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Abstract
Superconducting thin films are central to the operation of many kinds of quan-
tum sensors and quantum computing devices: kinetic inductance detectors (KIDs),
travelling-wave parametric amplifiers (TWPAs), qubits, and spin-based quantum
memory elements. In all cases, the nonlinearity resulting from the supercurrent is
a critical aspect of behaviour, either because it is central to the operation of the device
(TWPA), or because it results in nonideal second-order effects (KID). Here, we present
an analysis of supercurrent-carrying superconducting thin films that is based on the
generalized Usadel equations. Our analysis framework is suitable for both homoge-
neous and multi-layer thin films, and can be used to calculate the resulting density
of states, superconducting transition temperature, superconducting critical current,
complex conductivities, complex surface impedances, transmission line propagation
constants, and nonlinear kinetic inductances in the presence of supercurrent. Our
analysis gives the scale of kinetic inductance nonlinearity (I∗) for a given material
combination and geometry, and is important in optimizing the design of detectors
and amplifiers in terms of materials, geometries, and dimensions. To investigate the
validity of our analysis across a wide range of supercurrent, we have measured the
transition temperatures of superconducting thin films as a function of DC supercur-
rent. These measurements show good agreement with our theoretical predictions in
the experimentally relevant range of current values.
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1 Introduction

Owing to their low-loss, high-quality-factor characteristics below their supercon-
ducting transition temperatures (Tc), superconducting thin films are important to
the operation of many kinds of quantum sensors and quantum computing devices,
such as kinetic inductance detectors (KIDs) [1], travelling-wave parametric amplifiers
(TWPAs) [2], kinetic inductance parametric up-converters (KPUPs) [3], superconduct-
ing qubits [4], and spin-based quantummemory elements [5,6]. When designing these
superconducting devices, an important consideration is the nonlinearity in supercon-
ducting kinetic inductancewith respect to supercurrent [7,8]. The nonlinear inductance
of a superconducting device is expected to have the form [9]

L = L0

(
1 + I 2

I 2∗
+ · · ·

)
, (1)

where L is the inductance of the device, L0 is the inductance in the absence of supercur-
rent, I is the supercurrent, and I∗ is the scale of the quadratic inductance nonlinearity.

In the case of TWPAs and KPUPs, this nonlinear kinetic inductance is critical to the
operation and performance of the devices [2,3,10–12]; in other cases, the nonlinear
kinetic inductance results in nonideal behaviour that is important even in common
device operation power regimes, which often involve high readout power in order
to improve noise performance [9]. As such, understanding and calculation of the
nonlinear kinetic inductance are important to the quantitative design processes of
these thin-film devices.

In the past decade, there has also been considerable research in applying DC bias
current across high-quality superconducting thin films [13–18], in order to facilitate
circuit quantum electrodynamics experiments [13–16] and to improve versatility asso-
ciated with frequency tuneability [17,18].

Analyses of supercurrent in superconducting thin films can be based on the Usadel
equations,which is a set of diffusive limit equations derived from theBardeen–Cooper–
Schrieffer (BCS) theory of superconductivity [19–21]. Anthore et al. have calculated
and experimentally measured the resultant density of states in a superconducting thin
film due to supercurrent using the Usadel equations [20]. The theory and experiment
demonstrated excellent agreement, lending confidence to the use of the Usadel equa-
tions as the foundation of our analysis framework. Further, the work by Clem et al.
[21] based on the Usadel equations has been applied experimentally to estimate the
depairing current of superconducting nanowires to good agreement [22]. The paper by
Anthore et al. in particular presents a series expansion of the superconducting order
parameter (Δ) with respect to supercurrent for single-layer superconducting thin films.
This series expansion has been used by other studies to estimate the superconductor
complex conductivities and kinetic inductances [9,23]. As we shall demonstrate in
this study, this approximate approach does not account for the change in the shape of
the density of states and underestimates the impact of supercurrent.

