-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Bath Research Portal

UNIVERSITY OF

BATH

Citation for published version:

Bryson, JJ & Theodorou, A 2019, How Society Can Maintain Human-Centric Atrtificial Intelligence. in M Toivonen
& E Saari (eds), Human-Centered Digitalization and Services. Translational System Sciences, Springer, pp. 305-
323. <https://www.springer.com/gp/book/9789811377242>

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
Unspecified

This is the author accepted manuscript of a chapter published in final form in ryson, JJ & Theodorou, A 2019,
How Society Can Maintain Human-Centric Artificial Intelligence. in M Toivonen & E Saari (eds), Human-
Centered Digitalization and Services. Springer, pp. 305-323. and available via:
https://lwww.springer.com/gp/book/9789811377242

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Feb. 2021


https://core.ac.uk/display/370406322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.springer.com/gp/book/9789811377242
https://researchportal.bath.ac.uk/en/publications/how-society-can-maintain-humancentric-artificial-intelligence(dc67be83-20e3-455b-943a-3e060ba778fe).html

How Society Can Maintain Human-Centric
Artificial Intelligence

Joanna J. Bryson and Andreas Theodorou

Abstract Although not a goal universally held, maintaining human-centric artifi-
cial intelligence is necessary for society’s long-term stability. Fortunately, the legal
and technological problems of maintaining control are actually fairly well under-
stood and amenable to engineering. The real problem is establishing the social and
political will for assigning and maintaining accountability for artifacts when these
artefacts are generated or used. In this chapter we review the necessity and tractabil-
ity of maintaining human control, and the mechanisms by which such control can
be achieved. What makes the problem both most interesting and most threatening is
that achieving consensus around any human-centred approach requires at least some
measure of agreement on broad existential concerns.

1 Introduction: Remit and Definitions

The greatest challenges of appropriately regulating artificial intelligence (AI) are
social rather than technical. First, we cannot agree on a definition of the term, even
though there are perfectly well established definitions of both artificial and intel-
ligence. The primary problem is that we as humans identify as intelligent, which
certainly is one of our characteristics, but that does not imply that intelligent means
‘human-like’. We are not only intelligent but tall, long-lived, and terrestrial, at least
compared to other vertebrates (animals with spines). So from the outset it should
be clear that this chapter is not—or not principally—about artificial humans, but
about all artefacts that are intelligent. This includes not only humanoid robots but
a wide range of intelligent tools and services, including social media platforms,
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driverless and Al-ehanced conventional automobiles, smartphones, spellcheckers,
and thermostats.

The term human in this chapter will be reserved to mean members of the species
Homo sapiens as a species is ordinarily recognised in biology. While it is at a mini-
mum generous and possibly highly moral to concern ourselves about the well being
of anything that could share phenomenological sensations such as pain and loneli-
ness that members of our species do, it is essentially impossible that we will ever
build something from metal and silicon that will be as phenomenologically similar
to us as rats or cows are. So again, it is worth being clear from the outset that this
chapter is not about humans that have been created via cloning, or other forms of
intentional but slight alterations of what is fundamentally our evolved biological de-
sign. Rather, this chapter concerns artefacts built from the ground up, though we do
mean to include systems with non-deterministic elements of design such as machine
learning or random number generators. We will however leave discussions of prob-
lems concerning the phenomenological experiences of such artefacts until humanity
has agreed to avoid the suffering of rats and cows.

Having said how we do not define ‘intelligence,’ it is now appropriate to discuss
how we will. For the purpose of this chapter:

e An agent is anything capable of altering the world. This includes chemical
agents.

o Computation is the systematic transformation of information from one state to
another. Computation is a physical process, requiring time, space, and energy.

e [ntelligence is a special case of computation, that generates a special form of
agency where actions — alterations of the world — are generated from percep-
tion — sensing of the world. Intelligence is a property of an agent that allows that
agent to change its world in response to contexts, to opportunities and challenges.
This recognition and addressing of the environment is achieved via computation.
This definition is widely used in both natural and artificial intelligence, and dates
to at least the nineteenth century (Romanes, 1883).

Artificial intelligence (Al) is simply intelligence expressed by an artefact, which for
simplicity we will define as something built intentionally by a human, or multiple
humans working together.

We also define two more terms that are the real sources of societal concern that
are often misdirected towards the term intelligent.

e A moral agent is an agent that a society holds responsible for its own actions.
e A moral patient is any entity that a society considers it to be the responsibility of
moral agents to protect.

