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Abstract  

Background: Polyclonal FLCs can be used as a biomarker of inflammation and immune activation 

in a range of diseases. This study evaluated the performance of new FLC ELISAs (Seralite FLC 

ELISA) for the quantitation of polyclonal κ and λ FLC, including comparisons to existing assays.  

Methods: Technical performance was assessed for the ELISA and reference ranges were 

generated using healthy donor serum (N=91).  Patients with a range of conditions associated with 

polyclonal FLC dysregulation (N=164) were measured across platforms.   

Results: The ELISAs generated references ranges of: 8.72– 23.0 mg/L κ FLC, and 8.52–25.24 

mg/L for λ FLC.  ELISAs demonstrated linearity across the calibration range and intra-assay (≤ 

8.7%) and inter-assay (≤ 12.3%) imprecision was low.  The limit of detection was 0.63 mg/L for κ 

and 0.57 mg/L for λ FLC. Minimal cross-reactivity was observed for interference agents, alternate 

FLC and whole immunoglobulin (median change ≤ 3.6 mg/L). Assays showed good batch-to-batch 

consistency. For patient samples, methods generated different κ and λ FLC concentrations and 

differences were seen between methods for the number of patients classified as below, with and 

above references ranges for κ and λ FLC.  There was no significant difference in the FLC sum 

between the different techniques.  

Conclusions: The ELISAs displayed good analytical and technical performance.  The 

quantification of individual κ and λ FLC appears inherently different between platforms.  These 

differences are attenuated if using the FLC sum, which was similar between methods and provided 

agreement in relation to patients having normal or elevated FLCs.  
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1. Introduction  

Immunoglobulins are produced by plasma cells and typically comprise two identical heavy chains 

and two identical light chains, of either a κ or λ isotype, with the exception of IgG4 where half-

molecules exchange results in asymmetrical antibodies (Aalberse et al., 2009). Surplus free light 

chains are produced during the process of immunoglobulin synthesis, with production 

approximately 40% in excess of heavy chains (Suki and Massry, 1998). Free light chains (FLCs) 

that do not form whole immunoglobulins are released into the circulation until they are metabolised 

by the kidneys, where up to 10–30 g of FLC can be absorbed per day by the proximal convoluted 

tubule (Waldmann et al., 1972).  The short half-life of FLCs in blood (2–4 hours for kappa and 3–6 

hours for lambda) compared with whole immunoglobulins (5–8 days for IgA and IgM and 20 days 

for IgG) enables real time monitoring of immune suppression and stimulation, or disease 

progression and responses to treatment in conditions involving FLC dysregulation (Brekke and 

Sandlie, 2003; Davids et al., 2010). In a healthy state, depending on the assay used, serum FLC 

(sFLC) reference ranges lie between 3.3–22.66 mg/L for kappa and 3.7–27.0 mg/L for lambda 

(Katzmann et al., 2002; te Velthuis et al., 2011; Campbell et al., 2017). 

FLCs are a key haematological biomarker in the diagnosis and monitoring of plasma cell disorders, 

where monoclonal light chains are secreted due to clonal plasma cell proliferation, usually resulting 

in overproduction of one type of light chain.  Serum FLC analysis is used for the screening, 

prognosis and monitoring of multiple myeloma and other plasma cell dyscrasias, as recommended 

by international guidelines (Dispenzieri et al., 2009; Rajkumar et al., 2014). However, serum FLCs 

have been studied as a marker in a range of other diseases and polyclonal FLCs appear to be an 

important biomarker in their own right.  Elevations in FLCs have been observed in a wide range of 

diseases, including rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, heart 

failure, diabetes, renal disease, asthma, chronic obstructive pulmonary disease, inflammatory 

bowel disease and HIV infection (van der Heijden et al., 2006; Nakano et al., 2011; Brebner and 

Stockley, 2013). These studies suggest that FLCs are useful as a marker of severity and or risk for 

certain diseases, monitoring disease activity and potentially predicting disease progression. In non-
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clinical populations, FLCs also appear to have utility as a biomarker. The sum of kappa and 

lambda FLCs (FLC sum) negatively predicted survival in a large longitudinal data set of individuals 

aged ≥ 50 years without plasma cell malignancies. Individuals with the highest FLC sum levels had 

an increased risk of all-cause mortality: this risk of death remained after controlling for age, sex 

and renal insufficiency (Dispenzieri et al., 2012). This evidence from various diseases and the 

general population suggest polyclonal FLCs act as a biomarker of overall immune activation, 

general inflammation and infection.   