Using the full density of states as an input to Nam’s equations [24], we compute
the complex conductivities of the thin films. We then compute the surface impedances
using the transfermatrixmethod [25]. Finally,we calculate the transmission line induc-
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tances from the surface impedances by using the appropriate transmission line theory
for the geometry of the device [26], such microstrip transmission line or coplanar
waveguide.

We have also measured the supercurrent dependence of the superconducting tran-
sition temperatures for single-layer titanium (Ti) and multi-layer aluminium–titanium
(Al–Ti) thin films. Our results confirm the validity of the Usadel theory approach for
experimentally realistic device dimensions and current regimes.

2 Theory

2.1 Usadel Equations

In this analysis, the multi-layers are stacked in the x direction, and the supercurrent
flows in the z direction. The Usadel equations in one dimension are [19,20,27–29]

�DS

2
∇2θ + i E sin θ + Δ cos θ − �

2DS

#»v 2
s cos θ sin θ = 0, (2)

and

Δ = NSV0,S

∫ kBΘD,S

0
dE tanh

(
E

2kBT

)
Im (sin θ) , (3)

where θ is a complex variable dependent on energy E parametrizing the super-
conducting properties, NS is the electron single spin density of states, V0,S is the
superconductor interaction potential, Δ is the superconducting order parameter,
kBΘD,S is the Debye energy, kB is the Boltzmann constant, T is the temperature of
the superconducting film, DS is the diffusivity constant, given by DS = σN/(NSe2)
[30], e is the elementary charge, Im(x) takes the imaginary part of x , and finally,
σN is the normal state conductivity, at T just above Tc. Equation (3) is the self-
consistency equation for order parameterΔ.Wehave introduced the superfluid velocity
#»v s = DS[ #»∇φ − (2e/�)

#»
A], where φ is the superconducting phase and

#»
A is the mag-

netic vector potential. We assume that the effect due to the induced field is negligible
compared to that of supercurrent [20].

The supercurrent density
#»
j is given by

#»
j = σN

eDS

∫ ∞

0
dE tanh

(
E

2kBT

)
Im(sin2 θ) #»v s . (4)

For supercurrent flowing in the z direction, #»v 2
s = D2

S (∂φ/∂z)2. For the case of a
homogeneous BCS superconductor, the first term of Eq. (2) can be removed, simpli-
fying Eq. (2) into

i E sin θ + Δ(x) cos θ − Γ cos θ sin θ = 0, (5)
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whereΓ = �DS/2∗(∂φ/∂z)2 is the depairing factor. The above equation canbe solved
iteratively with Eq. (3) to obtain Δ(Γ ). Numerically, it is easier to solve Eq. (5) for
sin(θ) using a polynomial root finder, rather than finding θ directly.

In the case of amulti-layer superconductor, the boundary conditions (BCs) between
the layers need to be taken into account. The BCs suitable for the Usadel equations
can be found in [25]. Instead of calculating nonlinearity with respect to Γ , which
is not constant across the multi-layer, calculations should be performed with respect
to ∂φ/∂z. ∂φ/∂z cannot vary across the multi-layer (in the x direction) due to the
absence of net supercurrent (in the x direction). Computation time-wise, it is beneficial
to adopt the thin-film approximation scheme that has demonstrated good agreement
with experiment formulti-layer superconductors. The approximation assumes θ varies
slowly and can be accounted by a second-order polynomial expansion [30,31].

2.2 Complex Conductivities and Impedances

Nam’s equations [32] are a generalization of the Mattis–Bardeen [33] theory into
strong coupling and impure superconductors. Nam’s equations compute the complex
conductivity σ = σ1− jσ2 using a pair of integrals of θ across energy E . The integrals
as well as their evaluations for Al–Ti bilayers can be can be found in [25].

