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Abstract

Thesis title: Characterisation and pharmacological regulation of GLP-1-mediated
glucose homeostasis

Author: Ho Yan Yeung

Type 2 diabetes mellitus (T2DM) is characterised by the hormonal imbalance of

insulin and glucagon, leading to dysfunctional glucose homeostasis. Glucagon-like

peptide 1 (GLP-1), which is an incretin hormone, activates the predominantly Gas-

coupled glucagon-like peptide 1 receptor (GLP-1R), which is a class B G protein-coupled

receptor (GPCR), to mediate glucose homeostasis. It does so by promoting glucose

stimulated insulin secretion (GSIS) in the pancreatic b cells and inhibiting glucagon

secretion in the pancreatic a cells. Given its proven clinical efficacy in reducing long

term blood glucose level, GLP-1-based treatments, such as exenatide and liraglutide,

have been widely used in T2DM patients.

However, in contrast to the well-studied phenomenon of how GLP-1 enhances GSIS,

the mechanism of how GLP-1 regulates glucagon secretion is still unclear. Therefore, the

aim of this work is to shed new lights on how GLP-1 mediates its glucagonostatic action.

To do so, the signalling properties of GLP-1 and its closely-related peptide hormones,

namely oxyntomodulin (OXM), glucagon (GCG), glucose-dependent insulinotropic

polypeptide (GIP), and its metabolite, GLP-1(9-36)NH2, were examined in recombinant

cell lines and rodent clonal a and b cell lines using cAMP functional assaying technique.

It was demonstrated that these glucagon-like peptides, including GLP-1(9-36)NH2 yet

except GIP, can activate both GLP-1R and glucagon receptor (GCGR), which is struc-

turally analogous to GLP-1R. Furthermore, GLP-1R, despite its very low expression in

the mouse aTC1.6 cell line detected through semi-quantitative RT-PCR studies, is found

to play a critical role in directly inhibiting glucagon secretion upon GLP-1 activation

through performing glucagon secretion antagonism studies. More importantly, the

physiologically abundant GLP-1 metabolite is discovered to play a glucagonostatic role
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in the mouse glucagonoma cell line via the direct actions of GLP-1R and GCGR, an

observation that has not yet been documented. Therefore, this thesis provides evidence

of how GLP-1 and its metabolite are actively involved in their glucagonostatic actions

via direct activations of GLP-1R and GCGR.

Another aim of this work is to identify viable pharmacological regulator of GLP-1-

mediated glucose homeostasis through the action of positive allosteric modulator (PAM).

Here, compound 249, which was identified previously as a small molecule GLP-1R PAM,

was further pharmacologically validated using various signal transduction assaying

techniques in recombinant cell lines. It was also demonstrated that compound 249

works independent of the cysteine-347 residue on the GLP-1R, an amino acid residue

which has been previously shown to be instrumental for the actions of another GLP-1R

agonist-PAMs. More importantly, compound 249 demonstrates robust potentiation of

GLP-1 and OXM-augmented GSIS in the rat INS-1 832/3 insulinoma cell line and ex
vivo isolated mouse islets, substantiating the potential of compound 249 to be further

developed as a novel T2DM treatment.

Overall this thesis presents new evidence on the direct involvement of GLP-1R on

GLP-1-regulated glucagon secretion in the pancreatic a cells and illustrates compound

249 as a PAM to promote GLP-1 mediated GSIS. The findings in this thesis will be used

for future design of safer and more efficacious T2DM treatments.
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Chapter 1

Introduction

1.1 Type 2 diabetes mellitus

Type 2 diabetes mellitus (T2DM), which is a chronic metabolic disease that is clinically

characterised by a consistently elevated fasting blood glucose level [Owens et al., 2017],

has now become a worldwide epidemic. According to the latest International Diabetes

Federation (IDF) Diabetes Atlas 2019 [International Diabetes Federation, 2019], there

are 463 million adults diagnosed with T2DM, which is equivalent to 9.3% of the world’s

total adult population. The IDF further estimates that there will be 578 million adults

with diabetes by 2030. Given the considerable health, social and economic burden which

cost up to US$760 billion, which is equivalent to 12% of total world health expenditure,

on treating T2DM and its complications [International Diabetes Federation, 2019], there

is an urgent need to develop novel T2DM treatments to tackle the growing epidemic

[Thomas et al., 2015, Defronzo et al., 2015, Zheng et al., 2018].

1.1.1 Pathogenesis of T2DM and incretin-based therapies

T2DM is a complex endocrine and metabolic disorder and involves the interplay

between genetic and environmental factors. Therefore, it generates a progressive and

heterogeneous pathology, with varying degrees of insulin resistance and dysfunction

of pancreatic a and b cells, as well as other endocrine disturbances [Tahrani et al.,

2016]. Thanks to the better understanding of the multifactorial pathogenesis of T2DM

which affects the liver, the brain, the kidney, the skeletal muscles, the gut as well as

the adipocytes, several new classes of glucose-lowering therapies have been developed

[Defronzo, 2009, DeFronzo et al., 2013, Chowdhury et al., 2013, Bailey, 2015, Tahrani
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et al., 2016]. Their mechanisms of actions are summarised in Fig. 1.1.

1.1.2 Incretin-based T2DM therapies

The incretin-based therapies (the concept of incretins will be discussed next), which

are exenatide (Ex-4) [Eng et al., 1992], lixisenatide, liraglutide, albiglutide, dulaglutide

and semaglutide, have been widely used in recent years [Oh and Olefsky, 2016]. There

are several reasons for their surges in use among T2DM patients: 1) the proven

clinical efficacy in lowering blood glucose long term [Aroda et al., 2012, Smits et al.,

2016, Honigberg et al., 2020, Rosenstock et al., 2020]; 2) the apparent weight loss side

effect which is beneficial to T2DM-obese co-morbid patients [Heppner and Perez-Tilve,

2015, Ghanim et al., 2020, Grill, 2020]; 3) a lower risk of hypoglycaemia [Tahrani

et al., 2016]; 4) the sustained long-term blood glucose level reduction [Aroda et al.,

2012, Honigberg et al., 2020]. Apart from their blood glucose lowering effect, there

are also evidences suggesting their cognitive preservative and cardioprotective effects

[Ravassa et al., 2017, Honigberg et al., 2020]. All these advantageous clinical effects

make incretin-based therapies an attractive drug treatment.

In spite of their beneficial effects, there are several drawbacks to their uses. Firstly,

most of the incretin-based therapies are injection-based, which hinder patient compli-

ance [Spain et al., 2016]. Even though oral form of semaglutide has been developed

lately, since semaglutide, together with other incretin-based therapies, are peptide-based

treatments, their costs to be used on a regular basis are extortionately high [Hansen

et al., 2020]. Furthermore, gastrointestinal disturbances, most commonly nauseas and

vomiting, have been reported frequently in patients receiving incretin-based therapies

[Meier, 2012]. Lastly, increased risk of potentially fatal pancreatitis has been reported,

further limiting their uses in certain patients’ subgroups who are vulnerable to devel-

oping pancreatitis [Meier, 2012]. All these disadvantages prompted the development of

safer and more cost-effective incretin-based treatments.
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Hyperglycaemia 

α cells: 
Glucagon secretion 

β cells: 
Insulin secretion 

 Incretin effect 

 Lipolysis 

 Glucose 
reabsorption 

 Glucose uptake 

Neurotransmitter 
dysfunction 

 Hepatic glucose 
production 

GLP-1RA 
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Figure 1.1: Summary of the pathogenesis and current drug treatments of T2DM. Heterogenous pathol-
ogy have been observed in various organs, which include the pancreas, the liver, the brain, the gut, the
muscles, the kidneys as well as the adipocytes. A number of T2DM therapies, such as incretin-based
therapies, sulfonylureas, meglitinides, metformin, pramlinitide, bromocriptine, DPP-IV inhibitors, SGLT2
inhibitors, TZDs and insulins have been developed to target the dysfunctions in these organs which ulti-
mately contribute to hyperglycaemia. Abbreviations: GLP-1RA: glucagon-like 1 receptor agonists; DPP-IV:
dipeptide peptidase-4; SGLT-2: sodium/glucose co-transporter 2; TZDs; thiazolidinediones. Diagram
modified from [Tahrani et al., 2016, Campbell and Drucker, 2015]. Diagram created with BioRender.com.
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1.2 The pancreatic islets of Langerhans: the key regulator of

glucose homeostasis

1.2.1 Architecture of the pancreatic islets of Langerhans

The islets of Langerhans in the pancreas have been long identified for their importance

in mediating glucose homeostasis [von Mering and Minkowski, 1889]. Human islets

consist of various endocrine cell types, which include a majority (approximately 60%) of

insulin-secreting b cells and the glucagon-secreting a cells (around 30%). The remaining

10% endocrine cell types are the somatostatin-secreting d cells, pancreatic polypeptide-

secreting (PP) cells and ghrelin-producing e cells (Fig. 1.2) [Cabrera et al., 2006, Kelly

et al., 2011, Brereton et al., 2015, Da Silva Xavier, 2018]. The central cores of the islets

are formed by a majority of b cells, surrounded randomly by a and e cells (Fig. 1.2)

[Cabrera et al., 2006, Ionescu-Tirgoviste et al., 2015]. The structural localisation of the

islets is largely similar between human and mouse islets, yet the ratio of b to a cells is

shown to be higher in humans, while the cell numbers of e and PP are similar in both

species [Gromada et al., 2018].

1.2.2 Aetiology of T2DM: the glucagonocentric hypothesis

T2DM has long been postulated to be a bihormonal dysfunction, as a result of hy-

poinsulinemia and hyperglucagonemia with elevated blood levels of glucose [Unger

et al., 1963]. However, recent evidences suggested that inappropriate glucagon secretion

may be the sole contributor for the onset of T2DM [Unger and Cherrington, 2012]. First,

hyperglucagonemia is a common clinical feature in untreated type 1 diabetic mellitus

(T1DM) patients and in animal models [Müller et al., 1973]. Furthermore, exogenous

glucagon was found to be responsible for the restoration of hyperglycaemia, but not

insulin in dogs who received surgical removal of pancreas [Stevenson et al., 1987].

To further validate the glucagonocentric hypothesis, one landmark study conducted

experiments on glucagon receptor (GCGR) null mice and found that these mice mani-

fested normal oral glucose tolerance, regardless of the presence or absence of insulin

deficiency due to b cell destruction induced by streptozotocin. The authors thus further

concluded that glucagon antagonism is the key to preventing the metabolic and clinical

manifestation of T1DM [Lee et al., 2011]. These evidences collectively substantiate

the ’glucagonocentric’ hypothesis for the aetiology of T2DM [Unger and Cherrington,

2012, Campbell and Drucker, 2015]. Given the proposed gravity of glucagon secretion
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1.2. The pancreatic islets of Langerhans: the key regulator of glucose homeostasis

in maintaining glucose homeostasis, the regulation of glucagon secretion is still not

well established. Therefore, there is a need to fill in the knowledge gap.

1.2.3 Regulation of glucose-inhibition of glucagon secretion

The mechanism of glucose-regulated glucagon secretion is still under debate [Walker

et al., 2011]. Based on current studies, three different hypotheses are proposed (Fig. 1.2).

The first hypothesis suggests that glucose can have direct effect on glucagon secretion

inhibition in the pancreatic a cells via direct signalling mechanisms upon its uptake [De

Marinis et al., 2010, Sandoval and D’Alessio, 2015, Ramracheya et al., 2018, Yu et al.,

2019] (which will be further explained in later section). Furthermore, it has been shown

using electrophysiological studies that isolated a cells are electrically excitable, and

that glucagon secretion can be stimulated via enhancing action potential and elevating

intracellular Ca2+ (iCa2+) level [Gromada et al., 2007].

The second theory suggests that glucagon secretion can be indirectly inhibited

through the paracrine suppressive actions of insulin and somatostatin, secreted from

neighbouring endocrine b and d cells in the islets. This hypothesis is based on the

studies which show isolated a cells respond inappropriately to glucose stimulation

in terms of glucagon secretion in the absence of the insulin-secreting b cells and the

somatostatin-secreting d cells [Hauge-Evans et al., 1999]. Moreover, it has been shown

that upon insulin secretion in response to high glucose, insulin receptors present on

the a cells are activated [Briant et al., 2017]. Furthermore, the secretion of insulin also

indirectly stimulates the production of somatostatin in the d cells [Briant et al., 2017].

The somatostatin produced hence activates the somatostatin receptors, also present in

the a cells. The activation of both receptors leads to a reduction of cAMP production,

triggering protein kinase A (PKA) downstream signalling, resulting in a suppression of

glucagon secretion [Briant et al., 2017].

The third hypothesis argues that glucagon secretion is regulated through the mixed

mechanism of actions from the intrinsic regulation in the a cells together with the

paracrine effect from b and d cells [Johansson et al., 1989]. Given the importance of

glucagon in regulating glucose homeostasis and that there is an outstanding consensus

on the mechanism of how glucagon secretion is controlled, there is an urgent need to

thoroughly understand such a physiologically important function. However, apart from

insulin and somatostatin, incretins, namely glucagon-like peptide-1 (GLP-1), as well as

glucose-dependent insulinotropic peptide or gastric inhibitory polypeptide (GIP), have

been shown to also regulate glucagon secretion [Ding et al., 1997, De Marinis et al.,
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2010, Campbell and Drucker, 2013, Piro et al., 2014, Ramracheya et al., 2018]. How

incretins regulate glucagon secretion in the pancreatic a cells will be part of the main

focuses of this thesis and the concept of incretins will be explained in the following

sections.
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α cells 

Glucose 

Glucose 

Insulin 
receptor 

Somatostatin 
receptor 

Somatostatin 

Insulin 

Glucagon 

Glucose 

Glucose 

Paracrine effect? 

Intrinsic effect? 

Combinatorial 
effect? 

Figure 1.2: Structural arrangement and regulation of glucose homeostasis in the pancreatic islets of
Langerhans. The above figure shows that a single islet is made up of a mixture of different endocrine cells,
with a majority of b cells at its core, surrounded randomly by a and d cells. Three mechanisms have been
proposed for the glucose-inhibited glucagon secretion: through the direct effect in the pancreatic a cells,
through the paracrine effect from the insulin and somatostatin-secreting b and d cells; or a mechanism of
both. Diagram modified from [Gromada et al., 2018] and re-created with BioRender.com.

1.3 Incretins: the key mediators of glucose homeostasis

1.3.1 The incretin effect

GLP-1 and GIP are the two major incretin hormones in humans [Seino et al., 2010] and

are responsible for 50 to 70% of the postprandial insulin responses in healthy individuals
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1.3. Incretins: the key mediators of glucose homeostasis

[Meier and Nauck, 2010]. These two hormones contribute to normoglycaemia by

enhancing insulin secretion, producing the so-called ’incretin effect’. The incretin effect

is a unique phenomenon of which greater insulin secretion is observed following oral

glucose administration compared to intravenous glucose administration [Elrick et al.,

1964] (Fig. 1.3). This phenomenon is exploited therapeutically, giving rise to current

clinically efficacious incretin-based treatments, such as Ex-4, as discussed in previous

section 1.1.2. However, the incretin effect is less prominent in T2DM patients [Knop

et al., 2007], presumably due to the decline of b cell function; however, the exact reason

for this apparent reduction of incretin effect is unknown [Meier and Nauck, 2010].
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Figure 1.3: The incretin effect of GLP-1 and GIP. The incretin effect is defined as the observation of
a greater surge of insulin secretion followed by oral glucose administration compared to intravenous
glucose administration. However, the incretin effect is diminished in T2DM patients. Diagram created
with BioRender.com.

1.3.2 Products of the post-translational processing of proglucagon and proGIP
precursor proteins

1.3.2.1 Post-translational processing of preproglucagon gene

The preproglucagon (Gcg) gene has been found to be widely expressed in a specific

population of the enteroendocrine L cells of the intestinal mucosa, pancreatic a cells as

well as a discrete set of neurons within the nucleus of the solitary tract (NTS) [Sandoval

and D’Alessio, 2015]. The Gcg gene encodes the 160-amino acid proglucagon (ProG)

peptide, which the relative amount and forms of the ProG peptide are cell-type depen-

dent, regulated by specific prohormone convertases (PC) that are present in specific cell
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types [Cho et al., 2014] (Fig. 1.4). In particular, PC2 has been found to be predominant

in pancreatic a cells, hence giving rise to glucagon (GCG) as the major bioactive prod-

uct; while PC1/3 are the most dominant forms in the intestinal L cells and the NTS,

producing the most prevalent bioactive products, namly GLP-1, oxyntomodulin (OXM)

and glucagon-like peptide 2 (GLP-2) [Holst, 2007]. Notably, there is increasing amount

of evidence illustrating the presence of PC1/3 in the pancreatic a cells, albeit at a much

lower concentration compared to PC2 [Whalley et al., 2011, Sandoval and D’Alessio,

2015]. Hence, intra-islet production of GLP-1 has been shown [Fava et al., 2016], which

has been postulated to play an important role in mediating its insulinotropic action in

the b cells [Svendsen et al., 2018]. The properties of the major insulinotropic products

of ProG peptide, which are GLP-1, GCG and OXM, will be further discussed in the

following sections.

PS GRPP Glucagon IP1 GLP-1 IP2 GLP-2 Preproglucagon 

GRPP Glucagon IP1 GLP-1 IP2 GLP-2 Proglucagon 

PC2  
Dominant  

PC1/3 
Dominant  

Glucagon 

GRPP 

GLP-1 

GLP-2 

IP1 

GLP-1 IP2 GLP-2 

Glucagon IP1 

GRPP Glucagon IP1 

IP2 

Oxyntomodulin 

Major hormonal products 

Figure 1.4: Post-translational processing of proglucagon gene. The proglucagon peptide (ProG), which
forms are cell-type dependent, gives rise to different bioactive products upon the actions of PC2 and PC1/3,
which are predominantly found in the pancreatic a cells or the intestinal L cells respectively. Diagram
adopted from [Sandoval and D’Alessio, 2015]. Diagram created with BioRender.com. Abbreviations: PC:
prohormone convertase; GRPP: glicentin-related pancreatic polypeptide; IP1: intervening peptide 1; IP2:
intervening peptide 2; PS: precursor.

1.3.2.2 GLP-1

GLP-1(7-36)NH2 (thereafter referred to as GLP-1) is the biologically active form which

accounts for all of the major physiological activities [Deacon, 2004]. Two forms of GLP-1,

namely the non-amidated GLP-1(7-37) and amidated GLP-1(7-36)NH2, are secreted by

the enteroendocrine L cells in the low intestine after proteolytic degradation by PC 1/3
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1.3. Incretins: the key mediators of glucose homeostasis

(Fig.1.4) in response to feeding [Holst, 2007]. However, GLP-1 has a very short half-life

(t1/2: 1-2 minutes), as a result of the proteolytic cleavage of alanine at position 8 at

the NH2 terminal by dipeptidyl peptidase-IV (DPP-IV) enzymes to give an abundant

metabolite, GLP-1(9-36)NH2 (which will be further described next) [Eng et al., 2014]

(Fig. 1.5). Hence, DPP-IV inhibitors such as sitagliptin were developed to enhance

the actions of GLP-1 [Drucker and Nauck, 2006, Verspohl, 2009]. GLP-1 mediates

its full agonism via the class B G protein-coupled receptor (GPCR), GLP-1 receptor

(GLP-1R) [Seino et al., 2010, Graaf et al., 2016], which will be further discussed in later

section. Apart from its insulinotropic action, GLP-1 also suppresses glucagon secretion

in the pancreatic a cells, which is equally important in maintaining glucose homeostasis

[Dunning et al., 2005, Holst, 2006, Lund et al., 2011, Sandoval and D’Alessio, 2015]

(the mechanisms of which will be discussed in section 1.4.2). GLP-1 also possesses

other non-glucoregulatory functions, such as neuronal protection against apoptosis in

Alzheimer’s disease, gastro-intestinal motility and reduction of cardiac contractility

[Seino et al., 2010].

1.3.2.3 GLP-1(9-36)NH2

The aforementioned GLP-1(9-36)NH2 is a metabolite of the active GLP-1 [Deacon, 2004].

GLP-1(9-36)NH2 has a relatively long half-life compared to GLP-1 (t1/2: 8-10 minutes)

and is the predominant circulatory form (around 80-90%) of the total GLP-1 forms

[Sharma et al., 2013, Eng et al., 2014]. It acts as a partial agonist at the GLP-1R [Wootten

et al., 2012, Nakane et al., 2015, Bueno et al., 2016] and it has weak insulinotropic

effect in in vivo human subjects [Elahi et al., 2008]. However, the mediation of its

physiological actions through the canonical GLP-1R is still debatable [Guida et al., 2020].

Therefore, ’dual receptor’ hypothesis arose [Tomas-Falco and Habener, 2010, Guglielmi

and Sbraccia, 2017] due to evidence showing that the cardioprotective properties of

GLP-1(9-36)NH2 are retained even in GLP-1R knock-out mouse system [Ban et al., 2010],

prompting the theory that GLP-1(9-36)NH2 acts at an alternative receptor to mediate

its physiological functions. Apart from its weak insulinotropic and cardioprotective

effect in vivo [Elahi et al., 2008], the administration of GLP-1(9-36)NH2 has shown

various other advantageous effects, such as vasodilation, hepatic glucose production

suppression and neuroprotection [Guglielmi and Sbraccia, 2017, Li et al., 2017].
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1.3.2.4 GCG

GCG, which consists of 29 amino acids, mediates its glucose-enhancing effect pre-

dominantly via the action in the liver, where it stimulates both glycogenolysis and

gluconeogenesis, rapidly increasing glucose output [Briant et al., 2016]. GCG acts on

another class B GPCR, glucagon receptor (GCGR) to mediate its action [Ahrén, 2009].

Apart from regulating hepatic glucose metabolism, glucagon also decreases food intake,

promotes weight loss, affects lipid metabolism and enhances cardiac output [Müller

et al., 2017].

While antagonising GCGR has been proposed to be a novel treatment of T2DM given

the glucose-enhancing effect and the observed clinical effect in reducing hyperglycaemia

upon administration of glucagon [Grøndahl et al., 2017], the antagonism of GCGR has

been shown to lead to undesirable side effects such as weight gain, elevation of hepatic

enzymes and liver fat content and a cells hyperplasia [Patil et al., 2020]. Therefore,

alternative T2DM treatments, such as combining the action of GCGR with GLP-1R or

GIPR [Pocai et al., 2009, Day et al., 2012, Capozzi et al., 2018], have been proposed

in order to provide better control of glucose homeostasis, eliminating any potential

undesirable side effects.

1.3.2.5 OXM

OXM is a C-terminal extended form of GCG with an addition of 8 amino acids [Sandoval

and D’Alessio, 2015]. It is a full dual agonist of GLP-1R and GCGR, but with lower

potencies and affinities compared to GLP-1 and GCG [Fehmann et al., 1994, Pocai,

2012, Willard and Sloop, 2012]. Moreover, a study shows that the glutamine (Q) residue

at position 3 of the OXM amino sequence confers its GCGR specificity [Kosinski et al.,

2012]. OXM has also been shown to possess glucose-lowering and weight loss effects

[Holst et al., 2018]. The intravenous glucose tolerance test (IVGTT) in Wistar rats

shows that OXM and GLP-1 stimulate insulin secretion at equal efficacies [Koole et al.,

2010]. Apart from its insulinotropic action, OXM has been found to increase glucagon

secretion in the pancreatic a cells both in vitro and in vivo [Holst et al., 2018]. OXM is

also able to induce weight loss in humans when administered three times daily before

meals [Wynne et al., 2010]. In addition, OXM has a longer half-life (t1/2: 6-12 minutes)

compared to GLP-1 (t1/2: 1-2 minutes) [Pocai, 2012], and hence is also proposed to be a

novel T2DM and obesity drug target [Wynne et al., 2010].
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1.3.2.6 GIP

GIP(1-42) (thereafter referred to as GIP), which is another major incretin hormone

comprising of 42 amino acids, is secreted by the enteroendocrine K cells of the upper

small intestines in response to feeding [Seino et al., 2010, Baggio and Drucker, 2007,

Gabe et al., 2019]. It is processed from the precursor protein, proGIP, via the action of

PC1/3 [Baggio and Drucker, 2007, Gabe et al., 2019]. Furthermore, the presence of the

PC2 motif on the proGIP protein allows the C-terminal truncation to give GIP(1-30)NH2.

Both GIP and GIP(1-30)NH2 possess similar agonistic actions, yet the concentration

of GIP(1-30)NH2 is at a very low physiological level (i.e. at picomolar range) [Gabe

et al., 2019]. Hence, it is postulated that GIP(1-30)NH2 plays minimal physiological

significance [Seino et al., 2010]. Similar to GLP-1, GIP has a relatively short half-life

of 5 mins [Deacon, 2004]; both GIP and GIP(1-30)NH2 are also susceptible to the

N-terminal truncation by the DPP-IV enzymes, resulting in the metabolite GIP(3-42)

and GIP(3-30)NH2 [Deacon, 2004]. Similar to GLP-1(9-36)NH2, GIP(3-42) is believed

to have no physiological effect, while GIP(3-30)NH2 has been used as a GIP receptor

(GIPR) antagonist to study the physiological effect of GIP [Sparre-Ulrich et al., 2016].

GIP mediates its action via the class B GPCR, GIPR [Baggio and Drucker, 2007],

which will be further described in later section. Unlike GLP-1, GIP has been shown to

promote glucagon secretion in pancreatic a cells, nutrient uptake into adipose tissues,

bone metabolism, as well as neurogenesis and memory formation [Baggio and Drucker,

2007, De Heer et al., 2008, Seino et al., 2010, Holst et al., 2011b, Khan et al., 2020].

The amino acid alignments of each proglucagon peptide product are shown in Fig.

1.5.

Amino acid position 1 11 21 31 41

GLP-1(7-36)NH2 HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR CONH2

GLP-1(9-36)NH2 EGTFTSDV SSYLEGQAAK EFIAWLVKGR CONH2

Exendin-4 HGEGTFTSDL SKQMEEEAVR LFIEWLKNGG PSSGAPPPS

Glucagon HSQGTFTSDY SKYLDSRRAQ DFVQWLMNT

Oxyntomodulin HSQGTFTSDY SKYLDSRRAQ DFVQWLMNT RNRNNIA

GIP YAEGTFISDY SIAMDKIHQQ DFVNWLLAQK GKKNDWKHNI TQ

Figure 1.5: Amino acid alignments of products of glucagon-like peptides. The amino acid sequences of
GLP-1(7-36)NH2, GLP-1(9-36)NH2, Exendin-4, glucagon, OXM and GIP are aligned as above. The dash
line across the amino acid sequences of GLP-1(7-36)NH2 and GLP-1(9-36)NH2 represent the N-terminal
truncation by the DPP-IV enzyme.
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1.4 Molecular mechanisms of GLP-1-regulated glucose home-

ostasis

1.4.1 Insulinotropic action of GLP-1 and GIP

Glucose-stimulated insulin secretion (GSIS) is a well-characterised mechanism in the

pancreatic b cells [Seino, 2012, Drucker, 2018]. During hyperglycaemia, glucose is

transported into the pancreatic b cells facilitated by the glucose transporter 2 (GLUT2)

and undergoes glycolysis to give pyruvate. Through oxidative phosphorylation of

pyruvate in the mitochondria, the ratio of cytosolic adenosine triphosphate: adenosine

diphosphate (ATP:ADP) is increased. This increase in ATP subsequently leads to

the inhibition of the ATP-sensitive potassium (KATP) channel, resulting in membrane

depolarisation, subsequently causing the opening of the L-type voltage-dependent

calcium channel (VDCC). The opening of the VDCC leads to an intracellular influx of

Ca2+, further promoting the release of Ca2+ from intracellular stores through Ca2+-

induced Ca2+ release (CICR) in the endoplasmic reticulum (ER). This augmentation

of iCa2+ stimulates the exocytosis of insulin-containing granules, leading to insulin

release from the b cells [Graaf et al., 2016] (Fig. 1.6).

GSIS can be further promoted with the actions of incretins [Seino et al., 2010, Cho

et al., 2014, Graaf et al., 2016] (Fig. 1.6). Upon binding to their canonical receptors, GLP-

1R and GIPR, the Gas subunits are activated, facilitating the adenylyl cyclase activity,

leading to an increase in the production of 3’,5’-cyclic adenosine monophosphate

(cAMP), which is an important secondary messenger responsible for the subsequent

signal transduction processes. Upon increasing cAMP production, PKA-dependent and

PKA-independent pathways, via the actions of exchange protein activated by cAMP

(EPAC), are mediated. The PKA-dependent pathway leads to the inhibition of the KATP

channel, via the phosphorylation of the sulfonylurea receptor (SUR) unit (which is the

target of another important class of T2DM drug, sulfonylurea) on the KATP channel,

leading to membrane depolarisation. PKA, together with protein kinase C (PKC), also

inhibit the activity of voltage gated potassium (KV) channel, which repolarizes the

membrane potential through allowing the efflux of K+. This delays repolarization,

leading to an increase in intracellular influx of Ca2+ via VDCC. Compared to the

PKA-dependent pathway, the PKA-independent pathway leading to insulin secretion is

not yet well defined. However, it is postulated that EPAC also inhibits the KATP channel

via increasing its sensitivity towards ATP. Together with PKA, EPAC enhances CICR
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through the actions of inositol 1,4,5- trisphosphate (IP3) receptor and ryanodine (Ry)

receptors. These collective enhancement of iCa2+ level promotes the exocytosis of the

insulin-containing granules, therefore enhancing GSIS in the b cells. Furthermore, CICR

has also been shown to directly enhance the production of ATP in the mitochondria;

and that PKA and EPAC have direct effect on the exocytosis of insulin-containing

vesicles. These series of downstream signalling pathways demonstrate the intricacy

and complexity of incretin-regulated GSIS in the b cells [Graaf et al., 2016] (Fig. 1.6).
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Figure 1.6: Mechanisms of GLP-1 and GIP-facilitated glucose-stimulated insulin secretion. GSIS is reg-
ulated under hyperglycaemic condition according to the following mechanisms: 1) glucose is transported
into the b cells via GLUT2; through oxidative phosphorylation, the ratio of ATP:ADP increases; 2) the
increase in ATP leads to the inhibition of KATP channel, resulting in membrane depolarisation; 3) the
inhibition of KATP channel subsequently leads to the opening of L-type VDCC, leading to an influx of
Ca2+ into the cytoplasm; 4) the increase in iCa2+ further promotes Ca2+-induced Ca2+ release, ultimately
stimulating the exocytosis of insulin vesicles. Incretins, namely GLP-1 and GIP, facilitate GSIS via the
activation of their canonical receptors, GLP-1R and GIPR. Upon binding to the receptors, the Gas subunit
is activated, leading to an increase in intracellular cAMP production via the enhancement of activity of the
adenylyl cyclase. The increase in cAMP level subsequently activates PKA and EPAC, which further inhibits
and promotes the ion channels responsible for regulating GSIS. Diagram created by BioRender.com.
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1.4.2 Glucagonostatic action of GLP-1

1.4.2.1 Glucose regulation of glucagon secretion

The mechanism of action of glucose-regulated glucagon secretion is highly similar

to that of GSIS [Holst et al., 2011b]. However, under hyperglycaemia, the glucagon

secretion in the a cells is inhibited rather than stimulated in contrast to the b cells.

Glucose uptake into the pancreatic a cells is mediated through the glucose-transporter

1 (GLUT1), instead of GLUT2 in the pancreatic b cells, as the expression of GLUT2

has been proven to be low in mouse and human a cells [Suga et al., 2019]. Glucose is

converted to pyruvate through glycolysis and further converted to ATP via oxidative

phosphorylation in the mitochondria. In contrast to the b cells, the a cells require

less intracellular ATP to inhibit the KATP channel, leading to depolarisation of the

membrane potential. The VDCC and sodium ion channel are then closed, resulting in

less Ca2+ and Na+ ions influx into the cytoplasm, therefore inhibiting the exocytosis

of glucagon-containing vesicles, suppressing glucagon secretion [Dunning et al., 2005,

Gylfe, 2016, Müller et al., 2017] (Fig. 1.7).

Intriguingly, similar to the mechanism of the suppression of glucagon secretion

under high glucose condition and in contrast to the b cells in response to low glucose,

the KATP channel remains closed under hypoglycaemia. The KATP channel then im-

poses a membrane potential, leading to the opening of VDCC and sodium ion channel;

the subsequent intracellular influx of Ca2+ and Na+ ions result in the exocytosis of

glucagon-containing vesicles, facilitating glucagon secretion [Müller et al., 2017] (Fig.

1.7). Apart from being regulated by glucose, glucagon secretion can also be controlled

via incretins, GLP-1 and GIP. Yet compared to the fully characterised signalling mecha-

nisms of GSIS facilitated by incretins, the mechanisms of how GLP-1 and GIP regulate

glucagon secretion have not yet been fully understood [Walker et al., 2011]. Hence

there is a need to elucidate the enigma underlying the molecular mechanisms of GCG

secretions. The following sections will discuss current findings on incretin regulation

of glucagon secretion.

1.4.2.2 Hypotheses for GLP-1-mediated inhibition of glucagon secretion

GLP-1 inhibitory effect on glucagon secretion in pancreatic a cells has been observed

both in vivo and in vitro [Holst et al., 2011a]. The question of whether the inhibition of

glucagon secretion mediated by GLP-1 is due to its direct effect on a cells (Fig. 1.7) or

through the stimulation of insulin and somatostatin secreted from neighbouring b and
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d cells [De Heer et al., 2008] has long been debated. The evidence that support both

sides of arguments will be presented as follows:

Paracrine effect: The postulation that GLP-1 inhibits glucagon secretion via paracrine

hormones such as somatostatin arises, due to the very low, or in some cases non-existent

expression of GLP-1R on the a cells [Moens et al., 1996, Kedees et al., 2009, Torne-

have et al., 2008]. This observation poses further question on how GLP-1 mediates

its glucagonostatic action through direct activation of the low expressing, or if at all,

GLP-1R. The paracrine effect on glucagon regulation that solely mediates through

insulin secreted in the b cells has been dismissed as normal oral glucose tolerance

was observed in spite of insulin deficiency due to the total destruction of b cells in

GCGR null mice; based on this observation, alternative hormones with insulinotropic

properties were postulated to be responsible for the apparent glucoregulation [Lee et al.,

2011]. Furthermore, GLP-1 has been shown to stimulate the secretion of somatostatin in

the d cells, which in turn inhibits glucagon secretion via paracrine effect [Orskov et al.,

1988]. Also, the expression of GLP-1R on the d cells has been shown to be higher than

that of the a cells [Richards et al., 2014, Ramracheya et al., 2018]. Further studies using

perfused isolated mouse islets suggest that in the presence of somatostatin receptor

antagonist, the inhibition of GLP-1-induced glucagon secretion is abolished [Ørgaard

and Holst, 2017]. However, according to the studies by our collaborators, the research

group led by Prof. Patrik Rorsman and Dr Reshma Ramracheya (Oxford Centre for

Diabetes, Endocrinology and Metabolism, University of Oxford), using static isolated

human islets, they show that GLP-1 suppression on glucagon secretion exists despite

the application of insulin receptor and somatostatin antagonists [Ramracheya et al.,

2018], further illustrating the lack of consensual evidence indicating whether paracrine

effect plays a key role in glucagon secretion suppression.

Direct effect: Initial studies suggest that 0 to 20% of rat a cells and islets express

GLP-1R [Heller et al., 1997]. In a recent study which analysed GLP-1R expression in

isolated human a cells, it was found that the expression level of the GLP-1R was only 1%

of that in b cells [Ramracheya et al., 2018]. In spite of the very low expression of GLP-1R

in the a cells, GLP-1 is able to mediate its glucagonostatic action via the direct activation

of its canonical receptor, leading to an increase in cAMP production [Ramracheya et al.,

2018]. Other studies utilising real-time RT-PCR technique, confocal laser scanning

microscopy and GLP-1R specific antibodies also detected low levels of GLP-1R in the

mouse clonal aTC-1.6 cells and the more physiologically relevant systems, the isolated

rat and mouse islets [Piro et al., 2014, Nakashima et al., 2018, Zhang et al., 2019]. The
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level of cAMP produced, coupled with the activation of the downstream PKA signalling,

have been found to be adequately enough to inhibit glucagon secretion [Ding et al.,

1997, De Marinis et al., 2010]. The study conducted by our collaborators also illustrates

the relationship between cAMP level and glucagon secretion using forskolin, a direct

adenylyl cyclase activator [Seamon et al., 1981]: low cAMP level produced by forskolin

leads to the inhibition of glucagon secretion whereas high level of cAMP leads to the

stimulation of glucagon secretion [De Marinis et al., 2010]. Therefore, this thesis aims

to build on current evidence suggested by our collaborators, and further investigates

the active role of GLP-1 in suppressing glucagon secretion in the pancreatic a cells.
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Figure 1.7: Mechanisms of glucose-regulated glucagon secretion. Glucagon secretion is suppressed
under hyperglycaemia. This can be achieved via the following mechanisms: 1) GLUT1 (instead of GLUT2
in b cells) transports glucose into the a cells, which then leads to an increase of ATP production via
the action of mitochondria; 2) this increase in ATP leads to the inhibition of KATP channel, leading to
depolarisation of membrane potential; 3) the VDCC and sodium ion channel are then closed, reducing
the intracellular influx of calcium and sodium ions into the cells, therefore inhibiting the exocytosis of
glucagon-containing vesicles. Under low glucose condition, the KATP channel remains closed in the a cells,
unlike the opening of KATP channel in the b cells. The KATP channel imposes a membrane potential, up to
a point where it leads to the opening of VDCC and sodium ion channel, leading to the intracellular influx
of calcium and sodium ions into the cells, thereby mediating exocytosis of glucagon-containing vesicles.
Incretins are also shown to regulate glucagon secretion. Abbreviations: GLUT1: glucose transporter 1.
Diagram created by BioRender.com.

16



1.5. Overview of G protein-coupled receptors

1.4.2.3 GPR119: a novel regulator of GLP-1 glucagonostatic action?

GPR119, which is a class A GPCR that has recently been deorphanized [Overton et al.,

2006], is postulated to play a role in GLP-1R mediated glucagonostatic action. GPR119

is activated by its endogenous agonist, the fatty acid oleoylethanolamide (OEA), as

well as synthetic agonists, PSN632408 [Overton et al., 2006] and AR231453 [Semple

et al., 2008]. GPR119 expresses predominantly in the pancreas and the gut in humans

[Odori et al., 2013]. It has been reported that GPR119 is able to directly enhance GSIS

by stimulating the production of cAMP upon receptor activation in the rat insulinoma

cell line [Chu et al., 2008] and in in vivo mouse models [Flock et al., 2011]. GPR119

also enhances the secretion of GLP-1 and GIP in their respective enteroendocrine L

and K cells, thereby indirectly facilitates glycaemia control [Chu et al., 2008]. GPR119

is also shown to enhance glucagon secretion in low glucose condition in isolated

mouse islets, as well as in healthy and streptozotocin (STZ)-induced diabetic rats [Li

et al., 2018], further implying its critical role in regulating glucose homeostasis. More

recently, the endogenous agonist of GPR119, OEA, has been shown to potentiate GLP-

1R cAMP signalling in the RINm5F rat islet cell tumour cell line and Chinese Hamster

Ovary (CHO)-K1 stably expressing GLP-1R cells [Cheng et al., 2015, Brown et al.,

2018], therefore posing further question if GPR119 may play a role in GLP-1 mediated

glucagonostatic action. However, such notion is yet to be validated experimentally.

Following the introduction of GPR119 potential role in regulating GLP-1 glucagono-

static action and the discussion of the physiological significance of incretins, their

canonical receptors, which belong to the group of GPCRs, will be discussed in the

following section.

1.5 Overview of G protein-coupled receptors

GPCRs, interchangeably with other terms such as metabotropic receptors or seven

transmembrane (TM) spanning receptors, are the largest superfamily of cell-surface

receptors [Pavlos and Friedman, 2017]. A total of 1000 receptors have been identi-

fied. GPCRs are further classified into six different subfamilies according to their

sequence homology, namely rhodopsin-like (Class A), secretin receptor family (Class

B), metabotropic glutamate (Class C), fungal mating pheromone receptors (class D),

cyclic AMP receptors (class E) and frizzled/smoothened (Class F) receptors [Alexander

et al., 2019]. These families can be further divided into subfamilies based on sequence

similarities. GPCR can be structurally categorized as having a N-terminal extracellular

17



Chapter 1. Introduction

domain (ECD), seven hydrophobic transmembrane helices (TM1-7) and a C-terminal

intracellular domain. The seven TM are linked by three extracellular loops (ECL1-3)

and three intracellular loops (ICL1-3) (Fig. 1.8).

GPCRs serve as attractive drug targets and account for 35% of total marketed

drugs [Sriram and Insel, 2018]. They are considered to be an important group of

cell-surface receptors as many hormones, neurotransmitters, ions, photons, odorants

and other stimulus work via GPCR activation to mediate downstream signalling effect

to relay their physiological functions [Chalmers and Behan, 2002, Hilger et al., 2018],

including the aforementioned regulation of GSIS in the pancreatic b cells. Here, the

signal transduction mechanism mediated by GPCR will be further elaborated.

N-terminal extracellular domain
(ECD)

Orthosteric ligand

TM helical bundle

G protein binding site

G!s G"

G#

C-terminal intracellular domain
Intracellular loop (ICL)

Extracellular loop (ECL)

Figure 1.8: Exemplary GPCR structure using GLP-1R cryo-EM full length structure in complex with
GLP-1 and Gas subunit as a model. The cardinal features of GPCR include a seven transmembrane
helical bundle, connected by three extracellular loops and three intracellular loops. It also has a N-terminal
extracellular domain and a C-terminal intracellular domain. The full length GLP-1R structure (PDB: 5VAI)
is used as a model to illustrate the common structure of GPCR.
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1.5. Overview of G protein-coupled receptors

1.5.1 GPCR-mediated signal transduction

GPCRs rely on the heterotrimeric G proteins, consisting of Ga, Gb and Gg subunits to

relay signal transduction processes which are essential for their regulation of physiolog-

ical functions [Johnson et al., 2011]. At the receptor resting state, the heterotrimeric G

proteins are in close proximity with the receptor and are anchored at the plasma mem-

brane. The Ga subunit, associating with the constitutive heterodimer Gbg subunits, is

also bound to the nucleotide guanosine diphosphate (GDP). Upon agonist binding, the

receptor undergoes conformational changes and the heterotrimeric G protein complex,

including the GDP, are recruited to the receptor. The receptor then acts as a guanine

nucleotide exchange factors (GEFs), activating the release of GDP protein in exchange

for the nucleotide guanosine triphosphate (GTP). This process subsequently leads to

the dissociation of the Ga subunit from the Gbg complex, whereby the Ga-GTP com-

plex diffuse laterally at the cell surface, further triggering the generation of secondary

messengers mediating downstream signalling transduction by activating or inhibiting

other membrane proteins. The signal transduction outcome depends on the Ga subunit

subgroups, which will be discussed below. The signalling process ends when GTP is

hydrolysed to GDP by the intrinsic GTPase or the GTPase activating proteins (GAPs)

such as regulator of G protein signalling (RGS), resulting in the association of the

heterotrimeric G proteins (Fig. 1.9) [Syrovatkina et al., 2016, Campbell and Smrcka,

2018].

Apart from the canonical (G protein-dependent) signalling pathways that happen

within the cell membrane surface, non-canonical (G protein-independent) signalling

pathways, which rely on the actions of GPCR kinases (GRK) and b-arrestins, allowing

internalisation of receptor in the endosomes, are also proven to be critical in mediating

sustained signalling responses [Pavlos and Friedman, 2017]. Given the complexity of

GPCR signalling, this thesis will focus primarily on the canonical signalling of GPCRs.

Here, the classical downstream signalling pathway, mediated by different G protein

families, will be outlined.

1.5.2 G protein subunit families

The heterotrimeric G proteins consist of a diverse family of isoforms, with a total of 20

Ga subunits, 5 Gb subunits and 12 Gg subunits [Milligan and Kostenis, 2006, Campbell

and Smrcka, 2018]. Ga subunits, which can be further classified into 4 subfamilies, play

a major role in defining the signal transduction outcomes. The Gbg complex also plays
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Figure 1.9: Classical view of G protein-coupled receptor signalling. GPCR signalling can be divided
into canonical (classical) G protein-dependent signalling and non-canonical, b-arrestins/GRK dependent
signalling, which results in receptor internalisation. The diagram above depicts the classical GPCR
signalling, which is activated upon the dissociation of Ga subunit from the Gbg subunits. Depending on
the Ga subunit, different downstream signalling pathways are resulted: 1) Gas and Gai subunits stimulate
and inhibits the enzymatic action of adenylyl cyclase respectively, leading to an increase or decrease in
cAMP level produced. Gaq subunit leads to the activation of PLC/DAG/IP3 pathway, ultimately results in
an increase in intracellular calcium mobilisation. Ga12/13 subunit activates Rho, however its physiological
relevance is yet unknown. Different pharmacological activator or inhibitors (in red) can be used to activate
or inhibit certain signalling pathways. Diagram created by BioRender.com.

20



1.5. Overview of G protein-coupled receptors

an equally important physiological role. However, the biochemical classification based

on the standalone Gb and Gg subunits has been proven to be technically difficult to

date [Smrcka, 2008]. Therefore, the Gbg complex has been regarded as a single class for

mediating signal transduction process [Campbell and Smrcka, 2018]. Here, the major

effectors for each Ga subfamily will be discussed.

1.5.2.1 Gas

The Gas subunit was the first G protein discovered and classified based on their

activities in stimulating adenylyl cyclase [Northup et al., 1980]. There are currently

two main members of the Gas families: the Gas subunit, which is highly present in

most cell types and the Gol f subunit, which only presents in the olfactory sensory

neurone. The Gas-GTP complex formed upon receptor activation binds directly to

the adenylyl cyclase, catalysing the enzyme to convert ATP to cAMP (Fig. 1.9). The

termination of the cAMP signalling is regulated by the phosphodiesterases (PDEs),

which convert cAMP to adenosine monophosphate (AMP) [Hancock, 2010]. The

increased in cAMP production further leads to the activation of the main effectors, PKA

and EPAC, as discussed previously (Fig. 1.6) [Yang and Yang, 2016]. The cAMP/PKA

and cAMP/EPAC pathways will be further elaborated later. Pharmacological tools, such

as the direct adenylyl cyclase activator, the diterpene forskolin [Seamon et al., 1981],

and PDE inhibitors, such as the pan-PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX),

specific PDE 4 inhibitor rolipram and specific PDE 2, 3, and 7 inhibitor trequinsin

[Schmidt et al., 2020], have been used to prevent the breakdown of cAMP by inhibiting

PDEs, in an attempt to aid the characterisation of Gas signalling pathway (Fig. 1.9).

1.5.2.2 Gai

The Gai family is the largest and most diverse Ga subfamilies, which consists of Gai1,

Gai2, Gai3, Gao, Gat, Gag and Gaz. Gao has been shown to be highly expressed in

neurons while Gat (which t stands for transducin), which can be further divided

into Gat1 and Gat2, is present in the rod and cone cells of the eyes. Gag (which

g stands for gustducin) is found in the taste receptor cells while Gaz is present in

neurones and platelets ([Kuszak et al., 2010]). Contrary to the action of the Gas subunit,

the Gai subunit inhibits the adenylyl cyclase, except for Gao, which it shows weak

inhibitory action, thereby slowing the conversion of ATP to cAMP, ultimately reducing

the intracellular cAMP levels (Fig. 1.9). Furthermore, all Gai subunits except Gaz can
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be inhibited by pertussis toxin (PTX) [Pittman, 1979, Katada and Ui, 1982], through

ADP-ribose modification of a unique cysteine at the carboxyl terminus of Gai subunits,

which impose steric occlusion of Gai with receptors [Campbell and Smrcka, 2018].

1.5.2.3 Gaq/11

The Gaq subfamily consists of Gaq, G11, G14 and G15 subunits, of which G11 shares 90%

homology as Gaq [Campbell and Smrcka, 2018]. These subunits all have distinct tissue

distributions but no specific target interactions have been identified [Kamato et al.,

2015, Campbell and Smrcka, 2018]; yet most physiological studies show that Gaq and

G11 share overlapping functions. All of the subunits can activate phosphate lipase Cb

(PLCb), subsequently causing Ca2+ release, which is one of the major drivers of cellular

body functions (the PLC pathway will be further discussed later) [Cabrera-Vera et al.,

2003]. Apart from activating the PLCb/Ca2+ release pathway and depending on cell

type and receptor, Gaq/11 has also been shown to interact with p63RhoGEF to activate

Rho by converting Rho-GDP to Rho-GTP via the action of RhoGTPase [Campbell

and Smrcka, 2018]. A number of Gaq/11 specific small molecule inhibitors have been

identified recently [Zhang et al., 2020]; YM-254,890, which is a cyclic depsipeptide

isolated from the culture broth of Chromobacterum sp., is one of the examples [Takasaki

et al., 2004] (Fig. 1.9).

1.5.2.4 Ga12/13

Ga12/13 subunits were identified in a homology screening for novel G protein sub-

units [Kozasa et al., 2011]. They were later characterised by their interaction with

p115RhoGEF protein, thereby activating Rho via the catalysis of Rho-GDP to Rho-GTP

through RhoGTPase (Fig. 1.9). Ga12/13 subunits are expressed ubiquitously in humans.

Notably, most GPCRs which couple to Gq subunits can also bind to Ga12/13 subunits,

however its physiological significance is unknown [Kozasa et al., 2011].

1.5.2.5 Gbg

5 Gb subunits and 12 Gg subunits are reported to date, and the Gb subunits are deemed

to be the major determinator of the Gbg subunit cellular effects. The Gb1�4 subunits

show 80% structural homology while the Gb5 subunit only shows 50% structural

similarities with the rest of the Gb subfamily; there are less structural similarities among

Gg subunits [Milligan and Kostenis, 2006]. Furthermore, the functional significance of
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each unique combination of the Gbg subunit is less understood. Gbg subunit has been

identified to be able to mediate signal transduction on its own as well as interact with

other protein kinases to further relay signal transduction [Cabrera-Vera et al., 2003].

Examples of which include the interaction with phosducin, the activation of GPCR

kinase 2 (GRK2) as well as the activation of G protein gated inwardly rectifying K+

channel (GIRK) [Smrcka, 2008].

1.5.3 Major secondary messengers for relaying signalling cascades

A number of important secondary messengers are produced upon G protein activations.

These secondary messengers trigger downstream signalling cascades, controlling im-

portant physiological functions via transcription, translation or metabolism. Due to the

complex nature of intracellular signalling upon GPCR activation, here three signalling

pathways which are involved in the regulation of glucose homeostasis will be discussed

in greater details.

1.5.3.1 cAMP/PKA pathway

The activation of the Gas subunit catalyses adenylyl cyclase, increasing cAMP pro-

duction. cAMP acts as an important secondary messenger which further activates

PKA. PKA is a serine/threonine kinase and is a holoenzyme formed by a dimer of

two regulatory (R) subunits that each bind to a catalytic (C) subunit. Each R subunit

contains two cAMP binding sites [Murray, 2008, McClendon et al., 2014]. Upon cAMP

binding, conformation changes are induced, which release the active C subunit. There

are four types of R subunits, namely RIa, RIb, RIIa and RIIb and two types of C

subunits (Ca and Cb) [McClendon et al., 2014]. In general, RIa, RIIa and the two types

of C subunits are expressed in all tissues whereas the expressions of RIb and RIIb are

restricted to certain tissues [Stratakis and Cho-Chung, 2002]. Notably, the type I PKA,

which contains the RIa and RIb subunits, requires less intracellular cAMP level for

its activation compared to the type II PKA, which consists of RIIa and RIIb subunits

[Yang and Yang, 2016]. PKA can be inhibited by the cAMP analogue, Rp-8-Br-cAMP

[Gjertsen et al., 1995], which acts as an invaluable pharmacological tool in investigating

PKA-mediated downstream signalling pathway (Fig. 1.9).

The cAMP-mediated activation of PKA has also been shown to be critical in phos-

phorylation of the extracellular signal-regulated kinases (ERK) 1/2, which is a member

of the mitogen-activated protein kinase (MAPK) family. It does so by activating the
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Rap1-GTPase, which acts on the protein kinase Raf, which further stimulates the

mitogen-activated protein kinase (MAPK) kinase (MEK). MEK then phosphorylates

ERK1/2, which are implicated in cellular growth and differentiation, including the

pancreatic b cells [Werry et al., 2005, Goldsmith and Dhanasekaran, 2007] (Fig. 1.9).

1.5.3.2 cAMP/EPAC pathway

Alternatively, EPAC, which has been recently discovered, is also activated upon the

increasing cAMP level via Gas-activation. EPAC exists in two isoforms, the ubiqui-

tously expressed EPAC1 and EPAC2, which is predominantly expressed in brain, liver,

pancreas, and adrenal gland [Seino, 2012]. As highlighted in section 1.4.1, EPAC2 plays

an important role in facilitating the exocytosis of insulin-containing vesicles, leading to

an increase in insulin secretion [Tengholm, 2012, Almahariq et al., 2014].

EPAC1 and EPAC2 act on the same downstream effectors, small GTPase Rap1 and

Rap2. It has also been postulated that through the action of Rap1, PKA-independent

phosphorylation of ERK1/2 can be mediated through the activation of EPAC, however,

its mechanism of action is still under debate [Werry et al., 2005](Fig. 1.9).

1.5.3.3 PLCb/Ca2+ pathway

The activation of the Gaq/11 subunit leads to the activation of PLCb. PLC hydrolyses

the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2) to IP3 and diacyl-

glycerol (DAG), which both act as important secondary messengers, initiating their

individual signalling cascades. The cytosol soluble IP3 causes the release of Ca2+ into

the cytoplasm via the action of IP3R on the endoplasmic reticulum [Putney and Tomita,

2012, Islam, 2019]. The membrane bound DAG further activates PKC. DAG is also

known to activate the GTPase Raf, which then leads to the activation of MEK (although

the mechanism is less defined), ultimately phosphorylating ERK1/2 (Fig. 1.9) [Werry

et al., 2005].

1.5.4 GPCR desensitisation and internalisation

As alluded previously, GPCRs are involved in the mediation of a range of highly

physiologically relevant signal transduction process at a cellular level. However, con-

tinuous signalling or excessive stimulation can be harmful to cells, and may even

lead to uncontrolled cell growth. Therefore, receptor desensitisation is an important

mechanism of which healthy cells employ to blunt GPCR signalling transiently or over
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a period of time to sustain normal physiology [Rajagopal and Shenoy, 2018]. Traditional

receptor desensitisation is regulated through the phosphorylation of the active receptor

via the action of GRKs (mainly GRK2/3 and GRK5/6) and/or other protein kinases,

leading to subsequent high affinity binding of b-arrestins (mainly b-arrestin 1 and 2)

at the cytosolic side of the receptor [Gurevich and Gurevich, 2019]; the arrestins then

enhance the receptor endocytic trafficking machinery. The internalisation of receptor

facilitates signal termination through subsequent degradative lysosomal pathway or

disassembly of the active receptor complex in early endosomes to enhance recruitment

of receptors to cell surface via recycling endosomes [Carbone et al., 2019]. However,

several recent reports have also shown b-arrestin-independent receptor internalisation,

via the clathrin and dynamin-dependent mechanisms [Wolfe and Trejo, 2007], further

illustrating the diverse array of regulatory means of GPCR internalisation.

Interestingly, instead of signal termination, recent evidences suggest a few receptors

generate sustained signalling responses within the endosomal compartment [Ferrandon

et al., 2009, Feinstein et al., 2013]. Therefore, a new mean to improve the efficacy and

to reduce side effects of existing drug treatments via the control of spatiotemporal

properties of GPCRs has been proposed [Hothersall et al., 2016, Retamal et al., 2019].

GLP-1R (the properties of GLP-1R will be further discussed in section 1.5.5.2) is regarded

as one of the highly physiologically relevant examples [Roed et al., 2014, Roed et al.,

2015, Thompson and Kanamarlapudi, 2015, Thompson et al., 2016, Fletcher et al., 2018].

Studies have shown that the receptor-agonist complex can co-localise with adenylyl

cyclase in the endosomes, triggering the production of cAMP within the endosomal

compartment [Kuna et al., 2013]. Furthermore, targeting GLP-1R trafficking has been

shown to enhance the efficacy of current incretin T2DM treatments [Jones et al., 2018],

thereby illustrating the possibility of the delivery of a more efficacious T2DM treatment,

while limiting its potential side effects, via manipulating receptor interaction with

b-arrestins with the use of specific biased agonists.

1.5.5 Class B GPCRs

There are currently 6 major families of GPCRs, of which class B GPCRs are highly

physiologically relevant. The 15 members of the Class B secretin-like GPCRs, and their

moderate length (27 to 44 amino acids) peptide-based natural hormones [Wootten and

Miller, 2020], include [Alexander et al., 2019] (Table 1.1):
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Table 1.1: List of Class B GPCRs and their endogenous hormones.

Class B GPCR members Endogenous hormone

CTR Calcitonin 

AMY1 (CTR:RAMP1), AMY2 (CTR:RAMP2), AMY3 (CTR:RAMP3) Amylin

CGRPR (CLR:RAMP1) Calcitonin gene-related peptide

AM1 (CLR:RAMP2), AM2 (CLR:RAMP3) Adrenomedullin

CRF1R, CRF2R Corticotropin-releasing factor

GCGR GCG and OXM

GLP-1R GLP-1, GCG, OXM, GLP-1(9-36)NH2

GLP-2R GLP-2

GIPR GIP

SCTR Secretin

GHRHR Growth hormone-releasing hormone

PTH1R, PTH2R Parathyroid hormone

PTH1R Parathyroid hormone-related peptide

PAC1R Pituitary adenylate cyclase activating peptide

VPAC1R, VPAC2R Vasoactive intestinal polypeptide 

Collectively belong to the 
glucagon receptor family

Abbreviations: Calcitonin receptor (CTR); receptor activity modifying proteins (RAMPs); amylin 1
(AMY1), amylin 2 (AMY2) and amylin 3 (AMY3) receptors; calcitonin-receptor like receptor (CLR);
calcitonin gene-related peptide receptor (CGRPR); adrenomedullin 1 (AM1) and adrenomedullin 2
(AM2) receptors; corticotropin-releasing factor 1 (CRF1) and corticotropin-releasing factor 2 (CRF2) re-
ceptors; growth hormone-releasing hormone receptor (GHRHR); secretin receptor (SCTR); parathyroid
hormone 1 (PTH1) and parathyroid hormone 2 (PTH2) receptors; vasoactive intestinal polypeptide
1 (VPAC1) and vasoactive intestinal polypeptide 2 (VPAC2) receptors; pituitary adenylate cyclase-
activating polypeptide type I (PAC1) receptor.
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1.5.5.1 Therapeutic implications of Class B GPCRs

Class B GPCRs are known to play an important role in regulating key physiological

functions including satiety and glucose homeostasis, cardiovascular system, gastroin-

testinal functions, bone metabolism, and immune responses [Karageorgos et al., 2018].

They mediate their physiological function via cognate peptide hormones, which are

currently drug targets for many diseases such as diabetes, osteoporosis, cancer, neu-

rodegeneration, cardiovascular disease, headache and psychiatric disorders. Notable

marketed therapeutic examples of Class B GPCR drug treatments include the afore-

mentioned exenatide, which is a GLP-1R-targeted T2DM treatment, teduglutide, which

is a GLP-2R-based treatment for short bowel syndrome as well as teriparatide, which

is a PTH analogue for the treatment of osteoporosis [Hollenstein et al., 2014]. Given

the importance of glucagon receptor family in regulating glucose homeostasis, the

receptors from this subclass of Class B GPCRs will be discussed in details as follow.

1.5.5.2 Class B subfamily: glucagon receptor family

Glucagon receptor family comprises of GLP-1R, GIPR, GCGR, GLP-2R and SCTR

[Alexander et al., 2019], of which GLP-1R, GIPR and GCGR have been extensively

shown to be involved in glucose homeostasis, and therefore will be the main focus of

this thesis.

GLP-1R: GLP-1R shares 45% primary sequence with GCGR [Song et al., 2017]

and can be activated by a range of cognate ligands such as GLP-1 and its metabolite,

GLP-1(9-36)NH2, which is a very weak partial agonist [Koole et al., 2013]. Apart from

being activated by its endogenous agonists, GLP-1R can also be activated by synthetic

peptide agonists, such as Ex-4, and GCGR cognate ligands namely GCG and OXM

[Koole et al., 2013]. GLP-1R is expressed in a wide range of tissues, such as pancreas,

lung, brain, stomach, heart, and kidney, but interestingly not in tissues involved in

glucose metabolism, such as the skeletal muscle and adipocytes [Janssen et al., 2013].

GLP-1R is preferentially Gas coupled leading to the production of cAMP and the

activation of PKA to regulate insulin secretion in b cells [Montrose-rafizadeh et al.,

1999]. Recent reports also demonstrate its ability to pleiotropically couple to both

Gi [Weston et al., 2014] and Gq subunits [Shigeto et al., 2015]. Furthermore, GLP-1R

recruits GRK and interacts with b-arrestins 1 and 2 [Graaf et al., 2016]; b-arrestin-1

attenuates cAMP responses at the GLP-1R, inhibiting insulin secretion [Sonoda et al.,

2008]. These examples illustrate the complexity of GLP-1R signalling, which encompass
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both G protein-dependent and independent pathways. Moreover, GLP-1R has been

shown to possess no interactions with any receptor activity modifying proteins (RAMPs)

accessory proteins [Weston et al., 2015].

GCGR: Given its structural resemblance to GLP-1R, GCGR can be activated by

GLP-1R cognate ligands, such as GLP-1 and liraglutide [Weston et al., 2015], in addition

to its endogenous agonists, GCG and OXM. GCGR is primarily expressed in the liver,

but also to some extents in the central nervous system, kidneys, gastro-intestinal tract,

heart and pancreas [Galsgaard et al., 2019].

GCG activates GCGR predominantly through Gas coupled pathways, which in turn

stimulates adenylate cyclase, leading to the production of cAMP and the activation of

PKA, thereby activating gluconeogenic enzymes which then increase gluconeogenesis

and glycogenolysis [Ahrén, 2009, Wewer Albrechtsen et al., 2016]. GCG also activates Gq

and Gi coupled pathways, which regulate the iCa2+ level, leading to glucagon-induced

inhibition of glycolysis [Xu and Xie, 2009]. Furthermore, the interaction with RAMP2

alters G protein preference and ligand selectivity, of which this interaction abolishes

GLP-1 activation of GCGR, further illustrating the complexity of GCGR signalling upon

the interplay among agonists, receptors and RAMPs [Weston et al., 2015, Cegla et al.,

2017] (the significance of RAMPs will be further elaborated later).

GIPR: GIPR has been shown to be activated by its endogenous agonists, GIP(1-42)

and GIP(1-30)NH2 (see section 1.3.2.6). GIPR has been shown to be highly expressed

in the pancreas, and also with broad expressions in the gut, adipose tissue, heart,

endothelial cells, pituitary gland, adrenal cortex, osteoblasts, and in regions of the

central nervous system [Greenwell et al., 2020]. GIPR also predominantly couples to

the Gas subunit, leading to the downstream cAMP/PKA/EPAC signalling pathways,

which has been shown critical for the insulin secretion [Seino, 2012]. GIPR can also

pleiotropically couple to Gq and Gi subunits, leading to the downstream activation of

PLC/iCa2+ release and inhibition of the adenylyl cyclase activity [Harris et al., 2017]. In

addition, GIPR interacts with all three RAMPs, modulating its cell surface expression,

iCa2+ mobilisation and phosphorylation of ERK1/2 [Harris et al., 2017].

1.5.6 Recent understanding towards GLP-1R structure

Compared to the class A GPCRs, the class B GPCRs are known to possess large, flexible

N-terminus ECDs which hindered the structural determination of the secretin-like

receptors in the past decades [Krumm and Roth, 2020, Wootten and Miller, 2020].

However, thanks to recent breakthroughs in the development of nanobodies and
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antibodies, GPCRs complexes can be stabilised, allowing high-resolution structural

determination via cryo-electron microscopy (EM) of a number of class B GPCRs [Liang

et al., 2017, Zhang et al., 2017a, Zhang et al., 2018, Hilger et al., 2020, Qiao et al.,

2020, Garelja et al., 2020, Chang et al., 2020, Liang et al., 2020b, Ma et al., 2020b].

The structures of GPCRs complexed with cognate agonists, antagonists and/or G

protein provide a mechanical glimpse towards the mechanisms of activation and biased

signalling of class B GPCRs. In particular, there are a number of GLP-1R full-length

high-resolution structures determined by cryo-EM [Jazayeri et al., 2017, Zhang et al.,

2017a, Liang et al., 2018b, Wu et al., 2020] (Fig. 1.10), which undoubtedly facilitate drug

design. The significance of which will be further discussed in this section.

1.5.6.1 Structural similarities among class B GPCRs

The class B GPCRs generally have distinctly large ECDs which are composed of 120 to

160 residues. Their ECDs are comprised of two anti-parallel b-sheets and an amino-

terminal a-helix, connected by series of loops and stabilised by three disulphide bonds

[Graaf et al., 2017]. Compared to the class A GPCRs, their upper TM-regions are

more open towards the extracellular side of the membrane and pockets where small

molecules can bind to are apparently absent [Wootten and Miller, 2020]. However, their

TM regions are highly conserved across class B GPCRs. Upon receptor activation, deep

V cavities are formed, which are considerably wider than the rest of the other classes of

GPCRs [Graaf et al., 2017]. In terms of G protein binding site, similar conformational

changes at helix 6 are observed and analogous intracellular binding sites are found in

class A and class B GPCRs. However, the helix 5 of the Gas subunit protrudes deeper

into the intracellular binding sites for the secretin-like GPCRs compared to the class A

GPCRs and are stabilised by the polar interaction mediated by a conserved amino acid.

This conserved amino acid has also been found to be implicated in negative allosteric

modulator binding [Graaf et al., 2017].

1.5.6.2 Two-domain model of activation

Given the highly conserved amino acid sequences of the ECDs among class B GPCRs,

it is postulated that the secretin-like receptors adopt similar mechanism of actions for

their activation. In fact, two-domain model of activation has been proposed [Hoare,

2005]. The peptide ligands of secretin-like receptors often show little ordered structures

in aqueous solutions [Parthier et al., 2009]. However once the C-terminus of the peptide
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ligand interacts with the N-terminal ECD of the receptor, the peptide ligand adopts

an a-helical conformation, allowing itself to penetrate deeply into the upper half of

the TM domain (also termed as junction domain). In fact, recent reports of crystal

structures of these class B GPCRs in complex with cognate ligands have substantiated

the two-domain model of activation, which show that the peptide ligands penetrate

deeply into the core and sit above the central polar network [Liang et al., 2017, Zhang

et al., 2018]).

1.5.6.3 GLP-1R orthosteric agonist binding and receptor activation

Thanks to the recent structure that reveals GLP-1R in complex with GLP-1, defining

features of the GLP-1R orthosteric binding pocket (i.e. the binding site of the recognised

endogenous ligands of the receptors to produce biological responses) are identified

[Zhang et al., 2017a], as well as providing a mechanistic comparison between its active

and inactivate states [Wu et al., 2020] (Fig. 1.10). When GLP-1R is in its inactive state,

its ECL1 and ECL3 form an a-helical conformation similar to that of the GLP-1-bound

GLP-1R structure [Wu et al., 2020]. Furthermore, the peptide-binding groove of the

ECD is juxtaposed with the TM domain interacting with ECL1 and ECL3 [Wu et al.,

2020]. Also, the ECD is found to be dynamic in its inactive form as suggested in the

molecular dynamic (MD) stimulation. However, closed conformation of the ECD is

preferred, stabilised by the weak interaction between ECL1 and ECL3 [Wu et al., 2020].

According to the report on the active GLP-1R in complex with GLP-1 and Gas sub-

unit [Zhang et al., 2017a], GLP-1 forms an extensive network of interactions involving

TM1, TM2, TM5, TM7, ECL1 and ECL2, as well as ECD [Zhang et al., 2017a]. Consistent

with the two-domain model of activation, the N-terminus of GLP-1 penetrates into the

receptor core, particularly through the interaction of the Histidine residue at position 7

at the GLP-1 peptide to interact with Arginine-229 residue on the ECL2 at the GLP-1R,

as well as the glutamic acid residue at position 9 at the GLP-1 that interacts with

Leucine-388 and Serine-392 of TM7 via van der Waals’ forces [Zhang et al., 2017a]. In

addition, ECL1 and ECL2 have been found to be implicated in GLP-1 binding with the

GLP-1R [Zhang et al., 2017a]. The precise Gas binding site has also been validated to

be at the cytoplasmic half of TM6, with limited associated movement of TM5 to form a

cavity together with TM2, TM3 and TM7 [Zhang et al., 2017a].
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1.5.6.4 GLP-1R biased signalling

The availability of crystal structures of GLP-1R in complex with various ligands,

namely peptide 5 (a GLP-1 nanopeptide) [Jazayeri et al., 2017] and Exendin-P5 (ExP5)

(a biased GLP-1R agonist with diminished coupling with b-arrestins) [Zhang et al.,

2015, Liang et al., 2018b], facilitates the molecular understanding of GLP-1R biased

signalling. Firstly, the ECDs of GLP-1R bound to peptide 5 and ExP5 display different

conformations when comparing that to GLP-1 bound to its endogenous agonist. The

ECD is fully opened in the presence of GLP-1, whereas the ECD is only partially

extended in the presence of ExP5 [Liang et al., 2017]. Secondly, TM1, the extracellular

portions of TM6 and TM7, and the ECL3 conformation are different between the binding

modes of GLP-1 and ExP5 at the GLP-1R [Liang et al., 2017], which suggest these regions

are responsible for regulating biased signalling and are indeed substantiated by an

earlier study which shows that the ECLs are responsible for triggering biased agonism

[Wootten et al., 2016a].