Methods for the measurement of sFLCs include latex-enhanced nephelometric or turbidimetric 

laboratory assays, with Freelite® being the first available and most widely used laboratory assay 

(Bradwell et al., 2001). Alternative sFLC tests are now widely available, including Seralite®, a rapid 

lateral flow device (LFD) for the dual quantitation of κ and λ FLCs (Campbell et al., 2017). A new 

ELISA test for serum FLC has recently become available, Seralite®– FLC ELISA, which requires 

validation.  An ELISA method has the benefits of not requiring any specialised equipment and 

therefore could help enhance accessibility of FLC testing.  Various studies have compared different 

sFLC assays in relation to validating monoclonal FLC measurement, with many highlighting the 

differences in how they quantitate FLC (Jacobs et al., 2016; Te Velthuis et al., 2016; Campbell et 

al., 2017; Heaney et al., 2017a). However, there is a lack of data comparing different methods in 

relation to polyclonal dysregulation, despite being another important and growing application of 

sFLC testing. The aim of the present study was to I) review the technical and analytical 

performance of the FLC ELISA for polyclonal FLCs and II) compare polyclonal FLC quantitation 

across a range of patient samples between different platforms: ELISA, lateral flow, turbidimetry.  

 

2. Materials and Methods  

2.1. Serum free light chain quantitation methods  

Concentrations of κ or λ sFLCs were measured using three different techniques:  I) Freelite® (The 

Binding Site, UK) using a Roche Hitachi Cobas C501. Freelite was the first sFLC assay which 

became available in 2001 and uses sheep polyclonal antibodies specific for epitopes that are 

exposed on light chains when not bound to heavy chain.  This test has undergone extensive 
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validation and is incorporated into the international guidelines for multiple myeloma (Durie et al., 

2006; Dispenzieri et al., 2009) II) Seralite®-FLC (Abingdon Health Ltd, UK) lateral flow device 

(Seralite LFD).  The Seralite LFD is a rapid test that quantitates serum κ and λ FLC levels 

simultaneously in 10 minutes using specific mouse anti-human FLC monoclonal antibodies (mAbs) 

(Campbell et al., 2013).  This test has undergone clinical validation for diagnosis and monitoring of 

myeloma (Campbell et al., 2017; Heaney et al., 2017a; Heaney et al., 2017b) and development 

and test principle has been described in detail elsewhere (Campbell et al., 2017).  III) Seralite®-

FLC ELISA (Abingdon Health Ltd, UK). This test consists of two separate κ and λ FLC ELISAs and 

is described in detail below.  

2.2. ELISA composition and procedure  

The anti-human FLC mAbs utilised in the ELISAs as capture agents, BUCIS 04 (anti-κ) and BUCIS 

09 (anti-λ), are the same as those used in Seralite LFD that have undergone previous validation 

testing.  The preparation and purification of these mAbs are described in detail elsewhere 

(Campbell et al., 2013). The mAbs were selected based upon reactivity with a wide range of κ or λ 

antigens without cross-reactivity with purified whole immunoglobulins.  The specificity of these 

mAbs for FLC has been demonstrated previously (Campbell et al., 2013; Campbell et al., 2017; 

Heaney et al., 2017a). Anti-human light chain (bound and free) mAbs specific for κ (BUCIS 14) or λ 

(BUCIS 19) are used as secondary detection antibodies in the ELISAs.  These mAbs recognise 

epitopes distinct from those targeted by the capture mAbs and have been validated for specificity 

for FLC in patient samples. 

 

The FLCs κ and λ quantitative tests are separate enzyme-linked immunosorbent sandwich assays 

developed for use with serum specimens.  All reagents and samples are brought to room 

temperature prior to use and all steps take place under room temperature conditions, without a 

plate shaker.  Microplate wells are pre-coated with anti-human immunoglobulin FLC κ or λ capture 

mAbs.  Samples, calibrators and quality controls are added to the plates (100 µL) and incubated 

for 1h.  The plate is then washed 3 times: filling each well with wash buffer (300 µL).  Anti-κ 

(BUCIS 14) and anti-λ (BUCIS 19) detection antibodies conjugated to horseradish peroxidase are 
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added to the appropriate plate (100 µL) and incubated for 30 min.  The plates are then washed as 

before, 3 times with wash buffer.  Substrate solution (tetramethylbenzidine, TMB) is then added to 

each well (100 µL) and incubated for 30 min under dark conditions, protected from light.  The 

reaction between the substrate and HRP-antibodies (bound to FLCs in the sample) is stopped by 

adding 1M sulphuric acid to each well (50 µL) and the plate is read at 450nm wavelength.  The 

absorbance is directly proportional to the concentration of FLCs contained in the sample.  A 8-point 

standard curve is generated by plotting the absorbance against known FLC concentrations (mg/L) 

of the calibrators, with four parameter logistical curve fitting recommended. The calibrators for the 

standard curve provide a measurement range from approximately 0.01–1mg/L.  It is up to the user 

to select sample dilution to provide a measurement range appropriate for their specimens. We 

diluted samples initially at 1 in 200 to provide a measurement range of 2mg/L up to 180 mg/L 

based on the calibrators provided.  The concentrations of unknown samples can be determined 

using their absorbance values and the standard curve. For comparison, at the recommended initial 

dilution, Seralite has a measuring range of 2.5–200 mg/L and limits of detection of 1.4 mg/L for κ 

and 1.7 m/L for λ FLC; Freelite measuring range depends on the instrumentation used but is 

between 2.9–6 mg/L to 56.2–190 mg/L for κ FLC and 4.5–5.6 mg/L to 74.8–165 mg/L for λ FLC 

with a limit of quantitation of 0.45 mg/L.  

