
The evolution and arrest of a turbulent stratified oceanic bottom boundary1

layer over a slope: Upslope regime and PV dynamics2

XIAOZHOU RUAN∗3

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of

Technology, Cambridge, Massachusetts

4

5

ANDREW F. THOMPSON6

Environmental Science and Engineering, California Institute of Technology, Pasadena, California7

JOHN R. TAYLOR8

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge, UK

9

10

∗Corresponding author address: Xiaozhou Ruan, Department of Earth, Atmospheric and Planetary

Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139.

11

12

E-mail: xruan@mit.edu13

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

The influence of a sloping bottom and stratification on the evolution of an

oceanic bottom boundary layer (BBL) in the presence of a mean flow is ex-

plored. As a complement to an earlier study (Ruan et al. 2019) examining Ek-

man arrest in a downslope regime, this paper describes turbulence and BBL

dynamics during Ekman arrest in the upslope regime. In the upslope regime,

an enhanced stratification develops in response to the upslope Ekman trans-

port and suppresses turbulence. Using a suite of large-eddy simulations, we

show that the BBL evolution can be described in a self-similar framework

based on a non-dimensional number X/Xa. This non-dimensional number

is defined as the ratio between the lateral displacement of density surfaces

across the slope X and a displacement Xa required for Ekman arrest; the latter

can be predicted from external parameters. Additionally, the evolution of the

depth-integrated potential vorticity is considered in both upslope and downs-

lope regimes. The PV destruction rate in the downslope regime is found to

be twice the production rate in the upslope regime, using the same definition

for the bottom mixed layer thickness. It is shown that this asymmetry is as-

sociated with the depth scale over which turbulent stresses are active. These

results are a step towards improving parameterizations of BBL properties and

evolution over sloping topography in coarse-resolution ocean models.
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1. Introduction33

In the oceanic bottom boundary layer (BBL), small-scale turbulence extracts energy and mo-34

mentum from larger scale currents. While the energy input rate by wind stress is relatively well35

quantified from satellite observations (e.g. Wunsch 1998; Scott and Xu 2009), the closure of the36

kinetic energy (KE) budget for balanced flows in the ocean, which includes mesoscale eddies and37

gyres as well as overturning circulations, has been elusive due to large uncertainties associated38

with key energy sinks. One of the primary energy sinks is bottom drag acting on geostrophic39

flows (Wunsch and Ferrari 2004). Although a number of recent studies have focused on a global40

quantification of bottom drag (Wunsch and Ferrari 2004; Sen et al. 2008; Arbic et al. 2009; Wright41

et al. 2013), large discrepancies remain among the various estimates.42

One process that can introduce significant errors in the bottom drag calculation is Ekman arrest43

(MacCready and Rhines 1991). When a balanced, along-slope mean flow is present over sloping44

topography, a bottom Ekman layer forms due to the balance between the Coriolis force and bottom45

friction in the momentum budget. Depending on the direction of the mean flow, the associated46

cross-slope Ekman transport advects density surfaces, or isopycnals, either upslope or downslope.47

This advection, along with any turbulent mixing that may occur, produces lateral density gradients48

and a geostrophic velocity shear that always opposes the mean flow, thus reducing the magnitude49

of the total along-slope velocity near the bottom (see Fig. 1a for the upslope case). An equilibrium50

can be reached in which the buoyancy force in the cross-slope direction becomes large enough to51

balance the Coriolis force. In this limit there is negligible bottom stress and Ekman transport – the52

arrested state.53

The general evolution of the Ekman arrest process, especially the time required for Ekman arrest54

to reach equilibrium has been studied with various turbulence closures (Weatherly and Martin55
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1978; Trowbridge and Lentz 1991; MacCready and Rhines 1991; Brink and Lentz 2010; Umlauf56

et al. 2015). However, resolving the turbulence in the BBL is desirable in order to understand how57

intermittent and abrupt transitions in turbulent intensities respond to the stratification and shear58

stress that vary significantly during the approach to Ekman arrest. Both stratification and shear59

stress influence the maintenance and production of turbulence, and their impacts on turbulence are60

challenging to reproduce with simple turbulence parameterizations. Thus, one goal of this study is61

to examine Ekman arrest dynamics in simulations where most of the BBL turbulence is resolved62

in the Large-Eddy Simulations (LES).63

The temporal evolution of the BBL as it approaches Ekman arrest has been explored in previous64

studies in which the focus has been on how key parameters, such as the background stratification65

and slope angle, influence adjustment timescales. However, in practice, it is difficult to apply these66

studies to observations in order to estimate the magnitude of the bottom stress, Ekman transport or67

other friction-related quantities because of the instantaneous nature of most oceanic measurements.68

Ruan et al. (2019) addressed this limitation and proposed a new framework that classifies and69

identifies various BBL stages during Ekman arrest based on measurable environmental variables.70

This framework was explored for the downslope regime, and spanned stages from fully-turbulent71

flat-bottom cases to Ekman arrested states. This framework is centered around two length scales.72