In fact, two distinct regions that are critical for biased agonisms of GLP-1, OXM

and Ex-4 have been identified in a series of mutagenesis studies; these mutations were

further mapped into the reported GLP-1R structures [Lei et al., 2018]. According to the

authors, the first region involves the interface between TM5 and 6 and is linked to the

reorganization of ECL2 into a structured network that is required for propagation of

signalling linked to Gas and Gaq-dependent pathways at the GLP-1R. The second is

the interface between TM1 and 7 that is the key driver of pERK1/2 (at least mediated

through Gai-activation) at the GLP-1R. They also identified key amino acid residues

within these regions that are critical for peptide binding and their functional signalling

[Lei et al., 2018].

In their study, they also identified a shallower binding orientation of OXM in

the orthosteric binding pocket. They attributed the observation to the fact that OXM

contains an uncharged glutamine (Gln) residue, which is equivalent to a charged residue

glutamic acid (Glu) at position 9 at GLP-1 peptide. The uncharged Gln residue therefore

cannot form a salt bridge with Arg-190 residue at the GLP-1R. Indeed, compared to

the loss of affinity of GLP-1 and Ex-4 in the presence of the mutation of Trp-297 and

the adjacent Cys-296, the attenuation of OXM affinity only occurs when a different set

of amino acid mutation (F381A, L142A, and K202A, R380A) are involved. These all

imply OXM binds to the GLP-1R in a different manner compared to GLP-1 and Ex-4

[Lei et al., 2018].
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Figure 1.10: GLP-1R full length crystal structures determined by cryo-electron microscopy. (A) shows
the full GLP-1R structure in complex with peptide 5; (B) shows the GLP-1R structure without orthosteric
ligand binding and stabilised by a Fab fragment; (C) shows the GLP-1R structure in complex with GLP-1
and Gas; (D) shows the structure in complex with the biased agonist Exendin-P5 and Gas.
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1.5.7 Accessory proteins: endogenous allosteric modulators of GPCR sig-
nalling

Accessory proteins are proteins that are distinct from GPCR and G protein. They are

also known to be effectors that regulate the specificity, efficacy or potency of signal

transduction upon receptor activation [Sato et al., 2006]. They are now known to

modulate receptor trafficking in both class A and class B GPCRs [Couvineau and

Laburthe, 2012]. Numerous accessory proteins have been reported ever since their

discovery in the 90s [Sato et al., 2006]. Here, only the accessory proteins which are

reported to modulate the functions of class B GPCRs, which are RAMPs and receptor

component protein (RCP) will be discussed in more details.

1.5.7.1 Receptor activity modifying proteins (RAMPs)

RAMPs, a class of single-TM accessory proteins with three cardinal members: RAMP1,

RAMP2 and RAMP3, have been first discovered to be essential for the signal transduc-

tion of CLR, giving rise to different signalling outcomes depending on the modulation

by the partnering RAMPs [McLatchie et al., 1998]. RAMPs consist of N-terminal ECDs

with approximately 100 amino acids and short C-terminal intracellular domains of

around 9 amino acids [Hay et al., 2016]. Furthermore, the three RAMPs share 31% struc-

tural homology and 56% similarity, as determined by amino acid multiple alignments

[Serafin et al., 2020]. The differences in their N and C-terminus, such as the addition

of 28-amino acid in the ECD for RAMP2, and the presence of the PDZ motif in the

C-terminal for RAMP3, have been thought to attribute to their functional differences

[Serafin et al., 2020].

1.5.7.2 RAMPs modulation of GPCR signalling

RAMPs interact with GPCRs to regulate their binding, signalling and trafficking in

ligand, receptor, and cell-type dependent manners [Hay et al., 2016]. In fact, RAMPs

themselves act as an example of endogenous allosteric modulators, whereby they

require a spatially different binding site to the orthosteric binding site at the GPCR (the

concept of allosterism will be explained in more detail later). Recent investigations have

reported a wide array of GPCR-RAMPs interactions, which mainly involve the class

B GPCRs, namely CTR, CLR, CRF receptors, GCGR, PTH receptors, SCTR, GLP-2R

and PACAP receptors [Routledge et al., 2017]. G protein-coupled estrogen receptor 1

(GPER/GPR30) (class A GPCR) and calcium-sensing receptor (CasR) (class C GPCR),
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as well as chemokine receptors are also shown to interact with RAMPs [Serafin et al.,

2020].

CLR is one of the well-studied GPCR:RAMPs interactions [Hay et al., 2016]. RAMPs

are shown to act as chaperones to facilitate CLR surface expression [Hay et al., 2016].

CLR requires the coupling of RAMP1, RAMP2 and RAMP3 to form the functional

CGRP receptor, AM1 receptor and AM2 receptor respectively. CLR signalling is also

highly modulated by RAMPs, which RAMP1 facilitates the Gas signalling of CGRP

and Gai coupling of AM1 and AM2, while RAMP2 enhances the Gas signalling of AM1

[Routledge et al., 2017]. RAMP3 has also been shown to modulate CLR internalisation

[Hay et al., 2016].

The recent reports on the cryo-EM structures of CLR in complex with RAMP1

[Liang et al., 2018a], RAMP2 and RAMP3 [Liang et al., 2020a] have shone new insight

into the structural determinant of GPCR-RAMP interaction (Fig. 1.11). According to

the published structures, the RAMPs induce distinct orientations of the ECDs, which

coordinate the motions of the G protein, ultimately influencing G protein interactions

with the receptors [Liang et al., 2020a]. Furthermore, unique position of the ECL3

depending on the RAMP:CLR complex has been discovered, and the observation

was further supported by the results from the chimeric exchange of the linker region

of the RAMPs connecting the TM helix [Liang et al., 2020a]. These reports of the

cryo-EM structures of full length GPCRs in complex with different RAMPs have

undoubtedly advanced the understanding towards how RAMPs allosterically modulate

GPCR functions.

1.5.7.3 Physiological significance of RAMPs expression

The current understanding of RAMPs functional significance has been envisaged

through the use of global genetic RAMP-knock-out mice [Serafin et al., 2020]. These

reports have shown significant impact of RAMPs on regulating cardiovascular, lym-

phatic, immune, endocrine, and central and peripheral nervous systems. In particular,

global knock-out of RAMP2 has been shown to affect embryonic lethality, resulting

in endocrine and skeletal muscles disorders while genetic knock-out of RAMP1 and

RAMP3 leads to mild excessive fluid accumulation in embryos; yet the RAMP3-knock

out has been proven to be viable in mice [Serafin et al., 2020]. Furthermore, there has

been a downregulation of RAMP3 mRNA in non-diabetic obesity patients [Dong et al.,

2017], further supporting the role of RAMPs in regulating physiological functions.
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Figure 1.11: Cryo-EM full length structures of CLR in complex with RAMP1, RAMP2 and RAMP3.
(A) depicts CLR:RAMP1:CGRP complex [Liang et al., 2018a]; PDB code: 6E3Y. (B) and (C) depict
CLR:RAMP2:AM (PDB code: 6UUN) and CLR:RAMP3:AM (PDB code: 6UUS) complexes [Liang et al.,
2020a].
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1.5.7.4 Receptor component protein (RCP)

Receptor component protein (RCP) is a 148 amino acid intracellular peripheral protein

and is found in the brain, spinal cord, uterus and blood vessels [Prado et al., 2002]. RCP

is part of the human RNA polymerase II and is found to play a role in RNA synthesis

[Dickerson, 2013]. However, apart from its role in RNA synthesis, RCP is shown to

be essential for the effective coupling of Gas subunit to the CGRP receptor to mediate

cAMP responses through interacting with the ICL2 at the receptor [Dickerson, 2013].

However, the binding of CGRP to the CGRP receptor and CGRP receptor trafficking

are not affected in the absence of RCP [Dickerson, 2013]. On a physiological level, the

reduction in RCP expression has been shown to correlate with less sensitivity towards

CGRP. Apart from CGRP receptor, a recent paper illustrates that RCP impairs the cAMP

responses in other class B GPCRs, namely CTR, CRF1R and GLP-2R, but not GLP-1R,

GIPR and AM1 receptor [Routledge et al., 2020].

1.6 Allosteric modulation

Developing ligands which bind to the orthosteric sites has been the mainstay of drug

discovery. In recent decades, the notion of developing allosteric ligands that bind to the

allosteric site (i.e the binding site that is topographically distinct to the orthosteric site

of the same receptor) (Fig. 1.12A) has opened up a whole new avenue for developing

novel drug treatments [Christopoulos, 2002]. The prominent examples of allosteric

modulators approved by the Food and Drug Administration (FDA) include: the anti-

viral agent, maraviroc, which is a negative allosteric modulator (NAM) of the class A

GPCR chemokine receptor type 5 (CC5), the anti-thrombotic agent, ticagrelor, which is

an allosteric antagonist of the P2Y receptor and cinacalet, a positive allosteric modulator

(PAM) for the CasR for hyperparathyroidism.

1.6.1 Therapeutic advantages of allosteric modulators

The therapeutic uses of allosteric modulators confer a number of advantages. First,

allosteric modulators have a high receptor subtype selectivity due to the low conser-

vation within the allosteric sites in comparison to the orthosteric sites, which allow

the discovery of novel allosteric sites. Hence selective cooperativity (the concept of

cooperativity will be explained later) may exert on one subtype expressing the distinct

allosteric site but not the other [Kenakin, 2012, Thal et al., 2018]. Secondly, the effect of
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the allosteric ligands reaches saturation based on the existing reserve of the orthosteric

ligands, therefore providing a mean to fine tune the natural hormone activity via the

use of the allosteric drug adjunctive, thereby reducing the potential dose-dependent

side effects mediated by traditional drug therapies [Wootten et al., 2016a]. Thirdly,

allosteric ligands cannot exert their modulation in the absence of the orthosteric ligands.

This may provide a tissue-specific effect as the activity of the allosteric modulation

depends on the local release of the native hormone. However, certain diseases, such as

late stage neurodegeneration, may limit the use of such allosteric modulation as the

endogenous hormonal release has been depleted [Wootten and Miller, 2020]. Lastly,

allosteric modulators have the potential to exert biased signalling on the actions of the

endogenous orthosteric agonists. Yet such observations are yet to be validated clinically

[May et al., 2007]. In short, the potential of delivering a safer and more efficacious

drug treatment via the use of allosteric modulators provides a new mean in advancing

existing drug treatments [Christopoulos, 2014, Thal et al., 2018].

1.6.2 Cooperativity and probe dependence

As previously mentioned, the allosteric site is spatially distinct from the orthosteric site,

such that both allosteric modulator and orthosteric ligand can bind simultaneously to

the same receptor. Each of these ligands can bind to the receptor at different affinity

and can alter the function of the receptor at varying efficacies for the activation or

recruitment of signal transduction proteins (Fig. 1.12). However, the simultaneous

binding of both the orthosteric ligand and the allosteric modulator can influence the

behaviour of each other, which is thus termed as cooperativity [Leach et al., 2007].

The quantification of cooperativity (see section 1.6.4) thus allows the classification of

the allosteric modulation based on their actions on the orthosteric ligand [Leach et al.,

2007, Kenakin, 2012], which will be discussed later.

Furthermore, probe dependence, a phenomenon which exists when the effect of

the allosteric modulator is specific to a particular orthosteric ligand and depends on

the cooperativity between the orthosteric ligand and the allosteric modulator. This

phenomenon is particularly important for class B GPCRs as this class of GPCRs more

often possess more than one endogenous agonists and offers a unique way to sculpt

the desirable signalling outcome [Wootten et al., 2016a] (Fig. 1.12).
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1.6.3 Biased agonism and biased modulation

Biased agonism (also termed as ligand-directed signalling bias or functional selectivity)

has become a major paradigm in designing new drugs which through sculpting certain

desirable signalling outcome, treatment efficacies can be enhanced and side effects

can be eliminated [Kenakin and Christopoulos, 2013]. The phenomenon of biased

agonism occurs when various ligands bind to the same orthosteric binding pocket of a

GPCR, distinct responses are resulted (Fig. 1.12). It can be explained by the fact that

the orthosteric ligands, each of which is a unique chemical entity, interact with the

receptor in distinct ways that unique receptor conformations are resulted [Wootten

et al., 2018]. Each of the unique receptor conformation upon orthosteric ligand binding

governs the kinetics of binding and how the receptor interacts with the regulatory

and effector proteins [Kenakin, 2012]. Examples of biased GLP-1R peptide agonists

relative to the cognate endogenous agonist GLP-1 include ExP5 (as aforementioned

in section 1.5.6.4) and OXM. ExP5 shows relatively limited b-arrestins recruitment

compared to GLP-1, yet it displays a faster G protein dissociation, particularly the Gas

subunit dissociation, in comparison to GLP-1 [Liang et al., 2018b]. While OXM is a full

agonist in mediating cAMP response, it is a partial agonist of b-arrestin 2 and GRK2

recruitment relative to GLP-1 [Jorgensen et al., 2007]. These all supports the notions

that upon ligand binding at the receptor, multiple conformations can be resulted, which

all lead to distinct signalling outcomes [Thal et al., 2018].

As allosteric ligands bind to spatially distinct sites other than the orthosteric sites,

these ligands often display distinct signalling relative to the orthosteric ligand. Dis-

tinctive signalling outcome arises as the allosteric ligands alter the conformational

landscape of the receptor, thereby changing the signalling profile of the orthosteric

ligand. Such phenomenon is known as ’biased modulation’ [Wootten et al., 2016c] (Fig.

1.12).

1.6.4 Operational model of agonism and allosterism

The allosteric ternary complex model (ATCM) has been used initially to quantify the

affinities (defined by the equilibrium constants, KA and KB of the orthosteric and

allosteric ligands respectively) of both the orthosteric (represented by A) and allosteric

(represented by B) ligands when binding to the receptor. The key parameter of the

ATCM is the cooperativity factor (a), which is a measure of the strength and direction of

the allosteric effect on affinity for one binding site when the other is occupied. However,
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Figure 1.12: Illustrations of allosteric modulation, probe dependence, biased agonism and biased
modulation. (A) shows that the allosteric modulator and orthosteric ligand both bind to the receptor,
resulting in different efficacies of the signalling outcome (EA and EO denote the efficacies mediated by
the allosteric ligand and the orthosteric ligand respectively). The influence of the allosteric modulator
on the orthosteric ligand is termed as ’cooperativity’. (B) shows the probe dependence phenomenon
which is observed when a specific signalling outcome is enhanced in the presence of the interaction of
the allosteric ligand with a specific orthosteric ligand. (EO1 and EO2 denote the efficacies of signalling
outcome 1 and 2 respectively). (C) shows the concept of biased agonism while (D) illustrates the concept
of biased modulation (P1 and P2 indicate the biased signalling of pathway 1 and 2 respectively). Diagram
created with BioRender.com.
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the ATCM cannot account the allosteric effect on efficacy. Hence, the ATCM has been

extended into the operational model of agonism and allosterism (Fig. 1.13) [Leach et al.,

2007], which now enables the quantification of the allosteric effect on efficacy, which is

denoted by b.

The operational model of agonism and allosterism now describes that upon stimu-

lation by a stimuli (S), three different species are resulted, which are AR (orthosteric

drug-receptor complex), RB (allosteric drug-receptor complex) and ARB (the ternary

complex). The parameters tA and tB denote the capacity of agonism exhibited by the

orthosteric and allosteric ligands respectively. The tA and tB values also incorporate

the intrinsic efficacy of each ligand, the total density of receptors and the efficiency

of stimulus-response coupling. The terms Em and n indicate the maximal possible

system response and the slope factor of the transducer function that links occupancy

to response respectively [Leach et al., 2007]. Therefore, with the aid of the operational

model, the key parameter, which is the cooperativity factor can be represented by the

logab value, which incorporates both the allosteric effect of the affinity (a) and efficacy

(b) on the orthosteric ligand. The mode of allosteric modulation can be classified as

follow [Kenakin and Miller, 2010, Lane et al., 2017]:

• Positive allosteric modulation (PAM): logab > 1

• Negative allosteric modulation (NAM): logab < 1

• Neutral allosteric ligand (NAL): 0 < logab < 1

Apart from possessing pure positive allosterism, certain allosteric ligands can also

exhibit intrinsic agonism independent of the presence of orthosteric ligand. These

compounds are so-called ’agonist-positive allosteric modulator’ (ago-PAM) [Kenakin,

2012]. Compound 2 [Knudsen et al., 2007] is a representative example for such a unique

class of allosteric modulator, which will be further discussed in the following sections.

1.6.5 Challenges of developing GLP-1R small molecule PAMs

T2DM treatments that target GLP-1R are highly sought after as GLP-1R regulates blood

glucose homeostasis through the action of GLP-1 [Seino et al., 2010]. In fact, a number

of GLP-1R based peptide treatments exhibit superior efficacies compared to standard

oral T2DM treatments, yet their uses are limited by their gastrointestinal side effects

and subcutaneous administration, which largely hinder patient compliance [Defronzo

et al., 2015]. Hence, tremendous amount of effort was made in recent years in an
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Figure 1.13: Schematic diagram illustrating the operational model of agonism and allosterism. (A)
shows the operational model of agonism and allosterism while (B) shows the equation derived from
(A). (C) shows the representative dose-response plots of how a and b are defined. Abbreviations: AR:
orthosteric drug-receptor complex, RB: allosteric drug-receptor complex; ARB: the ternary complex; SA:
stimulus given by the orthosteric drug; SB: stimulus given by the allosteric drug; tA and tB: the capacity
of agonism exhibited by the orthosteric and allosteric ligands respectively; Em: the maximal possible
system response; n: the slope factor of the transducer function that links occupancy to response; a and b:
the allosteric effect of the affinity and efficacy respectively.
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attempt to develop small molecule GLP-1R agonists that can be potentially developed

into oral T2DM drug treatments.

As previously discussed (section 1.5.6.1), GLP-1R possesses a larger ECD compared

to other class A GPCRs, hence GLP-1R peptide ligands have more contacts with the

ECD and parts of ECL [Jazayeri et al., 2017]. As the GLP-1R peptide ligands usually

consist of 30-40 amino acids, it is difficult to construct small molecule ligands with

sizes that are comparable to those of peptide ligands without compromising their

drug-like properties [Willard and Sloop, 2012]. However, recent understanding towards

GLP-1R agonism has been advanced thanks to the reports of full-length GLP-1R

crystal structures that immensely facilitate drug design. Hence excitedly, GLP-1R small

molecule agonists, TT-OAD2 [Zhao et al., 2020] and RGT1833 [Ma et al., 2020a] have

been discovered very recently (their mechanisms of actions will be discussed later).

1.6.6 Existing GLP-1R small molecule PAMs, ago-PAMs and agonists

Alongside the search for potential small molecule agonists, efforts have also been made

to design GLP-1R allosteric modulators. In fact, a few GLP-1R small molecule PAMs

have been discovered prior to the spawning reports of GLP-1R full length structures

(Fig. 1.14 and Table 1.2). The most studied compounds among all are compound

2 (developed by Novo Nordisk) [Knudsen et al., 2007] and BETP (developed by Eli

Lilly) [Sloop et al., 2010], both of which give distinct signalling profiles [Lin and Wang,

2009, King et al., 2015]. However, none of them is successful in clinical trials due

to various reasons, such as concerns of cytotoxicity [Coopman et al., 2010], lack of

drug-like properties [Chen et al., 2007] and chemical instability in the presence of

nucleophiles [Willard and Sloop, 2012] despite showing promising in vitro and in vivo
insulinotropic actions. Hence, the search for GLP-1R small molecule PAMs is ongoing.

The mechanisms of actions of compound 2, BETP, NNC0640, PF06372222, TT-OAD2,

RGT1383 and LSN3160640 will be discussed in further details in next section.

1.6.6.1 Compound 2

Compound 2, together with BETP, are the most well-studied ago-PAMs [Koole et al.,

2010, Coopman et al., 2010, Koole et al., 2011, Harikumar et al., 2012, Cheong et al.,

2012, Li et al., 2012, Koole et al., 2015, Thompson and Kanamarlapudi, 2015, Thompson

et al., 2016]. Compound 2 was originally discovered by Novo Nordisk in 2007 [Knudsen

et al., 2007] and was shown to possess agonism at the GLP-1R, despite displaying bell-
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shaped dose response curve at high concentrations. It was also reported in the original

article that compound 2 was able to act as a PAM which enhanced GLP-1 affinity

and cAMP accumulation response in Baby Hamster Kidney (BHK) cells expressing

GLP-1R [Knudsen et al., 2007]. Compound 2 was also found to enhance insulin

secretion in ex vivo isolated mouse islets as well as in vivo mouse models. Following

the original report, extensive characterisation of this small molecule compound was

performed by numerous research groups. They collectively showed that apart from GLP-

1, compound 2 is also able to potentiate OXM, GLP-1(9-36)NH2, GLP-1(1-37) and GLP-

1(7-37) signalling responses, such as cAMP, iCa2+ mobilisation and phosphorylation

of ERK1/2 using recombinant cell lines stably expressing GLP-1R [Coopman et al.,

2010, Koole et al., 2010, Li et al., 2012]. However, further development of compound

2 as a T2DM drug treatment is limited by its cellular toxicity when used at high

concentrations as well as its instability in the presence of nucleophiles [Coopman et al.,

2010, Eng et al., 2013, Nolte et al., 2014, Bueno et al., 2016].

1.6.6.2 BETP

BETP, which is also called ’compound B’, was discovered by Eli Lilly [Sloop et al.,

2010]. It was originally reported to demonstrate micromolar agonism specifically at the

GLP-1R as well as enhance GLP-1-mediated cAMP responses in Human Embryonic

Kidney (HEK)-293 stably expressing human GLP-1R with cAMP responsive element

(CRE) luciferase reporter [Sloop et al., 2010]. Furthermore, it was reported to potentiate

insulin secretion in isolated mouse islets [Sloop et al., 2010]. Similar to Compound

2, extensive characterisation of BETP was also performed by various research groups

[Wootten et al., 2012, Wootten et al., 2013a, Koole et al., 2015, Yin et al., 2016, Thompson

et al., 2016], and the studies collectively suggest that BETP also potentiates the cAMP

responses mediated by OXM and GLP-1(9-36)NH2 [Willard et al., 2012b]. Yet, BETP has

also been proven to be instable in the presence of nucleophiles [Eng et al., 2013, Nolte

et al., 2014, Bueno et al., 2016], which also hindered its further development as a

potential T2DM drug treatment.

1.6.6.3 NNC0640 and PF01672222

Limited functional data was reported for NNC0640 and PF01672222. However, both

compounds were originally designed as GCGR antagonists but were later discovered

to also possess NAM activity at the GLP-1R [Song et al., 2017, Wu et al., 2020].
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1.6.6.4 TT-OAD2

TT-OAD2, which is part of the chemical series of the drug candidate TTP273 (which

has completed phase IIa efficacy trial for T2DM), was developed by vTv Therapeutics

[Zhao et al., 2020]. However, difficulties in identifying its optimal dosing were reported

and therefore further studies were conducted to investigate its mechanisms of actions.

Through conducting various functional assays, TT-OAD2 has been found to be a weak

partial agonist for cAMP accumulation, iCa2+ mobilisation responses, phosphorylation

of ERK1/2 and no detectable b-arrestin-1 recruitment, relative to the native GLP-1

peptide signalling. Furthermore, utilising split luciferase NanoBit G protein sensors,

the authors showed that besides Gas protein, Gai/o/z subunits are also essential for its

apparent cAMP signalling responses. Further utilisation of both the bioluminescence

resonance energy transfer (BRET)-based G protein sensors and EPAC-biosensor demon-

strated a slower kinetic in inducing conformation changes in recruiting Gas protein

displayed by TT-OAD2 in comparison to GLP-1. Overall, it shows that TT-OAD2

is a biased agonist that shows distinct activation kinetics in relative to the cognate

endogenous ligand [Zhao et al., 2020].

Furthermore, co-applying TT-OAD2 with GLP-1 or OXM resulted in a dose-

dependent reduction of the cAMP signalling responses of GLP-1 or OXM [Zhao et al.,

2020]. This may provide a mechanistic explanation for its difficulties in determining the

optimal dosage efficacy, as when TT-OAD2 is used at high concentration, the signalling

responses of the endogenous agonists are reduced. In fact, it has been observed in

clinical trials that TT-OAD2 is most effective when used at low dosage [Zhao et al.,

2020].

1.6.6.5 RGT1383

Limited functional data regarding RGT1383 was reported by the authors [Ma et al.,

2020a]. However according to the report, RGT1383 is a full agonist in mediating cAMP

response and a partial agonist in b-arrestin-1 recruitment [Ma et al., 2020a].

1.6.6.6 LSN3160640

LSN3160630 has been shown to enhance both the potency and efficacy of GLP-1(9-

36)NH2-mediated cAMP responses, to an extent that GLP-1(9-36)NH2 was potentiated

to mediate full agonistic response in the presence of 1µM LSN3160630. In addition,

LSN3160630 is able to enhance the binding of GLP-1(9-36)NH2 to the GLP-1R by 70-fold
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through radioligand displacement assay. Notably, the compound shows strong probe

dependence towards GLP-1(9-36)NH2 relative to GLP-1 and OXM [Bueno et al., 2020].

Furthermore, LSN3160630 is able to enhance GSIS in ex vivo isolated mouse islets

and that the responses are glucose, ligand and GLP-1R-specific. Further intravenous

glucose tolerance tests (ivGTTs) in Wistar rats showed that LSN3160630 illustrates

dose-dependent insulinotropic effect in the presence of GLP-1(9-36)NH2 [Bueno et al.,

2020].

Table 1.2: List of GLP-1R allosteric modulators, agonists or ago-PAMs published in literature.

Compound Form of allosterism Probe dependence towards GLP-1R endogenous ligands References

T-0632 NAM N.D. Tibaduiza et al., 2001

Compound 2 Ago-PAM GLP-1, GLP-1(7-37), OXM, GLP-1(1-37), GLP-1(1-36), GLP-1(9-36) Knudsen et al., 2007

Boc5 Agonist N/A Chen et al., 2007

Quercetin PAM GLP-1, Ex-4 Schann et al., 2009

BETP/Compound B Ago-PAM GLP-1, OXM, GLP-1(9-36) Sloop et al., 2010

Catechin NAM GLP-1 Wootten et al., 2011

Compound 20 PAM
(Weak antagonist of GCGR) GLP-1 de Graaf et al., 2011

8e Agonist N/A Zhang et al., 2014

VU0453379 (S-9b) PAM N.D. Morris et al., 2014

*NNC0640 NAM N.D. Song et al., 2017

*PF06372222 NAM N.D. Song et al., 2017

C-1 Ago-PAM GLP-1 Redij et al., 2019

Compound 19 PAM GLP-1(9-36) Méndez et al., 2020

*TT-OAD2 Agonist N/A Zhao et al., 2020

*RGT1383 Agonist N/A Ma et al., 2020

*LSN3160440 PAM GLP-1(9-36) Bueno et al., 2020

* indicate existing GLP-1R full length cryo-EM structures in complex with the small molecule
compounds; N.D.: Not determined; N/A: Not applicable
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Figure 1.14: Chemical structures of existing GLP-1R small molecule agonists and allosteric modulators.
The chemical structures of GLP-1R small molecule (A-B) ago-PAMs, (C) PAM, (D-E) NAMs, (F-G) agonists
are shown in the above figures.
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1.6.7 Proposed mechanisms of actions of GLP-1R small molecule agonism
and allosterism

A number of cryo-EM full length structures of GLP-1R in complex with small molecule

agonists [Zhao et al., 2020, Ma et al., 2020a], NAMs [Song et al., 2017] and PAM

[Bueno et al., 2020] are reported which provide in-depth insights into the molecular

understanding of GLP-1R allosterism. The following sections serve to discuss the

existing possible binding modes of small molecule agonists and allosteric modulators

at the GLP-1R.

1.6.7.1 Irreversible covalent linkage with the C347 residue at TM6

The crystal structures of GLP-1R binding to NAMs, NNC0640 and PF01672222, have

been revealed recently [Song et al., 2017], which show that both NAMs bind to the

binding pocket outside TM5-7 intracellularly. The authors further postulated that

PAMs may also bind to the same binding pocket, but in between TM5-6. The authors

further proposed a PAM binding model; they suggested that when ago-PAMs, such as

compound 2, interacts with the GLP-1R, they induce conformational changes in the

intracellular regions of TM5 and TM6 that results in a disruption of the intracellular

ionic lock, opening up a cavity at the TM5 and TM6 to facilitate G protein binding

[Song et al., 2017] (Fig. 1.16).

Apart from the interaction within the binding pockets, hydrophobicity and the

interaction with T6.44b, which is specific to the glucagon receptor family, may also

play a role in determining the selectivity of small molecule allosteric modulators

[Song et al., 2017]. In addition, residue Cysteine-(C)3476.36b is found to be important

for the selectivity of small molecule allosteric modulators as it acts as the site of

covalent interaction with the electrophilic groups of Compound 2 and BETP [Eng et al.,

2013, Nolte et al., 2014, Bueno et al., 2016]. Compound 2 and BETP confer PAM activity

on GLP-1R due to the formation of irreversible disulphide bond with the cysteine-347

residue on the ICL3 of the GLP-1R. Although C348 residue is also needed for the

formation of the disulphide bond, only C347 has an effect on mediating allosteric

modulation. However, drugs that form irreversible cross link is highly undesirable

[Nolte et al., 2014], hence small molecule GLP-1R PAMs that act in a C347-independent

mechanism have been prompted.
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1.6.7.2 Molecule glue: a novel interaction between orthosteric and allosteric ligand

LSN3160640, which is a reported GLP-1R specific PAM that shows probe dependence

towards GLP-1(9-36)NH2 over GLP-1 and OXM, has been shown to mediate its positive

cooperativity via the direct interaction with the orthosteric ligand [Bueno et al., 2020].

According to the cryo-EM structure which shows GLP-1R in complex with GLP-1,

LSN3160640 and Gas subunit, the allosteric ligand binds at the higher end of the helical

bundle, at the interface between TM1 and TM2 [Bueno et al., 2020] (Fig. 1.16). Unlike

compound 2 and BETP, which covalently linked to the receptor for their mechanisms of

action, intermolecular forces, such as van der Waals’ forces, water-mediated hydrogen

bonds and p-p stacking, at the residues of L142 (TM1), Y145 (TM1) and K202 (ECL1)

at the receptor are essentials for the action of LSN3160640. Apart from receptor-PAM

interactions, PAM-GLP-1 molecular interaction has also been identified, which shows

that the molecule interacts via van der Waal’s forces with the F12, V16 and L20 at the

GLP-1 peptide [Bueno et al., 2020]. Interestingly, F12 and V16 residues at the GLP-1

peptide have not been shown to form contact with GLP-1R [Zhang et al., 2018] and

that alanine scan also shows that the mutations of these two residues do not affect

GLP-1 activity [Bueno et al., 2020]. Hence the authors were able to demonstrate that by

bridging the contact between F12 and V16 of the GLP-1 peptide and TM1 and TM2 at

the GLP-1R, LSN3160640 is able to enhance the affinity of the peptide to the receptor,

thus offering a new mode of allosteric modulation.

More intriguingly, by aligning the amino acid sequences of GLP-1 and OXM, they

identified a convergence of V16 at the GLP-1 to Y10 at OXM and that subsequent

mutation to Y10V confers OXM a gain of function in potentiating the signal responses.

These show that probe dependence can be controlled via direct mutation on the

orthosteric ligand, thus providing a new mean in modulating the signal outcome

[Bueno et al., 2020].

1.6.7.3 ’Boomerang-like’ receptor-compound interaction at the higher end of TM
bundles

The partial agonist TT-OAD2 has been shown to bind high up in the helical bundles

interacting with TM1, TM2, TM3 and ECL1 and ECL2 [Zhao et al., 2020] (Fig. 1.16).

TT-OAD2 forms mainly hydrophobic interaction with the receptor, including a number

of p-p stackings between the aromatic residues of the receptor and the phenolic regions

of the compound. Interestingly, the compound forms a ’boomerang-like’ orientation

48



1.6. Allosteric modulation

within the binding site, with the 3,4-dichloro-benzyl moiety protruding beyond the

receptor core through TM2 and TM3, interacting with W203 at the ECL1. A number

of residues on the TM1, TM2 and TM3 have been identified, and mutagenesis studies

further substantiated the importance of these key residues in mediating the cAMP

responses, as reduction in cAMP signalling has been observed upon alanine mutations

[Zhao et al., 2020].

Furthermore, the binding of TT-OAD2 shows limited overlapping with the binding

of GLP-1 and ExP5. Apart from interacting with higher end of the TM1-3, the peptide-

based agonists have been shown to engage deeply into the receptor core, interacting

with TM5-7 [Zhang et al., 2017b, Liang et al., 2018b]. Furthermore, structural com-

parison combined with MD simulation suggest that there are only less than one third

of common residues at the GLP-1R that interact with TT-OAD2, in comparison to its

endogenous ligand GLP-1, further illustrating the unique mode of agonism conferred

by TT-OAD2.

1.6.7.4 Additional interaction with TM7

Similar to TT-OAD2, the full agonist RGT1383 has also been shown to interact with

residues at the higher end of TM1-3 bundles and ECL1 and ECL2 (Fig. 1.16). Yet,

RGT1383 was also shown to interact with TM7 as well as the N-terminal ECD. Similarly,

the use of mutagenesis studies has identified the key residues in mediating the agonistic

cAMP signalling responses. In particular, W33 in the N-terminal ECD has been shown

to be critical for mediating the full cAMP response agonism of RGT1383, which

coincides with the interaction of TT-OAD2 and peptide 5 [Zhao et al., 2020, Liang

et al., 2020a]. Compared to TT-OAD2, RGT1383 displays more extensive binding with

residues at TM7, which induces inward displacements of the ECL3 and the extracellular

ends of TM6 and TM7. Furthermore, in contrast to TT-OAD2, RGT1383 completely

overlaps with the residues 10-20 at the GLP-1, and RGT1383 is much closer to TM6,

which induces the unwinding of TM6, leading to subsequent GLP-1R activation via

Gas binding [Ma et al., 2020a]. In addition, the authors attributed the biased signalling

as observed at GLP-1, ExP5, peptide-5, TT-OAD2 and RGT1383 to the difference in

inducing the conformation of the a-helix chain A at the N-terminal ECD, as well as

binding at different orientations at the orthosteric binding pockets [Ma et al., 2020a]. The

aforementioned allosteric and small molecule binding at the GLP-1R are summarised

in Fig. 1.15.
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TM bundle / ECD interface
(no known drug candidates
targeting to date)

ECD 
(e.g. nanobodies and CGRP receptor 
small molecule antagonist telgagepant)

Intrahelical site
(e.g. CFR1 receptor small 
molecule antagonist CP-376395, 
GLP-1R small molecule agonist 
TT-OAD2)

Intracellular surface between TM6 and 
ICL3
(e.g. GLP-1R small molecule ago-PAMs, 
Compound 2 and BETP)

Outside of helical bundle (e.g. GCGR and 
GLP-1R small molecule 
antagonists NNC0640,MK-0893,and PF-
0637222)

Figure 1.15: Summary of reported small molecule agonist or allosteric modulator binding sites at the
GLP-1R and other class B GPCRs. Several binding sites have been postulated or proven for small
molecule binding, which include: ECD, TM bundle/ECD interface, intrahelical site, intracellular surface
between TM6 and ICL3 and outside of helical bundle.
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Small molecule agonist / Gs binding

TT-OAD2

Zhao et al., 2020
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Figure 1.16: Cryo-EM full length structures of GLP-1R in complex with NAMs, PAM and agonists. (A)
and (B) show the structures of GLP-1R in complex with TT-OAD2 and RGT1383 respectively; (C) shows
the structure of GLP-1R in complex with LSN3160440 and Gas; (D) and (E) show the structures of GLP-1R
in complex with NNC0640 and PF06372222 respectively.
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1.7 Aims and objectives

Given the outstanding knowledge gaps in understanding glucagon secretion in pan-

creatic a cells, the main objective of this work is to unravel the intracellular signalling

mechanisms of how GLP-1 inhibits glucagon secretion at the pancreatic a cells with the

use of a range of pharmacological tools.

To achieve the objective of this work, I aim to:

• Evaluate the signalling responses (in terms of cAMP and iCa2+ mobilisation)

of GLP-1R, GCGR and GIPR endogenous ligands using recombinant cell lines

stably expressing receptors of interests and physiologically relevant a and b clonal

models

• Investigate the cellular compositions of the a and b clonal cell models, especially

their endogenous receptors and RAMPs expressions

• Apply receptor specific antagonists in order to decipher the individual receptor

contribution towards the overall signalling in the a and b clonal cell models

• Investigate other factors (e.g. the presence of GPR119 and glucose culture

conditions) that may affect intracellular signalling in rodent insulinoma and

glucagonoma cell lines

• Optimise the use of the insulin and glucagon secretion assays, followed by

characterising the insulin and glucagon secretion responses mediated by a range

of glucagon-like peptides in rodent insulinoma and glucagonoma cell lines

• Apply receptor antagonists and pathway inhibitors to investigate the factors that

are critical for GLP-1 mediated glucose homeostasis

Another objective of this work is to further characterise the pharmacological proper-

ties of the GLP-1R small molecule PAM, compound 249, discovered during my MPhil

work, as well as to evaluate its potential to be further developed as a novel T2DM

treatment. In order to do so, I aim to:

• Characterise the cAMP signalling, iCa2+ mobilisation and pERK1/2 response

mediated by compound 249 using a range of functional assays, as well as to

evaluate the effect of orthosteric ligand binding in the presence of compound 249

using BRET-based ligand binding assay
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• Investigate the mechanism of actions of compound 249

• Perform structure-activity-relationship (SAR) studies using compound 249 as the

lead compound

• Evaluate the extent of GSIS potentiation mediated by compound 249 in rat INS-1

832/3 cell line and ex vivo isolated mouse islets

53



Chapter 1. Introduction

54



Chapter 2

Methods and materials

2.1 Materials

2.1.1 Laboratory reagents

Unless otherwise specified, all laboratory reagents were purchased from Sigma-Aldrich

(Dorset, U.K.).

2.1.2 Molecular biology reagents

DH5-a Escherichia coli (E. coli) competent cells were purchased from Stratagene (Santa

Clara, U.S.) and were kept at -80°C before use. FuGENE® HD transfection reagent

was purchased from Promega Corporation (Wisconsin, U.S.) and was stored at 4°C.

Linear polyethylenimine (PEI) at 25,000g/mol molecular weight was purchased from

Polysciences Inc. (Heidelberg, Germany) and was stored at -20°C upon reconstitution.

QIAprep miniprep kit, QIAquick Gel Extraction kit, RNA Mini kit and QuantiTech

Reverse Transcription kit were purchased from Qiagen (Hilden, Germany). Taq DNA

polymerase with 10x standard Taq buffer, 10mM dNTP and 100 base-pair (bp) ladder

were purchased from New England BioLabs (Massachusetts, U.S.). All forward and

reverse primers used in reverse transcriptase-polymerase chain reaction (RT-PCR) and

site-directed mutagenesis were synthesised by Sigma-Aldrich (Dorset, U.K.) and were

stored at -20°C before use. Ampicillin was sourced from Sigma-Aldrich (Dorset, U.K.)

and was made up to 100mg/ml in deionised water (dH2O). It was stored at -20°C upon

reconstitution.
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2.1.3 Mammalian cell culture growth media

Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12), Ham’s F-12

Nutrient Mix with Glutamax™ and phenol red, Dulbecco’s Modified Eagle Medium

(DMEM), low glucose (1g/L) and high glucose (4.5g/L) solutions, Rosewell Park Memo-

rial Institue (RPMI) 1640 media, RPMI 1640 (no glucose) media, Minimum Essential

Medium (MEM), heat inactivated and non-heat inactivated fetal bovine serum (FBS),

1M HEPES solution, 100mM sodium pyruvate solution, MEM non-essential amino

acids (100x) solution, antibiotic-antimycotic (100x) solution, penicillin-streptomycin

(10,000U/ml) solutions, 0.05% Trypsin-EDTA with phenol red, cell dissociation buffer

(Hank’s based) and L-glutamine (200mM) solution were purchased from Gibco™

(Thermo-fisher Scientific, U.K.). All cell culture media were stored at 4°C and were

warmed up to 37°C before use. The aminoglycoside antibiotic Geneticin (G418) was

purchased from Sigma-Aldrich (Dorset, U.K.) and was stored at 4°C before use.

2.1.4 Peptide ligands

GLP-1, GLP-1(9-36)NH2, GCG, Ex-4, Exendin(9-39) (Ex-9) and OXM were custom-

synthesised by Generon (Slough, U.K.). GIP was purchased from Abcam (Cambridge,

U.K.). All peptide ligands were made up to 1mM in dH2O with 0.1% (w/v) bovine

serum albumin (BSA). Peptide ligands were aliquoted and were stored at -20°C before

assays. Once reconstituted, the peptide ligands were used within 3 months and were

retested regularly to ensure consistent ligand potencies. All peptide ligands, apart from

Ex-4 and Ex-9, were of human origins.

2.1.5 Pharmacological assay kits

LANCE® cAMP detection assay kit was purchased from PerkinElmer Life Sciences

(Waltham, U.S.) and were stored at 4°C. Insulin ultra-sensitive assay kit and glucagon

assay kit were purchased from Cisbio® (Codolet, France) and the antibody aliquots were

stored at -80°C in dark after reconstitution. Fluo-4 AM calcium indicators supplemented

with 2.5mM probenecid were purchased from Thermo Fisher Scientific (Waltham,

U.S.) and were stored at -20°C in dark before assay. Homogenous Time-Resolved

Fluorescence (HTRF) Tag-lite® GLP-1R fluorescent red agonist was purchased from

Cisbio® (Codolet, France) and was stored at -80°C upon reconstitution. 384-well white

Optiplates and white 96-well plates were purchased from PerkinElmer Life Sciences

(Waltham, U.S.). All reagents from the assay kits were reconstituted according to the
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manufacturers’ recommendations.

2.1.6 Pharmacological activators and inhibitors

Forskolin was purchased from Cayman Chemical Company (Michigan, U.S.) and was

made up to 10mM in DMSO. Phosphodiesterase (PDE) inhibitors namely rolipram,

trequinsin and 3-isobutyl-1-methylxanthine (IBMX) were all purchased from Cayman

Chemical Company (Michigan, U.S.). Rolipram, trequinsin and IBMX were made

up to 25mM, 50mM and 1M in DMSO respectively. Ionomycin was purchased from

Cayman Chemical Company (Michigan, U.S.) and was made up to 10mM in absolute

ethanol. YM-254,890 was purchased from Alpha Laboratories (Eastleigh, U.K.), was

made up to 100µM in DMSO and was stored at 4°C before use. Pertussis toxin (PTX)

was purchased from Gibco™ (Thermo-fisher Scientific, U.K.) and was made up to

1µg/ml in dH2O and kept at 4°C. PKA inhibitor, Rp-8-Br-cAMP, was purchased from

Sigma-Aldrich (Dorset, U.K.) and was made up to 10mM in DMSO. GLP-1R peptide

antagonist Ex-9 was purchased from Generon (Slough, U.K.) and was made up to

1mM in dH2O with the addition of 0.1% (w/v) BSA. GCGR small molecule antagonist

L-168,049 was purchased from Tocris Biosciences (Bristol, U.K.) and was made up to

10mM in DMSO. All compounds were stored at -20°C before assays unless otherwise

stated.

2.1.7 Small molecule compounds

All drug candidates identified by ligand-based virtual screening (LBVS) (see section

2.2.5) were ordered via the commercial vendor ’MolPort’ (https://www.molport.com)

and were sourced from Enamine Ltd (Kiev, Ukraine). All small molecule compounds

were made up to 10mM in dimethyl sulfoxide (DMSO) and were stored at -20°C before

assay.

2.1.8 Laboratory buffer and media

2.1.8.1 Hank’s buffered saline solution (HBSS) with or without Ca2+

HBSS (without phenol red) with or without Ca2+ and Mg2+ solutions were purchased

from Lonza (Basel, Switzerland) and were store at room temperature. Table 2.1 below

outlines their compositions:
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Table 2.1: Compositions of HBSS with or without Ca2+ or Mg2+ solutions.

Components Concentration (g/L) Molarity (mM)

Dextrose 1.000 5.551

KCL 0.400 5.366

KH2PO4 0.06 0.441

Na2CO3 0.350 4.166

NaCl 8.000 136.893

Na2HPO4!7H2O 0.09 0.336

CaCl2!2H2O* 0.186 1.265

MgSO4!7H2O* 0.2 0.811

* Indicates the presence in HBSS containing Ca2+ and Mg2+ solution only.

2.1.8.2 Phosphate buffered saline (PBS)

PBS was made by dissolving one PBS tablet into 200ml dH2O and was then autoclaved

for 15 minutes at 121°C for sterilization. A single tablet in 200 ml water yields 0.1M

phosphate buffer, 0.0027M KCL and 0.137 M NaCl in the solution at a pH 7.4 at room

temperature.

2.1.8.3 Krebs ringer buffer (KRB)

The formulation of KRB largely followed that described in [Naylor et al., 2016] for

performing static incubation glucose-stimulated insulin secretion (GSIS) assays. The

freshly reconstituted KRB was adjusted to pH 7.4 with 0.1M NaOH at room temperature

and was made every two weeks. KRB was stored at 4°C before use. The compositions

of the buffer are as follows (Table 2.2):

Table 2.2: Compositions of KRB detailed in [Naylor et al., 2016]

(2.6 mM CaCl2, 98.5 mM NaCl, 4 mM KCl, 1.2 mM KH2PO4, 1.2 
mM MgSO4, 20 mM HEPES, 25.9 mM NaHCO3, 0.2% BSA, pH 
7.4)

Components Concentration (g/L) Molarity (mM)

HEPES 4.766 20

KCL 0.298 4

KH2PO4 0.163 1.2

NaHCO3 2.176 25.9

NaCl 5.756 98.5

CaCl2 0.288 2.6

MgSO4 0.144 1.2

KRB
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2.1.8.4 Luria Broth (LB)

LB was made by dissolving 10g of the LB broth (Lennox) powder (Sigma-Aldrich, L3022)

in 500ml dH2O. The content was then autoclaved for sterilization. The compositions of

LB broth are 10g/L tryptone, 5g/L yeast extract and 5g/L NaCl. Ampicillin was added

in the LB broth at a final concentration of 100µg/ml once the solution was cooled down

to room temperature.

LB agar plates were made using the same method as described above with the

addition of 3% agar. After autoclaving, the content was cooled down in a 50°C water

bath, followed by the addition of ampicillin at a final concentration of 100µg/ml. The

solution was poured onto 90mm petri dishes in close proximity of a flame to ensure

sterility. Plates were allowed to solidify at room temperature and were stored at 4°C

until use.

2.1.8.5 NZY+ broth

NZY+ broth was made by dissolve 5g NZ amine, 2.5g yeast extract and 5g NaCl to

500ml dH2O. The content was adjusted to pH 7.5 with NaOH before autoclaving. Once

the content was cooled down to room temperature, the solution was aliquoted close to

a flame to ensure sterility. 0.125µl each of sterilized-filtered 1M MgCl2 and 1M MgSO4

solution were added to the aliquoted NZY+ broth prior to use.

2.1.8.6 40% glucose solution

40% (w/v) glucose solution was prepared by dissolve 40g of D-glucose powder into

60ml dH2O to account for fluid displacement during autoclaving. Once the glucose

solution was cooled down to room temperature after autoclaving, dH2O was added to

make up to 100ml 40% glucose solution. The glucose solution was stored at 4°C and

were warmed up to 37°C with constant stirring before use.

2.1.8.7 Tris-Acetate-EDTA (TAE) electrophoresis buffer

50x concentrated TAE electrophoresis buffer was prepared by dissolving 242g Tris base

and 18.61g disodium EDTA into 700ml dH2O with constant stirring until components

were well dissolved. 57.1ml glacial acetic acid was then added, followed by dH2O to

make up to final volume of 1L.

The concentrated TAE buffer was diluted to 1x with dH2O before use in elec-

trophoresis. The 1x TAE buffer thus contained 40mM Tris, 1mM EDTA and 20mM
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acetate. The resultant pH of the TAE buffer used was pH 8.5 without adjustment.

2.2 Methods

2.2.1 Mammalian cell culture

2.2.1.1 Basis of cell culture subculturing

Cell lines were maintained using standard subculturing routines recommended by

the American Type Culture Collection (ATCC). Mycoplasma infection was checked

annually using an EZ-PCR mycoplasma kit from Biological Industries (Kibbutz Beit-

Haemek, Israel). All mammalian cell cultures methods described below were performed

in a sterile tissue culture hood with rigorous aseptic technique. All cell lines were

propagated in a 37°C humidified incubator with 5% CO2 and were maintained in either

T25cm2 or T75cm2 rectangular canted neck cell culture flasks (Corning Life Science,

New York, U.S.). Unless otherwise specified, cells from less than passage 15 were used

in pharmacological assays.

2.2.1.2 Cell line origins and growth medium compositions

Chinese Hamster Ovary K1 (CHO-K1) cells were provided by Dr Ewan St. John Smith

(Department of Pharmacology, University of Cambridge). CHO-K1 cells with low

stable expression of GLP-1R, GCGR and GIPR were provided by Dr David Hornigold

(AstraZeneca, Cambridge, U.K.). All CHO-K1 cell lines were cultured in Ham’s F-12

Nutrient Mix with Glutamax™ and phenol red supplemented with 10% heat-inactivated

FBS. Human Embryonic Kidney-293 (HEK293) cells were a gift from AstraZeneca

(Cambridge, U.K.). HEK293T cells, HEK293S cells and COS-7 cells were given by Dr

David Poyner (University of Aston, U.K.). All HEK293 cell lines and COS-7 cells were

cultured in DMEM/F12 with glutaMAX™ supplemented with 10% heat-inactivated

FBS. HEK293-calcitonin receptor knock-out (HEKDCTR) cells were given by Drs. David

Hornigold, Jacqueline Naylor and Alessandra Rossi (AstraZeneca, Cambridge, UK),

and its use was described in [Bailey et al., 2019]. HEKDCTR cells were cultured in

MEM supplemented with 10% heat-inactivated FBS plus 1% non-essential amino acids

and were used between passages 1 to 5. All growth medium contained 1% antibiotic

antimycotic (100x) solution.

Rat insulinoma (INS-1 832/3) wild-type (WT) cell lines were given by Dr Jacqueline

Naylor (AstraZeneca, Cambridge, U.K.). INS-1 832/3 GLP-1R knock-out (KO) and
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GIPR KO cell lines were created by CRISPR/Cas9 knock-out technology detailed in

[Naylor et al., 2016] and were also given by Dr Jacqueline Naylor. INS-1 832/3 cell lines

were maintained in RPMI 1640 media supplemented with 5% heat-inactivated FBS,

10mM HEPES, 1mM sodium pyruvate, 50mM 2-mercaptoethanol, 100 U/ml penicillin

and 100 mg/L streptomycin. Mouse MIN6-B1 cells [Lilla et al., 2003] were provided

by Dr. Philippe Halban (University of Geneva, Switzerland) with permission from

Dr. Jun-ichi Miyazaki, University of Osaka who produced the maternal MIN6 cell

line. They were cultured in DMEM high glucose supplemented with 15% FBS, 71µM

2-mercaptoethanol, 2mM L-glutamine, 100 U/ml penicillin and 100 mg/L streptomycin.

The MIN6-B1 cells were used from passage 25 to 30.

Mouse alpha TC1 clone 6 (aTC1.6) cells were purchased from the ATCC (Middlesex,

U.K.). The ATCC recommends culturing aTC1.6 cells in DMEM, low glucose solution.

However, a number of reports suggested that long-term culturing of aTC1.6 cells in

high glucose media can enhance glucagon secretion [Diao et al., 2005, McGirr et al.,

2005, Chuang et al., 2011, Asadi and Dhanvantari, 2019]. Therefore, aTC1.6 cells were

cultured in DMEM containing 4.5g/L D-glucose supplemented with 10% non-heat

inactivated FBS, 15mM HEPES, 0.1mM non-essential amino acids and 0.02% (w/v) BSA.

Cells of early passages from 6 to 15 were used in performing secretion assays. Hamster

InR1G9 cells [Takaki et al., 1986] were kindly given by Prof. Jacques Philippe (University

of Geneva, Switzerland) and were maintained in RPMI 1640 media supplemented with

10% heat-inactivated FBS and 2mM L-glutamine.

2.2.1.3 Mammalian cell subculturing method

All solutions used in subculturing were warmed up to 37°C prior to use. Media were

discarded and 0.05% Trypsin-EDTA with phenol red solution were added to the cells.

The cells were incubated with the trypsin solution at 37°C for 5 to 10 minutes until the

cells detached from the flasks. After the addition of fresh media to quench the action

of trypsin, cell suspensions were transferred to 15ml centrifuge tubes and were spun at

1400 rpm for 4 minutes. The medium was removed upon centrifugation and the pellet

was resuspended in fresh complete media. Appropriate aliquots of cell suspension

were added to new culture vessels. Most cell lines used in the study were passaged

every other day.

The subculturing method for the aTC1.6 cells largely followed the procedures

outlined above; one of the differences was the use of cell dissociation buffer instead of

trypsin solution to dislodge cells and the cell suspension was then centrifuged at 125
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x g for 6 minutes. Since the aTC1.6 cells were slow growing cells, the cells were only

subcultured once a week and their media were changed every two days.

2.2.1.4 Long-term cryostorage and cell recovery of mammalian cell lines

Upon harvesting cells which were fully confluent in T25cm2 flasks, most cell lines

were resuspended in freezing down media, which consisted of fresh complete media

with the addition of 10% DMSO. For the aTC1.6 cell line, cells were resuspended in a

different freezing down media which comprised of the complete media together with

5% DMSO and 40% non-heat inactivated FBS. All cell lines were then transferred to 1ml

sterile cyrovial tubes (Grenier Bio-One, Kremsmünster, Austria) and were gradually

frozen down from -80°C for 24 hours to -140°C ultra-low temperature freezer or liquid

nitrogen tank for long term storage.

For cell recovery, cells were thawed in a 37°C water bath with constant agitation for

2 minutes. The cell suspensions were then transferred to 15ml centrifuge tubes with

fresh media and were spun at 1400 rpm for 4 mins. The pellets were then resuspended

with fresh media and were transferred to new culture vessels. Cells were allowed to

recover in 37°C humidified incubator overnight.

2.2.1.5 Generation of stable cell lines

2.2.1.5.1 Viability curves generation to determine cell susceptibility to antibiotics
Cell viability curves were produced to determine the optimal concentration of G418

for the selection of cells that expressed the desired plasmid. To do so, untransfected

HEK293S cells and HEKDCTR cells were seeded onto 24 well-plates and were allowed

to reach 90% confluence. A range of G418 concentrations, namely 0 (control), 200, 400,

600, 800 and 1000µg/ml were added onto each well. Cell viabilities from different wells

receiving different treatments were determined every 2 days for a course of 10 days

or until there were no viable cells left. The trypan blue staining method, of which the

cells that were stained blue indicated cell death, was employed to differentiate viable

cells from dead cells. So called ’kill curves’ were determined by a plot of cell viabilities

against different G418 concentrations (Fig. 2.1). The G418 concentration of 800µg/ml

was chosen to be the optimal concentration for the exertion of selection pressure in

both HEK293S cells and HEKDCTR cells as it was the minimum concentration needed

to ensure complete cell death in both cell lines after day 8 of treatment.
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Figure 2.1: Determination of the optimal G418 concentrations with the use of kill curves for the
production of stable cell lines. Kill curves were produced in (A) HEK293S and (B) HEKDCTR cell lines
in order to determine the optimal G418 concentration for effective selective pressure and 800µg/ml was
chosen to be the optimal G418 concentrations needed in both cells lines to ensure complete cell death after
day 8.

2.2.1.5.2 Generation of stable cell line Upon the determination of the optimal G418

concentration needed for maximal selective pressure, HEK293S cells stably expressing

sigSNAP-GLP-1R-mCherry-Wildtype, HEK293S cells stably expressing sigSNAP-GLP-

1R-mCherry-C347A and HEKDCTR cells stably expressing GCGR were produced. To

do so, cells were seeded onto a 24-well plate and were transfected with constructs of

interests using FuGENE HD reagent (the transfection protocol is described in section

2.2.2.4). Cells were dislodged with the action of trypsin 48-hour post-transfection and

were re-seeded onto a 6-well plate. Selection pressure was started by introducing G418

at 800µg/ml to the cells. Fresh G418 at 800µg/ml was replaced every 2 days for at

least 14 days. Cell confluency higher than 25% were avoided in an attempt to ensure

antibiotic efficiency as G418 works best when cells are actively dividing (according

to the Toku-E protocol). Once a stable cell line was generated, lower concentration of

G418 (200µg/ml) was applied to maintain long-term selection.

2.2.1.6 Mouse islet isolation

Mouse pancreas extractions at the 10-weeks old C57BL/6J mice were performed in ac-

cordance with the UK Animals (Scientific Procedures) Act 1986 by Dr Nikola Dolezalova

(Department of Surgery, University of Cambridge) at the animal house located in the

Cambridge Addenbrooke’s Hospital site. Her protocol largely followed that detailed in

[Li et al., 2009], during which 2.5ml ice-cold collagenase XI (1000 U/ml) were injected
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into the bile duct, inflating the pancreas and its lobes. The pancreases were then

carefully dissected and were placed on ice to prevent further collagenase digestion.

Mouse islet isolation was then proceeded at the Ladds laboratory. The pancreases

were placed in a 37°C water bath for 13 minutes with shaking every 5 minutes. Once

the tissues were dissolved into very fine particles, the collagenase digestions were

terminated on ice and 25ml of ice-cold HBSS supplemented with 1mM CaCl2 were

added to the samples. The solutions were centrifuged at 300 x g for 1 minute at room

temperature. The supernatants were discarded, and the pellets were washed by ice-cold

HBSS twice before the addition of Histopaque solution (H8889, Sigma-Aldrich). RPMI

serum-free solution were then carefully added to create density-gradient interfaces to

separate islets from other digested debris. Once the sharp histopaque-RPMI interfaces

were formed, the contents were centrifuged with brake-off for 15 minutes at 800 x g

at room temperature. When the centrifugation was ended, the interfaces containing

islets were removed and were transferred to complete RPMI media which consisted

of 10% heat-inactivated FBS and 100 U/ml penicillin and 100 mg/L streptomycin for

centrifugation in order to remove the residual Histopaque solution. The pellets were

then resuspended in 10ml complete RPMI media. Viable islets, which showed clear

borders and dense masses in the centre (Fig. 2.2), were handpicked with 200µl pipette

tips under an inverted microscope. Islets were recovered overnight in a 90mm petri

dish placed in a 37°C humidified incubator.

Figure 2.2: Characteristics of viable islets. Viable islets show dense masses in the centre as well as
well-defined borders (scale bar shows 125µm).
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2.2.2 Molecular biology technique

2.2.2.1 Escherichia coli transformations

E. coli DH5-a competent cells were used in amplifying plasmids of interests. Aliquots

of 100µl E. coli were stored at -80°C and were allowed to be thawed on ice 30 minutes

before use. Competent cells were transformed by the addition of 100-1000ng DNA on

ice, followed by heat shock at 42°C for 30 seconds and lastly placed again on ice for

5 minutes. Cells were grown in LB with 100µg/ml ampicillin at 37°C overnight with

constant shaking at 180rpm.

2.2.2.2 Plasmid amplifications and purifications

Plasmids were amplified using the E. coli transformation method described in the

previous section 2.2.2.1. DNA was purified with the use of QIAprep mini prep kit

(Qiagen) according to manufacturer’s protocol, with DNA eluted and resuspended

in 50°C dH2O. The concentration and the purity of double stranded (ds)DNA were

determined by NanoDrop Lite Spectrophotometer (Thermo Scientific, U.K.); samples

with absorbance at 260nm and 280nm (A260/A280) ratio approximately equal to 1.8

was used in transfections. All purified constructs were stored at -20°C for long-term

storage.

2.2.2.3 DNA expression constructs

Apart from the sigSNAP-GLP-1R-mCherry and Nluc-GLP-1R-WT constructs which

were produced in Dr Graham Ladds’ laboratory, all constructs were either gifted by

our collaborators or obtained from cDNA.org and were summarised in Table 2.3.

Table 2.3: Sources of the constructs used in various projects.

Constructs Prepared by/Sources from
sigSNAP-GLP-1R-mCherry Cloned by Ashley Clark (Department of Pharmacology, University of Cambridge)
Nluc-GLP-1R-WT Cloned by Abigail Pearce (Department of Pharmacology, University of Cambridge)
WT-GCGR Ali Jazayeri (Heptares Therapeutics)
GLP2R in pRS306 vector GSK
pcDNA3.1-CTR cDNA.org
GHRH pcDNA3 GSK
CRF1 pcDNA3 GSK
CRF2 pcDNA3 GSK
pcDNA3.1-HA-CLR cDNA.org
pcDNA3.1 FLAG-RAMP1 Wootten et al., 2013
pcDNA3.1 FLAG-RAMP2 Wootten et al., 2013
pcDNA3.1 FLAG-RAMP3 Wootten et al., 2013
pcDNA-GPR119 cDNA.org
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2.2.2.4 Transfections

2.2.2.4.1 Transfections on 24-well plates Cells were seeded onto 24-well plates at

a volume of 500µl and were allowed to reach 70% confluence prior to transfections.

500ng DNA constructs were transfected into the cells with the use of FuGENE®

HD transfection reagent to ensure high transfection efficiency. Prior to transfections,

constructs were diluted to 100ng/µl stock in dH2O and were added to 18.5µl serum and

antibiotic-free media. In accordance to the manufacturer’s recommendations, 1.5µl of

FuGENE® HD transfection reagent was lastly added at 1:3 DNA:FuGENE (w/v) ratio.

The DNA-FuGENE complexes were incubated at room temperature for 15 minutes

before being added drop-wise onto the cells. 48 hours transfections were allowed prior

to assays.

2.2.2.4.2 Transfections on 6-well plates 1,000,000 cell/well were seeded on 6-well

plates and were allowed to reach 70% confluence prior to transfections. PEI was used

as the transfecting agent in 6-well plate format for economic purposes. DNA constructs

were again diluted to 100ng/µl stock in dH2O and a total of 1.5µg DNA constructs were

transfected into the cells. A 1:6 DNA:PEI (w/v) ratio was adopted in this transfection

protocol to enhance transfection efficiency. To do so, 15µl of diluted DNA constructs

and 9µl of PEI were added separately to 150mM NaCl solutions which made up to

final volumes of 50µl. The two mixtures were incubated at room temperature for 5

minutes before mixing together for a further incubation of 10 minutes. The resultant

complex was added dropwise onto the well and were transfected for 48 hours prior to

assays. Both transfection methods are summarised in Fig. 2.3.

2.2.2.5 RNA extractions

The work surface was being thoroughly cleaned with 70% ethanol followed by RNase

AWAY™ surface decontaminant (ThermoFisher Scientific, U.K.) to eliminate RNase

and DNA before RNA extraction. RNA were extracted from HEK293S and HEK293T,

aTC1.6, INS-1 823/3 and MIN-6 B1 cells cultured to 80% confluence in T25cm2 flasks

using the RNeasy Mini Kit. For studies that aimed to determine the influence of

different glucose concentrations on gene expressions, aTC1.6 and INS-1 823/3 cells

were cultured in media containing various glucose concentrations for 72 hours before

RNA extractions [Chuang et al., 2011].

The manufacturer’s instructions were largely followed during the RNA extraction
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FuGENE HD transfection on 24 well plate:

5ul DNA construct at 100ng/ul stock
+ 1.5ul FuGENE HD transfection reagent 

Make up to 25ul serum-free media 

15 mins incubation at RT

Add dropwise onto a 24-well

PEI transfection on 6 well plate:

15ul DNA construct at 100ng/ul stock
+ 35ul 500mM NaCl

9ul PEI solution
+ 41ul 150mM NaCl

5 mins incubation at RT 10 mins incubation at RT

Add dropwise onto a 6-well
Mix-in 2 tubes

48 hours transfections

Figure 2.3: Summary of two different transfection methods using FuGENE® HD transfection agent
and PEI on a 24 well or a 6 well plate respectively. For transfection in 24-well plate, a total of 500ng
DNA constructs were transfected into the cells using 1:3 DNA:FuGENE (w/v) ratio as recommended by
the manufacturer. As for transfection in 6-well plate, a total of 1.5µg DNA constructs were transfected
into the cells using 1:6 DNA:PEI (w/v) ratio to further enhance transfection efficiency.

procedures. After cell harvesting, the cell pellets were resuspended in 350µl buffer RLT

plus, which contains high composition of denaturing guanidine-isothiocyanate, and

were homogenised by vortexing for 30s. 1 part of 70% ethanol (350µl) was added to

the flow through, and was passed to RNeasy spin columns, spinning at 13,000rpm

for 15 seconds. Buffers RW1 and RPE were added separately in later stages and the

spin columns were spun for three additional times. Lastly, RNA was eluded with the

addition of RNase-free water in 1.5ml micro-centrifuge tubes. The concentration and

the purity of the RNA were determined by the NanoDrop Lite Spectrophotometer

(Thermo Scientific, U.K.); samples with A260/A280 ratio approximated to 1.9 to 2.1 was

used in reverse transcriptase-polymerase chain reaction (RT-PCR). The RNA samples

were stored at -80°C before further analysis.

2.2.2.6 Reverse transcriptase-polymerase chain reaction (RT-PCR)

2.2.2.6.1 gDNA elimination and cDNA synthesis After determining the RNA con-

centration and purity, complementary DNA (cDNA) was produced with the use of

the QuantiTect Reverse Transcription kit (Qiagen) in accordance to the manufacturer’s
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recommendations. 1000ng template RNA was used in the reverse transcription as the

kit was optimised to support cDNA synthesis up to 1000ng amount of RNA. After

thawing the template RNA on ice, gDNA wipeout buffer was added together with the

RNase-free water and were incubated for 2 mins at 42°C in order to eliminate contami-

nating genomic DNA (gDNA). Following gDNA elimination, reverse transcription was

performed with the addition of Quantiscript Reverse Transcriptase, Quantiscript RT

buffer and RT Primer Mix. Negative controls, which included the identical reaction

components without the addition of the Quantiscript Reverse Transcriptase (-RT), were

included in all RT-PCR performed so as to show presence of any contaminating gDNA.

Incubation for 30 mins at 42°C was allowed in order to increase cDNA yield during the

reverse transcription process. Upon incubation, the samples were incubated for 3 mins

at 95°C to inactivate the Quantiscript Reverse Transcriptase.

2.2.2.6.2 Polymerase chain reaction (PCR) The samples from reverse transcription

were placed on ice before proceeding to PCR amplification using Taq DNA polymerase

according to the manufacturer’s recommendations. 25µl for each PCR reaction was

allowed and PCR reaction master mix, which included Taq DNA polymerase, 10mM

dNTP, 10x Taq DNA polymerase buffer, template cDNA and nuclease-free water, was

prepared on ice before aliquoting to sterile PCR tubes. 10µM each of forward and

reverse primers of particular gene expressions were added lastly to the aliquoted PCR

reaction master mix and were proceeded to thermocycling. The cycle parameters were

described in Table 2.4 and the methods of designing primer sets targeting specific gene

expressions are described next.

Table 2.4: Cycle parameters for RT-PCR.

Segment Cycles Temperature (°C) Time (s)

1 1 95 30

2 42

95 30

60 30

68 20

3 1 68 300

Cool down to 4°C after thermocycling 

RT-PCR

2.2.2.6.3 Design of primer sets The forward and reverse primers were designed with

the use of NCBI Primer-BLAST online tool (https://www.ncbi.nlm.nih.gov/tools/primer-
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blast/) upon searching for the succession numbers for specific gene expressions of

designated species. Primer sets that spanned an exon-exon junction with a small

predicted base pair product were selected in order to reduce the risk of false positives

from off-target genes. The lists of the sets of primers used in RT-PCR were detailed

in Table 2.5, 2.6 2.7 for cell lines of mus musculus, rat norvegicus and homo sapiens

origins respectively.

Table 2.5: Primer sets to determine GPCR, RAMPs and G proteins gene expression in cell lines of mus
musculus origins.