Calibrator material was developed using a pool of normal serum samples. In the absence of 

International Reference material, the calibrator fluid was initially tested on Seralite to obtain a 

starting concentration. A calibration curve was generated on the ELISA using the fluid. A set of 

normal serum samples were measured in triplicate and the mean Kappa and Lambda 

concentrations were compared to Seralite. Based on the means an adjustment factor was applied 

to the calibrator fluid to give a new assigned value.  Curves were then made using the new 

assigned value and the performance was checked using the same normal serum samples. For 

subsequent lots of calibrator fluid, assignment is based in on the existing approved calibrator fluid. 

Normal serum is pooled and run as a calibration curve on 3 κ FLC and 3 λ FLC ELISA plates; this 

curve is run alongside the existing calibrator fluid.  For each plate the new curve standard 

concentrations are obtained from the curves with the existing calibrator. A concentration is applied 
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to STD 1 by doubling the mean concentration of standard 2, which should be equal to four times 

standard 3, eight times standard 4 an so on. A curve is produced with the newly assigned 

calibrator alongside the existing and approved calibrator. A set of samples (normal, and high to 

cover the assay range) are measured against both curves and the concentration on both curves 

are compared. The percentage difference between FLC values obtained from the new and current 

curves must be <10% for the assignment of the new calibrator to be approved.  

2.3. ELISA assay dynamics  

Linearity was assessed using serum samples containing either elevated κ or λ FLC and serially 

diluting in assay buffer.  Samples were diluted in percentage decrements (from 90%–1.25%) and 

tested on the ELISAs; each dilution was tested in duplicate.  The mean obtained values were 

plotted against the expected linear results to assess non-linearity.    

Imprecision was assessed using 4 samples for κ and 4 samples for λ that contained lower end of 

normal, upper end of normal, elevated or high levels of FLC.  Samples contained the following FLC 

levels: κ= 8.8/26.3/58.7/112.4 mg/L and λ = 9.4/33.6/77.1/114.3 mg/L.  Each sample was tested in 

duplicate, on 3 plates, across 3 days (9 assays in total) using a single batch of plates.  

A ‘blank’ concentration was obtained by measuring 20 replicates of assay buffer alongside a 

normal serum sample that had been serially diluted in percentage decrements (50%-5%) and 

tested on the ELISAs.  The lowest κ and λ concentration of the normal sample detectable above 

the mean blank value was selected as the limit of detection.  

Common interference agents of were added to serum samples containing normal κ and λ FLC 

levels.  Purified agents (Sigma Aldrich, UK) were spiked individually into the serum samples at the 

following final concentrations: bilirubin (0.2 g/L), cholesterol (2 g/L), haemoglobin (2 g/L) and 

triglyceride (10 g/L).  Purified immunoglobulins (University of Birmingham Monoclonal Antibody 

Production Service) were also added separately to the serum samples at the following final 

concentrations IgG-κ (0.73 g/L), IgG-λ (0.32 g/L), IgA-κ (1.48 g/L), IgA-λ (0.15 g/L), IgM-κ (0.45 

g/L), IgM-λ (0.38 g/L), κ FLC (0.53 g/L) or λ FLC (0.73 g/L).  Median change from the expected 

concentration of the normal samples after adding each interference agent was determined. The 
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concentrations of agents were selected based on thresholds typically used in the literature e.g. 

bilirubin 200 mg/L, triglyceride 5-10.0 g/L.  

 

Variability between batches of ELISA kits was evaluated by tested 67 serum samples with a range 

of FLC levels using three consecutive lots of kits for both κ and λ.  Data was analysed using 

Passing and Bablok regression and the difference for each sample was calculated between each 

batch to report a mean difference between batches in mg/L.  

 

2.4. Reference ranges  

91 serum samples that had been obtained from random donors from the NHS Blood and 

Transplant service (NHSBT Birmingham, UK) were used to generate reference ranges for the 

ELISAs for κ and λ FLC. These samples had previously undergone screening for renal function 

and monoclonal gammopathies.  