First, the Ekman arrest height Ha describes the bottom mixed layer (BML) thickness needed to73

achieve Ekman arrest for given values of the stratification, mean flow strength, and slope angle.74

Second, the relaminarization height HL describes the BBL thickness at the time when the BBL75

relaminarizes. The ratio of the evolving BML thickness H and Ha can be used to describe the76

Ekman arrest process based on instantaneous measurements of the environmental variables, while77

the ratio between H and HL can be used to predict when the BBL relaminarizes. In this paper, we78

extend the framework in Ruan et al. (2019) to the upslope regime.79
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Momentum and buoyancy budgets are coupled during Ekman arrest, such that Ekman flow trans-80

ports buoyancy up-/downslope, which in turn affects the flow field. It is challenging, however, to81

parameterize individual components, such as the stratification and velocity shear, during Ekman82

arrest in coarse-resolution numerical models that do not resolve the BBL. Progress can be made by83

combining both the momentum and buoyancy equations in a conserved quantity, the Ertel poten-84

tial vorticity (PV). Moreover, the PV can be used to identify and predict the onset of submesoscale85

instabilities (Thomas et al. 2013), which can lead to enhanced energy dissipation and efficient86

tracer (heat, salt and nutrient) exchange between the boundary layer and interior (Wenegrat and87

Thomas 2020). With a goal toward a better representation of BBL evolution in numerical models,88

we provide a parameterization for the evolution of the integrated PV across the BBL for both up-89

and downslope regimes during Ekman arrest.90

The paper is organized as follows: we first introduce our theoretical predictions for the upslope91

case in section 2; validation of the theoretical predictions and results from the turbulence-resolving92

simulations are provided in section 3; the evolution of PV and the parameterization of the depth-93

integrated PV in the BBL in both up- and downslope regimes are described in section 4; the94

conclusions are summarized in section 5.95

2. Theoretical predictions96

Similar to the Ekman arrest height Ha, introduced by Ruan et al. (2019) for the downslope regime97

and diagnosed from external enviornmental parameters, we derive an expression for a length scale98

associated with arrest in the upslope case. As described below, we use a horizontal, rather than a99

vertical, length scale in the upslope regime. There are two stages of adjustment when an upwelling100

favorable mean flow is initialized from rest over a sloping bottom (Fig. 1b) (Brink and Lentz 2010):101

i) a BML forms with an initial thickness H; ii) isopycnals are advected upslope, which re-stratifies102
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the BBL and suppresses turbulence until the arrested state is achieved. Throughout the manuscript,103

we define the thickness of the BML using a stratification threshold, referenced to the background104

stratification N2
∞. The BML is defined as the depth where N2 first equals rN2

∞, where r = 0.3. The105

BML thickness is not sensitive to the value of r; a range of 0.2 < r < 0.4 yields approximately the106

same diagnostics (figure not shown). In the downslope regime, the BML is always well-mixed.107

In contrast, a weak but non-negligible stratification (N2 ≈ 0.1N2
∞) remains within the BML in the108

upslope regime. Despite this difference in stratification, across both regimes the BML consistently109

characterizes the near-bottom layer where isopycnal tilting is strong in response to external mean110

flows.111

Our focus in this study is on stage (ii), the advection of isopycnals, as this likely represents the112

bulk of the adjustment in the real ocean. In the downslope regime, the evolving thickness of the113

BML provided the length scale we used to describe the Ekman arrest adjustment — displacement114

of isopycnals across the slope can be converted to a height scale through the slope angle (H =115

αX) when isopycnals tilt downward. In the upslope regime the BML thickness does not change116

proportionally with the isopycnal displacement. Instead, a greater upslope displacement will lead117

to a stronger stratification and a thinner BML. Therefore, we instead use X , the displacement of118

isopycnals in the cross-slope direction, to describe the Ekman arrest adjustment in the upslope119

regime.120

To leading order, the cross-slope momentum equation in the rotated coordinates shown in Fig. 1a121

(Weatherly and Martin 1978) is given by122

∂u
∂ t
− f v =−αb− 1

ρ0

∂τx

∂ z
. (1)

Here u and v are the perturbation velocities to the background mean flow, f is the Coriolis fre-123

quency, α is the inclination angle of a planar slope, τx is the cross-slope turbulent stress, and124
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b =−gρ ′/ρ0 is buoyancy defined as a perturbation away from the background density profile that125

has a constant stratification N2
∞, and ρ0 is a reference density. The small angle approximation is126

assumed throughout this study. Expressions for the Coriolis force (per unit mass) FC and buoyancy127

force (per unit mass) FB (e.g. Umlauf et al. 2015) at the bottom that balance at the arrested state128

are129

FC = fV∞, FB = αb = α
2N2

∞X , (2)

where V∞ is the magnitude of the barotropic along-slope flow. Equating the two forces in the130

arrested state yields a prediction for the required displacement of isopycnals across the slope:131

Xa =
fV∞

α2N2
∞

. (3)

Stronger barotropic flow (V∞), smaller bottom slope, and weaker background stratification increase132

the equilibrium isopycnal displacement. For typical abyssal ocean parameters: f = 10−4 s−1,133