Gene Forward primer sequence Reverse primer sequence Base pair NCBI accession number 
GAPDH CCCTTAAGAGGGATGCTGCC ACTGTGCCGTTGAATTTGCC 263 NM_001289726.1

Beta-actin CACAGGCATTGTGATGGACT CTTCTGCATCCTGTCAGCCAA 500 XM_030254057.1
GLP-1R ACTCTCATCCCCCTTCTGGG GGACACTTGAGGGGCTTCAT 254 NM_021332.2
GCGR ATTGGCGATGACCTCAGTGTGA GCAATAGTTGGCTATGATGCCG 105 XM_006532217.2
GIPR CGGAGACAGACTCTGAGGGG TCGTCAGGGACAGGGAGTAG 387 XM_011250615.1

RAMP 1 TGCTGAGGAGTTTATCGCAGG GTAGAGGCCAAGGGCATCAG 105 NM_016894.3
RAMP 2 TGAGGACAGCCTTGTGTCAA GGTCGCTGTAATGCCTGCTA 140 NM_019444.2
RAMP 3 GCTGCTTTGTGGTGAGTGTG CCAGTAGCAGCCCATGATGT 205 NM_019511.3
GPR119 GGCAACTCCCTACTCAACCC GGGAGAAGCTATCCCAAGGC 377 NM_181751.2

Gαs GAGCTGGCCAACCCTGAGAA CGATTTGCCAGCGAGGACTT 567 XM_006498779.4
Gαolf AACTCACCGCCTGCTGCTTC CAGGCCGCCACGTAAATGAT 588 XM_030250337.1

Gαi1 GGTGTGGGAGGGAGGAGTGA GGCAGGTGCATCCAACCTCT 436 NM_010305.1

Gαi2 CGCCTTGAGCGCCTATGACT GCAATCCTGCCAGGTCCACT 416 NM_008138.5
Gαi3 GAACCAGTGGGCTTGCTGCT ATCCGAAAGCCGGATTGTGA 558 NM_010306.3
Gαo ACCAGCCCACTGAGCAGGAC GTTGGGTGAGCGGTTTTTGC 446 NM_010308.3
Gαt1 CAGCATCTGCTTCCCCGACT TGGAATGGGGATCTGCTGGT 574 NM_008141.3
Gαt2 TGCTGGTGGAGGATGACGAA TCACCAACAGGATGGGCTGA 480 NM_008141.3
Gαz AAGCCGCGGTCTACATCCAA GGCCAACTCAGGAAGGCAGA 546 NM_010311.4
Gαq GCAGGGTGTGAACCGGAAAC CGTTCGGCACAGTTTGCATC 469 NM_008139.6
Gα11 ACCGCATGGAGGAGAGCAAG TCAGCTGCAGGATGGTGTCC 318 NM_010301.4
Gα14 CTCCTGCCTGGCTGTTCCAT GCGCGCACAGTTCAAACAAC 590 NM_008137.4
Gα15 GCCTTCCGGCTGCTCATCTA TCTCCTCCATGCGGTTCTCC 529 XM_006513234.4
Gα12 AGCGCCAGAAGTGGTTCCAG AGCAGAGGGAGGGGCTGTCT 467 NM_010302.2
Gα13 ACCACCGCGATCAACACAGA GGGCCGAGACTCCTCCCTAA 573 NM_010303.3

Table 2.X: Primer sets to determine GPCR, RAMPs and G-proteins gene expression in cell lines of mus musculus origins.

2.2.2.6.4 Visualising and confirming fidelity of RT-PCR products All products

were resolved on 2% agarose gels made in 1x TAE buffer stained with 0.5 µg/ml

ethidium bromide. Products were imaged using a G:Box iChemi gel documentation sys-

tem (Syngene, Cambridge, UK). Densitometry was performed using Gene Tool analysis

software (Syngene, Cambridge, UK). All results were normalised to the housekeeping

genes, either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or b-actin. DNA

fragments were also excised from the agarose gels with a clean scalpel. DNA were

extracted from gels and were purified by using QIAquick Gel Extraction kit (Qiagen).

After DNA purification, the samples were sent to the Department of Biochemistry,

University of Cambridge for sequencing. The presence of gene expressions were con-
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Table 2.6: Primer sets to determine GPCR, RAMPs and G proteins gene expression in cell lines of
rattus norvegicus origins.

Gene Forward primer sequence Reverse primer sequence Base pair NCBI accession number 
Beta-actin CCGCGAGTACAACCTTCTTG CAGTTGGTGACAATGCCGTG 297 NM_031144.3

GLP-1R GGGCTCCTCTCGTATCAGGA GTGAACAGCTTGACGAAGCG 512 NM_012728.1

GCGR GGAGACATAGAAGGGGGACTCT GCAGACCAGCTCAGTAGGTG 294 NM_172091.2

GIPR AGGTGGTATTTGCTCCCGTG AGGGGTCCCTTTACCTAGCA 331 XM_017588800.1

RAMP1 GATGTGAGGACAGGAACCAGA TGGTCTTTCCCCAGTCACAC 355 XM_017596614.1

RAMP2 CTCCGGAGTCCCTGAATCAA TCCAGTTGCACCAGTCCTTG 144 NM_031646.1

RAMP3 ACAAACATCGTGGGCTGCTA CCACGGTCAACAAGACTGGA 166 NM_020100.2

Gαs GCCTCGGCAACAGTAAGACC TTGGTGGCCTTCTCACCATC 265 NM_019132.1

Gαolf CCCACAGACCAGGACCTACT TGGCCTCCAACGTCAAACAT 107 NM_001191836.2

Gαi1 GGATGATGCTCGCCAACTCT TCATTCAGGTAGTACGCCGC 171 NM_013145.1

Gαi2 AGGGGCCAACAAGTATGACG TAGGCAGGAGGCTCCCATC 231 XM_006243858.1 

Gαi3 GGCGCTGGAGAATCTGGTAA CACTCGTCCTCGGAATAGCC 80 NM_013106.1

Gαo AACCGCTCACCCAACAAAGA GGGGTCGTAGGTTAGACAGG 271 NM_017327.1

Gαt3 ATTAAACGTCTGTGGGGCGA GCACGTCACTCCTTCAAAGC 282 NM_173139.1

Gαz GTCATGCAAGTGTCACGGC GTGGCCTCTCAGCACCTTAG 258 NM_013189.2

Gαq CGGAGGATCAACGACGAGAT TCATCAGAGTACCCCGACCC 155 NM_031036.1

Gα11 ATGGACACGCTCAAGATCCG GGTCCACGTCCGTCAAGTAG 217 NM_031033.1

Gα12 CTCGAGGGTGCTTGTAGACG AAACATCCCGTGCTTCTCGT 79 NM_031034.2

Gα13 CACGGAGACAAGTTGATGGC ATGGATGCCTTTGGTGGGTC 270 NM_001013119.1

Gα14 AGCCTACGACACCCTACAGT CGAGTCCTGAGTGCTTGTGT 225 NM_001013151.1

Table 2.X: Primer sets to determine GPCRs, RAMPs and G-proteins gene expression in cell lines of rattus norvegicus origins.

Table 2.7: Primer sets to determine GPCRs, RAMPs, b-arrestins and RCP gene expressions in cell lines
of homo sapiens origins.

Gene Forward primer sequence Reverse primer sequence Base pair NCBI accession number Reference 
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 87 NM_002046.7 -
GLP-1R CTACGTGAGCATAGGCTGGG ATGGGCAGCCGGATAATGAG 135 - Ge et al., 2014 
GCGR CCAGTGTCACCACAACCTGA AGGAATACTTGTCGAAGGTTCTGT 77 - Zwermann et al., 2009 
GIPR ATGACTACCTCTCCGATCCTGC AAGGACCCGTTACAGGCGA 194 NM_000164.4 -

RAMP 1 CTGCCAGGAGGCTAACTACG GACCACGATGAAGGGGTAGA 298 - Linscheid et al., 2005
RAMP 2 GGGGGACGGTGAAGAACTAT GTTGGCAAAGTGGATCTGGT 227 - Linscheid et al., 2005
RAMP 3 AACTTCTCCCGTTGCTGCT GACGGGTATAACGATCAGCG 353 - Linscheid et al., 2005

Beta-arretin 1 AAAGGGACCCGAGTGTTCAAG CGTCACATAGACTCTCCGCT 159 - Designed by Dr Kerry Barkan
Beta-arretin 2 TCCATGCTCCGTCACACTG ACAGAAGGCTCGAATCTCAAAG 82 - Designed by Dr Kerry Barkan

RCP AGAGCAGCGTAAAGAAAGTGG CTGACAATTTCAGGACTCTGGTG 129 - Designed by Ashley Clark

Table 2.X: Primer sets to determine GPCRs, RAMPs, beta-arrestins and RCP gene expressions in cell lines of homo sapiens origins.
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firmed with the use of the NCBI primer-blast online tool which predicts the presences

of specific gene expressions based on the comparison of the alignment of the nucleotide

sequences of the DNA fragment and that of specific genes.

2.2.2.7 Methods for generating site-directed mutants in the GLP-1R

All primers used for single-site mutagenesis were designed using the online ’QuikChange

Primer Design’ online tool developed by Agilent Technologies (Santa Clara, U.S.)

(available on https://www.agilent.com/store/primerDesignProgram.jsp). The oligonu-

cleotide primer sets used in site-directed mutagenesis are summarised in Table 2.8. The

QuikChange Lightening Site-directed Mutagenesis Kit (Agilent Technologies) was used

to perform single-site mutagenesis. Manufacturer’s instructions were largely followed

in performing the mutagenesis. The reaction components were assembled according to

the manufacturer’s protocol (Table 2.9).

Since the plasmid length of pcDNA3.1 used to clone the sigSNAP-GLP-1R-mCherry-

WT construct has a size of 5.248kb, 186 seconds/cycle at 68°C were allowed in part of

the elongation step during thermocycling. The PCR cycle parameters were described

in Table 2.10. Upon incubation of the PCR products in NZY+ buffer for one hour

at 37°C at constant shaking at 180 rpm, the PCR products were then allowed to be

grown on ampicillin-resistant bacterial agar plate overnight at 37°C. Colonies were

hand-picked the next day and were grown in 5ml LB broth with 100µg/ml ampicillin

overnight at 37°C with constant shaking at 180 rpm. The constructs were then purified

as described in section 2.2.2.2 with the use of the Qiagen Mini-prep kit and the dsDNA

content and purity were determined with a NanoDrop Lite Spectrophotometer. The

samples were sent to the Department of Biochemistry at the University of Cambridge

for sequencing. Point mutation at designated residues of the receptor of interest

was confirmed by comparing the alignment of the sequencing results of the mutated

receptor with that of the wildtype receptor via the online open-source MultAlin (http:

//multalin.toulouse.inra.fr/multalin/) and that no other unwanted mutations were

introduced.

Table 2.8: Oligonucleotides used in the site-directed mutagenesis to generate specific GLP-1R mutants.

Target Product Oligonucleotide targeting sense strand of template Oligonucleotide targeting anti-sense strand of template 

TM6 C347A 5’-GTGGACTTGGCAAGTCTGgcTTTGATGTCTGTCTTGCAC-3’ 5’-GTGCAAGACAGACATCAAAgcCAGACTTGCCAAGTCCAC-3’
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Table 2.9: Reaction components for SDM as recommended by the manufacturer.

Reaction component Volume or mass

10x reaction buffer 5!l

dsDNA template 100ng

Oligonucleotide targeting sense strand 100ng

Oligonucleotide targeting anti-sense strand 100ng

dNTP mix 1!l

QuikSolution reagent 1.5!l

ddH2O To 50!l

QuikChange Lightning Enzyme 1!l

Table 2.10: PCR cycle parameters used in the site-directed mutagenesis.

Segment Cycles Temperature (°C) Time (s)

1 1 95 120

2 18

95 20

60 10

68 186

3 1 68 300

Cool down to 4°C after thermocycling 

2.2.3 Pharmacological investigations and signalling assays

2.2.3.1 cAMP accumulation assay

2.2.3.1.1 Principle of cAMP accumulation assay LANCE® cAMP detection kit,

which is a homologous time-resolved fluorescence resonance energy transfer (TR-

FRET) based assay, was used to detect cAMP produced when GPCRs were stimulated

with agonists. The principle of the assay is based on the competition of the binding

sites on the cAMP-specific antibodies (Alexa Fluor-647) between the europium (Eu)-

streptavidin chelated biotin-cAMP tracer and the cAMP produced. When the antibodies

are bound to the Eu-chelated cAMP tracer, light pulse at 340nm excites the europium,

which the energy emitted by the excited Eu-chelate tracer is then transferred to the

Alexa Fluor-labelled antibody, emitting FRET signal at 665nm (Fig. 2.4). Therefore,

the level of fluorescence emitted at 665nm decreases with the higher concentrations of

cAMP produced, meaning the resulting fluorescence signals are inversely proportional

to the cAMP concentrations in the assay.
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Figure 2.4: Principle of LANCE® cAMP detection kit. The assay is a TR-FRET based assay of which the
Eu-chelated biotin-cAMP tracer competes with the cAMP produced for the binding site of the Alexa-Fluor
665 antibody. When the antibody is bound to the Eu-chelated cAMP tracer, light excitation at 340nm
excites the europium, which the energy emitted by the excited Eu-chelated tracer is then transferred to
the Alexa Fluor-labelled antibody, emitting FRET signal at 665nm. Therefore, the resulting fluorescence
signals are inversely proportional to the cAMP produced by the stimulated GPCR.
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2.2.3.1.2 Methods Stimulation buffer (SB) for the assay was made up of 20ml PBS

containing 0.1% (w/v) BSA with or without the presence of PDE inhibitors, such as

0.5mM IBMX, 25µM rolipram or 25µM trequinsin, to prevent the breakdown of cAMP

by PDEs. Ligands were serially diluted with SB in 96 well plates. For antagonist or

allosteric modulator assay, a single concentration of the antagonist or compound was

added to the serially diluted peptide ligands; the DMSO content was kept at 2% across

all wells. Forskolin was also serially diluted in a range of 100µM to 10pM, which was

used to normalise the data.

Cells were harvested and were washed in PBS, following resuspension in SB 30

minutes at room temperature before the start of assays. Upon cell counting with the

haemocytometer, the volume of cells needed to make up to a designated cell number

for the assay was determined and cells were seeded at 5µl/well onto the 384 white

Optiplates. 5µl of ligands were added to the cells using a multichannel pipette and

cells were stimulated with the ligands at room temperature under certain stimulation

time. 10µl of detection buffer, which consisted of Eu-labelled streptavidin and biotin-

cAMP diluted according to manufacturer’s protocol, together with Triton-X were

added to lyse the cells and to detect cAMP produced by incubating for an hour in the

dark. cAMP accumulations were then measured with the Mithras LB 940 multimode

microplate reader (Berthold Technologies, Germany), which filters were calibrated

at 665nm emission and 340nm excitation and can be used directly for data analysis

without quench correction (PerkinElmer, 2017). All data measured were normalised to

the 100µM forskolin, which represents the maximum cAMP production that the cell

system can produce.

2.2.3.2 Quantifying the release of calcium from intracellular compartments

80,000 cells/well were seeded onto the Costar® sterile black, clear bottomed, 96-well

plates (Corning Life Science, New York, U.S.) coated with poly-L-lysine (PLL) solution.

Cells were grown for 24 hours until fully confluent. Cells were washed once with

Ca2+ containing HBSS before adding 40µl of 10µM Fluo-4/AM calcium dye containing

2.5mM probenecid to prevent dye leakage, followed by an hour of incubation in dark at

room temperature. Cells were then washed twice with calcium containing HBSS before

the addition of 100µl of Ca2+-free HBSS supplemented with 0.1% (w/v) BSA.

Ligands were serially diluted in Ca2+-free HBSS supplemented with 0.1% (w/v)

BSA and were injected robotically onto the cell-containing black 96 well plate by BD

pathway 855 high-content bioimager (BD Biosciences, Berkshire, U.K.) in a range
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of 1µM to 1pM. Fluorescence were immediately detected upon ligand addition and

images were captured every second for a duration of 80 seconds with an excitation and

emission wavelength set to 494nm and 516nm respectively. Fiji (Image J) was used to

compile all individual images captured into animations. The mean intensity of each

individual animation with background fluorescence were corrected and were used to

generate dose-response curves in GraphPad Prism 8.4. All data were normalised to

10µM ionomycin, which is an ionophore that raises the intracellular calcium level.

2.2.3.3 Measurement of ERK1/2 phosphorylation

ERK1/2 phosphorylation was measured with the use of Phospho-ERK1/2 (Thr202/Tyr4-

04) kit (Cisbio, France). HEK293S stably expressing sigSNAP-GLP1R-mCherry-C347A

and sigSNAP-GLP1R-mCherry-WT cells were serum starved overnight prior to assaying

for ERK1/2 activation, in order to lower basal pERK1/2 levels and to gain a larger

signalling window. The cells were harvested using trypsin as in cAMP assay and

serum-free media was added. Cells were washed in Ca2+-free HBSS before seeding

at a cell density of 35,000 cells per well onto the 384 white Optiplates. The cells

were pre-treated with compound 249 for 15 minutes before ligand stimulation for 5

minutes. Cells were then lysed for 30 minutes using lysis buffer made up according

to manufacturer’s protocol after ligand stimulation. A mixture of equal proportion

of pERK1/2 d2 and pERK1/2 cryptate antibodies were added and incubated in the

dark for 2 hours at room temperature. Plates were then read with the Mithras LB 940

multimode microplate reader (Berthold Technologies, Germany), which filters were

calibrated at 665nm emission and 340nm excitation. ERK1/2 phosphorylation was

then expressed as a ratio between the signals observed between 665nm and 620nm. A

phorbol 12-myristate 13-acetate (PMA) dose-response curve was generated to determine

the maximum ERK1/2 response given by the cells during assays.

2.2.3.4 Quantifying the affinity of ligand binding using fluorescent substrates

1,000,000 HEK 293T cells were seeded onto 6 well plates and cultured for 24 hours.

Cells were then transiently transfected with NLuc-GLP-1R-WT with PEI (which method

was described in section 2.2.2.4) and were grown overnight. Following harvesting,

transfected cells were seeded at 50,000 cells/well onto white 96 well plates coated with

PLL solution and were further cultured for 24 hours. After 48 hours transfection period,

the media was removed and were washed with PBS prior to adding 80µl of modified
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PBS containing with 0.49mM MgCl2·6H2O, 0.9mM CaCl2·2H2O and 0.1% (w/v) BSA to

each well. 10µl of Nano-Glo substrate (Promega Corporation), furimazine, which was

diluted 100x in the modified PBS, was added to each well and the plate was incubated

for 5 mins in the dark.

Upon incubation, 10µl of 400nM Tag-lite® GLP-1R red agonist (Cisbio® Codolet,

France) was added to each well and emission was measured at 485nm and 530nm every

30 seconds for 25 minutes during which total binding was determined. Unlabeled,

’cold’, GLP-1 or Ex-4 at 1µM was then injected into each well to displace all bound

Tag-lite® GLP-1R red agonist, with emission measured every 30 seconds for a further

60 minutes, during which non-specific binding was determined. In both phases, vehicle

was added alongside the ligands to act as a control which represented the background

level of emission. The BRET signal was calculated by subtracting the 530 nm/485 nm

emission ratio for vehicle treated cells from Tag-lite® GLP-1R red agonist treated cells.

2.2.3.5 Application of pharmacological inhibitors to probe downstream signaling
events

Where appropriate, cells were pre-treated with 100nM YM-254,890, which is a Gaq/11

inhibitor [Takasaki et al., 2004], for 30 minutes prior to assay. PTX at a final concentration

of 200ng/ml was applied to cells 16 hours prior to assay, thereby ADP-ribosylated the

Gai protein, uncoupling receptor-mediated Gai-dependent cAMP inhibition [Pittman,

1979]. PKA inhibitor, Rp-8-Br-cAMP [Gjertsen et al., 1995], was applied to cells 15 mins

prior to assay.

2.2.4 Insulin and glucagon secretion assays

2.2.4.1 Principle of glucose stimulated-insulin secretion (GSIS) assay

The principle of the Cisbio® insulin ultra-sensitive assay is based on the HTRF technol-

ogy during which when insulin is present in the supernatant, the antibodies, europium

cryptate (donor) and XL-665 (acceptor), will bind to insulin. When the antibodies are

in close proximity, the excitation of the donor with a light source at wavelength 340nM

triggers a FRET signal toward the acceptor, giving out fluorescence at 620nm and

665nm wavelength (Fig. 2.5). The signal intensity is thus proportional to the number

of antibodies complex formed with insulin, hence directly proportional to the insulin

concentration present in the supernatant.
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Figure 2.5: Principle of the HTRF-based insulin ultra-sensitive assay. When insulin is present in the
supernatant, the antibodies, which consist of europium cryptate (donor) and XL-665 (acceptor), will bind
to insulin. When the antibodies are in close proximity, the excitation of the donor with a light source
at wavelength 340nM triggers a FRET signal toward the acceptor, giving out fluorescence at 620nm and
665nm wavelength. The signal intensity is thus proportional to the number of antibodies complex formed
with insulin, hence directly proportional to the insulin concentration present in the supernatant.
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2.2.4.2 GSIS assay in INS-1 832/3 cell lines

2.2.4.2.1 Methods 150,000 INS-1 832/3 cells/well were seeded onto clear bottom 96

well plates coated with PLL solution and were incubated overnight. On the day of

assay, complete 11mM glucose RPMI media was replaced with complete 0mM glucose

RPMI media for glucose starvation for 2 hours at 37�C humidified incubator [Yang

et al., 2016]. The cells were then pre-incubated with 2.8mM glucose KRB supplemented

with 0.1% (w/v) BSA for an hour at 37�C. Afterwards, the cells were washed twice

with KRB, and were incubated further for an hour under different conditions, which

were made up in 100µl KRB containing protease inhibitor aprotinin at 10µg/ml and

DPP-IV enzyme inhibitor sitagliptin at 100nM to prevent the enzymatic breakdown of

GLP-1 by the DPP-IV enzymes [Liu et al., 2014]. Supernatant was collected from each

well after incubation and was spun at 5000rpm for 5 mins to remove any cell debris.

Supernatants were transferred to fresh 500µl epperdorf tubes before being stored at

-20�C until further analysis.

2.2.4.2.2 Acid-ethanol extraction to determine total insulin content in cells The

acid-ethanol extraction steps were performed in an attempt to measure the total insulin

content in cells. Once the supernatant was removed from the wells, the cells were

washed with KRB once. 100µl of acid-ethanol mix, which was comprised of 0.18 M

HCl in 96% ethanol (v/v), were added to the cells and were incubated at 4�C for 12

hours. Following 12 hours incubation, the cells were disrupted by vigorous pipetting.

Supernatants were then centrifuged at 5,000 rpm for 5 mins to remove any cell debris.

The supernatants were further diluted 1:100 in KRB before the addition of antibody

mix.

2.2.4.2.3 Addition of antibody mix to quantify insulin concentrations On the day

of analysis, the supernatants were thawed on ice and were diluted 1:25 in KRB before

transferring 10µl onto the 384 well optiplate in duplicate. 10µl of XL-665 and anti-

insulin antibody mix at 1:1 ratio was added using a multichannel pipette and 4-hour

incubation in dark at room temperature was allowed. The results were measured with

the Mithras LB 940 multimode microplate reader (Berthold Technologies, Germany),

which filters were calibrated at 340nm excitation and 665nm and 620nm excitation.

2.2.4.2.4 Data analysis The ratio of the acceptor and donor emission signals were

calculated for each individual well as follows:
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Ratio =
Signal 665nm
Signal 620nm

⇥ 104 (2.1)

The DF (%) which reflects the signal to background of the assay were calculated as

below, of which Rationegative control denotes the ratio given with only KRB present:

DF(%) =
RatioSample � RatioNegative control

RatioNegative control
⇥ 100 (2.2)

The insulin level (ng/ml) was then determined by interpolating the DF(%) of each

sample against the standard curve produced according to the manufacturer’s protocol.

2.2.4.3 Static incubation GSIS assay in isolated mouse islets

The GSIS assay in isolated mouse islets largely followed the protocol developed by

our collaborators, Dr Reshma Ramracheya and Professor Patrik Rorsman (Oxford

Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K.).

Following overnight recovery after islets isolation, small to medium sized islets were

hand-picked and size-matched under inverted microscope. Groups of 10 size-matched

islets were transferred to 500µl epperdorf tubes containing 200µl of 0mM glucose RPMI.

Supernatants were removed carefully without disturbing the pellets and were replaced

with fresh 0mM RPMI, leaving in for 5 minutes so as to remove any excess 11mM

glucose RPMI. The supernatants were again carefully removed, and 1mM glucose

KRB were added into each tube. The islets were pre-incubated for an hour in the

37�C humidified incubator with 5% CO2 before incubating with various conditions,

including low glucose (1mM glucose) and high glucose (10mM), for a further hour.

Afterwards, 250µl supernatants were removed and were transferred to fresh 500µl

epperdorf tubes. The samples were kept at -80�C until further analysis.

Acid-ethanol steps were performed by adding 100µl of the acid-ethanol mix as

described in section 2.2.4.2 into all tubes containing the remaining pellets. 10µl of

aprotinin were added into each tube, followed by sonication for 15 seconds. The tubes

were then stored at 4�C overnight before analysis.

The subsequent steps of the addition of antibody mix and data analysis largely

follow that described in section 2.2.4.2. However, the supernatants from the samples

were only diluted at 1:1 ratio before addition of the antibody mix.
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2.2.4.4 Glucagon secretion assay

2.2.4.4.1 Principles The Cisbio® glucagon kit was employed to perform the glucagon

secretion assay. The principle of the glucagon kit is largely similar to that of the

Cisbio® insulin ultra-sensitive assay (Section 2.2.4.2); the only difference is the use

of two different acceptor and donor antibodies, which are d2 and Terbium Cryptate

antibodies respectively. The Cisbio® glucagon kit is highly specific for detecting

glucagon produced by mouse species, with <0.07% specificity to oxyntomodulin, which

is highly structurally similar to glucagon.

2.2.4.4.2 Methods 500,000 aTC1.6 cells/well were seeded onto fibronectin-coated 24

well plate and were cultured overnight at the 37�C humidified incubator with 5% CO2.

2 hours before assay, fresh complete DMEM media containing 25mM glucose were

replaced. The cells were then washed once with 25mM glucose KRB supplemented

with 0.1% (w/v) BSA and were incubated with the same buffer at 37�C for an hour.

Following the pre-incubation, the cells were washed twice with KRB, before further

incubating for one hour under different conditions, which were made up in 5mM

glucose KRB supplemented with 0.1% (w/v) BSA in the presence of 10µg/ml aprotinin

and 100nM sitagliptin. Afterwards, supernatants were collected and transferred to

fresh 500µl epperdorf tubes. The samples were stored at -80�C until further analysis.

Acid-ethanol steps, the addition of antibody mix and data-analysis were performed

according to what have been described in the previous section 2.2.4.2.

2.2.5 Compound screening

2.2.5.1 Ligand-based virtual screening

At the beginning of the project in 2016, full-length GLP-1R cryo-EM crystal structures

were not available when the virtual screening for potential GLP-1R PAMs or agonists

were performed. Hence, ligand-based virtual screening (LBVS) was adopted which

facilitated the identifications of potential scaffolds based on existing GLP-1R ago-PAM

structures, without the prerequisite requirement of the GLP-1R structural information.

The methods described by Naylor and co-workers for their successful identification of

NAADP chemical probes [Naylor et al., 2009] were largely followed to aid the identifi-

cation of novel GLP-1R small molecule agonist scaffolds and the LBVS was conducted

by Dr Taufiq Rahman (Department of Pharmacology, University of Cambridge). Virtual

screening was conducted using Intel® Xeon® E3-1225v3 3.2GHz processor and 8.00GB
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RAMs in Microsoft® Window 7 professional operating system (Seattle, U.S.A.).

2.2.5.2 Identifying baits for LBVS

Compound 2, BETP, compound 20, compound 8e, VU0453379 and a quinoxaline

derivative were selected as baits for LBVS as they are well studied GLP-1R ago-PAMs.

The 3D conformations of the query ligands were generated with OMEGA (OpenEye

Scientific Software Inc., Santa Fe, New Mexico), which converted the 2D structures of

the query ligands into 3D conformations using distance bounds method.

2.2.5.3 Selections of chemical libraries

ZINC (ZINC15, www.zinc.docking.org, Sterling and Irwin, 2015) and the GPCR library

from Enamine Ltd (http://www.enamine.net) were used in LBVS which provided 3D

molecular structures of commercially available small molecules. Both chemical libraries

are free online databases which contains 35 million and 27,000 drug-like molecules for

LBVS respectively. All the small molecules in these libraries have molecular weight

between 250 to 500, log of partition coefficient between n-octanol and water (clogP)

between 2 to 4, topological polar surface area (TPSA) less than 150Å2, rotational bonds

between 0 to 8 and hydrogen bond donors and acceptors of less than 4 and 10.

2.2.5.4 ROCS and EON programme

ROCS (v3.2.1.4., OpenEye Scientific Software Inc., Santa Fe, New Mexico) was used

to compare the 3D structural similarities of the query ligands and the compounds

listed in libraries. A cut-off shape Tanimoto score of 0.7 was set to identify the top

500 hits. The hits identified from ROCS were then output to the EON programme

(v2.2.0.5., OpenEye Scientific Software Inc., Santa Fe, New Mexico), which calculated

the electrostatic similarities between the query ligands and the top 500 hits. The

electrostatic similarities were then quantified by the electrostatic combo score (ETcombo),

representing the similarity of electrostatic fields between the query ligands and the

top 500 hits [Jennings and Tennant, 2007]. A cut-off ETcombo score of 0.7 was also

applied to further identify the top hits. The results obtained from both ROCS and EON

programme were visualised with VIDA, which generated 3D coloured representations

of conformations and electrostatic fields of the baits as well as the top 500 hits (v4.3.0.4.,

OpenEye Scientific Software Inc., Santa Fe, New Mexico). Potential test compounds
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were then selected based on subjective judgement of the 3D structural and electrostatic

field similarities between the query ligands and the top hits.

2.2.5.5 In vitro testing and validations

Potential compounds with the highest ETcombo scores as well as subjective prediction

of the similarities of 3D conformations between the baits and the compounds were

purchased from either ZINC or Enamine Ltd via the commercial vendor ’Molport’.

As GLP-1R is predominantly Gas-coupled and the augmentation of cAMP production

is instrumental to the enhancement of insulin secretion, cAMP accumulation assay

serves as the preliminary screen for any viable candidates as GLP-1R small molecule

agonists or allosteric modulators. The workflow of compound screening and subsequent

identification of compound 249 as the potential GLP-1R PAM was outlined in Fig. 2.6.

2.2.5.6 Identification of compound 249 as the lead compound

Compound 11 was identified as a potential PAM on cAMP accumulation mediated

by GLP-1(9-36)NH2 and was reported in my MPhil thesis in 2016. The findings were

also published in pA2 online as conference abstract [Yeung et al., 2016]. Compound

249, which is a close analogue of compound 11, was also identified as a potential

GLP-1R PAM due to its potentiation effect on cAMP production mediated by OXM in

the CHO-K1 cell line stably expressing GLP-1R. Thus, this PhD thesis mainly focuses

on the further characterisation of the pharmacological properties of compound 249 and

its analogues designed thereafter.

2.2.5.7 Design and in vitro screening of compound 249 analogues

Additional analogues, such as compound 248, 82 and 448, were designed manually

based on the structure of compound 249 by Dr Taufiq Rahman (Department of Pharma-

cology, University of Cambridge). Other compound 249 analogues, namely compound

880, 297, 180, 607, 385, 106, 001, 246, 468, 646 and 518, were designed by Miss Kathleen

Bowman (Department of Pharmacology, University of Cambridge) via LBVS which

methods were the same as described above in this section using compound 249 as the

bait. In vitro testing was also performed to validate analogues biological activities as

described in section 2.2.5.5.
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Identified 6 known GLP-1R PAMs from the literature and used as queries to screen 
over 35 million conformers from libraries generated from commercial vendor (Enamine) or academic source (ZINC)

Ran ROCS and EON programme (OpenEye Scientific Software Inc.) for shape and surface electrostatic comparisons 
and selected top 500 hits 

Identified top 100 hits which had a minimum Tanimoto combo score of 0.7 

Visualised results with VIDA (OpenEye Scientific Software Inc.) and selected top 11 hits 

Performed cAMP accumulation assays in CHO-GLP-1R cells as the primary screen and identified Compound 11 as 
GLP-1R PAM on GLP-1(9-36)NH2

Purchased Compound 11 analogues which had 80% similarity (Tanimoto co-efficient=0.8) as compound 11

Evaluated the biological activities of the analogues by performing cAMP accumulation assays in CHO-GLP-1R cells 
and identified compound 249 as a potential PAM targeting at the GLP-1R

Performed further pharmacological characterisation on compound 249 and designed analogues (compound 248, 
82, 448) manually based on the structure of compound 249

Figure 2.6: Flowchart outlining the workflow of compound screening and subsequent identification of
compound 249 as the potential GLP-1R PAM. The above flowchart summarises how test compounds
were identified with ligand-based virtual screening. Baits were chosen based on their known ago-PAM
activities. ZINC and Enamine were used as the compound libraries for virtual screening. ROCS and EON
programmes were run to compare the shape and surface electrostatic similarities, quantified by shape and
electrostatic Tanimoto scores. The results obtained from ROCS and EON were visualised with VIDA and
top hits were selected based on subjective judgement of the 3D shape and electrostatic field similarities.
The top hits were purchased and their biological activities were validated with cAMP accumulation assay.
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2.2.6 Data analysis

2.2.6.1 Dose-responses curve fitting

Data interpretation for the cAMP accumulation and intracellular calcium mobilisation

assays were performed with the use of GraphPad Prism 8.4 (La Jolla, U.S.A.). Data

were fitted to obtain concentration-response curves using the three parameters logistic

equations with least square (ordinary) fit as the equation below:

Y = Emin +
Emax � Emin

1 + 10log(EC50)�x (2.3)

where Emax and Emin are defined as the maximum and minimum responses of

an agonist while EC50 is the concentration at which 50% of the maximal response is

reached.

2.2.6.2 Operational model of agonism and allosterism

An operational model of agonism and allosterism was used to estimate the efficacy

and cooperativity between the potential small molecule allosteric modulator and the

peptide ligands [Leach et al., 2007, May et al., 2007]. Data were fitted into equation 2.4

as shown below:

E =
Em (tA[A](KB + ab[B]) + tB[B]KA)

n

([A]KB + KAKB + [B]KA + a[A][B])n + (tA[A] (KB + ab[B]) + tB[B]KA)
n (2.4)

where Em is the maximum response induced by an agonist, [A] and [B] are the

concentrations of the orthosteric ligand and allosteric modulator respectively, KA and

KB are the dissociation constants of the orthosteric ligand and the allosteric modulator

respectively, EC50 is the concentration of the orthosteric ligand at which 50% of the

response is achieved in the absence of the allosteric modulator, n is the transducer

slope factor which links occupancy to response, a and b represent the allosteric effect

on affinity and efficacy of the orthosteric ligand respectively, tA and tB represent

the capacity of orthosteric and allosteric ligands to be agonists respectively, taking

their intrinsic efficacies, the total density of the receptors and the efficiency of the

stimulus-response coupling into account.

Equation 2.4 was fitted into GraphPad Prism 8.4 manually as in-built allosteric

operational model is not available. The allosteric parameters were generated with the
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help of Dr Graham Ladds (Department of Pharmacology, University of Cambridge).

2.2.6.3 Ligand binding association then dissociation model

For ligand binding association-dissociation experiments, data were fitted using the

’association then dissociation’ model in GraphPad Prism 8.4 to obtain values for associ-

ation rate (Kon), dissociation rate (Ko f f ), dissociation constant (KD) which is computed

from Ko f f /Kon, and non-specific binding (NS).

2.2.7 Statistical analysis

All data were normalised to the average highest and lowest responses obtained when

the cells were stimulated with forskolin at 100µM, ionomycin at 10µM or PMA at

100µM, and blank SB or HBSS without Ca2+. The normalised values were plotted as a

percentage of response against log concentrations of the test ligands. All the graphs

represented were plotted ± S.E.M., with upper and lower error bars shown.

Student’s (unpaired) t-tests with Welsh’s correction or one-way ANOVA with post-

hoc Dunnett’s multiple comparisons were performed to analyse the statistical difference

of the data set with the use of GraphPad Prism 8.4. Probability value (p) of less than

0.05 was considered to be statistically significant.
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Chapter 3

Evaluation of the signalling
responses of glucagon-like peptides

3.1 Introduction

As one of the main goals of the PhD project is to shed new light on how GLP-1(7-

36)NH2 (thereafter referred to as GLP-1) regulates glucagon secretion in pancreatic a

cells, it is imperative that the signalling properties of GLP-1, in particular its facilitation

on cAMP and intracellular calcium (iCa2+) mobilisation responses which are critical

for its glucagonostatic action, are thoroughly evaluated. Furthermore, given a few

glucagon-like peptides, namely GCG, OXM, GIP and GLP-1(9-36)NH2, also regulate

glucagon secretion, the signalling properties of these peptide ligands were characterised

in relative to GLP-1. Therefore, in this chapter the evaluation of cAMP responses

mediated by GLP-1 and its structurally similar peptide ligands in recombinant hamster

CHO-K1 and human HEK293 cell lines stably expressing GLP-1R, GIPR and GCGR

will be first reported. iCa2+ mobilisation mediated by a selection of glucagon-like

peptides were also quantified using the HEK293 recombinant cell systems. Following

the establishment of the rank order of potency of these peptide agonists, the cAMP

responses mediated by these glucagon-like peptides in physiologically relevant rodent

pancreatic a and b cell lines, which are known to express endogenous incretin receptors,

will be reported.

Secondly, as started in the introduction, many accessory proteins can influence the

signalling of the glucagon-like receptors (see Section 1.5.7). Thus a detailed under-

standing of the molecular compositions, in particular the incretin receptors and RAMPs
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expressions, in the recombinant and physiologically relevant cell lines which were

frequently used in this project will be presented. To decipher the cellular compositions

of these cell lines commonly used in understanding the signalling pathways of insulin

or glucagon secretion, the evaluation of endogenous expressions of the receptors from

the glucagon receptor family, G proteins as well as RAMPs using RT-PCR technique

will be reported.

Lastly, having grasped a detailed understanding of the signalling properties and

molecular compositions of the recombinant and immortalised a and b cell lines, the

factors that modulate cAMP signalling mediated by these glucagon-like peptide ligands

were investigated and the results of which will be reported in this chapter. Unfor-

tunately, due to COVID-19 impact on experimental schedule, some of the results

presented in this chapter are of preliminary nature only, and are noted accordingly. The

quantitative measurement of cAMP accumulation, a technique which was frequently

used throughout the project, will be first described to begin the chapter.

3.2 Characterisation of glucagon-like peptide ligands responses

in recombinant cell systems

3.2.1 cAMP accumulation measurements

Given the importance of cAMP production in mediating insulin and glucagon secretion

[Ahrén, 2009, Yang and Yang, 2016], the homologous TR-FRET based LANCE cAMP

kit was employed to characterise the glucagon receptor family endogenous ligands

cAMP accumulation responses upon receptor activation. As the Chinese Hamster

Ovary (CHO-K1) cell line is an easy-to-culture cell line that can act as a robust system

for evaluating secondary messenger responses for glucagon-like receptors [Wootten

et al., 2012], CHO-K1 cell lines stably expressing GLP-1R, GCGR or GIPR (thereafter

referred to as CHO-GLP-1R, CHO-GCGR or CHO-GIPR cells respectively) were used

in functional assays in examining glucagon receptor family peptide agonist-mediated

cAMP responses as well as characterising the pharmacological properties of small

molecule allosteric modulators (see later in chapter 5).

Before performing the functional assays, forskolin, which is a direct adenylate

adenylyl cyclase activator that facilitates the production of cAMP from the breakdown

of ATP [Seamon et al., 1981], was applied to CHO-GLP-1R, CHO-GCGR, CHO-GIPR

cells as well as untransfected CHO-K1 cells in an attempt to examine the potencies
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(pEC50) of forskolin-mediated cAMP responses of these cell lines, as the potency of

forskolin varies among cell types [Hill et al., 2010]. Here the forskolin-mediated

cAMP responses were established to be similar across various CHO-K1 cells stably

expressing different receptors, validating the use of CHO-GLP-1R, CHO-GCGR, CHO-

GIPR and CHO-K1 cells in subsequent cAMP functional assays (pEC50 values were

5.89 ± 0.06, 6.16 ± 0.06, 5.99 ± 0.07 and 6.09 ± 0.09 respectively) (Fig. 3.1 and Table

3.1). Furthermore, the forskolin concentration-response curves obtained were used

to normalise the results generated from the functional assays, which facilitated the

comparisons of the extent of cAMP production as well as accounted for daily cell

variability. PDE inhibitors, such as 25µM rolipram, 0.5mM IBMX or 25µM trequinsin,

were also added into the stimulation buffer to prevent the breakdown of cAMP [Hill

et al., 2010]. Having validated the cell line as a system to evaluate the extent of cAMP

production, the assessment of cAMP responses mediated by a range of glucagon-like

peptide agonists on GLP-1R, GCGR and GIPR in the recombinant CHO-K1 cell systems

were performed.
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Figure 3.1: Forskolin-activated cAMP accumulation responses in CHO-GLP-1R, CHO-GCGR, CHO-
GIPR and CHO-K1 cells. The above graph shows the concentration-response curves when CHO-GLP-1R,
CHO-GCGR, CHO-GIPR and untransfected CHO-K1 cells were stimulated with forskolin, resulting in
high cAMP responses. 1000 cells/well of CHO-GLP-1R, CHO-GCGR, CHO-GIPR or CHO-K1 cells in the
presence of rolipram under 15-minute stimulation were used in the cAMP assays. All data were normalised
to the forskolin concentration-response curve. All data were means of 6 independent experiments with
duplicates ± S.E.M (upper error bars). Table 3.1 shows the pEC50 and Emax values of forskolin-induced
cAMP accumulation responses in all CHO-K1 cell types.
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Table 3.1: cAMP potencies (pEC50) and maximal responses (Emax) of forskolin when applied to CHO-
K1 cells stably expressing GLP-1R, GCGR or GIPR and untransfected CHO-K1 cells.

Cell line pEC50 
a Emax 

b Span n

CHO-GLP-1R 5.89±0.06 96.38±2.00 85.45±2.22 12

CHO-GCGR 6.16±0.06 97.88±1.70 89.19±1.93 12

CHO-GIPR 5.99±0.07 97.03±2.33 84.88±2.59 12

CHO-K1 6.09±0.09 96.90±3.14 88.12±3.53 12

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

3.2.2 Glucagon-like peptide ligand cAMP responses in CHO-K1 recombi-
nant systems stably expressing GLP-1R, GCGR or GIPR

GLP-1R, GCGR and GIPR are known to be predominantly Gas-coupled, promoting the

activity of adenylyl cyclase upon receptor activation, leading to the production of cAMP

[Wootten et al., 2013b, Graaf et al., 2016]. The increase in cAMP levels then further

activate downstream pathways namely protein kinase A (PKA) and exchange protein

directly activated by cAMP 2 (EPAC2), which are known to be instrumental to insulin

release [Seino, 2012]. Given the importance of cAMP pathway activation, the extents of

cAMP production mediated by different glucagon receptor family endogenous peptide

agonists, namely GLP-1, GLP-1(9-36)NH2, OXM, GCG and GIP, were next investigated.

To determine the potencies and efficacies of various peptide ligands when acting on

the GLP-1R, GCGR and GIPR, cAMP accumulation functional assays were performed.

These endogenous peptide ligands were applied to CHO-GLP-1R, CHO-GCGR and

CHO-GIPR cells and their extents of cAMP production in the presence of a PDE

inhibitor rolipram were measured.

Concurred with the observations from other studies [Jorgensen et al., 2007, Willard

and Sloop, 2012, Weston et al., 2015, Wootten et al., 2016a], GLP-1 was the most potent

full agonist at the GLP-1R (pEC50: 9.46 ± 0.05) while GCG was the most potent full

agonist at the GCGR (pEC50: 11.35 ± 0.09) (Fig. 3.2 and Table 3.2). Furthermore, GCG

activated the GLP-1R (pEC50: 8.32 ± 0.05), which was also reported recently [Chepurny

et al., 2019]. The ability of GLP-1 activating the GCGR has been refuted by some reports

[Runge et al., 2003, Jorgensen et al., 2007], yet here GLP-1 was shown to activate the

GCGR and acted as a partial agonist (pEC50: 7.21 ± 0.03), a finding which agreed with
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the observations from Weston and colleagues [Weston et al., 2015], which they showed

the partial agonism of GLP-1 at the GCGR using recombinant yeast strains expressing

GCGR as well as HEK293 cells transiently transfected with GCGR. OXM acted as a

dual full agonist at both GLP-1R and GCGR, resulting in a more potent cAMP response

at the GCGR compared to the GLP-1R (pEC50 values of OXM were 9.20 ± 0.09 at

the GCGR and 7.92 ± 0.06 at the GLP-1R), which agreed with the results reported

by Pocai and colleagues [Pocai et al., 2009]. The highly abundant GLP-1 metabolite,

GLP-1(9-36)NH2, which was found to be a GLP-1R weak partial agonist here (pEC50:

5.77 ± 0.22) as well as reported previously [Montrose-rafizadeh et al., 1997], also acted

as a weak partial agonist at the GCGR (pEC50: 6.44 ± 0.40), an observation that has

not been reported in the literature. GIP acted as a potent full agonist only at the GIPR

(pEC50: 9.64 ± 0.11). It failed to activate GLP-1R and could only activate GCGR at

high concentration. Furthermore, GLP-1, OXM, GCG and GLP-1(9-36)NH2 did not

activate GIPR, as also shown in other studies [Baggio and Drucker, 2007]. However, the

receptor cell surface expressions were not determined in these CHO-K1 stable cell lines;

the quantification of which will certainly facilitate a fairer comparison of the agonist

responses among these GLP-1R, GIPR and GCGR stable cell lines. In essence, the rank

order of potencies of various peptide ligands at GLP-1R, GCGR and GIPR evaluated at

the CHO-K1 recombinant cell lines were as follows:

• For GLP-1R: GLP-1 > GCG > OXM > GIP > GLP-1(9-36)NH2

• For GCGR: GCG > OXM > GLP-1 > GLP-1(9-36)NH2 > GIP

• For GIPR: GIP (the rest of the ligands were not able to activate GIPR at concentra-

tions < 1µM)
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Figure 3.2: Characterisation of glucagon receptor family endogenous ligands cAMP accumulation
responses in CHO-K1 stably expressing GLP-1R, GCGR or GIPR cells. Dose-response curves when (A)
GLP-1R, (B) GCGR and (C) GIPR were stimulated with various glucagon receptor family endogenous
ligands. 1000 CHO-GLP-1R, CHO-GCGR and CHO-GIPR cells/well were stimulated with ligands for
15 minutes in the presence of PDE inhibitor rolipram, except for measuring the ligand response of
GLP-1(9-36)NH2 during which 2000 cells/well were stimulated for 60 minutes. All data were normalised
to the maximum cAMP response determined by 100µM forskolin stimulation. All data were means of 3
to 6 independent experimental results with duplicates ± S.E.M (upper error bars) and were fitted to the
three-parameter logistic equation. Table 3.2 shows the pEC50 and Emax values of the individual ligand
responses.
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Table 3.2: cAMP potencies (pEC50) and maximal responses (Emax) of GLP-1R, GCGR and GIPR activa-
tion by their endogenous ligands in CHO-GLP-1R, CHO-GCGR and CHO-GIPR stable cell lines.

Cell line Ligand pEC50 
a Emax 

b Span n

CHO-GLP-1R

GLP-1 9.46±0.05 93.14±1.95 92.09±2.18 10

GLP-1(9-36)NH2 5.77±0.22 14.42±2.06 13.93±2.00 10

GCG 8.32±0.05 95.18±2.65 97.81±2.85 12

OXM 7.92±0.06 82.53±1.88 85.97±2.56 6

GIP 6.41±0.70 19.42±7.70 14.77±7.32 6

GLP-1 7.21±0.30 76.8±23.85 108.2±10.36 6

GLP-1(9-36)NH2 6.44±0.40 9.965±2.13 10.89±2.22 6

CHO-GCGR GCG 11.35±0.09 96.01±2.94 88.52±3.52 8

OXM 9.20±0.09 101.8±4.36 94.64±4.47 10

GIP 5.79±0.10 91.54±6.0 85.75±5.96 5

GLP-1 5.99±0.34 28.76±5.7 24.86±5.70 6

GLP-1(9-36)NH2 5.80±0.33 9.41±1.60 9.07±1.63 6

CHO-GIPR GCG 6.85±0.32 22.90±3.91 20.25±3.92 6

OXM 6.76±0.43 22.11±5.22 20.19±5.24 6

GIP 9.64±0.11 69.72±2.61 56.28±3.13 8

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

93



Chapter 3. Evaluation of the signalling responses of glucagon-like peptides

3.2.3 Glucagon receptor family, RAMPs and b-arrestins mRNA expressions
in HEK293S and HEK293T cell lines

After evaluating the extents of the cAMP responses of various endogenous glucagon-like

peptide agonists in hamster CHO-K1 recombinant cell systems, the ligand responses

in human embryonic kidney 293 (HEK293) recombinant cell lines were subsequently

investigated. To begin with, the characterisation of the endogenous mRNA expressions

of GLP-1R, GCGR and GIPR, together with RAMPs, b-arrestins and receptor component

protein (RCP), were performed in order to fully evaluate the cellular background of

the HEK293S and HEK293T cell lines. The mRNA expressions were measured by

performing semi-quantitative RT-PCR and all expressions were relative to the house-

keeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). All RT-PCR

performed included negative controls, which were identical reactions without the

addition of reverse-transcriptase (rt-), to show the absence of contaminating gDNA.

Surprisingly, the HEK293S and HEK293T cell lines expressed low endogenous levels

of GLP-1R, GCGR and GIPR, which were not shown in any published reports to date.

The following results showed that the endogenous mRNA expressions of GLP-1R,

GCGR, GIPR, RAMPs, b-arrestins and RCP were largely similar between HEK293S

and HEK293T cell lines (Fig. 3.3). The endogenous expressions of GLP-1R, GCGR,

and GIPR were very low, compared to GAPDH in both HEK293S and HEK293T cell

lines. Among the three different RAMPs, RAMP1 showed the highest expressions

in both cell lines, which were approximately 8-fold higher than that of the reference

house-keeping gene, followed by RAMP2, which expressions were only one-fold higher

than that of GAPDH, and a non-detectable level of RAMP3 in both cell lines. The

RAMPs mRNA expression levels obtained were consistent with the RT-PCR results

reported by Bailey and colleagues [Bailey et al., 2019], who also observed RAMP1 being

the most abundant among the three RAMPs, followed by RAMP2 and a non-detectable

level of RAMP3 in HEK293S and HEK293T cell lines; they also showed there was no

major difference in terms of RAMPs expressions between the two HEK293 cell lines.

The mRNA expressions of b-arrestins were also similar in both HEK293S and HEK293T

cells, with b-arrestin 1 showing a higher expression, which was 3-fold higher than

GAPDH, than b-arrestin 2. The results reported here were consistent with other studies

that showed b-arrestin 1 was more abundant than b-arrestin 2 in HEK293 cells with

the use of immunoblotting with b-arrestins specific antibodies [Ahn et al., 2004]. The

expressions of RCP were of similar levels in both HEK293S and HEK293T cell lines (Fig.
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3.3) and were nearly 3-fold higher than that of GAPDH. Following the characterisation

of the molecular compositions of both HEK293S and HEK293T cell lines, HEK293 cell

lines which stably express receptors of interest were then produced, in an attempt to

further evaluate other signalling properties of the glucagon-like peptide ligands.

GAPDH
GIPR

GCGR

GLP-1R

RAMP1

RAMP2

RAMP3

Beta
-ar

res
tin

 1

Beta
-ar

res
tin

 2
RCP

0

2

4

6

8

10

%
 e

xp
re

ss
io

n 
(r

el
at

iv
e 

to
 G

A
PD

H
)

HEK293S

HEK293T

A

bp

100-

200-
300-

500-

1000-

G
A

PD
H

G
LP

-1
R

G
IP

R

G
C

G
R

R
A

M
P1

R
A

M
P2

R
A

M
P3

!-
ar

re
st

in
 1

!-
ar

re
st

in
 2

R
C

P

bp

100-

200-
300-

500-

1000-

rt(+)

rt(-)

B

C

Figure 3.3: Glucagon receptor family, RAMPs, b-arrestins and RCP expressions determined by RT-
PCR in HEK293S and HEK293T cell lines. (A) shows the comparison of expressions of GIPR, GCGR,
GLP-1R, RAMPs, b-arrestins and RCP in HEK293S and HEK293T cell lines. All levels of gene expressions
were normalised to the house-keeping gene GAPDH. Data were expressed as mean ± S.E.M. from 1 to
4 individual repeats. Only preliminary results for the receptors and b-arrestins expression studies in
HEK293T cells were included due to COVID-19 obstruction of experimental schedule. (B) and (C) show
the representative gel documentations in HEK293S and HEK293T cell lines respectively. Negative controls
such as samples without the addition of reverse transcriptase (-RT) were also included in all experiments.
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3.2.4 Production of HEK293S and HEK293-calcitonin receptor knock-out
cell lines stably expressing GLP-1R and GCGR

GLP-1R and GCGR are known to share close structural resemblance and that these two

receptors are also known to pleiotropically couple to different G proteins, such as the

Gaq protein which is responsible for the downstream iCa2+ mobilisation [Montrose-

rafizadeh et al., 1999, Wootten et al., 2012, Pabreja et al., 2014]. iCa2+ mobilisation

is deemed to be an important signalling pathway which facilitates the exocytosis of

insulin that are stored within the intracellular vesicles [Graaf et al., 2016]. Therefore,

the iCa2+ signals upon receptor activation by GLP-1, GCG and OXM were quantified,

given their prominent roles in modulating insulin and glucagon secretion as well as the

cross-receptor sensitivity at GLP-1R and GCGR as discussed in section 3.2.2.

To do so, a HEK293S stably expressing GLP-1R cell line was produced with the

use of the selection antibiotic G418 based on the previous evaluation of the molecular

compositions of the two HEK293 cell lines as described in section 3.2.3. HEK293S

cells were chosen in preference to HEK293T cells due to the fact that GLP-1R mRNA

expression was seemingly lower in the HEK293S cells compared to that in the HEK293T

cells. Although the GIPR endogenous expression was significantly higher in the

HEK293S cell line compared to the HEK293T cell line, it was shown in section 3.2.2

that GIPR was not activated by any other glucagon-like peptides apart from its cognate

ligand GIP. Therefore, there was less concern on cross-receptor sensitivity when a

range of glucagon-like peptides were applied to the HEK293S stable cell line. More

importantly, based on the previous experience in the Ladds’ laboratory, the HEK293S

cell line produces more potent iCa2+ responses compared to the HEK293T cell line, as

Weston and colleagues showed that there was a difference in G proteins expressions

among different HEK293 cell lines [Weston et al., 2016]. Based on the reasons stated

above, a HEK293S-based stably expressing GLP-1R cell line (hereafter refer to as the

HEK293S-GLP-1R-WT cell line) was produced to assist the quantification of iCa2+

release.

The GLP-1R construct, which was tagged with both N-terminal SNAP-tag preceded

by a signal peptide, murine 5HT-3a, for efficient trafficking of the receptor to the cell

surface and a C-terminal mCherry tag, was used to produce the stable GLP-1R cell

line. This construct was cloned by Mr Ashley Clark (Department of Pharmacology,

University of Cambridge) and the inclusion of these two components was used to

investigate the mechanism of GLP-1R internalisation, which is out of the scope of this
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thesis. Moreover, the mCherry-tagged construct allowed the verification of transfection

efficiency as well as the monitoring of the expression of GLP-1R at different stages of

the production of the stable cell line. The addition of the N-terminal SNAP-tag and the

C-terminal mCherry tag at the GLP-1R did not affect GLP-1R G protein coupling and

internalisation, as compared with the untagged GLP-1R construct.

A HEK293-calcitonin receptor knock-out (HEKDCTR) stably expressing GCGR cell

line was also created to allow the quantification of iCa2+ at the GCGR. The HEKDCTR

cell line was produced by Drs. David Hornigold, Jacqueline Naylor and Alessandra

Rossi (AstraZeneca, Cambridge, U.K.), and was shown to exhibit very low levels of

RAMPs expression [Bailey et al., 2019]. The HEKDCTR cell line was employed to

produce the GCGR stably expressing cell line in preference to the HEK293S cell line

because RAMP2 was known to interact with GCGR, regulating its ligand binding and

G protein selectivity [Weston et al., 2015, Cegla et al., 2017] and that the HEK293S cell

line expressed RAMP2 (Fig. 3.3). The GCGR construct used to produce the stable cell

line was given by Dr Ali Jazayeri (Heptares Therapeutics, Cambridge, U.K.). The GCGR

stable cell line was also produced with the use of G418 as the selection antibiotic and

was hereafter refer to as HEKDCTR-GCGR cell line.
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3.2.5 Establishing a system to quantify intracellular calcium mobilisation
upon GLP-1R or GCGR activation

Following the production of two recombinant cell systems stably expressing GLP-1R

and GCGR, the quantification of the extents of iCa2+ mobilisation at GLP-1R and GCGR

upon ligand activation was next performed. HEK293S-GLP-1R-WT and HEKDCTR-

GCGR cell lines were seeded and plated on black 96 wells clear-bottom plates 24 hours

prior to assay and the method for quantifying iCa2+ release was described previously

in Section 2.2.3.2.

As anticipated, when 10µM ionomycin, which is a calcium ionophore [Liu and

Hermann, 1978], was applied to both the HEK293S-GLP-1R-WT and HEKDCTR-GCGR

cell lines, potent iCa2+ mobilisation responses were observed, resulting in the brightest

images captured compared to the rest of the other collated images. The traces of

ionomycin were also deemed to have the highest peaks among all the individual traces

relative to time in seconds (Fig. 3.4A-B and Fig. 3.5A-B). Applying Ca2+-free HBSS

blank solution to the cells, which also served as negative controls, did not mediate any

calcium releases as also shown in Fig. 3.4A-B and 3.5A-B respectively.

Although not as potent as ionomycin, the activation of the GLP-1R and GCGR with

their cognate ligands GLP-1 and GCG also mediated iCa2+ mobilisation. Furthermore,

GLP-1 and GCG were able to activate GLP-1R and GCGR in a concentration-dependent

manner, which were represented by the dose-dependent increase in resultant light

intensity and were also clearly demonstrated by the concentration-dependent increase

in the peak intensities of the individual traces (Fig. 3.4A-B and Fig. 3.5A-B). The peak

values of these traces were then normalised to that of 10µM ionomycin and were used

to construct the corresponding dose response curves (Fig. 3.4C and 3.5C). After the

establishment of cell systems which allowed the quantitative measurements of iCa2+

mobilisation, the evaluation of the iCa2+ responses mediated GLP-1, GCG and OXM at

both GLP-1R and GCGR was performed.
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Figure 3.4: Representative intracellular calcium release captured images to illustrate the process of
calcium assay analysis in the HEK293S-GLP-1R-WT cell line. (A) shows the photos captured at the
peak of the intracellular calcium release when ligands were applied to the HEK293S cells stably expressing
GLP-1R. Their mean peak intensities were measured by Image J and background fluorescence were then
subtracted to obtain the mean peak intensity. (B) shows the background subtracted traces of a range of
different GLP-1 concentrations normalised to 10µM ionomycin. The peaks of each normalised trace were
then obtained and transformed into a dose response curve, which is shown in (C).
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Figure 3.5: Representative intracellular calcium release captured images to illustrate the process of
calcium assay analysis in HEKDCTR-GCGR cell line. (A) shows the photos captured at the peak of
the intracellular calcium release when ligands were applied to the HEK-calcitonin receptor knock-out
cells stably expressing GCGR. Their mean peak intensities were measured by Image J and background
fluorescence were then subtracted to obtain the mean peak intensity. (B) shows the background subtracted
traces of a range of different GCG concentrations normalised to 10µM ionomycin. The peaks of each
normalised trace were then obtained and transformed into a dose response curve, which is shown in (C).
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3.2.6 cAMP and intracellular calcium release responses of glucagon-like
peptide ligands in HEK293 recombinant cell lines

Following the validation of the two different human recombinant cell systems to

quantify iCa2+ responses, GLP-1, OXM and GCG were applied to both HEK293S-

GLP-1R-WT and HEKDCTR-GCGR cells in an attempt to compare the extent of iCa2+

mobilisation mediated by these peptide agonists at GLP-1R and GCGR. The cAMP

accumulation facilitated by these agonists at these two cell lines were also measured

utilising the same TR-FRET cAMP accumulation assay employed in previous sections.

However, since the HEK293S-GLP-1R-WT cell line was very responsive to cAMP

production upon ligand stimulation, possibly due to a high expression of GLP-1R, PDE

inhibitor was not included in the cAMP assay when this cell line was tested.

The following results showed that GLP-1, OXM and GCG not only induced cAMP

production upon GLP-1R activation, as seen in the CHO-GLP-1R recombinant cell

line (section 3.2.2), but also mediated iCa2+ mobilisation upon receptor activation (Fig.

3.6A, C, E and Table 3.3), which agreed with the observations from studies conducted

in Flp-In-CHO cells stably expressing GLP-1R [Wootten et al., 2013a]. However, the

order of cAMP response potency of ligands was different from the observation in the

CHO-GLP-1R cells yet agreed with the findings in other studies utilising COS-7 stably

expressing GLP-1R cell line [Jorgensen et al., 2007], with GLP-1 being the most potent

(pEC50: 12.05 ± 0.14), followed by OXM (pEC50: 7.98 ± 0.06) and lastly GCG (pEC50:

7.62 ± 0.04). This rank order potency discrepancy may be attributed to the differences

in cellular background between hamster and human species. While for GCGR, the

rank order of cAMP response potency concurred with that in CHO-GCGR recombinant

cell line, with GCG being the most potent (pEC50: 8.96 ± 0.06), followed by OXM

(pEC50: 7.26 ± 0.04) and GLP-1 (pEC50: 5.32 ± 0.11) (Fig. 3.6B, D, F and Table 3.3).

Similar to what was observed in the CHO-GCGR recombinant cell line and agreed

with the observation by Weston and colleagues in HEK293 transiently transfected with

GLP-1R cells [Weston et al., 2015], GLP-1 acted as a partial agonist at the GCGR. This

rank order of potency at the GCGR again agreed with what was observed in the same

study conducted by Jorgensen and colleagues [Jorgensen et al., 2007] in COS-7 stably

expressing GCGR cell line.

In terms of the extent of iCa2+ mobilisation, all three peptide ligands were able

to induce iCa2+ release at the GLP-1R, with GCG being the most potent (but partial)

agonist in mediating iCa2+ mobilisation (pEC50: 7.93 ± 0.14), closely followed by GLP-1
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(pEC50: 7.65 ± 0.29) and OXM (pEC50: 7.10 ± 0.26). Likewise, potent GLP-1-mediated

iCa2+ response was also reported by Li and colleagues utilising the HEK293 cells

stably expressing GLP-1R [Li et al., 2012]. Other studies have also showed that GLP-1

was able to mediate a more potent iCa2+ response than OXM in FlpIn-CHO cells

stably expressing GLP-1R [Koole et al., 2010]. However, there is no report on the

GCG-mediated iCa2+ response at the GLP-1R to date. As at GCGR, only GCG and

OXM were able to induce iCa2+ mobilisation at GCGR upon receptor activation, with

GCG being the most potent ligand (pEC50: 8.96 ± 0.26), followed by OXM (pEC50:

6.95 ± 0.17); GLP-1 did not induce any iCa2+ signalling at the GCGR. The results

obtained here differed from the report conducted by Cegla and colleagues [Cegla et al.,

2017], which utilised CHO-K1 stably expressing GCGR cells to investigate the Gaq

signalling pathway at the GCGR upon ligand activation. While Cegla and colleagues

also showed potent iCa2+ responses mediated by GCG and OXM, they observed a

linear correlation in terms of GLP-1-mediated iCa2+ response whereas here no calcium

activation induced by GLP-1 was observed. The major difference may be attributed

to the different techniques used in measuring iCa2+ release. Nonetheless, GCG and

OXM were shown to be potent partial agonists for mediating iCa2+ release at the

GCGR. However, the receptor cell surface expressions were not quantified in these

HEK293-based stable cell lines and thus variations of GLP-1R and GCGR expressions

in these two cell lines cannot be taken into account. In summary, the rank order of

cAMP and iCa2+ responses potencies are as follow. The rank order of cAMP and iCa2+

responses potencies are summarised in Table 3.4.

cAMP:

• GLP-1R:: GLP-1 > OXM > GCG; GCGR: GCG > OXM > GLP-1

iCa2+ release:

• GLP-1R: GCG > GLP-1 > OXM; GCGR: GCG > OXM
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Figure 3.6: Comparison of GLP-1R and GCGR endogenous agonists cAMP accumulation and intracel-
lular calcium responses in HEK293S-GLP-1R and HEKDCTR-GCGR cell lines. The above figure shows
the dose-response curves representing cAMP production and intracellular calcium mobilisation when
HEK293S-GLP-1R cells (Fig. A, C and E) and HEKDCTR-GCGR cells (Fig. B, D and F) were stimulated
with GLP-1, OXM and GCG. 1000 HEK293S-GLP-1R-WT and HEKDCTR-GCGR cells/well were stimulated
with ligands for 15 minutes in the absence and presence of PDE inhibitor IBMX respectively. Dose-response
curves for iCa2+ mobilisation were obtained as described in section 3.2.5. All data were normalised to the
maximum cAMP production when stimulated with 100µM forskolin or maximum intracellular calcium
response when stimulated with 10µM ionomycin. All data were means of 1 to 4 independent experiments
with duplicate results ± S.E.M (upper and lower error bars). Table 3.3 shows the pEC50 and Emax values
of ligand responses.
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Table 3.3: cAMP and intracellular calcium mobilisation potencies (pEC50) and maximal responses
(Emax) of GLP-1R and GCGR activation by their endogenous ligands.

Receptor Ligand Pathway pEC50 
a Emax 

b Span n

GLP-1R

GLP-1
cAMP 12.05±0.14 80.40±2.27 57.88±3.51 8

iCa2+ 7.65±0.29**** 44.80±4.54*** 37.63±5.04*** 4

OXM
cAMP 7.98±0.06 117.7±4.23 115.0±4.18 8

iCa2+ 7.10±0.26* 35.73±3.41* 33.59±4.24ns 3

GCG
cAMP 7.62±0.04 99.38±1.80 102.1±2.18 6

iCa2+ 7.93±0.14ns 57.60±2.49**** 62.04±5.21ns 5

GLP-1
cAMP 5.32±0.11 56.46±7.08 66.80±7.20 6

iCa2+ 6.38±1.06 0.85±0.87 1.41±0.83 2NB

GCGR OXM
cAMP 7.26±0.04 97.43±2.02 92.70±2.11 6

iCa2+ 6.95±0.17ns 20.98±1.68**** 22.68±1.98**** 3

GCG
cAMP 8.96±0.06 90.70±2.20 84.94±2.45 6

iCa2+ 8.96±0.26 72.35±5.37 66.37±8.26 2NB

Table 3.3: cAMP and intracellular calcium mobilisation maximal responses (Emax) and potencies (pEC50) of GLP-1R and GCGR
activation by their endogenous ligands.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M of n individual result sets were 
shown. 
a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin. 
Statistical significance compared between individual peptide ligand responses in cAMP and intracellular calcium mobilisation at GLP-1R or 
GCGR were determined by Student’s t-test with Welch’s correction (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, ns, non-statistically 
significant).

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin or ionomycin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared between individual peptide ligand responses in cAMP response
and intracellular calcium mobilisation at GLP-1R or GCGR were determined by Student’s t-test with
Welch’s correction (*, p<0.05; ***, p<0.001; ****, p<0.0001; ns, non-statistically significant).

Table 3.4: Summary of the rank order of cAMP potency in CHO-K1, HEK293S and HEKDCTR recom-
binant cell lines stably expressing GLP-1R, GCGR and GIPR.