 

2.5. Patient samples   

A range of patient samples were retrospectively analysed using the ELISAs and LFD, to compare 

sFLC quantitation and diagnostic sensitivity between the laboratory platform and the portable 

lateral flow device.  Serum samples from 164 patients without monoclonal gammopathies were 

evaluated. Patents were received by the Clinical Immunology Service (University of Birmingham, 

UK) and pertained to either diagnosis, follow-up or routine patient monitoring.  Samples were 

stored at -20°C and had been through 2 cycles of freeze-thaw at the time of analysis in the present 

study. These patients had conditions associated with polyclonal FLC dysregulation: rheumatoid 

arthritis (n = 18); systemic lupus erythematosus (n = 16); Sjögren's syndrome (n =23); recurrent 

infections (n = 9); nephrotic syndrome (n =18); vasculitis (n = 11); B-cell non-Hodgkin lymphomas 

(n = 12), chronic lymphocytic leukaemia (n =13), acute kidney injury (n = 46).  For all patients, κ 

and λ FLCs were measured.  For polyclonal dysregulation patients, typically both κ and λ FLCs are 

elevated and the FLC sum, shown to be of importance in studies of polyclonal FLC (Dispenzieri et 

al., 2012), is reported throughout.  The κ:λ ratio is typically not used for diagnostic purposes in 

relation to polyclonal dysregulation but is reported to enable comparison in future studies/cohorts 

with plasma cell dyscrasias.  
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2.6. Statistical Analyses  

To evaluate differences between the 3 methods, Friedman tests were used to evaluate if significant 

differences were evident for FLC parameters, with Dunn's multiple comparisons tests where 

appropriate.  Spearmans rank correlation was used to look at the strength of associations between 

the different sFLC techniques.  Assay lot-to-lot variability between the 3 batches was assessed 

using Passing and Bablok regression analysis.  Analysis was conducted using the Microsoft Excel 

add-in Analyse-it software (version 4.60, Method Evaluation, www.analyse-it.com) for Passing 

Bablock and linearity analysis and IBM SPSS (Version 21) to tests differences between methods. 

SigmaPlot version 12.0 (SystatSoftware Inc., USA) and GraphPad Prism (GraphPad Software Inc., 

USA) were used to produce figures.  

 

3.  Results  

3.1. Assay dynamics  

Samples from random blood donors were tested to obtain references ranges for the ELISAs (Table 

1).  The ranges are based upon the 5–95th percent range: 8.72– 23.0 mg/L κ FLC, 8.52–25.24 

mg/L λ FLC.  Results from the blood donors were measured across the three tests (Figure 1). 

There was a significant difference between the tests for both κ FLC (χ2 = 29.1, p < .001), where the 

Seralite ELISA returned higher values compared with Seralite LFD and Freelite; there were no 

significant differences between Seralite LFD and Freelite. For λ FLC (χ2 = 19.8, p < .001), Freelite 

was significantly different to the two other methods. For the FLC sum (χ2 = 36.4, p < .001), all 

methods differed between each other. For the κ:λ ratio (χ2 = 13.1, p < .001), the LFD differed 

between Freelite and the ELISA.  

 

 

 

http://www.analyse-it.com/
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Table 1. FLC values and ranges in healthy random donors obtained using the Seralite 

ELISA, Seralite LFD and Freelite  

 

Samples with FLC concentrations at the upper end of the calibration range were serially diluted in 

sample buffer. Each concentration was measured on the ELISA. κ FLC was linear between 6 and 

135.8 mg/L and λ FLC between 3.7 and 142.4 mg/L. The maximum difference between expected 

linear and observed concentrations was 14.9% for κ FLC and 18.2% for λ FLC. The limit of 

detection was 0.63 mg/L for κ and 0.57 mg/L for λ FLC.  

 
κ FLC (mg/L)    λ FLC 

(mg/L) 
FLC sum  κ:λ ratio 

Seralite ELISA  
  

  

Median  14.7 13.8 28.4 1.0 

Min  6.8 7.3 15.1 0.5 

Max 37.1 33.6 68.4 1.90 

5
th
–95

th
 percentile  8.7–23.0 8.5–25.2 18.7–45.5 0.65–1.6 

Seralite LFD      

Median  11.7 13.4 25.0 0.9 

Min  4.3 5.0 12.0 0.3 

Max 31.9 34.0 53.5 2.5 

5
th
–95

th
 percentile  6.8–20.0 7.6–23.3 16.3–41.6 0.4–1.8 

Freelite      

Median  11.2 11.3 22.4 1.0 

Min  4.5 6.6 13.3 0.4 

Max 27.4 17.6 45.0 1.6 

5
th
–95

th
 percentile  6.2–18.2 8.1–15.9 15.1–34.4 0.7–1.4 
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Figure 1. κ and λ serum FLC levels, the FLC sum and κ:λ ratio in random donors measured 

using different FLC methods  

Data is shown for 91 serum samples obtained from apparently healthy random donors measured 

using Freelite, Seralite LFD test and Seralite ELISAs. Line indicates the median. *p > .05’ **p <.01; 

***p <.001 

 

Three samples with normal, upper limit of normal, elevated and highly elevated samples for κ and λ 

FLC were assessed and corresponding precision data is presented in Table 2.  Both within- and 

between-plate imprecision was low for the κ and λ ELISAs.  Across the 4 samples, intra-assay CV 

was between 3.5–8.7% for κ FLC and 3.2–4.8% for λ FLC.  Inter-assay precision was between 5–

8% for κ FLC and 6.7–12.3% for λ FLC.  
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Table 2. Imprecision analyses of Seralite ELISAs. 