After calculating σ , the complex surface impedance for a homogeneous single layer
can then be obtained using [34]

Zs =
(
jωμ0

σ

)1/2

coth[( jωμ0σ)1/2t], (6)

where t is the thickness of the homogeneous superconducting film and μ0 is the
vacuum permeability.

For multi-layers, Zs can be found by dividing the multi-layer into thin layers of
thickness δx and then cascading the resultant transfer matrices along the multi-layer.
A detailed discussion of the above methodology, as well as an analysis of numerical
results for Al–Ti multi-layers, can be found in [25].

2.3 Transmission Line Properties

The series impedance and shunt admittance of a transmission line structure can be
calculated from Zs as follows [26,35,36]:

Z = j(k0η0)g1 + 2
∑
n

g2,n Zs,n (7)

Y = j

(
k0
η0

)(
ε f m

g1

)
, (8)

where k0 is the free-space wave number, η0 is the impedance of free space, subscript
n identifies superconductor surfaces, which are upper, lower, and ground surfaces,
denoted by subscripts u, l, and g, respectively, ε f m is the effective modal dielectric
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constant, which is given by existing normal conductor transmission line theories,
for example [37,38]. g1 and g2 are geometric factors which can be calculated using
appropriate conformal mapping theories [26,36].

After obtaining the series impedance and the shunt admittance, other properties
of the superconducting transmission line can be calculated straightforwardly. The
characteristic impedance is given by η = (Z/Y )1/2. The propagation constant is
given by γ = α + jβ = (ZY )1/2, where α is the attenuation constant and β is
the phase constant. The inductance per unit length L can finally be calculated using
L = Im(Z)/ω. The calculation can then be iterated for different values of I to obtain
L(I ), which allows the extraction of I∗ using a polynomial fit.

3 Results and Discussion

The left figure in Fig. 1 shows Ti superconducting density of states (DoS) N/N0 =
Re[cos θ ] against energy E/kB at temperature T = 0.01K for different values of
Γ /Δ0, whereΔ0 ≈ 1.764 kBTc is the superconducting energy gap of Ti in the absence
of supercurrent. The presence of supercurrent broadens the DoS. This is a real effect
and it has been experimentally observed by [20]. Previous approximations on the
inductance nonlinearity [9,23] assume the effect of this new DoS on conductivity can
be approximated by a single parameterΔ. Effectively, these studies have assumed that
the new DoS can be approximated by a zero-supercurrent DoS shifted to an altered
DoS gap atΔ. For convenience, we label this simplified DoS function as n j=0[Δ(Γ )].

Fig. 1 Left figure: plot of Ti superconducting density of states N/N0 against energy E/kB at temperature
T = 0.01K for different values of supercurrent depairing factor Γ /Δ0. Red line: Γ /Δ0 = 1.0 × 10−3,
1− Δ/Δ0 = 0.6× 10−3; blue line: Γ /Δ0 = 6.1× 10−3, 1− Δ/Δ0 = 4.5× 10−3; black line: Γ /Δ0 =
11.2 × 10−3, 1 − Δ/Δ0 = 8.4 × 10−3. Middle figure: plot of normalized reactive conductivity σ2/σN
against supercurrent depairing factor Γ /kB for Ti at temperature T = 0.01K, frequency f = 10GHz.
Red line: calculation performed by solving Nam’s equations using the full densities of states; blue line:
calculation performed using a simplified density of states replacing Δ0 with suppressed superconducting
order parameter Δ(Γ ); black line: calculation performed using a simplified density of states replacing Δ0
with suppressed superconducting DoS gapΔg(Γ ). Right figure: plot of inductance per unit length L against
squared supercurrent I 2 for a Ti microstrip line with thickness t = 100 nm, width w = 5µm, dielectric
height h = 250 nm, and ground plane Ti thickness tg = 200 nm, at temperature T = 0.01K and frequency
f = 10GHz. Inset: Plot of inductance nonlinearity factor I∗ against Al thickness tAl for a bilayer Al–Ti
microstrip with Ti thickness tTi = 100 nm, width w = 5µm, dielectric height h = 250 nm, and ground
plane Ti thickness tg = 200 nm, at temperature T = 0.01K (Color figure online)
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As we see in the middle figure, this assumption leads to underestimation on the impact
of the supercurrent.