Recombinant cell line Receptor of stable expression Rank order of potency of ligands in terms of 
cAMP potentiation (from high to low) 

CHO-K1

GLP-1R GLP-1 > GCG > OXM > GIP > GLP-1(9-36)NH2

GCGR GCG > OXM > GLP-1 > GLP-1(9-36)NH2 > GIP

GIPR GIP only

HEK293S GLP-1R GLP-1 > OXM > GCG

HEK∆CTR GCGR GCG > OXM > GLP-1

Table 3.4: Summary of the rank order of potency in CHO-K1, HEK293S and HEK∆CTR recombinant cell lines stably expressing GLP-1R, GCGR and GIPR.
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3.3 Characterisation of glucagon-like peptide cAMP responses

in rodent immortalised a and b cell systems

Following the pharmacological characterisation of the extent of cAMP and iCa2+

signalling responses upon receptor activation induced by various glucagon-like peptide

ligands in recombinant cell systems, the next goal was to translate the findings in

the recombinant cell systems to the physiologically relevant cell models. To do so,

two rodent glucagonoma cell lines, namely the mouse aTC1.6 cell line [Powers et al.,

1990] and hamster InR1G9 cell line [Takaki et al., 1986], were used and two rodent

insulinoma cell lines, which are the mouse MIN6-B1 cell line [Miyazaki et al., 1990]

and rat INS-1 832/3 cell lines [Hohmeier et al., 2000], were also employed to mimic

the individual a and b cell components in normal pancreatic islets. These rodent

insulinoma and glucagonoma cell lines were widely used as surrogates for isolated

mouse islets to elucidate the cellular signalling mechanism of insulin and glucagon

secretion as they were responsive to glucose [McGirr et al., 2005, Cheng et al., 2012, Liu

et al., 2018]. Furthermore, they were also known for endogenously expressing receptors

from glucagon receptor family, which could facilitate the evaluation of the interplay

among GLP-1R, GCGR and GIPR affecting insulin or glucagon secretion [Sonoda et al.,

2008, Piro et al., 2014, Sancho et al., 2017]. However, it is of particular importance to note

that these pancreatic a and b clonal cell lines contain a mixed population of pancreatic

cell types, i.e. a, b and d cells, yet these cell lines exhibit predominately insulin or

glucagon-producing nature [Poitout et al., 1996, Nakashima et al., 2009]. In spite of

the wide use of these rodent insulinoma and glucagonoma cell lines to investigate the

cellular signalling of insulin and glucagon secretion, only limited reports documented

the individual glucagon receptor family receptors and RAMPs expressions in these cell

lines. Hence, a series of RT-PCR studies were performed in an attempt to elucidate

a thorough understanding of the cellular background of these rodent immortalised

pancreatic a and b cell systems, prior to further quantification of individual glucagon-

like peptide cAMP responses.

3.3.1 GLP-1R, GCGR, GIPR and RAMPs expressions in mouse aTC1.6 and
MIN6-B1 cell lines

Semi-quantitative RT-PCR experiments were performed in order to evaluate the cellular

background of the pancreatic a cell line, aTC1.6 cells, and the b cell line, MIN6-B1
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cells, which were both of mouse origin. All expressions were relative to that of the

house-keeping gene, GAPDH, and identical reactions without the presence of reverse-

transcriptase (rt-) were also included to act as negative controls to show the absence

of contaminating genomic (g)DNA. Sets of oligonucleotide primers targeting specific

mouse gene of interests were designed and were used in these RT-PCR experiments.

In addition to quantifying the mRNA expressions of GLP-1R, GCGR and GIPR, the

expression of the class A fatty-acid binding GPCR, GPR119, was also determined as

GPR119 was postulated to play an important role in regulating insulin and glucagon

secretion through modulating GLP-1R signalling response [Winzell and Ahrén, 2007,

Flock et al., 2011, Cheng et al., 2015]. GPR119 was also shown to play a direct role in

enhancing glucagon secretion [Li et al., 2018].

The following results suggested there was a stark difference in receptor expressions

between the mouse a and b cell lines. GIPR was the highest expressing receptor among

the glucagon receptor family in both cell lines (Fig. 3.7A), yet the expression of GIPR

was higher in the aTC1.6 cell line compared to the MIN6-B1 cell line by 1.46-fold (p

< 0.05). Despite the wide debate on the presence of GLP-1R on the pancreatic a cells

[Moens et al., 1996, Heller et al., 1997, Tornehave et al., 2008, De Marinis et al., 2010],

intriguingly a small but detectable level of GLP-1R expression was detected here in

the aTC1.6 cells (Fig. 3.7A), a result that corroborated with other published reports

which also showed the presence of GLP-1R on the pancreatic a cells utilising various

techniques, such as confocal laser microscopes [Tornehave et al., 2008, Nakashima et al.,

2018] and RT-PCR [Piro et al., 2014]. However, the GLP-1R expression level in the

aTC1.6 cells was 3.15-fold lower than that in MIN6-B1 cells (p < 0.0001), which also

concurred with other reports [Moens et al., 1996, Huising et al., 2010]. Moreover, the

results here contrasted with the findings by Huising and colleagues, of which they

showed GLP-1R was more abundant than GIPR in the MIN6-B1 cells using qPCR

[Huising et al., 2010], yet here GIPR was shown to be more highly expressing than

GLP-1R in the mouse b cell line. GCGR expression was nearly double of the expression

of GLP-1R in the mouse aTC1.6, and it was the second highest receptor expression in

the pancreatic a cell line (Fig. 3.7A).

Despite the wide use of aTC1.6 and MIN6-B1 cells to elucidate the molecular mech-

anism of glucagon receptor family signalling which was also known to be modulated

by RAMPs, there were only limited studies on the characterisations of RAMPs expres-

sions in these two cell lines. The results here showed that there were no statistically

significant difference in the expression levels of RAMP1, RAMP2 and RAMP3 between
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the aTC1.6 cell line and the MIN6-B1 cell line (Fig. 3.7A). Furthermore, contrary to

what was observed in the HEK293 cell lines (Fig. 3.3), RAMP3 showed the highest

expression in both mouse cell lines, followed by RAMP2 and non-existentvery low

levels of RAMP1.

Interestingly, GPR119 was found to be highly expressing in the mouse a cell line

compared to the b cell line and that the expression of GPR119 was seemingly higher or

equal to that of GIPR in the a cell line (Fig. 3.7A). The observations reported here agreed

with the report by Whalley and colleagues [Whalley et al., 2011] yet contrasted with that

of Odori and colleagues [Odori et al., 2013], but the discrepancies might be explained by

the difference in technique employed in quantifying the mRNA expressions of GPR119.

Based on this interesting observation, further investigation into the interplay among

GLP-1R, GCGR and GPR119 was performed and would be discussed in section 3.4.1.

To summarise, the order of expressions of GLP-1R, GCGR, GIPR and RAMPs in the

a and b cell mouse models are shown below:

• aTC1.6 cells: GIPR > GCGR > GLP-1R

• MIN6-B1: GIPR > GLP-1R > GCGR

• RAMP3 > RAMP2 > RAMP1 in both cell lines
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Figure 3.7: Glucagon receptor family and RAMPs expressions determined by RT-PCR in mouse aTC1.6
and MIN6-B1 clonal cell lines. (A) shows the comparison of GLP-1R, GIPR, GCGR, RAMPs and GPR119
gene expressions in aTC1.6 cells cultured in 5mM glucose (circle) and MIN6-B1 (square) cells. All mRNA
expressions were relative to GAPDH. Data are expressed as mean ± S.E.M. from 1 to 8 individual repeats.
Statistical significance compared between the expressions of individual receptors or RAMPs in aTC1.6
and MIN6-B1 cells were determined by Student’s t-test with Welch’s correction (*, p<0.05; ****, p<0.0001).
(B) and (C) show the representative gel documentations of amplified GLP-1R, GIPR, GCGR, RAMPs
and GPR119 genes in aTC1.6 and MIN6-B1 cells respectively. * indicates product with the correct band
size. Negative controls such as samples without the addition of reverse transcriptase (rt-) were also
included. n=1 for the determination of GPR119 expression in the MIN6-B1 cell line due to the restriction
of COVID-19 lockdown.
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3.3.2 Receptors and RAMPs expressions in rat INS-1 832/3 cell lines

After the characterisation of the glucagon receptor family and RAMPs expressions in the

mouse a and b cell lines, the evaluation of mRNA expressions of incretin receptors and

RAMPs was further extended to the rat b cell model, the INS-1 832/3 cell line, which

was frequently used in the investigation of the insulin secretion cellular mechanism.

RT-PCR was again performed and oligonucleotide primers which were designed to

target gene of interests of rat species were used in the RT-PCR analysis. Identical

reactions with the absence of reverse-transcriptase (rt-) and replacing cDNA with dH2O

were also included to act as negative controls to show the absence of contaminating

gDNA.

In contrast to the RT-PCR results in the mouse b cell line, GLP-1R was found

to be the highest expressing receptor, followed by GCGR and lastly GIPR (Fig. 3.8),

suggesting the difference in receptor expressions was attributed to species variation.

Furthermore, different to the observations in the MIN6-B1 cells (Fig. 3.7A), INS-1 832/3

cells expressed RAMP2 and RAMP3 at an equal level, and did not express RAMP1, as

consistent with the findings in the MIN6-B1 cells. Having determined the differences

in receptors and RAMPs expressions between the rodent a and b cell models, the G

protein profiles of these cell systems were next determined.
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Figure 3.8: Glucagon receptor family and RAMPs expressions determined by RT-PCR in rat clonal
INS-1 832/3 cell lines. (A) shows the comparison of GLP-1R, GIPR, GCGR and RAMPs gene expressions
in rat INS-1 832/3 cell line. All expressions of genes of interests were relative to b-actin. Data are expressed
as mean ± S.E.M. from 3 individual repeats. (B) shows the representative gel documentations of the same
set of amplified genes in rat INS-1 832/3 cell line. Negative controls such as samples without the addition
of reverse transcriptase (rt-) and without addition of cDNA with replacement of RNase-free water (dH2O)
were also included. * indicate products with the correct band sizes.
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3.3.3 Characterising G protein expressions in mouse aTC1.6 and rat INS-1
832/3 cell lines

To elicit intracellular signalling, GPCRs couple with intracellular transducers such

as heterotrimeric G proteins, which are formed by the Ga, Gb and Gg subunits. Ga

subunits signal independently while the Gb and Gg subunits are heterodimers that

function as a single unit. Furthermore, as GLP-1R and GCGR are well known to

pleiotropically couple to different G proteins, namely Gai and Gaq proteins [Montrose-

rafizadeh et al., 1999, Wootten et al., 2012, Pabreja et al., 2014], it is of invaluable insight

to evaluate the G protein compositions in the mouse glucagonoma and rat insulinoma

cell models to predict the likelihood of GLP-1R and GCGR to pleiotropically couple to

G proteins other than Gas protein.

To do so, RT-PCR experiments were again performed to decipher the G protein

compositions in these two cell lines. However, some G protein, such as the Gat1 and

Gat2 protein, cannot be determined in the INS-1 832/3 cell line due to a lack of suitable

primers on the NCBI database. Likewise, Gat3 and Ga13 were not determined in the

a cell line because of the same technical reason. The G protein compositions in the

aTC1.6 cell line were normalised to two different housekeeping genes, GAPDH and

b-actin. b-actin was used in addition to GAPDH to normalise the RT-PCR results in an

attempt to compare the G protein expressions fairly with the results obtained in INS-1

832/3 cells, which was normalised to b-actin. However, due to the lockdown, I was not

able to produce further repeats to validate the results. Yet, similar profiles of G protein

compositions were observed in both sets of data in the aTC1.6 cell line (Fig. 3.9A and

C), albeit the use of different housekeeping genes.

Both a and b cell lines expressed high levels of Gas protein, verifying the ability

of the GLP-1R, GCGR and GIPR to couple with the Gas protein, further activating

adenylyl cyclase, facilitating the production of cAMP (Fig. 3.9). Interestingly, the Gai

protein, which consists of Gai1, Gai2 and Gai3 subunits, were more abundant in the a

cell line compared to that in the b cell line. Also, both cell lines expressed a high level

of Gao, Gaz and Ga11 proteins, yet the subtypes of Gao protein was not determined.

Furthermore, both cell lines expressed Gaq/11 protein, with the Gaq subunit being more

highly expressed in the a cell line. Moreover, Ga14 and Ga12 proteins were found to

be highly present in a cell line, compared to that in the b cell line. Following the

investigations of the incretin receptors, RAMPs and G protein expression profiles in the

a and b cell lines, ligand-induced cAMP responses were subsequently determined.
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Figure 3.9: G protein expressions determined by RT-PCR in aTC1.6 and INS-1 832/3 cell lines. (A) and
(C) show the G protein expressions in mouse aTC1.6 cell line cultured under low glucose (5mM) condition
while (A) are relative to the expression of GAPDH and (C) are relative to b-actin. (E) shows the G protein
expressions in rat INS-1 832/3 cell line under 11mM glucose condition respectively and the expressions of
genes of interests are relative to b-actin. # denotes G proteins that are undeterminable because of the lack
of specific primers. Data are expressed as mean ± S.E.M. from 1-3 individual repeats. Preliminary results
of G protein expression profile of the aTC1.6 cells are presented here due to COVID-19 restriction. (B),
(D) and (F) show the corresponding representative gel documentations of amplified G protein genes in
mouse aTC1.6 and INS-1 832/3 cell lines. Negative controls (i.e. samples without the addition of reverse
transcriptase, (-RT) were also shown). * indicate products with the correct band sizes.
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3.3.4 Characterising glucagon-like peptide ligand cAMP responses in ro-
dent insulinoma and glucagonoma cell models

Following the evaluation of the cellular background of various rodent pancreatic cell

models, the cAMP responses mediated by a range of glucagon-like peptide agonists

in the pancreatic a (via the use of mouse aTC1.6 and hamster InR1G9 cell lines) and

b (via the use of mouse MIN6-B1 and rat INS-1 832/3 cell lines) cell models which

expressed endogenous incretin receptors (see Section 3.3.1), except for the InR1G9 cell

line, which did not express endogenous GLP-1R [Fehmann et al., 1999, Piro et al., 2014]

were characterised. TR-FRET-based cAMP assays were again performed to determine

the cAMP accumulation when these cell lines were stimulated with agonists of interest

which were GLP-1, GLP-1(9-36)NH2, OXM, GCG and GIP. IBMX, which is a pan-PDE

inhibitor, was used in these assays to prevent the breakdown of cAMP.

Similar to the results observed in the recombinant cell models stably expressing

GLP-1R, GCGR and GIPR, GLP-1, OXM and GCG showed potent cAMP responses

in both rodent b cell lines (pEC50 values were 10.99 ± 0.19 for GLP-1, 8.27 ± 0.23 for

OXM and 7.76 ± 0.11 for GCG in the MIN6-B1 cell line while pEC50 values 9.57 ± 0.17

for GLP-1, 7.02 ± 0.19 for OXM and 6.85 ± 0.16 for GCG in the INS-1 832/3 cell line)

(Fig. 3.10A-B and Table 3.5); the agonist potencies agreed with the observed values

in published reports [Naylor et al., 2016]. These observations could be attributed to

the high expression of GLP-1R and GCGR in the b cell systems, as it has been shown

in Fig. 3.7 and Fig. 3.8, as well as the highly abundant Gas protein present in the

rat INS-1 832/3 cell line (Fig. 3.9), as well as the fact that GCG can act at GLP-1R to

mediate cAMP responses (Fig. 3.6). Furthermore, the potency of GLP-1 was expectedly

lower in the rat b cell model compared to that in the mouse b cell model, as it has been

shown that applying human GLP-1 agonist at the rat GLP-1R resulted in a less potent

GLP-1 cAMP response, presumably due to the interspecies variation of the GLP-1R

[Knudsen et al., 2012]. Hence, this finding could also explain the apparent decrease

in GCG and OXM potencies in the rat b cell model compared to the mouse b cell line.

GLP-1(9-36)NH2 on the other hand did not appear to mediate any cAMP responses in

the MIN6-B1 cell line yet it showed partial agonism on the INS-1 832/3 cell line (Emax

values of GLP-1(9-36)NH2 were 8.18 ± 4.58 and 27.27 ± 6.47 in the MIN6-B1 and INS-1

832/3 cell lines respectively) (Fig. 3.10A-B and Table 3.5).

GIP was the second most potent agonist in both rodent b cell lines (Fig. 3.10A-B and

Table 3.5). Yet it was less efficacious in the MIN6-B1 cells compared to the INS-1 832/3
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cells or the CHO-GIPR recombinant cell systems (Emax of GIP were 28.74 ± 6.95, 61.29 ±
6.57, 69.72 ± 2.61 in the systems expressing mouse, rat and human GIPR respectively).

Furthermore, the potencies of GIP in human and mouse GIPR were largely similar yet

the potency of GIP in rat GIPR was the lowest among the three species (pEC50 values

of human GIP were 10.70 ± 0.77, 7.92 ± 0.16, 9.64 ± 0.11 when applied to in mouse, rat

and human GIPRs respectively). Similarly, such discrepancies in potency and efficacy

could again be explained by interspecies variation as here human GIP was applied to

the mouse GIPR, which Sparre-Ulrich and colleagues also demonstrated an interspecies

variation exist among the GIP/GIPR system [Sparre-Ulrich et al., 2016].

Contrary to the well characterised cAMP responses mediated by the glucagon-

like peptides in the rodent insulinoma cell lines, only a few studies which evaluated

the cAMP accumulation responses mediated by the incretin ligands in pancreatic

a cell models have been published to date. Here in the mouse aTC1.6 cells, GLP-

1 showed a concentration-dependent cAMP production, which concurred with the

studies which showed an increment of concentration-dependent GLP-1-induced cAMP

levels measured by ELISA analysis [Piro et al., 2014]. GLP-1 showed a weaker cAMP

response compared to GIP, GCG and OXM, with GCG being the most potent ligand,

followed by GIP and OXM (pEC50 values were 7.66 ± 0.34 for GCG, 7.54 ± 0.29 for

GIP, 7.20 ± 0.51 for OXM and 6.85 ± 0.22 for GLP-1) (Fig. 3.10C and Table 3.6). In

fact, similar observations that GIP being more stimulatory than GLP-1 were noted in

other studies [Moens et al., 1996]. Furthermore, a weak cAMP response exerted by

GLP-1(9-36)NH2 was also detected (pEC50 of which was 5.77 ± 0.66) (Fig. 3.10C and

Table 3.6), which suggested that the GLP-1 metabolite may also play a role in pancreatic

a cells signalling.

Similarly, the hamster a cell line InR1G9 demonstrated a rank order of potency

analogous to that of the mouse aTC1.6 cell line, yet GIP was shown to be the most potent

endogenous ligand, followed by GLP-1, GCG, OXM and lastly GLP-1(9-36)NH2 (pEC50

values were 7.59 ± 0.24 for GIP, 7.10 ± 0.31 for GLP-1, 7.03 ± 0.24 for GCG, 6.45 ± 0.33

for OXM and 6.30 ± 0.29 for GLP-1(9-36)NH2) (Fig. 3.10D and Table 3.6). Interestingly,

although several papers suggested there was no endogenous GLP-1R present in the

InR1G9 cell line [Fehmann et al., 1994, Piro et al., 2014], GLP-1 and GLP-1(9-36)NH2

were able to stimulate the hamster a cell model, producing cAMP responses. This

observation thus poses further question of how GLP-1 and GLP-1(9-36)NH2 mediate

glucagonostatic actions in the absence of GLP-1R.

In essence, the rank order of agonist potencies in the b cell lines were largely similar

114
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to those in the recombinant cell models (Table 3.7). More importantly, GLP-1 and

GLP-1(9-36)NH2 were able to produce cAMP responses through GCGR in the apparent

absence of GLP-1R, as illustrated in the cAMP signalling observed in the hamster

InR1G9 cell line. In the next section the factors that influence cAMP signalling in these

physiologically relevant cell lines will be investigated.
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Figure 3.7: Comparison of glucagon receptor family ligand responses in rodent cell lines endogenously expressing GLP-1R, GCGR and GIPR. The above figure shows the cAMP
production dose-response curves when ! cell lines: (A) mouse MIN6-B1 and (B) rat INS-1 832/3 and " cell lines: C) mouse "TC1.6 and (D) hamster InR1G9 were stimulated with GLP-1, OXM, GCG,
GIP and GLP-1(9-36)NH2. 1000 MIN6-B1 and INS-1 832/3 cells/well and 4000 "TC1.6 and InR1G9 cells/well were stimulated with various ligands in the presence of PDE inhibitor IBMX. For
measuring GLP-1(9-36)NH2 ligand response, 2000 cells/well were stimulated with ligand for 60 mins. All data were normalised to the maximum cAMP production when stimulated with 100#M
forskolin and were means of 2-14 independent experiments with mean ± S.E.M (upper and lower error bars). Table X and C show the Emax and pEC50 values of ligand responses in ! and " cell lines
respectively.

Figure 3.10: Comparison of glucagon receptor family ligand responses in rodent cell lines endoge-
nously expressing GLP-1R, GCGR and GIPR. The above figure shows the cAMP production dose-
response curves when b cell lines: (A) mouse MIN6-B1 and (B) rat INS-1 832/3 and a cell lines: (C)
mouse aTC1.6 cultured in low glucose (5mM) and (D) hamster InR1G9 were stimulated with GLP-1, OXM,
GCG, GIP and GLP-1(9-36)NH2. 1000 MIN6-B1 and INS-1 832/3 cells/well and 4000 aTC1.6 and InR1G9
cells/well were stimulated with various ligands in the presence of PDE inhibitor IBMX. For measuring
GLP-1(9-36)NH2 ligand response, 2000 cells/well of MIN6-B1 and INS-1 832/3 cells were stimulated with
the ligand for 60 mins. All data were normalised to the maximum cAMP production when stimulated
with 100µM forskolin and were means of 1 to 7 independent experiments with duplicates ± S.E.M (upper
error bars). Table 3.5 and 3.6 show the pEC50 and Emax values of ligand responses in a and b cell lines
respectively.
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Table 3.5: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of GLP-1R, GIPR and
GCGR endogenous ligands in MIN6-B1 and INS-1 832/3 cell lines.

Cell line Ligand pEC50 
a Emax 

b Span n

MIN6-B1

GLP-1 10.99±0.19 74.38±2.77 63.19±6.99 4

GLP-1(9-36)NH2 6.31±1.81 8.18±4.58 5.317±5.56 2NB

OXM 8.27±0.23 76.76±2.54 58.48±3.09 4

GCG 7.76±0.11 77.27±4.05 66.73±4.30 4

GIP 10.70±0.77 28.74±6.95 20.70±7.44 2NB

INS-1 832/3

GLP-1 9.57±0.17 47.24±2.58 41.56±3.67 4

GLP-1(9-36)NH2 4.60±0.49 27.27±6.47 17.42±6.14 2NB

OXM 7.02±0.19 55.92±5.13 47.53±5.11 4

GCG 6.85±0.16 54.02±3.66 46.13±4.03 4

GIP 7.92±0.16 61.29±6.57 53.66±6.44 4

Table 3.4: cAMP accumulation maximal responses (Emax) and potencies (pEC50) of GLP-1R, GIPR and GCGR endogenous ligands in MIN6-
B1 and INS-1 832/3 cell lines.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M of n individual result sets were shown. 
a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin. 
Statistical significance compared between individual peptide ligand cAMP accumulation responses in MIN6-B1 and INS-1 832/3 cells were 
determined by Student’s t-test with Welch’s correction (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, ns, non-statistically significant).

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.
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Table 3.6: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of GLP-1R, GIPR and
GCGR endogenous ligands in aTC1.6 and InR1G9 cell lines.Table 3.5: cAMP accumulation maximal responses (Emax) and potencies (pEC50) of GLP-1R, GIPR and GCGR endogenous ligands in

!TC1.6 and InR1G9 cell lines.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M of n individual result sets were shown. 
a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin. 
Statistical significance compared between individual peptide ligand cAMP accumulation responses in "TC1.6 and InR1G9 cells were determined by 
Student’s t-test with Welch’s correction (*, p<0.05; **, p<0.01; ns, non-statistically significant).

Cell line Ligand pEC50 
a Emax 

b Span n

!TC1.6 

GLP-1 6.85±0.22 27.18±1.56 20.30±1.81 12

GLP-1(9-36)NH2 5.77±0.66 18.23±3.47 12.74±3.67 6

OXM 7.20±0.51 16.57±1.99 10.55±2.26 8

GCG 7.66±0.34 21.55±1.46 12.69±1.80 14

GIP 7.54±0.29 28.32±1.52 17.51±1.85 12

InR1G9

GLP-1 7.10±0.31ns 16.82±0.31* 10.98±1.62ns 12

GLP-1(9-36)NH2 6.30±0.29 37.03±0.29 33.22±4.97 2NB

OXM 6.45±0.33ns 19.51±0.33ns 14.32±2.23ns 10

GCG 7.03±0.24ns 22.49±0.24ns 16.72±1.82ns 12

GIP 7.59±0.24ns 30.86±0.24ns 22.88±2.27ns 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared between individual peptide ligand cAMP responses in aTC1.6 and
InR1G9 cell lines were determined by Student’s t-test with Welch’s correction (ns, non-statistically
significant).

Table 3.7: Summary of the rank order of potency in the b cell lines, MIN6-B1 and INS-1 832/3 cell lines
and the a cell lines, aTC1.6 and InR1G9 cell lines.

Cell 
lineage Cell line Receptor expression order 

(From high to low)
RAMP expression order

(From high to low)
Rank order of potency of ligands in terms of cAMP 

potentiation (from high to low) 

!

MIN6-B1 GIPR > GLP-1R > GCGR

RAMP3 > RAMP2 > RAMP1

GLP-1 > GIP > OXM > GCG > GLP-1(9-36)NH2

INS-1 832/3 GLP-1R > GCGR > GIPR

"

"TC1.6 GIPR > GCGR > GLP-1R GCG > GIP > GLP-1 > OXM > GLP-1(9-36)NH2

InR1G9 - - GIP > GLP-1 > GCG > OXM > GLP-1(9-36)NH2

Table 3.6: Summary of the rank order of potency in the beta cell lines, MIN6-B1 and INS-1 832/3 and the alpha cell lines, aTC1.6 and InR1G9.
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3.4 Exploring the factors affecting cAMP signalling in pancre-

atic a cells

Following the evaluation of cAMP signalling responses mediated by glucagon-like

peptide ligands in physiologically relevant rodent pancreatic clonal cell models, the

factors that influence cAMP signalling were further explored. Four factors which were

postulated to affect a cells signalling were investigated, which were 1) the interplay

of GPR119 with GLP-1R and GCGR, 2) the cross-ligand-receptor sensitivity between

GLP-1R and GCGR, 3) the influence of RAMPs at the GCGR and lastly 4) the glycaemic

conditions in which the pancreatic models were cultured in. Validation assays were

conducted alongside the pancreatic b cells model in order to highlight the contrasting

difference between the a and b cells signalling when these factors were present. First

the influence of GPR119 on GLP-1R and GCGR activation was considered.

3.4.1 Investigating the interplay of GLP-1R, GCGR and GPR119

The previous results showed that GPR119, which is a class A GPCR that has only been

recently deorphansied [Overton et al., 2006], was highly expressed in the mouse aTC1.6

cells (Fig. 3.7). Given the recent evidence suggesting GPR119 played an important role

in modulating insulin and glucagon secretion [Flock et al., 2011, Li et al., 2018], and that

GPR119 agonists, namely the endocannabinoid-like lipids oleoylethanolamide (OEA)

and 2-oleoylglycerol (2-OG), enhanced GLP-1 cAMP signalling in the mouse RINm5F b

cell line [Cheng et al., 2015, Brown et al., 2018], it is of particular interest to see if the

GPR119 agonists could also activate GLP-1R and GCGR, thereby contributing to the

modulation of glucagon release. Furthermore, the extent of the close GLP-1 analogue,

Ex-4, to act as a GCGR partial agonist, thereby contributing to the glucagonostatic

action in the pancreatic a cells, was also evaluated.

Transient transfection was performed using of FuGENE HD transfection reagent to

express human GPR119, GLP-1R and GCGR in the HEKDCTR cells. 48-hour transfection

was allowed prior to cAMP assays. Mock-transfected HEKDCTR cells were also

included to act as a negative control as the signalling at null-receptor background. In

these series of experiments, both endogenous and synthetic small molecule agonists

of GPR119, which were OEA [Overton et al., 2006] and AR231453 [Semple et al.,

2008] respectively, were tested. HTRF-based cAMP accumulation assays were again

performed in the presence of PDE inhibitor rolipram.
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3.4. Exploring the factors affecting cAMP signalling in pancreatic a cells

Here GLP-1, GCG and the two GPR119 agonists, OEA and AR231453, were able to

activate their cognate receptors but not in mock-transfected HEKDCTR cells, proving

the successful transfections of GLP-1R, GCGR and GPR119 into the HEKDCTR cells (Fig.

3.11 and Table 3.8). Notably, very high cAMP responses were induced by GLP-1 and

its closely related full agonist, Ex-4, at the GLP-1R; their basal signals were massively

increased despite the application of low agonist concentrations (i.e. below nanomolar

range). It was due to the inclusion of a PDE inhibitor as well as the prolonged period

of stimulation of 30 mins compared to 15 mins stimulation used in previous studies.

However, the inclusion of a PDE inhibitor was required to enable a fair comparison of

the signalling responses to other ligands. Similar to the cAMP responses in recombinant

cell lines stably expressing GCGR, GCG was also able to act as a full agonist at the

GCGR with a potent response (pEC50: 9.06 ± 0.09). While OEA and AR231453 were able

to activate GPR119, both agonists were less potent in here (pEC50 values were 5.64 ±
0.15 and 5.90 ± 0.31 respectively) compared to the published reports [Dale et al., 2015].

It may be attributed to the fact that HEKDCTR cells which lack RAMPs expression

[Bailey et al., 2019] were used in these series of experiments, as GPR119 has been shown

to have a certain degree of interaction with RAMP2 (personal communication with Dr

Matthew Harris), which may have contributed to the apparent difference in potencies

in the GPR119 agonists.

Having determined the successful transfections of GLP-1R, GCGR and GPR119

in the HEKDCTR cells, a range of GLP-1R, GCGR and GPR119 agonists, which were

GLP-1, GLP-1(9-36)NH2, GCG, Ex-4, AR231453 and OEA, were next applied onto the

transiently transfected HEKDCTR cells expressing different receptors. Again, GLP-1

and GCG partial agonisms were detected at the GCGR and GLP-1R respectively, as

shown in Fig. 3.2 and 3.6. The GLP-1 metabolite, GLP-1(9-36)NH2, was also able to

act as a partial agonist at both GLP-1R and GCGR (pEC50 values were 6.01 ± 0.13 and

5.39 ± 0.16 at the GLP-1R and GCGR respectively) as shown previously in the CHO-K1

recombinant cell systems (Fig. 3.2). However, the efficacies of the GLP-1(9-36)NH2 at

both GLP-1R and GCGR were higher than that in CHO-K1 recombinant stable cell lines,

presumably due to the human cell composition that the receptors were expressed in.

Ex-4 did not activate the GCGR, as shown in the lack of difference between the potency

and efficacy between the Ex-4 dose responses at the GCGR and the mock-transfected

HEKDCTR cells, illustrating Ex-4 was not an agonist at the GCGR. Importantly, here

GPR119 agonists, when applied at the GLP-1R or GCGR, did not lead to receptor

activation and vice versa, glucagon-like peptide agonists did not activate GPR119,
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Chapter 3. Evaluation of the signalling responses of glucagon-like peptides

implying there was no cross-receptor sensitivity among GPR119, GLP-1R and GCGR

ligands, despite the high expression of GPR119 at the a cells.

Having illustrated that GPR119 did not play a significant role in modulating cAMP

signalling pathways at the GLP-1R and GCGR as widely postulated, the individual

GLP-1R and GCGR contribution towards cAMP signalling in rodent pancreatic a and b

cell models were to be deciphered.
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Figure 3.11: GPR119, GLP-1R and GCGR are activated upon application of their cognate ligands only.
The above graphs demonstrate that (A) GLP-1R and (B) GCGR are not activated by the GPR119 agonists.
The elevation of basal responses of both GLP-1 and Ex-4 were due to the inclusion of PDE inhibitor,
IBMX, in the assay and that prolonged period of incubation were adopted. Similarly, the application of
glucagon-like peptides do not result in cAMP responses on (C) GPR119. (D) Untransfected HEKDCTR
cells were used as a negative control for the null receptor background. 2000 cells/well of HEKDCTR
transiently transfected with GLP-1R, GCGR, GPR119 as well as pcDNA3.1 were used in the cAMP assays
in the presence of rolipram. The cells were stimulated with ligands for 30 mins. Table 3.8 shows the
pEC50 and Emax values of individual ligand responses. All data were normalised to the maximum cAMP
production when stimulated with 100µM forskolin and were mean of at least 3 independent experiments
with duplicates ± S.E.M (upper and lower error bars).
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3.4. Exploring the factors affecting cAMP signalling in pancreatic a cells

Table 3.8: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of glucagon-like pep-
tide ligands and GRP119 agonists at GLP-1R, GCGR and GPR119.

Receptor Ligand pEC50 
a Emax 

b Span n

GLP-1R

GLP-1 11.13±0.25* 76.54±1.50**** 27.62±3.80 8

GLP-1(9-36)NH2 6.01±0.13ns 48.00±2.62* 47.40±2.90 8

GCG 9.32±10.16*** 74.68±2.52**** 63.20±4.01 8

Ex-4 11.05±0.68**** 71.21±2.61**** 19.15±6.00 8

AR231453 5.09±0.28ns 23.22±3.03ns 19.16±3.10 8

Oleoylethanolamide - - - -

GCGR

GLP-1 6.76±0.30ns 23.38±3.43ns 23.14±3.60 8

GLP-1(9-36)NH2 5.39±0.16ns 60.32±4.09** 52.91±4.23 8

GCG 9.06±0.09**** 91.04±3.00**** 79.00±3.38 8

Ex-4 6.70±0.37ns 20.66±2.49ns 15.76±2.69 8

AR231453 6.63±0.29ns 23.97±1.73ns 17.06±2.06 8

Oleoylethanolamide 5.20±0.25ns 28.21±2.67ns 18.80±2.72 6

GPR119

GLP-1 7.03±0.27ns 23.70±2.54ns 22.12±2.85 8

GLP-1(9-36)NH2 5.45±0.30ns 34.52±3.62ns 26.82±3.77 8

GCG 7.43±0.35ns 18.61±1.98ns 16.79±2.39 8

Ex-4 6.98±0.31ns 22.15±2.55ns 19.42±2.87 8

AR231453 5.90±0.31ns 46.79±2.98** 22.67±3.38 8

Oleoylethanolamide 5.64±0.15ns 36.15±2.29ns 36.27±2.47 6

Mock 
transfection

GLP-1 6.74±0.39 15.44±2.31ns 13.68±2.49 8

GLP-1(9-36)NH2 5.35±0.22 29.42±2.79 26.76±2.88 8

GCG 6.87±0.31 20.84±2.04 15.26±2.24 8

Ex-4 6.32±0.30 20.33±2.48 16.50±2.55 8

AR231453 5.57±0.31 28.70±2.85 20.75±2.99 8

Oleoylethanolamide 5.30±0.36 29.68±3.66 23.60±3.77 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared between individual peptide ligand cAMP responses in HEKDCTR
transiently transfected with GLP-1R, GCGR, GPR119 or pcDNA3.1 were determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons (*, p<0.05; **, p<0.01; ***, p<0.001;****,
p<0.0001, ns, non-statistically significant).
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3.4.2 Characterising the effect of GLP-1R and GCGR antagonism on the
signalling properties of GLP-1 and GCG

3.4.2.1 Applying GLP-1R and GCGR antagonists in recombinant cell lines stably
expressing GLP-1R or GCGR

Having excluded the influence of GPR119 on the modulation of GLP-1R and GCGR

effect towards glucagon secretion, the individual GLP-1R and GCGR contributions

towards cAMP activation in the pancreatic a cells were to be dissected. To achieve this

goal, GLP-1R specific peptide antagonist, Ex-9 [Raufman et al., 1992] and GCGR specific

small molecule antagonist, L-168,049 [Cascieri et al., 1999] were utilised. Cells were first

pre-treated with the antagonist under investigation 30 mins prior to agonist stimulation

for 15 mins. The antagonist was not washed out and remained in the assay for the entire

duration of the cAMP measurements.The PDE inhibitor, namely rolipram, was included

in the cAMP assays to prevent the breakdown of cAMP produced. Before applying the

antagonists into rodent pancreatic clonal cell lines, pharmacological characterisation

of the GLP-1R and GCGR specific antagonists in CHO-GLP-1R and HEKDCTR-GCGR

recombinant cell lines were first performed and reported as follows.

As expected, Ex-9 exhibited potent antagonism on the GLP-1-mediated cAMP

responses at the GLP-1R in a dose-dependent manner in CHO-GLP-1R cells (Fig. 3.12

and Table 3.9) (pEC50 value of GLP-1-mediated cAMP responses decreased from 9.46 ±
0.05 to 7.22 ± 0.05, 7.46 ± 0.11 and 7.87 ± 0.12 when 1x10�5M, 1x10�6M, and 1x10�7M

of Ex-9 were applied respectively, all p < 0.0001). Furthermore, Ex-9 also behaved as

a competitive antagonist, as the efficacies of GLP-1 did not change in the presence

of various concentrations of Ex-9, which conceded with the observation by Raufman

and colleagues, who first reported on the discovery of Ex-9 as a GLP-1R antagonist

[Raufman et al., 1992]. Also, stimulating the cells with Ex-9 alone did not result in any

cAMP response at the GLP-1R, further illustrating its role as an antagonist.

Likewise, L-168,049 was able to reduce the potencies of the cAMP responses medi-

ated by both cognate GCGR full agonists, GCG and OXM, in a dose-dependent manner

at the HEKDCTR-GCGR cells (the pEC50 values of GCG decreased from 8.96 ± 0.06

to 7.99 ± 0.06 and 8.31 ± 0.09 when 1x10�6M and 1x10�7M of L-168,049 were applied

respectively, p < 0.0001 while the pEC50 values of OXM decreased from 7.26 ± 0.04 to

6.50 ± 0.08 and 6.58 ± 0.07 when 1x10�6M and 1x10�7M of L-168,049 were applied

respectively, p < 0.001) (Fig. 3.13 and Table 3.10).

As previously established in Fig. 3.2 that GLP-1 and GLP-1(9-36)NH2 act as GCGR
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3.4. Exploring the factors affecting cAMP signalling in pancreatic a cells

partial agonists, the extent of partial agonism of these two peptide agonists in the pres-

ence of GCGR antagonists were next measured, therefore further providing evidence

for the binding of these two ligands at the GCGR. Here when L-168,049 was applied

together with either GLP-1 or GLP-1(9-36)NH2, there were reductions in efficacies of

the cAMP responses mediated by GLP-1 (Emax of GLP-1 decreased from 56.46 ± 7.08 to

28.05 ± 2.42 when 1x10�6M L-168,049 was applied, p < 0.01) (Fig. 3.13 and Table 3.10).

More strikingly, the potency of GLP-1(9-36)NH2-mediated cAMP response decreased

from 5.36 ± 0.09 to 4.41 ± 0.16 (p < 0.05), further implying GLP-1(9-36)NH2 was able

to activate the GCGR by binding to the receptor and that the application of the GCGR

antagonist competed with its binding site, thereby lowering the potency of GLP-1(9-

36)NH2. Furthermore, consistent with the results in Section 3.4.1, Ex-4, even though it

is a close analogue of GLP-1, could not activate GCGR, and therefore, the application of

L-168,049 did not influence Ex-4 action at the GCGR. Having characterised the extent

of antagonism using GLP-1R and GCGR specific antagonists, the evaluation of GLP-1R

and GCGR individual contributions towards cAMP signalling at the physiological

rodent clonal cell models were performed next.
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Figure 3.12: Effect of GLP-1R peptide antagonist Ex-9 on cAMP accumulation responses mediated by
GLP-1. Ex-9 was pre-incubated with CHO-GLP-1R cells 30 mins before stimulated with GLP-1. Ex-9
was able to dose-dependently antagonise the cAMP responses mediated by GLP-1. 1000 cells/well were
stimulated with ligands for 15 mins in the presence of rolipram before cAMP accumulation measurement.
All data were normalised to the maximum cAMP production when stimulated with 100µM forskolin and
were at least 2 independent experiments in duplicates with mean ± S.E.M (upper and lower error bars).
Table 3.9 shows the pEC50 and Emax values of individual ligand responses.
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Figure 3.13: Effect of GCGR small molecule antagonist L-168,049 in cAMP accumulation responses of
GCG, OXM, GLP-1, GLP-1(9-36)NH2 and Ex-4 at GCGR. L-168,049 was pre-incubated with HEKDCTR
stably expressing GCGR cells 30 mins before stimulated with various glucagon-like peptide ligands.
L-168,049 was able to antagonise the cAMP responses mediated by the known GCGR agonists GCG and
OXM. The efficacies of GLP-1 and GLP-1(9-36)NH2 were reduced respectively in the presence of the GCGR
antagonist. Ex-4 was not able to mediate cAMP response at GCGR, indicating it is not an agonist of the
receptor. 1000 cells per well were stimulated with ligands for 15 mins in the presence of rolipram before
cAMP accumulation measurement. All data were normalised to the maximum cAMP production when
stimulated with 100µM forskolin and were at least 3 to 7 independent experiments in duplicates with
mean ± S.E.M (upper and lower error bars). Table 3.10 shows the pEC50 and Emax values of individual
ligand responses.
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Table 3.9: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of GLP-1 cAMP re-
sponses in the presence of GLP-1R peptide antagonist Ex-9.

Ligand + [Ex-9] (M) pEC50 
a Emax 

b Span n

GLP-1

- 9.46±0.05 93.14±1.95 92.09±2.18 10

1x10-5 7.22±0.05 85.89±2.12 88.06±2.22 4

1x10-6 7.46±0.11 85.58±3.88 85.28±4.09 4

1x10-7 7.87±0.12 84.00±4.22 84.07±4.43 4

Ex-9 - 8.38±0.40 14.31±1.60 10.38±1.80 4

Table 3.6: cAMP accumulation maximal responses (Emax) and potencies (pEC50) of GLP-1 cAMP responses in the presence of GLP-1R
peptide antagonist Ex-9.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M of n individual result sets were shown. 
a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin. 
Statistical significance compared between individual peptide ligand cAMP accumulation responses in low and high glucose concentration culture 
conditions were determined by Student’s t-test with Welch’s correction ****, p<0.0001; ns, non-statistically significant).

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
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Table 3.10: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of various glucagon-
like peptide cAMP responses in the presence of GCGR small molecule antagonist L-168,049.

Ligand + [L-168,049] (M) pEC50 
a Emax 

b Span n

GCG

- 8.96±0.06 92.40±1.89 86.83±2.10 14

1x10-6 7.99±0.06**** 90.59±2.84 83.01±2.89 10

1x10-7 8.31±0.09**** 88.46±3.81 81.93±3.93 10

OXM

- 7.26±0.04 97.41±1.93 92.75±1.98 6

1x10-6 6.50±0.08*** 103.67±5.43 93.40±5.32 6

1x10-7 6.58±0.07*** 106.68±5.07 100.00±4.98 6

GLP-1

- 5.32±0.11 56.46±7.08 75.72±6.93 10

1x10-6 6.12±0.19*** 28.05±2.42** 23.34±2.48 10

1x10-7 5.37±0.24 46.85±12.15ns 64.46±11.89 10

GLP-1(9-36)NH2

- 5.36±0.09 74.93±3.08 33.00±1.82 10

1x10-6 4.41±0.16* 85.22±9.70ns 20.76±3.07 6

Ex-4

- 7.19±0.22 17.76±1.17 14.38±1.33 10

1x10-6 6.99±0.19ns 21.78±1.35 16.75±1.50 10

1x10-7 7.03±0.33ns 18.64±2.29 16.78±2.56 10

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared between individual peptide ligand cAMP accumulation responses
in the presence of various concentrations of L-168,049 were determined by one-way ANOVA with
post-hoc Dunnett’s multiple comparisons (*,p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, ns, non-
statistically significant)

126



3.4. Exploring the factors affecting cAMP signalling in pancreatic a cells

3.4.2.2 Applying GLP-1R and GCGR antagonists in rat insulinoma cell line and
hamster glucagonoma cell line

After the evaluation of the GCGR and GLP-1R antagonists in recombinant cell systems,

Ex-9 and L-168,049 were next applied in the rat INS-1 832/3 cell line, in an attempt to

decipher the individual cAMP agonism of GLP-1 and GCG at the GLP-1R and GCGR,

which were expressed endogenously in the rat b cell line. Again, the same HTRF-based

cAMP assays were used as performed in previous sections, with the INS-1 832/3 cells

pre-treated with antagonists for 30 minutes before stimulating with agonists for 30

mins. A pan-PDE inhibitor, IBMX, was included to prevent the breakdown of cAMP

produced.

Similar to the results in the recombinant cell systems, Ex-9 and L-168,049 did not

have any antagonistic effect when applied on their own in the rat insulinoma cells. The

results here concurred with the observations by Chepurny and colleagues that Ex-9 did

not behave as an inverse agonist at the rat GLP-1R [Chepurny et al., 2019]. Expectedly,

by stimulating INS-1 832/3 cells with Ex-9 together with GLP-1, Ex-9 blocked the

agonism of GLP-1 at the GLP-1R, with its potency decreased from 8.68 ± 0.12 to 8.15 ±
0.29 in the presence of 1x10�7M Ex-9, while the efficacy decreased from 48.62 ± 3.29

to 37.09 ± 5.22 (Fig. 3.14A and Table 3.11). Yet, GLP-1 agonism was not completely

blocked by Ex-9, presumably due to the relatively low concentration of antagonist used

in the assay. On the contrary to the apparent antagonism exhibited by Ex-9, incubating

the insulinoma cells with L-168,049 did not affect GLP-1 signalling, which implied

that GLP-1 mediates its cAMP response primarily through GLP-1R. The results here

also corroborated with the findings by Chepurny and colleagues where they observed

there was a lack of antagonism mediated by the GCGR specific peptide antagonist,

des-His1-Glu9-Glucagon on GLP-1 signalling at the INS-1 832/3 cell line with the use

of a real time FRET-based kinetic assays to measure cAMP production across time

[Chepurny et al., 2019].

Interestingly, both Ex-9 and L-168,049 were able to antagonise GCG agonism at the

rat insulinoma cell line (pEC50 value of GCG decreased from 7.32 ± 0.26 to 6.67 ±
0.33 in the presence of Ex-9 and to 7.12 ± 0.51 in the presence of L-168,049) (Fig. 3.14).

However both antagonists when applied alone could not block the GCG-mediated

cAMP responses completely, presumably due to the dual agonistic properties of GCG,

of which compensatory cAMP activation can be mediated via the activation of either

GLP-1R or GCGR that was not blocked by the antagonist, as well as the relatively low
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concentration of antagonists applied to the cells. The results here also agreed with the

observations by Chepurney and colleagues, which they also showed the residual action

of GCG in the INS-1 832/3 cells when GCGR was blocked by des-His1-Glu9-Glucagon.

They also showed further evidence that GCG agonism was completely eliminated when

both des-His1-Glu9-Glucagon and Ex-9 were applied together in the presence of GCG

[Chepurny et al., 2019].

Having evaluated the extent of GLP-1 and GCG agonism at the insulinoma cell

line, GLP-1R and GCGR antagonists were then applied to the mouse and hamster

glucagonoma cells in order to identify any potential difference in GLP-1R and GCGR

signalling. Given that the signalling responses at the a cell lines were much weaker than

that in the b cell line, it was proven to be technically challenging to characterise GLP-1

and GCG-mediated cAMP responses in the presence of antagonists (Fig. 3.14 and Table

3.11). Further optimisation in measuring cAMP responses upon co-stimulation with

antagonists are therefore needed.
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Figure 3.14: Effect of GCGR small molecule antagonist L-168,049 and GLP-1R peptide antagonist Ex-9
on cAMP accumulation responses of GLP-1 and GCG in INS-1 832/3 cells. L-168,049 and Ex-9 were
pre-incubated respectively with INS-1 832/3 cells 30 mins before stimulating with GLP-1 and GCG. 1000
cells/well were stimulated with ligands for 30 mins in the presence of IBMX before cAMP accumulation
measurement. All data were normalised to the maximum cAMP production when stimulated with 100µM
forskolin and were means of one independent experiment in duplicates with ± S.E.M (upper and lower
error bars).
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Table 3.11: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of GLP-1 and GCG
in the presence of GLP-1R peptide antagonist Ex-9 and GCGR small molecule antagonist L-168,049 in
INS-1 832/3 cell line.

Ligand + Inhibitor (M) pEC50 
a Emax 

b Span n

GLP-1

- 8.68±0.12 48.62±3.29 40.72±3.52 2NB

Ex-9 (1x10-7M) 8.15±0.29 37.09±5.22 33.48±5.34 2NB

L-168,049 (1x10-7M) 8.87±0.21 48.21±4.07 45.16±4.47 2NB

GCG

- 7.32±0.26 46.19±4.33 35.02±4.59 2NB

Ex-9 (1x10-7M) 6.67±0.33 41.88±5.26 36.10±5.61 2NB

L-168,049 (1x10-7M) 7.12±0.51 44.18±7.89 37.93±8.70 2NB

Ex-9

-

6.33±0.58 21.43±5.41 19.08±5.57 2NB

L-168,049 3.37±1.34 18.67±2.42 18.32±2.48 2NB

Table 3.8: cAMP accumulation maximal responses (Emax) and potencies (pEC50) of GLP-1 and GCG in the presence of GLP-1R peptide

antagonist Ex-9 and GCGR small molecule antagonist L-168,049 in INS-1 832/3 cell line.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.
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Figure 3.15: Effect of GCGR small molecule antagonist L-168,049 and GLP-1R peptide antagonist Ex-9
in cAMP accumulation responses of GLP-1 and GCG in InR1G9 cells. L-168,049 and Ex-9 were pre-
incubated with InR1G9 cells 30 mins before stimulated with GLP-1 and GCG. 4000 cells per well were
stimulated with ligands for 15 mins in the presence of IBMX before cAMP accumulation measurement.
All data were normalised to the maximum cAMP production when stimulated with 100µM forskolin and
were at least 2 independent experiments in duplicates with mean ± S.E.M (upper and lower error bars).
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Table 3.12: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of GLP-1 and GCG
in the presence of GLP-1R peptide antagonist Ex-9 and GCGR small molecule antagonist L-168,049 in
InR1G9 cell line.

Ligand Ex-9 or L-168,049 (M) pEC50 
a Emax 

b Span n

GLP-1

- 7.18±0.86 20.23±3.53 10.43±4.24 4

1x10-7 7.32±2.08 21.37±5.92 10.31±7.35 4

1x10-8 6.70±0.95 22.15±4.15 11.68±4.74 4

Ex-9 - 6.48±1.03 23.19±6.13 13.77±6.67 4

GCG

- 6.90±0.38 25.98±2.48 15.27±2.74 6

1x10-7 6.69±0.51 17.53±2.80 12.73±3.06 4

1x10-8 6.63±0.56 21.73±3.19 12.80±3.33 4

1x10-9 7.77±0.37 18.78±1.85 13.56±2.21 4

L-168,049 - 7.81±1.34 20.60±5.22 6.99±5.49 4

Table 3.8: cAMP accumulation maximal responses (Emax) and potencies (pEC50) of GLP-1 and GCG in the presence of GLP-1R peptide
antagonist Ex-9 and GCGR small molecule antagonist L-168,049 in InR1G9 cell line.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
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3.4.3 Characterising the effect of RAMP2 on the cAMP production of a
range of glucagon-like peptide agonists

RAMPs have been shown to modulate various Class B GPCRs, but with a lesser

degree with GLP-1R [McLatchie et al., 1998, Christopoulos et al., 2003, Wootten et al.,

2013a, Hay et al., 2016]. In particular, RAMP2 has been shown to interact with the

GCGR, enhancing the efficacies and altering the potencies of its agonists [Weston

et al., 2015, Cegla et al., 2017]. Therefore, the role of RAMP2 on influencing GCGR

endogenous agonist responses were examined in the HEKDCTR cells, which lack

the RAMPs expression [Bailey et al., 2019]. Equal ratio (1:1) of RAMP2 and GCGR

constructs were co-transfected into the HEKDCTR cells using FuGENE HD transfection

reagent and 48-hour transfection were allowed prior to assays. Mock transfections were

performed by substituting RAMP2 with the vector pcDNA3.1.

The forskolin-mediated cAMP accumulation was not affected by the expressions

of RAMP2 in the cell systems, as shown in the identical forskolin-mediated cAMP

response curves with or without the expression of RAMP2 (Fig. 3.16A). Also, there were

no apparent alterations on the agonist responses of GLP-1, GCG, OXM and Ex-4 at the

GCGR (Fig. 3.16B, C, E and F). The results here contrasted with that observed by Weston

and colleagues, but it could be explained by the difference in the cell line employed in

studying the RAMP2 effect, as HEK293T cell line was used in their study [Weston et al.,

2015], and there was an endogenous expression level of RAMP2 in the HEK293T cell line

as shown previously (Fig. 3.3). The results here also disagreed with the observations

by Cegla and colleagues, which they have used CHO-K1 cell line to investigate the

effect of RAMP2 on GCGR signalling and demonstrated a decrease in peptide cAMP

responses in the presence of RAMP2 [Cegla et al., 2017]. The difference in results could

be explained by the various methods used in measuring cAMP accumulation. The

difference in terms of G proteins or RAMPs expression in CHO-K1 and HEKDCTR

recombinant cell systems may also explain such discrepancy. Intriguingly, an increase

in the potency of GLP-1(9-36)NH2-mediated cAMP responses was observed (Fig. 3.16),

with its pEC50 value increased from 7.47 ± 0.41 to 9.12 ± 0.37 in the presence of RAMP2.

Given RAMP2 was expressed in the pancreatic a and b cell models as shown in Fig. 3.7

and 3.8, it is likely that the expression of RAMP2 may enhance the cAMP signalling

response of the highly abundant GLP-1 metabolite, thereby contributing to a great

extent in the regulation of insulin and glucagon secretion.
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Figure 3.16: Effect of RAMP2 on GCGR agonists cAMP signalling in HEKDCTR transiently transfected
with GCGR and RAMP2 or vector. HEKDCTR cells were transfected with GCGR and either RAMP2 or
vector (pcDNA3.1) at 1:1 ratio with FuGENE HD transfection reagent for 48 hours on 24-well plate before
the cAMP assays. 1000 transfected cells/well were stimulated with different ligands for 30 mins in the
presence of rolipram, except for the measurement of cAMP response mediated by GLP-1(9-36)NH2 of
which 60 mins stimulation was allowed. All data were normalised to the maximum cAMP production
when stimulated with 100µM forskolin and were means of 2 to 5 independent experiment in duplicates
with ± S.E.M (upper and lower error bars).
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Table 3.13: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of various peptide
agonists with or without the presence of RAMP2 at the GCGR.

Vector RAMP2

nLigand pEC50 
a Emax 

b pEC50 
a Emax 

b 

Forskolin 7.00±0.12 95.49±2.95 6.89±0.11ns 95.16±3.31ns 6

GLP-1 6.84±0.26 16.63±1.64 6.72±0.30ns 16.22±1.30ns 10

GCG 11.05±0.09 91.04±3.00 11.03±0.09ns 89.73±2.90ns 8

GLP-1(9-36)NH2 7.47±0.41 8.27±1.28 9.12±0.37 9.20±0.89 3

OXM 9.56±0.16 91.25±5.47 9.58±0.12ns 90.69±4.53ns 8

Ex-4 6.77±0.19 16.37±1.00 6.77±0.22ns 12.80±0.96ns 4

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared between individual peptide ligand cAMP accumulation responses
with or without the presence of RAMP2 were determined by Student’s t-test with Welch’s correction
(ns, non-statistically significant).
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3.4.4 GLP-1R, GCGR, GIPR and RAMPs expressions in rodent insulinoma
and glucagonoma cell systems under high and low glucose conditions

After evaluating RAMPs influence on the glucagon-like peptide signalling, the influence

of glucose culture conditions on the cAMP signalling pathways was explored since

there has been reports showing glucagon receptor family expressions change with the

glucose concentrations present in the culture conditions [Xu et al., 2007, Nakashima

et al., 2018]. Furthermore, given the mouse aTC1.6 cell line was cultured in high glucose

condition instead of the low glucose condition recommended by the ATCC, the effect of

long-term glucose culture condition on the endogenous expressions of receptors from

glucagon receptor family and RAMPs was evaluated.

In order to simulate low and high glucose culture conditions, the cells were incu-

bated in different glucose conditions (5mM and 25mM glucose concentrations for the

a cells and 2.8mM, 11mM and 16.7mM glucose concentrations for the b cells) for 72

hours in order to induce long term DNA expressions changes. Similar experimental

approach was also adopted by Chuang and colleagues, which they investigated the

effect of glucose conditions on the changes of gherlin receptor [Chuang et al., 2011].

Following 72 hours glucose incubation, RNA was extracted and RT-PCR studies were

performed.

Here a downregulation of GIPR expression was observed when the a cells were

cultured at 25mM glucose conditions (GIPR expression increased by 3.12-fold in 25mM

glucose compared to that in 5mM glucose, p < 0.01) whereas there was no statistically

significant changes in terms of the GLP-1R, GCGR and RAMPs expressions between

the high and low glucose conditions (Fig. 3.17A). As for the INS-1 832/3 cells, no

statistically significant changes in receptors and RAMPs expressions were observed

among the hypo-, norm or hyperglycaemia conditions (Fig. 3.17B).

Interestingly, the results obtained here differed from what was observed in Xu and

colleagues, which they noted a significant downregulation of GLP-1R and a slight

degree of upregulation of GIPR when mouse islets were cultured in hyperglycaemic

solutions (5-30mmol/L) for two days or in diabetic strain (db/db) mice [Xu et al., 2007].

Given that there is a mixture of different pancreatic cells in the mouse islets, crosstalk

among different pancreatic cells might exist during the prolonged period of exposure

to high glucose, while the strength of the experiments performed here clearly showed

that the GIPR at the mouse a cells were particularly susceptible to changes in glucose

conditions.
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Figure 3.17: Glucagon receptor family and RAMPs expressions determined by RT-PCR in aTC1.6 and
INS-1 832/3 cell lines under different glucose conditions cultured in 72 hours. The above figure shows
the GLP-1R, GCGR, GIPR and RAMPs expressions in (A) mouse aTC1.6 cell line cultured under different
glucose conditions (5mM and 25mM) and (B) rat INS-1 832/3 cell lines under 2.8mM, 11mM and 16.7mM
glucose conditions respectively. (C), (D) and (E) show the representative gel images of the RT-PCR results
of aTC1.6 and INS-1 832/3 cell lines cultured under high and low glucose respectively while (F) shows the
rt(-) treatment of the cDNA of INS-1 832/3 cells cultured at different glucose conditions. All expressions
of genes of interests are relative to GAPDH. Data are expressed as mean ± S.E.M. from 2 to 7 individual
repeats. Statistical significance compared between the expressions of individual receptors or RAMPs in
aTC1.6 and INS-1 832/3 cells were determined by Student’s t-test with Welch’s correction (**, p < 0.01).
The asterisk (*) on the gel images indicate the correct band size for gene of interest.
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3.4.5 cAMP responses of glucagon-like peptides in rodent insulinoma and
glucagonoma cell systems under high and low glucose conditions

Following the findings that there was a change in GIPR expression in hyperglycaemic

conditions in the pancreatic a cells, the effect of high and low glucose on the incretin

cAMP signalling in the glucagonoma cell line was subsequently evaluated. The HTRF-

based cAMP assay was again utilised to determine the extent of cAMP production.

Similarly, cells were cultured in the two different glucose conditions for 72 hours prior

to assays.

As shown in the above section that there were no changes in the expressions of

GLP-1R and GCGR in different glucose conditions, the potencies and efficacies of

the cognate peptide agonists of GLP-1R and GCGR, GLP-1 and GCG, did not alter.

Interestingly, the potency of the GLP-1 metabolite, GLP-1(9-36)NH2 decreased from 5.77

± 0.66 to 5.28 ± 0.28 (p < 0.05) while its efficacy increased from 18.23 ± 3.47 to 41.69

± 3.83 (p < 0.01) when cultured under high glucose condition. Given that the GIPR

expression was downregulated under hyperglycaemic condition, it was not surprising

the cAMP potency mediated by GIP decreased from 7.54 ± 0.29 to 6.00 ± 0.22 (p <

0.01) under 25mM glucose condition. Yet the efficacy of GIP increased from 28.32 ±
1.52 to 36.65 ± 4.67 (p < 0.001) in the presence of high glucose (Fig 3.18 and Table 3.14).

Here under different glucose conditions, the cAMP production mediated by GIP and

GLP-1(9-36)NH2 changes according to the glucose concentrations and the difference in

potencies and efficacies under high and low glucose conditions are further summarised

in Fig. 3.19. The significance of the findings will be discussed in the following sections.
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Figure 3.18: Dose-response curves showing cAMP accumulation responses when aTC1.6 cells cultured
in low and high glucose conditions were stimulated with different glucagon receptor family ligands.
The above figure shows the cAMP production dose-response curves when aTC1.6 cells, which were
cultured in low and high glucose conditions (5mM and 25mM respectively) were stimulated with (A)
GLP-1, (B) GLP-1(9-36)NH2, (C) OXM, (D) GCG and (E) GIP. 4000 aTC1.6 cells/well cultured in 5mM and
25mM glucose conditions were stimulated with various ligands in the presence of PDE inhibitor IBMX.
All data were normalised to the maximum cAMP production when stimulated with 100µM forskolin and
were means of 2 to 7 independent experiments with mean ± S.E.M (upper and lower error bars). Table
3.14 shows the pEC50 and Emax values of ligand responses.
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Table 3.14: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of glucagon recep-
tor family endogenous ligands in aTC1.6 cells cultured under low (5mM) and high (25mM) glucose
concentrations.

Glucose 
concentration Ligand pEC50 

a Emax 
b Span n

5mM

GLP-1 6.85±0.22 27.18±1.56 20.30±1.81 12

GLP-1(9-36)NH2 5.77±0.66 18.23±3.47 12.74±3.67 6

OXM 7.20±0.51 16.57±1.99 10.55±2.26 8

GCG 7.66±0.34 21.55±1.46 12.69±1.80 14

GIP 7.54±0.29 28.32±1.52 17.51±1.85 12

25mM

GLP-1 6.72±0.31ns 23.26±1.95ns 14.52±2.13ns 4

GLP-1(9-36)NH2 5.28±0.28* 41.69±3.83** 27.20±3.93ns 4

OXM 6.20±0.26ns 27.67±2.12ns 15.48±2.20ns 4

GCG 7.45±0.51ns 23.30±2.13ns 11.72±2.47ns 4

GIP 6.00±0.22** 36.65±4.67*** 36.79±4.76ns 5

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared between individual peptide ligand cAMP accumulation responses
under low and high glucose conditions were determined by Student’s t-test with Welch’s correction (*,
p<0.05; **, p<0.01; ***, p<0.001; ns, non-statistically significant).
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Figure 3.19: Representative radar plots summarising the difference in potencies and efficacies of
glucagon receptor family ligand cAMP responses in aTC1.6 cells cultured under low and high glucose
conditions. The above radar plots describe the difference in cAMP responses (A) potencies and (B)
efficacies when aTC1.6 cells, which were cultured in low and high glucose conditions (5mM and 25mM
respectively), were stimulated with GLP-1, GLP-1(9-36)NH2, OXM, GCG and GIP. Table 3.14 shows
the pEC50 and Emax values of ligand responses. Statistical significance compared between individual
peptide ligand cAMP accumulation responses in low and high glucose concentration culture conditions
were determined by Student’s t-test with Welch’s correction (*, p<0.05; **, p<0.01, ***, p<0.001; ns,
non-statistically significant).
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3.5 Discussion

GLP-1 has been known to possess both insulinotropic and glucagonostatic properties

[Drucker, 2018]. However, compared to its well-studied GSIS mechanism of action, its

glucagon inhibitory action is still unclear. Furthermore, apart from GLP-1, a range

of glucagon-like peptides, namely OXM, GCG, GIP and GLP-1(9-36)NH2, have also

been known to regulate glucagon secretion and/or facilitate GSIS [Sandoval and

D’Alessio, 2015]. Therefore, to understand how GLP-1 regulates glucagon secretion,

robust in vitro testing systems, the recombinant hamster and human cell systems stably

expressing glucagon-like receptors and rodent clonal a and b cell lines, were established.

Moreover, there has been ongoing debates on the expression of GLP-1R on pancreatic

a cells [Moens et al., 1996, Heller et al., 1997, Tornehave et al., 2008, De Marinis et al.,

2010, Ramracheya et al., 2018, Zhang et al., 2019]. By using semi-quantitative RT-PCR,

the glucagon-like receptors expressions, as well as RAMPs, which have been known

to interact with some of the glucagon-like receptors, were determined. Lastly, the

factors that may influence glucagon-like peptide signalling, such as the influence of

GPR119, glucagon-like receptor antagonisms, RAMPs interaction and long-term glucose

culture conditions, were investigated in an attempt to further understand the extent of

glucagon-like peptide signalling in physiologically relevant settings. The significance

of the findings will be discussed as follows.

3.5.1 Glucagon-like peptide ligand crosstalk at GLP-1R and GCGR

There were reports suggesting cross-receptor activation among the glucagon-like pep-

tides [Wootten et al., 2013a, Graaf et al., 2016, Chepurny et al., 2019]. Hence, the

experimental approach of evaluating the cAMP responses of GLP-1, OXM, GCG,

GLP-1(9-36)NH2 and GIP in both CHO-K1 and HEK293 recombinant cell lines stably

expressing GLP-1R, GCGR and GIPR (Fig. 3.2 and 3.6) confers distinct advantage of

being able to evaluate the individual intrinsic agonism of each glucagon-like peptides

on the receptors. GIP was found to be a full agonist at GIPR only (Fig. 3.2) and did not

share cross-receptor reactivity with GLP-1R and GCGR. On the other hand, concurred

with other published reports [Pocai, 2012, Chepurny et al., 2019], GLP-1, OXM and

GCG can activate both GLP-1R and GCGR albeit at varying potencies and efficacies.

Intriguingly, the physiologically abundant GLP-1 metabolite, GLP-1(9-36)NH2, is a

weak partial agonist of not only GLP-1R, but also of GCGR (Fig. 3.2), an observation

which has not been noted to date. More importantly, these five endogenous agonists
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also mediate cAMP responses in the physiologically relevant rodent insulinoma and

glucagonoma cell lines, despite their differences in terms of potency rank order (Fig.

3.10 and Table 3.7). Further applications of specific GLP-1R and GCGR antagonists,

Ex-9 and L-168,049, blocked the cAMP signalling mediated by these peptide agonists

in CHO-GLP-1R cells (Fig. 3.12), HEKDCTR-GCGR (Fig. 3.13) as well as in rat INS-1

832/3 cells (Fig. 3.14), therefore providing evidence of their dual agonisms at both

GLP-1R and GCGR. These ligand-receptor crosstalk then pose an interesting question

if GLP-1 and GLP-1(9-36)NH2 mediate their glucagonostatic actions also via GCGR,

given the low expression of GLP-1R detected in the aTC1.6 cells (Fig. 3.7), as well as

reported by other studies [De Marinis et al., 2010, Piro et al., 2014, Ramracheya et al.,

2018, Nakashima et al., 2018, Zhang et al., 2019]. This observation warranted further

experimental validations, which will be reported in the next chapter.

However, there are several limitations to the studies on investigating ligand crosstalk

reported in this chapter. Firstly, due to time constraints, the changes of cAMP responses

over time stimulated by these peptide agonists were not investigated, which may shed

new light on how internalisation and desensitisation of GLP-1R, GCGR and GIPR affect

physiological cAMP production. Secondly, a caveat using pancreatic clonal cell systems

in the current studies is the mixed origins of islets cell types present in the pancreatic

a and b clonal cell lines. Hence primary a and b cells isolated from mouse islets

may serve as a better experimental approach in examining ligand responses in pure

populations of a and b cells. Lastly, intracellular calcium responses in pancreatic a and

b clonal cell lines were not examined due to technological limitations. The examination

of which may offer an important insight into how incretins regulate insulin secretion

via modifying iCa2+ release in both a and b cells.

3.5.2 GPR119 does not affect cAMP signalling of GLP-1R and GCGR

GPR119, which can also stimulate glucagon secretion upon activation, was found to

be highly expressing in the mouse a cell line compared to the b cell line and that the

expression of GPR119 was seemingly higher or equal to that of GIPR in the a cell line

(Fig. 3.7A); the observations here agreed with other published report [Whalley et al.,

2011]. However, based on the findings using cAMP functional assaying technique, dur-

ing which GLP-1R, GCGR and GPR119 agonists were applied to HEKDCTR transiently

expressing GLP-1R, GCGR or GPR119, no ligand-receptor crosstalk was observed (Fig.