V∞ = 0.05 m s−1, α = 5× 10−3, and N2
∞ = 10−7 s−2, such that Xa = 2× 106 m. In contrast,134

over a moderate continental slope, parameters can be adjusted to f = 10−4 s−1, V∞ = 0.1 ms−1,135

α = 10−2, and N2
∞ = 10−6 s−2, and Xa is reduced by over an order of magnitude to 105 m. In the136

next section, we show that the ratio between the evolving isopycnal displacement across the slope137

X and the isopycnal displacement in a state of Ekman arrest, Xa, forms a non-dimensional number138

that describes the BBL evolution in the upslope regime.139

In the boundary layer with a nonzero buoyancy flux at the boundary, the competition between140

shear production and buoyancy flux in maintaining the turbulence can be characterized by the141

Obukhov length scale. Here, we assume that the buoyancy flux at the sloping bottom (e.g. due142

to geothermal heating) is zero. However, as discussed in Ruan et al. (2019), we can define a143

‘slope Obukhov length’ in an analogous way to the Obukhov length by replacing the surface144

buoyancy flux in the slope-normal direction with the cross-slope Ekman buoyancy flux. This145
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bottom-stress-driven Ekman buoyancy flux has similarities to the wind-driven Ekman buoyancy146

flux in the surface boundary layer (Thomas 2005). In the BBL, the lateral density gradient arises147

from a sloping bottom intersecting a vertical stratification, whereas in the surface ocean, the lateral148

density gradient typically arises from frontal dynamics that allow a range of density surfaces to149

outcrop in the mixed layer. The slope Obukhov length can thus be defined as (see Ruan et al.150

(2019) for detailed derivation):151

Ls = (1+Bu2)
f u∗

kαN2
∞

, (4)

where Bu = αN∞ f−1 is the slope Burger number, k = 0.41 is the von Karman constant and u∗ ≡152 √
τy/ρ is the friction velocity. As discussed in Ruan et al. (2019), Ls can be non-dimensionalized153

by the viscous length scale δν = ν/u∗ (ν is the molecular viscosity):154

L+
s =

Lsu∗
ν

= (1+Bu2)
f u∗2

νkαN2
∞

, (5)

to form the viscous slope Obukhov length, L+
s . It has been shown that L+

s describes the turbulent155

state in the downslope Ekman arrest regime, such that for L+
s < 100, turbulence collapses and the156

boundary layer enters a relaminarized state (Ruan et al. 2019). The connection between L+
s and157

the turbulent state of the BBL also enables us to predict the magnitude of friction-related quantities158

such as the friction velocity, wall stress and cross-slope Ekman transport, when the turbulence is159

suppressed and the BBL relaminarizes. Our working hypothesis is that the BBL relaminarizes160

when L+
s falls below some critical value in the upslope regime.161

3. Ekman arrest in the upslope regime162

A suite of LES are performed with a variety of slope angles, background stratification and163

barotropic mean flow magnitudes (Table 1 with the suffix “-u” denoting the upslope simulations)164

using the computational fluid dynamics solver, DIABLO. Details of the numerical method used165
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in DIABLO can be found in Taylor (2008) and Bewley (2008). In order to resolve the turbulence166

close to the smooth solid bottom, we performed LES with near-wall resolution which resolves at167

least 80% of the energy throughout the BBL (Pope 2001; Sagaut 2006). In particular, the resolu-168

tion is sufficiently high to capture viscous effects near the wall and thus minimize the reliance on169

the Smagorinsky subgrid-scale model. The domain size is 30 m (Lx) in the x and y directions and170

60 m (Lz) in the slope-normal (z) direction. In order to avoid the direct impact of stratification on171

turbulence development near the wall, we constructed a thin (∼ 2 m) mixed layer near the bottom172

in the initial stratification profile. Other details of the simulation setup, including the initial strati-173

fication profile, are provided in section 3 of Ruan et al. (2019), thus are not included here to avoid174

repetition.175

As the isopycnals are advected upslope, the buoyancy force, FB in (2), starts to oppose the flow176

in the cross-slope direction. The evolution of the total cross- and along-slope flow in simulation177

A-u and F-u are shown in Fig. 2. Simulation A-u has the smallest slope angle α = 0.005 and178

weakest background stratification N2
∞ = 10−7s−2, and thus is close to the flat-bottom Ekman layer179

limit. Simulation F-u, on the other hand, has a large slope angle α = 0.02 and strong stratification180

N2
∞ = 10−5s−2, and evolves rapidly toward the Ekman-arrested state. The cross-slope velocity and181

depth-integrated transport in simulation F-u decays to around 0 after a non-dimensional time t f =182

20, whereas simulation A-u exhibits a relatively steady flow field (Figs. 2a, c and 3). Simulation183