Whilst we may often think that such concepts must be universal—and certainly his-
torical ethical systems such as religions will often lead us to believe this is so—in
fact there is tremendous variation by society on these details. Only recently have
many humans come to recognise climate as a moral patient. Different nations and
even states within nations have different ages at which they consider a human to
be old enough to vote, fight in a war, choose a marriage partner, or consent to sex.
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Given that these are some of the most momentous decisions an individual can make,
it is striking that there is no universal agreement on when moral agency is achieved.
From this it becomes evident that ethics itself is a social construction. In fact ar-
guably, ethics may be definitionally the means by which a society constructs itself,
an idea explored at more length by Bryson (2018).

Finally, the title of this chapter implies that we already have Human-Centric Al
This is largely true, though arguably not entirely. We certainly do already have Al
by the straight-forward definitions given here. First, we have technology like Web
search, spell and grammar checking, and Global Positioning System (GPS) navi-
gation systems—all Al that billions of people interact with daily. These are Al as
service; intelligent systems that transform data into recommendations that we act
upon, or not. But secondly, some would argue that our existing corporations and
governments are excellent examples of Al (List and Pettit, 2011). True, these arte-
facts include humans as part of their systems, but they are also already exactly the
sort of phenomena some describe when they use words or phrases like ‘superintel-
ligence’ or ‘artificial general intelligence.” Human society as a whole is increasing
its capacity to learn exponentially, by extending ourselves through our artefacts,
and also just by extending our own sheer numbers. Many of the artefacts benefiting
this system are not Al, but simply communication, education, and nutritional tech-
nologies which make us as individuals smarter, and give us access to each other’s
capacities for intelligence. But the identified challenges of superintelligence such as
run-away processes over consuming available resources (Bostrom, 2012) are a good
description of humanity’s present challenges with respect to sustainability.

The extent to which governments, corporations, and their technological tools are
human-centric can be debated, but more often the debate concerns who among hu-
manity benefits, not whether something other than a subpopulation of humans is
truly benefiting. This chapter does not seek directly to solve this question, but does
assume that governments and corporations at least are focused on and controlled by
at least some set of humans. Our purpose is to show that similar or greater levels of
control can and should be expressed over the Al products humans produce. At the
highest level, the means by which this objective may be achieved is by maintain-
ing ordinary levels of human accountability for the devices we produce. We will go
into greater detail about how this can be achieved below, but first we discuss why it
should be.

2 Why Maintain Human-Centric Al

As just admitted, ‘maintaining’ human-centric Al isn’t exactly the situation we find
ourselves in. To the extent that corporations or governments function to serve their
own persistence even where that does not benefit humanity, then AI may already be
seen as not human-centric. The extent to which this is the current situation is much
debated. This will not be the focus of this chapter, but we will return to this question
briefly at the end of this section. For the purpose of the present chapter, we will
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assume that these institutions largely serve humanity, and that what we really mean
by our title is that we wish Al to make the situation no worse than it is, and perhaps
even to improve it.

There are many possible humanist reasons to maintain human-centred control.
First, we should say that there are two possible alternatives, which actually amount
to much the same thing. The first is that we lose control absolutely, and the second
is that control is handed from humanity to our artefacts. Whilst there will always
be anarchists and nihilists arguing for the former, we will neglect that option here
since people holding such positions are unlikely to become organised enough to
dismantle control globally. The latter though is seen by many as desirable or even
necessary. Aware of their own mortality and that of civilisations and species as well
(cf. Scranton, 2015), they put their hope in artefactual progeny. Perhaps this is be-
cause (ironically) they can exercise more control over artefacts than over biological
progeny, or perhaps they mistakenly believe that machines (unlike humans) can be
immortal or omniscient. The fact that the average working ‘life’ of an artefact is far,
far shorter than the average lifespan of a human (or even a chimpanzee) is apparently
regarded as irrelevant. Perhaps they think machines can be made self-repairing, but
in this sense so are biological lineages (Taylor and Bryson, 2014). Again, that any
purely-mechanical technology lineage we produce will exceed the lifespan of our
biological lineage is phenomenally unlikely.

It seems that the problem is that Al is viewed not as a type of computation—a
physical process, but as a type of math—an abstraction. Mathematics may be eternal
and perfect, but that is because it is not real. Computation being a physical process
requires time, space, an energy. Even if we are able to achieve long-term energy
independence (at least relative to our level of our demand) at some stage, we will
always be constrained by space and time.

The above are only reasons not to argue against human-centred Al, but here we
give two reasons to argue for it. First, every aspect of our values—not only our
ethics, and our human drives and desires, but also our sense of aesthetics—all of
these have coévolved with our species and societies in order to maintain our species
and societies (Bryson and Kime, 2011). There is no coherent sense in having ma-
chines enjoy hedonism for us, although we can use machines to capture resources
that we could not ourselves exploit, preventing them from being exploited by others.
While some openly find pleasure in such an expression of power, it is not something
we choose to openly condone here, and we doubt it would be condoned by the ma-
jority of any stable society were they to recognise this as being the impulse for their
support of ‘artificial life.’