3.11). Therefore, the notion of GPR119 influencing GLP-1-mediated glucagon secretion

via modulating GLP-1-mediated cAMP signalling is ruled out.
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3.5.3 Implications of the differences in receptors, RAMPs and G protein
expressions in rodent immortalised a and b cell models

3.5.3.1 Differences in terms of glucagon-like receptor expressions

The mRNA expressions of incretin receptors were examined in the rodent clonal

pancreatic a and b cell lines (Fig. 3.7 and 3.8), in order to explain the differences of

the signalling responses of glucagon-like peptides observed in these physiologically

relevant cell lines. GLP-1R was found to express at a very low level in the aTC1.6 cells,

which significance was discussed above. As for GCGR and GIPR, the results reported

here (Fig. 3.7 and 3.8) also differed from the report by Huising and colleagues, of

which they showed the isolated b cells from mouse islets did not express any GCGR

while the isolated a cells expressed abundant GCGR [Huising et al., 2010]. Yet the

results here agreed with the report by Ma and colleagues, which demonstrated the

presence of GCGR in both fluorescence-activated cell sorting (FACS) purified rat a

and b cells with the use of RT-PCR [Ma et al., 2005]. Therefore, the semi-quantitative

RT-PCR results here reflect the importance on the evaluation of the cellular background

of the cell lines to be used as well as the selection of cell systems to evaluate glucagon-

like peptides signalling responses, as there are considerable differences in terms of

receptor expressions between immortalised cell lines and ex vivo primary cells. However,

one caveat of using semi-quantitative RT-PCR in these sets of experiments, as well

as the subsequent experiments on determining the influence of glucose on receptor

expressions, is that it only provides a glimpse towards whether certain mRNA of

interest is present or absent, and thus does not represent a true quantitative measure

of gene expression. In order to accurately quantify receptor RNA or DNA expression,

qPCR (quantitative real-time polymerase chain reaction) should be used and may serve

as a piece of important future work.

The influence of high and low glucose under long term (72 hours) conditions on

receptor expressions was also elucidated (Fig. 3.17) and an upregulation of GIPR

expression under hypoglycaemic condition was noted in the aTC1.6 cells, while the

expressions of GLP-1R, GCGR and RAMPs remained unchanged. In contrast to the

observations in the a cells, the receptors and RAMPs expressions were not affected by

the changes in glucose conditions in the b cells. Accordingly, the cAMP responses of

GIP in the a cells were also more potent under hypoglycaemic condition (Fig. 3.18 and

3.19). This observation agrees with the stimulatory action of GIP on glucagon secretion,

as under hypoglycaemia, glucose homeostasis can be maintained through augmenting
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glucagon secretion, thereby promoting liver glycogenolysis and gluconeogenesis [Holst,

2007]. Such observations may also imply that the pancreatic a cells experience constant

tonic inhibition of glucagon secretion [Zhang et al., 2019] via the regulation of GLP-1R

and GCGR, as their expressions remain unchanged regardless of the differences in

glucose culture conditions. Alternatively, such in vitro observations may also explain

why T2DM patients experience chronic high blood glucose level due to a reduction

of GIPR expression, which leads to less pronounced glucagon-stimulatory actions in

promoting glucose homeostasis. However, further studies, such as short-term changes

in glucose conditions, are needed to further understand the changes of glucagon-like

receptor expressions.

3.5.3.2 Differences in terms of RAMPs expressions

RAMPs have been demonstrated to play a role in modulating Class B GPCRs physiolog-

ical activities [McLatchie et al., 1998, Wootten et al., 2013a, Weston et al., 2015, Hay et al.,

2016, Routledge et al., 2017, Cegla et al., 2017] and indeed RAMP2 has been shown to

enhance the potencies of GLP-1(9-36)NH2 selectively (Fig. 3.16). Yet their expressions

in the pancreatic a cells was scarcely reported. Here the RAMPs mRNA expression

in the aTC1.6 cell line, together with MIN6-B1 cell line to act as a comparison, were

determined (Fig. 3.7 and 3.8). The observation, which RAMP3 was highly present

in both a and b cell lines (Fig. 3.7), concurred with the report by our collaborators,

of which they employed RNAscope technique and demonstrated the same trend of

RAMPs expressions in mouse islets. The observation also agreed with Lilla and col-

leagues, whose team confirmed the presence of the mRNA expression of RAMP2 using

Affymetrix microarrays technique [Lilla et al., 2003]. However, they did not investigate

further into the presence of RAMP1 and RAMP3, hence comparisons cannot be drawn.

The observation here also contrasted with the investigation conducted by Martínez and

colleagues [Martínez et al., 2000]. In their studies, they performed RT-PCR followed

by Southern blot on two pancreatic b cell lines, which were the mouse CRL 2055 and

hamster CRL 1777 cell lines. They showed the presence of RAMP1 and RAMP3 in the

CRL 2055 cell line whereas only a high abundant expression of RAMP3 was present in

the CRL 1777 cell line. McLatchie and colleagues also reported the presence of all three

RAMPs in human pancreatic tissues using northern blots, yet concluding RAMP1 being

the most abundant among all three RAMPs, followed by RAMP3 and lastly RAMP2

[McLatchie et al., 1998]. All these varying results yet again emphasise the fact that the

expressions of RAMPs were cell-line and species dependent [Hay et al., 2016]. Hence,

145



Chapter 3. Evaluation of the signalling responses of glucagon-like peptides

careful considerations in evaluating ligand responses are needed.

3.5.3.3 Differences in terms of G protein expressions

Apart from predominantly coupling to the Gas subunit to mediate cAMP responses,

GLP-1R and GCGR have been shown to also pleiotropically couple to Gai and Gaq

subunits [Montrose-rafizadeh et al., 1997, Wootten et al., 2012, Pabreja et al., 2014],

inhibiting cAMP responses and mediating downstream iCa2+ responses (Fig. 3.6)

respectively [Seino, 2012]. Therefore, the G protein subunit profile was established in

the rodent insulinoma and glucagonoma cell line, in order to evaluate if GLP-1R and

GCGR can also pleiotropically coupled to various G proteins in the physiologically

relevant cell lines (Fig. 3.9).

The findings in Fig. 3.9 agreed with the studies conducted by Gasa and colleagues

[Gasa et al., 1999], which they also showed the expression of Gaq/11 protein in INS-1

832/3 cell line using immunoblotting technique. Studies by Montrose-rafizadeh and

colleagues who looked into the G protein composition in the rat RIN1046-38 pancreatic

b cell line with endogenous expression of GLP-1R also demonstrated high levels of

Gas, Gaq, followed by Gai1, Gai2 and a relatively low level of Gai3 [Montrose-rafizadeh

et al., 1999], which contrasted with the findings in the INS-1 832/3 cell line (Fig. 3.9).

Yet, the results collectively illustrate the expressions of Gas, Gaq and Gai subunits,

validating the notion that insulin secretion can be regulated through GLP-1R and GCGR

pleiotropically coupled to various G proteins.

In contrast to the well-characterised G protein profile in insulinoma cell lines, there

is no reported literature on the G protein compositions of the frequently used a cell

models to date. Hence the RT-PCR studies on the G protein composition on the a cell

model provided an interesting insight into the difference of the G protein compositions

between the a and b cell models, which high levels of Gas subunit and higher levels of

Gai and Gaq subunits compared to the INS-1 832/3 cell line in the aTC1.6 cell lines have

been highlighted (Fig. 3.9). This observation poses another interesting question if the

glucagon secretion is predominantly Gai and Gaq-mediated via the action of GLP-1R

and GCGR. The importance of which will be further explored in the next chapter.
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3.6 Chapter summary

The findings of the chapter are concluded as follows:

• GLP-1 and GCG are the most potent full agonists at the GLP-1R and GCGR

respectively, which are consistently shown in the CHO-K1 and HEK293 recombi-

nant cell systems. Yet GCG is also a full agonist at the GLP-1R, despite being less

potent than GLP-1 while GLP-1 acts as a partial agonist at the GCGR. Both GLP-1

and GCG are not able to activate GIPR. The GLP-1 metabolite, GLP-1(9-36)NH2 is

a weak partial agonist at both GLP-1R and GCGR.

• GLP-1 together with GIP are the most potent agonists at the physiologically

relevant pancreatic b cell models, while GIP and GCG are the most potent

agonists at the pancreatic a cell models.

• RAMP1 is the most abundantly expressing in the HEK293-based recombinant cell

systems while RAMP3 is the most abundantly expressing in both the pancreatic

a and b cell models, suggesting caution must be made when translating cAMP

responses into the more physiologically relevant settings.

• GPR119 agonists do not activate GLP-1R and GCGR and likewise GLP-1R and

GCGR agonists do not activate GPR119

• The presence of RAMP2 at the GCGR enhances the potency of GLP-1(9-36)NH2

only but not other GCGR ligands

• The GIPR expression was downregulated under hyperclycemic condition and

the cAMP signalling of GIP and GLP-1(9-36)NH2 changes under hyperglycaemic

conditions.
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Chapter 4

Quantitative measurements of
insulin and glucagon secretion

4.1 Introduction

Following the characterisation of the intracellular cAMP signalling mediated by various

glucagon-like peptides at the physiologically relevant rodent pancreatic a and b clonal

cell systems, the insulin and glucagon secretion upon stimulation with these glucagon-

like peptides in the same rodent pancreatic cell lines were quantitatively measured.

The quantitative measurements of insulin and glucagon secretion in clonal cell systems

are relatively new assaying technique at the Ladds’ laboratory, therefore the assay

protocol of the Cisbio® ultra-sensitive insulin kit and glucagon kit was first optimised,

which preliminary results were available in Appendix A.1. After assay optimisation,

quantitative measurements of the levels of insulin and glucagon secretion potentiated

by a range of glucagon-like peptides were proceeded. Given our collaborators, the

research group led by Dr Reshma Ramracheya and Prof. Patrik Rorsman (Oxford

Centre for Diabetes, Endocrinology and Metabolism, University of Oxford), illustrated

that GLP-1 and GLP-1(9-36)NH2 mediate their glucagonostatic actions in the pancreatic

a cells via promiscuous receptor activation and that the glucagonostatic actions of

these two peptide ligands may or may not be Gai-dependent [Guida et al., 2020],

the postulated phenomenon was then further investigated through the applications

of receptor-specific antagonists, as well as a range of pharmacological activator and

inhibitors in the mouse aTC1.6 glucagonoma cell line. The same pharmacological

activator and inhibitors were also applied in the rat insulinoma INS-1 832/3 cell line,
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as well as utilising GLP-1R or GIPR CRISPR/Cas9 knockout (KO) INS-1 832/3 cell

lines [Naylor et al., 2016], in order to aid the comparison of the molecular mechanisms

that regulate insulin and glucagon secretion in the a and b cells. Unfortunately, due

to COVID-19 impact on experimental schedule, some of the results presented in this

chapter are of preliminary nature only, and are noted accordingly. Furthermore, one

caveat which may affect the validity of the results shown in this chapter is the lack of

measurement of total insulin/glucagon content in samples; yet subsequent re-analysis

of the total insulin/glucagon cell contents were not possible due to the deterioration of

samples. Firstly, the assay principle of both the insulin and glucagon secretion assays

will be described as follows.

4.2 Assay principle of the Cisbio® ultra-sensitive insulin and

glucagon kit

As described in section 2.2.4.1, the principle of the Cisbio® ultra-sensitive insulin kit

(thereafter referred to as insulin secretion assay) is based on the TR-HTRF technology,

during which when insulin is present in the supernatant, the donor and acceptor

antibodies, which are Europium Cryptate and XL-665 respectively, bind to insulin.

When the antibodies are in close proximity, the excitation of the donor with a light

source at wavelength 340nM triggers a FRET signal toward the acceptor, giving out

fluorescence at 620nm and 665nm wavelength. The signal intensity is thus proportional

to the number of antibodies complex formed with insulin, hence directly proportional

to the insulin concentration present in the supernatant. Likewise, the Cisbio® glucagon

kit (thereafter referred to as glucagon secretion assay) employs the same technology,

but the only difference is the use of two different acceptor and donor antibodies, which

are d2 and Terbium Cryptate respectively. The Cisbio® insulin assay is intended for

quantitative measurement of insulin in pancreatic b cell or islets supernatants, and is

compatible with human, mouse, rat, porcine and bovine species. The Cisbio® glucagon

kit is only intended for the measurement of glucagon in cell or tissue supernatant

and is also highly specific for detecting glucagon produced by human, mouse and rat

species, with <0.07% specificity to OXM, which is highly structurally similar to GCG.

The Cisbio® TR-HTRF insulin and glucagon assays were introduced to the com-

mercial market only in 2016. However, given the relative ease of use of these kits

and the high sensitivity and specificity in detecting insulin and glucagon in the sam-

ples compared to the traditional enzyme-linked immunosorbent assay (ELISA) and

150



4.3. Measuring ligand responses in insulin and glucagon secretion

radioimmunoassay (RIA) approaches, the Cisbio® TR-HTRF insulin and glucagon

assays have been widely used in other published reports on the measurement of insulin

and glucagon secretions in both rodent clonal systems and ex vivo mouse islets [Kim

et al., 2017, Yau et al., 2019, Yau et al., 2020].

4.3 Measuring ligand responses in insulin and glucagon secre-

tion

After optimising the assay protocol to aid the quantitative measurement of insulin or

glucagon levels in the test samples (Appendix A.1), the glucose-responsiveness in the

rat insulinoma cell line and the mouse glucagonoma cell line were next evaluated. It is

of particular interest to deduce if the GSIS relationship, as established in other reports

in rat insulinoma cell line [Yang et al., 2016] as well as in isolated mouse islets [Shigeto

et al., 2015], can be observed.

4.3.1 Glucose-dependent insulin and glucagon secretion

The well documented GSIS in the INS-1 832/3 cell lines was first explored. To do

so, all of the optimisations as mentioned above were included: the INS-1 832/3 cells

were pre-incubated at 0mM RPMI for three hours prior to incubating the cells at KRB

supplemented with 2.8mM glucose for an hour. After an hour of pre-incubation, the

cells were challenged with glucose at different concentrations, which were (in mM) 1,

2.8, 5, 10, 16.7 and 25 for a further hour before the collection of supernatant on ice.

The following results showed the expected GSIS relationship displayed at the INS-1

832/3 cells, whereby the higher the glucose concentrations, the higher the level of

insulin released at the rat insulinoma cells (Fig. 4.1A and C). However, the insulin level

measured seemed to have reached the maximum detection limit of the insulin secretion

assay, which a higher level of insulin was not detected above 10mM glucose application.

More importantly, there was a statistically significant difference between the 2.8mM and

16.7mM glucose conditions (3.88-fold difference, p < 0.01), which were the reference

glucose points that were commonly reported in many papers which utilised the rat b

cells to investigate the mechanism of insulin secretion. Therefore, these two glucose

concentrations were also selected to represent the high and low glucose conditions for

subsequent insulin secretion assays.

In contrast to GSIS, a totally opposite trend was observed in the mouse glucagonoma
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cell line, where the higher the glucose concentrations applied to the aTC1.6 cell line, the

more the glucagon secretion inhibitory effect observed, which also concurred with other

studies conducted in the mouse a clonal cells [Diao et al., 2005, McGirr et al., 2005].

Furthermore, 1mM and 5mM glucose seemed to result in the most potent glucagon

secretion stimulation in the pancreatic a cells, which also agreed with the reports that

utilised the mouse aTC1.6 cell line to investigate the glucagon secretion mechanism [Piro

et al., 2014]. However, a paradoxical increase in glucagon secretion was observed when

25mM glucose was applied to the mouse a cells, which concurred with the observation

in the hamster InR1G9 a cell line [Salehi et al., 2006]. The mechanism of the paradoxical

increase in glucagon secretion at high glucose level is yet to be explained. However it

was not due to glucotoxicity given that the aTC1.6 cells were able to mediate cAMP

signalling responses (Fig. 3.18 and 3.19) under long-term culture at 25mM glucose.

Given that the most potent stimulatory and inhibitory effects on glucagon release in the

mouse aTC1.6 cells were observed when 5mM and 16.7mM glucose were used, these

two glucose concentrations were subsequently used as the representative low and high

glucose concentrations respectively in the following glucagon secretion assays.
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Figure 4.1: Glucose-dependent insulin and glucagon secretions. (A) shows the glucose-stimulated
insulin secretion in the rat INS-1 832/3 WT cell line. (B) shows the glucose-regulated glucagon secretion
in mouse aTC1.6 cell line. Mean ± S.E.M. insulin and glucagon secretion data (reported as interpolated
insulin and glucagon levels) in 4 independent experiments with quadruplicates are shown in the above
scatter plots. Statistical significance compared between low glucose and high glucose conditions in INS-1
832/3 WT cells (2.8mM vs 16.7mM) and aTC1.6 (5mM vs 16.7mM) cells were determined by Student’s
t-test with Welch’s correction (*, p < 0.05; **, p < 0.01).
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4.3.2 Glucagon-like peptides concentration-dependent effect on glucagon
secretion

Prior to investigating the effects of the glucagon-like peptides on glucagon secretion,

the optimal concentration of GLP-1 or GLP-1(9-36)NH2 to be used in the following

glucagon secretion assays were to be deduced, as it has been shown by our collaborators

that GLP-1 and GLP-1(9-36)NH2 did not exhibit dose-dependent inhibition and that

they exerted their maximal inhibitions at picomolar range rather than at nanomolar

range (0.1 to 100nM). In order to select the optimal GLP-1 and GLP-1(9-36)NH2 doses in

the glucagon secretion assays, similar to the previous approach in measuring glucagon

secretion, the mouse a cells were pre-incubated in high glucose containing KRB for an

hour, then GLP-1 and GLP-1(9-36)NH2 were applied at three different concentrations,

which were 10000pM, 100pM and 1pM respectively; an hour stimulation in the presence

of low glucose was allowed. The supernatants were again collected, and the glucagon

content were measured. The results obtained here were normalised to the mean

glucagon secretion at 5mM glucose, which stimulated the highest extent of glucagon

secretion, so as to faciliate the monitoring of the extent of inhibitory effect mediated by

GLP-1 and GLP-1(9-36)NH2 against the maximal glucagon stimulation.

Consistent with the observations in Fig. 4.1, a small but significant decrease in

glucagon secretion in the presence of high glucose compared to the low glucose

stimulation was resulted (8.9% decrease, p < 0.01), proving the functionality of the a

cells (Fig. 4.2). Similar to the observation by our collaborators, concentration-dependent

glucagonostatic actions mediated by the two peptide ligands were not observed, as

when high concentration (10000pM) of GLP-1 or GLP-1(9-36)NH2 was applied, less

glucagonostatic effect was resulted. Yet when these two ligands were applied at

100pM, maximal glucagonostatic effects were achieved, resulting in 17.5% (p < 0.001)

and 25.6% (p < 0.001) decrease in glucagon secretion due to GLP-1 and GLP-1(9-

36)NH2 respectively relative to low glucose stimulation alone (Fig. 4.2). However,

when an even lower GLP-1 or GLP-1(9-36)NH2 concentration was applied (1pM),

glucagon secretion were slightly stimulated, illustrating a non-concentration dependent

relationship between the concentrations of ligands and the glucagonostatic effect.

Provided that 100pM GLP-1 and GLP-1(9-36)NH2 mediated the most potent glucago-

nostatic actions, these two concentrations were used in the subsequent glucagon secre-

tion assays. The effects of insulin or glucagon secretion mediated by other glucagon-like

peptide ligands were next characterised in the a and b clonal cell systems.
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Figure 4.2: Inhibition of glucagon secretion mediated by GLP-1 and GLP-1(9-36)NH2 are not
concentration-dependent in aTC1.6 cells. (A) and (B) show the glucagon secretion inhibitory effect
exerted by GLP-1 and GLP-1(9-36)NH2 respectively. Mean ± S.E.M. glucagon secretion data (responses
normalised to glucagon secretion responses at 5mM) in 3 to 13 independent experiments with quadrupli-
cates are shown in the above scatter plots. Statistical significance compared among responses with peptide
ligands and 5mM glucose were determined by non-parametric Kruskal-Wallis test and are indicated by
asterisks above the bars (**, p<0.01; ***, p < 0.01)
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4.3.3 Glucagon-like peptide ligand responses in a and b clonal cell systems

After deducing that picomolar ranges of GLP-1 and GLP-1(9-36)NH2 were sufficient

to stimulate the most potent glucagonostatic effect in the mouse a cells, insulin and

glucagon secretion responses upon stimulation with other glucagon-like peptides were

next evaluated. Following the optimised insulin secretion assay protocol, the INS-1

832/3 cells were first glucose-starved for three hours prior to pre-incubating the cells

in KRB containing 2.8mM glucose. The b cells were then stimulated with a range

of ligands, namely GLP-1, GLP-1(9-36)NH2, OXM, GIP and GCG, either at 10nM or

1µM, for an hour; the application of peptide ligands at 10nM was in line with other

studies which investigated the effect of GLP-1 on insulin secretion [Naylor et al., 2016].

The supernatants from each stimulation condition were then collected and the insulin

level present in the supernatant were determined. Likewise, the mouse aTC1.6 cells

were pre-incubated in KRB containing 16.7mM glucose for an hour yet without prior

glucose-starving step. They were then stimulated with a range of ligands for an hour,

following supernatant collection and determination of glucagon levels. The effect of

OXM on glucagon secretion was not investigated as GCG and OXM share a close

structural homology.

4.3.3.1 Ligand responses in inducing insulin secretion

Similar to the observation in Fig. 4.1, in the presence of high glucose, insulin secretion

was enhanced by 480% (p < 0.05) compared to that at low glucose condition (Fig.

4.3A), validating the functionality of the rat insulinoma cells in responding to glucose

stimulation. When GLP-1 at 10nM was applied to the rat b cells, GSIS was further

enhanced by 483% compared to when stimulated with high glucose alone (Fig. 4.3A),

which concurred with the observations of a lot of published literature that GLP-1 acts

as an incretin hormone [Naylor et al., 2016] via the GLP-1R to mediate its insulinotropic

action, given their high expression in the rat b cells as established previously (Fig.

3.8). Another important incretin hormone, GIP, was also able to further augment

GSIS by 231% compared to the presence of high glucose alone (Fig. 4.3A), yet its

extent in enhancing GSIS was less prominent than GLP-1. This prominent GSIS effect

potentiated by GIP by activating the GIPR present in the rat b cells (Fig. 3.8) also

corroborated with the published reports which investigated the GIP augmentation of

GSIS in the rat b cells [Naylor et al., 2016]. OXM, when applied at 1µM, also mediated

augmentation of GSIS by 458% (Fig. 4.3A) when compared to high glucose alone.
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The results here agreed with the observations by Maida and colleagues, where they

also observed a dose-dependent GSIS augmentation facilitated by OXM [Maida et al.,

2008]. Interestingly, GLP-1(9-36)NH2 did not appear to enhance GSIS despite high

concentration (at 1µM) was applied, suggesting it was not insulinotropic (Fig. 4.3A).

The observation again concurred with the studies by Bueno and colleagues as well

as by our collaborators, where they showed there was a lack of augmentation when

GLP-1(9-36)NH2 were applied to the isolated mouse islets at high glucose condition

[Bueno et al., 2020]. Furthermore, GCG, which should expectedly facilitate GSIS as

reported previously [Svendsen et al., 2018, Lee and Jun, 2018] given its role in mediating

glucose homeostasis, did not further enhance GSIS (Fig. 4.3A). However, a relatively

low concentration was applied in these set of experiments therefore a prominent

enhancement might not be observed. Yet due to the current lockdown, I was not able

to perform insulin secretion experiments to test a higher concentration of GCG.

4.3.3.2 Ligand responses in inducing glucagon secretion

In terms of glucagon secretion in the mouse glucagonoma cell line, the presence of low

glucose was able to stimulate a small yet statistically significant increase by 9.9% (p <

0.01) in glucagon secretion compared to high glucose condition (Fig. 4.3B), validating

the functionality of the mouse glucagonoma cells in response to the changes of glucose

stimulations. Given the sensitivity of the glucagon measurement in the pancreatic a

cells compared to that in the pancreatic b cells, this small change in glucagon secretion

in contrast to the large fold of increase in insulin secretion was considered to be

significant, analogous to other published reports which conducted the measurement of

glucagon secretion in the mouse a clonal cell systems [Diao et al., 2005, McGirr et al.,

2005] and our collaborators in isolated mouse islets. Concurred with other published

observations conducted in either isolated human or mouse islets [De Marinis et al.,

2010, Ramracheya et al., 2018] and as previously shown in Fig. 4.2, GLP-1 and GLP-1(9-

36)NH2, despite their concentrations at picomolar range, were able to inhibit glucagon

secretion by 18.5% (p < 0.01) and 26.8% (p < 0.001) (Fig. 4.3B). Also, GLP-1 exerted a

glucagonostatic effect comparable to that mediated by the presence of 16.7mM glucose

alone, and that GLP-1(9-36)NH2 was able to induce a more prominent glucagonostatic

effect than that at 16.7mM glucose inhibition of glucagon secretion, an observation also

noted by our collaborators. Corroborated with other published reports, GIP at 10pM

facilitated glucagon secretion by 18.0% compared to the sole presence of 5mM glucose

(Fig. 4.3B). This glucagon-stimulatory effect mediated by GIP was also demonstrated in
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Chapter 4. Quantitative measurements of insulin and glucagon secretion

the isolated mouse islets [De Marinis et al., 2010].

To sum up, the extent of the potentiation of GSIS mediated by a range of glucagon-

like peptide ligands was illustrated in the rat insulinoma cells. Opposing actions of

GLP-1, GLP-1(9-36)NH2 and GIP on glucagon secretion were also demonstrated in the

mouse glucagonoma cell lines. In the next section, the factors that may influence the

insulin and glucagon secretion will be presented.
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Figure 4.3: Glucagon receptor family peptide ligands effect on GSIS or glucagon secretion in INS-1
832/3 and aTC1.6 cells. (A) shows the enhancement of GSIS facilitated by 10nM GLP-1, 1µM GLP-
1(9-36)NH2, 1µM OXM, 10nM GIP and 10nM GCG in high glucose condition (16.7mM). (B) shows the
glucagon secretion inhibitory effect exerted by 100pM GLP-1 and 100pM GLP-1(9-36)NH2 whereas 10nM
GIP stimulates glucagon secretion at low glucose condition (5mM glucose). Mean ± S.E.M. insulin and
glucagon secretion data (responses normalised to the GSIS and glucagon secretion responses at 2.8mM
and 5mM respectively) in 2 to 13 independent experiments with quadruplicates are shown in the above
scatter plots. Statistical significance compared among responses with the mean of 2.8mM or 5mM glucose
in insulin or glucagon secretion assays respectively were determined by non-parametric Kruskal-Wallis
test and are indicated by asterisks above the bars (*, p<0.05; **, p<0.01; ***, p<0.001)
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4.4 Receptor antagonism on insulin and glucagon secretion

4.4.1 GLP-1R or GIPR-knockout effect on insulin secretion

Following the evaluation of individual ligand potentiation on GSIS in the rat b clonal

cells, the individual receptor contributions, in particular GLP-1R and GIPR, towards

the augmentation of GSIS were next determined, so as to serve as a useful comparison

to the individual receptor contributions to the a cell model. To do so, the GLP-1R and

GIPR CRISPR/Cas9 knockout INS-1 832/3 cell lines (thereafter referred to as INS-1

GLP-1R KO or INS-1 GIPR KO cell line) [Naylor et al., 2016] were used which were

kindly shared by our collaborators, Dr Jacqueline Naylor and Dr David Hornigold at

AstraZeneca, U.K, to aid the investigations as there was currently a lack of suitable

antagonist for GIPR. There were no morphological discrepancies among the wildtype,

GLP-1R and GIPR KO INS-1 832/3 cell lines. The receptors KO rat b cell lines were

also cultured in the same media as the wildtype INS-1 832/3 cell line. Insulin secretion

assays were again performed as previously described and the results were normalised

to the insulin secretion level at 2.8mM glucose in each individual cell line.

The following results showed that all three different cell lines, namely the INS-1

832/3 wildtype, GIPR KO and GLP-1R KO cell lines were able to mediate GSIS in the

presence of high glucose, with the extent of GSIS mediated in the wildtype cell line

the highest, followed by the GIPR KO cell line and lastly the GLP-1R KO cell line (the

potentiation of GSIS were by 480% (p < 0.0001), 309% (p < 0.05) and 287% respectively)

(Fig. 4.4). After showing that the GIPR KO and GLP-1R KO cell lines were able to

respond to glucose stimulation despite the lack of either GIPR or GLP-1R, these three

different cell lines were then stimulated with a range of glucagon-like peptides at high

glucose conditions. Concurred with the previous results (Fig. 4.3A), when 10nM GLP-1

was applied to the wildtype cell line, GSIS was potentiated by 213% compared to the

high glucose condition (p < 0.05). Similarly, GLP-1 was able to potentiate GSIS in the

GIPR KO cell line by 415% compared to the high glucose condition (p < 0.01); yet, the

larger increment of GSIS at the GIPR KO cell line may be due to the apparent smaller

GSIS induced at high glucose setting. GLP-1 was not able to further facilitate GSIS

in the GLP-1R KO cell line, implying that GLP-1 required the presence of GLP-1R

to mediate its insulinotropic action, and that GIPR and GCGR did not play a role in

mediating GLP-1-potentiated GSIS in the rat b cells. Similarly, 10nM Ex-4, which is a

close analogue of GLP-1, potentiated GSIS in the wildtype by 152% and in the GIPR
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KO cell line by 489%, yet it was not able to augment GSIS in the GLP-1R KO cell line,

further illustrating GLP-1R was essential for the insulinotropic action of Ex-4.

On the other hand, GIP at 10nM was able to facilitate GSIS in the wildtype setting,

resulting in a 231% increase in insulin secretion compared to when 16.7mM glucose

was applied (Fig. 4.4). GIP was also able to augment GSIS in the GLP-1R KO cell

line, with its potentiation significantly higher than the stimulation in the wildtype cell

line, illustrating GIP did not require GLP-1R in mediating its insulinotropic action.

Yet it was not able to enhance GSIS in the GIPR KO cell line, highlighting GIPR was

essential for GIP-mediated potentiated GSIS. The observations here concurred with the

published report by our collaborators, where they observed the lack of potentiation

in GSIS in the absence of GIPR KO when GIP were applied [Naylor et al., 2016]. The

results here also further validated the absence of GIPR and GLP-1R in the KO cell lines.

As previously shown in Fig. 4.3A, GLP-1(9-36)NH2, even when applied at high

concentration (1µM), did not potentiate insulin secretion; the GLP-1 metabolite also

did not have any augmentative effect in the GIPR KO and GLP-1R KO cell line (Fig.

4.4). OXM, when applied at 1µM, was able to enhance GSIS in the wildtype rat b

cells by 458% compared to the high glucose alone (p < 0.05), as established in Fig.

4.3A. OXM also increased GSIS by 359% in the GIPR KO cell line, which suggested the

OXM insulinotropic action was not mediated via GIPR. Interestingly, when OXM was

applied to the GLP-1R KO cell line, a small but statistically significant enhancement

of GSIS was observed (increase by 188%, compared to high glucose alone, p < 0.01).

It is plausible that OXM mediated its insulinotropic action through GCGR as OXM

was known to be a dual agonist of both GLP-1R and GCGR [Pocai et al., 2009]. It was

previously demonstrated in the cAMP functional assays utilising CHO-GLP-1R and

CHO-GCGR cells that OXM was capable of inducing potent cAMP responses at these

two structurally homologous receptors (Fig. 3.2) as well as the antagonist assays which

showed the action of OXM being partially blocked by the antagonisms of GCGR (Fig.

3.13).

Due to the outbreak of COVID-19, I was not able to include the evaluation of

the extent of GCG on the potentiation of insulin secretion in the three different INS-

1 cell lines. However, the results of which would serve as a valuable insight for

the whole picture of how different incretin hormones initiate their insulinotropic

actions. Following the characterisation of individual receptor contribution towards the

potentiation of GSIS in the rat b cells, the input of GLP-1R and GCGR on the pancreatic

a cells was next explored.
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Figure 4.4: The effects of GLP-1R KO or GIPR KO on glucagon-like peptide ligands facilitation of
GSIS in INS-1 832/3 cell lines. Mean ± S.E.M. insulin secretion data (responses normalised to the insulin
secretion response at 2.8mM) in 1-10 independent experiments with quadruplicates are shown in the
above scatter plots. Only preliminary results for some of the experiments conducted in the GLP-1R KO
cell line are presented due to COVID-19 obstruction of experimental schedule. Statistical significance
compared among peptide ligand responses in three different INS-1 832/3 cell lines were determined by
non-parametric Kruskal-Wallis test and are indicated by asterisks above the bars (*, p<0.05; **, p<0.01; ****,
p<0.0001).
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4.4.2 GLP-1R or GCGR antagonism on glucagon secretion

After evaluating the extent of insulin secretion in the GLP-1R KO or GIPR KO rat b

cells and proving the importance of GLP-1R in mediating the insulinotropic action

by GLP-1, it is of particular interest to deduce the individual receptor contribution

towards glucagon secretion in the mouse a cells. However, GLP-1R CRISPR/Cas9 KO

mouse aTC1.6 cell line was not readily available and that conducting glucagon secretion

in the InR1G9 cells, which lack endogenously expressed GLP-1R, was proven to be

technologically challenging due to their weaker glucagon secretion response [Powers

et al., 1990]. Furthermore, it has been noted by our collaborators that GCGR ablation in

mouse was not experimentally feasible as it led to marked a-cell hyperplasia as well as

failure to respond to elevated glucose. Therefore, GLP-1R specific peptide antagonist,

Ex-9, and GCGR specific small molecule antagonist, L-168,049, were utilised to aid the

following investigations. Here the mouse a cells were pre-incubated in high glucose

(16.7mM) containing KRB for an hour, followed by pre-incubation of receptor specific

antagonists (1µM Ex-9, 1µM L-168,049 or a combination of both) for 30 mins, and lastly

incubated with GLP-1 or GLP-1(9-36)NH2 in the presence of the antagonists for an

hour; the DMSO content were equal across all conditions. The glucagon levels were

then quantitatively measured. The concentrations of antagonists applied here aligned

with the doses commonly used in the investigation of the effect of receptor antagonism

on glucagon secretion [De Marinis et al., 2010, Ramracheya et al., 2018, Guida et al.,

2020].

The following preliminary results showed that glucagon secretion was promoted in

the presence of low glucose by 14.8% compared to the presence of high glucose, again

validating the functionality of the mouse a cells in responding to glucose stimulation

(Fig. 4.5). Furthermore, the presence of 1µM Ex-9 or 1µM L-168,049 alone did not affect

glucagon secretion in the presence of 5mM glucose, illustrating these two antagonists

did not interfere with glucagon secretion in the mouse a cells, which also agreed with

the observations by our collaborators who applied L-168,049 or Ex-9 in isolated mouse

islets [De Marinis et al., 2010, Guida et al., 2020]. Similar to the previous observations

in Fig. 4.2B, 100pM GLP-1 or GLP-1(9-36)NH2 suppressed glucagon secretion in low

glucose condition by 13.2% or 18.9% respectively, reversing the glucagon secretion

level to the same level as at 16.7mM glucose (Fig. 4.5). However, when 1µM Ex-9

was applied together with GLP-1 or GLP-1(9-36)NH2, the GLP-1 or GLP-1(9-36)NH2-

mediated glucagon inhibition was reversed, resulting in a higher glucagon level that
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was on par or higher than that due to the 5mM glucose stimulation, suggesting GLP-1R

was essential for their glucagonostatic actions (Fig. 4.5).

On the other hand, when 1µM L-168,049 was applied together with GLP-1 or

GLP-1(9-36)NH2, similar reversal actions of the inhibition of glucagon secretion were

observed. It also implied that GCGR was essential for mediating the glucagon inhibition

in the a cells (Fig. 4.5). Interestingly, when 1µM Ex-9 and 1µM L-168,049 were both

co-stimulated with either GLP-1 or GLP-1(9-36)NH2, reversal effect were once again

observed, which resulted in an even greater glucagon secretion increase by 36.1% and

50.0% compared to when GLP-1 and GLP-1(9-36)NH2 alone (Fig. 4.5). The significance

of this finding will be further discussed in later section.
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Figure 4.5: The extent of glucose-dependent glucagon secretion mediated by GLP-1 and GLP-1(9-
36)NH2 in the presence of GLP-1R and GCGR antagonists, Ex-9 and L-168,049, in mouse aTC1.6 cells.
The above figures show the extent of glucagon secretion when the aTC1.6 cells were pre-treated with
GLP-1R and GCGR antagonists, Ex-9 and/or L-168,049 respectively, 30 minutes before co-stimulating
with (A) GLP-1 and (B) GLP-1(9-36)NH2 at low glucose condition (5mM glucose) for an hour. Mean ±
S.E.M. glucagon secretion data (responses normalised to the glucagon secretion response at 5mM) in at
least 2 independent experiments with quadruplicates were shown in the above scatter plots. Statistical
significance compared with or without GLP-1R and GCGR antagonists in the presence of GLP-1 or
GLP-1(9-36)NH2 were determined by non-parametric Kruskal-Wallis test and are all non-statistically
significant.
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4.5 Pharmacological inhibition of the effect of insulin or gluca-

gon secretion

After determining the individual receptor contributions towards insulin and glucagon

secretion in rat insulinoma and mouse glucagonoma cells, the application of various

pharmacological inhibitors to further dissect the importance of individual signal trans-

duction pathway in mediating insulin and glucagon secretion was next attempted.

However, due to the outbreak of COVID-19, I was not able to complete the thorough

evaluation of individual intracellular signal transduction pathway mediated by each

individual glucagon-like peptide. Therefore, preliminary findings on the effect of

pharmacological blockage only on GLP-1-mediated GSIS were reported.

As consistent with the findings presented in previous chapter, together with many

other published studies, GLP-1R is capable of not only couple to Gas proteins, but also

the possibility of activating Gai proteins, therefore promoting or inhibiting adenylyl

cyclase to increase or reduce the production of cAMP. It was also shown that GLP-1R

can also activate the Gaq/11 protein (Fig. 3.6), further activating the PLC/DAG/IP3

pathway to facilitate iCa2+ release, mediating insulin exocytosis process [Shigeto

et al., 2015]. Furthermore, when the intracellular cAMP level is increased, PKA

pathway is activated, therefore enhancing the activity of the KATP channel, mediating

insulin secretion via membrane depolarization. The importance of EPAC1/2 signalling

pathway in mediating GLP-1 potentiated GSIS was acknowledged. However, due

to the time constraints, I was not able to perform the investigations towards the

EPAC signalling pathway on GLP-1 potentiated GSIS. Therefore, in order to deduce

individual pathway contribution towards GLP-1-potentiated GSIS, forskolin (direct

adenylyl cyclase activator) [Seamon et al., 1981], pertussis toxin (PTX) (irreversible Gai

protein ADP-ribosylator) [Katada and Ui, 1982], YM-254,890 (selective Gaq/11 inhibitor)

[Takasaki et al., 2004] as well as 8-Br-Rp-cAMP (PKA-inhibitor) [Gjertsen et al., 1995]

were applied into the rat insulinoma cells, in an attempt to understand the blockage of

specific downstream signalling pathway on the effect of GSIS. Given that the a and b

clonal cell lines were only incubated with these pathway inhibitors for a short period

of time (i.e two hours), their effects on cell viability and proliferation were assumed

to be minimal [Vivot et al., 2016]. Unfortunately, the effect of PTX on a and b clonal

cell proliferation has not yet been investigated. However, there were studies suggesting

blocking Gai/o signalling increased b cell mass in mice [Berger et al., 2015]. Hence it

was assumed that the a and b clonal cells were viable for insulin and glucagon secretion
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assays despite having received overnight PTX treatment.

4.5.1 Effects on insulin secretion

In order to demonstrate that the activation of Gas pathway would lead to an increase

in insulin secretion in rat b cells, forskolin, which is a direct adenylyl cyclase activator,

thereby promoting the production of intracellular cAMP levels, was applied to the rat

b cells. Here three different concentrations of forskolin (1µM, 0.01µM and 0.0001µM)

were applied in order to deduce if concentration-dependent effect exists in the cAMP

activation pathway on insulin secretion. The extent of forskolin potentiated GSIS was

then compared with that mediated by GLP-1 at 10nM.

Similar to previous observations (Fig. 4.1), insulin secretion was further enhanced

in the presence of high glucose by 615%, proving the functionality of the rat insulinoma

cells (Fig. 4.6A). Furthermore, the addition of 10nM GLP-1 further potentiated the

GSIS at high glucose by 169%, agreeing with the previous observations (Fig. 4.3 and

4.4). Notably, forskolin induced a dose-dependent increase of GSIS, whereby the

higher the forskolin concentrations applied, the greater the potentiation of GSIS was

(262% and 165% increases in GSIS when 1µM and 0.01µM forskolin were applied),

further illustrating the importance of the activation of Gas pathway in mediating

insulin secretion (Fig. 4.6A). Also, similar level of potentiation of insulin secretion

between 10nM GLP-1 and the low concentration of 0.01µM forskolin was noted, further

illustrating GLP-1 did not require a high level of Gas activation to promote potent

potentiation of insulin secretion.

On the other hand, the activation of Gai pathway influences the ultimate cAMP

production level as the activation of Gai pathway leads to an inhibition of the adenylyl

cyclase, therefore resulting in a lower level of cAMP production. To investigate the

influence of Gai pathway on insulin secretion, the INS-1 832/3 wildtype cells were

pre-treated with 200ng/µl PTX 16 hours prior to assays. PTX works by irreversibly ADP-

ribosylating the Gai protein, thereby uncoupling receptor-mediated Gai-dependent

cAMP inhibition [Katada and Ui, 1982]. The rat insulinoma cells were then stimulated

with GLP-1 at 10nM for one hour and insulin level was determined. Interestingly, the

PTX-pre-treated rat b cells did not show any statistically significant insulin secretion

changes compared to that with 10nM GLP-1 (Fig. 4.6B). However, an experimental flaw,

which was the lack of positive control of the PTX effect in the presence of high glucose

precluded the authenticity of such observation. Hence the results here were only of

preliminary nature.
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The effect of PKA pathway inhibition on the potentiation of GSIS mediated by

GLP-1 was next investigated. Upon pre-treating the rat b cells with the PKA inhibitor,

0.1mM 8-Rp-Br-cAMP for 30 mins prior to one hour co-stimulation with 10nM GLP-1,

no changes in GSIS in the presence of high glucose was observed, which concurred

with the observations from other published papers which showed that the application

of PKA inhibitor (myr-PKI) alone in high glucose condition in mouse islets did not

affect GSIS [Shigeto et al., 2015]. The potentiation of GSIS mediated by GLP-1 in the

presence of PKA inhibition (245%, when compared to high glucose alone) was higher

compared to that with GLP-1 stimulation only (by 158%, when compared to high

glucose alone) (Fig. 4.6C), which did not concur with the notion that PKA inhibition

would lead to the partial inhibition of GSIS mediated by GLP-1 as supported by other

published reports [Shigeto et al., 2015, Khajavi et al., 2018]. However, it is plausible

that alternative EPAC1/2 pathway was further potentiated, therefore compensating the

blockage of PKA pathway.

Lastly, the effect of Gaq pathway blockage on the effect of GSIS was investigated.

The rat b cells were pre-treated with 0.1µM YM-254,890 30 mins prior to co-stimulating

with 10nM GLP-1 for an hour. Here when the rat b cells were pre-treated with the

Gaq/11 inhibitor, GSIS in the presence of high glucose was decreased by 225% (Fig.

4.6D). When the rat b cells were stimulated with 10nM GLP-1 in the presence of the

Gaq/11 inhibitor, no changes in the insulin secretion were observed, yet this may be

attributed to the mixed population of resultant extent of insulin secretion and can be

improved by performing more experimental repeats. Given that GLP-1R is known to be

capable of activating Gaq protein and that Gaq and especially Ga11 proteins were highly

expressed in the INS-1 832/3 cells (Fig. 3.9), it was expected to see that the insulin

secretion in b cells would be decreased considering the intracellular iCa2+ release

pathway is instrumental to insulin secretion [Seino, 2012].
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Figure 4.6: The extent of GSIS enhanced by GLP-1 in the presence of pharmacological pathway in-
hibitors PTX, YM-254,890 and Rp-8-Br-cAMP and adenylyl cyclase activator forskolin in INS-1 832/3
WT cells. (A) shows the facilitation of GSIS when the rat insulinoma cells were stimulated at different
concentrations of the adenylyl cyclase activator, forskolin, at 1µM, 10nM and 0.1nM. (B) shows the extent
of GSIS when INS-1 832/3 WT cells were pre-treated with PTX for 16 hours prior to assay. (C) shows the
enhancement of GSIS when cells were pre-treated with the PKA inhibitor, Rp-8-Br-cAMP at 0.1µM, 30
minutes, before co-stimulating with GLP-1 at high glucose condition. (D) shows the inhibition of GSIS
when the rat b cells were pre-treated with the Gaq/11 inhibitor 0.1µM YM-254,890 30 minutes before
stimulating with high glucose and/or GLP-1. Mean ± S.E.M. insulin secretion data (responses normalised
to the insulin secretion response at 2.8mM) in an independent experiments with quadruplicates are shown
in the above scatter plots.
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4.5.2 Effects on glucagon secretion

Similar to the previous experimental approach in dissecting the individual pathway

contributions to the potentiation of GSIS mediated by GLP-1 in the rat b cells, pathway

inhibitors, namely PTX and YM-254,890, were also applied to the mouse aTC1.6 cells, in

an attempt to provide preliminary insights towards the mechanisms of how glucagon

secretion is affected by the blockage of Gai and Gaq signalling pathway.

The mouse a cells were pre-treated with 200ng/µl PTX for 16 hours prior to being

stimulated with 100pM GLP-1 or GLP-1(9-36)NH2. Similar to the previous observations,

the stimulation of the mouse a cells with either GLP-1 or GLP-1(9-36)NH2 led to the

suppression of GCG secretion by 7.88% and 13.8% respectively (Fig. 4.7A). However,

by inhibiting the Gai protein, the glucagon secretion inhibitory effect mediated by both

GLP-1 or GLP-1(9-36)NH2 was reversed; glucagon secretion mediated by GLP-1 and

GLP-1(9-36)NH2 after PTX pre-treatment were enhanced to a level that were similar to

that by the 5mM glucose stimuli (Fig. 4.7A). Yet, an important control of pre-treating

the a cells with PTX at 5mM glucose was missing in this set of experiment, therefore

precluding the validity of the results.

Likewise, the mouse a clonal cells were also pre-treated with the Gaq/11 inhibitor,

YM-254,890 at 0.1µM, for 30 mins prior to co-stimulating with GLP-1 and GLP-1(9-

36)NH2 for an hour. Notably, when YM-254,890 was applied in the presence of low

glucose only, it did not affect the basal glucagon secretion level (Fig. 4.7B), which

differed from the observations in the rat insulinoma cells, wherein the application of

YM-254,890 in the presence of high glucose would reduce the basal insulin secretion (Fig.

4.6D). Similarly, GLP-1 and GLP-1(9-36)NH2 demonstrated glucagonostatic effect in the

presence of low glucose stimulation, by suppressing glucagon secretion by 20.2% and

36.8% when compared to the low glucose stimulation alone, proving the functionality

of the mouse aTC1.6 cells (Fig. 4.7B). Yet, when either GLP-1 or GLP-1(9-36)NH2

was applied in the presence of YM-254,890, the inhibitory effect mediated by GLP-1

or GLP-1(9-36)NH2 was reversed, with the glucagon secretion level reverted back to

the level which was similar to the 5mM glucose stimulation (for the case of GLP-1)

or to a much greater extent than the 5mM glucose stimulation alone (for the case of

GLP-1(9-36)NH2) (Fig. 4.7B). These series of experiments implied the importance of

Gaq activation in regulating glucagon secretion in the a cells, which will be discussed

in later section.
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Figure 4.7: The extent of glucagon secretion mediated by GLP-1 and GLP-1(9-36)NH2 in the presence
of pharmacological inhibitors PTX and YM-254,890 in aTC1.6 cells. (A) shows the extent of glucagon
secretion when aTC1.6 cells were pre-incubated overnight with PTX, irreversibly uncoupling receptor-
mediated Gai-dependent cAMP inhibition. (B) shows the extent of glucagon secretion when the cells
were pre-treated with the Gaq/11 protein inhibitor 0.1µM YM-254,890 30 minutes before applying peptide
ligands. Mean ± S.E.M. glucagon secretion data (responses normalised to the glucagon secretion response
at 5mM) in 2 independent experiments with quadruplicates are shown in the above scatter plots. Results
of 2 independent experiments are shown here due to COVID-19 obstruction of experimental schedule.
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4.6 Discussion

In this chapter, the insulin and glucagon secretion assaying technique, which are

relatively novel to the Ladds’ laboratory, were optimised and were subsequently

utilised to facilitate the investigations towards how GLP-1, and other glucagon-like

peptides, promote GSIS. The glucagonostatic actions of GLP-1 and its metabolite were

also of particular focus in this chapter. With the newly established technique, GLP-

1R and GCGR-specific antagonists and pharmacological inhibitors were employed

to investigate the importance of individual receptor contribution and downstream

signalling on insulin and glucagon secretion. The significance of the findings will be

discussed as follows.

4.6.1 Glucagon secretion is regulated by a tight balance of cAMP produc-
tion

GLP-1 has been shown to induce a dose-dependent augmentation of GSIS in isolated

mouse islets, presumably attributable to the increment of cAMP production upon

receptor activation via the Gas pathway [Shigeto et al., 2015]. Yet in the pancreatic a

cells, a reverse trend was observed: a high concentration of GLP-1 (10000pM) led to a

stimulation of glucagon secretion (Fig. 4.2), while at the optimally low concentration

(i.e. 100pM), maximal inhibition was observed; the glucagonostatic effect was once

again revered when an even lower GLP-1 concentration (1pM) was applied. Although a

smaller decrement of GLP-1 concentrations should have been used in this set of experi-

ment, here with the use of three concentrations that spanned across 1pM to 10000pM,

the lack of dose-dependency of GLP-1 suppression of glucagon secretion was observed.

Similar findings were also noted by our collaborators using isolated mouse islets [Guida

et al., 2020]. This observation suggests a lack of dose-dependent relationship of GLP-1

inhibition of glucagon secretion, unlike the concentration-dependent effect of GLP-1 on

insulin secretion. Interestingly, the application of a range of forskolin (0.1-10000nM) to

the mouse islets also mimicked the non-linear relationship observed in the relationship

between GLP-1 concentrations and glucagon secretion [De Marinis et al., 2010]. The

authors attributed the phenomenon to the sensitivity of the a cells towards cAMP

activation, that a high level of cAMP production would in turn stimulate the release

of glucagon secretion, activating the type II PKA and EPAC pathway. On the other

hand, only a small range of intracellular cAMP level is needed to activate the type I

PKA pathway, which is responsible for the inhibition of glucagon release [De Marinis
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et al., 2010], thereby explaining why GLP-1 and GLP-1(9-36)NH2 at picomolar range

appear to be more glucagonostatic than when applied at nanomolar range (Fig. 4.2).

Furthermore, other studies have shown that although Ca2+ is an important player in

inducing exocytosis of glucagon containing vesicles, it only plays a permissive role in

mediating exocytosis as the magnitude of exocytosis is predominantly regulated by

cAMP [Tengholm and Gylfe, 2017, Yu et al., 2019]. Also, total plasma GLP-1 levels

range between 10-50 pM of which only less than 20% is attributed to GLP-1 [Holst,

2007], which coincides with the extremely low concentration needed to inhibit glucagon

secretion (Fig. 4.2). Therefore, it is postulated that glucagon secretion may be under

strong tonic inhibition by low picomolar range circulating GLP-1 or GLP-1(9-36)NH2

[Guida et al., 2020]. This tonic inhibition may be mediated by the GLP-1 activation

of the extremely low level of GLP-1R, producing a much lower level of cAMP, yet

sufficient for the inhibitory action of glucagon secretion.

Contrary to GLP-1, GIP stimulates glucagon secretion (Fig. 4.3). Given that the

GIPR had a higher expression of 5-fold difference compared to that of GLP-1R in

the mouse aTC1.6 cells (Fig. 3.7) and it was previously shown in Fig. 3.2 that GIP

selectively activated GIPR, the glucagon-stimulatory effect observed was likely to be

attributed to the GIPR. As previously discussed, only a small range of intracellular

cAMP production is needed to suppress glucagon secretion [De Marinis et al., 2010].

Therefore, the apparent GIP stimulatory effect glucagon secretion can be explained

by the fact that GIP activates the highly abundant Gas-coupled GIPR in the mouse a

cells, thereby produces a higher level of cAMP, leading to the stimulation of glucagon

secretion. In fact, the higher level of cAMP produced by GIP compared to that of GLP-1

in the mouse glucagonoma has been shown in Fig. 3.10 (pEC50 of GIP and GLP-1

were 7.54 ± 0.29 and 6.85 ± 0.22 respectively). It again suggests the importance of

maintaining the tight cAMP production balance in the regulation of glucagon secretion,

as a slight deviation of cAMP levels leads to differences in the physiological outcome.

4.6.2 Direct involvement of GLP-1R and GCGR in inhibiting glucagon se-
cretion

GLP-1 requires GLP-1R to mediate its insulinotropic action, which was demonstrated

in Fig. 4.4, as GLP-1 could not further enhance GSIS in the INS-1 GLP-1R KO cell line.

The results here also agreed with the observation by our collaborators who created

the CRISPR-KO cell lines [Naylor et al., 2016] as well as agreeing with Shigeto and

colleagues who utilised both isolated human and mouse islets with the application
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of GLP-1R specific antagonist, Ex-9, and showed that antagonism of GLP-1R did not

lead to GLP-1-potentiated GSIS [Shigeto et al., 2015]. The results also concurred with

the previous observation in Fig. 3.14, whereby the extent of cAMP accumulation

mediated by GLP-1 in the presence of the GCGR specific antagonist, L-168,049, was not

affected in the INS-1 832/3 WT cells, suggesting GCGR was not critical in mediating

GLP-1-potentiated GSIS.

Similar to its insulinotropic action via GLP-1R, GLP-1, as well as its metabolite

GLP-1(9-36)NH2, required GLP-1R to mediate their glucagonostatic action, as the

presence of the specific GLP-1R antagonist reversed their glucagonostatic actions (Fig.

4.5). The results here agreed with the previous reports by our collaborators where

they also applied 1µM Ex-9 together with GLP-1 in the isolated mouse and human

islets and observed a reversal in GLP-1 inhibitory effect on the glucagon secretion [De

Marinis et al., 2010, Ramracheya et al., 2018]. Interestingly, the results here showed

that GLP-1(9-36)NH2 also required GLP-1R to mediate its glucagon-inhibitory action,

which were different from that observed by our collaborators. In their studies, they

applied GLP-1(9-36)NH2 to the isolated GLP-1R-knock out mouse islets and showed

that GLP-1(9-36)NH2 was still able to inhibit glucagon secretion despite the lack of GLP-

1R [Guida et al., 2020]. However, they acknowledged the fact that genetically knockout

mice might not be sufficient in evaluating the influence of receptor antagonism on

glucagon secretion. They suggested that it would be more appropriate to both apply

antagonists and genetically knockout receptors of interest in order to deduce the true

effect of individual receptor contribution on glucagon secretion [Guida et al., 2020].

Nonetheless, there is a universal agreement that the low expression level of GLP-1R in

the pancreatic a cells are directly involved in mediating GLP-1 glucagonostatic action.

Interestingly, GLP-1, together with its metabolite, can also mediate their glucagono-

static actions via GCGR (Fig. 4.5). The findings here also corroborated with the results

from our collaborators, which they demonstrated that both GLP-1 and GLP-1(9-36)NH2

could no longer mediate their glucagonostatic actions in the presence of L-168,049

mediated GCGR antagonism [Guida et al., 2020] as well as other studies using des-

His1-Glu9-Glucagon [Ma et al., 2005]. In fact, according to the results shown in Fig.

3.2, GLP-1 and GLP-1(9-36)NH2 mediated their partial agonism at the GCGR, result-

ing in cAMP production despite at very low potencies. Furthermore, coupled with

RAMP2, GLP-1(9-36)NH2 potency was enhanced by more than 10-fold (Fig. 3.16). Yet

the physiological significance of RAMP2 on GLP-1(9-36)NH2 suppression of glucagon

secretion was not explored and will be served as an important piece of future work.
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Also, both GLP-1 and GLP-1(9-36)NH2 agonistic action in enhancing cAMP production

can be blocked by L-168,049 (Fig. 3.13), substantiating the notion that both GLP-1

and GLP-1(9-36)NH2 may act through GCGR in the mouse a cells to mediate their

glucagonostatic action.

More intriguingly, the antagonism of both receptors led to an even greater increase in

glucagon secretion (Fig. 4.5), further suggesting the co-presence of these two receptors

was crucial for the inhibitory actions of both GLP-1 and GLP-1(9-36)NH2, presumably

via the tight control of cAMP levels upon receptor activation as discussed previously.

The above findings pose further question if crosstalk exists between GLP-1R and GCGR

in the pancreatic a cells [Roed et al., 2015]. According to the studies which co-expressed

GLP-1R and GCGR in recombinant cell systems, the authors suggested that the GLP-

1R and GCGR co-expression did not affect cAMP signalling, but only reduced iCa2+

release and pERK1/2 signals at the GLP-1R [Roed et al., 2015]. Given that iCa2+ release

also plays a role, despite a permissive one, in the regulation of glucagon secretion

(Fig. 4.7; which will be discussed below), it may be possible that the crosstalk between

GLP-1R and GCGR which regulates the iCa2+ release may be crucial to the GLP-1

and GLP-1(9-36)NH2 glucagonostatic action. However, more studies, such as applying

specific inhibitors that target Ca2+ signalling, are needed to investigate such hypothesis.

4.6.3 Gaq and Gai subunits: key players of GLP-1 glucagonostatic action?

While the blockage of Gai activation in the rat b clonal cell system did not appear to

have any influence on insulin secretion (Fig. 4.6), the inhibition of Gai activation was

found to reverse the glucagonostatic actions mediated by GLP-1 and GLP-1(9-36)NH2

(Fig. 4.7). In fact, our collaborators have also shown similar observations, however

they noted that only the GLP-1(9-36)NH2-mediated glucagon inhibitory effect was

sensitive to the Gai inhibition while the GLP-1 suppression on glucagon secretion was

not affected in the mouse isolated islets [Guida et al., 2020]. Yet, the utilisation of a pure

population of mouse clonal a cell systems here confers distinct advantage in observing

specific effect on a particular pancreatic cell forms, as opposed to using isolated mouse

islets, as a mixed population of pancreatic cell components are present in the isolated

mouse islets. Therefore, the findings here may reflect the true Gai-inhibited effect on

the GLP-1 and GLP-1(9-36)NH2 glucagonostatic effect. Furthermore, given the role of

Gai in inhibiting adenylyl cyclase, thereby reducing the level of intracellular cAMP

produced, the results here also imply that the Gai signalling pathway are critical for

the tight regulation of intracellular cAMP level; a slight disturbance of the system may
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lead to the stimulation of glucagon secretion.

Intriguingly, the blockage of Gaq pathway with the use of YM-254,890 reversed

the glucagonostatic action of GLP-1 and to an even greater extent for GLP-1(9-36)NH2

(Fig. 4.7), which contrasted with a recent study utilising the human pseudoislets

systems expressing the designer receptors exclusively activated by designer drugs

(DREADDs) hM4Di or hM3Dq to investigate Gai and Gaq signalling on insulin and

glucagon secretion [Walker et al., 2020]. In their studies, the authors showed that the

Gaq activation robustly stimulated glucagon secretion under low glucose condition,

in contrast to the inconclusive stimulatory or inhibitory effect on GSIS [Walker et al.,

2020]. However, given the fact that GIPR has been shown to pleiotropically couple to

Gaq, it may suggest GIPR may stimulate glucagon secretion via Gaq activation, and

indeed GIPR has been shown to pleiotropically couple to Gaq [Harris et al., 2017].

While the contrasting glucagon secretion inhibitory action mediated by GLP-1 and

GLP-1(9-36)NH2 may be due to the outcome of Gas and Gai activation. However, more

studies are needed to explore such linkage between the two pathways in mediating

glucagon secretion.

Given the time constraints, I was not able to further investigate the role of PKA

activation on the GLP-1(9-36)NH2-mediated glucagonostatic action. It would be of

significant interest to investigate the role of PKA activation in glucagon secretion as

our collaborators suggested a differential impact of PKA activation on GLP-1 and GLP-

1(9-36)NH2 inhibition of the glucagon secretion in isolated mouse islets [De Marinis

et al., 2010, Ramracheya et al., 2018, Guida et al., 2020].
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4.7 Chapter summary

In this chapter, the optimisation of the insulin and glucagon secretion assays was first

described. They served as invaluable tools towards the understanding insulin and

glucagon secretion molecular mechanism as well as for compound screening, which

will be described in the next chapter. Key aspects that are crucial to the regulation of

insulin and glucagon secretion are highlighted as follows:

• Insulin secretion is glucose-dependent. On the other hand, glucagon secretion

is inversely correlated to the glucose level, during which the lower the glucose

applied, the higher the glucagon secretion is. However, paradoxical glucagon

secretion exists at very high glucose level (i.e. above 25mM), which also agreed

with other published reports.

• A range of glucagon-like peptides, namely GLP-1, OXM, Ex-4, GCG and GIP are

able to potentiate GSIS in the rat b cells. GLP-1(9-36)NH2 is the exception.

• In terms of glucagon secretion, GLP-1 and GLP-1(9-36)NH2 at picomolar range

mediate potent glucagon secretion inhibitory effect in the mouse a cells compared

to when nanomolar concentration of peptide ligands are applied. On the other

hand, GIP potentiates glucagon secretion in the mouse a cells.

• GLP-1 and Ex-4 require GLP-1R activation to mediate the potentiation of GSIS,

as both peptide ligands do not potentiate GSIS in GLP-1R KO INS-1 cell line.

Likewise, GIP requires GIPR to augment GSIS. OXM requires both GLP-1R and

GCGR to potentiate GSIS.

• GLP-1 and GLP-1(9-36)NH2 require both the GLP-1R and GCGR to mediate their

glucagonostatic actions in the mouse a cells, as the blockage of either one of

the receptors with the use of antagonists reverses their suppressive actions on

glucagon secretion.

• 0.01µM forskolin potentiates GSIS as a similar level to 10nM GLP-1 in the rat b

cells. PTX, YM-254,890 and PKA inhibitor does not influence the insulin secretion

in b cells, however further studies are needed.

• PTX and YM-254,890 inhibitions lead to the reversal action of GLP-1 and GLP-1(9-

36)NH2 in the mouse a cells, illustrating the importance of these two pathways in

regulating glucagon secretion in the a cells.
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Chapter 5

Identification and characterisation
of GLP-1R small molecule positive
allosteric modulators

5.1 Introduction

GLP-1-based therapies, such as the injectable-based exenatide (Ex-4) and liraglutide,

as well as the newly developed orally-administered semaglutide [Thethi et al., 2020],

have been increasingly used as T2DM treatments in recent years due to their clinically

proven efficacy in reducing blood glucose level as well as the reported beneficial weight

loss effect in obese T2DM patients [Drucker, 2018]. However, given that most of

these extortionate GLP-1-based drug treatments are injection-based, patient compliance

is significantly hindered [Defronzo et al., 2015]. Also, immense costs are incurred

in producing peptide-based drugs, therefore prompting the need to develop small

molecule drugs. Furthermore, despite their proven clinical efficacy, side effects, such

as pancreatitis, nausea and vomiting, are intolerable to certain patient groups, urging

the need to improve existing GLP-1-based treatments [Harris and McCarty, 2015].

Therefore, alternative GLP-1-targeted T2DM treatments are prompted, leading to the

search for small molecule agonists or positive allosteric modulators (PAM) that target

GLP-1 cognate receptor, GLP-1R, in an attempt to not only potentially improve the

clinical tolerance profile of the existing GLP-1-based T2DM treatments, but also reduce

the cost of the peptide-based therapies.

A series of novel quinoxaline-based GLP-1R small molecule PAMs which enhance
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GLP-1(9-36)NH2-mediated cAMP responses were identified during my MPhil project,

supervised by Dr Graham Ladds [Yeung et al., 2016]. Compound 249, in particular,

potentiates OXM-mediated cAMP responses in CHO-GLP-1R cells (Appendix B.1).

OXM, as shown in Fig. 3.2 and 3.6, is a dual full agonist at both GLP-1R and GCGR;

it is proposed to be a novel drug target for both obesity and T2DM treatments [Holst

et al., 2018]. Given the distinct potentiation of the OXM-mediated cAMP responses

demonstrated by compound 249, further pharmacological validations of this small

molecule were conducted using the HEK293S-GLP-1R-WT cell line as part of my PhD

work. Following the validation of the pharmacological properties of compound 249, its

potential augmentation of GSIS were tested in the rat clonal pancreatic b cell line as

well as in ex vivo isolated mouse islets, using the insulin secretion assaying technique

established in Section A.1.

Furthermore, given the unique profile of compound 249, a series of compound 249-

derived analogues were designed by our collaborator, Dr Taufiq Rahman (Department

of Pharmacology, University of Cambridge), in order to further explore the structure-

activity-relationship (SAR) among compound 249, as the lead pharmacophore, and its

analogues. A further series of analogues were also identified via ligand-based virtual

screening using compound 249 as the bait by Miss Kathleen Bowman (Department of

Pharmacology, University of Cambridge); the biological screenings of which will also

be presented in this chapter. Apart from the compound 249 analogues, another series

of compounds, which were based on the reported central nervous system penetrant

GLP-1R PAM, VU0453379 (also known as S-9b) [Morris et al., 2014], as well as another

series which were designed to mimic the structure of GLP-1, were also designed by

Dr Taufiq Rahman. Given their lack of intrinsic GLP-1R agonism and allosterism,

the results of which will not be reported but are available in the Appendix B.2 and

B.3. Unfortunately, due to COVID-19 obstruction of experimental schedule, some of

the results presented in this chapter are of preliminary nature only, and are noted

accordingly. First, the screening of compound 249 in various class B GPCRs will be

discussed.
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5.2 Class B GPCR screening

5.2.1 Screening of compound 249 agonism against other Class B GPCRs

It was established in my MPhil work that compound 249 does not possess intrinsic

GLP-1R agonism. However, its intrinsic agonism on other structurally related class B

GPCRs has not been investigated. Hence to deduce if compound 249 activates other

class B GPCRs, plasmids encoding GLP-1R, glucagon-like peptide 2 receptor (GLP-2R),

calcitonin receptor (CTR), growth-hormone-releasing hormone receptor (GHRHR),

corticotropin-releasing hormone receptor 1 (CRF1) and corticotropin-releasing hormone

receptor 2 (CRF2) were transfected into HEK293S cells at a 1:1 receptor-to-vector

ratio; the transfection of calcitonin-like receptor (CLR) and RAMP1 at a 1:1 ratio were

included. The determination of compound 249 agonism at GCGR and GIPR was not

included in this screen but will be discussed in later section (Section 5.5). HEK293S

cells transiently transfected with vector were used as null receptor background for the

identification of agonistic activity.

Similar to the previous approach in examining the cAMP signalling properties

of GLP-1R endogenous peptide agonists (Section 3.2.2) and given the fact that GLP-

1R is predominantly Gas-coupled, cAMP functional assays were used again as the

preliminary biological screens for potential agonism. BETP, which is a known GLP-1R

ago-PAM [Sloop et al., 2010], was included to act as a positive control to demonstrate

GLP-1R activation. HEK293S cells transiently transfected with different receptors of

interests were exposed to a range of compound 249 and BETP (from 100µM to 10pM)

for 15 mins in the presence of the PDE inhibitor, rolipram, before the measurement of

cAMP accumulation.

Concurred with the previous observation in the CHO-GLP-1R cell line, compound

249 did not demonstrate GLP-1R agonism, nor did it activate other class B GPCRs

(Fig. 5.1). The slight increase in cAMP activation at high concentration was due to the

autofluorescence of the compound when high concentration (i.e. at 100µM) was added,

as the cAMP functional assay was TR-FRET based. In contrast to compound 249, BETP

exhibited weak GLP-1R agonism (pEC50 being 5.62 ± 0.26), corroborating with other

published papers [Sloop et al., 2010]. The agonistic activity of BETP is GLP-1R specific,

as it did not activate other class B GPCRs (Fig. 5.1). Having concluded that compound

249 did not activate GLP-1R and that the reference compound, BETP, exhibited GLP-1R

agonism, the potential allosterism of compound 249 on other class B GPCRs was next
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Figure 5.1: Compound 249 Class B GPCR agonism screening. (A) Compound 249 was screened against
other class B GPCRs in order to determine if it has any agonistic activities towards GLP-1R, GLP-2R,
GHRH, CRF1, CRF2, CTR, and CLR/RAMP1 complex. (B) BETP was also screened against the class B
GPCRs. 1000 cells/well HEK293S transiently transfected with receptors or/and RAMP1 of interest were
stimulated with compound 249 or BETP for 15 minutes in the presence of PDE inhibitor rolipram. All
data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation. All
data are means of 3 independent experimental with duplicates results ± S.E.M (upper error bars) and
were fitted to the three-parameter logistic equation.
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5.2.2 Screening of compound 249 allosteric effect on other Class B GPCRs

Following the conclusion of compound 249 lack of intrinsic agonism at class B GPCRs,

compound 249 allosterism on cognate endogenous ligands of different secretin-like

receptors were examined. To do so, HEK293S cells which transiently expressed class

B GPCRs of interests were stimulated with their respective cognate agonists, which

were, OXM for GLP-1R, glucagon-like peptide-2 (GLP-2) for GLP-2R, growth-hormone-

release hormone (GHRH) for GHRHR, corticotropin-releasing hormone (CRF) for both

CRF1 and CRF2, calcitonin (CT) for CTR, and lastly calcitonin gene-related peptide

(CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2) for CLR/RAMP1 complex

in the presence of a fixed concentration (at 10�5M) of compound 249 or BETP for

15 mins prior to cAMP measurement. Again, the determination of compound 249

allosterism on GCGR and GIPR will be presented in later section (Section 5.5).