A-u also shows relatively little reduction in the near-bottom along-slope mean flow, especially184

compared with simulation F-u (Fig. 2b, d). Oscillations are a prominent feature of the cross-slope185

flows and have near-inertial frequencies that are determined by the slope angle and background186

stratification (Brink and Lentz 2010) (Figs. 2a, c and 3). Around t f = 20, when the cross-slope187

flow stabilizes, simulation F-u shows a negligible (period-averaged) cross-slope velocity and large188

velocity cancellation between the boundary layer (perturbation) and far-field flows in the along-189
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slope direction in the BBL (Fig. 4). A major difference between the upslope and downslope190

regimes is that in the downslope regime, the BML deepens as isopycnals tilt downward and the191

near-bottom flow is reduced due to the increasingly greater thickness of the boundary layer over192

which the thermal wind shear is present. In the upslope regime, the flow reduction is realized193

by enhanced buoyancy gradients in the horizontal direction, and a progressively stronger thermal194

wind shear is found over a vertical length scale that remains relatively unchanged (Fig. 5).195

Two different end states of the boundary layer stratification are found in Brink and Lentz (2010).196

In cases with large Bu, the enhanced stratification near the bottom connects smoothly with the in-197

terior stratification at the arrested state, whereas for cases with small Bu, a density jump, or a198

“cap,” is present that separates two linearly-stratified regions within and outside of the BBL. The199

LES simulations do not produce a capped upwelling case in the arrested state, even for experi-200

ments with small Bu (our simulation H-u). The absence of the density jump could be related to201

the treatment of turbulence between our LES experiments and models with typical second-order202

turbulence closures. Moreover, the relaminarization process (discussed below), which destroys203

the BML at the arrested state, could contribute to this discrepancy, although more simulations204

with small Bu that reach the arrested state are needed to confirm this. Additionally, the constant205

gradient Richardson number in the arrested BBL, as reported by Brink and Lentz (2010), does not206

exist in our simulations (figure not shown).207

During Ekman arrest, stratification is enhanced in the BBL (Fig. 5) and turbulence is expected208

to be suppressed (e.g. Taylor and Sarkar 2008; Deusebio et al. 2014). We show the evolution of209

turbulent kinetic energy (TKE) in two of the runs in which the TKE becomes negligible (Fig. 6).210

TKE in simulations F-u and H-u has its largest magnitude at the beginning of the simulation211

before the isopycnals are advected upslope, then TKE decays sharply with time as stratification212

strengthens close to the bottom until the turbulence is completely suppressed (Figs. 5 and 6a, b).213
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The decay of TKE is the result of i) a reduced friction velocity (or bottom stress) as the total near-214

bottom flow weakens (Figs. 2d and 6c, d) and the turbulence production rate slows; ii) a stronger215

stratification that suppresses turbulence. In both experiments F-u and H-u, the collapse of TKE216

coincides with the time when L+
s falls below 100 (Fig. 6c, d). This relaminarization threshold217

is consistent with the simulations in the downslope regime, such that turbulence collapse occurs218

when stable stratification penetrates into the viscous wall region (∼ 100ν/u∗) (Ruan et al. 2019).219

Thus, a prediction for the friction velocity and other related quantities can be given when the BBL220

relaminarizes:221

u2
∗ =

100νkαN2
∞

f (1+Bu2)
. (6)

Once the flow becomes laminar, L+
s and u∗ evolve slowly in time in response to molecular diffusion222

(Fig. 6c, d).223

We note that a limitation of the LES simulations is that they do not account for bottom roughness224

and this may impact the prediction in (6). However, the use of a non-dimensional Obukhov length225

threshold to predict turbulence collapse has been confirmed in a range of settings including DNS226

with a smooth bottom, laboratory experiments with rough bottom, and in-situ observations in the227

atmospheric boundary layers (Flores and Riley 2011). This suggests that the diagnosed threshold228

for relaminarization during Ekman arrest (L+
s < 100) can be extended to a rough bottom and229

higher Reynolds numbers as long as the height of the roughness is not large enough to disrupt the230

buffer layer where viscous effects give way to the log-law region (Jiménez 2004). However, future231

studies would be required to confirm this.232

Next we examine the evolution of the friction velocity, u∗, a measure of the friction (or bottom233

stress) exerted by the solid bottom, in all the simulations. For the simulations where Bu is small234

(e.g. A-u, B-u and C-u), there are relatively little changes to the friction velocity throughout the235

simulations (Fig. 7a). In contrast, when Bu is large (e.g. F-u and H-u), the friction velocity decays236
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sharply with time. The much slower evolution of u∗ in the later stage of simulations F-u and H-u237

is related to the relaminarized state described above. Although the timescale required to reach238

equilibrium varies by orders of magnitude across the different simulations, we anticipate that all239

simulations will eventually reach the arrested state. However, for small Bu, the time required for240

the arrest to be achieved is too long to capture in the LES. The relatively small changes in u∗241

in the simulations with small Bu indicate that they remain far away from arrest at the end of the242

simulation.243

The change in friction velocity can be described in terms of the non-dimensional number X/Xa.244

Here, we define the ratio between the distance over which isopycnals move across the slope,245