Second, all social order is based on concepts and institutions of justice that un-
fortunately have human suffering at their core as a means of dissuasion (Bryson
et al., 2017). Law may seem to create compensation, and we could imagine a ma-
chine (for example) financially compensating for its wrongful actions. But in fact,
law is mostly about dissuasion. Laws and treaties are a means by which we set out
agreed behaviour, and agreed costs of violating that behaviour. We have coévolved
with these institutions for so long that we really do feel like we’ve received some
form of compensation when in fact we have only received justice. For example, if
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someone kills your lover, and that person goes to jail, you have received nothing
remotely like what you have lost, but you perceive victory. In fact, perhaps part of
what you lost is social status and faith in the system, and perhaps justice returns
these to you. But these abstractions exist in order to maintain social order, and rest
upon our biological architecture that makes stress and pain pervasively dysphoric,
and isolation and loss painful and stressful.

We cannot build machines that can so systemically experience such pervasive
dysphoria. Probably we cannot build such a machine at all, but certainly we cannot
build one for which we can guarantee its safety. In fact here we return to the idea
that Al is already somewhat out of our control, if we accept the List and Pettit
(2011) account of corporations as Al. Corporations are extended legal personhood
as a legal convenience, but it’s a convenience allowable only because real humans
are dissuaded from doing wrong by human justice. And we should not have said
‘because,” we should have said ‘to the extent which.” A shell company dissociates
the humans who would suffer if the company does wrong from the humans who
decide what the company does (cf. Bryson et al., 2017). Weapons such as guns,
airplanes and bombs, and also chains of command (military or corporate) similarly
remove individuals at least some ways from the consequences of their decisions,
which makes decisions with deeply aversive consequences easier to take.

The primary reason to maintain or even increase the extent to which Al is human-
centric is that to do otherwise would be far more likely allow a greater dismantling
of justice, resulting in greater human suffering, than it would be to produce a new
form of social or somehow universal good.

3 Maintaining Human Control Through Design

There are two means by which human control may be maintained over Al. First,
good design of Al systems allows us to ensure that intelligent systems operate within
the parameters we expect. Contrary to some contemporary horror stories, machine
learning (even DNN) doesn’t make this difficult. It is not hard to ring fence what
aspects of an Al system are subject to (can altered by) its own learning or planning.
In fact, constraining processes like learning and planning allows them to operate
more efficiently and effectively, as well as more safely. This is because the amount
of computation (time, space, and energy) required is directly related to the amount
of possibilities that need to be explored. Thus appropriate constraint is one of the
main means for making any system, including humans, smarter. We teach students
the sets of tools, facts, and approaches that have been shown to date most likely to
produce useful outcomes.

The second means of maintaining human control is by holding those who build,
own, or operate Al accountable for their systems through law and regulation. This
approach will be described in the following section, but requires first understanding
that the first approach is both possible and desirable. That is the focus of this section.
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To begin with, it has long been established that the easiest way to tackle very
large engineering projects is to decompose the problem wherever possible into sub-
projects, or modules (Bryson, 2000). For example, one component of a driverless car
is the GPS navigation system, which has been so completely modularised that it is
routinely used by enormous numbers of human drivers daily. There is no reason that
a single automobile’s ‘mind’ should alter the algorithm by which new routes are
chosen, although the observations of an automobile may contribute to the crowd-
sourced data on the current traffic on a road, or even the nuances of controlling a
particular make of car. Here again, even if such a crowd-sourced learning strategy is
used to recognise and avoid congestion, the constantly-updating models of the cur-
rent traffic conditions will not alter the independent model of the underlying roads.
Neither model will have any direct access to control over where or whether the car
moves, which is another module still, or for the time being, more likely a human
driver.

More generally, one method for designing modular decomposition for an Al sys-
tems is to assess what the system needs to know, and for each aspect of that knowl-
edge, the best way to maintain that knowledge, as well as to exploit it. Here we
describe one such approach to systems engineering real-time Al. We use this as a
case to demonstrate what is possible, and then to illustrate the more general claims
about accountability, transparency, regulation, and social control of Al made in the
section following.