The middle figure in Fig. 1 shows a plot of normalized reactive conductivity σ2/σN

against Γ /kB for Ti at T = 0.01K, frequency f = 10GHz. The red line shows
calculation performed by solving Nam’s equations using the full densities of states
shown in left figure. The blue line shows calculation performedusing n j=0[Δ(Γ )]. The
black line shows calculation performed using n j=0[Δg(Γ )], whereΔg is the energy at
which the broadened DoS becomes nonzero. Since �ω � Δ0, the blue and black lines
have approximate forms σ2/σN = (πΔ)/(�ω) and σ2/σN = (πΔg)/(�ω), respec-
tively. Comparing the red line with the blue line, we notice that approximation using
n j=0[Δ(Γ )] underestimates the effect of supercurrent. This shows that the broad-
ened DoS in the presence of supercurrent cannot be approximated well using a single
energy parameter Δ(Γ ). Comparing the red line with the black line, approximation
using n j=0[Δg(Γ )] overestimates the effect of supercurrent. This is because, in the
presence of supercurrent, the DoS is broadened. As a result, Δg shifts further than
the overall DoS. The above results highlight the need to perform the full calculation
as detailed in this manuscript. For practical purposes, we give the approximation of
σ2/σN as a function of Γ /Δ0, valid for kBT � Δ0, �ω � 2Δ0, and Γ /Δ0 < 0.2:

σ2

σN
= πΔ0

�ω

[
1 − 1.2

(
Γ

Δ0

)
− 0.50

(
Γ

Δ0

)2
]
. (9)

This expansion can be used in conjunction with previous results from [20], which
states that the supercurrent is given by I = IΓ

√
Γ /Δ0US/Δ0, where IΓ =√

2SΔ0σN/(eξ), S is the cross-sectional area, ξ is the superconducting coherence
length, e is the electron charge, and US can be approximated by:

US

Δ0
= π

2
− 1.8

(
Γ

Δ0

)
− 1.0

(
Γ

Δ0

)2

. (10)

The right figure in Fig. 1 shows a plot of inductance per unit length L against squared
supercurrent I 2 for a Ti microstrip line with thickness t = 100 nm, width w = 5µm,
dielectric height h = 250 nm, and ground plane Ti thickness tg = 200 nm. We see
from the figure that L can be approximated well by a quadratic expansion on I at small
current values. At larger values, an additional quartic term is needed to encapsulate
the superconductor response:

L = L0

(
1 + I 2

I 2∗
+ I 4

I 4∗,4

)
, (11)

where I∗,4 is the scale of the quartic order of inductance nonlinearity. The Timicrostrip
studied here has I∗ = 8.5mA and I∗,4 = 5.5mA. Inset of the right figure in Fig. 1
shows a plot of I∗ against Al thickness tAl for a bilayer Al–Ti microstrip with fixed
Ti thickness tTi = 100 nm, width w = 5µm, dielectric height h = 250 nm, and
ground plane Ti thickness tg = 200 nm. As tAl increases, the nonlinear behaviour of
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the microstrip decreases in significance: this is reflected in the higher I∗ values. This
trend agrees with our expectations: the presence of an Al layer decreases the resistivity
of the multi-layer. This lower resistivity in turn results in smaller nonlinearity [2,23].

4 Critical Temperature Experiment

Manyaspects of our analysis routine have been individually experimentally established
by previous studies: the analysis of superconducting multi-layers using the Usadel
equations has been justified by [31,39]; the analysis of supercurrent using the Usadel
equations has been justified by [20]; the computation of complex conductivities using
Nam’s equations has been justified by [24]; and the calculation of transmission line
properties using conformal mapping analysis has been justified by [40–42].