X = b/(αN2
∞), and the required displacement Xa for Ekman arrest defined in (3). When plotted246

against X/Xa, the friction velocity collapses onto a linear relationship for all simulations (Fig. 7b):247

u∗ = u∗0(1−X/Xa), (7)

where u∗0 is the initial friction velocity with flat isopycnals. Stages far from arrest correspond to248

regions where X/Xa� 1 and u∗/u∗0 ≈ 1 and those close to the arrested states are characterized249

by enhanced X/Xa and reduced u∗/u∗0 (Fig. 7b). Two simulations enter the relaminarized state250

before X/Xa reaches 1, which indicates that relaminarization occurs before the Ekman arrested251

state, which is similar to the downslope regime. Data points for simulations F-u and H-u for the252

times when L+
s falls below 100 are not shown because of the slower evolution in the relaminarized253

states.254

The non-dimensional ratio, X/Xa provides a useful way to diagnose the state of the BBL in the255

upslope regime. Note that Xa depends only on environmental parameters, such as the magnitude of256

the topographic slope, interior stratification and the strength of the background flow. Thus, given257

Xa, the friction velocity can be predicted based on the non-dimensional parameter X/Xa, where the258
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lateral displacement of isopycnals X are available from instantaneous observations of the ambient259

environment1. In other words, the full evolution of the upslope isopycnal displacement need not260

be observed.261

4. PV evolution262

During Ekman arrest, the momentum and buoyancy budgets are coupled over the sloping bottom,263

which complicates the analysis of the bulk BBL evolution. Here, we combine both the momentum264

and buoyancy into a single materially-conserved quantity, the Ertel PV. The Ertel PV is a useful265

tool for developing parameterizations in numerical models as it overcomes the need to describe266

each individual component in the momentum and buoyancy budgets of the BBL evolution. The PV267

also provides a convenient measure for the condition when the flow becomes unstable to various268

types of hydrodynamic, typically submesoscale, instabilities (Thomas et al. 2013). We discuss269

the evolution of the point-wise and depth-integrated PV in the BBL for both the upslope and270

downslope regimes during Ekman arrest (simulation details are summarized in Table 2 with suffix271

“-d”). The Ertel PV is defined as:272

q = ωa ·∇B, (8)

where ωa = ∇×u+ f ẑ is the absolute vorticity (ẑ denotes the local vertical direction) and ∇B =273

∇b+N2
∞ẑ is the total buoyancy gradient. When q takes the opposite sign of the local Coriolis274

parameter f in a stably stratified environment, symmetric and centrifugal/inertial instabilities can275

be induced; these instabilities extract energy through either the vertical or lateral geostrophic shear,276

respectively (Haine and Marshall 1998; Thomas et al. 2013). These submesoscale instabilities277

1The length scale X is obtained from the ratio of the density difference arising from isopycnal tilting—i.e. the difference between the observed

seafloor density and the density expected from the incropping of an unperturbed, vertical, interior stratification—and the cross-slope density

gradient at the seafloor.
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also provide strong constraints on the BBL evolution, as they tend to bring the BBL to marginal278

stability, a state with zero boundary layer PV (Wenegrat and Thomas 2020).279

Changes in PV horizontally-averaged over the doubly-periodic domain are determined by the280

convergence/divergence of the slope-normal PV flux (Marshall and Nurser 1992; Thomas 2005;281

Taylor and Ferrari 2010):282

∂ < q >

∂ t
+

∂ < Jz >

∂ z
= 0, (9)

where angle brackets denote a spatial average in the x and y directions and Jz is the slope-normal283

component of the full PV flux:284

J = uq+∇B×F−Dωa. (10)

Here F = ν∇2u and D = κ∇2b. The three terms in (10) denote the advective, frictional and285

diabatic components of the PV flux. In the rotated coordinate in the sloping BBL, PV takes the286

following form (using the small-angle approximation):287

< q >= f
∂ < b >

∂ z
+ f N2

∞ +N2
∞α

∂ < v >
∂ z

+
∂ < b′ζ ′ >

∂ z
, (11)

where ζ = ∂v
∂x is the relative vorticity in the slope normal direction for a 2D system.288

The evolution of < q > is shown in Fig. 8 for two cases, one for the downslope regime and one289

for the upslope regime, both far from arrest. We ignore the last term in equation (11) as the con-290

tribution is small for timescales longer than an inertial period (Taylor and Ferrari 2010); also this291

correlation term vanishes in the depth-integrated budget that we consider next. For the downslope292

regime, the total PV decreases from its initial value (Fig. 8c). As isopycnals tilt downwards in the293

BBL, the thickness of the layer with zero or negative PV increases (Fig. 8a). During the adjustment294

toward Ekman arrest, the total stratification is weakened, and at the same time the vertical shear of295

the along-slope flow is enhanced, leading to a decay in both the PV and the depth-integrated PV296