3.1 Behaviour Oriented Design

The above observation—that an ontology of required knowledge and its most con-
venient representation for expressing timely action should be used as the basis
for modular decomposition for intelligent systems—is a core contribution of Be-
haviour Oriented Design (BOD), which is one methodology for systems engineer-
ing real-time Al systems (Bryson, 2001, 2003). BOD takes inspiration both from
the well-established programming paradigm of object-oriented design (ODD) and
its associated agile design (Cockburn, 2006; Gaudl et al., 2013), and an older but
still very well-known Al systems-engineering strategy, called Behaviour-Base Al
(BBALI, Brooks, 1991). Behaviour-based design lead to the first Al systems capable
of moving at animal-like speeds, and many of its innovations are still extremely
influential in realtime systems today. Its primary contribution was to emphasise
design—specifically, modular design. Previous Al researchers, inspired by their in-
terpretation of their own conscious experience, had expected to express the entire
world in a system of logical perfection and then to take only the provably optimal
action (Chapman, 1987). BBAI instead focuses on

1. the actions the system is intended to produce, and
2. the minimum, maximally-specialised perception required to generate each ac-
tion.
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In BBAI, each module derives action from its own dedicated perception.

While based in real-world experience of building robots, and as mentioned be-
ing the first approach that really succeeded in animal-like navigation at animal-like
speeds, there were problems with BBAI as Brooks originally construed it. The first
problem with this approach is coordinating the modules. Decomposing for simplic-
ity is of little use if the subsequent coordination proves intractable. Second, Brooks’
experience with traditional robot planning and the complexities of dealing with the
world lead him to dismiss any real-time extension of intelligent control whatsoever.
BBAI in its original form has no onboard planning (at least, no revision of the pri-
orities encoded in the AI) nor learning whatsoever. Brooks initially claimed (like
Lorenz before him) that embedding intelligence in its ecological niche was too del-
icate a problem to be open to risky processes like onboard learning, and that what
appeared to be thought and learning were epiphenomenal suppositions imposed by
us as observers as the organism interacted with a complex environment. “The world
is its own best model” (Brooks, 1991). While this emphasis revolutionised Al by re-
focussing it on proper systems design, it cannot really account for all of human-like
or even insect-like behaviour (Papaj and Lewis, 2012).

BOD connects Al properly back to systems engineering via OOD, affording
safety in Al by exploiting BBAI-like modular architectures to limit the scope of
machine learning, planning, or other real-time plasticity to the actions or skills re-
quiring the capacity to accommodate change. Such architectural design is essential
not only for safety, but also simply for computational tractability. As mentioned ear-
lier, learning systems are faster and more likely to succeed if they are conducting
their search over relevant possible capacities. Brains do the same thing. Contrary to
Skinner (1935), pigeons can learn to peck for food or to flap their wings to escape
shock, but not to flap their wings for food or to peck to avoid shock (Gallistel et al.,
1991). Biological evolution also provides architecture as scaffolding for viable sys-
tems. Again in contrast to some sensationalist contemporary horror stories, there are
in fact zero Al systems for learning chess that represent power switches, or have ac-
cess to guns. No Al system built to learn chess will ever shoot someone that moves
to turn it off at night!.

BOD makes such common sense architectural decisions an explicit part of its
development process. In general BOD is one means of using systems engineering
to overcome problems of complexity for intelligence, by introducing an ontology,
methodology, and architecture that promotes iterative design and testing. BOD in-
cludes common-sense heuristics for modular decomposition, documentation, refac-
toring, and code reuse. By using well-established OOD techniques, BOD allows
decomposition of intelligent behaviour into multiple modules forming what we call
a behaviour library. Behaviour library modules may wrap machine learning sys-
tems, or indeed commercial Al services providing specific capacities such as face
recognition or navigation.

Stringing these modules together into a coherent agent requires then only specify-
ing the priorities of that agent. Notice that multiple agents with completely different

1 Another stupidity of the gun-toting, chess-learning murderous Al fairytale propagated by the
Future of Life Institute is that real Al developers prefer our systems to do work while we sleep.
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goals can be constructed from the same behaviour library, providing only that they
either exploit the same type of hardware platform, or that the modules have been
constructed to be platform-independent. Aspects of intelligence can also be hosted
on servers or in clouds and accessed over an API, but of course for a real-time sys-
tem much critical intelligent infrastructure needs to be hosted in a way such that
the communication rate between modules and their embedded hardware substrate
can be guaranteed. Further, any system learning proprietary information e.g. about
its owner’s household should probably better host such information securely and
solely on site (Kalofonos et al., 2008).

3.2 Specifying a System’s Priorities

One of the innovations of BOD compared to both BBAI and OOD is to simplify
the problem of arbitrating between different modules that might otherwise produce
contradictory actions away from a highly distributed, difficult to conceptualise or
design network of dependencies, and back towards a more traditional hierarchical
representation of priorities. Of course, there were good reasons for Brooks’ origi-
nal avoidance of these hierarchies, concerning efficiency. As Blumberg (1996) ob-
served, action selection is only necessitated where there is competition for resources.
If no such competition exists, the behaviour modules are able to work in parallel.
However, many things are in this sense a resource, including a robot’s physical lo-
cation, direction of gaze, and what it can hold on to.