 

 

 

 

 

 

 

 

 

 

Results from interference testing are reported in Table 3.  No more than a median change of 1.2 

mg/L for κ FLC and 1.3 mg/L for λ FLC was observed when adding common interference agents 

(bilirubin, cholesterol, haemoglobin, and triglyceride) to a normal sample.  In addition, minimal 

cross-reactivity was observed with light chains bound to whole immunoglobulin and alternate FLC, 

with 3.6 ≤ mg/L median change for found for both κ and λ when adding IgG, IgM, IgA or alternate 

FLC to a normal sample.  

 

 

 

CV %  Intra-assay  Inter-assay 

κ FLC       

Lower end of normal  (8.8 mg/L) 3.5 5.0 

Upper end of normal (26.3 mg/L)  6.2 8.4 

Above normal (58.7 mg/L) 4.1 7.3 

Elevated  (112.4 mg/L)  8.7 8 

λ FLC   
  

Lower end of normal (9.4 mg/L) 3.3 7.8 

Upper end of normal (33.6 mg/L)  3.2 6.7 

Above normal (77.1 mg/L)  4.8 12.3 

Elevated (114.3 mg/L) 4.4 9.8 
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Table 3. Seralite ELISA interference data showing median change from expected 

concentration in FLC level when common interference agents were added to serum 

samples containing normal FLC levels.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Median change 

(mg/L) 

κ FLC   
 

Haemoglobin (2.0 g/L)  -1.2 

Bilirubin (0.2 g/L) 0.1 

Cholesterol (2.0 g/L) 1.2 

Triglyceride (10.0 g/L) 0.7 

λ FLC (0.73 g/L) 2.7 

IgG κ (0.84 g/L) -0.2 

IgA κ (1.48 g/L) 3.2 

IgM κ (0.45 g/L)  2.3 
 
λ FLC   

 

Haemoglobin (2.0 g/L)  -1.3 

Bilirubin (0.2 g/L) -0.3 

Cholesterol (2.0 g/L) 0.6 

Triglyceride (10.0 g/L) 0.1 

Κ FLC (0.53 g/L) 2.5 

IgG λ (0.32 g/L) 1.3 

IgA λ (0.15 g/L) 3.6 

IgM  λ (0.38 g/L) 0.7 
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Samples with a range of FLC levels across the calibration curve were assessed using 3 separate 

lots for κ and λ.  Passing and Bablok regression analysis returned the following slopes (95% CI) 

and intercepts (95% CI), respectively: 0.97 (0.90 to 1.07) and -0.04 (-0.65 to 0.42) for batch 1 vs 2; 

0.90 (0.76 to 1.00) and -0.40 (-1.05 to 0.27) for batch 1 vs 3; 0.90 (0.78 to 1.02) and -0.25 (-1.05 to 

0.31) for batch 2 vs 3 for κ FLC; 1.05 (0.97 to 1.13) and -0.02 (-0.51 to 0.33) for batch 1 vs 2; 0.92 

(0.86 to 1.02) and 0.03 (-.37 to 0.22) for batch 1 vs 3; 0.92 (0.86 to 0.95) and -0.10 (-0.37 to 0.02) 

for batch 2 vs 3 for λ FLC. The mean differences between batches (mg/L) and CV (%) were: 4.4 

mg/L and 11.1% (A vs B) , 3.3 mg/L and 15.9% (A vs C), 4.0 mg/L and 11.4% (B vs C) for κ FLC; 

1.6 mg/L and 7.5% (A vs B), 1.8mg/L and 7.6% (A vs C) and 2.3 mg/L and 10.7% (B vs C) for λ 

FLC.  

 

3.2. Patient samples  

Serum from patients with a range of clinical disorders associated with dysregulated polyclonal FLC 

secretion and or clearance were compared between the ELISA and the other established FLC 

tests, Seralite LFD and Freelite. Differences in absolute FLC concentrations between the assays 

are shown in Figure 2.  Significant differences were found between Freelite and both the ELISA 

and LFD for κ FLC (p < .001 for both comparisons): κ FLC were higher on Freelite compared to the 

other methods.  Conversely, for λ FLC, Freelite values were significantly lower than both methods 

and the LFD was also significantly lower than the ELISA (p < .001 for all significant comparisons).  