Despite the above experimental justifications, a caveat exists regarding the analysis
of real superconducting devices using the Usadel equations: the physical dimensions
of the devices tested in previous studies have physical dimensions smaller than the
relevant length scales of the material system, i.e. the perpendicular field penetra-
tion depth λ⊥ and the superconducting coherence length ξ as identified by [43]. To
illustrate, the aluminium strip tested by [20] has width w = 120 nm and thickness
t = 40 nm; the aluminium strips tested by [43] has dimensions w = 30−61 nm
and t = 20−89 nm. These dimensions are much smaller than those typically used in
the design of KIDs and TWPAs, and many real devices have dimensions compara-
ble to, or exceeding, one or both of the length scales. For a thin film with w > λ⊥,
the supercurrent distribution becomes nonuniform as current piles up near the edges
[44]; for a thin film with w > 4.4ξ , at high current densities, vortex formation will
result in deviations from ideal behaviour [45]. The thin-film parallel field penetra-
tion depth is given by λ‖ ≈ λL

√
ξ0/l, the thin-film perpendicular field penetration

depth is given by λ⊥ = λ2‖/t , and the low-temperature coherence length is given by

ξ ≈ √
ξ0l where ξ0 = �vF/(πΔ0) is the bulk coherence length, l is the mean free

path, vF is the Fermi velocity, λL = √
me/(μ0ne2) is the London depth, me is the

electron mass, and n is the electron density [20,43,44]. For our 25 nm aluminium
thin films, λ⊥,Al = 0.40µm and ξAl = 0.20µm; for our 100 nm titanium thin films,
λ⊥,Ti = 0.12µm and ξTi = 0.56µm. Here, we have used data for Al and Ti properties
from [31], supplemented by mean free path data from [46,47]. For superconducting
strips with w on the order of a few microns [2,14,17,48–50] on the border of the
relevant length scales, it is useful to determine the range of current within which
the 1D Usadel equation treatment of the supercurrent provides a good prediction of
device behaviour. To this end, we have performed an experiment measuring the Tc of
a superconducting strip for a given supercurrent I .

Ti and Al–Ti films were deposited by DC magnetron sputtering at a base pressure
of 2 × 10−10 Torr or below. For bilayer films, Al layers were deposited after Ti lay-
ers without breaking the vacuum. The films were patterned to achieve four-terminal
sensing geometry and connected to electronics via Al wire bonds. The samples were
mounted to the cold stage of a dilution refrigerator inside a niobium magnetic shield.
Temperature monitoring was achieved using a calibrated ruthenium oxide thermome-
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Fig. 2 Left figure: red line, left axis: plot of Ti scaled current density j/ j0 against scaled supercurrent
depairing factor Γ /Δ0 at temperature T = 0.01K. Blue line, right axis: plot of Ti scaled superconducting
order parameter Δ/Δ0 against scaled supercurrent depairing factor Γ /Δ0 at temperature T = 0.01K.
Middle figure: plot of critical current in reduced units [I/I0]2/3 against critical temperature in reduced
units Tc/Tc,0 for Ti strips with thickness t = 100 nm. a Black, dashed line—theoretical calculations; b red,
cross markers—experimentally measured results for strip with width w = 1µm; c blue, square markers—
experimentally measured results for strip with width w = 3µm. Right figure: plot of critical current in
reduced units [I/I0]2/3 against critical temperature in reduced units Tc/Tc,0 for Al–Ti bilayers with Al
thickness tAl = 25 nm and Ti thickness tTi = 100 nm. a Black, dashed line—theoretical calculations; b red,
cross markers—experimentally measured results for strip with width w = 3 ¯m; c blue, square markers—
experimentallymeasured results for stripwithwidthw = 4µm;d green, diamondmarkers—experimentally
measured results for strip with width w = 5µm (Color figure online)

ter. For each set of measurement, a fixed current was first injected to the mounted
superconducting film. The temperature of the cold stage was then slowly raised until
transition from superconducting to normal state had occurred. The potential difference
across the film was continuously measured throughout this transition process.