Bryson (2001) introduces POSH (Parallel-rooted, Ordered, Slip-Stack Hierar-
chical) action selection. These ideas were taken up also by the far better-named Be-
haviour Trees (BT) (Isla, 2015; Rabin, 2014) which function just as well for BOD
systems engineering of real-time Al, but here we focus on our original nomencla-
ture. For historic reasons, the data structure built from POSH (or BT) components,
describing an agent’s priorities, is termed a plan, and the part of the Al system
that checks these priorities is called a planner. This is true even though the planner
typically will not alter the POSH plans in the system, but the planner and the plans
together determine the sequence of steps the agent takes in pursuing its goals, which
might be more conventionally seen as a plan.

POSH plans combines faster response times similar to the fully reactive ap-
proaches for BBAI with a greater ease of developing goal-directed plans. A POSH
plan consists of the following elements:

1. Drive Collection (DC): This is the root or apex of the plan’s hierarchy. It con-
tains a set of Drives and is responsible for giving attention to the highest priority
Drive that presently could use that attention. The POSH planning cycle alternates
between checking for what is currently the highest level priority that should be
active, and then progressing work on that priority. This check is made hundreds
or thousands of times a second, to ensure the system’s highest priority goals
(which should ensure its safety) are constantly monitored.
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2.

Drive (D): Allows for the design of behaviour in pursuit of a specific goal. Each
drive maintains its execution state even when it is not the focus of planner at-
tention, allowing the system to express coarse-grained parallelism even within
prioritised actions, as well as independently by modules not requiring arbitra-
tion. Each drive specifies its own perceptual context which is suitable to or re-
quires its deployment, while the Drive Collection as a whole maintains track of
the multiple Drives’ relative priorities.

. Competence (C): A simpler hierarchical plan element for representing the prior-

ities within a particular component of a plan (also known as a subplan). Com-
petences are similar to the drive collection but lack the extra checks and mecha-
nisms for concurrency, which are handled entirely at the top level or root D. Each
competence contains one or more Competence Elements (CE), which also are as-
sociated with both a priority relative to the other CEs, and a context which can
perceive and report when that element can execute. The highest-priority action
that can execute will execute when the Competence receives attention.

Action Pattern (AP): These are simple sequences of actions and perceptions used
to reduce the design complexity of a plan when such a sequence of actions can
be determined in advance.

. Action (A): A call to code in the behaviour library that sets a skilled act in mo-

tion. To maintain agility in the planner, actions should not block (wait for a fi-
nal response in the world) but simply return immediately with a code indicating
whether or not the action was successfully initiated. Other plan elements can be
designed to watch for a context in which this action has succeeded or failed if
that knowledge is essential. However, in both biology and Al quite often actions
are just run ‘open loop’, without checks, and action selection is simply repeated
in the next instant in the new context produced by the agent’s actions or inactions
as time has progressed.

. Sense (S): Senses are very much like actions, and also depend on the behaviour

library for their implementation. The difference is that they return a value indi-
cating context, which may be used to determine for example whether a Drive or
Competence should be released to execute, or an Action Pattern aborted.

Taken together, these plan elements are sufficient for expressing the goals of

many systems. Of course, for complex systems with multiple, potentially conflict-
ing goals (e.g. maintaining a job and maintaining a relationship, or hoovering the
house and entertaining the dog) it may be useful for the order of priorities to shift
over time. For this we have developed several systems of synthetic emotions or
moods. Essentially, a mood or emotion is a special type of behaviour module that
determines its own current priority. Drives linked to these emotions have from the
drive collection’s perspective the same level of priority, and a separate system en-
sures that only one of these at a time receives the focus of attention (Bryson and
Tanguy, 2010; Gaudl and Bryson, 2018; Wortham et al., 2018).
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3.3 Real-Time Debugging of Priorities

Another myth of Al is that systems should become as intelligent as humans and
therefore not require any more training than a human. In reality, very few will want
to put as much energy into training an Al system as is required to raise a child, or
even to train an intern, apprentice, or graduate student. Programming is generally
a far more direct and efficient way to communicate what is known and knowable
about generating appropriate behaviour. However, debugging a complex, modular,
real-time system requires more insight than ordinary programming. Further, we may
well want to allow non-programmers to set priorities and choose between capacities
for their agents once reliable behaviour libraries have been defined. Both of these
activities requires an element of transparency to a system. Here we use transparency
to mean that the direct workings of the system should be made apparent — visible
and understandable (Bryson and Winfield, 2017; Theodorou et al., 2017).