These opposing higher and lower differences for κ and λ FLCs meant that when the FLC sum was 

calculated, there was no statistical difference in this parameter between the methods (p = .17). For 

the κ:λ ratio, Freelite was significantly higher compared to the LFD and ELISA and (p < .001); the 

LFD was also significantly higher compared to the ELISA (p <.05).   
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Figure 2. Patient samples κ FLC, λ FLC, FLC sum and κ:λ ratio according to different FLC 

quantitative methods  

Data is shown for patients with a range of conditions associated with polyclonal FLC dysregulation 

(n = 164). Lines indicate the median. κ FLC levels were higher on Freelite compared to the other 

methods (p < .001).  λ FLC levels were lower on Freelite compared to other methods; the LFD was 

also significantly lower than the ELISA (p < .001 for all significant comparisons).  There was no 

significant difference between the methods for FLC sum. Freelite returned a higher κ:λ ratio 

compared to the other methods (p < .001); the κ:λ ratio by LFD was also significantly higher 

compared to the ELISA (p <.05).   
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Figure 3 illustrates κ and λ FLC quantitation on the ELISA compared to Freelite and the LFD for 

individual patients. The majority of patients had FLC levels either within or above the reference 

ranges of the assays but as the reference lines indicate, concordance was not always seen for 

individual patients. As shown in Table 4, differences were seen between the methods in the 

proportion of patients below, within and above the reference ranges of each technique.  There was 

a difference in the distribution of patients below, within and above the reference range for κ FLC 

(X2 = 28.8, p < .001): a higher number of patients fell above the κ FLC reference range for Freelite 

compared to the LFD and ELISA, and also for the ELISA compared to the LFD.  The distribution of 

patients in relation to reference ranges was also significantly different between the methods for λ 

FLC (X2 = 30.6, p < .001). In contrast to κ FLC, a lower number of patients were above the 

reference range for Freelite compared to the LFD and ELISA. The LFD was also lower than the 

ELISA.  There was no significant difference between the methods for the number of patients in the 

reference range categories for FLC sum. The same proportion of patients (70.1–71.3%) had an 

elevated for FLC sum across the methods. The κ:λ ratio showed a significant difference in the 

number of patients classed as normal/abnormal (X2 = 6.6, p < .05): Freelite returned a higher 

number of patients with normal ratios compared to the LFD and ELISA. Differences between 

methods were also confirmed by Passing-Bablok regression (Table 5). Overall, systematic and 

proportional differences were seen between all methods across FLC parameters. However, no 

differences were observed in the case of FLC sum for ELISA vs LFD and for the κ:λ ratio for 

Freelite vs LFD.  
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Figure 3. Distribution of Κ and λ FLC concentrations between methods in relation to 

reference ranges  

Serum FLC concentrations are shown for the Seralite ELISA vs Freelite (top panels) and the 

Seralite ELISAs vs Seralite LFD (bottom panels) for a range of samples from patients with a range 

of conditions associated with polyclonal FLC dysregulation (n = 164). Lines indicate the normal 

reference ranges for each assay.  
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Table 4.  Measurement of patient samples (n = 164) using different methods in relation to 

reference ranges (RR) of the different tests  

 

Proportion of patients (%)  Freelite Seralite LFD Seralite ELISA 

κ FLC 
   

Below RR 1.2 3 12.8 

Within  RR 30.5 39.6 26.2 

Above RR 68.3 57.3 61.0 

λ FLC 
   

Below RR 1.2 1.2 4.3 

Within RR 54.9 40.2 26.2 

Above RR 43.9 58.5 69.5 

FLC sum 
   

Below RR 4.9 3 6.7 

Within RR 23.8 25.6 26.2 

Above RR 71.3 71.3 70.1 

κ:λ ratio 
   

With RR 68.3 63.4 55.5 

Abnormal ratio 31.7 36.6 44.5 

Reference ranges for each of the assays were taken from previous publications for existing assays 

(Freelite and Seralite LFD) for κ and λ FLC levels and κ:λ ratio. Reference ranges for FLC sum 

have not been published previously and were based on the analysis of healthy donors across the 

platforms as part of the present study. κ FLC: 3.3–19.4 mg/L (Freelite); 5.3–22.7 mg/L (Seralite 

LFD)  8.7–23.0 mg/L (Seralite ELISA); λ FLC: 5.7–26.3 mg/L (Freelite); 4.0–25.1 mg/L (Seralite 

LFD); 8.5–25.2 mg/L (Seralite ELISA); κ:λ ratio: 0.26–1.65 (Freelite); 0.5–2.5 (Seralite LFD); 0.65–

1.6 (Seralite ELISA); FLC sum: 15.1–34.4 mg/L (Freelite); 12.2–36.6 mg/L (Seralite LFD); 18.7–

45.5 mg/L (Seralite ELISA)  
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Table 5.  Passing-Bablok regression results for comparison of patient samples (n = 164) 

between methods  

 

