube root of the volume of failed elements. 227 
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3 Results 228 

3.1 Quantification of variability in surgical cuts 229 

The measurements of the prepared tibial Sawbones highlighted large variability in the vertical 230 

and horizontal cuts posteriorly (Table 1). The standard deviation in the anterior cut depths 231 

was half that of the posterior cuts. Furthermore, in 14 of the 23 Sawbone tibias, the pin hole 232 

had gone into the keel slot, greatly increasing the hole depth and producing a bi-modal 233 

distribution with a high standard deviation. The cut angle had very low variability (percent 234 

deviation 1.6%) and so was not included in the Monte Carlo models.  235 

3.2 Application of the Monte Carlo method 236 

A linear relationship was found between medial contact force and the maximum ROF when 237 

loaded through the whole gait cycle (R2 = 0.83), despite the varying muscle loads and load 238 

vectors from the musculoskeletal model (Figure 3).  The maximum ROF value and the 239 

maximum volume of failed elements occurred at 16% of the gait cycle, so these results were 240 

used for the regression analysis.  241 

The ANOVA results (Table 2) found the extension of the vertical cut posteriorly (e), the 242 

resection depth (a), and extension of the horizontal cut posteriorly (f) to significantly 243 

influence both the maximum ROF value and the volume of failed elements. Consequently, 244 

these parameters were used to create the regression model. The correlation between both 245 

output variables and the posterior vertical and horizontal cuts and the resection depth was 246 

also confirmed visually (Figure 4). 247 

The multivariate linear regression model found that the greater the resection depth and the 248 

more extended the posterior vertical cut, the greater the risk of fracture in terms of both the 249 
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maximum ROF and the volume of failed elements. In contrast, extension of the horizontal cut 250 

posteriorly reduced the risk of fracture slightly.  The parameters which most influenced the 251 

risk of fracture were the resection depth and extension of the vertical cut posteriorly, as can 252 

be seen from the 3-dimensional scatterplot shown in Figure 5. 253 

From the known resection depth, posterior vertical cut, and posterior horizontal cut for each 254 

of the 1000 models, the regression equations were used to calculate the maximum ROF value 255 

(Equation (3)) and the volume of failed elements (Equation (4)). The equations were able to 256 

predict the finite element maximum ROF with a Pearson’s correlation coefficient of 0.59 and 257 

the volume of failed elements with a 90% correlation, indicating a reasonable regression 258 

model fit. 259 

𝑀𝑎𝑥 𝑅𝑂𝐹 = 10^(0.0152𝑒 + 0.0161𝑎 − 0.0052𝑓 + 0.102) (3) 260 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = (0.0454𝑒 + 0.061𝑎 − 0.029𝑓 + 0.267)^3 (4) 261 

Where: (a) is the resection depth, (e) is the extension of the vertical cut posteriorly, and (f) is 262 

the extension of the horizontal cut posteriorly.   263 

3.3 Model Verification 264 

When the tibia was prepared and loaded in the same manner as described by Clarius et al. 265 

[18], regions of high ROF were observed in the corner between the horizontal and the vertical 266 

cut and in the region surrounding the keel. At high loads, these two regions combined to 267 

create a line of high fracture risk extending to the tibial cortex (Figure 6).  The line matched 268 

the path of fractures observed clinically [1], confirming that the ROF parameter is an 269 

indicator of tibial fracture risk. 270 
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The average failure load reported by Clarius et al. for a tibia with an excessive vertical cut 271 

was 2.6 kN (range 1.08-5.04), and 3.9 kN (range 2.35-8.50) for a the tibia with a perfect cut 272 

[18].  The finite element models when loaded under these conditions had corresponding 273 

maximum ROF values of 5.2 and 5.6, and volume of failed elements of 128 mm3 and 177 274 

mm3, respectively. These results indicate that a maximum ROF value above 5, with a failure 275 

volume greater than 128 mm3, would represent a high fracture risk. From the 1000 models 276 

examined in the Monte Carlo simulation, 0.3% had a maximum ROF greater than 5; none 277 

reached the volume threshold.  278 

4 Discussion 279 

This study used a probabilistic finite element modelling approach to investigate the influence 280 

of different surgical cuts used to prepare the tibia for unicompartmental knee replacement on 281 

the risk of periprosthetic fracture. Of the surgical parameters investigated, excessive resection 282 

depth and an extended posterior vertical saw cut were found to significantly increase the risk 283 

of fracture according to the regression model.  Furthermore, based on measurements of the 284 