Hierarchical definitions of priorities like POSH plans or Behaviour Trees offer
a sensible means of transparency for either of these two applications: expert de-
bugging or ordinary user understanding. Here we again describe novel work in our
own group, but the basic concept behind this may be generalised to other forms of
systems engineering. At Bath, we have developed a real-time visualisation system
and debugger for POSH plans. The system, ABOD3, is based on, but a substan-
tial revision and extension of, ABODE (A BOD Environment, originally built by
Steve Gray and Simon Jones, Bryson et al., 2005; Brom et al., 2006). ABOD3, first
described by Theodorou (2017) and shown here in Figure 1, allows the graphical
visualisation of POSH-like plans. The editor, as seen in its architecture diagram in
Figure 2, is implemented in such a way as to provide for expandability and customi-
sation, allowing the accommodation of a wide variety of applications and potential
users.

ABOD?3 is designed to allow not only the development of reactive plans, but also
the debugging of such plans in real time. The editor provides a user-customisable
user interface (UI). Plan elements, their subtrees, and debugging-related informa-
tion can be hidden, to allow different levels of abstraction and present only relevant
information to the present development or debugging task. The graphical representa-
tion of the plan can be generated automatically, and the user can override its default
layout by moving elements to suit needs and preferences. The simple UI and cus-
tomisation allows the editor to be employed not only as a developer’s tool, but also
has been demontrated to present transparency-related information to naive users that
helps them develop more accurate mental models of a mobile robot (Wortham et al.,
2017a).

Plan elements flash as they are called by the planner and glow based on the
number of recent invocations of that element. Plan elements without any recent in-
vocations start dimming down, over a user-defined interval, until they return back
to their initial state. This offers abstracted backtracing of the calls, and the debug-
ging of a common problem in distributed systems: race conditions where two or
more subcomponents are constantly triggering each other then interfering with or
even cancelling each other’s effects. Finally, ABOD3 can also support integration
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Fig. 1 The ABOD3 Graphical Transparency Tool displaying a POSH plan for a mobile robot,
in debugging mode. The highlighted elements are the ones recently called by the planner. The
intensity of the glow indicates the number of recent calls.

with videos of the agents in action, allowing for non-real-time debugging based on
logged performance. Logging of actions taken and contexts encountered is a sub-
stantial aspect of Al accountability and transparency, which we will return to in the
next section.

4 Maintaining Human Control Through Accountability and
Transparency

To reiterate, although we have here described the systems-engineering approach and
tools we have been developing together at the University of Bath, we are not claim-
ing that these are the only, best, or most essential means for maintaining human con-
trol of Al. We are rather communicating that such control is perfectly possible, and
illustrating examples of some of the technological mechanisms by which such con-
trol can be maintained. It is also perfectly possible to build Al for which accounting
is not possible, indeed this too has already been done and is indeed too prevalent in
our society (Pasquale, 2015). In this section, we summarise what is essential about
technological mechanisms for human control, then close with a discussion about the
social, legal, and political mechanisms for maintaining that control, which are actu-
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Fig. 2 System architecture diagram of ABOD3, showing its modular design. All of ABOD3 is
written in Java to ensure cross-platform compatibility. APIs allow the support of additional BOD
planners for real-time debugging or even multiple file formats for the plans. The editor is intended,
through personalisation, to support roboticists, software Al developers, and ordinary users inter-
ested in Al systems.

ally far more important. Technology serves and extends human society, but ethics is
what forms and defines human society.

4.1 Technological Mechanisms for Ensuring Transparency and
Accountability

What is important to realise is that every aspect of an artefact is a consequence of
design decisions. We are not saying that it is trivial to know what any Al system
is doing. We are saying that it is possible to provide the tools and keep the records
such that we know at the level sufficient to maintain human accountability what goes
wrong with a system, if it goes wrong, and how and why it was constructed such
that it did go wrong. There are social requirements underlying these technological
features: can a person or a company show that they followed due diligence when
they created an artefact? If not, they should be held liable for what that artefact
does.
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Fig. 3 ABOD3 implemented as part of a serious game (the Sustainability Game) so that game
players can understand the interaction between agent motivations and the viability of an artificial
community (Theodorou et al., 2019).

This does not mean that Al has to be deterministic or formally provably correct.
Due diligence can be demonstrated by corporations despite the fact they employ
people. People learn, have free will, and have incomprehensible systems of synapses
making up their action selection mechanisms. Many humans are dishonest, careless,
or sometimes just upset or incompetent. Nevertheless, we can construct systems that
ensure that humans working together tend to succeed. These systems generally in-
clude records, such as financial accounts, access permissions, and minuted meetings
where executive decisions are agreed. They also include external regulatory bodies
and law enforcement.