 Seralite ELISA vs Freelite ELISA vs Seralite LFD Freelite vs Seralite LFD 

κ FLC    

Intercept  -12.51 (-18.24 to -7.43) 2.68 (0.58 to 4.63) -15.65 (-22.94 to -11.04) 

Slope   1.98 (1.79 to 2.22) 0.78 (0.70 to 0.88) 2.10 (1.84 to 2.47) 

λ FLC    

Intercept  -1.92 (-4.50 to 0.36) -5.27 (-7.55 to -2.79) 2.71 (0.50 to 4.64) 

Slope   0.79 (0.69 to 0.86) 1.06 (0.97 to 1.15) 0.71 (0.65 to 0.79) 

FLC sum      

Intercept  -13.67 (-22.58 to -7.59) 2.05 (-1.88 to 5.63) -10.21 (-16.54 to -5.14) 

Slope   1.26 (1.12 to 1.43) 1.03 (0.96 to 1.11) 1.24 (1.14 to 1.37) 

κ:λ ratio    

Intercept  -0.63 (-1.15 to -0.24) 0.32 (0.26 to 0.37) 0.28 (-0.06 to 0.48) 

Slope   2.73 (2.27 to 3.46) 0.44 (0.37 to 0.54) 1.26 (0.96 to 1.67) 
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4. Discussion  

The present study evaluated the performance of ELISAs for the measurement of polyclonal FLCs 

and compared FLC quantitation of patient samples to existing FLC platforms. The ELISAs have a 

wide calibration range and low limit of detection, comparable to existing commercial assays, to 

enable the measurement of low and normal levels of FLCs alongside sera with elevated FLCs. For 

any method of polyclonal FLC measurement, it is important that quantitation captures lower 

concentrations as levels are typically a lot lower than in neoplastic plasma cell disorders.  Sensitive 

measurement of samples with low levels of FLCs is also required if investigating 

immunosuppression. In relation to measurement at the bottom of the calibration curve, the ELISAs 

may have an advantage as the Freelite assay has been demonstrated to have gaps at the lower 

end (Bradwell, 2008) and the LFD test analytical range does not go below 2.5 mg/L (Campbell et 

al., 2017).  The ELISAs demonstrated minimal cross-reactivity with common interference agents, 

including light chains forming part of intact immunoglobulins, and good linearity was shown.  

Further, the assays displayed a high level of reproducibility with good intra- and inter-assay 

precision and lot to lot consistency.   

For the measurement of healthy donors, the ELISAs returned higher FLC concentrations compared 

to Freelite and the LFD with median values 2.5–3.5 mg/L above the other methods.  The values 

obtained in this study showed slight variations with those published previously (Katzmann 2002; 

Campbell 2017). This is to be expected when measuring different cohorts of healthy individuals or 

similar donors at a different time point.  As is the case with all assays, reference ranges are 

specific to the group of individuals at the specific time investigated and users should establish 

reference ranges for their own laboratory.   

Clinical samples across a range of conditions associated with FLC dysregulation were investigated 

and results from the ELISA were compared to Freelite and Seralite LFD.  Results confirmed that κ 

and λ FLC quantitation was consistently different between methods across the range of analyses 

performed. The classification of patients in relation to reference ranges of κ and λ FLC was also 

significantly different between methods.  However, when computing the FLC sum, differences in κ 

and λ FLC cancelled each other out and resulted in no significant difference between platforms for 
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this parameter in terms of both concentration and classification of normal/elevated. In plasma cell 

disorders there is typically a significant imbalance between monoclonal and polyclonal FLC 

production and thus the ratio and FLC difference are key markers (Durie et al., 2006; Dispenzieri et 

al., 2009; Rajkumar et al., 2014). In contrast, in conditions relating to polyclonal light chains, both 

kappa and lambda FLCs typically increase and the FLC sum is more relevant for diagnosis, 

prognostication and monitoring. In studies relating to polyclonal FLCs and mortality prediction, FLC 

sum is the marker of interest (Eisele et al., 2010; Anandram et al., 2012; Dispenzieri et al., 2012).  

The information presented as part of this study provides useful information for current and potential 

users of FLC assays to measure polyclonal FLCs.  As perhaps expected, κ and λ FLC quantitation 

is inherently different when employing different test formats and technologies. This has been 

shown previously for samples containing monoclonal FLCs.  Consequently, the same consistent 

test should be used in studies with multiple timepoints or tracking individuals over time and 

methods are not interchangeable. When FLC sum is the measure of interest, different methods are 

likely to return similar concentrations and provide broad agreement regarding the classification of 

FLC elevation.  

ELISAs can offer several practical benefits for laboratories and researchers.  They are a simple 

method that only requires a plate reader as opposed to any large or expensive equipment.  

Nephelometric and turbidimetric methods are generally only available in specialised clinical 

laboratories; ELISAs are more accessible to a wider range of researchers and potential FLC users. 