Sawbone tibias prepared by surgeons as part of an instructional course, the depths of the 285 

vertical saw cuts posteriorly are highly variable.  This combination of results is concerning, 286 

as high variability in a factor believed to increase the risk of fracture increases uncertainty in 287 

the surgical outcome. 288 

The tibial saw guide is an important part of the surgical instrumentation for making the 289 

vertical saw cut.  The guide comprises a rectangular block, which is pinned to the anterior 290 

side of the tibia (causing the pin holes described) and provides a horizontal surface to stop the 291 

saw blade when making the vertical cut.  Although the guide provides a stop anteriorly, there 292 

is no such stop posteriorly, and the surgeon is required to estimate the correct cut angle (7 293 
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degrees).  The guide is also used to aid the horizontal cut, where the flat side of the 294 

reciprocating saw rests on the top of the block which ensures the cut is straight and has a 7 295 

degree posterior slope [22]. If the surgeon under-estimates the slope of the vertical cut, the 296 

horizontal and vertical cuts will not meet and the vertical cut will need to be extended to 297 

enable the worn tibial plateau to be removed.  If the surgeon over-estimates the slope, the 298 

vertical cut will be excessive, causing a posterior notch.  It is, therefore, difficult for a 299 

surgeon to ensure that the vertical cut is not excessive with the current operative technique, 300 

and limited posterior visibility makes it hard to identify cut depth intra-operatively. 301 

The resection depth is controlled by the height at which the tibial guide is pinned.  The 302 

operative technique suggests the level should be 2 to 3 mm lower than the eroded bone [22].  303 

Several studies have suggested that errors in the vertical cut increase the risk of fracture [1; 9; 304 

17], and Clarius et al. demonstrated this relationship experimentally [18].  However, 305 

resection depth has been proposed by only one other publication as a critical parameter and is 306 

largely overlooked in the literature [1].  If clinicians were made aware that excessive 307 

resection can contribute to fracture, it would be simple for them to modify their surgical 308 

practice accordingly. 309 

Regardless of the manufacturer or implant type, all UKR designs require an L-shaped space 310 

to be created for the tibial component, which requires a horizontal resection cut and a vertical 311 

cut to be made by the surgeon. This consistency in UKR surgical technique may explain why 312 

tibial plateau fracture is not restricted to only one device design [3; 5; 6; 8].  By knowing the 313 

surgical factors which may increase tibial fracture risk, surgeons and orthopaedic 314 

manufacturers can begin to propose solutions that can minimise the risk of fracture after 315 

UKR.  316 
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Interestingly, the finite element model which simulated loading throughout a whole gait cycle 317 

found a linear relationship between the risk of fracture and the medial load.  Rudol et al. 318 

suggested that peri-prosthetic fracture after UKR may be linked to patient weight [9], and our 319 

results indicate it could be a risk factor.  Whether high body mass index should be considered 320 

a contraindication for UKR is a controversial topic, with evidence both for [33] and against 321 

[34; 35]. Some case studies in the literature have mentioned limiting weight-bearing and 322 

using medial unloading braces to offset the medial load in cases of peri-prosthetic fracture to 323 

aid healing [3; 10], but not as a preventative measure.  In patients considered at risk, bracing 324 

could be used as a non-invasive treatment. 325 

Periprosthetic tibial fractures after UKR can occur intraoperatively or post-operatively [1; 9]. 326 

Reports of intraoperative fracture describe a high strain-rate impact load which causes the 327 

bone to fracture [3; 5]. Post-operative fractures are associated with a combination of intra-328 

operative damage and cumulative damage from cyclic loading of the bone [36]. Studies of 329 

patient activities after knee replacement have shown that in a typical day a patient will stand 330 

for 21% of the time, walk for 8%, and climb stairs for 1%; the remaining time is non-weight 331 

bearing [37].  In terms of cyclic loading, gait is therefore the most likely activity to cause 332 

post-operative peri-prosthetic fracture, though the largest medial contact forces occur for stair 333 

ascent and descent [38].  Our finite model did not examine the development of cumulative 334 

strains within the bone, but both static [19] and fatigue mechanisms of bone fracture [36] 335 

have been related to strain. 336 

It is important to consider the limitations of this work. The model has been created to 337 

represent the strains after UKR for one tibia to a high degree of accuracy, but no conclusions 338 

can be made regarding variation within the population (e.g. in gait, bone shape, or bone 339 
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density). The load data which were applied to the model were based on results from an 340 

instrumented total knee replacement, rather than from a unicompartmental knee replacement.  341 