Exactly the same kinds of procedures can be used for retaining control of Al,
and indeed already are at least in well-regulated sectors like the automotive industry
(Doll et al., 2015). In every single case so far concerning a human fatality involv-
ing a driverless car, newspapers have within a week shown us exactly what the car
perceived, how that perception had been categorised, and what actions the car was
taking at the point of fatality, and even why. Keeping records of this sort of in-
formation is not difficult, but it is a design decision. That decision is enforced in
the automotive industry by its high levels of regulatory accountability mandated
by the incredible amount of human suffering and death generated as its by-product
(Williams, 1991). The design decision to provide adequate logging is one we can
and should also enforce for other Al systems in socially critical roles.

As we described in the previous discussion of moduarlity and safety, the equiv-
alents of ‘access permissions’ are also a completely standard part of design that
anyone with any practical experience of creating an intelligent systems takes for
granted. Every sensor or actuator a system has is an expense for its manufacturing,
so these will naturally be restricted to those required by a system’s task, but fur-
ther within the system, access to information can and should be restricted to that
information likely to be useful, not only for safety but simply for efficiency.
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In addition to logging what a system perceives and performs, we can also log
every aspect of how we designed that system. Standard practice in software de-
velopment is to use a software revision control system that documents the exact
author and timing of any change to the system’s software. Unfortunately, not every
development team will exercise best practice in terms of ensuring that each indi-
vidual developer has their own individual login, or documents the reasons for their
changes, or documents the versions of software libraries used to support their pro-
gramming, or data libraries used to train their machine learning. In fact, there has
been a well-documented, scandalous disregard for the provenance of both software
libraries (Giirses and van Hoboken, 2018) and data libraries (Pasquale, 2015). How-
ever, there is no technological reason that a better standard of practice couldn’t be
generated, and even required.

All of the mechanisms described above, and also the architectural concepts and
software tools described in the previous section, are mechanisms of transparency.
To be clear, when we talk about transparency here, we mean neither invisibility (as
is sometimes advocated by human-computer interaction specialists), nor (necessar-
ily) mandatory open-sourced code or formal, symbolic programming. The former—
invisibility—actually increases the hazard of Al as ordinary users fail to realise their
data is being gathered or to consider the consequences of compromising the security
of the system. The latter can produce more information than humans can accom-
modate without resulting in clarity about responsibility or good practice. What is
effectively transparent therefore varies by who the observer is, and what their goals
and obligations are (Bryson and Winfield, 2017; Theodorou et al., 2017).

The goal of transparency is never complete comprehension. That would severely
limit the scope of human achievement. Rather, the goal of transparency is providing
sufficient information to ensure that at least human accountability, and therefore
control, can be maintained.

Our position about transparency is supported by Dzindolet et al. (2003), who
conducted a study where the participants had to decide whether they trust a particu-
lar piece of pattern recognition software. The users were given only the percentage
of how accurate the prediction of their probabilistic algorithm was in each image.
Yet, by having access to this easy-to-implement transparency feature, they were able
to calibrate their trust in real time. Our own studies (discussed in Wortham et al.,
2017a,b), demonstrate how users of various demographic backgrounds had inac-
curate mental models about a mobile robot running a POSH planner. They were
ascribing unrealistic functionalities, potentially raising their expectations for its in-
telligence and safety. When the same robot was presented with ABOD3 providing
an end-user transparency visualisation, the users were able to calibrate their mental
models. This lead to more realistic expectations concerning the system’s capabili-
ties, though interestingly also a higher assessment of its intelligence.
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4.2 Maintaining Human Control Through Governance and
Regulation

There have at various periods, including the present, been a worrying tendency to
blame individual scientists or programmers for the consequences of their work.
While it is true that individuals are accountable for their actions—including life
choices concerning their employers—successful regulation requires looking at the
entire context of that action. If we know there will or at least can be individuals
who are dishonest, sloppy, suicidal, corrupted, or simply prone to occasional errors
(that is, human), then we should expect systems containing such individuals should
have some means for ensuring and promoting the quality of their work. For Al, the
scale of this task may sound insurmountable—do we really think we should check
the work of every individual programmer, globally? Who would do such a thing?
Yet this is exactly what Apple does for individual programmers who want to write
software applications for Apple’s smart phone, the iPhone. Smart phones are the
most fantastic information-gathering devices ever created, so it makes sense to have
this level of security and scrutiny enforced by the maker and owner of this platform.
Note also that despite the cost of such an operation, Apple has a perfectly successful
business model for producing wealth as well as products.

We mentioned just above that car manufacturers already are developing vast
amounts of Al in a highly regulated environment. At least some of them have also
been able to successfully demonstrate that they practice due diligence when they are
investigated by state prosecutors (Doll et al., 2015). But what about organisations
that changed the world in unanticipated ways by introducing entirely new platforms
and therefore capacities into societies and economies. Can they also be held ac-
countable for damage done with the tools they’ve provided?