Compound 249 demonstrated potentiation of OXM-mediated cAMP responses at

the GLP-1R (pEC50 value increased from 8.01 ± 0.13 to 8.57 ± 0.10, p < 0.01) (Fig. 5.2

and Table 5.1). Moreover, compound 249 did not modulate the potencies or efficacies

of other cognate agonists of class B GPCRs. Intriguingly, the preliminary results here

showed that BETP, which is GLP-1R-specific ago-PAM [Sloop et al., 2010], reduced the

potency of GLP-2 at the GLP-2R (pEC50 value decreased from 9.71 ± 0.23 to 9.29 ±
0.13) and potentiated GHRH potency at the GHRHR (pEC50 value increased from 8.14

± 0.18 to 9.27 ± 0.32) (Fig. 5.2 and Table 5.1). Based on the GLP-1R-specific cAMP

potentiation demonstrated by compound 249, further pharmacological characterisation

was performed to validate its potential to be further developed as a novel T2DM

treatment.
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Figure 5.2: Compound 249 class B GPCRs allosteric modulation screening. Compound 249 was screened
against other class B GPCRs in order to determine if it has any allosteric modulation activities towards
other class B GPCR other than GLP-1R. Compound 249 was screened against (A) OXM/GLP-1R, (B)
GLP-2/GLP-2R, (C) GHRH/GHRHR, (D) CRF/CRF1, (E) CRF/CRF2, (F) CT/CTR, CLR/RAMP in the
presence of (G) CGRP, (H) AM and (I) AM2. 1000 cells/well of HEK293S transiently transfected with
receptors of interest and/or RAMP1 were stimulated with their cognate ligands for 15 minutes in the
presence of PDE inhibitor rolipram. All data were normalised to the maximum cAMP response determined
by 100µM forskolin stimulation. All data are means of 1 to 3 independent experimental results with
duplicates ± S.E.M (upper error bars) and were fitted to the three-parameter logistic equation. Table 5.1
shows the pEC50 and Emax values of the individual ligand responses.
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Table 5.1: cAMP accumulation potencies (pEC50) and maximal responses (Emax) of compound 249
class B GPCRs allosteric modulation screening in HEK239S transiently transfected with receptors of
interest.

Receptor Cognate 
ligands

Compound 
(at 10-5M) pEC50 

a Emax 
b Span n

GLP-1R OXM

DMSO 8.01±0.13 96.24±4.26 93.51±6.10 4

249 8.57±0.10 92.36±2.18 90.00±4.52 4

BETP - - - -

GLP-2R GLP-2

DMSO 9.71±0.23 61.33±3.67 46.40±4.43 6

249 9.55±0.13ns 62.17±2.35ns 53.01±2.76 6

BETP 9.29±0.13 59.59±2.68 56.50±3.06 2NB

GHRHR GHRH

DMSO 8.14±0.18 62.34±3.38 47.51±3.81 6

249 8.21±0.28ns 63.26±3.57ns 32.45±4.05 6

BETP 9.27±0.32 59.05±3.23 32.76±4.21 2NB

CRF1

CRF

DMSO 10.05±0.31 48.54±3.03 31.65±4.17 6

249 9.84±0.44ns 51.86±4.38ns 31.87±5.96 6

BETP 9.21±3.16 56.30±5.24 21.38±62.05 2NB

CRF2

DMSO 6.04±0.05 60.06±1.69 61.23±1.72 6

249 5.95±0.14ns 61.48±4.94ns 60.61±5.01 6

BETP 6.01±0.16 53.44±4.91 53.69±4.99 2NB

CTR CT

DMSO 10.33±0.63 49.51±3.33 18.19±4.81 6

249 9.20±0.79ns 54.31±4.02ns 13.23±4.70 6

BETP 13.17±5.40 41.40±2.52 22.38±166.19 2NB

CLR/RAMP1

CGRP

DMSO 7.08±0.25 47.72±6.04 43.73±6.20 6

249 7.39±0.21ns 48.07±3.94ns 42.18±4.09 6

BETP - - - -

AM

DMSO 6.07±0.84 44.78±37.06 40.21±36.63 4

249 6.47±0.61 38.17±12.50 30.69±12.27 4

BETP - - - -

AM2

DMSO 6.85±0.35 34.57±6.71 28.40±6.73 4

249 6.65±0.37 37.66±7.23 29.42±7.15 4

BETP - - - -

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared cAMP accumulation ligand responses between cognate ligand in
the presence of DMSO and in the presence of compound 249 or BETP were determined by Student’s
t-test with Welch’s correction or one-way ANOVA with Bonferroni’s correction (**, p < 0.01; ns,
non-statistically significant).
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5.3 Pharmacological characterisation of compound 249 alloster-

ism at GLP-1R

Previously, the potentiation of cAMP response mediated by compound 249 was es-

tablished to be GLP-1R-selective. In this section, pharmacological characterisation of

compound 249 was performed in an attempt to deduce its potential modulation of

other downstream signalling pathways, such as iCa2+ release and phosphorylation of

ERK1/2 (pERK1/2). HEK293S-GLP-1R-WT cell line, as established in Section 3.2.6 to

be a useful system in investigating iCa2+ signalling, was used again as its use is also

validated by other research groups to be a robust system for identifying small molecule

agonists or PAMs [Wootten et al., 2012, Bueno et al., 2020]. But first, the comparison of

the extent of intrinsic agonism exhibited by compound 249, and the two well-studied

ago-PAMs [Knudsen et al., 2007, Sloop et al., 2010], compound 2 and BETP will be

reiterated for completeness.

5.3.1 Compound 249 lacks intrinsic agonism at the GLP-1R

Compound 2 and BETP were used frequently in this project to act as reference com-

pounds to compare the pharmacological action with compound 249. To establish a

comparison of the extent of agonism among compound 249, compound 2 and BETP,

these compounds were applied to HEK293-GLP-1R-WT cells at a range of concentra-

tions (from 100µM to 10pM). Concurred with the results shown previously in Fig. 5.1,

compound 249 did not activate GLP-1R (Fig. 5.3). Corroborated with the published

reports, compound 2 and BETP were partial agonists at the GLP-1R (their pEC50 values

being 5.57 ± 0.08 and 5.63 ± 0.22 respectively) [Knudsen et al., 2007, Sloop et al., 2010],

with Compound 2 being more efficacious than BETP.
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Figure 5.3: Compound 249 does not exhibit agonism in HEK293S-GLP-1R-WT cells. 1000 cells/well of
HEK293S-GLP-1R-WT cells were stimulated with compound 249, Compound 2 and BETP at a range from
100µM to 10pM for 8 minutes without the presence of PDE inhibitors to measure cAMP accumulation. All
data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation and
were means of duplicate from 3 independent experiments ± S.E.M (upper error bars).
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5.3.2 Compound 249 positive allosteric modulation of GLP-1R peptide ago-
nists

Following the observations that compound 249 did not activate GLP-1R and that it

showed preferential potentiation of OXM-mediated cAMP accumulation response in the

CHO-GLP-1R cell line, the findings were further validated in the HEK293S-GLP-1R-WT

cell line. To do so, cAMP functional assays were performed during which various

fixed concentrations of compound 249 were added to the GLP-1R endogenous agonists,

namely GLP-1, OXM and GCG. Compound 2 and BETP were again assayed alongside

compound 249 to act as comparisons of the allosteric activity of compound 249.

Concurred with the findings in the CHO-GLP-1R cell line (Appendix B.1), com-

pound 249 demonstrated robust concentration-dependent augmentation of OXM-

mediated cAMP responses only, which it enhanced the potency of OXM by 4.47-fold

(pEC50 values increased from 7.98 ± 0.06 to 8.69 ± 0.08, p < 0.001) when compound

249 at 10µM was applied (Fig. 5.4 and Table 5.2). Compared to compound 2 which

enhanced the basal activities of OXM due to its potent intrinsic GLP-1R agonism as

seen in Fig. 5.3 (Emin increased from 2.62 ± 1.84 to 81.88 ± 1.50, p < 0.0001), compound

249 did not affect the basal activity of OXM (Fig. 5.4 and Table 5.2), as it did not

activate GLP-1R (Fig. 5.3). Furthermore, compound 249 only marginally enhanced

cAMP responses mediated by GLP-1 and GCG, while compound 2 and BETP were

able to significantly facilitate all three agonists-mediated cAMP responses (Fig. 5.4 and

Table 5.2), as also shown by other published papers [Koole et al., 2010, Wootten et al.,

2013a].

As explained in Section 1.6.4, the operational model of allosterism is commonly

used to aid the classification of the mode of actions of allosteric modulators, which can

be a PAM, a negative allosteric modulator (NAM) or a neutral allosteric ligand (NAL),

depending on the quantified outcome represented by logab. To elucidate compound

249 mode of allosterism, the operational model of allosterism was applied in order to

obtain the allosteric parameters, which is a product of affinity (a) and efficacy (b), which

quantify the extent of cooperativity. Here a positive logab value of 1.02 was resulted,

which confirmed the action of compound 249 as a PAM on the OXM-mediated cAMP

response (other allosteric parameters were detailed in Table 5.4). After the examination

of the compound 249 positive allosterism of cAMP responses, the effect of compound

249 on Gai-inhibition of cAMP responses was next investigated.
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Figure 5.4: Compound 249 only displays prominent positive allosteric modulation on OXM-mediated
cAMP accumulation response in HEK293S-GLP-1R-WT cells. Panel A-C show that compound 249
exhibits a prominent positive allosteric potentiation only in OXM-mediated cAMP response but not in
GLP-1- or GCG-mediated cAMP responses. Panel D to F show the positive allosteric modulation mediated
by compound 2 at GLP-1, OXM and GCG while Panel G to I show the same PAM activity mediated by
BETP. 500 HEK293S-GLP-1R-WT cells/well under 8-minute co-stimulation with peptide ligands without
the use of PDE inhibitor were used in the cAMP assays. All data were normalised to the maximum cAMP
response determined by 100µM forskolin stimulation. All data are means from at least 3 independent
experiments with duplicates ± S.E.M (upper error bars). Statistical significance compared with GLP-1,
OXM or GCG (*, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001) for compound 249, compound 2 and
BETP were determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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Table 5.2: Compound 249 exhibits a positive allosteric modulation specifically on OXM-mediated
cAMP response in HEK293S-GLP-1R-WT cell line.

Ligand Compound Conc. pEC50 
a Emax 

b Emin
c Span n

GLP-1

DMSO - 10.31±0.05 101.28±2.44 5.29±1.63 95.99±2.62 8

249 1x10-5M 10.43±0.05ns 99.92±1.92 12.57±1.42 87.35±2.12 8

Compound 2 1x10-5M 10.00±0.18ns 99.59±2.33 76.28±1.33**** 23.31±2.36 8

BETP 1x10-5M 10.73±0.11** 98.71±3.57 15.54±3.41 83.17±4.41 8

OXM

DMSO - 7.98±0.06 117.7±4.2 2.62±1.84 115.0±4.18 8

249 1x10-5M 8.69±0.08*** 107.1±3.0 14.06±2.76 93.05±3.64 8

Compound 2 1x10-5M 8.34±0.16ns 110.2±2.1 81.88±1.50**** 28.37±2.27 6

BETP 1x10-5M 8.95±0.08**** 109.7±2.7 13.11±3.18 96.64±3.78 6

GCG

DMSO - 7.61±0.04 99.38±1.80 2.75±1.67 102.13±2.18 6

249 1x10-5M 7.82±0.06* 95.74±1.95 5.67±2.19 90.07±2.62 6

Compound 2 1x10-5M 8.28±0.14**** 96.70±1.08 73.44±1.67**** 23.26±1.82 4

BETP 1x10-5M 8.94±0.06**** 90.75±1.24 7.76±3.20 82.99±3.25 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with GLP-1, OXM or GCG (*, p < 0.05; **, p < 0.01; ***, p < 0.001,
****, p < 0.0001; ns, non-statistically significant) for compound 249, compound 2 and BETP were
determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.3.3 Compound 249 negative allosteric modulation of Gai-inhibition cAMP
responses

As stated previously (section 1.5.2) that both Gas and Gai subunits activation contribute

to the overall intracellular cAMP production and that GLP-1R is known to pleiotrop-

ically couple to different G proteins, including the Gai subunit [Weston et al., 2014],

compound 249 influence on the Gai-inhibition of cAMP response was examined in

the HEK293S-GLP-1R-WT cell line. To do so, the cells were pre-treated with 200ng/µl

pertussis toxin (PTX) or vehicle 16 hours prior to assaying, the total cAMP accumulation

upon agonist stimulation were then measured.

Consistent with previously established results (Fig. 5.4), compound 249 was able to

enhance OXM-mediated cAMP responses by 4.47-fold (pEC50 values increased from

7.98 ± 0.06 to 8.69 ± 0.08, p < 0.001) in the vehicle pre-treated cells. Yet in cells

receiving PTX-pre-treatment, the potency of OXM decreased from 7.98 ± 0.06 to 7.75 ±
0.07 (Fig. 5.5). More importantly, the potentiation of OXM-mediated cAMP response

mediated by compound 249 occurred to a lesser degree by 2.09-fold compared to the

cells without PTX-pre-treatment, implying compound 249 exhibited negative allosteric

modulation of the Gai subunit, thereby resulting in a greater increment in total cAMP

responses observed in the untreated cells. Following the investigation of compound 249

modulation of cAMP responses mediated via both Gas and Gai subunits, its potential

allosteric effects on iCa2+ signalling were then explored.
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Figure 5.5: Compound 249 allosteric modulation of OXM-mediated cAMP response is Gai-dependent
in HEK293S-GLP-1R-WT cells. HEK293S-GLP-1R-WT cells were pre-treated without (A) or with (B)
pretreatment of 200ng/µl PTX 16 hours prior to cAMP assays. 500 HEK293S-GLP-1R-WT cells/well
under 8-minute co-stimulation with peptide ligands in the absence of PDE inhibitor were used in the
cAMP assays. All data were normalised to the maximum cAMP response determined by 100µM forskolin
stimulation. All data are means from at least 3 independent experiments with duplicates ± S.E.M
(upper error bars). Statistical significance compared with OXM and DMSO in both with or without
PTX treatment conditions (***, p < 0.001) were determined by one-way ANOVA with post-hoc Dunnett’s
multiple comparisons.
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5.3.4 Compound 249 negative allosteric modulation of iCa2+ release

GLP-1R has been shown to be able to activate the Gaq pathway, which is responsible

for the mediation of downstream iCa2+ release, hence facilitating insulin secretion in

pancreatic b cells [Xu and Xie, 2009, Shigeto et al., 2015]. Thus, following the evaluation

of compound 249 effect on the overall cAMP response, its ability to modulate iCa2+

signalling was determined. To quantify iCa2+ mobilisation, HEK293S-GLP-1R-WT cells

were pre-treated with fixed concentrations of compound 249 (at 1x10�4M, 3.16x10�5M

and 1x10�5M) or DMSO which acted as control, prior to co-stimulation with GLP-1,

OXM or GCG, also in the presence of the compound. iCa2+ release were then quantified

with the use of the BD pathway 855 high-content bioimager, as described in section

3.2.6. As OXM has a relatively weak iCa2+ mobilisation [Wootten et al., 2016b], high

concentration of OXM (i.e. at 3.16x10�5M) was applied in the assays.

Contrary to its apparent positive allosteric modulation on the OXM-mediated

cAMP response (Fig. 5.4), compound 249 exhibited significant concentration-dependent

inhibition on both GLP-1 and OXM-mediated iCa2+ responses, reducing the potencies

of the iCa2+ responses of GLP-1 and OXM by 4.37-fold and 7.94-fold respectively

(pEC50 value of GLP-1-mediated iCa2+ response decreased from 7.65 ± 0.29 to 7.04 ±
0.21, p < 0.01; pEC50 of OXM-mediated iCa2+ response decreased from 7.07 ± 0.27 to

6.17 ± 0.32, p < 0.05). Notably, the potency of GCG-mediated iCa2+ response was not

affected, yet an apparent decrease in efficacy was observed (Emax decreased from 63.57

± 1.89 to 43.69 ± 2.28) (Fig. 5.6 and Table 5.3).

The operational model of allosterism was then applied to quantify the cooperativity

of compound 249 on modulating the iCa2+ signalling pathway. Through fitting the

results into the mathematical model, negative cooperativity on GLP-1 and OXM-

induced iCa2+ release indicated by negative logab values of -0.852 and -1.84 were

obtained respectively. These results affirmed the role of compound 249 as a NAM in

iCa2+ mobilisation mediated by GLP-1 and OXM specifically. The detailed report of

the allosteric parameters of compound 249 negative allosteric modulation on OXM-

mediated iCa2+ release is further outlined in Table 5.4.
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Figure 5.6: Compound 249 exhibits concentration-dependent negative allosteric modulation on GLP-1,
OXM and GCG-mediated intracellular calcium responses in HEK293S-GLP-1R-WT cells. Compound
249 demonstrates negative allosteric modulation in (A) GLP-1, (B) OXM and (C) GCG mediated iCa2+

responses. 80,000 cells/well of HEK293S-GLP-1R-WT cells were seeded onto black-96 well plate overnight
and the cells were pre-treated with compound 249 for 15 mins prior to the measurement of intracellular
calcium mobilisation. All data were normalised to the 10µM ionomycin concentration-response curve. All
data are means from at least 3 independent experiments with duplicates ± S.E.M (upper error bars). Table
5.3 show the pEC50 and Emax values of GLP-1, OXM and GCG-mediated iCa2+ responses in the presence
of various concentrations of compound 249. Statistical significance compared with GLP-1, OXM or GCG
(*, p < 0.05; **, p < 0.01) with or without compound 249 at various concentrations were determined by
one-way ANOVA with post-hoc Dunnett’s multiple comparisons. 191
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Table 5.3: Compound 249 exhibits a concentration-dependent negative allosteric modulation on GLP-1,
OXM and GCG-mediated intracellular calcium responses in HEK293S-GLP-1R-WT cell line.

Ligand [Cmpd 249]M pEC50 
a Emax 

b Span n

GLP-1

DMSO 7.65±0.29 44.80±4.54 37.63±5.03 4

1x10-4M 7.04±0.21** 37.68±3.95 33.58±4.06 3

3.16x10-5M - - - -

1x10-5M 6.99±0.34** 35.65±5.82 29.82±5.97 3

OXM

DMSO 7.07±0.27 41.89±4.48 40.86±5.39 5

1x10-4M 6.17±0.32* 37.44±7.75 34.12±7.39 5

3.16x10-5M 6.68±0.12 39.68±2.34 37.42±2.45 5

1x10-5M 7.03±0.20 38.68±3.59 34.87±3.92 5

GCG

DMSO 7.93±0.09 63.57±1.89 60.81±2.51 3

1x10-4M 8.20±0.17 43.69±2.28 45.81±3.21 3

3.16x10-5M - - - 3

1x10-5M 8.12±0.14 53.09±2.42 53.90±3.07 3

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to ionomycin.

Statistical significance compared with GLP-1, OXM or GCG (*, p < 0.05; **, p < 0.01; ns, non-statistically
significant) in the presence of various concentrations of compound 249 were determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.3.5 Compound 249 lacks allosteric modulation on pERK1/2 activation

Penultimately, the effect of compound 249 on modulating the pERK1/2 pathway

was evaluated with the use of Cisbio® Phospho-ERK1/2 (Thr202/Tyr404) kit (see

Section 2.2.3.3 for methods). To do so, HEK293S-GLP-1R-WT cells were serum-starved

overnight and were pre-treated with fixed concentrations of compound 249 or DMSO

for 15 mins prior to agonist stimulation for 5 mins in the presence of compounds. The

results obtained were then normalised to 100µM phorbol 12-myristate 13-acetate (PMA)

response.

Compound 249 did not affect OXM-mediated pERK1/2 response (Fig. 5.7), sug-

gesting the activation of pERK1/2 induced by OXM may not be Gaq-linked [Lei et al.,

2018] given its inhibition of OXM-mediated iCa2+ release. A positive logab value of

0.323, yet less than 1, was obtained through the application of the operational model

of allosterism, indicating compound 249 was a NAL of the OXM-mediated pERK1/2

pathway. Details of the allosteric parameters can be found in Table 5.4.
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Figure 5.7: Compound 249 does not affect pERK1/2 response in HEK293-GLP-1R-WT cells. Compound
249 does not induce potentiation or inhibition of OXM-mediated pERK1/2 signalling. 35,000 cells/well
of HEK293-GLP-1R-WT cells were used in the pERK1/2 assays. All data were normalised to the 100µM
PMA and were means of 3 independent results with duplicates ± S.E.M.
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5.3.6 Compound 249 does not affect GLP-1 orthosteric binding

Lastly, compound 249 orthosteric ligand binding at GLP-1R was evaluated. To do so,

bioluminescence resonance energy transfer (BRET)-based ligand binding assay was

employed (see Section 2.2.3.4 for methods), during which HEK293T cells were tran-

siently transfected with the Nluc-tagged GLP-1R construct 48 hours prior to assaying.

HEK293T cells transiently expressing Nluc-tagged GLP-1R were incubated with the

Nano-Glo substrate, furimazine, prior to the addition of Tag-lite® GLP-1R red agonist

(which is Ex-4 based) in the presence of a fixed concentration of compound 249 at 10µM

or DMSO. Once total binding was reached, dissociation phase was initiated by injecting

1µM of ’cold’ GLP-1 to dissociate the binding complex.

In the absence of compound 249, the association (Kon) and dissociation (Ko f f ) con-

stants were 7.02x10�7M�1min�1 and 0.017min�1 respectively, resulting in the equilib-

rium dissociation constant (KD) of 2.49x10�10M. Similarly in the presence of compound

249, GLP-1 binding affinity to the GLP-1R was not affected, as the Kon and Ko f f con-

stants remained largely unchanged, resulting in values of 6.74x10�7M�1min�1 and

0.117min�1 respectively, and a KD value of 1.26x10�10M. It further illustrated that

compound 249 did not affect GLP-1 binding and that it did not compete with GLP-1

for the orthosteric binding site at the GLP-1R (Fig. 5.8). However, binding experiments

in the presence of OXM was not performed due to time contraints and will remain as

an important piece of future work.
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Figure 5.8: Compound 249 does not affect ligand binding at the GLP-1R. HEK293T cells were transiently
transfected with Nluc-GLP-1R constructs prior to the ligand binding assay. Cells were incubated with
Nano-Glo substrate, furimazine, prior to the addition of Tag-lite® GLP-1R red agoinst and emission
was measured at 485nm and 530nm every 30 seconds for 25 minutes during which total binding was
determined. Unlabeled, ’cold’, GLP-1 at 1µM was then injected into each well to displace all bound
Tag-lite® GLP-1R red agonist, with emission measured every 30 seconds for a further 60 minutes, during
which non-specific binding was determined. Vehicle was added alongside the ligands to act as a control
which represented the background level of emission. The BRET signal was calculated by subtracting the
530 nm/485 nm emission ratio for vehicle treated cells from Tag-lite® GLP-1R red agonist treated cells.
Data were fitted using the ’association then dissociation’ model in GraphPad Prism 8.4 and the above
results were means of 3 independent results with duplicates ± S.E.M.
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5.3.7 Summary of compound 249 allosteric modulation at the GLP-1R

Compound 249 does not influence GLP-1R agonist binding nor does it affect pERK1/2

activation. More importantly, compound 249 is a PAM of OXM-mediated cAMP

responses, without imposing any allosteric effects on the other two GLP-1R agonists,

GLP-1 and GCG (Fig. 5.4). It is a NAM on Gai-inhibited cAMP responses, as the

inhibition of Gai subunit resulted in a smaller extent of the potentiation of OXM-

mediated overall cAMP response (Fig. 5.5). It is also a NAM on GLP-1 and OXM-

induced iCa2+ mobilisation and a NAL on OXM-mediated pERK1/2 pathway. Table 5.4

summarises the allosteric parameters that describe the allosteric effect of compound 249

on the affinity and efficacy of the orthosteric agonists. Fig. 5.9 concludes the allosteric

modulation of compound 249 in pathways such as cAMP responses, iCa2+ release and

pERK1/2 mediated by all three GLP-1R endogenous agonists.

Table 5.4: Allosteric modulation parameters, a and b, of compound 249 actions of OXM-mediated
cAMP accumulation, intracellular calcium responses and phosphorylation of ERK1/2 in HEK293S-
GLP-1R-WT cells.

GLP-1R Signalling 
pathway !(a) "(b) !"(c) log!" R2 (d)

Wildtype

cAMP 4.800 2.189 10.50 1.02 0.9661

iCa2+ 0.01343 1.076 0.0145 -1.84 0.8627

pERK1/2 2.672 0.7891 2.108 0.323 0.8629

a represents the cooperativity determined by the operational model of agonism and allosterism.
b represents the scaling factor determined by the operational model of agonism and allosterism.
c represents the combinatorial values of both cooperativity and scaling factors. A positive logab value

> 1 denotes positive allosteric modulation; a negative logab value < 1 denotes negative allosteric
modulation; and a logab value between 0 and 1 indicates the nature of neutral allosteric ligand.

d denotes the goodness of fit of the data set to the operational model of agonism and allosterism.
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Figure 5.9: Bar chart summarising compound 249 allosterism. The above bar chart summarises com-
pound 249 allosteric actions in terms of logab values on GLP-1, OXM and GCG-mediated GLP-1R
signalling pathways. The logab values of iCa2+ mobilisation mediated by GCG, phosphorylation of
ERK1/2 mediated by GLP-1 and GCG in the presence of compound 249 were not determined and are
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5.4 Exploration of compound 249 pharmacological mechanism

of action

Following the pharmacological characterisation of compound 249, the mechanism of

action of compound 249 was then explored. The cysteine-347 (C347) residue on the

lower end of TM6 of the GLP-1R is postulated to be responsible for the ago-PAM actions

of compound 2 and BETP, and many other potential GLP-1R small molecule PAMs [Eng

et al., 2013, Nolte et al., 2014, Bueno et al., 2016, Song et al., 2017]. These two GLP-1R

ago-PAMs mediate their actions by forming irreversible disulphide cross-links with the

cysteine residue, which is a property that is highly undesirable in drug development

due to potential toxicity [Eng et al., 2013]. Therefore, GLP-1R-C347A functional assays

have been proposed to facilitate the screening of GLP-1R small molecule PAMs that do

not form irreversible disulphide conjugate with the cysteine residue [Bueno et al., 2016].

Hence, a C347-alanine (C347A) point mutation GLP-1R construct was created with the

use of QuikChange® Lightning Site Directed Mutagenesis kit (for methods see Section

2.2.2.7). The point mutation was confirmed by aligning the C347A sequencing results

with that of wildtype GLP-1R. Stable cell lines expressing the desired DNA constructs

were produced in HEK293S cells due to their ease of transfection. The details of the

production of the stable cell lines were outlined in Section 2.2.1.5.2.

5.4.1 Compound 2 and BETP activate GLP-1R via the C347A residue

As noted above, the C347 residue of GLP-1R is critical for the ago-PAM actions of

compound 2 and BETP. To validate the notion and to determine if the point mutation

was introduced at the desired location, a range of concentrations of compound 2 and

BETP (100µM to 10pM) were applied to both HEK293S cell lines stably expressing

GLP-1R-C347A (thereafter referred to as HEK293S-GLP-1R-C347A) and HEK293S-GLP-

1R-WT cells. Their subsequent cAMP responses were determined with the use of cAMP

functional assays as described previously. However, due to the high GLP-1R expression

in these two stable cell lines, PDE inhibitor was not included as a result of the high

level of cAMP produced. Compound 249 was also applied so as to determine the effect

of C347A on its intrinsic GLP-1R agonism. Forskolin was used to normalise the results

generated in these two stable cell lines.

The following results illustrated that the efficacy of compound 2 was abolished in

HEK293S-GLP-1R-C347A cells (Emax values decreased from 80.15 ± 3.01 to 17.92 ±
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5.4. Exploration of compound 249 pharmacological mechanism of action

1.82, p < 0.05, Fig. 5.10 and Table 5.5). Not only did the result confirm the desired

site-directed mutagenesis at the 347 position, but it also verified the observations that

C347 is essential for the ago-PAM activity. The results also affirmed the use of these

two stable cell lines as a system for the investigation of the mechanisms of actions of

GLP-1R PAMs.
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Figure 5.10: Intrinsic agonism of compound 2 and BETP are abolished in HEK293S-GLP-1R-C347A
cells. 1000 cells/well of HEK293S stably expressing sigSNAP-GLP-1R-mCherry with (A) wildtype or (B)
C347A point mutation were stimulated with different concentrations of compound 249, Compound 2 and
BETP for 8 minutes without the presence of PDE inhibitors to measure cAMP accumulation. All data were
normalised to the maximum cAMP response determined by 100µM forskolin stimulation and were means
of duplicate from 2 independent experiments with duplicates ± S.E.M (upper error bars).

Table 5.5: GLP-1R activation mediated by compound 249, C2 and BETP in HEK293S-GLP-1R-WT and
HEK293S-GLP-1R-C347A cells.

Figure 5.X: Intrinsic agonism of compound 2 and BETP abolished in HEK293S-GLP-1R-C347A cells. 1000
cells/well of HEK293S stably expressing sigSNAP-GLP-1R-mCherry with (A) wildtype or (B) C347A point mutation
were stimulated with different concentrations of compound 249, C2 and BETP for 8 minutes without the presence of
PDE inhibitors to measure cAMP accumulation. All data were normalised to the maximum cAMP response
determined by 100!M forskolin stimulation and were means of duplicate from an independent experiment ± S.E.M
(upper error bars).

GLP-1R Compound pEC50 
a Emax 

b Span n

WT

Cmpd 249 5.00±0.31 14.10±5.69 31.13±5.79 4

Cmpd 2 6.23±0.08 80.15±3.01 95.22±3.41 4

BETP 4.43±0.16 59.72±9.39 75.82±9.19 4

C347A

Cmpd 249 5.85±0.41 27.38±3.03 21.13±3.09 4

Cmpd 2 5.85±0.41 17.92±1.82 12.92±1.97 4

BETP 4.50±0.20 69.88±9.70 68.10±9.51 4

Table 5.X: GLP-1R activation mediated by compound 249, C2 and BETP in HEK293S-GLP-1R-WT

or GLP-1R-C347A cells.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.
a % of maximal response observed when stimulated with ligands relative to forskolin.
b Negative logarithm of agonist concentration when reaching half maximal response.
Statistical significance compared with GLP-1R-WT (*, p < 0.05; ns, non-statistically significant) for GLP-
1R C347A mutant was determined by Students’ t-test with Welsh correction.
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Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
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5.4.2 Compound 249 exhibits PAM activity in a GLP-1R cysteine-347-indep-
endent manner

Following the validation of cell systems for investigating compound 249 actions in

the absence of the C347 residue, cAMP functional assays were next performed as

described previously in both HEK293S-GLP-1R-WT and HEK293S-GLP-1R-C347A cell

lines. Similarly, PDE inhibitor was not included due to the high level of receptor

expression in these two stable cell lines.

HEK293S-GLP-1R-C347A cell line showed a robust potent OXM-mediated cAMP

response comparable to that of HEK293S-GLP-1R-WT cell line (Fig. 5.11). More

importantly, compound 249 potentiated the OXM-mediated cAMP response by nearly

10-fold in a concentration-dependent manner in the HEK293S-GLP-1R-C347A cells, a

potentiation that has also been demonstrated in the HEK293S-GLP-1R-WT cells (pEC50

values increased from 8.20 ± 0.06 to 8.93 ± 0.09 in HEK293S-GLP-1R-C347A cells, p <

0.001, while pEC50 values increased from 7.98 ± 0.06 to 8.69 ± 0.08 in HEK293S-GLP-

1R-WT cells, p < 0.001) (Fig. 5.11 A-B, Fig. 5.12 and Table 5.6). Further applications

of the results to the operational model of allosterism resulted in positive cooperativity

logab values of 1.02 and 1.14 in both GLP-1R-WT and C347A settings respectively,

confirming compound 249 positive allosteric modulation regardless of the absence of

C347 residue (Table 5.7). Compared to compound 2 and BETP, which PAM activities

on OXM-mediated cAMP responses were completely abolished in the absence of C347

residue, as also shown in other studies in CHO-K1 cells expressing GLP-1R-C347A

[Nolte et al., 2014] (Fig. 5.11 C-F and Table 5.6), compound 249 works in a C347-

independent mechanism, which provides further evidence in support of the recent

discovery of alternative small molecule agonist binding site at the GLP-1R [Zhao et al.,

2020, Bueno et al., 2020]; the significance of the findings here will be further discussed

in section 5.8.3.
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Figure 5.11: Compound 249 allosteric modulation of OXM-mediated cAMP accumulation at the GLP-
1R is C347 residue independent. 1000 cells/well of HEK293S-GLP-1R-WT (A, C and E) or HEK293S-
GLP-1R-C347A (B, D and F) cells were co-stimulated with different concentrations of 249, compound 2
and BETP OXM for 8 minutes without the presence of PDE inhibitors to measure cAMP accumulation.
All data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation
and were means of at least 3 independent experiments with duplicates ± S.E.M (upper error bars).
Statistical significance compared with OXM (***, p < 0.001) for compound 249, compound 2 and BETP
were determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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Figure 5.12: Scatter plots illustrating compound 249 allosteric modulation of OXM-mediated cAMP
accumulation is GLP-1R C347 residue independent. 1000 cells/well of HEK293S stably expressing
SigSNAP-GLP-1R-mCherry wildtype (A, C and E) or C347A (B, D and F) cells were co-stimulated with
different concentrations of 249, compound 2 and BETP OXM for 8 minutes without the presence of PDE
inhibitors to measure cAMP accumulation. All data were normalised to the maximum cAMP response
determined by 100µM forskolin stimulation and were means of at least 3 independent experiments with
duplicates ± S.E.M (upper error bars). Statistical significance compared with OXM (*, p < 0.05; **, p <
0.01; ***, p < 0.001; ****, p < 0.0001; ns, non-statistically significant) for compound 249, compound 2 and
BETP were determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.4. Exploration of compound 249 pharmacological mechanism of action

Table 5.6: Concentration-dependent allosteric modulations of OXM-mediated cAMP accumulation
potentiated by compound 249 in HEK293S-GLP-1R-WT or GLP-1R-C347A cells.

GLP-1R Cmpd Conc. pEC50 
a Emax 

b Emin
c Span n

WT

DMSO - 7.98±0.06 117.7±4.2 2.62±1.84 115.0±4.18 8

Compound 
249

3.16x10-5M 8.63±0.07*** 109.6±2.6 21.77±2.31 87.84±3.14 8

1x10-5M 8.69±0.08*** 107.1±3.0 14.06±2.76 93.05±3.64 8

3.16x10-6M 8.48±0.07** 109.3±3.2 8.37±2.45 100.9±3.63 8

1x10-6M 8.59±0.06** 109.0±2.8 6.30±2.34 102.7±3.26 6

3.16x10-7M 8.35±0.07* 109.5±3.6 7.76±2.42 101.7±3.91 8

1x10-7M 8.26ns±0.08 111.1±4.0 7.91±2.41 103.2±4.20 6

Compound 
2

1x10-5M 8.34±0.16ns 110.2±2.1 81.88±1.50 28.37±2.27 6

1x10-6M 8.29±0.27ns 116.4±5.2 78.70±3.40 37.66±5.59 4

1x10-7M 8.55±0.12*** 112.5±4.9 21.59±4.01 90.88±5.69 6

1x10-8M 8.16±0.09ns 119.1±5.2 8.95±2.81 110.1±5.35 6

BETP

1x10-5M 8.95±0.08**** 109.7±2.7 13.11±3.18 96.64±3.78 6

1x10-6M 8.40±0.06* 113.1±3.2 8.70±2.23 104.4±3.49 6

1x10-7M 8.11±0.09ns 118.5±5.6 7.34±2.83 111.2±5.66 6

1x10-8M 8.33±0.1ns 112.1±5.6 4.04±3.97 108.0±6.04 6

C347A

DMSO - 8.20±0.06 108.2±3.3 2.39±1.84 105.8±3.37 8

Compound 
249

3.16x10-5M 8.93±0.09*** 103.6±2.7 22.96±3.16 80.65±2.77 8

1x10-5M 8.95±0.09*** 101.6±2.8 19.37±3.38 82.21±3.98 8

3.16x10-6M 8.70±0.07* 101.4±2.5 7.77±2.41 93.67±3.15 8

1x10-6M 8.75ns±0.09 102.9±3.5 9.82±3.44 93.12±4.42 7

3.16x10-7M 8.57ns±0.08 103.3±3.3 8.21±2.69 95.09±3.78 8

1x10-7M 8.43ns±0.06 106.1±2.8 7.76±2.04 98.38±3.14 6

Compound 
2

1x10-5M 8.62±0.05ns 102.8±2.2 3.20±1.90**** 99.64±2.58 6

1x10-6M 8.67±0.06ns 104.5±2.8 3.85±2.49**** 100.6±3.33 4

1x10-7M 8.46±0.09ns 104.3±3.8 6.69±3.05**** 97.61±4.35 6

1x10-8M 8.47±0.08ns 107.0±3.7 7.35±2.86**** 99.66±4.14 6

BETP

1x10-5M 8.15±0.08ns 110.2±4.1 12.87±2.42 97.36±4.24 6

1x10-6M 8.28±0.08ns 107.0±3.7 7.80±2.48 99.23±3.98 6

1x10-7M 8.38±0.08ns 108.3±3.9 7.15±2.82 101.1±4.27 6

1x10-8M 8.32±0.08ns 108.9±3.9 10.72±2.64 98.23±4.14 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with OXM (*, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001; ns,
non-statistically significant) for compound 249, compound 2 and BETP were determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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Table 5.7: Allosteric modulation parameters, a and b, of compound 249, compound 2 and BETP al-
losteric modulation of OXM-mediated cAMP responses at both HEK293S-GLP-1R-WT and HEK293S-
GLP-1R-C347A cell lines.

GLP-1R Compound !(a) "(b) !"(c) log!" R2 (d)

Wildtype

Cmpd 249 4.800 2.189 10.50 1.02 0.9661

Cmpd 2 5.904 10.37 61.22 1.79 0.9018

BETP 25.92 0.5582 14.47 1.16 0.9197

C347A

Cmpd 249 35.73 0.3908 13.96 1.14 0.9691

Cmpd 2
N.D.

BETP

a represents the cooperativity determined by the operational model of agonism and allosterism.
b represents the scaling factor determined by the operational model of agonism and allosterism.
c represents the combinatorial values of both cooperativity and scaling factors. A positive logab value >

1 denotes positive allosteric modulation.
d denotes the goodness of fit of the data set to the operational model of agonism and allosterism.
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5.4. Exploration of compound 249 pharmacological mechanism of action

5.4.3 Compound 249 allosteric effect on intracellular calcium mobilisation
in the absence of C347

Having elucidated the C347-independent mechanism of action of compound 249 on

potentiating OXM-mediated cAMP responses, the effect of C347 mutation on iCa2+

mobilisation was investigated. To do so, iCa2+ mobilisation was determined in both

HEK293S-GLP-1R-WT and HEK293S-GLP-1R-C347A cell lines, which methods closely

followed those utilised in Section 5.3.4. Similar to its negative allosteric modulation on

OXM-mediated iCa2+ response in the wildtype setting, compound 249 also exhibited

negative allosteric modulation in OXM-mediated iCa2+ response in the absence of C347,

of which it retained its reduction of potency of OXM-mediated iCa2+ mobilisation by

nearly 10-fold (pEC50 value of OXM in GLP-1R-C347A setting reduced from 7.15 ±
0.16 to 6.46 ± 0.21, p < 0.05) (Fig. 5.13 and Table 5.8). The results were again fitted

into the operational model of allosterism which showed negative cooperativity logab

values of 1.92, further suggesting compound 249 role as a NAM on OXM-mediated

iCa2+ mobilisation in a C347-independent manner (Table 5.8).
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Figure 5.13: Compound 249 shows negative allosteric modulation on OXM-mediated intracellular cal-
cium mobilisation in HEK293S-GLP-1R-WT and HEK293S-GLP-1R-C347A cells. Intracellular calcium
mobilisation was measured with the methods of pre-treatment of compound 249 for 15 mins prior to
the addition of OXM without washing of compounds. Graphs (A) and (B) show that compound 249
inhibits intracellular calcium mobilisation in a concentration-dependent manner in both HEK293S cells
stably expressing GLP-1R-WT and GLP-1R-C347A respectively. (C) and (D) show the scatter plots of the
results from (A) and (B). 80,000 cells/well of HEK293S-GLP-1R-WT or HEK293S-GLP-1R-C347A cells were
seeded onto black-96 well plate overnight prior to the measurement of intracellular calcium mobilisation
by the pre-treatment of compound 249 with OXM. All data were normalised to the 10µM ionomycin
concentration-response curve. All data are means from at least 2 independent experiments ± S.E.M
(upper error bars). Statistical significance compared with OXM (*, p < 0.05) for compound 249 at different
concentrations was determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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Table 5.8: Concentration-dependent negative allosteric modulations of OXM-mediated iCa2+ mobili-
sation potentiated by compound 249 in HEK293S-GLP-1R-WT or HEK293S-GLP-1R-C347A cell lines.

GLP-1R Conc. pEC50 a Emax b Span n

WT

DMSO 7.07±0.27 41.89±4.48 40.86±5.39 5

1x10-4M 6.17±0.32* 37.44±7.75 34.12±7.39 5

3.16x10-5M 6.68±0.12 39.68±2.34 37.42±2.45 5

1x10-5M 7.03±0.20 38.68±3.59 34.87±3.92 5

C347A

DMSO 7.15±0.16 32.64±2.03 27.62 ± 2.38 2

1x10-4M 6.46±0.21 22.47±2.29 18.77 ± 2.28 2

3.16x10-5M 6.98±0.36 28.92±3.38 20.58 ± 4.06 1

1x10-5M 7.00±0.22 32.93±3.44 28.00 ± 3.69 2

Table 5.X: Concentration-dependent negative allosteric modulations of OXM-mediated iCa2+

mobilisation potentiated by compound 249 in HEK293S cells stably expressing sigSNAP-GLP-1R-
mCherry with C347A point mutation or wildtype.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M 
of n individual result sets were shown. 
a % of maximal response observed when stimulated with ligands relative to ionomycin. 
b Negative logarithm of agonist concentration when reaching half maximal response.
Statistical significance compared with OXM (*, p < 0.05, ns, non-statistically significant) for compound 249 
at different concentrations was determined by one-way ANOVA with post-hoc Dunnett’s multiple 
comparisons.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to ionomycin

Statistical significance compared with OXM (*, p < 0.05) for compound 249 at different concentrations
was determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.4.4 Effect on ERK1/2 phosphorylation

Lastly, the effect of the introduction of C347A mutation to the GLP-1R on OXM-

mediated pERK1/2 signalling was investigated. Using the same approach in measuring

pERK1/2 signalling in the HEK293S-GLP-1R-WT cells, compound 249 did not exert

any allosteric effect in the HEK293S-GLP-1R-C347A cell line (Fig. 5.14 and Table 5.9).

However, the results could not be fitted into the operational model of allosterism due

to its weak effect on pERK1/2 activation in the GLP-1R-C347A setting. Yet, it was

concluded that compound 249 is a NAL in both HEK293S-GLP-1R-WT and HEK293S-

GLP-1R-C347A cell lines given these collective observations.
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Figure 5.14: Compound 249 acts as a neutral allosteric ligand of pERK1/2 in HEK293S-GLP-1R-WT
and HEK293S-GLP-1R-C347A cells. Compound 249 does not induce potentiation or inhibition of OXM-
mediated pERK1/2 signalling in both HEK293S-GLP-1R-WT and HEK293S-GLP-1R-C347A cell lines.
35,000 cells/well of HEK293 cells stably expressing wildtype or C347A-mutated GLP-1R were used in the
ERK1/2 assays. All data were normalised to 100µM PMA and were means of duplicates of at least one
independent experiment ± S.E.M (upper error bars).
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Table 5.9: Compound 249 acts as a neutral allosteric ligand of OXM-mediated ERK1/2 phosphorylation
in both HEK293S-GLP-1R-WT and HEK293S-GLP-1R-C347A cells.

GLP-1R Conc. pEC50 
a Emax 

b Span n

WT

DMSO 6.94±0.51 23.58±3.24 18.60±3.73 4

3.16x10-5M 6.60±0.20 24.50±2.58 14.24±2.82 4

1x10-5M 7.00±0.21 26.58±1.85 21.57±2.12 4

C347A

DMSO 6.44±0.26 15.30±1.96 14.50±2.00 2NB

3.16x10-5M 5.89±0.19 17.40±1.22 10.93±1.24 2NB

1x10-5M 5.85±0.14 14.87±1.12 13.21±1.14 2NB

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to PMA
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.
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5.4.5 Summary of compound 249 C347-independent allosteric modulation

To conclude, compound 249 demonstrated analogous allosteric modulation in the GLP-

1R-C347A setting when compared to the wildtype GLP-1R. Table 5.10 summarises the

allosteric parameters for each signalling pathway. The bar charts (Fig. 5.15) also depict

compound 249 unique mode of allosteric action in both GLP-1R-WT and GLP-1R-C347A

settings.
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Figure 5.15: Bar charts summarising compound 249 allosterism in both HEK293S-GLP-1R-WT and
HEK293S-GLP-1R-C347A cells. The above bar charts summarise compound 249 allosteric actions on
OXM-mediated GLP-1R signalling pathways. It is concluded that compound 249 is a PAM on cAMP
accumulation, a NAM on iCa2+ mobilisation and a NAL on pERK1/2 pathway. N.D. indicates not
determined.

Table 5.10: Allosteric modulation parameters, a and b, of compound 249 allosterism of OXM-mediated
cAMP accumulation, iCa2+ mobilisation and pERK1/2 activation in both HEK293S-GLP-1R-WT or
HEK293S-GLP-1R-C347A cells.

GLP-1R Signalling 
pathway !(a) "(b) !"(c) log!" R2 (d)

Wildtype

cAMP 4.800 2.189 10.50 1.02 0.9661

iCa2+ 0.01343 1.076 0.0145 -1.84 0.8627

pERK1/2 2.672 0.7891 2.108 0.323 0.8629

C347A

cAMP 35.73 0.3908 13.96 1.14 0.9691

iCa2+ 0.01164 1.042 0.0121 -1.92 0.8563

pERK1/2 N.D.

a represents the cooperativity determined by the operational model of agonism and allosterism.
b represents the scaling factor determined by the the operational model of agonism and allosterism.
c represents the combinatorial values of both cooperativity and scaling factors. A positive logab value >

1 and <1 denote positive and negative allosteric modulation respectively.
d denotes the goodness of fit of the data set to the operational model of agonism and allosterism.
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5.5 Compound 249 allosteric modulation on GCGR and GIPR

5.5.1 Compound 249 does not activate GCGR and GIPR

Given the close structural homology among the glucagon-like receptor family, com-

pound 249 ability to activate GCGR and GIPR was investigated. CHO-GCGR and

CHO-GIPR cells, which illustrated robust agonistic responses upon receptor activation

in Section 3.2.2, were utilised to facilitate the screening. A range of concentration of

compound 249 (from 100µM to 10pM) were applied to CHO-GCGR and CHO-GIPR

cells, wherein 15 minutes ligand stimulation was allowed in the presence of the PDE

inhibitor, rolipram. CHO-GLP-1R cells were included to act as a comparison to the

results in CHO-GCGR and CHO-GIPR cells. Untransfected CHO-K1 cells were used as

a null receptor background.

Similar to the observations in the closely related GLP-1R, compound 249 also did

not activate either GCGR or GIPR (Fig. 5.16 and Table 5.11). Again, the apparent

increase in cAMP production when compound 249 at 100µM was applied was due

to autofluorescence. Having concluded that compound 249 lacked intrinsic agonism

in both GIPR and GCGR, its potential allosterism at both GCGR and GIPR were

subsequently investigated.
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Figure 5.16: Compound 249 does not activate GLP-1R, GCGR and GIPR. Compound 249 fails to activate
cAMP accumulation responses at the GLP-1R, GCGR and GIPR. 1000 CHO-GLP-1R, CHO-GCGR, CHO-
GIPR and CHO-K1 cells/well under 15-minute stimulation in the presence of rolipram were used in the
cAMP assays. All data were normalised to the maximum cAMP response determined by 100µM forskolin
stimulation. All data were means of 2 independent experiments with duplicates ± S.E.M (upper error
bars). Table 5.11 shows the pEC50 and Emax values of ligand responses.
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Table 5.11: Compound 249 does not activate GLP-1R, GCGR and GIPR.

Cell line pEC50 
a Emax 

b Span n

CHO-GLP-1R 4.33±0.31 40.26±8.83 43.92±7.46 4

CHO-GCGR 4.44±0.24 51.66±7.61 40.90±5.28 4

CHO-GIPR 4.61±0.23 44.21 5.42 30.24±8.69 4

CHO-K1 4.64±0.12 39.88±3.25 35.31±3.25 4

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin

5.5.2 Compound 249 is not a GIPR allosteric modulator

In order to determine if compound 249 exhibited any allosteric modulation at the GIPR,

cAMP functional assay was performed, which CHO-GIPR cells were co-stimulated

with a range of GIPR cognate ligand, GIP, and a fixed concentration of compound 249

(at 10µM) for 15 minutes in the presence of PDE inhibitor rolipram. Here compound

249 did not significantly potentiate GIP-mediated cAMP responses (Fig. 5.17 and Table

5.12). Therefore, it was concluded that compound 249 did not allosterically modulate

GIPR.
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Figure 5.17: Compound 249 does not exhibit allosteric modulation on GIP-mediated cAMP accumu-
lation response in CHO-GIPR cells. 1000 CHO-GIPR cells/well under 15-minute co-stimulation with
GIP in the presence of rolipram were used in the cAMP assays. All data were normalised to the maxi-
mum cAMP response determined by 100µM forskolin stimulation. All data are means from at least 2
independent experiments ± S.E.M (upper error bars).
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Table 5.12: Compound 249 does not exhibit allosteric modulation in GIP-mediated cAMP accumulation
response in CHO-GIPR cells.

Compound Conc. pEC50 
a Emax 

b Emin
c Span n

DMSO - 9.64±0.11 69.72±2.61 19.28±1.69 56.28±3.13 8

249 10-5M 9.84±0.15ns 69.24±2.17 24.15±2.28 44.99±3.01 4

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with GIP (ns, non-statistically significant) for compound 249 was
determined by Student’s t-test with Welch’s correction.

5.5.3 Characterisation of compound 249 allosteric modulation at the GCGR

Given the structural resemblance between GLP-1R and GCGR and that OXM could

activate both receptors, it is of particular interest to determine if compound 249 can also

allosterically modulate OXM-mediated cAMP responses at the GCGR. Therefore, cAMP

functional assays were performed in CHO-GCGR cells. Compound 2 and BETP, albeit

their GLP-1R specificity [Koole et al., 2010, Willard et al., 2012a], were also assayed to

compare with compound 249 potential allosteric actions at the GCGR.

The following results illustrated that compound 249 enhanced the potency of

OXM-mediated cAMP response at the GCGR by more than 17-fold in a concentration-

dependent manner (pEC50 value increased from 9.19 ± 0.11 to 10.24 ± 0.09 when

compound 249 at 10µM was applied, p < 0.0001) (Fig. 5.18, Fig. 5.19 and Table 5.13).

The data were further applied into the operational model of allosterism and a positive

logab value of 1.48 was resulted, indicating positive allosteric modulation (Table 5.15).

Similar to the observation at GLP-1R (Fig. 5.4), compound 249 only potentiated GCG-

mediated cAMP response at the GCGR at a high concentration (i.e. at 3.16x10�5M),

even though OXM and GCG are closely related [Pocai et al., 2009] (Fig. 5.18, Fig. 5.19

and Table 5.14). Collectively, these findings suggested compound 249 acted as a GLP-1R

and GCGR small molecule PAM that selectively potentiated OXM-mediated cAMP

production when tested in the CHO-GCGR cell system. Given its unique properties at

both structurally related receptors, other signalling properties of compound 249 at the

GCGR were further explored.
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Figure 5.18: Compound 249 induces a concentration-dependent positive allosteric modulation on
OXM-mediated cAMP accumulation response in CHO-GCGR cells. Compound 249 potentiates a
concentration-dependent OXM-mediated cAMP accumulation response at GCGR as shown in (A) and (B).
Compound 2 (C and D) and BETP (E and F) do not have any allosteric effect on OXM and GCG-mediated
cAMP responses. 1000 CHO-GCGR cells/well under 15-minute co-stimulation with OXM or GCG in the
presence of rolipram were used in the cAMP assays. All data were normalised to the maximum cAMP
response determined by 100µM forskolin stimulation. All data are means of duplicate from at least one
independent experiment with duplicates ± S.E.M (upper error bars). Statistical significance compared
with OXM (*, p < 0.05; ****, p < 0.0001) for compound 249 was determined by one-way ANOVA with
post-hoc Dunnett’s multiple comparisons.
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Figure 5.19: Scatter plots illustrating compound 249 induces a concentration-dependent positive al-
losteric modulation on OXM-mediated cAMP accumulation response in CHO-GCGR cells. Compound
249 potentiates a concentration-dependent OXM-mediated cAMP accumulation response at GCGR as
shown in A. Compound 2 (C and D) and BETP (E and F) do not have any allosteric effect on OXM and
GCG-mediated cAMP responses. 1000 CHO-GCGR cells/well under 15-minute co-stimulation with OXM
or GCG in the presence of rolipram were used in the cAMP assays. All data were normalised to the
maximum cAMP response determined by 100µM forskolin stimulation. All data are means of duplicates
from at least one independent experiment ± S.E.M (upper error bars). Statistical significance compared
with OXM (*, p < 0.05; **, p < 0.01; ****, p < 0.0001) for compound 249 was determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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Table 5.13: Concentration-dependent allosteric modulations of OXM-mediated cAMP accumulation
potentiated by compound 249, Compound 2 and BETP in CHO-GCGR cells.

Ligand Compound Concentration pEC50 
a Emax 

b Emin
c Span n

OXM

DMSO - 9.19±0.11 103.46±5.41 8.09±1.90 95.37±5.55 6

Compound 
249

3.16x10-5M 10.44±0.08**** 102.18±2.37 23.25±1.60 78.93±2.74 6

1x10-5M 10.24±0.09**** 101.28±2.77 16.95±1.73 84.33±3.14 6

3.16x10-6M 9.86±0.08** 102.38±3.27 8.84±1.76 93.53±3.59 6

1x10-6M 9.81±0.10** 101.34±4.02 11.45±2.11 89.89±4.38 6

Compound 
2

1x10-5M 9.69±0.07 90.85±2.39 4.41±2.21 86.44±2.91 2NB

1x10-6M 9.60±0.08 93.64±2.89 13.13±2.50 80.52±3.40 2NB

1x10-7M 9.54±0.10 96.63±3.68 10.39±3.60 86.24±4.55 2NB

BETP

1x10-5M 9.35±0.05 96.62±2.04 12.56±1.36 84.06±2.20 2NB

1x10-6M 9.47±0.02 97.93±1.10 11.70±0.82 86.23±1.23 2NB

1x10-7M 9.58±0.06 95.95±2.31 12.19±1.93 83.75±2.69 2NB

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
c % of minimal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared with OXM (**, p < 0.01; ****, p < 0.0001) for compound 249 was
determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.

Table 5.14: Concentration-dependent allosteric modulations of GCG-mediated cAMP accumulation
potentiated by Compound 2 and BETP but not compound 249 in CHO-GCGR cells.

Ligand Compound Concentration pEC50 
a Emax 

b Emin
c Span n

GCG

DMSO - 11.41±0.13 95.14±2.83 11.01±2.56 84.13±4.41 6

Compound 
249

3.16x10-5M 11.91±0.12* 100.08±2.67 28.99±2.24 71.09±3.38 6

1x10-5M 11.51±0.08 100.32±2.34 17.98±1.64 82.35±2.73 6

3.16x10-6M 11.39±0.10 100.99±3.07 15.59±2.04 85.40±3.53 6

1x10-6M 11.43±0.12 98.00±3.49 13.41±2.36 84.59±4.03 6

Compound 
2

1x10-5M 11.20±0.05 94.49±1.75 0.81±1.73 93.69±2.24 4

1x10-6M 11.32±0.06 96.11±2.13 2.42±2.53 93.70±3.03 4

1x10-7M 11.23±0.06 97.28±2.25 6.77±2.14 90.51±2.82 4

BETP

1x10-5M 11.19±0.05 96.32±1.71 24.25±1.76 92.07±2.20 4

1x10-6M 11.26±0.08 96.66±2.70 8.32±3.25 88.34±3.81 4

1x10-7M 11.19±0.10 94.13±3.40 16.86±3.09 77.27±4.10 3

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with GCG (*, p < 0.05) for compound 249, Compound 2 and BETP
was determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.5. Compound 249 allosteric modulation on GCGR and GIPR

Table 5.15: Allosteric modulation parameters, a and b, of compound 249 actions of OXM-mediated
cAMP accumulation in CHO-GCGR cells.

Cell line Ligand !(a) "(b) !"(c) log!" R2 (d)

CHO-GCGR
OXM 14.24 2.124 30.25 1.48 0.9145

GCG 3.278 0.001986 2.00 0.30 0.9256

a represents the cooperativity determined by the operational model of agonism and allosterism.
b represents the scaling factor determined by the operational model of agonism and allosterism.
c represents the combinatorial values of both cooperativity and scaling factors. A positive logab value

> 1 and a logab value between 0 and 1 denote positive allosteric modulation and neutral allosteric
ligand respectively.

d denotes the goodness of fit of the data set to the operational model of agonism and allosterism.

5.5.4 Compound 249 allosteric modulation at HEKDCTR recombinant cell
line

Having discovered the allosteric modulation of OXM-mediated cAMP responses in the

CHO-GCGR cell line, the allosteric effect of compound 249 was further validated in

the HEKDCTR-GCGR cell line. The use of this cell line in measuring robust cAMP

and iCa2+ signalling responses mediated by GCGR peptide agonists were described in

section 3.2.6.

5.5.4.1 Compound 249 is not a PAM on cAMP signalling at the GCGR

To determine compound 249 allosterism at the GCGR, a range of concentrations of OXM

and GCG were applied to the HEKDCTR-GCGR cells together with fixed concentrations

of compound 249 for 15 mins in the presence of PDE inhibitor rolipram. Interestingly,

unlike the observations in the CHO-GCGR cell line (Fig. 5.18), compound 249 did

not significantly potentiate OXM-mediated cAMP production (Fig. 5.20), presumably

due to the innate cellular composition difference between cell lines of rodent and

human species. Further application of the operational model of allosterism resulted in a

positive, yet less than 1, logab value of 0.7355, indicating its effect as a NAL. Consistent

with the observation in CHO-GCGR cell line, compound 249 did not potentiate cAMP

responses mediated by GCG (Fig. 5.20). Compound 249 was also found to marginally

potentiate the cAMP response of GCG, however such augmentation was not statistically

significant. In spite of the conclusion that compound 249 did not allosterically modulate

cAMP responses in the HEKDCTR-GCGR cells, compound 249 allosteric actions in

iCa2+ signalling at the GCGR were still evaluated.
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Figure 5.20: Compound 249 does not exhibit a concentration-dependent positive allosteric modulation
on OXM-mediated cAMP accumulation response in HEKDCTR-GCGR cells. (A) Compound 249 does
not potentiate a concentration-dependent OXM-mediated cAMP accumulation response at GCGR as in
HEKDCTR-GCGR cells, nor in the (B) GCG-mediated cAMP response. 1000 HEKDCTR-GCGR cells/well
under 15-minute co-stimulation with OXM or GCG in the presence of rolipram were used in the cAMP
assays. All data were normalised to the maximum cAMP response determined by 100µM forskolin
stimulation. All data are means of duplicates from at least one independent experiment ± S.E.M (upper
error bars).

Table 5.16: Compound 249 does not exhibit a concentration-dependent positive allosteric modulation
on OXM-mediated cAMP accumulation responses in HEKDCTR-GCGR cells.

Ligand [249] M pEC50 a Emax b Span n

OXM

DMSO 7.20±0.06 104.47±3.38 103.83±3.50 4

1x10-4M 7.58±0.04ns 100.63±1.15 69.78±1.33 4

1x10-5M 7.51±0.08 100.53±3.26 91.67±3.71 4

1x10-6M 7.25±0.08 104.07±4.10 103.47±4.29 4

GCG
DMSO 8.80±0.11 104.48±7.11 99.36±6.91 2NB

1x10-5M 9.35±0.08 98.56±3.58 87.67±3.85 2NB

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to forskolin
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared with OXM (ns, non-statistically significant) in the presence of various
concentrations of compound 249 was determined by one-way ANOVA with post-hoc Dunnett’s
multiple comparisons.
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5.5. Compound 249 allosteric modulation on GCGR and GIPR

5.5.4.2 Compound 249 is a NAM on iCa2+ signalling at GCGR

Similar to the approach in Section 5.3.4, the HEKDCTR-GCGR cells were pre-incubated

with fixed concentrations of compound 249, prior to co-stimulating with the GCGR

agonists, OXM and GCG. In the presence of compound 249, the OXM-mediated iCa2+

release was reduced by nearly 5-fold in a dose-dependent manner, yet the reduction

was non-statistically significant (pEC50 value decreased from 7.07 ± 0.18 to 6.40 ± 0.21)

(Fig. 5.21 and Table 5.17). The logab value generated through the operational model

of allosterism resulted in a negative value of -0.8599, further implicating its role as a

NAM. Similar to the observation at the GLP-1R, compound 249 did not affect the iCa2+

release mediated by GCG, further illustrating the probe dependence of compound 249

actions towards OXM mediated signalling responses at both GLP-1R and GCGR.
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Figure 5.21: Compound 249 shows negative allosteric modulation on OXM-mediated intracellular
calcium mobilisation in HEKDCTR-GCGR cells. (A) shows that compound 249 inhibits OXM-mediated
iCa2+ mobilisation in a concentration-dependent manner in HEKDCTR-GCGR cells while not in GCG-
mediated iCa2+ response. (C) and (D) show the scatter plots of the results in HEKDCTR-GCGR acting at
OXM and GCG respectively. 80,000 cells/well of HEKDCTR-GCGR cells were seeded onto black-96 well
plate overnight prior to the measurement of intracellular calcium mobilisation by the pre-treatment of
compound 249 for 15 mins before the addition of OXM or GCG without washing off the compound. All
data were normalised to the 10µM ionomycin concentration-response curve. All data are means from at
least 2 independent experiments with duplicates ± S.E.M (upper error bars).
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Table 5.17: Compound 249 shows negative allosteric modulation on OXM-mediated intracellular cal-
cium mobilisation in GCGR.

Ligand Concentration pEC50 
a Emax 

b Span n

OXM

DMSO 7.07±0.18 20.18±1.50 21.00±1.91 3

1x10-4M 6.40±0.21ns 19.23±2.43 18.81±2.42 2

1x10-5M 6.65±0.28ns 20.41±2.95 20.30±3.22 3

1x10-6M 6.21±0.26ns 25.87±4.12 24.54±4.01 2

GCG

DMSO 8.96±0.26 72.35±5.37 66.36±8.26 2

1x10-4M 8.92±0.26ns 69.23±5.44 65.98±8.28 2

1x10-5M 8.77±0.33ns 64.47±6.18 59.43±8.93 2

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response
b % of maximal response observed when stimulated with ligands relative to ionomycin

Statistical significance compared with OXM and (ns, non-statistically significant) in the presence
of various concentrations of compound 249 were determined by one-way ANOVA with post-hoc
Dunnett’s multiple comparisons.

5.5.5 Summary of compound 249 allosteric action at the GCGR

In summary, compound 249 acts as a PAM on OXM-mediated cAMP response in CHO-

GCGR cell line but not in the HEKDCTR-GCGR cell line, highlighting the importance

of considering the cellular composition difference between the rodent and human

recombinant cell systems when evaluating GCGR allosteric modulators. Similar to its

action at the GLP-1R, compound 249 acts as a NAM on OXM-mediated iCa2+ response

but has no influence on GCG-mediated iCa2+ response. The summary of allosteric

modulation of compound 249 at the GCGR in terms of logab is shown in Fig. 5.22.
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Figure 5.22: Bar chart summarising compound 249 allosterism in the HEKDCTR-GCGR cells. The
above bar chart summarises compound 249 allosteric actions on OXM-mediated GCGR signalling pathways.
It is concluded that compound 249 is a NAL on cAMP accumulation and a NAM on iCa2+ mobilisation in
relation to the OXM-mediated signalling pathway.
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5.6. Evaluation of compound 249 allosterism in rodent insulinoma cell line

5.6 Evaluation of compound 249 allosterism in rodent insuli-

noma cell line

5.6.1 cAMP accumulation in INS-1 832/3 cell lines

As discovered previously, compound 249 is a PAM on OXM-mediated cAMP response

in both CHO-GLP-1R (Appendix B.1) and HEK293S-GLP-1R-WT (Fig. 5.4) cell lines.

To translate the results to a more physiologically relevant setting, compound 249 was

then tested in the rat INS-1 832/3 wildtype cell line, which endogenously co-expresses

both rat GLP-1R and GCGR which are functionally similar to those of human GLP-

1R and GCGR [Knudsen et al., 2012]. The contribution of GIPR and GLP-1R to the

allosteric modulation of compound 249 was also determined with the use of the INS-1

832/3 GIPR-KO and GLP-1R-KO knock-out cell lines [Naylor et al., 2016]. Similar

cAMP functional assays as in those performed in the HEK293S-GLP-1R-WT cells in the

presence of PDE inhibitor, trequinsin, were conducted.

Here compound 249 induced nearly 10-fold increase in the potency of OXM-

mediated cAMP response (pEC50 values increased from 7.12 ± 0.14 to 7.74 ± 0.07, p <

0.01, (Fig. 5.23 and Table 5.18) in the INS-1 832/3 wildtype cell line. These data sets

were further fitted into the operational model of allosterism, of which a positive logab

of 0.991 was obtained (Table 5.19), indicating compound 249 positive allosteric modula-

tion in the rat insulinoma system. Likewise compound 249 also exhibited potentiation

of OXM-mediated cAMP response in the INS-1 GIPR-KO cell system (pEC50 values

increased from 7.62 ± 0.08 to 8.11 ± 0.13, p < 0.001), further illustrating compound

249 did not require GIPR to mediate its allosteric action (Fig. 5.23 and Table 5.18).

A positive logab of 0.963 also illustrated compound 249 role as a PAM in the INS-1

GIPR-KO cell line (Table 5.19). More importantly, compound 249 did not potentiate

cAMP responses in the INS-1 GLP-1R-KO cell line (Fig. 5.23 and Table 5.18), despite

the fact that it was determined previously in CHO-GCGR cell line that compound 249

potentiated OXM-mediated cAMP response (Fig. 5.23). Yet the results here in INS-1

GLP-1R-KO cell line aligned with the results obtained in the HEKDCTR-GCGR cell line,

which showed the compound only exhibited minimal cAMP response potentiation (Fig.

5.20). Following the characterisation of the potentiation of cAMP response mediated by

compound 249, compound 249 ability to facilitate GSIS was subsequently determined.
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Figure 5.23: Compound 249 induces a concentration-dependent positive allosteric modulation on OXM-
mediated cAMP accumulation responses at the INS-1 832/3 WT and GIPR-KO cell line but not the
GLP-1R-KO cell line. Compound 249 shows OXM-mediated cAMP potentiation in both INS-1 832/3 WT
and INS-1 GIPR-KO cells. Compound 249 has no allosteric modulation activity without the presence
of GLP-1R. 2000 INS-1 WT, GIPR-KO or GLP-1R-KO cells/well under 15-minute co-stimulation with
OXM in the presence of trequinsin were used in the cAMP assays. All data were normalised to the
maximum cAMP response determined by 100µM forskolin stimulation. All data are means from at least
2 independent experiments with duplicates ± S.E.M (upper error bars). Table 5.18 show the pEC50 and
Emax values of OXM-mediated cAMP accumulation responses in the presence of various concentrations
of compound 249. Statistical significance compared with OXM (**, p < 0.01; ***, p < 0.001) for different
concentrations of compound 249 was determined by one-way ANOVA with post-hoc Dunnett’s multiple
comparisons.
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Table 5.18: Compound 249 induces a concentration-dependent positive allosteric modulation on OXM-
mediated cAMP accumulation responses at the INS-1 832/3 WT and GIPR-KO cell line but not the
GLP-1R-KO cell line.