As UKR forces have never been measured directly in vivo, it is not possible to know whether 342 

the load distribution between the condyles is equivalent.  However, an anatomic approach 343 

was used to implant the instrumented TKR [38], and therefore alignment should have been 344 

similar to an implanted UKR with a similar load distribution between the condyles. This 345 

study also makes the assumption that the cuts made during an instructional course are 346 

representative of a surgical scenario, but there will be differences. For example, the Sawbone 347 

tibias will feel different to real bone so feedback from the saw will be different, and the saw 348 

itself may be a different model to that used in theatre. Since this study was performed new 349 

Microplasty instrumentation has also been introduced by the manufacturers which assist the 350 

surgeon with selecting an appropriate horizontal cut height, so should reduce the risk of 351 

fracture. Furthermore, at the instructional course the surgeons will be new to the technique 352 

and more likely to make errors and have increased variability.  Therefore the results of this 353 

study can be considered to represent a worst-case scenario.  In additionFinally, our model 354 

assumed perfect fixation of the base of the tibial tray to the bone and so could not consider 355 

component loosening or interference fit. Incorporating loosening and interference fit adds 356 

significant complexity to the model and is planned for inclusion in future work. 357 

In conclusion, the results of this study have highlighted the importance of careful surgical 358 

preparation of the tibial plateau prior to UKR implantation. This study suggests that the cause 359 

of fracture is multifactorial and that to minimise the risk of fracture, a surgeon should;  360 

 ensure that the vertical cut does not go too deep posteriorly 361 

 be conservative with resection of the tibia 362 
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It may be possible to reduce the likelihood of an excessively deep vertical cut by altering the 363 

surgical technique. If the horizontal cut were made before the vertical cut, a shim could be 364 

inserted into the horizontal saw cut to stop the vertical cut from going too deep.  Surgeon 365 

training and better communication of the fracture risks could encourage surgeons to be more 366 

conservative when resecting the tibia.  If orthopaedic manufacturers and surgeons worked to 367 

implement these changes in operative technique, our results suggest that the risk of tibial 368 

plateau fracture after UKR could be reduced. 369 

Acknowledgements 370 

The work was funded in part by NIH grant R01EB009351. Some of the authors have received 371 

funding from Biomet UK Healthcare Ltd. (the manufacturer of the implant examined in this 372 

study), but the funding was unrelated to the present study.  Dr Pegg’s salary was funded by 373 

the Oxford Orthopaedic Engineering Centre. We would like to thank the surgeons who 374 

attended the instructional course, and Kyung Tae Kim, M.D., Ph.D. for providing data 375 

regarding cases of tibial fracture after UKR in Seoul. 376 

References  377 
1. Pandit, H., Murray, D.W., Dodd, C.A., et al., 2007. Medial tibial plateau fracture and the 378 

Oxford unicompartmental knee. Orthopedics 30: 28-31. 379 

2. Della Rocca, G.J., Leung, K.S., Pape, H.-C., 2011. Periprosthetic Fractures: Epidemiology 380 

and Future Projections. Journal of Orthopaedic Trauma 25: S66-S70. DOI: 381 

10.1097/BOT.0b013e31821b8c28. 382 

3. Van Loon, P., de Munnynck, B., Bellemans, J., 2006. Periprosthetic fracture of the tibial 383 

plateau after unicompartmental knee arthroplasty. Acta Orthop Belg 72: 369-374. 384 

4. Lindstrand, A., Stenström, A., Ryd, L., et al., 2000. The introduction period of 385 

unicompartmental knee arthroplasty is critical. The Journal of Arthroplasty 15: 608-616. 386 

DOI: 10.1054/arth.2000.6619. 387 



19 

 

5. Sloper, P.J.H., Hing, C.B., Donell, S.T., et al., 2003. Intra-operative tibial plateau fracture 388 

during unicompartmental knee replacement: a case report. The Knee 10: 367-369. DOI: 389 

10.1016/S0968-0160(03)00003-6. 390 

6. Yang, K.-Y., Yeo, S.-J., Lo, N.-N., 2003. Stress fracture of the medial tibial plateau after 391 

minimally invasive unicompartmental knee arthroplasty: A Report of 2 Cases. The Journal of 392 