This is a question being addressed in courts and legislatures globally as we write,
but we believe that the short answer is ‘yes, to a point.” That point is demonstrated
community standards of good practice. So if for example damage results from the
obviously poor (and often illegal) standards of conduct documented by Pasquale
(2015) or Giirses and van Hoboken (2018), then governments and other collectives
should hold organisations that profit from this conduct accountable for the damage
they cause. Similarly, if most organisations refuse to sell access to the data they col-
lect from their users because doing so would seem a clear ethical violation, but some
organisations do sell such data, then these latter organisations can be held account-
able for violating the known ethical standards of their sector. This is particularly
true for organisations of scale, who are routinely held to higher standards by the law
because of their position of leadership. With great power (or even just money) does
indeed come great responsibility.

In discussions we’ve held in the United Kingdom (UK) at least, it appears that
there is not really a call for changes in legislation (House of Lords, 2018). Rather,
what is needed is only to get through the fog of confusion caused by the smoke
and mirrors associated with ‘intelligence.” This is why we started this chapter as we
did, to make it clear that Al and indeed I are ordinary properties amenable to both
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science and law. Once this is clear, then with a little education and some good hiring,
ordinary legal enforcement of liability standards should be sufficient to maintain
human control.

Al does present two special problems however. One we’ve already mentioned but
will come back to again here. There is a mistaken belief that the capacity to express
human-like behaviour is in any way indicative of commonality of pheneomenolog-
ical experience between machines and humans. As Caliskan et al. (2017) demon-
strate, a glorified spread sheet that has just counted words on the Internet can report
phenomenological commonality with humans, e.g. that flowers are more pleasant
than insects, or even stereotyped beliefs such as that women’s names are more as-
sociated with the domestic sphere. Such a system barely even qualifies as Al by
the definition we’ve given since the only ‘action’ from its perception of the Web is
the numerical report of what words are associated with what others. Further, these
counts are replicated globally in standard Al tools, so there is no hazard of loss of
a unique perspective if we destroy one of these spreadsheets, as there is if we lose
a single human life, or even a unique copy of an old book or fossil. Humans act
differently around robots that look human to them, but then humans act differently
around statues that look human. Public spaces that had felt and been dangerous feel
and become safer when ordinary human statues are introduced at ordinary human
scale (Johnson, 2017). Thus reports of phenomenological similarity generated either
by Al or by human observers cannot be seen as valid demonstrations of AI moral
patiency.

Unfortunately, many people argue that empathy is core to ethics. Empathy is a
terrible metric of moral patiency; it is extended more to those more like us (Bloom,
2017). Also, people are moved to self-deception by their fear of mortality and desire
for powerful progeny and partners. There are many proposals to extend the mecha-
nisms that sadly often fail to protect humans to protect robots or Al (Gunkel, 2018).
We share the goal of not wanting any entity to suffer unnecessarily, but we take
this to imply we should design Al so that it will not suffer, and further to ensure
that damage to Al would not incur human suffering. Again, it is a design decision
whether we make Al that is robust, can be backed up and thus protected by standard
means for protecting and preserving digital data. This is the only ethical decision for
Al that anyone cares about, and eliminates the necessity of the sorts of protections
extended to unique human lives.

Another problem with mistakenly thinking AI is human-like is believing that
human punishments such as social shunning, fines, prison, and the other tools of
human law could be extend to it. Again, if we accept the List and Pettit (2011) def-
inition of corporations as Al, we can already see that where the humans who make
the decisions are not the humans who will be held to account, corruption follows. If
we make artefacts to be legal persons, those artefacts will be used like a shell com-
pany, to evade justice and corrupt economies and power structures (Bryson et al.,
2017), leaving ordinary citizens disempowered with less protection from powerful
institutions (Elish, 2016).

The second special problem of Al is not actually unique to it but rather a char-
acteristic of Information Communication Technology (ICT) more generally. ICT
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thanks to the Internet and other networking systems operates transnationally, and
therefore affords the accumulation of great wealth and power, while simultaneously
evading the jurisdiction of any particular nation. This means that appropriate reg-
ulation of Al requires transnational cooperation. Again, the process to establish
transnational agreements, treaties, and enforcement mechanisms is nontrivial, but
already known, and already under way.

Conclusion

In conclusion, societies both can and should maintain control over artificial intel-
ligence. Fortunately, significant progress is being made in achieving this goal—
progress made by technology companies, regulatory bodies, governments, profes-
sional organisations, and individual citizens including software developers who are
taking the time to understand the social consequences of technology. We welcome
the opportunity to describe these efforts here, and encourage our readers to join
the perpetually ongoing project of creating a richer, fairer, and more just society in
which we may all flourish with dignity.
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