The left figure in Fig. 2 shows a plot of scaled current density j/ j0 and scaled
superconducting order parameter Δ/Δ0 against scaled depairing factor Γ /Δ0 for
temperature T = 0.01K. There exist a maximum current density jc. The pair of
values ( jc, T ) marks out a curve on the phase diagram within which the material is
in the superconducting state, and beyond which the material is in the normal state.

At T ≈ 0K, jc ≈ 0.746 j0, where j0 =
√
NSσNΔ3

0/�. It is worth noting that when
j 
= 0, transition to normal state happens when Δ is nonzero. Computationally, this
means that the small Δ, θ approximation technique, commonly used to compute the
Tc of j = 0 transitions [30,31], cannot be applied for these j 
= 0 transitions.

Themiddle figure in Fig. 2 shows a plot of critical current in reduced units [I/I0]2/3
against critical temperature in reduced units Tc/Tc,0 for a Ti strip with thickness
t = 100 nm. The right figure in Fig. 2 shows a similar plot for Al–Ti bilayers with
Al thickness tAl = 25 nm and Ti thickness tTi = 100 nm. The y-axis is chosen to
reflect the Ginzburg–Landau result in the small supercurrent limit [43] which states
that I/I0 ∝ (

1 − Tc/Tc,0
)3/2. For both plots, the dotted line shows the values obtained

from theoretical calculations using the Usadel equations; the scattered markers show
the experimentally measured values for different widths of superconducting lines. The
physical parameters used to generate the theoretical lines are the same as those used
in [31]. To convert from j to I , we have used I = j tw, where the thickness t is
deduced from calibrated deposition time and the width w is part of the design of the
deposition mask. As expected from the above analysis of length scales, within each
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plot, wider superconducting lines result in earlier deviation from the ideal theoretical
calculations. Denote Ic,0 as the actual critical current of a device at close to 0K (not
to be confused with I0 which is the theoretical critical current). For most devices,
the experimental data demonstrate good agreement with the theoretical prediction at
I < Ic,0/2. For the widest bilayer device, good agreement is still obtain at I < Ic,0/3.
This range encapsulates the common operating current values for typical TWPAs and
KIDs systems: current much smaller than Ic,0 is usually chosen to avoid the onset of
high current dissipation, or to avoid resonator bifurcation [2,51–53]. In this study, we
have chosen a conservative thickness of 100 nm. We expect an even bigger range of
agreement for thinner devices such as the coplanar waveguides studied in [2], which
have thickness t = 35 nm.

5 Conclusions

We have presented a numerical routine for analysing the inductance nonlinearity of
thin-film superconductorswith respect to supercurrent.Our analysis routine is based on
the Usadel equations, Nam’s equations for complex conductivity, transfer matrix cal-
culation for complex surface impedances, and transmission linemodels. Asmentioned
in our discussion around the middle figure in Fig. 1, our analysis takes into account the
full shape of superconducting densities of states and avoids an underestimation made
by previous analyses on this subject. We have measured the superconducting transi-
tion temperature as a function of supercurrent for Ti single layers and Al–Ti bilayers.
Our results show that the theory is in agreement with the experimental data in the
current range that most thin-film superconductor devices are operated at and therefore
allows this analysis to be integrated in the design and optimization of future thin-film
superconducting devices. Care needs to be taken when applying the numerical routine
to AC applications, as both AC current distribution [26,36] and field quantization (in
particular coherent excited states) [40,54] effects are important at frequencies compa-
rable to the superconductor pair-breaking frequency, and are likely to result deviation
from the DC treatment in the Usadel equation formalism. Future studies should be
conducted to investigate the extent of applicability as well as techniques to adapt the
routine to AC applications.
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