Arthroplasty 18: 801-803. DOI: 10.1016/S0883-5403(03)00332-2. 393 

7. Kumar, A., Chambers, I., Wong, P., 2008. Periprosthetic Fracture of the Proximal Tibia 394 

After Lateral Unicompartmental Knee Arthroplasty. The Journal of Arthroplasty 23: 615-618. 395 

DOI: 10.1016/j.arth.2007.04.036. 396 

8. Kumar, A., Fiddian, N.J., 1997. Fracture of the medial tibial plateau following 397 

unicompartmental knee replacement. The Knee 4: 177-178. DOI: 10.1016/S0968-398 

0160(97)00257-3. 399 

9. Rudol, G., Jackson, M.P., James, S.E., 2007. Medial Tibial Plateau Fracture Complicating 400 

Unicompartmental Knee Arthroplasty. The Journal of Arthroplasty 22: 148-150. DOI: 401 

10.1016/j.arth.2006.01.005. 402 

10. Brumby, S.A., Carrington, R., Zayontz, S., et al., 2003. Tibial plateau stress fracture: A 403 

complication of unicompartmental knee arthroplasty using 4 guide pinholes. The Journal of 404 

Arthroplasty 18: 809-812. DOI: 10.1016/S0883-5403(03)00330-9. 405 

11. Berger, R.A., Meneghini, R.M., Jacobs, J.J., et al., 2005. Results of Unicompartmental 406 

Knee Arthroplasty at a Minimum of Ten Years of Follow-up. JBJS 87: 999-1006. DOI: 407 

10.2106/JBJS.C.00568. 408 

12. NJR, 2014. National Joint Registry 11th Annual Report. 409 

13. Bennett, J.E., Li, G., Foreman, K., et al. 2015. The future of life expectancy and life 410 

expectancy inequalities in England and Wales: Bayesian spatiotemporal forecasting. The 411 

Lancet 386: 11-17. DOI: 10.1016/S0140-6736(15)60296-3 412 

14. Gauthier, A., Kanis, J., Jiang, Y., et al., 2011. Epidemiological burden of postmenopausal 413 

osteoporosis in the UK from 2010 to 2021: estimations from a disease model. Archives of 414 

Osteoporosis 6: 179-188. DOI: 10.1007/s11657-011-0063-y. 415 



20 

 

15. Naudie, D.D., Ammeen, D.J., Engh, G.A., et al., 2007. Wear and osteolysis around total 416 

knee arthroplasty. J Am Acad Orthop Surg 15: 53-64. 417 

16. Seeger, J.B., Haas, D., Jager, S., et al., 2012. Extended sagittal saw cut significantly 418 

reduces fracture load in cementless unicompartmental knee arthroplasty compared to 419 

cemented tibia plateaus: an experimental cadaver study. Knee Surg Sports Traumatol 420 

Arthrosc 20: 1087-1091. DOI: 10.1007/s00167-011-1698-3. 421 

17. Clarius, M., Aldinger, P.R., Bruckner, T., et al., 2009. Saw cuts in unicompartmental knee 422 

arthroplasty: An analysis of sawbone preparations. The Knee 16: 314-316. DOI: 423 

10.1016/j.knee.2008.12.018. 424 

18. Clarius, M., Haas, D., Aldinger, P.R., et al., 2010. Periprosthetic tibial fractures in 425 

unicompartmental knee arthroplasty as a function of extended sagittal saw cuts: An 426 

experimental study. The Knee 17: 57-60. DOI: 10.1016/j.knee.2009.05.004. 427 

19. Schileo, E., Taddei, F., Cristofolini, L., et al., 2008. Subject-specific finite element 428 

models implementing a maximum principal strain criterion are able to estimate failure risk 429 

and fracture location on human femurs tested in vitro. Journal of Biomechanics 41: 356-367. 430 

DOI: 10.1016/j.jbiomech.2007.09.009. 431 

20. Gray, H.A., Taddei, F., Zavatsky, A.B., et al., 2008. Experimental validation of a finite 432 

element model of a human cadaveric tibia. J Biomech Eng 130: 031016. DOI: 433 

10.1115/1.2913335. 434 

21. Simpson, D.J., Price, A.J., Gulati, A., et al., 2009. Elevated proximal tibial strains 435 

following unicompartmental knee replacement—A possible cause of pain. Medical 436 