They are a flexible platform that can be run manually or on automated systems depending on 

sample numbers and resources. Others have utilised both polyclonal anti-FLC antibodies and 

monoclonal anti-FLC antibodies to make ELISA formats for quantitation of FLCs in serum (Nakano 

and Nagata, 2004; Davern et al., 2008; de Kat Angelino et al., 2010). Although the concept of 

using ELISAs for the measurement of FLCs is not novel, these previous ELISA methodologies 

have not been translated into commercially available assay kits. The present study provides initial 

data regarding the use of the Seralite ELISA in polyclonal clinical samples and provides 

comparison data with two different FLC methods – Freelite and Seralite LFD test.   
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It should be noted that while in practice users may choose to use the same system for measuring 

monoclonal and polyclonal samples, the intended use of Freelite and Seralite LFD is for myeloma 

and related disorders. Alternatively, CombyliteTM (Blinding site) is a turbidimetric immunoassay that 

quantitates polyclonal sFLCs and provides the FLC sum, designed for testing inflammatory 

conditions associated with elevated FLC (Faint et al., 2014). Although Combylite has high 

concordance with Freelite, direct comparison with the ELISAs, which are intended for polyclonal 

use, would be useful as part of future studies.  It should be noted that other assays are also 

available. N Latex (Siemens) is a nephelometric assay (te Velthuis et al., 2011) that has mainly 

been validated for use in a range of plasma cell dyscrasias and renal impairment. There is also a 

new assay based on ELISA technology (Sebia) that has initially been validated in myeloma and 

CKD samples (Jacobs et al., 2018).  Future studies should establish the performance of the 

ELISAs in relation to these methods.  It may be particularly interesting to see how Seralite ELISA 

compares to the new Sebia ELISA and if using the same platforms produces greater agreement 

between methods or if the different antibodies are main contributor to variability, regardless of 

assay system. In addition, to assess the utility of the Seralite ELISA in relation to monoclonal 

samples, separate in-depth evaluation would be required as part of additional studies. The growing 

range of sFLC technologies can promote use of FLC testing and users’ choice of method will most 

likely incorporate the nature of the samples to be tested and resources available.  

 

FLCs have been shown to exert a range of biological functions (Nakano et al., 2011; Brebner and 

Stockley, 2013). These roles include interactions with immune cells such as neutrophils, mast cells 

and B cells; stimulation of inflammatory cytokine release; mediation in allergenic responses and 

assistance in antigen uptake (Cohen et al., 2001; Nakano et al., 2011; Braber et al., 2012; 

Hutchinson et al., 2012 ; Brebner and Stockley, 2013). Due to these activities, FLCs have been 

proposed to stimulate chronic inflammation via immune activation (Redegeld et al., 2012).  This 

mechanism would account for the various relationships observed between FLCs and inflammatory 

and autoimmune diseases.  FLCs also serve as a non-specific inflammatory marker for mortality in 

the general population, although it’s not clear if an elevated FLC sum acts as a proxy for disease or 

a mediator of disease processes (Dispenzieri et al., 2012).  Other studies have also highlighted the 
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use of FLCs as a biomarker in inflammation, ageing and health research (Drayson, 2012 ; Heaney 

et al., 2016a; Heaney et al., 2016b). The growing evidence of the utility of FLCs across a range of 

inflammatory and autoimmune conditions and its emergence as a biomarker in different fields of 

research may increase the need for and adoption of FLC assays.  Indeed, it is possible to assess 

FLCs in a range of biological fluids, including saliva and CSF, which may increase the scope of 

research involving FLCs further in the future. The ability to detect low levels of polyclonal FLCs 

with the ELISAs could assist with quantification in alternative specimens but this would need to be 

validated in separate studies.  

The present study was a retrospective analysis of stored clinical samples that had undergone 2 

cycles of freeze-thaw.  FLCs have been shown to be stable when analysed on the LFD (Campbell 

et al., 2017) and various studies have analysed FLCs after long-term storage (Dispenzieri et al., 

2012; Turesson et al., 2014; Horber et al., 2019). However, users should determine the effects of 

applicable sample storage and processing on their chosen platform.   

5. Conclusions  

The Seralite ELISAs for the measurement of polyclonal κ and λ FLCs demonstrated good 

performance characteristics.  When compared with Freelite and Seralite LFD tests, quantitation 

was found to be different for κ and λ FLC concentrations, providing further evidence that FLC 

techniques are not interchangeable for individual light chain measurements.  Only the FLC sum 

returns comparable results and concordance regarding FLC elevation across the methods.  

This study provides initial analytical validation of the Seralite ELISAs and provides information on 

how they compare to existing tests for the purpose of polyclonal FLC measurement.  Platforms for 

FLC measurement are becoming more diverse and this growing range of FLC measurement 

techniques may help improve access to FLC testing and enhance choice to suit user needs and 

testing in different populations.  
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