(Fig. 8a, c). The PV destruction rate undergoes a rapid adjustment as the BML forms and becomes297
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steadier as the simulation approaches arrest. In the upslope regime, the trend is reversed as the298

total stratification increases and the velocity shear takes the opposite sign to that in the downslope299

regime. In contrast to the downslope regime, the thickness of the layer corresponding to low PV300

values changes more slowly after the initial adjustment stage. Furthermore, the PV production301

rate remains relatively steady throughout the simulation, except for cases with small Bu where the302

initial thickening of the BML reduces the PV. This reduction in PV later reverses as restratification303

dominates the PV evolution (figure not shown).304

We next analyze the evolution of the depth-integrated PV by integrating equation (9) from the305

bottom to a depth (beyond the BBL) where the vertical PV fluxes become negligible. Because of306

the presence of a solid bottom, the advective PV flux vanishes at z = 0 due to the no normal flow307

boundary condition. The diffusive PV flux is small due to both the insulating bottom boundary308

condition at z = 0 and the well-mixed layer with near-zero stratification adjacent to the bottom309

(Fig. 5b). Thus, the depth-integrated PV is only determined by the frictional flux at the bottom,310

such that when the PV flux is directed out of the BBL, the integrated PV decreases and vice versa:311

∂

∂ t

∫
∞

0
qdz = (∇B×F)|z=0 . (12)

The along-slope (y) component of the friction force F can be rewritten as Fy = ρ
−1
0 ∂τy/∂ z, where312

τy is the viscous shear stress in the along-slope direction. Thus we arrive at the final expression:313

∂

∂ t

∫
∞

0
qdz =

(
1
ρ0

∂B
∂x

∂τy

∂ z

)∣∣∣∣
z=0
∼ αN2

∞u2
∗

H
. (13)

Here the magnitude of the cross-slope buoyancy gradient is αN2
∞ and we approximate the vertical314

gradient of shear stress using the bottom stress τb = ρ0u2
∗ and the thickness of the BML, H, as315

defined in section 2. We choose to use the thickness of the BML rather than an Ekman layer for316

the vertical length scale here because these two length scales are often very similar for turbulent317

Ekman layers (Thomas 2005), at least when they are far from arrest. Also, the mixed layer depth318
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is a convenient and more easily observable metric in practice. Other scaling options were tested319

for this length scale, including the turbulent Ekman layer, u∗/ f , and the viscous sublayer, ν/u∗ (as320

the stress gradient is evaluated at the wall). However, neither of these two resulted in a collapse of321

the rate of change of the integrated PV, as occurs when using H (figure 9).322

We note that the study of Benthuysen and Thomas (2012) found a significant contribution to the323

PV flux from the diabatic component, but their simulations differ from ours in a couple of key324

ways. First, because of the initial thin bottom mixed layer at the start of the LES simulations, there325

is no buoyancy flux across the solid bottom throughout the Ekman adjustment due to the insulating326

bottom boundary condition. This differs from Benthuysen and Thomas (2012) where isopycnals327

are initially flat, causing the diabatic PV flux to be large. Furthermore, their frictional PV flux is328

smaller than ours due to a weaker (O(1)cm/s) along-slope flow during the evolution toward Ekman329

arrest. Our simulations are designed to account for realistic magnitudes of boundary currents that330

are typically found over the continental slope as well as accounting for a negligible buoyancy flux331

across the solid bottom.332

The ratio between the rate of change of the integrated PV and the frictional PV flux is constant333

after the initial adjustment in both upslope and downslope regimes (Fig. 9). For the downslope334

regime (note the negative sign for the downslope regime for PV destruction), the initial deviation335

away from the constant of proportionality is related to the faster PV reduction rate during the period336

of convective adjustment as the BML forms. For the upslope regime, all the simulations experience337

a two-stage adjustment. At the beginning of the simulation, the integrated PV evolution depends338

sensitively on the formation of BML (increasing H) due to enhanced mixing before restratification339

takes place. After the BML thickness H equilibrates, the PV production rate stabilizes (Fig. 8d),340

and a constant proportionality is reached between the two sides of equation (13). Simulations D-u,341

F-u and H-u in the upslope regime are not included in determining the constant of proportionality342
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because they either entered or are close to the relaminarized state where the PV evolution rate falls343

off sharply.344

For the steady PV evolution following the initial adjustment, the proportionality in the two345

regimes differs by a factor of two:346

∂

∂ t

∫
∞

0
qdz≈−αN2

∞u2
∗

H
(downslope) (14)

and347

∂

∂ t

∫
∞

0
qdz≈ αN2

∞u2
∗

2H
(upslope). (15)

To determine the origin of this difference, we consider the evolution of the vertical turbulent348

momentum fluxes for two simulations, one in the downslope regime (G-d) and one in the upslope349

regime (G-u) (Fig. 10). While our definition of the BML thickness captures the height over which350

turbulent stresses dominate in the downslope regime, it underestimates this height in the upslope351

regime. For the upslope case, with the enhanced stratification in the BBL, turbulent fluxes are352

active over a thicker layer than the BML with bursts of turbulent stresses often reaching twice the353

BML height (Fig. 10). The penetration depth is close to the upper bound of the layer with thermal354

wind shear and also collocates with the local stratification maximum in the vertical direction. At355

the same time, the growth of the BML is limited by this enhanced stratification, resulting in a scale356

separation between the BML and the layer characterized by the thermal wind shear; this scale357

separation does not exist in the downslope regime. This indicates that with the same definition358

of the BML thickness based on density, the PV increase rate in the upslope regime is half the359

destruction rate in the downslope regime.360

17



5. Conclusions and discussions361

In this study, we described a suite of turbulence-resolving LES for the Ekman arrest process362

in the upslope regime and discuss the PV budgets in the upslope and downslope regimes. In the363

upslope regime, turbulence is increasingly suppressed, following an initial adjustment of the BML,364

until a laminar state is reached. In both upslope and downslope regimes the slope Obukhov length365

(L+
s ) predicts when the BBL relaminarizes (L+

s < 100). From the momentum balance, we also366

derived a prediction for the cross-slope isopycnal displacement required to achieve Ekman arrest:367

Xa =
fV∞

α2N2
∞

.