Engineering &amp; Physics 31: 752-757. DOI: 10.1016/j.medengphy.2009.02.004. 437 

22. Biomet, 2011. Oxford® Cementless Partial Knee Supplementary Surgical Technique. In. 438 

Biomet UK Ltd., Bridgend, UK. 439 

23. Pegg, E.C., Walter, J., Mellon, S.J., et al., 2013. Evaluation of factors affecting tibial bone 440 

strain after unicompartmental knee replacement. Journal of Orthopaedic Research 31: 821-441 

828. DOI: 10.1002/jor.22283. 442 

24. D’Lima, D.D., Townsend, C.P., Arms, S.W., et al., 2005. An implantable telemetry 443 

device to measure intra-articular tibial forces. Journal of Biomechanics 38: 299-304. DOI: 444 

10.1016/j.jbiomech.2004.02.011. 445 



21 

 

25. Fregly, B.J., Besier, T.F., Lloyd, D.G., et al., 2012. Grand challenge competition to 446 

predict in vivo knee loads. Journal of Orthopaedic Research 30: 503-513. DOI: 447 

10.1002/jor.22023. 448 

26. Fregly, B.J., D'Lima, D.D., Colwell, C.W., 2009. Effective gait patterns for offloading the 449 

medial compartment of the knee. Journal of Orthopaedic Research 27: 1016-1021. DOI: 450 

10.1002/jor.20843. 451 

27. Bei, Y., Fregly, B.J., 2004. Multibody dynamic simulation of knee contact mechanics. 452 

Medical Engineering & Physics 26: 777-789. DOI: 10.1016/j.medengphy.2004.07.004. 453 

28. Lin, Y.-C., Walter, J.P., Banks, S.A., et al., 2010. Simultaneous prediction of muscle and 454 

contact forces in the knee during gait. Journal of Biomechanics 43: 945-952. DOI: 455 

10.1016/j.jbiomech.2009.10.048. 456 

29. Delp, S.L., Anderson, F.C., Arnold, A.S., et al., 2007. OpenSim: Open-Source Software 457 

to Create and Analyze Dynamic Simulations of Movement. Biomedical Engineering, IEEE 458 

Transactions on 54: 1940-1950. DOI: 10.1109/TBME.2007.901024. 459 

30. Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-learn: Machine Learning 460 

in Python. Journal of Machine Learning Research 12: 2825-2830. 461 

31. Fishman, G.S., 1996. Monte Carlo. Springer-Verlag New York. 462 

32. Reinbolt, J.A., Haftka, R.T., Chmielewski, T.L., et al., 2007. Are patient-specific joint 463 

and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans 464 

Biomed Eng 54: 782-793. DOI: 10.1109/TBME.2006.889187. 465 

33. Berend, K.R., Lombardi, A.V.J., Mallory, T.H., et al., 2005. Early Failure of Minimally 466 

Invasive Unicompartmental Knee Arthroplasty Is Associated with Obesity. Clinical 467 

Orthopaedics and Related Research 440: 60-66. DOI: 10.1097/01.blo.0000187062.65691.e3. 468 

34. Murray, D.W., Pandit, H., Weston-Simons, J.S., et al., 2013. Does body mass index affect 469 

the outcome of unicompartmental knee replacement? The Knee 20: 461-465. DOI: 470 

10.1016/j.knee.2012.09.017. 471 

35. Naal, F., Neuerburg, C., Salzmann, G., et al., 2009. Association of body mass index and 472 

clinical outcome 2 years after unicompartmental knee arthroplasty. Archives of Orthopaedic 473 

and Trauma Surgery 129: 463-468. DOI: 10.1007/s00402-008-0633-7. 474 



22 

 

36. Carter, D.R., Caler, W.E., 1985. A cumulative damage model for bone fracture. Journal 475 

of Orthopaedic Research 3: 84-90. DOI: 10.1002/jor.1100030110. 476 

37. Huddleston, J., Scarborough, D., Goldvasser, D., et al., 2009. 2009 Marshall Urist Young 477 

Investigator Award: How Often Do Patients with High-Flex Total Knee Arthroplasty Use 478 

High Flexion? Clinical Orthopaedics and Related Research® 467: 1898-1906. DOI: 479 