INS-1 cell line [Compound 249]M pEC50 
a Emax 

b Span n

Wildtype

DMSO 7.12±0.14 60.32±4.16 52.11±4.14 5

3.16x10-5M 7.74±0.07** 58.79±1.59ns 53.46±1.98 4

1x10-5M 7.60±0.08** 56.04±1.62ns 55.85±1.84 6

3.16x10-6M 7.47±0.12* 57.08±2.72ns 46.98±3.01 4

1x10-6M 7.35±0.12ns 57.15±2.95ns 48.30±3.18 6

3.16x10-7M 7.26±0.08ns 56.80±1.79ns 48.02±1.92 6

1x10-7M 7.23±0.10ns 57.42±2.23ns 48.51±2.28 6

1x10-8M 7.26±0.11ns 60.43±2.94ns 52.49±3.07 6

GIPR-KO

DMSO 7.62±0.08 88.74±2.67 84.05±3.22 6

1x10-5M 8.11±0.13*** 83.44±3.52ns 72.71±5.09 6

3.16x10-6M 8.08±0.17*** 84.66±4.13ns 71.94±6.08 6

1x10-6M 7.88±0.18** 87.00±5.26ns 72.36±6.96 6

3.16x10-7M 7.79±0.11ns 87.17±3.42ns 79.62±4.38 6

GLP-1R-KO

DMSO 7.02±0.07 39.46±1.34 33.51±1.35 6

3.16x10-5M 7.18±0.09ns 35.62±1.27ns 26.72±1.33 6

1x10-5M 7.13±0.08ns 38.79±1.46ns 32.21±1.49 6

3.16x10-6M 7.01±0.08ns 38.79±1.68ns 32.95±1.69 6

1x10-6M 7.21±0.08ns 35.29±1.19ns 28.51±1.25 6

3.16x10-7M 7.06±0.11ns 38.04±1.91ns 29.44±1.97 6

1x10-7M 7.20±0.10ns 38.68±1.61ns 30.95±1.66 6

1x10-8M 6.92±0.09ns 41.54±1.67ns 32.76±1.63 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with OXM (*, p < 0.05; **, p < 0.01; ***, p < 0.001, ns, non-statistically
significant) for different concentrations of compound 249 was determined by one-way ANOVA with
post-hoc Dunnett’s multiple comparisons.
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Table 5.19: Allosteric modulation parameters, a and b, of compound 249 actions of OXM-mediated
cAMP responses in INS-1 832/3 WT and INS-1 GIPR-KO cells.

Cell line !(a) "(b) !"(c) log!" R2 (d)

INS-1 Wildtype 8.136 1.204 9.796 0.991 0.8948

INS-1 GIPR-KO 8.194 1.12 9.177 0.963 0.8561

a represents the cooperativity determined by the operational model of agonism and allosterism.
b represents the scaling factors determined by the operational model of agonism and allosterism.
c represents the combinatorial values of both cooperativity and scaling factors. A positive logab value >

1 denotes positive allosteric modulation respectively.
d denotes the goodness of fit of the data set to the operational model of agonism and allosterism.

5.6.2 Investigation of compound 249 facilitation of insulin secretion

5.6.2.1 Insulin secretion in low and high glucose settings

The ability of compound 249 on mediating GSIS in the absence of GLP-1R endogenous

agonists was first investigated. To do so, compound 249 at a fixed concentration

(10µM) was tested in both low (2.8mM) and high (16.7mM) glucose conditions, in

order to determine if any potentiation of insulin secretion by compound 249 was

glucose-dependent, as well as to examine if the test compound would interfere with

the TR-FRET-based insulin secretion assay. BETP (at 10µM) was also included in the

assays to act as a comparison for the effect of compound 249 on GSIS. Apart from the

INS-1 832/3 WT cell line, the INS-1 GIPR-KO and INS-1 GLP-1R-KO cell lines were

also included in the assays in order to explore if the compound’s effect on GSIS is

GLP-1R-specific. The measurement of insulin secretion in the rat clonal pancreatic b

cell lines has been validated in Section A.1, and the secretion assaying methods were

described in Section 2.2.4.2. The DMSO content were kept constant across all conditions.

However, one caveat for the insulin secretion results reported in the following sections

is that the overall insulin content were not measured due to the deterioration of samples

and COVID-19 obstruction of experimental schedule. Therefore, the following insulin

secretion results are of preliminary nature only.

Corroborated with the observations in Fig. 4.4, the INS-1 832/3 WT, GIPR-KO

and GLP-1R-KO cell lines responded to the high glucose challenge by significantly

enhancing insulin secretion (Fig. 5.24), proving the functionality of the rat b cell lines

in responding to glucose stimuli. Furthermore, compound 249 did not facilitate GSIS in

the presence of high glucose stimuli in all three INS-1 WT, GIPR-KO and GLP-1R-KO

cell lines, which further substantiated the observation that compound 249 did not
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possess intrinsic agonism to mediate GSIS (Fig. 5.1 and 5.16). In contrary to compound

249, the ago-PAM BETP facilitated GSIS in the INS-1 832/3 WT cell line by 2.17-fold,

the INS-1 GIPR-KO cell line by 1.75-fold and interestingly also in INS-1 GLP-1R-KO cell

line by 2.07-fold, which contrasted with some reports suggesting its GLP-1R-specific

action [Sloop et al., 2010] (Fig. 5.24). Notably, compound 249 and BETP did not

enhance insulin secretion in low glucose condition, suggesting both compounds did

not interfere with the TR-FRET-based assay, and the insulin potentiation effects were

purely glucose-dependent. Having deduced compound 249 did not facilitate GSIS in

the presence of glucose alone, its abilities to promote GSIS in the presence of GLP-1R

endogenous agonists were then explored.

0

2

4

6

8

10

12

14

16

18

20

In
su

lin
 s

ec
re

tio
n

(N
or

m
al

is
ed

 to
 2

.8
m

M
 G

lu
co

se
) Glucose

Cmpd 249 (µM)
BETP (µM)
Glucose (mM)

-
-

-
-

-
-

10
-

10
-

2.8

10
-

-
10

-
10

-
10

-
-

-
-

-
-

10
-

10
-

16.7

10
-

-
10

-
10

-
10

Figure 5.24: Compound 249 does not affect GSIS in INS-1 832/3 WT, GIPR-KO and GLP-1R-KO cells
when co-applied with high glucose. Compound 249 does not facilitate GSIS while BETP enhances GSIS
in the presence of 16.7mM glucose in INS-1 832/3 WT, GLP-1R-KO and GIPR-KO cell lines. Mean ±
S.E.M. insulin secretion data (responses normalised to the GSIS secretion responses at 2.8mM respectively)
in 1 to 4 independent experiments with quadruplicates are shown in the above scatter plots. Preliminary
results are shown here due to COVID-19 obstruction of experimental schedule.

5.6.2.2 Compound 249 selectively potentiates GLP-1 and OXM-mediated GSIS

After concluding that compound 249 did not facilitate GSIS in the presence of glucose

stimuli alone, its abilities to augment GSIS in the presence of GLP-1R endogenous

and synthetic agonists, namely GLP-1, OXM, GLP-1(9-36)NH2 and Ex-4, were then

investigated. Again, the INS-1 GIPR-KO and GLP-1R-KO cell lines, together with

the INS-1 832/3 WT cell line, were used in order to determine if the potentiation of

GSIS was receptor-specific. To do so, following an hour of low glucose pre-incubation,
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the INS-1 832/3 cells were incubated for an hour with a fixed concentration (10µM)

of compound 249, BETP or DMSO as vehicle in the presence of GLP-1R agonists.

Supernatants were then collected, and insulin levels were then measured.

Statistically significant difference in terms of insulin secretion between low and

high glucose conditions in all rat b cell lines were observed, proving the responsiveness

of the rat insulinoma cell lines to high glucose stimulation. Furthermore, 10nM GLP-

1, 1µM OXM and 10nM Ex-4 further stimulated GSIS in both INS-1 832/3 WT and

INS-1 GIPR-KO cell lines, implying the functional presence of the GLP-1R, as well as

concurring with the results in Fig. 4.4. As shown previously in Fig. 4.4, GLP-1 and

Ex-4 did not enhance GSIS in the INS-1 GLP-1R-KO cell line, implying the absence of

GLP-1R in the GLP-1R-KO cell line. The presence of 1µM GLP-1(9-36)NH2 also did

not promote GSIS in all three INS-1 832/3 cell lines, corroborating with the notion that

GLP-1(9-36)NH2 is not insulinotropic.

The following results suggested that compound 249 potentiated the effect of GLP-1-

mediated GSIS in both INS-1 832/3 WT cell line (by 1.25-fold; p < 0.05) and GIPR-KO

(by 1.14-fold; p < 0.01) (Fig. 5.25A). However, no facilitation of GSIS mediated by

compound 249 was observed in the INS-1 GLP-1R-KO cell line, further implying

compound 249 facilitation of GLP-1-mediated GSIS is GLP-1R specific. Indeed, the

cAMP functional assays conducted in the INS-1 GLP-1R-KO cell line also suggested

compound 249 mediates its PAM action in the absence of GLP-1R (Fig. 5.23). In contrary

to compound 249, BETP did not promote GLP-1-mediated GSIS, which corroborated

with other studies suggesting its selectivity towards GLP-1(9-36)NH2 and OXM-biased

allosteric modulation [Koole et al., 2012, Bueno et al., 2020]. In fact, the same preferential

potentiation exhibited by BETP were also observed here, which BETP promoted OXM-

mediated GSIS in the INS-1 GIPR-KO cell line by 1.60-fold (p < 0.01) (Fig. 5.25B) and

GLP-1(9-36)NH2-mediated GSIS in INS-1 832/3 WT cell lines by 1.76-fold (p < 0.05)

(Fig. 5.25D).

In spite of a lesser degree of potentiation compared to BETP, compound 249 facili-

tated OXM-mediated GSIS in the INS-1 GIPR-KO cell line (by 1.33-fold; p < 0.01), while

having no statistically significant enhancement of GSIS in both INS-1 832/3 WT and

INS-1 GLP-1R-KO cell lines (Fig. 5.25B). Although Ex-4 shares close homology with

GLP-1, compound 249 did not significantly facilitate Ex-4-mediated GSIS in all three

INS-1 cell lines (Fig. 5.25C), suggesting compound 249 preferential allosteric action

on GLP-1. Compound 249 also did not enhance GLP-1(9-36)NH2-mediated GSIS in

all three rat insulinoma cell lines (Fig. 5.25D). Collectively, the results suggested that
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compound 249 selectively facilitated both GLP-1 and OXM-promoted GSIS, and that

the facilitation required the presence of functional GLP-1R.
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Figure 5.25: Compound 249 facilitates GSIS mediated by GLP-1 and OXM in INS-1 832/3 WT and
GIPR-KO cells. Compound 249 further facilitates GSIS mediated by (A) GLP-1 and (B) OXM in the
presence of 16.7mM glucose in INS-1 823/3 WT and GIPR-KO cell lines. Compound 249 has minimal
GSIS facilitation mediated by (C) Ex-4 and (D) GLP-1(9-36)NH2. Mean ± S.E.M. insulin secretion data
(responses normalised to the GSIS secretion responses at 2.8mM respectively) in 1 to 10 independent
experiments with quadruplicates are shown in the above scatter plots. Statistical significance compared
between responses at 2.8mM and 16.7mM glucose among the three different INS-1 cell lines are determined
by Student’s t-test with Welch’s correction and are indicated by hash above the bars (####, p<0.0001).
Statistical significance compared among the peptide ligand influence on GSIS in INS-1 WT, GIPR KO
and GLP-1R KO were determined by one-way ANOVA with Bonferroni’s corrections compared with the
mean of the WT group and are indicated by obelisk above the bars (+++, p<0.001, ++++, p<0.0001, ns,
non-statistically significant). Statistical significance compared between responses with or without the
presence of peptide ligands at 16.7mM glucose in insulin secretion assays respectively are determined by
Student’s t-test with Welch’s correction and are indicated by asterisks above the bars (*, p<0.05). Some of
the preliminary results (n=1) are shown here due to COVID-19 obstruction of experimental schedule.
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5.6.2.3 Compound 249 potentiates GLP-1 and OXM-mediated GSIS in a concentrati-
on-dependent manner

Following the observations of compound 249 facilitation of GLP-1 and OXM-mediated

GSIS, the compound’s concentration-dependent potentiation effect was then tested.

Here a range of concentrations of compound 249 (from 100µM to 0.1µM) were stimu-

lated in the presence of either GLP-1 or OXM in the INS-1 832/3 WT cell lines for an

hour and the extent of insulin secretion was then measured. The DMSO content were

kept constant across all concentrations.

Differences in insulin secretion between high and low glucose stimulation were

again observed, proving the functionality of the INS-1 832/3 WT to high glucose

stimuli. The presence of 10nM GLP-1 and 1µM OXM further enhanced GSIS, which

concurred with the results in Fig. 5.25 and also implied the responsiveness of the clonal

pancreatic b cells to incretin stimulation. Here, a concentration-dependent potentiation

effect of GLP-1-mediated GSIS mediated by compound 249 was observed, with a

1.62-fold increase (p < 0.01) when compound 249 at 100µM was applied, followed by

a 1.22-fold increase (p < 0.05) when compound 249 at 10µM was added (Fig. 5.26).

Similarly, a concentration-dependent OXM-mediated GSIS facilitative effect mediated

by compound 249 was also observed, with a 2.16-fold increase (p < 0.0001) was observed

when compound 249 at 100µM was added, followed a 1.49-fold increase (p < 0.001)

induced by compound 249 at 10µM (Fig. 5.26). These results further illustrated

compound 249 facilitation of GLP-1 and OXM-mediated GSIS.
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Figure 5.26: Compound 249 concentration-dependent facilitation of GSIS mediated by GLP-1 and
OXM in INS-1 832/3 WT cells. Panel A and B show the concentration-dependent effect of compound 249
on GSIS mediated by GLP-1 and OXM in the presence of 16.7mM glucose in INS-1 832/3 WT cell lines.
Mean ± S.E.M. insulin secretion data (responses normalised to the GSIS secretion responses at 2.8mM
respectively) in at least 1 to 5 independent experiments with quadruplicates are shown in the above scatter
plots.
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5.6.2.4 Compound 249 potentiates OXM-mediated GSIS in isolated mouse islets

After demonstrating the ability of compound 249 to promote OXM-mediated GSIS in rat

insulinoma cell line, more physiologically relevant primary cells, namely the isolated

mouse pancreatic islets (kindly provided by Dr Nikola Dolezalova of the Department

of Surgery, University of Cambridge), were used to further validate the compound

249 facilitation of GSIS. Similar to the approach in measuring insulin secretion in the

rat insulinoma cell line, following low glucose pre-incubation, the mouse islets were

incubated with 10µM compound 249, BETP or vehicle for an hour. Insulin levels in

each condition were then measured as described in section 2.2.4.2.

In spite of a non-statistically significant increase in the insulin secretion level

between low and high glucose, the isolated mouse islets were still able to respond to

the stimuli of 1µM OXM, illustrating the functionality of the mouse islets in responding

to agonist stimulation. Strikingly, there was a significant increment in GSIS by nearly

2-fold when 10µM compound 249 was co-applied with OXM to the mouse islets; the

reference compound BETP was also able to enhance OXM-mediated GSIS to a similar

extent (Fig. 5.27). These preliminary results further substantiated compound 249 ability

to enhance OXM-mediated GSIS in both in vitro and ex vivo settings. The implication of

which will be discussed in the section 5.8.
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Figure 5.27: Compound 249 further facilitates GSIS mediated by OXM in isolated mouse islets. Com-
pound 249 further facilitates GSIS mediated by OXM in the presence of 10mM glucose in isolated mouse
islets. Insulin secretion is reported as ng/µl per hour in 2 independent experiments with 6-replicates and
are shown in the above scatter plots.
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5.7 Screening of compound 249-derived analogues

To further explore the structure-activity-relationship (SAR) of the quinoxaline-based

scaffold of compound 249, three analogues which shared 80% structure similarity

as the parent compound 249 were designed by Dr Taufiq Rahman (Department of

Pharmacology, University of Cambridge) (Fig. 5.28 A-C) by structure modification

of the compound 249. The alkyne group present in compound 249 was retained in

analogue 248 but it was now positioned in a cis-conformation. The alkyne group was

removed in compound 82 and was substituted by a saturated C-C bond at the amino

position; as for compound 448, an alkene group was introduced to investigate the effect

of different electrostatic density on the allosteric modulation. Both compound 82 and

448 now contained dioxane rings.

Furthermore, 11 analogues were selected based on the results of ligand-based

virtual screening using compound 249 as a bait performed by Miss Kathleen Bowman

(Department of Pharmacology, University of Cambridge). These compounds namely

compound 880, 297, 180, 607, 385, 106, 001, 246, 646, 468 and 518 (Fig. 5.28 D-N), were

chosen as they were the highest-ranking candidates based on the similarities of 3D

steric conformation and electrostaticity of compound 249.

The biological screening approach for these analogues were the same as the identi-

fication of compound 249, which cAMP accumulation assays were primarily used as

the default screening assay. Interesting candidates were then further characterised for

their iCa2+ release properties. The intrinsic agonisms of these compound 249-derived

analogues were first investigated, followed by the SAR studies of compound 249 and

the three other closely-derived analogues in the following section.
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Figure 5.X: Structures of analogues of compound 249. Panel B to D show the 2D structures of the analogues of
compound 249 which share a close structural homology to compound 249 (A). These molecules were designed based
on 80% structural similarity as the parent compound 249. Different C-bonds were introduced in the compound 249
analogues, with analogue 248 retaining the alkyne group from compound 249 but in a different conformation. A
saturated C-C bond was introduced in analogue 82 while an alkene group was introduced in analogue 448. Panel A to
K show the 2D structures of the analogues of compound 249 which are based on the structures of compound 249
using virtual screening. The virtual screening of these analogues was conducted by Miss Kathleen Bowmen.

Figure 5.28: Structures of analogues of compound 249. Panel A to C show the 2D structures of the
analogues of compound 249 which share a close structural homology to compound 249 (Fig. 5.1). These
molecules are designed based on 80% structural similarity as the parent compound 249. Different C-bonds
are introduced in the compound 249 analogues, with analogue 248 retaining the alkyne group from
compound 249 but in a different conformation. A saturated C-C bond is introduced in analogue 82 while
an alkene group is introduced in analogue 448. Panel D to N show the 2D structures of the analogues of
compound 249 which are based on the structures of compound 249 using virtual screening conducted by
Miss Kathleen Bowmen.
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5.7.1 Compound 249 analogues lack GLP-1R and GCGR intrinsic agonism

Similar to the determination of compound 249 intrinsic agonism at the GLP-1R, the

same cAMP functional assays were performed in CHO-GLP-1R and CHO-GCGR cells

in order to determine if the analogues demonstrated any intrinsic GLP-1R and GCGR

agonism. Compound 249 analogues at a range of concentrations (100µM to 10pM)

were applied to CHO-GLP-1R and/or CHO-GCGR cells. Untransfected CHO-K1 cells,

which acted as a null receptor background, were also stimulated with compound 249

analogues. Here all compound 249 analogues lacked GLP-1R intrinsic agonism (Fig.

5.29). Furthermore, compound 248, 82 and 448 also lacked GCGR intrinsic agonism

(Fig. 5.29), and their apparent slight activation of cAMP responses when compounds

at 100µM were applied were due to autofluorescence. Having concluded these small

molecules were not GLP-1R and/or GCGR agonists, the SAR studies of compound 249

were reported.

233



Chapter 5. Identification and characterisation of GLP-1R small molecule positive
allosteric modulators

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

log[248]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

S

HN

N

N

OO

N
H

CH

NH

NO

CH3

O
H3C

NH3C

O

H3C

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[880]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

CHO-GLP-1R

CHO

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[607]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

O

N
H

S

O

O

F

O

O

CH3

N
H

S

F F

Cl

F

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[001]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

H
S

N

N

N

HN

S

F

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[468]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

0

0

20

40

60

-10 -9 -8 -7 -6 -5 -4

log[82]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

S
N
H

N

N

O

O

O

O

HN

CH3

S

N

N

S

F

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[297]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

F

F

S

HN

N
N

N

N

H3C
CH3

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[385]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

O

N

N

N H
S

CH3

CH3
NH

S

H3C

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[246]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

N

S

NH Cl

N

O

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[518]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

0

0

20

40

60

-10 -9 -8 -7 -6 -5 -4

log[448]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

S
N
H

N

N

O

OHN

CH2

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[180]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

N

N

H
S NH

S

O

O

F

F

HN

HNF

F

F
S

F

O

O

O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[106]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

N

N

N

S

Cl

NH2

CH2

O
O

0 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

log[646]M

%
 R

es
po

ns
e 

(R
el

at
iv

e 
to

 F
or

sk
ol

in
)

CHO-GLP-1R CHO-GCGR CHO-K1

A B C

D E F

G H I

J K L

M N

Figure 5.29: Analogues of compound 249 do not activate GLP-1R and GCGR. Analogues of compound
249 fail to activate cAMP accumulation responses at the GLP-1R and GCGR. 1000 CHO-GLP-1R, CHO-
GCGR and CHO-K1 cells/well under 15-minute stimulation in the presence of rolipram were used in the
cAMP assays. All data are normalised to the maximum cAMP response determined by 100µM forskolin
stimulation. All data are means of 2 independent experiments with duplicates ± S.E.M (upper error bars).
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5.7.2 Structure-activity-relationship studies on compound 249 analogues

5.7.2.1 Compound 248, 82, 448 allosteric modulation on cAMP responses

An initial screening of the allosterism of the compound 249 analogues was conducted in

the CHO-GLP-1R cells using the same cAMP functional assaying technique. Given that

none of the analogues exhibited any allosteric modulation of OXM and GCG-mediated

cAMP responses, the results are not shown here but are available in Appendix B.4.

The HEK293S-GLP-1R-WT cell line was again used to validate if these compounds

were NALs on OXM or GCG-mediated cAMP responses in the human-origin cell line.

Similar to the observations in CHO-GLP-1R cell line, compound 248, 82 and 448 were

classified as NALs via the application of operational model of allosterism, despite

showing slight degree of inhibition of OXM-mediated cAMP responses (Fig. 5.30, Fig.

5.31 and Table 5.20). Likewise, the three analogues were also NALs of GCG-mediated

cAMP responses, albeit showing slight potentiation when very high concentration (at

100µM) was applied (Fig. 5.30, Fig. 5.31 and Table 5.20). These results illustrated that

the trans-conformation of the alkyne group of compound 249 may be critical for its

allosterism on cAMP responses. Following the conclusion that these three analogues

were NALs on cAMP responses at the GLP-1R, their ability to modulate iCa2+ responses

were next examined.
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Figure 5.30: Analogues of compound 249 do not allosterically modulate GLP-1R and GCGR. Analogues
of compound 249 are not allosteric modulators at the GLP-1R and GCGR. 500 HEK293S-GLP-1R-WT
cells/well under 8-minute stimulation in the absence of PDE inhibitor were used in the cAMP assays. All
data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation. All
data were means of 1 to 4 independent experiments with duplicates ± S.E.M (upper error bars).
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Figure 5.31: Scatter plots illustrating compound 249 analogues do not induce allosteric modulation on
OXM or GCG-mediated cAMP accumulation in HEK293S-GLP-1R-WT cells. Panel A, C and E show
that compound 248, 82 and 448 do not potentiate OXM-mediated cAMP accumulation even when high
concentration at 10�4M is applied to the HEK293S-GLP-1R-WT cells. Similarly, panels B, D, and F
show that these analogues are not allosteric modulators on GCG-mediated cAMP accumulation. 500
HEK293S-GLP-1R-WT cells/well under 8-minute co-stimulation with peptide ligands in the absence of
PDE inhibitor were used in the cAMP assays. All data were normalised to the maximum cAMP response
determined by 100µM forskolin stimulation. All data are means from 1 to 4 independent experiments
with duplicates ± S.E.M (upper error bars). Statistical significance compared with OXM or GCG (*, p <
0.05; **, p < 0.01; ***; p < 0.001) in the presence of different concentrations of compound 248, 82 and 448
was determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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Table 5.20: Allosteric modulations of OXM and GCG-mediated cAMP responses by analogues of
compound 249 in HEK293S-GLP-1R-WT cells.

Ligand Compound Concentrations pEC50 
a Emax 

b Span n

OXM

DMSO - 7.98±0.06 117.7±4.23 115.0±4.18 8

248

1x10-4M 7.83±0.09* 98.93±2.37 69.73±3.08 4

3.16x10-5M 7.98±0.08 94.85±2.40 89.98±3.39 6

1x10-5M 7.77±0.05*** 94.92±1.94 90.02±2.47 8

82

1x10-4M 7.62±0.08*** 97.03±2.26 65.91±2.67 4

3.16x10-5M 7.81±0.09* 94.63±3.00 88.73±2.87 6

1x10-5M 7.70±0.06*** 93.67±2.09 85.96±2.59 8

448

1x10-4M 7.60±0.08*** 94.60±2.29 66.24±2.69 4

3.16x10-5M 7.83±0.10 93.39±3.20 88.90±4.42 6

1x10-5M 7.73±0.07** 91.93±2.36 86.46±2.93 8

GCG

DMSO - 7.62±0.04 99.38±1.80 102.1±2.18 6

248

1x10-4M 7.90±0.07 102.08±2.16 83.29±2.91 2NB

3.16x10-5M 7.86±0.12** 96.55±4.48 100.03±5.99 4

1x10-5M 7.41±0.12 91.25±4.89 88.66±5.36 6

82

1x10-4M 7.59±0.07 95.72±2.03 65.38±2.38 2NB

3.16x10-5M 7.76±0.11 94.24±4.24 96.61±5.34 4

1x10-5M 7.53±0.16 86.47±6.30 83.10±6.92 6

448

1x10-4M 7.53±0.08 95.37±2.19 66.57±2.58 2NB

3.16x10-5M 7.80±0.12* 92.65±4.63 95.96±5.94 4

1x10-5M 7.29±0.11 90.50±4.72 89.47±4.99 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared with OXM or GCG (*, p < 0.05; **, p < 0.01; ***, p < 0.001) in
the presence of different concentrations of compound 248, 82 and 448 was determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.7.2.2 Allosteric modulation of the compound 249 analogues on iCa2+ release

After concluding that these analogues were NALs of cAMP responses, their effect on

iCa2+ mobilisation were subsequently evaluated. Same as previous approach (section

5.3.4), HEK293S-GLP-1R-WT cells were pre-treated with a range of fixed concentrations

of compound 249 analogues prior to stimulation with GLP-1, OXM or GCG in the

presence of the analogues.

Here the preliminary results suggested that all three compound 249 analogues

reduced the efficacies of GLP-1-induced iCa2+ responses (Emax of GLP-1 reduced from

77.24 ± 8.89 to 29.75 ± 3.46, 47.23 ± 7.59 and 7.90 ± 0.93 by compound 248, 82 and 448,

all at 1x10�4M respectively) (Fig. 5.32 and Table 5.21). Intriguingly, among the three

compound 249 analogues, only compound 248 illustrated concentration-dependent

negative allosteric modulation on OXM-mediated iCa2+ release (pEC50 reduced from

6.90 ± 0.14 to 6.14 ± 0.24, non-statistically significant, when 1x10�5M of compound 248

was applied). Further application of the operational model of allosterism into the data

set resulted in a negative logab value of -1.371, further illustrating that compound 248

is a NAM on OXM-mediated iCa2+ release at the GLP-1R. Compound 82 and 448 on

the other hand did not influence OXM-mediated iCa2+ release, and further application

of the operational model of allosterism resulted in logab values of 0.439 and 0.594,

which suggested both were NALs of OXM-mediated iCa2+ release at the GLP-1R.

Contrary to being a NAL of OXM-mediated iCa2+ release, compound 448 potenti-

ated GCG-mediated iCa2+ responses in a concentration-dependent manner (Fig. 5.32

and Table 5.21) (pEC50 value increased from 5.82 ± 0.29 to 6.80 ± 0.33, non-statistically

significant, at 1x10�4M respectively). A positive logab value of 2.65 was obtained when

the results were applied to the operational model of allosterism, further illustrating its

role as a PAM in GCG-mediated iCa2+ response. Unlike compound 448, compound 248

and 82 did not affect GCG-mediated iCa2+ response. The above results illustrated how

subtle changes in the compound 249 scaffold can lead to opposing cAMP and iCa2+

release signalling responses.
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Figure 5.32: Analogues of compound 249 act as positive or negative allosteric modulators at GLP-1,
OXM or GCG-mediated iCa2+ release in HEK293S-GLP-1R-WT cells. Panel A, D and G show that
compound 248, 82 and 448 act as NAMs in GLP-1-mediated intracellular calcium release. Panel B, E and
H show that compound compound 248 is a NAM on OXM-mediated intracellular calcium release. Panel
C, F and I show that compound 448 has a potent positive allosteric modulation at the GCG-mediated
intracellular calcium release. 80,000 cells/well of HEK293S-GLP-1R-WT cells were seeded onto black-96
well plate overnight prior to the measurement of intracellular calcium mobilisation. Cells were pre-treated
with compounds prior to stimulation with peptide ligands. All data were normalised to the 10µM
ionomycin concentration-response curve. All data are means from 1 to 3 independent experiments ±
S.E.M (upper error bars).
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Table 5.21: Allosteric modulations of GLP-1, OXM or GCG-mediated iCa2+ mobilisation by analogues
of compound 249 in HEK293S-GLP-1R-WT cells.

Ligand Compound Concentrations pEC50 
a Emax 

b Span n

GLP-1

248

DMSO 7.53±0.29 77.24±8.89 71.50±9.59 1NB

1x10-4M 7.87±0.28 29.75±3.46 29.60±4.04 1NB

1x10-5M 7.45±0.40 50.31±7.68 42.51±8.15 1NB

82

DMSO 7.53±0.29 77.24±8.89 71.50±9.59 1NB

1x10-4M 7.88±0.40 47.23±7.59 38.60±8.72 1NB

1x10-5M 7.64±0.15 28.85±1.66 25.57±1.96 1NB

448

DMSO 7.53±0.29 77.24±8.89 71.50±9.59 1NB

1x10-4M 8.11±0.23 7.90±0.93 46.46±5.12 1NB

1x10-5M 7.90±0.93 31.79±9.93 26.17±11.68 1NB

OXM

248

DMSO 6.90±0.14 41.19±2.52 38.58±2.90 3

1x10-4M 7.02±0.37ns 18.37±2.81ns 17.88±3.47 3

1x10-5M 6.14±0.24ns 49.91±8.13ns 45.14±7.85 3

1x10-6M 6.44±0.26ns 53.10±7.44ns 47.94±7.63 3

82

DMSO 6.90±0.14 41.19±2.52 38.58±2.90 3

1x10-4M 5.57±0.44ns 64.75±33.78ns 59.99±32.99 3

1x10-5M 5.82±0.44ns 37.62±16.72ns 35.61±16.14 3

448

DMSO 6.21±0.14 27.89±2.69 28.24±2.61 3

1x10-4M 6.02±0.30 31.34±7.19 30.04±7.01 1NB

1x10-5M 5.93±0.30 33.52±12.37 31.65±12.08 1NB

GCG

248

DMSO 5.82±0.29 73.36±17.91 62.11±17.14 3

1x10-4M 5.55±0.78ns 49.07±36.77ns 39.29±35.74 3

1x10-5M 6.41±0.41ns 59.76±10.06ns 41.58±10.35 3

82

DMSO 5.82±0.29 73.36±17.91 62.11±17.14 3

1x10-4M 6.48±0.32ns 61.99±7.38ns 39.64±7.61 3

1x10-5M 6.90±0.40ns 49.84±6.28ns 34.89±7.52 3

448

DMSO 5.82±0.29 73.36±17.91 62.11±17.14 3

1x10-4M 6.80±0.33ns 65.56±6.28ns 37.26±6.94 3

1x10-5M 6.26±0.33ns 72.52±20.33ns 63.58±19.43 3

Table 5.X: Allosteric modulations of GLP-1, OXM or GCG-mediated iCa2+ mobilisation by analogues of
compound 249 in HEK293S cells stably expressing sigSNAP-GLP-1R-mCherry wildtype.

Values were generated when the data were fitted to the three-parameter logistic equation. Means ± S.E.M of n
individual result sets were shown. 
a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin. 

Statistical significance compared with OXM (*, p < 0.05; **, p < 0.01; ***, p < 0.001, ns, non-statistically significant) 

for compound 249 was determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons. 

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to ionomycin.
NB Preliminary results are shown here only due to COVID-19 obstruction of experimental schedule.

Statistical significance compared with GLP-1, OXM and GCG (ns, non-statistically significant) in
the presence of different concentrations of compound 248, 82 and 448 were determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.7.2.3 Summary of compound 248, 82 and 448 allosteric modulation

Compound 248, 82 and 448 demonstrate distinct allosteric modulation profile compared

to their parent compound 249. In terms of the allosterism on the cAMP signalling,

all analogues were NALs while compound 249 was the only PAM on OXM-mediated

cAMP responses. In terms of agonist-induced iCa2+ mobilisation, only compound 249

and compound 248 were NAMs on OXM-mediated iCa2+ release while compound 82

and 448 were NALs in such pathway. Interestingly, among the four compounds, only

compound 448 was able to enhance GCG-mediated iCa2+ signalling responses (Fig.

5.33). These results illustrated an interesting SAR studies which explored the probe

dependence effect of compound 249 scaffold. The significance of the findings will be

discussed in later Discussion section.
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Figure 5.33: Bar charts summarising compound 249 analogues allosterism in HEK293S-GLP-1R-WT
cells. The above bar charts summarise compound 249 analogues allosteric actions on GLP-1, OXM and
GCG-mediated (A) cAMP accumulation and (B) iCa2+ release. N.D.: not determined.

242



5.7. Screening of compound 249-derived analogues

5.7.3 Screening of other compound 249 based analogues

5.7.3.1 Allosteric modulation on cAMP accumulation

Following the SAR studies of the three closely related analogues of compound 249, the

potential allosteric activities of the other 11 compounds, which were identified through

ligand-based virtual screening, were examined. Again, cAMP functional assays were

employed and fixed concentrations (at 100µM and 10µM) of analogues were applied

in the presence of a range of GLP-1 or OXM to the CHO-GLP-1R cells. The extents of

cAMP accumulation were then measured.

Among the 11 small molecule candidates, only compound 607 demonstrated the

most significant extent of inhibition of both GLP-1 and OXM-mediated cAMP responses

among all small molecule candidates (Fig. 5.34 and Fig. 5.35) when high concentration

(i.e. at 100µM) was applied (pEC50 value of GLP-1 reduced from 9.46 ± 0.05 to 9.03 ±
0.06, p < 0.001 and pEC50 value of OXM decreased from 7.92 ± 0.06 to 6.93 ± 0.08, p

< 0.0001). Other compounds induced marginal yet statistically significant changes in

the potencies of both GLP-1 and OXM-mediated cAMP responses (Fig. 5.36). Given

compound 607 potent inhibitory action of GLP-1 and OXM-mediated cAMP responses,

further investigation on its effect on iCa2+ release was performed.
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Figure 5.34: Only analogue 607 demonstrates negative allosteric modulation on GLP-1-mediated cAMP
accumulation in CHO-GLP-1R cells. Panel A to K show that the analogues of compound 249 do not
potentiate GLP-1-mediated cAMP accumulation even when high concentration at 10�4M were applied to
the CHO-GLP-1R cells, except for panel D where analogue 607 demonstrates negative allosterism. 500
CHO-GLP-1R cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram
were used in the cAMP assays. All data were normalised to the maximum cAMP response determined by
100µM forskolin stimulation. All data are means from at least 2 independent experiments with duplicates
± S.E.M (upper error bars). Statistical significance compared with GLP-1 (***, p < 0.001) in the presence of
different concentrations of compound 607 were determined by one-way ANOVA with post-hoc Dunnett’s
multiple comparisons.
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Figure 5.35: Only analogue 607 demonstrates negative allosteric modulation on OXM-mediated cAMP
accumulation in CHO-GLP-1R cells. Panel A to K show that the analogues of compound 249 do not
potentiate OXM-mediated cAMP accumulation even when high concentration at 10�4M were applied to
the CHO-GLP-1R cells, except for panel D where analogue 607 demonstrates negative allosterism. 500
CHO-GLP-1R cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram
were used in the cAMP assays. All data were normalised to the maximum cAMP response determined by
10µM forskolin stimulation. All data are means from at least 3 independent experiments with duplicates ±
S.E.M (upper error bars). Statistical significance compared with OXM (****, p < 0.0001) in the presence of
different concentrations of compound 607 were determined by one-way ANOVA with post-hoc Dunnett’s
multiple comparisons.
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Figure 5.36: Scatter plots summarising the allosteric modulation of analogues of compound 249 on
GLP-1 and OXM-mediated cAMP accumulation in CHO-GLP-1R cells. 500 cells/well of CHO-GLP-1R
cells were co-stimulated with fixed concentrations of analogues at 10�4M in the presence of GLP-1 or OXM
for 15 minutes with the presence of rolipram to measure cAMP accumulation. All data were normalised
to the maximum cAMP response determined by 100µM forskolin stimulation and were means of at least 3
independent experiments with duplicates ± S.E.M (upper error bars). Statistical significance compared
with GLP-1 or (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001) in the presence of compound 607
were determined by one-way ANOVA with post-hoc Dunnett’s multiple comparisons.
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5.7.3.2 Analogue 607 allosteric modulation on iCa2+ release

Following the identification of compound 607 as a NAM in cAMP responses, its effect

on iCa2+ release was investigated. To do so, HEK293S-GLP-1R-WT cells were pre-

treated with compound 607 at 100µM prior to OXM stimulation in the presence of

compound 607. Compound 607 reduced OXM-mediated iCa2+ response (pEC50 of

OXM decreased from 7.10 ± 0.26 to 6.55 ± 0.18) (Fig. 5.37). The efficacy of the iCa2+

responses was also reduced (Emax decreased from 35.73 ± 3.41 to 21.91 ± 1.83), yet the

reduction was non-statistically significant. Overall, compound 607 exhibited negative

alosteric modulation of cAMP and iCa2+ responses at the GLP-1R. However, due to its

inhibitory effect on both cAMP responses and iCa2+ release at the GLP-1R, as well as

its ability to reduce insulin secretion in the INS-1 832/3 WT cell line (data not shown,

but available in Appendix B.5 and B.13), it was apparent that compound 607 was not an

appropriate drug candidate to be further developed as a T2DM treatment. However, it

may serve as a useful tool for structural biology studies of the GLP-1R. The implications

of the SAR studies will be discussed in the following section.
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Figure 5.37: Analogue 607 shows negative allosterism of OXM-mediated iCa2+ release in HEK293S-
GLP-1R-WT cells. (A) Compound 607 at 100µM shows inhibition on OXM-mediated intracellular calcium
release. (B) and (C) show the scatter plots representing the changes in potencies and efficacies of the
OXM-mediated iCa2+ responses. 80,000 cells/well of HEK293S-GLP-1R-WT cells were seeded onto
black-96 well plate overnight prior to the measurement of intracellular calcium mobilisation. Cells were
pre-treated with compound 607 prior to stimulation with OXM. All data were normalised to the 10µM
ionomycin concentration-response curve. All data are means from at least 2 independent experiments ±
S.E.M (upper error bars).
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5.8 Discussion

The search for GLP-1R small molecule agonists or PAMs to act as novel GLP-1R-targeted

T2DM therapies has been prompted for many years and it was only until the recent

decades that there was a surge of reports of GLP-1R small molecule ago-PAMs or PAMs

[Tibaduiza et al., 2001, Knudsen et al., 2007, Chen et al., 2007, Koole et al., 2010, Sloop

et al., 2010, Graaf et al., 2011, Zhang et al., 2014, Redij et al., 2019, Méndez et al.,

2020, Zhao et al., 2020, Bueno et al., 2020]. Despite showing promising potentiation of

insulin secretion in in vitro and in vivo rodent studies, many of the reported GLP-1R

PAMs or agonists were discovered to either display cell toxicity when used at high

concentration [Knudsen et al., 2007], or violate the Lipinski’s rule of five [Chen et al.,

2007] that further hindered their drug development. Therefore, the pursuit of a feasible

GLP-1R small molecule agonist or PAM is still ongoing.

Compound 249 was identified as a GLP-1R PAM during my MPhil project in 2017.

To evaluate the feasibility of compound 249 to be further developed as a novel T2DM

therapy, pharmacological characterisation, through utilising various functional assays,

of the compound were performed as part of my PhD work and was summarised in Fig.

5.9. The significance of the findings will be discussed as follows.

5.8.1 Compound 249 displays a unique probe dependence profile

Compound 249 shows a distinct probe dependence profile, which it exhibits positive

allosteric modulation with OXM-mediated cAMP response, negative allosteric modu-

lation with GLP-1 and OXM-mediated iCa2+ mobilisation, and neutral cooperativity

with OXM-mediated pERK1/2 (Fig. 5.9). Compared to the two well-studied GLP-1R

ago-PAMs, compound 2 and BETP, compound 249 illustrated a completely different

probe dependence profile in a way that it selectively potentiates OXM-mediated cAMP

response vs GLP-1 or GCG-mediated cAMP responses, unlike BETP potentiation on

both GLP-1(9-36)NH2 and OXM-mediated cAMP responses [Sloop et al., 2010, Willard

and Sloop, 2012] and compound 2 enhancement on all GLP-1R agonists-mediated

cAMP responses [Coopman et al., 2010, Koole et al., 2010, Li et al., 2012]. These differ-

ences in probe dependence illustrate the advantage of designing drugs that selectively

enhance certain signalling pathway mediated by specific agonists, while silencing the

other, thereby reducing any possible side effects [Wootten et al., 2016a]. The unique

probe dependence profile of compound 249 may also serve as a useful experimental tool

in understanding the conformation of GLP-1R that facilitates such probe dependence
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towards OXM.

5.8.2 Use of kinetic assays to investigate compound 249 distinct allosteric
effect on G protein dissociation

Apart from utilising end-point signal transduction functional assays to characterise

the pharmacological properties of compound 249, the NanoLuc® Binary Technology

(NanoBiT) was used to investigate the kinetic aspect of allosteric modulation of com-

pound 249 on G protein dissociation (the principle of which is explained in Appendix

B.7). The NanoBiT G protein dissociation assays were performed by Dr Matthew Harris

(Department of Pharmacology, University of Cambridge) in collaboration with Prof.

Patrick Sexton (Monash Institute of Pharmaceutical Science).

In these experiments, the allosteric modulation of compound 249 on certain subsets

of G protein dissociation, namely Gas, Gai1, Gai2, Gai3 and Gaq subunits, were tested.

Coincided with the role of compound 249 as a NAM on iCa2+ release in Fig. 5.6,

compound 249 caused a significant reduction in the dissociation of Gaq (Appendix

B.7), consistent with the iCa2+ mobilisation experiment. Furthermore, the dissociation

of Gai2 subunit was also shown to be significantly inhibited (by 10-fold, p < 0.01) in

the presence of compound 249 (Appendix B.7). This finding suggested the possibility

of compound 249 marginal potentiation of GLP-1-mediated cAMP response (Fig. 5.4)

may be as a result of the delay in dissociating the Gi2 subunit, thereby reducing the

inhibition of cAMP production, leading to a slightly overall increase in cAMP responses,

while having no apparent effect on the Gas, Gai1 and Gai3 subunits. However, further

experiments, such as testing the influence of compound 249 on GLP-1-mediated cAMP

responses in the presence of PTX (so far the PTX experiments were only conducted in

OXM-mediated cAMP accumulation studies), are needed to support such hypothesis.

However, given the less potent full agonism of OXM at the GLP-1R, the results from the

NanoBiT G protein dissociation assay depicted a less prominent influence of compound

249 on G protein dissociation (Appendix B.7). Nonetheless, the NanoBiT G protein

dissociation assay serves as a useful mechanistic tool in defining the compound 249

allosterism.

5.8.3 Compound 249 predicted binding mode at the GLP-1R

As discussed in the Introduction (section 1.6.7), the design of small molecule drug

candidates that target class B GPCRs has been proven to be technically challenging
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due to the fact that class B GPCRs possess larger N-terminus extracellular domains

(ECDs) compared to the class A GPCRs [Willard and Sloop, 2012, Jazayeri et al.,

2017, Hilger et al., 2020]. However, the understanding towards class B GPCR activation

and allosterism have been advanced in the past 5 years thanks to the availability of

numerous full-length high-resolution crystal structures determined by cryo-electron

microscopy (EM) of class B GPCRs, in particular the GLP-1R and GCGR crystal

structures [Song et al., 2017, Jazayeri et al., 2017, Zhang et al., 2017a, Zhang et al.,

2017b, Zhang et al., 2018, Chang et al., 2020, Bueno et al., 2020, Zhao et al., 2020, Ma

et al., 2020a, Hilger et al., 2020, Qiao et al., 2020]. These full-length GLP-1R crystal

structures interacting with different GLP-1R cognate peptides, small molecule agonists

[Zhao et al., 2020, Ma et al., 2020a], allosteric modulators [Song et al., 2017, Bueno et al.,

2020] or Gas subunit [Zhang et al., 2017a, Liang et al., 2018b] facilitate the structure-

based virtual screening for new drug candidates, as well as the in silico docking of

compound 249 in order to predict where it is bound to at the GLP-1R.

An allosteric binding pocket has been identified at the GLP-1R [Song et al., 2017].

The two GLP-1R NAMs, PF-06372222 and NNC0640, have been shown to bind to the

allosteric pocket situated outside transmembrane (TM) 5 to 7, near the intracellular

half of GLP-1R [Song et al., 2017]. According to the studies by Song and colleagues,

it is predicted that compound 2 mediates its allosteric effect by binding to the same

allosteric pocket [Song et al., 2017] and indeed other studies have shown that both

compound 2 and BETP modulate the GLP-1R via covalent modification with the C347

residue [Nolte et al., 2014, Bueno et al., 2016]. Intriguingly, compound 249, as shown in

Fig. 5.11, is able to potentiate OXM-mediated cAMP response in the absence of C347

residue, implying its action is C347-independent and that it may bind to an alternative

allosteric pocket within the GLP-1R or it may mediate its action via alternative allosteric

action.

In fact, recent papers by Zhao and colleagues [Zhao et al., 2020] and Ma and

colleagues [Ma et al., 2020a] demonstrated that alternative allosteric target sites exist

within the GLP-1R. Using a novel small molecule GLP-1R partial agonist, TT-OAD2,

the authors resolved the full length GLP-1R cryo-EM structure with the binding of

TT-OAD2 (Fig. 1.16). They show that the compound binds to the top part of the helical

bundle, interacting hydrophobically with residues within TM1, TM2, TM3, extracellular

loop (ECL) 1 and ECL2, with TM2/ECL1 and ECL2 being the major driver for its

agonism [Zhao et al., 2020]. Furthermore, another novel small molecule GLP-1R full

agonist, RGT1383, was also reported [Ma et al., 2020a]. The cryo-EM studies showed
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that RGT1383 interacted with residues on TM1, TM2, TM3, TM7 and ECL1 and 2 as well

as ECD. Notably, the compound almost completely overlapped with the position where

residues 10-20 of GLP-1 occupied, which may confer its intrinsic agonism. Interestingly,

both research groups suggest the importance of the W33 residue in the ECD to play

a critical role in mediating binding of both peptide and non-peptide GLP-1 agonists

[Zhao et al., 2020, Ma et al., 2020a].

Moreover, based on the in silico docking studies performed by Dr Taufiq Rahman

(Department of Pharmacology, University of Cambridge), via docking compound 249

into the modified full length cryo-EM GLP-1R structures bound to peptide 5 [Jazayeri

et al., 2017] and GLP-1/Gas complex [Zhang et al., 2017b], three potential binding sites

of compound 249 at the GLP-1R were suggested (Appendix B.8). Compound 249 was

predicted to bind to the ECD and ECL1 (model 1), ECL2 (model 2) and TM3 and 4 core

(model 3). The recent discovery of novel binding pockets targeted by the small molecule

agonists TT-OAD2 and RGT1383 support the possibility that compound 249 may also

bind to the top part of the helical bundle. However, due to time constraints, I was not

able to perform mutagenesis studies to validate the binding mode of compound 249. It

will serve as an important future work in order to fully decipher how compound 249

allosterically modulates GLP-1R.

Intriguingly, the recent paper by Bueno and colleagues [Bueno et al., 2020], sug-

gested a new mode of GLP-1R allosteric modulation via the direct interaction of the

small molecule with the orthosteric ligand at the ECD. They discovered a small molecule

PAM, LSN3160440, which shows strong probe dependence towards GLP-1(9-36)NH2,

potentiates the binding and cAMP responses of GLP-1(9-36)NH2 by simultaneously

interacting with the receptor interface between TM1 and TM2, as well as the orthosteric

ligand (Fig. 1.16). They demonstrated that LSN3160440 is the first-in-class so-called

’molecular glue’ as it mediates its PAM action via stabilising the protein-protein-

interaction through van der Waals’ interaction between the residues of F12, V16 and

L20 on the orthosteric GLP-1 ligand and L384 and L388 both on TM7 of the GLP-1R

[Bueno et al., 2020]. Given the prediction of compound 249 binding close to the ECD

in model 1, there is also a possibility that compound 249 may serve as a ’molecular

glue’ by enhancing the binding of OXM to the receptor via the modification of the

Y10 residue on OXM, which is an equivalent of the V16 residue of the GLP-1 ligand.

Therefore, further structure-based in silico docking incorporating the orthosteric ligand

should be conducted in order to include such possibilities, as such class of unusual

allosteric modulation may serve as a novel mean of receptor modulation.
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Furthermore, it has been shown that OXM binds to the GLP-1R differently compared

to GLP-1 and Ex-4 [Wootten et al., 2016b, Lei et al., 2018]. For example, OXM has

been shown to interact more with ECL1 to mediate its cAMP response compared to

the involvement of ECL2 for GLP-1 and Ex-4, and that certain mutagenesis of the

residues on ECL2 eliminate cAMP responses of GLP-1 and Ex-4 but not OXM [Wootten

et al., 2016b]. It has been shown that OXM displays shallower orientation into the

GLP-1R binding groove due to the fact that it bears an uncharged Gln residue, which

is equivalent to the positively charged Glu-9 on the GLP-1 that is responsible for the

deep entry of GLP-1 into the transmembrane domain [Lei et al., 2018]. Furthermore,

pERK1/2 activation was mainly contributed to ECL3/TM7, with very little involvement

at the ECL2 [Wootten et al., 2016b]. Therefore, based on the current predicted docking

models, it is possible that compound 249 may interact with the residues that lies within

the ECL1/ECL2 interface which are important for OXM signal transduction, therefore

potentiating cAMP responses and inhibiting iCa2+ mobilisation. More interestingly,

given the close resemblance of GCG and OXM (i.e. OXM is a seven amino acid residue

extended form of GCG) [Pocai, 2012], it was anticipated that compound 249 would also

mediate its allosteric modulation on GCG, yet the notion was rejected experimentally

(Fig. 5.4). Hence, it may suggest that the activation of GLP-1R mediated by GCG may

be different from the mechanism initiated by OXM, yet such structural insight is still

lacking to date, and would warrant detailed studies, due to the importance of GCG in

modulating glucose homeostasis.

5.8.4 SAR studies to explore the importance of compound 249 functional
groups

Given the distinct pharmacological activity of compound 249, SAR studies were con-

ducted to further explore the importance of the trans-alkyne side chain of compound 249

in mediating its allosterism (Section 5.7.2). Strikingly, the reposition of the trans-alkene

side chain to a cis-conformation (compound 248), an alkane group (compound 82) or an

alkene group (compound 448) eliminated the positive cooperativity of OXM-mediated

cAMP accumulation (Fig. 5.30), implying the importance of the trans-alkyne side chain

in conferring the positive cooperativity of OXM-mediated cAMP response, possibly

due to the steric hindrance with essential electronegativity, promoting a conformation

that is conducive to cAMP response potentiation.

Intriguingly, compound 249 and compound 248, both possess the alkyne side

chain, displayed negative cooperativity towards OXM-mediated iCa2+ release while
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the replacement of such functional group with an alkene group, together with the intro-

duction of the dioxane group on the quinoxaline ring, induced positive cooperativity

on GCG-mediated iCa2+ mobilisation, as demonstrated by compound 448 (Fig. 5.32).

Hence, such SAR studies suggest that the modulation of GCG-mediated iCa2+ release

may be regulated by a change in electron-density.

Given the structural similarity between compound 249 and compound 2, which

were both quinoxaline-based compounds, the introduction of alternative functional

groups led to drastic changes in probe dependence profiles and converted compound

249 into a pure PAM. Therefore, further investigation on the quinoxaline scaffold should

be performed in order to facilitate the design of small molecules pharmacological tool

in understanding the biased signalling and probe dependence at the GLP-1R.

5.8.5 Compound 249 serves as further evidence on the importance of cAMP
activation in mediating insulin secretion

Besides the promotion of cAMP production, the augmentation of iCa2+ release has

been widely attributed to the release of insulin at the pancreatic b cells [Seino, 2012]. In

spite of the inhibition of GLP-1 and OXM-mediated iCa2+ release (Fig. 5.6), compound

249 was able to promote GSIS facilitated by OXM in in vitro insulin secretion assays as

well as in ex vivo isolated mouse islets (Fig. 5.25 and 5.27). The observations further

substantiate the postulation that the extent of promoting cAMP responses is more

crucial in enhancing insulin secretion [Gylfe, 2016]. Furthermore, despite the fact that

compound 249 can only marginally potentiate GLP-1-mediated cAMP response (Fig.

5.4), given the importance of enhancing cAMP responses in facilitating GSIS, such slight

degree of potentiation is sufficient to induce potentiation of GLP-1-mediated GSIS, as

illustrated in Fig. 5.25. Overall, the potentiation of GLP-1 and OXM-mediated GSIS

facilitated by compound 249 illustrates the importance of targeting cAMP signalling

pathway in relative to iCa2+ release.
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5.9 Chapter summary

The findings of the chapter are concluded as follows:

• Compound 249 exhibits unique pharmacological activity as it acts as a PAM on

the OXM-mediated cAMP response, a NAM on GLP-1 and OXM-mediated iCa2+

mobilisation, and a NAL at the pERK1/2 pathway (Fig. 5.9).

• It does not require the presence of the cysteine 347 residue to mediate its allosteric

modulation activity (Fig. 5.15).

• Compound 249 illustrates potentiation effect on GLP-1 and OXM-mediated GSIS

in a dose-dependent manner in rat INS-1 832/3 wildtype and INS-1 GIPR-KO

cell lines, yet it shows a lack of effect on the INS-1 GLP-1R-KO cell line, further

implying the importance of GLP-1R on mediating the action of compound 249

(Fig. 5.23 and 5.25).

• Preliminary results on ex vivo isolated mouse islets show that compound 249

is able to augment GSIS mediated by OXM, further proving the feasibility of

compound 249 to be further developed as a potential T2DM drug treatment

targeting the action of OXM (Fig. 5.27).

• SAR studies show that the alkyne moiety on compound 249 may be essential for

its unique probe dependence on OXM signalling pathway, as analogues 248, 82

and 448, despite their close structural relationships, do not demonstrate similar

signalling profiles as compound 249 (Fig. 5.30 and 5.32).

• Among the drug candidates selected based on ligand-based virtual screening,

only compound 607 illustrates NAM activity on both the cAMP responses and

iCa2+ mobilisation mediated by GLP-1 and OXM, which may serve as a tool in

understanding the structural conformation of GLP-1R (Fig. 5.36).
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Chapter 6

General discussion and future work

Glucose homeostasis has been well established to be regulated via the actions of

insulin, which is secreted from the pancreatic b cells, and glucagon, which is secreted

from the pancreatic a cells [Unger et al., 1963]. Apart from insulin and glucagon,

incretin hormones, in particular GLP-1 and GIP, have been shown to influence glucose

homeostasis via their ’incretin effect’ at the pancreatic b cells, which leads to higher

insulin secretion upon gastric feeding compared to intravenous glucose administration

[Elrick et al., 1964, Seino et al., 2010]. However, contrasting actions, i.e. GLP-1 inhibits

while GIP stimulates glucagon secretion, have been noted. Unlike the relatively well

understood mechanisms of incretin regulation of GSIS in the pancreatic b cells, the

mechanisms that explain the opposing actions of GLP-1 and GIP are lacking, prompting

the need for elucidating the highly physiologically relevant mechanism. Therefore,

this work serves to determine the molecular mechanisms of how GLP-1 mediates its

glucagonostatic action.

6.1 Proposed mechanisms of GLP-1 regulation of glucagon se-

cretion

The central research question of this work is to understand how GLP-1 directly inhibits

glucagon secretion in the pancreatic a cells. Therefore, different aspects of how GLP-1

interplays with other factors that modulate glucagon secretion are considered and will

be discussed in the following sections.
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6.1.1 Crosstalk of GLP-1R and GCGR activation

Individual receptor activation by GLP-1 and a range of glucagon-like peptides, namely

OXM, GCG, GIP and especially the highly abundant GLP-1 metabolite GLP-1(9-36)NH2,

were evaluated in CHO-K1 recombinant cell lines stably expressing their canonical

receptors: GLP-1R, GCGR and GIPR. Their extent of stimulating cAMP responses,

which are one of the most important secondary messengers in relaying downstream

signalling cascades ultimately leading to glucagon secretion, were evaluated. From

these series of cAMP functional assays, it was discovered that GLP-1R and GCGR can be

activated by the same pool of ligands, namely GLP-1, OXM, GCG and surprisingly GLP-

1(9-36)NH2, albeit at varying potencies, and that GIP can only specifically activate GIPR

(Fig. 3.2). Further antagonist studies also confirmed that these peptide agonists activate

GCGR, as their cAMP responses are blocked in the presence of the GCGR specific

small molecule antagonist, L-168,049 (Fig. 3.13). The conclusion that GLP-1(9-36)NH2

acts not only through GLP-1R, but also GCGR, substantiates the GLP-1(9-36)NH2

’dual receptor theory’ [Tomas-Falco and Habener, 2010, Guglielmi and Sbraccia, 2017]:

rather than activating a completely unidentified receptor, GLP-1(9-36)NH2 activates

a promiscuous receptor, GCGR. In addition, GCGR has been shown to interact with

RAMP2, an accessory protein, which modulates the signal transduction and receptor

trafficking of GCGR [Weston et al., 2015, Cegla et al., 2017]. Indeed, the potency of

cAMP responses of GLP-1(9-36)NH2 has been found to be greatly enhanced in the

presence of RAMP2 using HEK293-based stably expressing GCGR cell line with a

null RAMP-background (Fig. 3.16). These results imply that RAMPs may also play a

physiological role in modulating glucagon secretion via augmenting GLP-1(9-36)NH2

cAMP responses. Using rodent clonal a and b cell lines, the extent of cAMP responses

mediated by the glucagon-like peptides were also determined (Fig. 3.10). GIP and GCG

were found to be the most potent peptide agonists in the a cell lines, followed by GLP-1

and OXM and lastly GLP-1(9-36)NH2. These findings posed further question if GLP-1,

and other glucagon-like peptides, in particular its highly abundant metabolite which

physiological function is yet to be fully understood, regulate glucagon secretion via

non-canonical receptors and therefore the incretin receptor expressions were examined

in mouse clonal a and b cell models.
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6.1.2 Expressions of GLP-1R in pancreatic a cells

The expressions of GLP-1R in pancreatic a cells have been long speculated [Moens et al.,

1996, Kedees et al., 2009, Tornehave et al., 2008] and the reason for a lack of definitive

conclusion for GLP-1R expression is a lack of a highly sensitive GLP-1R antibody that

deters investigation using high-resolution microscopy techniques [Ramracheya et al.,

2018]. In fact, a lot of recent studies, which used varying experimental techniques such

as real-time RT-PCR and confocal laser scanning microscopy, have demonstrated the

expressions of GLP-1R in mouse clonal a cells as well as in more physiologically relevant

settings such as the rodent islets [Piro et al., 2014, Nakashima et al., 2018, Ramracheya

et al., 2018, Zhang et al., 2019], albeit at a very low expression in comparison to its

presence in the b and d cells. In fact, in this work the mRNA levels of GLP-1R has

also been detected in mouse aTC1.6 cell line with the use of semi-quantitative RT-PCR

technique (Fig. 3.7). The relative expressions of GLP-1R in the a and b cells were

also in line with other studies [Ramracheya et al., 2018, Zhang et al., 2019], which

showed that there was a higher expression of GLP-1R in the b cells compared to the

a cells. Furthermore, GLP-1R expression was found to be unaltered in long-term low

and high glucose conditions (Fig. 3.17). In addition, among the incretin receptors,

GIPR has been shown to be the most highly present receptor in the mouse clonal a

cells, followed by equally low expression levels of GLP-1R and GCGR according to the

qRT-PCR studies (Fig. 3.7). Aligning with the observations from the cAMP functional

assays which illustrate crosstalk between GLP-1R and GCGR, the notion of whether

glucagon secretion is regulated through the crosstalk of the low expressions of GLP-1R

and GCGR is postulated.

Furthermore, the expression of GPR119, which is a class A GPCR that has been

shown to regulate the cAMP signalling of GLP-1R [Cheng et al., 2015, Brown et al.,

2018], was also evaluated in the mouse clonal a and b cell lines. Despite its relatively

high expression in the mouse clonal a cells, based on the conclusion from the functional

cAMP studies that showed GPR119 endogenous and synthetic agonists did not activate

GLP-1R and GCGR and vice versa, glucagon-like peptides did not activate GPR119 (Fig.

3.11), the speculation that glucagon-like peptides mediate glucagon secretion via the

highly expressed GPR119 was dismissed. Given the close structural homology between

GLP-1R and GCGR, the influence of GCGR on GLP-1 regulated glucagon secretion was

further investigated.
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6.1.3 Deciphering the crosstalk of GLP-1R and GCGR using glucagon se-
cretion studies

Following the optimisation of the insulin and glucagon secretion assaying technique

which is relatively new to our laboratory (Fig. A.2 and A.3), the extent of glucagon

secretion mediated by GLP-1 and GLP-1(9-36)NH2 were examined (the glucagon-

stimulatory action of OXM was not investigated due to its close structural similarity

with GCG). Consistent with the findings from our collaborators [Guida et al., 2020],

optimal inhibition of glucagon secretion by GLP-1 and GLP-1(9-36)NH2 was achieved

at sub-picomolar concentration (i.e. at 100pM), whereas glucagon secretion was not

suppressed if the concentrations applied deviated from this optimal concentration

(i.e. at 100nM and 1pM), illustrating glucagon inhibition is tightly controlled by

specific amount of agonist stimulation at the pancreatic a cells (Fig. 4.2) and further

substantiated the postulation of the tonic inhibition of glucagon secretion by the low

circulating GLP-1 and GLP-1(9-36)NH2 [Guida et al., 2020].

Following the deduction of the optimal concentrations of GLP-1 and GLP-1(9-

36)NH2 to be used in subsequent glucagon secretion assays, antagonist studies, with

the use of GLP-1R and GCGR specific antagonists, Ex-9 and L-168,049 respectively, were

conducted to further envisage the physiological outcome of blocking one receptor to

another. Intriguingly, the blocking of either GLP-1R or GCGR reversed the glucagono-

static actions of both GLP-1 and GLP-1(9-36)NH2 at low glucose condition (Fig. 4.5).

The application of both receptor antagonists further enhanced glucagon secretion, and

that this effect was not an artifact effect of the antagonists as applying the antagonists

alone did not influence glucagon secretion (Fig. 4.5). These results implicate that both

GLP-1R and GCGR are critical in mediating the glucagonostatic action of not only

GLP-1, but also GLP-1(9-36)NH2. This glucagon secretion antagonist study also sheds

new light on a physiologically relevant role of the GLP-1(9-36)NH2 in inhibiting in vitro
glucagon secretion that has not been described in literature.
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6.1.4 Influence of G protein activation on GLP-1 and GLP-1(9-36)NH2 regu-
lated glucagon secretion

GLP-1R and GCGR are known to pleiotropically couple to not only Gas subunit

predominantly, but also Gai and Gaq proteins; the latter two G protein subunits are

linked to the inhibition of the adenylyl cyclase activity, leading to a reduction of

intracellular cAMP levels, as well as the activation of the PLC/iCa2+ pathway which is

responsible for a range of physiological events respectively. Therefore, the influence

of Gai and Gaq activation on glucagon secretion was also examined. To examine the

Gaq activation, as measurable by iCa2+ mobilisation, the iCa2+ responses upon GLP-1R

and GCGR activation by GLP-1, OXM and GCG were determined in HEK293S-GLP-1R

and HEKDCTR-GCGR stable cell lines (Fig. 3.6); the iCa2+ mobilisation induced by

GLP-1(9-36)NH2 was not investigated due to its very weak calcium signalling response.

Here, it was established OXM and GCG were able to mediate partial agonisms on iCa2+

responses at both receptors, while GLP-1 can only mediate iCa2+ release at GLP-1R

(Fig. 3.6). However, the relevant influence of Gai activation on iCa2+ responses at

both receptors was not investigated, but study has shown that the iCa2+ release is

regulated via both Gaq and Gai pathway at the GCGR [Xu and Xie, 2009]. In addition,

according to the qRT-PCR studies, the mouse aTC1.6 cell line expresses high levels of

Gas, and Gai2, Gai3 and Gaq/11 subunits (Fig. 3.9). These all point to the question if

Gai and Gaq coupling are essential for glucagon secretion. Therefore, Gai irreversible

inhibitor, PTX, and Gaq/11 inhibitor, YM-254,890, were applied to the mouse aTC1.6

cells and the physiological effect of Gai and Gaq blockage on glucagon secretion were

explored. Here, blocking of Gai-coupling with PTX led to a reversal of actions of both

GLP-1 and GLP-1(9-36)NH2 mediated glucagonostatic action (Fig. 4.7), which is in

contrast to the observations by our collaborators which they show the glucagonostatic

action of GLP-1 is Gai-independent while that of GLP-1(9-36)NH2 is Gai-dependent in

isolated mouse islets [Guida et al., 2020]. Furthermore, the inhibition of Gaq also leads

to a reversal of both ligands’ glucagonostatic action, further implying the importance

of subsequent downstream intracellular calcium mobilisation in regulating glucagon

secretion (Fig. 4.7). However, due to time constraints, the influence of downstream

PKA signalling was not investigated, and remains an essential future work as our

collaborators have shown that the glucagon secretion inhibitory effect mediated by

GLP-1 is partially PKA-dependent, while that of GLP-1(9-36)NH2 is PKA-independent

[Guida et al., 2020].
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6.1.5 Working model of how GLP-1 regulates glucagon secretion in pancre-
atic a cells

In this work, signal transduction functional assays, semi-quantitative RT-PCR studies

and glucagon secretion assays have been frequently employed in an attempt to explore

how GLP-1 regulates glucagon secretion in pancreatic a cells. Surprisingly, GLP-1 has

been found to mediate its glucagonostatic action not only via its canonical receptor,

GLP-1R, but also via the promiscuous activation of GCGR. In addition, GLP-1(9-36)NH2

is also shown to potently inhibit glucagon secretion via the actions of both GLP-1R and

GCGR, an observation that has not been noted to date. Based on all the observations

as discussed above as well as the findings by our collaborators [De Marinis et al.,

2010, Ramracheya et al., 2018, Guida et al., 2020], a working model of the mechanisms

of GLP-1 regulation of glucagon secretion is proposed (Fig. 6.1).

DPP-IV enzymes are ubiquitously present in the pancreatic a cells, metabolising

GLP-1 to GLP-1(9-36)NH2 within 1-2 minutes [Eng et al., 2014]. GLP-1(9-36)NH2

is a partial agonist at both GLP-1R and GCGR. Therefore, GLP-1 and the widely

abundant GLP-1(9-36)NH2 bind to the low expressing GLP-1R and GCGR, which are

predominantly Gas-coupled. Upon receptor activation, the activity of adenylyl cyclase

is facilitated, thereby catalysing the conversion of ATP to cAMP. Furthermore, the extent

of cAMP production mediated by GLP-1(9-36)NH2 is facilitated by the GCGR:RAMP2

interaction, thereby enhancing the overall cAMP response potency. However, the overall

intracellular cAMP level is tightly controlled not only by Gas activation, but also by

the Gai subunit. As GLP-1R and GCGR can pleiotropically couple to both Gas and

Gai subunits, Gai activation upon receptor activation also play a role in maintaining

the tight cAMP level essential for the glucagon inhibitory effect, as established by our

collaborators [De Marinis et al., 2010].

The low level of cAMP produced upon receptor activation by GLP-1 and GLP-1(9-

36)NH2 thus activates the type I PKA, which has been shown to require less intracellular

cAMP level for its activation compared to the type II PKA [De Marinis et al., 2010, Yang

and Yang, 2016]. As suggested by our collaborators, the activation of type I PKA

leads to a closure of the P/Q-type Ca2+ channel via protein phosphorylation, which

ultimately results in the inhibition of glucagon secretion through inhibiting exocytosis

of glucagon-containing vesicles (Fig. 6.1)

On the other hand, the predominantly Gas-coupled GIPR is highly expressed in

the pancreatic a cells. Hence, GIP can activate the highly dense GIPR to give a higher
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intracellular cAMP level compared to the low intracellular cAMP responses upon

GLP-1R activation. The type I PKA is activated, which also inhibits the P/Q-type Ca2+

channel, resulting in an inhibition of exocytosis. However, the inhibition of exocytosis

is overcome by the high level of cAMP production, which also activates the type II PKA

that requires a higher level of cAMP level for its activation. The activation of the type

II PKA thus leads to a direct promotion of glucagon secretion. The high intracellular

cAMP level also leads to the activation of EPAC2, which further triggers an opening

of the L-type Ca2+ channel, thereby enhancing an influx of iCa2+, ultimately leading

to glucagon secretion through exocytosis [De Marinis et al., 2010]. These differences

in the types of PKA activated due to the innate varying level of cAMP produced may

have contributed to the apparent glucagon secretion stimulatory and inhibitory effect

mediated by GLP-1, GLP-1(9-36)NH2 and GIP.