The non-dimensional number X/Xa, which varies between 0 and 1, can be used to identify various368

stages of Ekman arrest. We note that in the upslope Ekman arrest regime, the BBL reaches the re-369

laminarized state before the Ekman arrested state. This indicates that in the real ocean, the Ekman370

arrest state in the upslope regime is almost impossible to reach, because background processes371

(e.g. internal waves and tides) are likely to perturb the relaminarized state before the full Ekman372

arrested state is reached. This is consistent with the downslope regime, and together can be used373

to explain the lack of observations of the complete Ekman arrested state in the ocean (e.g. Trow-374

bridge and Lentz 1998). Additionally, we do not observe the “capped” density structure at the375

arrested state for the upwelling regime (Brink and Lentz 2010); this is due to the relaminarization376

in our LES simulations which is absent in previous models with simple turbulence closures.377

We also examined the evolution of the depth-integrated Ertel PV in both the upslope and downs-378

lope regimes where an asymmetry is found in the proportionality between the PV evolution rate379

and the scaling for the frictional PV flux. Specifically, we arrived at a parameterization for the380

evolution of the depth-integrated PV, provided in equations (14) and (15). The expression for381

the downslope regime complements a formula proposed by Wenegrat and Thomas (2020) (their382
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equation 25) that describes the evolution of the PV integrated across the majority of the BBL,383

but outside of the thin diffusive/viscous layer near the bottom for the downslope Ekman arrest384

scenario. Thus, the bulk PV evolution in different parts of the BBL can now be quantified in the385

downslope Ekman arrest regime. From equations (14) and (15), the PV production rate in the386

upslope regime is half the destruction rate in the downslope regime, given the same definition of387

BML thickness H. This asymmetry stems from a difference in a characteristic decay scale for388

the turbulent stress. While in the downslope regime the decay scale is strongly correlated with389

the BML thickness, the turbulent stresses extend beyond the BML height in the upslope regime.390

The scale separation between the BML and the layer with thermal wind shear could explain the391

empirical factor of two difference. We attempted other vertical length scales in (15), but the mixed392

layer H provided the best collapse of the simulation data.393

Due to the small domain size, we do not resolve the BBL submesoscale instabilities that would394

almost certainly be active in larger domains. While the restratification and enhanced energy dissi-395

pation associated with these BBL submesoscale dynamics (e.g. baroclinic, symmetric or centrifu-396

gal instabilities) have been identified in previous studies (e.g. Callies 2018; Wenegrat et al. 2018;397

Ruan and Callies 2020; Wenegrat and Thomas 2020), their parameterizations are still uncertain.398

For coarse-resolution numerical simulations, the bulk PV parameterizations provided in this study399

could inform the onset of submesoscale instabilities; an associated state of marginal stability with400

zero PV is also expected for the BBL with efficient submesoscale adjustments. Thus, the evolu-401

tion of the integrated PV budget described here will be helpful in future parameterizations of the402

BBL evolution with external mean flows, especially when combined with parameterizations of the403

under-resolved submesoscale processes.404

Finally, given the proposed Ha in Ruan et al. (2019) and Xa in this study, the Ekman arrest405

process can be parameterized using the relevant non-dimensional number in the upslope (X/Xa)406
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and downslope (H/Ha) regimes. This could improve quantitative estimates of the bottom stress407

given the background stratification, slope angle and mean flow magnitude given observations of408

X and H, even when the mean flow measurements are far from the BBL. Given the common409

assumption made in previous global estimates of bottom drag that mean flows observed in the410

interior are the same as those outside of the BBL, we believe that a revised estimate of the global411

sink of KE due to bottom drag, accounting for Ekman arrest, will likely decrease. Isopycnals are412

generally tilted rather than flat leading to a reduction of the total near-bottom flow as compared413

to the ocean interior. Accurate estimates of this reduction in bottom drag could be obtained with414

global quantification of H/Ha and X/Xa (depending on the mean flow orientation with respect to415

the slope) from observations or simulations that do not resolve the velocities close to the bottom. In416

view of the potentially smaller bottom drag contribution, other KE sinks, including mixing arising417

from submesoscale processes (Gula et al. 2016; Ruan et al. 2017; Garabato et al. 2019; Wenegrat418

and Thomas 2020) and lee wave generation/breaking (Nikurashin and Ferrari 2011) associated419

with flow-topography interactions may play larger roles in the global KE budget.420
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TABLE 1. Summary of the simulation parameters for the upslope (u) cases. The slope Burger number Bu =

αN∞

f , friction Reynolds number Re∗ =
u2
∗0

f ν
, friction Richardson number Ri∗ =

N2
∞

f 2 and Prandtl number Pr = ν

κ
.