10.1007/s11999-009-0874-y. 480 

38. Mündermann, A., Dyrby, C.O., D'Lima, D.D., et al., 2008. In vivo knee loading 481 

characteristics during activities of daily living as measured by an instrumented total knee 482 

replacement. Journal of Orthopaedic Research 26: 1167-1172. DOI: 10.1002/jor.20655.  483 



23 

 

Tables 484 

Parameter Mean Standard 

Deviation 

0% 25% 50% 75% 100% 

 

a (resection depth, mm) 8.8 1.7 5.0 8.0 9.0 10.0 11.0 

b (angle between cuts, deg) 90.6 1.4 88.0 90.0 90.0 91.0 95.0 

c (vertical cut anterior, mm) 0.5 1.0 0.0 0.0 0.0 0.3 4.0 

d (horizontal cut anterior, mm) 0.7 0.9 0.0 0.0 0.0 1.0 3.0 

e (vertical cut posterior, mm) 4.2 3.9 0.0 0.0 4.0 7.0 12.0 

f (horizontal cut posterior, mm) 1.3 2.1 0.0 0.0 1.0 1.3 7.5 

g (pin depth, mm) 28.6 6.8 8.0 25.0 30.0 33.5 36.0 

Table 1. The surgical cut parameters measured from 23 synthetic tibias prepared by surgeons 485 

during an instructional course. The mean value, standard deviation and distribution 486 

percentiles for each parameter are summarised.  487 
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Parameter Maximum ROF value Volume of failed elements 

F p Sig F p Sig 

a (resection depth, mm) 183.4 2.2e-16 *** 1295.5 2.2e-16 *** 

c (vertical cut anterior, mm)  0.1 0.028 * 0.04 0.843 NS 

d (horizontal cut anterior, mm) 21.2 0.709 NS 21.3 4.3e-06 *** 

e (vertical cut posterior, mm)  4.9 2.2e-16 *** 2859.7 2.2e-16 *** 

f (horizontal cut posterior, mm) 628.8 4.8e-06 *** 315.4 2.2e-16 *** 

g (pin depth, mm) 0.8 0.365 NS 0.3 0.565 NS 

Table 23. ANOVA test of the null hypotheses that the surgical cut parameters do not 488 

influence the maximum ROF value, and the volume of failed elements. The ANOVA F-value 489 

(F), p-value (p) and significance (Sig) results (*=p<0.05, **=p<0.01, ***=p<0.001, 490 

NS=p>0.5) are shown. 491 

  492 
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Figure Legends 493 

 494 

Figure 1. The surgical cut parameters measured from synthetic sawbone tibia were: the 495 

resection depth (a), the angle between the horizontal and vertical cuts (b), the extension of the 496 

vertical and horizontal cuts posteriorly (e, f) and anteriorly (c, d), and the depth of the pin 497 

hole required to hold the cutting guide (g). 498 

  499 
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 500 

Figure 2.  The constraint (blue), load locations, and vectors (red) applied to the model at 16% 501 

of the gait cycle. The medial view shown includes the gracilis (Grac), sartorius (Sart), 502 

semiteninosus (Semiten), semimembranosus (Semimem), vastus medialis, vastus intermedius 503 

and vastus lateralis (Vastus) muscles forces; the tensor fasciae latae muscle forces were also 504 

applied on the lateral side. 505 
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(a)   506 

 (b)  507 

Figure 3. The risk of fracture (ROF) varied through the gait cycle (a) and a linear correlation 508 

was observed with medial load (b). 509 

510 
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 511 

Figure 4. Scatterplots of regression parameters which were found to significantly influence 512 

the maxim ROF value (log) and volume of failed elements (cube root). The lines in each plot 513 

represent the mean and the interquartile range. 514 

  515 
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 516 

Figure 5.  Scatterplot illustrating the dependence of the volume of failed elements on the 517 

resection depth and the vertical cut. The multivariate regression model fit is represented by 518 

the plane and the red lines indicate the residuals. 519 

 520 

  521 
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(a) (b)  522 

Figure 6. Distribution of the risk of fracture through a perfectly cut tibia loaded at 3.9 kN (a), 523 

and a tibia with excessive vertical cut loaded at 2.6 kN (b). Both models represent conditions 524 

which caused tibial fracture in experiments performed by Clarius et al.. The region most at 525 

risk of fracture extends diagonally from the vertical cut to the tibial cortex, via the keel. 526 