In addition, Gaq activation was also shown to be critical for the glucagonostatic

action of GLP-1 and its metabolite as a blockage of which leads to a reversal of

glucagonostatic action (Fig. 4.7). However the precise mechanism of how the regulation

of iCa2+ level leads to inhibition of glucagon secretion is not further investigated in

this work. The mechanism of which will be instrumental to advance the understanding

of GLP-1 and GLP-1(9-36)NH2 mediated glucagonostatic action and will serve as an

important piece of future work.
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Figure 6.1: Schematic diagram proposing the mechanisms of actions of how GLP-1 and GLP-1(9-
36)NH2 regulate glucagon secretion in pancreatic a cells. The glucagonostatic actions of GLP-1 and
GLP-1(9-36)NH2 are proposed as follow: 1) GLP-1 and GLP-1(9-36)NH2 act directly on the low expressing
GLP-1R and GCGR, which are predominantly Gas-coupled. 2) The activation of the receptors lead to
the activation of the Gas-pathway, whereby the activity of adenylyl cyclase is facilitated, leading to the
conversion of ATP to cAMP. 3) The low level of intracellular cAMP produced is just sufficient to activate
the type I PKA, which leads to a closure of the P/Q-type Ca2+ channel via protein phosphorylation. 4)
The closure of the P/Q-type Ca2+ channel inhibits exocytosis, therefore inhibiting glucagon secretion.
The glucagon-stimulatory action of GIP is proposed as follow: 1) Compared to GLP-1R, GIPR is highly
present. Therefore, a higher level of intracellular cAMP is produced upon GIPR activation. 2) This high
cAMP level produced not only triggered the activation of the type I PKA, but also the type II PKA which
requires a higher level of cAMP for its activation. The activation of type II PKA directly leads to enhancing
exocytosis of glucagon-containing vesicles. 3) This high level of cAMP produced also activates EPAC2,
which facilitates the opening of the L-type Ca2+ channel, thereby enhancing the influx of Ca2+ into the
cytoplasm, ultimately enhancing iCa2+ level. 4) This augmentation of iCa2+ level then leads to exocytosis,
resulting in glucagon secretion. Diagram created by BioRender.com.
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6.2 Differences between GLP-1 regulated insulin and glucagon

secretion

As the mechanisms of how GLP-1 and GIP regulate GSIS have been thoroughly eluci-

dated by other research groups [Seino et al., 2010, Cho et al., 2014] and is summarised

in Fig. 6.2, the major differences between the molecular mechanisms of GLP-1 mediated

insulin and glucagon secretion in the pancreatic b and a cells will be highlighted in

this section.

6.2.1 GLP-1R densities differences

Firstly, the contrasting GLP-1 actions on insulin and glucagon secretion can be attributed

to the GLP-1R densities on both a and b cells. Compared to pancreatic a cells, GLP-1R

is highly present in the pancreatic b cells, as deduced by the qRT-PCR studies in the

rodent clonal pancreatic cell lines (Fig. 3.7 and Fig. 3.8). This stark contrast in GLP-1R

expression therefore leads to a higher intracellular level of cAMP produced in the

pancreatic b cells compared to the a cells upon receptor activation by GLP-1, thereby

leading to the activation of both PKA (presumably via the type II PKA) and EPAC2,

resulting in a series of downstream signalling effect, ultimately augmenting insulin

secretion. This cAMP effect on insulin secretion can be further emulated with the use

of forskolin, which is a direct adenylyl cyclase activator, as the higher the forskolin

concentration applied, the higher the insulin secretion observed, as shown in the insulin

secretion studies in the INS-1 832/3 cell line (Fig. 4.6).

6.2.2 GLP-1R: the sole mediator of GSIS

As discussed above, GLP-1 has been shown to be a dual agonist at both GLP-1R and

GCGR (Fig. 3.2). Despite the antagonist studies demonstrated that both GLP-1R and

GCGR contributed to the overall cAMP responses when the INS-1 832/3 cells were

stimulated with GLP-1 in the presence of GLP-1R and GCGR specific antagonists (Fig.

3.14), GLP-1R has been shown to be the sole mediator of the augmentation of GSIS,

as GLP-1 failed to stimulate GSIS in the INS-1 832/3 GLP-1R KO cell line (Fig. 4.4).

This observation is unlike the proposed glucagon secretion mechanism observed in the

pancreatic a cells, whereby GLP-1 requires both GLP-1R and GCGR to achieve the fine

balance of intracellular cAMP levels that is essential for its inhibitory action.
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6.2.3 GLP-1(9-36)NH2 does not play a role in GSIS

Furthermore, GLP-1(9-36)NH2 does not possess insulinotropic action in the pancreatic

b cells, which contrasts with the published reports on in vivo studies [Elahi et al.,

2008], yet concurred with the observations from our collaborators in the isolated mouse

islets [Guida et al., 2020]. The molecular mechanisms of such evidential difference are

unknown. However, it may be attributable to the potent cAMP responses upon GLP-1R

activation by GLP-1, which masks the weak partial agonism cAMP responses of the

GLP-1 metabolite.

6.2.4 Less involvement of Gai and Gaq activation in GLP-1 regulated GSIS

In addition, compared to the stark reversal of the glucagon secretion inhibitory effect

upon the application of both Gai inhibitor (PTX) and Gaq/11 inhibitor (YM-254,890)

(Fig. 4.7), the blockages of both Gai and Gaq/11-coupling had less significant effect

on insulin secretion (Fig. 4.6). This may suggest, and further affirm, the notion that

cAMP activation is the most critical signalling pathway, and that Ca2+ plays a more

permissive role in GLP-1 regulated GSIS [Tengholm and Gylfe, 2017]. However, further

studies, such as through the application of Gas selective inhibitor, such as cholera toxin

(CTX), is needed to confirm such hypothesis.
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Figure 6.2: Schematic diagram proposing the mechanisms of actions of how GLP-1 and other glucagon-
like peptides promote insulin secretion in pancreatic b cells. The above diagram illustrates how in-
cretins, such as GLP-1 and GIP, regulate GSIS. 1) Upon GLP-1 and GIP binding to their canonical receptors,
GLP-1R and GIPR, the Gas subunits are activated, which facilitate the adenylyl cyclase activity, leading to
increases in intracellular cAMP levels. 2) The increase in cAMP production results in the activation of
PKA and EPAC2. 3) The PKA-dependent pathway leads to the inhibition of the KATP channel, thereby
resulting in membrane depolarisation. 4) Furthermore, PKA, together with PKC, inhibit the voltage-gated
K+ channel, which repolarises the membrane potential via the efflux of K+. 5) This delays repolarization,
leading to an increase in iCa2+ via the voltage-gated Ca2+ channel. 6) EPAC2 together with PKA enhance
the release of Ca2+ from intracellular stores through Ca2+-induced Ca2+ release in the endoplasmic
reticulum (ER) through the action of IP3R. 7) These collective enhancements of iCa2+ level promote the
exocytosis of the insulin-containing granules, therefore enhancing GSIS in the b cells. 8) Furthermore, both
PKA and EPAC2 have been shown to have direct effect on the exocytosis of insulin-containing vesicles
and are not depicted in the diagram. Diagram created by BioRender.com.
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6.3 Pharmacological regulation of GLP-1-mediated insulin se-

cretion

Another focus of this thesis is to identify viable pharmacological means to regulate

GLP-1-mediated glucose homeostasis, given the gravity of the economic and social

burden of T2DM at individual and social levels [International Diabetes Federation, 2019].

Incretin-based drug treatments for T2DM have been developed in the past few decades

and are proven to be highly effective in reducing long term blood glucose level as well

as inducing weight loss effect on T2DM patients who are often overweight or obese [Oh

and Olefsky, 2016]. However, their uses have been limited by their side effects, from mild

gastrointestinal disturbances, to potentially fatal pancreatitis [Meier, 2012]. Furthermore,

they are peptide-based drugs, hence incurring high production cost [Hansen et al.,

2020]. Despite the arrival of the latest FDA-approved oral semaglutide T2DM treatment,

the production cost involved in producing peptide-based drug treatments and the

healthcare cost of using these incretin-based treatments on regular basis are still

extortionate [Hansen et al., 2020]. Therefore, alternative incretin-based oral therapies

have been prompted, in a hope to improve current T2DM treatments.

GLP-1R small molecule agonists have been prompted as substitutes for the peptide-

based incretin treatments. However, the development of such agonists has been histor-

ically hindered by the structural feature of GLP-1R, which is a large ECD compared

to the other classes of GPCRs [Jazayeri et al., 2017, Graaf et al., 2016]. This large and

highly flexible ECD warrants a great challenge for the design of GLP-1R small molecule

agonist, as the identification of potential small molecule binding pockets is next to

impossible. In addition, it is highly difficult to design small molecules that mimic

the extensive interactions with the ECD. Therefore, alternative option, which is the

development of allosteric modulators, is pursued.

Developing allosteric modulators have been proven to be an easier option due to

the fact that multiple allosteric sites exist within the receptor [Kenakin, 2012, Thal et al.,

2018]. Furthermore, there are immense advantages for developing allosteric modulators,

which have been discussed in section 1.6.1. Hence, the identification of a viable small

molecule GLP-1R PAM, that has the potential of being further developed as a new form

of incretin-based T2DM treatment, has been the main focus of the other part of this

thesis. Through in silico virtual screening and biological validations, compound 249 was

identified to be a promising drug candidate among all of the other tested compounds.
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6.3.1 Compound 249 displays unique pharmacological properties

Compound 249 is a distinct small molecule as it acts as a PAM on OXM-mediated

cAMP responses selectively, a NAM on GLP-1 and OXM-mediated iCa2+ responses,

and a NAL on OXM-mediated pERK1/2 responses (Fig. 5.9). Furthermore, compound

249 does not influence binding of GLP-1 at the GLP-1R (Fig. 5.8), although its effect on

OXM binding has not yet been investigated and will be an important piece of future

work. These results obtained through the use of a range of functional assays imply that

compound 249 displays a unique pharmacological profile that is completely different

from other reported GLP-1R small molecule PAMs [Knudsen et al., 2007, Schann et al.,

2008, Sloop et al., 2010, Graaf et al., 2011, Redij et al., 2019, Méndez et al., 2020].

More intriguingly, the results from the functional assays which quantify the end-point

measurement of secondary messengers align with the results from the mechanistic

G protein dissociation studies, and revealed that compound 249 is a NAM on Gai2

pathway (appendix B.7). However, so far, the canonical signalling pathways (i.e. cAMP

and iCa2+) which has been known to implicate insulin secretion were investigated in

this work. The influence of compound 249 on non-canonical signalling pathways are

yet to be explored and may serve as an important piece of future work.

6.3.2 Compound 249 selectively enhances GLP-1 and OXM-mediated GSIS

Compound 249 enhances insulin secretion in a glucose, peptide ligand, GLP-1R-

dependent manner using the INS-1 832/3 wildtype, GLP-1R and GIPR CRISPR-Cas9

knock-out cell lines [Naylor et al., 2016] (Fig. 5.24 and 5.25). In essence, compound 249

only potentiates GSIS in the presence of GLP-1 and OXM, but not GSIS mediated by the

close GLP-1 analogue, Ex-4, and the GLP-1 metabolite, GLP-1(9-36)NH2. Preliminary

results also suggest compound 249 potentiates OXM-mediated GSIS in isolated mouse

islets (Fig. 5.27), further substantiating the positive influence of compound 249 in

enhancing insulin secretion at a physiological level. In addition, the unique pharmaco-

logical profile of compound 249, that it is a PAM in cAMP signalling pathway and a

NAM in iCa2+, poses an interesting question if the activation of cAMP plays a more

critical role in mediating GSIS, while Ca2+ plays a relatively permissive role [Tengholm

and Gylfe, 2017]. However, further experimental validations through quantifying iCa2+

release with or without the presence of compound 249 in physiological relevant sys-

tems, i.e. rodent b clonal cells or isolated mouse islets, are needed to confirm such

hypothesis. Furthermore, the influence of compound 249 on glucagon secretion is yet
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to be examined, and will be an important piece of future work in order to fully evaluate

its overall regulation of glucose homeostasis.

6.3.3 Where does compound 249 bind at the GLP-1R?

The ultimate question of where compound 249 binds at the GLP-1R remain unvalidated

due to time constraint, despite it has been shown that compound 249 does not require

the C347 residue (Fig. 5.11 and 5.15), which has been thought to be critical for the

PAM action of compound 2 and BETP [Song et al., 2017], for its pharmacological

action. Given that multiple allosteric and small molecule agonist sites have been

discovered at the GLP-1R (Fig. 1.15), numerous possible binding mode of compound

249 arise. Thanks to the docking results performed by Dr Taufiq Rahman (Department

of Pharmacology, University of Cambridge), three main binding mode of compound

249 are suggested: which is via the ECD and ECL1 (model 1), ECL2 (model 2) and via

the TM3 and TM4 core (model 3) (Appendix B.8). Therefore, future studies will involve

performing mutagenesis studies to identify the allosteric pocket which compound 249

binds to and the key interacting amino acid residues.

6.4 Future work

6.4.1 Do RAMPs play any physiological role in regulating insulin and gluca-
gon secretion?

One of the outstanding questions in this work is to evaluate the physiological impact

of RAMPs on regulating insulin and glucagon secretion. RAMPs have been shown

to interact with a range of Class B GPCRs, many of which are responsible for the

regulation of glucose homeostasis [Hay et al., 2016]. Specifically, GCGR has been shown

to interact with RAMP2 to significantly enhance GLP-1(9-36)NH2 cAMP response (Fig.

3.16) [Weston et al., 2015, Cegla et al., 2017]. GIPR has been shown to interact with all

three RAMPs, modulating its signal transduction and receptor trafficking properties

[Harris et al., 2017]. Amylin, which is a glucoregulatory hormone that has also been

developed as a T2DM treatment (pramlinitide), activates the amylin receptors, which

are formed on the basis of interaction of CTR and RAMPs [Bower and Hay, 2016]. In

spite of the reports using global and conditional RAMP knock-down mouse which

illustrated the knock-down of individual RAMPs linked to a range of disorders, such

as diverticular disease [Pauza et al., 2019], excessive fluid accumulation associated
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with lymphatic insufficiency [Kadmiel et al., 2017], primary open-angle glaucoma

[Gong et al., 2019] and nondiabetic obesity [Kim et al., 2015], none of the reports have

explored any potential in vitro and in vivo effect on glucose homeostasis. Therefore,

the implications of genetically knock-down of RAMPs on glucose homeostasis remain

unaddressed and suggest a need to investigate such implications in in vitro and in vivo
settings.

6.4.2 Use of genetically encoded indicators to examine how the dynamics
of cAMP and Ca2+ signalling regulate insulin and glucagon secretion

The initiations of insulin and glucagon secretion via cAMP production and iCa2+

release have been known to be real-time events, which both processes occur within

milliseconds [Gromada et al., 2007]. In this work, the extent of cAMP production was

only quantified in terms of total accumulation within a designated time period in both

recombinant and pancreatic clonal cell lines. The advantage of such approach facilitated

the pharmacological characterisation of the potencies and efficacies of agonists in

different cell models. However such experimental approach may not account for

the spatial-compartmentalisation aspect of signalling [Tengholm and Gylfe, 2017].

Therefore, in order to fully understand the influence of cAMP dynamics on insulin

and glucagon secretion in the pancreatic a and b cells, the use of genetically modified

sensors, such as the EPAC-sensors [Patel and Gold, 2015], e.g. T-Epac-VV [Klarenbeek

et al., 2011], EPAC-SH189 [Klarenbeek et al., 2015] or EPAC2-camps [Nikolaev et al.,

2004], should be included as future work. These FRET-based biosensors confer distinct

advantages in allowing time-lapse monitoring of downstream cAMP signalling in

isolated a and b cells from mouse islets [Capozzi et al., 2019], intact ex vivo mouse

islets [Denwood et al., 2019, Capozzi et al., 2019] and in vivo mouse models [Kim

et al., 2008]. Unfortunately, iCa2+ release was not quantified in the pancreatic a and

b clonal cell lines due to time constraints. Given the reported equal importance of

both cAMP and Ca2+ in regulating insulin and glucagon secretion, the investigation of

iCa2+ mobilisation in pancreatic a and b cells warrants further future work. Thanks

to the recent development of the genetically encoded protein Ca2+ single fluorophore

indicators [Mank and Griesbeck, 2008], such as G-CaMPs [Nakai et al., 2001], iCa2+

release can be monitored in real-time via fluorescent microscopy technique. In fact,

these Ca2+ sensors have already been widely used to aid the investigation of the Ca2+

dynamics in human EndoC-bH1 beta clonal cell line [Cardenas-Diaz et al., 2020], ex
vivo islets [Dadi et al., 2015, Adriaenssens et al., 2016, Hamilton et al., 2018] and in in
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vivo mouse models in a non-invasive manner [Hasan et al., 2004, Ji et al., 2004, Heim

et al., 2007]. The aforementioned genetically encoded protein sensors all illustrate their

potential as useful tools in opening up a whole new avenue for understanding the

cAMP and Ca2+ signalling dynamic in the regulation of insulin and glucagon secretion.

6.4.3 Use of pseudoislets for prospective insulin and glucagon secretion
studies

A lot of this work utilised rodent clonal a and b cell lines grown adhesively in mono-

layers to investigate the signal transduction, as well as insulin and glucagon secretion

stimulatory responses of glucagon-like peptides. This approach confers distinct ad-

vantages of being able to evaluate glucagon-like peptide responses at a single cell

population, allowing efficient testing. However, the islets of Langerhans are known

to be composed of a mixture of b, a and d cells [Cabrera et al., 2006, Kelly et al.,

2011, Brereton et al., 2015, Da Silva Xavier, 2018], and gap junctional coupling and

paracrine signalling between endocrine cells are essential for its glucoregulatory func-

tion [Meda et al., 1991]. Hence the results obtained from monolayer of a single cell

population may be difficult to be translated across to the more physiologically relevant

systems i.e. isolated mouse islets, thus explaining some of the apparent discrepancies

between the results in this work and those by our collaborators. Yet, obtaining rodent,

and to a more challenging extent human isolated islets are labour-intensive processes

and primary islets are difficult for experimental manipulation [Walker et al., 2020].

Therefore, alternative approach has been prompted which involves the formation of

pseudoislets [Hauge-Evans et al., 1999].

Pseudoislets can be made through allowing pancreatic clonal cell lines [Hauge-

Evans et al., 1999, Brereton et al., 2007, Guo-Parke et al., 2012, Chowdhury et al.,

2013, Teraoku and Lenzen, 2017, Tsonkova et al., 2018] or single cells from isolated

mouse or human islets [Lorza-Gil et al., 2019, Walker et al., 2020] to reaggregate on

non-adhesive cell culture dishes with constant low-speed spinning in the presence of

a rich supplement of nutrient and growth factor media. Once these single cells are

allowed to reaggregate after a week, cell clusters are formed which mimic the size and

morphology of primary islets [Lorza-Gil et al., 2019, Walker et al., 2020]. More impor-

tantly, the insulin and glucagon secretion responses of pseudoislets upon glucose and

incretins stimulation have been shown to be robustly higher than those of monolayers

of clonal cell lines, plausibly due to the availability of cell-to-cell interaction within the

pseudoislet environment [Hauge-Evans et al., 1999, Kelly et al., 2011, Chowdhury et al.,
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2013]. In addition, compared to using primary islets, the pseudoislets systems are more

amenable to genetic modification, thereby facilitating intracellular signalling studies

at a mechanistic level. One of the prime examples is the recent study of the effect

of Gai and Gaq signalling pathways on insulin and glucagon secretion using human

pseudoislets, which express the designer receptors exclusively activated by designer

drugs (DREADDs) hM4Di or hM3Dq [Walker et al., 2020]. The use of pseudoislets

has been indeed viewed to be a useful tool and has been used routinely in academic

[Hauge-Evans et al., 1999, Brereton et al., 2007, Guo-Parke et al., 2012, Chowdhury

et al., 2013, Teraoku and Lenzen, 2017] and industrial settings [Tsonkova et al., 2018].

Therefore, the pseudoislet system may be an invaluable tool for the future studies

on the relationship between Gaq activation and GLP-1 or GLP-1(9-36)NH2 mediated

glucagonostatic action.

6.4.4 Future design of GLP-1R allosteric modulator guided by structure-
based virtual screening

The recent spawning reports of GLP-1R full-length crystals structures in complex with

small molecule agonists [Zhao et al., 2020, Ma et al., 2020a], NAMs [Song et al., 2017]

and PAM [Bueno et al., 2020] have undoubtedly advanced the future design of GLP-

1R small molecule agonists or allosteric modulators. In fact, GLP-1R specific PAM,

C-1 [Redij et al., 2019], has been identified utilising structure-based virtual screening

approach, through identifying the potential allosteric site using the full-length GLP-1R

structure in complex with GLP-1 and Gas subunit [Zhang et al., 2017a]. This example

suggests an exciting avenue for future fruitful search of GLP-1R small molecule agonists

and PAMs aided by the advanced knowledge of the GLP-1R structure.

6.5 Concluding remarks

Two main objectives were explored in this thesis: 1) to investigate how GLP-1 regulates

glucose homeostasis in the pancreatic b and a cells; 2) to discover novel pharmacological

mean to regulate GLP-1-mediated glucose homeostasis. The first objective was achieved

via mechanistically evaluate the signalling responses, primarily the key secondary

messengers, cAMP and Ca2+, mediated by the glucagon-like peptides at the GLP-1R,

GCGR and GIPR. The mRNA expressions of incretin receptors, as well as the accessory

proteins RAMPs, were also deduced in order to facilitate the translation of the evaluation

of signalling responses in recombinant cell backgrounds to the more physiologically
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relevant pancreatic clonal cell lines. Following the mechanistic evaluation of signalling

responses, the physiological impact of incretins on insulin and glucagon secretion were

evaluated, using the newly optimised insulin and glucagon secretion assaying technique.

GLP-1R and GCGR specific antagonists as well as a range of pharmacological pathway

inhibitors were further applied to probe the effect of receptor or signalling pathway

blockage on insulin and glucagon secretion. From these series of experiments, it was

concluded that glucagon secretion is regulated by both GLP-1 and GLP-1(9-36)NH2 via

the direct interaction of the low expressing GLP-1R and GCGR at the pancreatic a cells.

The second goal of this work is to identify novel means to pharmacologically regu-

late GLP-1-mediated glucose homeostasis. Following ligand-based virtual screening

and biological validation through the use of cAMP accumulation assays, compound

249 was identified as one of the interesting drug compounds that was GLP-1R-specific

and was a PAM of OXM-mediated cAMP signalling. Further pharmacological char-

acterisation also showed that it was OXM-selective, and that it acted as a NAM in

GLP-1 and OXM-mediated iCa2+ release. More intriguingly, with the use of HEK293S

stably expressing GLP-1R-C347A cell line, compound 249 was discovered to function

via a C347-independent manner, which implied that it may bind at an alternative

allosteric site. With the use of subsequent SAR studies which involved the design of

multiple compound 249 analogues, it was discovered that the trans-alkyne moiety on

compound 249 was conducive to its apparent unique pharmacological profile. More

importantly, with the use of the insulin secretion assaying technique, compound 249

was found to robustly enhance the OXM and GLP-1-mediated GSIS in INS-1 832/3

cell line in a glucose, peptide and GLP-1R-specific manner. Further ex vivo insulin

secretion assay conducted in isolated mouse islets also confirmed its augmentation of

OXM-mediated GSIS. These collective results affirmed the potential future development

of compound 249 as a T2DM treatment as well as an invaluable experimental tool to

explore OXM-biased signalling at the GLP-1R.
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Appendix A

A.1 Optimisation of the Cisbio® insulin and glucagon assays

The optimisation of the insulin assay has been reported by Farino and colleagues

[Farino et al., 2016]. In their report, they suggested various approaches that would

lead to much higher HTRF final readings, which were to allow the antibodies to be

incubated overnight at room temperature, as well as to maintain the pH of the diluent at

7.4. Therefore, their recommendations were incorporated into the assay protocol, while

further optimising other experimental factors. Prior to optimising the protocol, the

standard curves were first established to aid the interpolation of insulin and glucagon

concentrations in test samples.

A.1.1 Establishing standard curves for the interpolation of insulin or glucagon
concentrations

To establish the standard curves for the interpolation of insulin and glucagon concen-

trations in test samples, the manufacturer’s instruction was followed and a range of

concentrations of insulin (0.03 to 8 ng/ml) and glucagon (15.6 to 2000 pg/ml) were

prepared using the insulin or glucagon stock of known concentrations provided with

the kits. To dilute the insulin and glucagon stock, the Krebs Ringer Buffer (KRB; for

formulation see Table 2.1.8.3) supplemented with 20mM HEPES and 0.1% (w/v) BSA at

pH 7.4 in the absence of glucose was used as diluent instead of diluent #5 (formulation

undisclosed by the manufacturer) provided with the kit. The reason for diluting the

stock in KRB was due to the fact that KRB would be used throughout the pre-incubation

and stimulation period, and that the supernatant, which was consisted of the insulin or

glucagon secreted by the insulinoma and glucagonoma cells, would also be contained

in the KRB diluent. After the preparation of a range of diluted insulin and glucagon

concentrations according to the manufacturer’s protocol, the diluted stocks were added
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onto the 384-optiplate, followed by the addition of the antibodies mix at 1:1 ratio. The

plate was sealed and incubated overnight at room temperature before being measured

with the Mithras LB 940 multimode microplate reader, which filters were calibrated at

340nm excitation and 665nm and 620nm excitation.

After the measurement of the HTRF acceptor and donor emission signals for each

well, the ratio of the acceptor over donor emission signals was calculated (Eq. 2.1)

and subsequently the DF(%) (Eq. 2.2) was obtained, which reflected the signal to

background of the assay as well as accounted for the day-to-day variability of the cells.

The DF(%) was calculated by the subtraction of the ratio of the standards by the ratio

of the negative control (which was represented by the blank well which contained

diluent only), over the ratio of the negative control. Having obtained the DF(%) of each

standard concentration, the standard curves were obtained by plots of DF(%) against

the range of insulin or glucagon concentrations (Fig. A.1). The standard curves were

fitted into the hyperbola model with the use of GraphPad Prism 8.3.4.

The standard curve of the insulin assay obtained after curve fitting resembled

an exponential correlation between the DF(%) and the insulin concentrations, which

agreed with the suggestion from the manufacturer. Similarly, the standard curve of the

glucagon assay concurred with what has been suggested by the manufacturer, which

was a linear relationship between the DF(%) and the glucagon concentrations. After

establishing the standard curves to aid the quantitative measurements of insulin or

glucagon levels in the test samples, the insulin and glucagon secretion protocols were

further optimised.
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Figure A.1: Standard curves for the interpolation of insulin and glucagon secretion levels in test
samples. (A) shows the standard curve used to interpolate the insulin concentration (ng/ml) in samples
using the Cisbio® ultra-sensitive insulin kit whereas (B) shows the standard curve used to interpolate the
glucagon concentration (pg/ml) in samples using the Cisbio® glucagon kit. DF(%) was first determined
according to the equations 2.1 and 2.2 stated in section 2.2.4.2.4. DF(%) calculated were then plotted against
a range of known insulin and glucagon concentrations in accordance to the manufacturer’s protocols.
KRB without any supplement of glucose were used as diluents in determining both standard curves.
The graphs were fitted using the hyperbola function in GraphPad Prism 8.3.4 as recommended by the
manufacturer.
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A.1.2 Addition of the protease inhibitor aprotinin

Following the establishment of the standard curves for the interpolation of insulin or

glucagon levels in test samples, the assay protocols were further optimised. In the

subsequent optimisation of the insulin secretion assays, the rat INS-1 832/3 cells were

solely utilised as the surrogate b cell model given the faster cell growth rate and the

relative ease in culturing compared to the mouse MIN6-B1 cell line. The mouse aTC1.6

cell line will be used in the following glucagon secretion assays as the surrogate a cell

model as this mouse a cell line was reported to be able to secrete a higher level of

glucagon upon glucose stimulation compared to the hamster InR1G9 cell line [Powers

et al., 1990].

Notably, a lot of published insulin secretion assay protocol included aprotinin

[Patriti et al., 2007], which is a protease inhibitor, in their incubation buffer in order to

avoid the breakdown of insulin or glucagon produced during the stimulation period.

Therefore, the notion of adding aprotinin in the KRB was tested to deduce if it would

indeed enhance the insulin measurement. 2.8mM and 16.7mM glucose concentrations

were assigned to represent low and high glucose conditions respectively, as these two

concentrations were widely used in other published reports utilising the INS-1 832/3

cell line to measure insulin secretion and that 16.7mM glucose has been shown to

stimulate a strong GSIS response [Naylor et al., 2016]. An hour of low or high glucose

stimulation period was allowed, which complied with other published protocols [Naylor

et al., 2016]. Furthermore, the interpolated insulin level was normalised to the basal

insulin level of the INS-1 832/3 cells when stimulated with low glucose, so as to

facilitate simpler means in describing the changes in insulin levels between the basal

insulin level and other high glucose containing conditions.

A marginal difference between the low and high glucose stimulation was observed

in the absence of the protease inhibitor (Fig. A.2A), suggesting there might be a

significant breakdown of insulin during the stimulation period with high glucose.

However, in the presence of aprotinin in the stimulation buffer, a larger difference

between the low and high glucose was resulted (p < 0.05), which implied the insulin

secreted was prevented from the protease degradation by aprotinin. Furthermore, there

was a stark difference when aprotinin was included in the stimulation buffer which

contained 100nM GLP-1 compared to that without aprotinin (1.49-fold difference) (Fig.

A.2A), illustrating the advantage of adding aprotinin into the stimulating buffer in

aiding the final detectable insulin level.
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A.1.3 Introducing glucose-starvation prior to high glucose challenge

Furthermore, as the rat INS-1 832/3 cells were incubated in 11mM glucose-containing

RPMI media, a lot of published protocols suggested pre-incubating the INS-1 832/3

cells with low glucose buffer at least an hour prior to challenging with high glucose,

so as to perform the so-called ’glucose-starvation’ stage in the INS-1 832/3 cells, in an

attempt to introduce a greater stimulation in insulin secretion [Maida et al., 2008, Lee

and Jun, 2018, Peddibhotla et al., 2019]. Furthermore, the glucose starvation step

was also found to be able to synchronise the cells across treatment, which ultimately

reduced cell-to-cell variability in insulin secretion [Peddibhotla et al., 2019].

To test this phenomenon, the rat b cells were first incubated in glucose-absent RPMI

media for 3 hours at 37°C humidified incubator with 5% CO2, in order to increase cell

viability after long period of low glucose incubation, prior to further pre-incubation

with 2.8mM glucose containing KRB. INS-1 832/3 cells which were incubated in normal

RPMI containing 11mM glucose were used as a control; aprotinin was not included in

the stimulation buffer in order to observe the influence of low glucose pre-incubation

on subsequent insulin secretion.

A stark difference was observed between the low glucose and high glucose stim-

ulation in the glucose-starved INS-1 832/3 cells (1.24-fold increase), compared to the

non-glucose-starved rat b cells (Fig. A.2B). In spite of the more statistically significant

potentiation of GSIS mediated by GLP-1 under normal 11mM pre-incubation, insuli-

noma cells pre-incubated at 11mM glucose failed to respond to high glucose challenge,

therefore their functionality responding to glucose challenge was questioned. Hence, to

enhance the functionality of the insulinoma cells responding to glucose stimuli, 0mM

glucose pre-incubation was adopted in the subsequent insulin assay protocol. Given

the similarity between the working principles of the insulin and glucagon assays, these

optimisations were also introduced into the glucagon secretion assay protocol. How-

ever, as the mouse aTC1.6 cells were cultured long-term in 25mM-glucose containing

media, and that the presence of high glucose was needed to maintain its basal glucagon

secretion, additional glucose-starving step was not performed in the aTC1.6 cells.
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Figure A.2: The optimisation of the Cisbio® ultra-sensitive insulin secretion kit. (A) shows the insulin
levels are higher in samples with the addition of protease inhibitor aprotinin compared to those without
(w/o) aprotinin. (B) shows that pre-incubating INS-1 832/3 cells with 0mM glucose RPMI media 3 hours
before assays leads to a prominent difference in insulin levels between low glucose and high glucose
stimulation. These optimisations are adopted thereafter in the insulin secretion assay protocol, as well as
the glucagon secretion assay, given the similarity between the principles of the Cisbio® ultra-sensitive
insulin secretion and the glucagon secretion assays. Mean ± S.E.M. insulin secretion data (responses
normalised to the GSIS responses at 2.8mM glucose) in an independent experiment with quadruplicates
are shown in the above scatter plots.
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A.1.4 Inclusion of DPP-IV enzyme inhibitor in the stimulation buffer

Following the elucidation of the beneficial effect of including protease inhibitor in the

stimulation buffer and the implementation of glucose starvation on GSIS, the effect of

the addition of DPP-IV inhibitor into the stimulation buffer on insulin secretion was

investigated. GLP-1 and GIP are known to be metabolised rapidly by the endogenous

DPP-IV enzymes, resulting in the widely abundant N-terminally truncated GLP-1(9-

36)NH2 and GIP(3-42) metabolites [Deacon, 2004, Deacon, 2019]. To circumvent these

breakdown, DPP-IV inhibitors are developed which prevent the rapid breakdown of

GLP-1 and GIP, thereby acting as a T2DM therapeutic treatment. Furthermore, the

INS-1 832/3 cells have been shown to possess a high level of DPP-IV activity [Liu et al.,

2014]. Therefore, it is of particular interest to test if the inclusion of a DPP-IV inhibitor

in the stimulation buffer could further improve insulin measurements in the INS-1

832/3 cells. Sitagliptin at 100nM [Liu et al., 2014], which is one of the DPP-IV inhibitors

that is widely used in T2DM treatment, was added to the stimulation buffer. The rat b

cells were stimulated with GLP-1 at 100nM with or without sitagliptin and the insulin

levels were measured.

Again, a prominent difference in insulin secretion was observed when GLP-1 at

100nM was applied to the rat b cells (1.54-fold increase; Fig. A.3). The introduction of

100nM sitagliptin together with 100nM GLP-1 resulted in a nearly doubling in GSIS

when compared to the application of GLP-1 alone, suggesting the protective effect

of the DPP-IV inhibitor prevented GLP-1 from being broken down by the DPP-IV

enzymes expressed in the INS-1 832/3 cells and that the insulin level measurement

in the presence of sitagliptin represented the true effect of the potentiation of GSIS

mediated by GLP-1. Moreover, the application of sitagliptin alone did not enhance

GSIS, implying sitagliptin did not stimulate insulin secretion on its own. Furthermore,

it also suggested that the augmentation in insulin secretion observed previously in the

presence of sitagliptin was mainly due to GLP-1 stimulation in the presence of high

glucose. The results here concurred with the studies by Liu and colleagues, which

they also showed an enhanced insulin secretion mediated by GLP-1 in the presence of

100nM vildagliptin, which is a DPP-IV inhibitor that is currently in clinically use [Liu

et al., 2014]. Knowing that the addition of DPP-IV inhibitor in the stimulation buffer

further enhanced insulin secretion in INS-1 832/3 cells as well as allowed the detection

of the true effect of GLP-1-facilitated GSIS, 100nM sitagliptin was thereafter included

in the KRB stimulation buffer.
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Figure A.3: The presence of the DPP-IV inhibitor sitagliptin further enhances GLP-1 mediated GSIS
in INS-1 832/3 WT cells. The insulin levels measured are higher when INS-1 832/3 WT cells are stimulated
with GLP-1 in the presence of 100nM sitagliptin than that without sitagliptin. The presence of sitagliptin
alone does not enhance GSIS. Mean ± S.E.M. insulin secretion data (responses normalised to the GSIS
responses at 2.8mM glucose) in an independent experiment with quadruplicates are shown in the above
scatter plots.
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Appendix B

B.1 Compound 249 enhances OXM-mediated cAMP response

in CHO-GLP-1R cells

The following results (Fig. B.1 and B.2) were originally reported in my MPhil thesis.

cAMP functional assays were conducted during which the CHO-GLP-1R cells were

co-stimulated with both compound 249 at fixed concentrations together with a range of

concentrations of GLP-1, OXM or GCG in the presence of the PDE inhibitor rolipram

for 15 mins. Compound 249 displayed enhancement of the OXM-mediated cAMP

response (pEC50 values increased from 7.92 ± 0.06 to 8.71 ± 0.07, p < 0.0001) (Fig. B.1,

B.2, Table B.2). Further application of the operational model of allosterism resulted in a

positive cooperativity value (logab) of 1.04, implying the positive allosteric modulation

exhibited by compound 249. Compound 249 did not potentiation GLP-1 nor GCG-

mediated cAMP responses, compared to the robust augmentation of cAMP responses

mediated across all peptide agonists exhibited by compound 2 and BETP (Fig. B.1, B.2,

Table B.1 and B.3).
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Figure B.1: Compound 249 only induces a concentration-dependent positive allosteric modulation on
OXM-mediated cAMP accumulation response in CHO-GLP-1R cells. Compound 249 (A to C) only
exhibits a concentration-dependent positive allosteric modulation on OXM-mediated cAMP accumulation
response, as shown in panel B. Compound 2 (D to F) and BETP (G to I) are able to mediate positive
allosteric modulation on GLP-1, OXM and GCG-mediated cAMP accumulation respectively. 500 CHO-
GLP-1R cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram were
used in the cAMP assays. All data were normalised to the maximum cAMP response determined by
100µM forskolin stimulation. All data are means from 2 to 5 independent experiments with duplicates ±
S.E.M (upper error bars).
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B.1. Compound 249 enhances OXM-mediated cAMP response in CHO-GLP-1R
cells
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Figure B.2: Scatter plots illustrating compound 249 only induces a concentration-dependent positive
allosteric modulation on OXM-mediated cAMP accumulation response in CHO-GLP-1R cells. Com-
pound 249 only exhibits a concentration-dependent positive allosteric modulation on OXM-mediated
cAMP accumulation response (A to C). Panel D to I showed the allosteric modulation of compound 2
and BETP on GLP-1, OXM and GCG-mediated cAMP accumulation. 500 CHO-GLP-1R cells/well under
15-minute co-stimulation with peptide ligands in the presence of rolipram were used in the cAMP assays.
All data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation.
All data are means from 2 to 5 independent experiments with duplicates ± S.E.M (upper error bars).
Statistical significance compared with GLP-1(7-36)NH2, OXM and GCG (*, p < 0.05; **, p < 0.01; ***, p <
0.001; ****, p < 0.0001) for compound 249, Compound 2 and BETP was determined by one-way ANOVA
with post-hoc Dunnett’s multiple comparisons.
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Table B.1: Concentration-dependent allosteric modulation of GLP-1(7-36)NH2-mediated cAMP accu-
mulation potentiated by Compound 2 and BETP but not compound 249 in CHO-GLP-1R cells.

Ligand Compound Concentration pEC50 
a Emax 

b Emin
c Span n

GLP-1

DMSO - 9.46±0.05 93.14±1.95 1.06±1.44 87.21±3.99 10

Compound 
249

3.16x10-5M 9.18±0.07 102.10±2.81 20.72±1.5 81.42±2.83 6

1x10-5M 9.24±0.04 98.01±1.92 9.86±1.1 88.14±1.97 6

3.16x10-6M 9.12±0.05 100.32±2.73 7.41±1.4 92.94±2.76 6

1x10-6M 9.22±0.05 95.31±2.12 5.65±1.2 89.65±2.23 6

Compound 
2

1x10-6M 10.1±0.6** 109.1±4.9 72.2±2.9* 37.89±7.99 4

3.16x10-7M 9.68±0.3* 103.4±5.7 50.0±3.5ns 56.77±5.35 4

1x10-7M 9.67±0.1* 103.3±3.1 19.9±2.5* 87.40±2.60 4

1x10-8M 9.75±0.2* 107.1±6.3 5.26±4.9ns 106.14±7.51 4

BETP

1x10-5M 9.81±0.06* 87.2±1.29 33.04±1.3**** 54.12±1.70 4

1x10-6M 9.71±0.09ns 91.5±3.0 6.81±2.8ns 84.73±3.68 4

1x10-7M 9.38±0.06ns 95.9±2.7 3.86±1.8ns 92.05±2.88 4

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with GLP-1(7-36)NH2 (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p <
0.0001 ns, non-statistically significant) for compound 249, Compound 2 and BETP was determined by
one-way ANOVA with post-hoc Dunnett’s multiple comparisons.

314



B.1. Compound 249 enhances OXM-mediated cAMP response in CHO-GLP-1R
cells

Table B.2: Concentration-dependent allosteric modulation of OXM-mediated cAMP accumulation po-
tentiated by Compound 2 and BETP but not compound 249 in CHO-GLP-1R cells.

Ligand Compound Concentration pEC50 
a Emax 

b Emin
c Span n

OXM

DMSO - 7.92±0.06 82.53±1.88 10.30±1.65 85.83±2.40 10

Compound 
249

1x10-5M 8.71±0.07**** 83.79±2.08 1.63±2.68 82.17±3.18 8

3.16x10-6M 8.60±0.10**** 84.97±2.65 6.84±3.13 78.14±3.80 6

1x10-6M 8.57±0.12** 82.49±3.63 5.65±3.80 76.85±4.89 6

3.16x10-7M 8.44±0.08** 80.79±2.28 2.86±2.83 77.94±3.36 6

Compound 
2

1x10-5M 7.88±0.097ns 101.4±3.9 83.8±2.2**** 17.66±3.98 4

3.16x10-6M 7.00±0.40ns 104.0±2.5 84.4±1.6**** 19.64±2.67 4

1x10-6M 7.26±0.3ns 97.9±2.4 72.9±1.3**** 24.99±2.49 4

3.16x10-7M 6.81±0.4ns 91.18±2.6 55.52±0.89**** 35.66±2.57 4

BETP

1x10-5M 7.95±0.1ns 84.14±0.9 45.71±2.6**** 38.43±2.65 6

1x10-6M 7.70±0.07ns 85.48±1.3 18.51±2.8ns 66.97±2.90 6

1x10-7M 7.13±0.06ns 85.47±1.0 1.43±3.5ns 86.89±3.47 6

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with OXM (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001 ns,
non-statistically significant) for compound 249, Compound 2 and BETP was determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.

315



Appendix B.

Table B.3: Concentration-dependent allosteric modulation of GCG-mediated cAMP accumulation po-
tentiated by Compound 2 and BETP but not compound 249 in CHO-GLP-1R cells.

Ligand Compound Concentration pEC50 
a Emax 

b Emin
c Span n

GCG

DMSO - 8.32±0.05 95.18±2.65 5.96±1.7 87.69±2.82 8

Compound 
249

3.16x10-5M 8.56±0.06 98.83±1.7 21.26±1.8 79.34±2.45 6

1x10-5M 8.52±0.07 93.25±2.2 13.01±2.4 81.74±3.23 6

3.16x10-6M 8.50±0.06 91.87±2.0 9.04±2.0 84.71±2.86 6

1x10-6M 8.49±0.06 90.61±1.8 7.50±1.9 85.42±2.59 6

Compound 
2

1x10-5M 8.43±0.30ns 90.47±3.1 71.02±1.8**** 19.45±3.44 6

3.16x10-6M 8.23±0.27ns 94.28±2.4 77.63±1.3**** 19.45±3.22 6

1x10-6M 8.13±0.32ns 89.51±1.9 76.75±1.4**** 12.76±2.09 6

3.16x10-7M 8.53±0.20ns 91.27±2.4 64.75±2.1**** 26.51±2.84 6

1x10-7M 8.56±0.13ns 88.35±2.6 35.57±2.9**** 52.79±3.57 4

BETP

1x10-5M 9.15±0.12*** 90.18±3.1 16.63±4.4**** 69.70±3.85 6

3.16x10-6M 8.99±0.08** 91.35±2.5 6.44±3.1** 84.90±3.58 6

1x10-6M 8.73±0.08ns 90.70±3.1 -1.18±3.0ns 88.02±3.36 6

3.16x10-7M 8.63±0.07ns 92.25±2.7 -4.64±2.3ns 96.89±3.24 6

1x10-7M 8.81±0.07ns 89.75±2.8 -11.77±2.9ns 92.48±4.18 4

Values were generated when the data were fitted to the three-parameter logistic equation. Means ±
S.E.M of n individual result sets were shown.

a Negative logarithm of agonist concentration when reaching half maximal response.
b % of maximal response observed when stimulated with ligands relative to forskolin.
c % of minimal response observed when stimulated with ligands relative to forskolin.

Statistical significance compared with GCG (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001 ns,
non-statistically significant) for compound 249, Compound 2 and BETP was determined by one-way
ANOVA with post-hoc Dunnett’s multiple comparisons.
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B.2 Screening results of VU0453379-derived small molecules

VU0453379 is a selective GLP-1R PAM which is penetrable to the central nervous

system (CNS) [Morris et al., 2014]. Given its uniqueness in being a CNS penetrant,

which can be potentially used as novel treatment for Parkinson’s disease as GLP-1

has been shown to be able to improve cognitive function [Drucker, 2018], a series of

VU0453379-derived analogues were designed (Fig. B.3) by our collaborator, Dr Taufiq

Rahman (Department of Pharmacology, University of Cambridge). However, none

of these 26 analogues appeared to have intrinsic agonism towards GLP-1R (Fig. B.4).

Furthermore, they did not illustrate potentiation towards GLP-1 (Fig. B.5 and B.6) nor

its close homologue, Ex-4 (Fig. B.7) mediated cAMP responses. Therefore, further

pharmacological validation of this set of analogues was not pursued.
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Figure B.3: Structures of VU0453379-based small molecules. Panel A to Z show the 2D structures
of small molecule candidates based on the structures of the GLP-1R PAM VU0453379 [Morris et al.,
2014]. These small molecules were designed by Dr. Taufiq Rahman using ligand-based virtual screening
approach.
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Figure 5.X: Compound agonistic activity screening of VU-0453379 analogues in CHO-GLP-1R cells. Panel A to
Z show that the VU-0453379 based small molecules do not demonstrate GLP-1R agonism in CHO-GLP-1R cells. 500
CHO-GLP-1R cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram were used in
the cAMP assays. All data were normalised to the maximum cAMP response determined by 100!M forskolin
stimulation. All data are means from at least 3 independent experiments ± S.E.M (upper error bars).

Figure B.4: Compound agonistic activity screening of VU-0453379 analogues in CHO-GLP-1R cells.
Panel A to Z show that the VU-0453379-based small molecules do not demonstrate GLP-1R agonism
in CHO-GLP-1R cells. 500 CHO-GLP-1R cells/well under 15-minute stimulation with the VU-0453379
analogues in the presence of rolipram were used in the cAMP assays. All data were normalised to the
maximum cAMP response determined by 100µM forskolin stimulation. All data are means from at least 3
independent experiments with duplicates ± S.E.M (upper error bars).
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Figure 5.X: : Compound allosteric activity screening of VU-0453379 analogues in CHO-GLP-1R cells. Panel A
to Z show that these small molecule compounds based on the structure of VU-0453379 do not exhibit allosteric of
GLP-1-mediated allosteric effect in CHO-GLP-1R cells. 500 CHO-GLP-1R cells/well under 15-minute co-stimulation
with peptide ligands in the presence of rolipram were used in the cAMP assays. All data were normalised to the
maximum cAMP response determined by 100!M forskolin stimulation. All data are means from at least 3 independent
experiments ± S.E.M (upper error bars).

Figure B.5: Compound allosteric activity screening of VU-0453379 analogues in CHO-GLP-1R cells.
Panel A to Z show that these small molecule compounds based on the structure of VU-0453379 do not
exhibit allosteric of GLP-1-mediated allosteric effect in CHO-GLP-1R cells. 500 CHO-GLP-1R cells/well
under 15-minute co-stimulation with peptide ligands in the presence of rolipram were used in the cAMP
assays. All data were normalised to the maximum cAMP response determined by 100µM forskolin
stimulation. All data are means from at least 3 independent experiments with duplicates ± S.E.M (upper
error bars).
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B.2. Screening results of VU0453379-derived small molecules
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Figure 5.X: : Scatter plot summarising compound allosteric activity screening of VU-0453379 analogues in
CHO-GLP-1R cells. The above scatter plot shows that these small molecule compounds based on the structure of
VU-0453379 do not exhibit allosteric of GLP-1-mediated allosteric effect in CHO-GLP-1R cells. 500 CHO-GLP-1R
cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram were used in the cAMP
assays. All data were normalised to the maximum cAMP response determined by 100!M forskolin stimulation. All data
are means from at least 3 independent experiments ± S.E.M (upper error bars).

Figure B.6: Scatter plot summarising compound allosteric activity screening of VU-0453379 analogues
in CHO-GLP-1R cells. The above scatter plot shows that these small molecule compounds based on
the structure of VU-0453379 do not exhibit GLP-1-mediated allosteric effect in CHO-GLP-1R cells. 500
CHO-GLP-1R cells/well under 15-minute co-stimulation with GLP-1 in the presence of rolipram were
used in the cAMP assays. All data were normalised to the maximum cAMP response determined by
100µM forskolin stimulation. All data are means from at least 3 independent experiments with duplicates
± S.E.M (upper error bars).
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Figure 5.X: : Compound allosteric activity screening of VU-0453379 analogues in CHO-GLP-1R cells. Panel A
to J show that these small molecule compounds based on the structure of VU-0453379 do not exhibit allosteric of Ex-

4-mediated allosteric effect in CHO-GLP-1R cells. 500 CHO-GLP-1R cells/well under 15-minute co-stimulation with

peptide ligands in the presence of rolipram were used in the cAMP assays. All data were normalised to the maximum

cAMP response determined by 100!M forskolin stimulation. All data are means from at least 3 independent

experiments ± S.E.M (upper error bars).

Figure B.7: Compound allosteric activity screening of VU-0453379 analogues in CHO-GLP-1R cells.
Panel A to J show that these small molecule compounds based on the structure of VU-0453379 do not
exhibit allosteric of Ex-4-mediated allosteric effect in CHO-GLP-1R cells. 500 CHO-GLP-1R cells/well
under 15-minute co-stimulation with Ex-4 in the presence of rolipram were used in the cAMP assays. All
data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation. All
data are means from at least 3 independent experiments with duplicates ± S.E.M (upper error bars).
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B.3 Screening results of GLP-1-based small molecules

In an attempt to identify small molecule GLP-1R agonists that can be developed as

novel T2DM treatment, a set of compounds were designed to mimic the points of

interaction of GLP-1 at the ECD of GLP-1R (Fig. B.8). These compounds were identified

with structure-based virtual screening and were conducted by Dr Taufiq Rahman

(Department of Pharmacology, University of Cambridge).

The compounds were tested using the cAMP accumulation assay in both CHO-GLP-

1R and untransfected CHO-K1 cells in an attempt to identify any intrinsic agonism at

the GLP-1R. Both cell lines were stimulated with fixed concentrations of compounds

(all at the highest concentrations 100µM) in the presence of PDE inhibitor rolipram for

15 mins. Most of the compounds reported here did not demonstrate intrinsic GLP-1R

agonism (Fig. B.9). Furthermore, compound 141 demonstrated potential cell toxicity

as it induced a significant decrease in cAMP production in both CHO-GLP-1R and

untransfected CHO-K1 cell lines.
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Fig. 5.X: Structures of potential GLP-1R agonist small molecule compounds. Panel A to S show the 2D structures
of small molecule candidates that are designed to mimic the contact point of GLP-1 to the extracellular N-terminus
domain. These small molecules were designed by Dr. Taufiq Rahman using virtual screening approach.

Figure B.8: Structures of potential GLP-1R agonist small molecule compounds. Panel A to S show the
2D structures of small molecule candidates that are designed to mimic the contact point of GLP-1 to the
ECD. These small molecules were designed by Dr. Taufiq Rahman using virtual screening approach.
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Figure B.9: Scatter plot summarising compound agonistic activity point screening in CHO-GLP-1R
and untransfected CHO-K1 cells. The above scatter plots representing point screening in (A) CHO-
GLP-1R cells and (B) CHO-K1 cells. It shows that most of the drug candidates do not exhibit GLP-1R
agonism. 500 CHO-GLP-1R or CHO-K1 cells/well under 15-minute co-stimulation with peptide ligands
in the presence of rolipram were used in the cAMP assays. All data were normalised to the maximum
cAMP response determined by 100µM forskolin stimulation. All data are means from one independent
experiments with duplicates ± S.E.M (upper error bars).
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B.4 Determination of allosteric modulation of compound 249

analogues

The same cAMP functional assays for identifying potential GLP-1R and GCGR allosteric

modulators were performed in the CHO-GLP-1R and CHO-GCGR cells. The cells were

co-stimulated with fixed concentrations of analogues and a range of concentrations of

OXM and GCG. Intriguingly, unlike compound 249, all three compound 249 analogues

did not show any allosteric activities on OXM-mediated cAMP responses at GLP-1R

(Fig. B.10 and B.11). Yet, similar to compound 249, the three analogues also did not

potentiate GCG-mediated cAMP responses.
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Figure B.10: Analogues of compound 249 do not induce allosteric modulation on OXM or GCG-
mediated cAMP accumulation in CHO-GLP-1R cells. Panel A, C and E show that compound 248, 82
and 448 do not potentiate OXM-mediated cAMP accumulation even when high concentration at 10�4M
was applied to the CHO-GLP-1R cells. Similarly, panels B, D, and F show that these analogues are
not allosteric modulators on GCG-mediated cAMP accumulation. 500 CHO-GLP-1R cells/well under
15-minute co-stimulation with peptide ligands in the presence of rolipram were used in the cAMP assays.
All data were normalised to the maximum cAMP response determined by 100µM forskolin stimulation.
All data are means from at least 2 independent experiments with duplicates ± S.E.M (upper error bars).
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Figure B.11: Scatter plots illustrating compound 249 analogues do not induce allosteric modulation
on OXM or GCG-mediated cAMP accumulation in CHO-GLP-1R cells. Panel A, C and E show that
compound 248, 82 and 448 do not potentiate OXM-mediated cAMP accumulation even when high
concentration at 10�4M was applied to the CHO-GLP-1R cells. Similarly, panels B, D, and F show that
these analogues are not allosteric modulators on GCG-mediated cAMP accumulation. 500 CHO-GLP-1R
cells/well under 15-minute co-stimulation with peptide ligands in the presence of rolipram were used
in the cAMP assays. All data were normalised to the maximum cAMP response determined by 100µM
forskolin stimulation. All data are means from at least 2 independent experiments with duplicates ±
S.E.M (upper error bars).
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B.5. Compound 607 does not inhibit GSIS in high glucose settings

B.5 Compound 607 does not inhibit GSIS in high glucose set-

tings

Given the interesting profile of compound 607 as a NAM of GLP-1 and OXM-mediated

cAMP responses, its potential action on GLP-1 and OXM-mediated GSIS were next

explored. Similar to the approach in investigating compound 249 potentiation of insulin

secretion, compound 607 was also applied to low and high glucose settings.

Here compound 607 did not appear to alter the extent of insulin secretion in low

glucose setting, and it also did not affect insulin secretion in high glucose settings (Fig.

B.12), suggesting it did not act as a potentiator of insulin secretion in the presence of

glucose stimuli alone.
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Figure B.12: Compound 607 does not affect GSIS in INS-1 832/3 WT cells. Compound 607 does not
facilitate GSIS while BETP enhances GSIS in the presence of 16.7mM glucose in INS-1 832/3 WT cell line.
Mean ± S.E.M. insulin secretion data (responses normalised to the GSIS secretion responses at 2.8mM
respectively) in 3 independent experiments with quadruplicates are shown in the above scatter plots.
Statistical significance compared between response at 2.8mM and 16.7mM glucose in the INS-1 832/3 WT
cell lines were determined by Student’s t-test with Welch’s correction and are indicated by hash above the
bars (####, p<0.0001). Statistical significance compared between responses with or without the presence of
compounds at 16.7mM glucose in insulin secretion assays respectively were determined by Student’s t-test
with Welch’s correction and are indicated by asterisks above the bars (***, p<0.001; ns, non-statistically
significant).
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B.6 Compound 607 inhibits GLP-1 and OXM-mediated GSIS

Similar to the determination of compound 249 actions on GLP-1R agonists-mediated

GSIS, the INS-1 832/3 WT cells were incubated with compound 607 at both 100µM and

10µM for an hour, before insulin secretion measurement. BETP was again included as a

positive control. Contrary to the action of compound 249 in enhancing GLP-1-mediated

GSIS, compound 607 at 100µM illustrated inhibition of GLP-1-mediated GSIS, with

a reduction of 1.43-fold (p < 0.05) (Fig. B.13A). Similar effect was also observed in

OXM-mediated GSIS, where compound 249 at 100µM decreased GSIS by 1.21-fold (p

< 0.05) (Fig. B.13B). Interestingly, compound 607 also did not affect Ex-4-mediated

GSIS, similar to the results of compound 249. The GSIS results here also illustrated

compound 607 inhibition of GSIS is ligand dependent.
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Figure B.13: Compound 607 inhibits GSIS mediated by GLP-1 and OXM in INS-1 832/3 WT cells.
Compound 607 inhibits GSIS while BETP enhances GSIS in the presence of 16.7mM glucose in INS-1
832/3 WT cell line. Mean ± S.E.M. insulin secretion data (responses normalised to the GSIS secretion
responses at 2.8mM respectively) in 1 to 3 independent experiments with quadruplicates are shown in the
above scatter plots. Statistical significance compared between responses at 2.8mM and 16.7mM glucose
among the INS-1 832/3 WT cell lines were determined by Student’s t-test with Welch’s correction and are
indicated by hash above the bars (####, p < 0.0001). Statistical significance compared among the peptide
ligand influence on GSIS in INS-1 WT cells were determined by one-way ANOVA with Bonferroni’s
corrections compared with the mean of the WT group and are indicated by obelisk above the bars (++++,
p < 0.0001). Statistical significance compared between responses with or without the presence of peptide
ligands at 16.7mM glucose in insulin secretion assays respectively were determined by Student’s t-test
with Welch’s correction and are indicated by asterisks above the bars (*, p<0.05).
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B.7 Use of NanoBiT Technology to investigate compound 249

effect on G protein dissociation

B.7.1 Principle of NanoBiT G protein dissociation assay

The NanoLuc® Binary Technology (NanoBiT) is based on NanoLuc, which is an

engineered luciferase from the deep-sea shrimp Oplophorus gracilirostris. It facilitates

the real-time measurement of G protein dissociation between the heterotrimeric Ga and

Gbg subunits upon receptor activation. The NanoBiT system consists of two small units,

Large BiT (LgBiT) and Small BiT (SmBiT) of the luciferase. Here, the LgBiT component

is fused to the Ga subunit while the SmBiT is fused to the Gbg subunits. Whilst the

receptor is at its resting state, the Ga and Gbg subunits are associated, facilitating

the LgBiT and SmBit subunit complementation to generate bright luminescent signal.

However, when the receptor is activated (e.g. when GLP-1R is activated by GLP-1),

the dissociation of the heterotrimeric Ga and Gbg subunits is triggered, resulting in a

lack of complementation of the two NanoLuc subunits; therefore no luminescence is

resulted (Fig. B.14).

To determine the dose-dependent effect on G protein dissociation, a range of

concentrations of GLP-1 is applied to the GLP-1R. The reduction in luminescence

measured over time in terms of the area under the curve (AUC) of each individual

GLP-1 concentration was collated and transformed into a concentration-dependent

curve (Fig. B.14). The results obtained are then normalised to the AUC value of the

vehicle control.

B.7.2 Methods of the NanoBiT G protein dissociation assay

The following methods were received with courtesy from Dr Matthew Harris (Depart-

ment of Pharmacology, University of Cambridge). 250,000 HEK293DAll (a cell line

with all G proteins knocked out using CRISPR-Cas9 technology) cells stably expressing

GLP-1R were seeded into 10 cm dishes and cultured for 24 hours. Cells were then

transiently transfected with appropriate Ga-LgBiT, Gb1 and Gg2-SmBiT at a 1:3:3 ratio

(0.5µg: 1.5µg: 1.5µg). For Gaq subunit, cells were also transfected with 1µg of RIC8A,

a chaperone protein required for Gaq family signalling [Miller et al., 2000]. 24 hours

after transfection, cells were harvested and seeded at a density of 60,000 cells per

well into poly-D-lysine (PDL) coated clear-bottomed 96 well plates (Corning). After

a further 24 hours, media was removed, cells were washed with HBSS plus 10mM
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dissociation
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Figure B.14: Principle of NanoBiT G protein dissociation assay. When the receptor is at its resting state,
the Ga and Gbg subunits are associated, facilitating the LgBiT and SmBit subunit complementation to
generate bright luminescent signal. However, when the receptor is activated, the dissociation of the
heterotrimeric Ga and Gbg subunits is triggered, resulting in a lack of complementation of the two
NanoLuc subunits; therefore no luminescence is resulted. Schematic diagram modified from the original
concept from Dr Matthew Harris (Department of Pharmacology) and was created using Biorender.

HEPES and 80µl HBSS, containing 10mM HEPES and 0.1% BSA, was added to each

well. Compound 249 was diluted in HBSS, containing 10mM HEPES and 0.1% BSA,

to a concentration of 10µM and 80µl added to each well. 10µl of Coelenterazine-h

(diluted in HBSS, containing 10 mM HEPES, 0.1% BSA and 10µM compound 249 was

then added to each well to a final concentration of 5µM, and the plate incubated for 1

hour in the dark. Ligands were diluted in HBSS, containing 10mM HEPES, 0.1% BSA

and 10µM compound 249, to the desired concentration. After incubation, a baseline

luminescence level was determined for 2 minutes using a Hamamatsu Functional Drug

Screening System (FDSS). Ligands were then robotically added in the appropriate range

and luminescence measured every 10 seconds for 10 minutes. Ligand-induced delta

luminescent units were corrected to baseline and vehicle, and the AUC used to generate

concentration-response curves. G protein dissociation is expressed as a percentage of

the maximum response observed.

The results (Fig. B.15 and B.16) of compound 249 allosteric effect on G protein

dissociation measured using the assay described above were interpreted in Section

5.8.2.
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Figure B.15: Compound 249 displays negative allosteric modulation in Gai2 and Gaq protein disso-
ciation upon GLP-1R activation by GLP-1. (A) Gas, (C) Gai1, (E) Gai2, (G) Gai3 and (I) Gaq protein
dissocation upon GLP-1R activation by GLP-1 in the presence of compound 249 was investigated using the
NanoBiT G protein dissociation assay, performed by Dr Matthew Harris (Department of Pharmacology,
University of Cambridge). Dose response curves were generated by converting the area-under-the-curve
(AUC) of each GLP-1 concentration. The AUC values were then normalised to that of DMSO control.
All data are means from at least 2 independent experiments ± S.E.M. The pEC50 values with or without
compound 249 effect on (B) Gas, (D) Gai1, (F) Gai2, (H) Gai3 and (J) Gaq protein dissociation were shown
in the above scatter plots. Statistical significance compared the pEC50 responses with or without com-
pound 249 respectively were determined by Student’s t-test with Welch’s correction and were indicated by
asterisks above the bars (**, p<0.01).
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Figure B.16: Compound 249 does not affect G protein dissociation upon GLP-1R activation by OXM.
(A) Gas, (C) Gai1, (E) Gai2, (G) Gai3 and (I) Gaq protein dissocation upon GLP-1R activation by OXM in the
presence of compound 249 was investigated using the NanoBiT G protein dissociation assay, performed
by Dr Matthew Harris (Department of Pharmacology, University of Cambridge). Dose response curves
were generated by converting the area-under-the-curve (AUC) of each OXM concentration. The AUC
values were then normalised to that of DMSO control. All data are means from at least 2 independent
experiments ± S.E.M. The pEC50 values with or without compound 249 effect on (B) Gas, (D) Gai1,
(F) Gai2, (H) Gai3 and (J) Gaq protein dissociation were shown in the above scatter plots. Statistical
significance compared the pEC50 responses with or without compound 249 respectively were determined
by Student’s t-test with Welch’s correction and were indicated by asterisks above the bars (**, p<0.01).
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B.8 In silico docking results of compound 249 to GLP-1R

B.8.1 Sources for GLP-1R, GCGR and small molecule 3D compound struc-
tures

Structures of full-length GLP-1R crystal structures were obtained from RCSB protein

data bank (PDB) (https://www.rcsb.org). The structures for GLP-1R were energy-

minimised and were clear of any lipoproteins or water molecules attached to the

structures before performing docking studies. The table below outlined GLP-1R (Table

B.4) crystal structures used in the docking studies.

The 3D conformation of compound 249 was obtained from the NCBI PubChem

inventory (https://pubchem.ncbi.nlm.nih.gov) identified by the compounds’ unique

Z numbers. The 3D conformation of compound 249 was converted to its lowest

energy forms by using the energy minimization force field ’mmff94’ option available in

OpenBabel (version 2.4.0.) before docking with the refined receptor crystal structures

of interests.

Table B.4: Full-length cryo-EM crystal structures of GLP-1R used in molecular modelling.

PDB code Description Reference

5NX2 Crystal structure of human GLP-1 receptor bound to the 11-mer 
agonist peptide 5

Jazayeri et al., 2017

5VAI Cryo-EM structure of active rabbit GLP-1 receptor in complex 
with GLP-1 and Gs protein

Zhang et al., 2017

B.8.2 Methods of in silico docking

In silico docking were performed initially via the open-source programme Autodock

Vina [Trott and Olson, 2010] by Dr Taufiq Rahman (Department of Pharmacology,

University of Cambridge). Blind docking was adopted during which specific binding

site on the receptor was not specified and the entire receptor models were used to

predict any possible receptor-ligand interactions. The exhaustiveness for the search

was set to 24 and five independent docking were performed for each compound

candidate on specific receptor conformations of interest. The poses with the highest

binding affinity (kcal/mol) were considered to be the final pose for each drug. The

corresponding 2D ligand-protein interaction was predicted using PoseView available in

the Proteins.Plus platform (https://proteins.plus).
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B.8. In silico docking results of compound 249 to GLP-1R

B.8.3 Predicted binding poses of compound 249 at the GLP-1R

As stated in Section 5.8.3, three potential binding sites of compound 249 at the GLP-1R

were suggested. Compound 249 was predicted to bind to the ECD and ECL1 (model 1)

(Fig. B.17), ECL2 (model 2) (Fig. B.18) and TM3 and 4 core (model 3) (Fig. B.19). The

implications of the predictions are discussed in Section 5.8.3. Fig. B.20 summaries the

potential amino acid interactions using the snake-plot representations.

A B

C

Figure 5.X: Compound 249 in silico docking at the GLP-1R. (A) Compound 249 was docked against the full
length GLP-1R crystal structures (pdb: 5NX2) with the use of ICM gold software. (B) and (C) show the prediction of
potential amino acid interaction with compound 249 by the use of the Vina Pose and ICM pose software. The in
silico docking was conducted by Dr. Taufiq Rahman.

Figure B.17: Compound 249 in silico docking at the GLP-1R (Pose 1). (A) Compound 249 was docked
against the full length GLP-1R crystal structures (PDB: 5NX2) with the use of ICM gold software. (B) and
(C) show the prediction of potential amino acid interaction with compound 249 by the use of the Vina
Pose and ICM pose software. The in silico docking was conducted by Dr. Taufiq Rahman.
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A B

C

Figure B.18: Compound 249 in silico docking at the GLP-1R (Pose 2). (A) Compound 249 was docked
against the full length GLP-1R crystal structures (PDB: 5VAI) with the use of ICM pose with GOLD-based
refinement. (B) and (C) show the prediction of potential amino acid interaction with compound 249 by the
use of the Vina Pose and ICM pose software. The in silico docking was conducted by Dr. Taufiq Rahman.
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A B

C

Figure B.19: Compound 249 in silico docking at the GLP-1R (Pose 3). (A) Compound 249 was docked
against the full length GLP-1R crystal structures (pdb: 5VAI) with the use of VinaPose with GOLD-based
refinement. (B) and (C) show the prediction of potential amino acid interaction with compound 249 by the
use of the Vina Pose and ICM pose software. The in silico docking was conducted by Dr. Taufiq Rahman..
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Figure B.20: Compound 249 potential interacting residues at the GLP-1R as predicted by in silico
docking. The residues highlighted in blue represent the prediction using the PDB model 5NX2; the
residues highlighted in purple represent the prediction using the PDB model 5VAI with the use of
AutoDOCK vina followed by GOLD-based refinement. The residues highlighted in green represent
the prediction using the PDB model 5VAI with the use of ICM Pro docking followed by GOLD-based
refinement. The residue in red highlights the position of the C347 residue while the residues in yellow
show the interacting residues on the GLP-1R with its orthosteric agonist GLP-1. All in silico docking were
conducted by Dr Taufiq Rahman.
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