506

507

Expt. α log10 N2
∞(s−2) V∞(ms−1) Bu Re∗ Ri∗ Pr

A-u 0.005 -7 0.1 0.016 4232 10 5

B-u 0.01 -7 0.1 0.032 4232 10 5

C-u 0.01 -6 0.1 0.1 4232 100 5

D-u 0.01 -5 0.1 0.316 4232 1000 5

E-u 0.02 -6 0.1 0.2 4232 100 5

F-u 0.02 -5 0.1 0.632 4232 1000 5

G-u 0.01 -6 0.05 0.1 1352 100 5

H-u 0.01 -5 0.05 0.316 1352 1000 5
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TABLE 2. Summary of the simulation parameters for the downslope (d) cases as studied in Ruan et al. (2019).

The parameters are defined in Table 1. Note that the simulations do not only vary the mean flow directions

compared with the upslope simulations.

508

509

510

Expt. α log10 N2
∞(s−2) V∞(ms−1) Bu Re∗ Ri∗ Pr

A-d 0.005 -7 0.1 0.016 4232 10 5

B-d 0.01 -6.5 0.1 0.056 4232 31.6 5

C-d 0.01 -6 0.1 0.1 4232 100 5

D-d 0.01 -5.5 0.1 0.178 4232 316 5

E-d 0.01 -5 0.1 0.316 4232 1000 5

F-d 0.02 -5 0.1 0.632 4232 1000 5

G-d 0.01 -6 0.05 0.1 1352 100 5

H-d 0.01 -5 0.05 0.316 1352 1000 5
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FIG. 1. (a) Schematic of the bottom boundary layer over a slope; gray curves indicate density surfaces. The

coordinate axes are rotated by a slope angle α . The barotropic mean flow is associated with an upslope Ekman

transport. The thermal wind shear generated due to the tilting isopycnals is in the negative y direction, opposite

to the mean flow. The near-bottom velocity is the sum of the barotropic mean flow and the opposing thermal

wind shear. (b) Schematic of the displacement of isopycnals X in sloping BBLs. The dashed lines represent the

unperturbed isopycnals before they are advected upslope. The dotted lines denote the top of the BML.
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FIG. 2. The evolution of cross- (u) and along-slope (v+V∞) velocities (m s−1) in simulations A-u and F-u

(Table 1). The cross-slope velocities u in simulations A-u and F-u are shown in (a) and (c) respectively. The

total along-slope velocities v+V∞ in simulations A-u and F-u are shown in (b) and (d). The vertical dashed

lines in panels (c) and (d) denote the time when the snapshots in Fig. 4 are taken. Time t and depth z are

non-dimensionalized by the inertial time scale (1/ f ) and the height of the domain (Lz), respectively.
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FIG. 5. The evolution of buoyancy (m s−2) (a) and total stratification bz +N2
∞ (s−2) (b) in simulation F-u.
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FIG. 6. The evolution of TKE (m2 s−2), L+
s (non-dimensional) and u∗ (m s−1) in simulations F-u (left panels)

and H-u (right panels). The vertical dashed lines in (a) and (b) denote the times when the corresponding L+
s fall

below 100 and the horizontal dashed lines in (c) and (d) represent L+
s = 100.

566

567

568

34



0 20 40 60 80 100 120

tf

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

u
* (

m
/s

)

10
-3

A-u

B-u

C-u

D-u

E-u

F-u

G-u

H-u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X/X
a

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

u
*/u

*0

A-u

B-u

C-u

D-u

E-u

F-u

G-u

H-u

(a) (b)

FIG. 7. (a) The evolution of friction velocity u∗ as a function of non-dimensional time t f . (b) The evolution

of friction velocity u∗, non-dimensionalized by the initial friction velocity u∗0, as a function of X/Xa. Different

colors represent different simulations in Table 1. The data for when L+
s becomes smaller than 100 in simulations

F-u and H-u are not included in panel (b).
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FIG. 8. Temporal evolution of PV and depth-integrated PV in simulations C-d in the downwelling regime (left)

and C-u in the upwelling regime (right). The PV in (a) and (b) are normalized by f N2
∞ for the corresponding

simulation.
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FIG. 9. The evolution of the depth-averaged PV destruction rate (a) and the PV production rate (b) normal-

ized by (αN2
∞u2
∗)/H in the downwelling (panel a) and upwelling (panel b) regimes. Different colors represent

different simulations in Tables 1 and 2.
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FIG. 10. Temporal evolution of turbulent stresses < u′w′ > in simulation G-d in the downwelling (a) and G-u

in the upwelling (b) regimes. The black curves denote the BML thickness H based on the diagnosed stratification

and the magenta curve in panel (b) represents twice the BML thickness in the upwelling regime.
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