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1  | INTRODUC TION

Working memory (WM), the ability to hold and manipulate informa‐
tion in the mind for brief periods of time, is predictive of healthy 
cognition across the lifespan and closely linked to academic attain‐
ment, employability and well‐being (Diamond, 2012). Consequently, 

the prospect of enhancing WM and closely associated cognitive 
skills such as attention, processing speed and reasoning via cogni‐
tive training has received considerable interest from researchers and 
commercial enterprises (Diamond, 2012; Green & Bavelier, 2008; 
Hertzog, Kramer, Wilson, & Lindenberger, 2008). The assumption 
being that enhancing this general‐purpose system will produce wide 
benefits to other aspects of cognition and learning.

Cognitive training studies typically use a range of assessment 
tasks to test the effect of training. These are delivered before and 
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Abstract
We used two simple unsupervised machine learning techniques to identify differen‐
tial trajectories of change in children who undergo intensive working memory (WM) 
training.	We	used	self-organizing	maps	(SOMs)—a	type	of	simple	artificial	neural	net‐
work—to	represent	multivariate	cognitive	training	data,	and	then	tested	whether	the	
way tasks are represented changed as a result of training. The patterns of change 
we	observed	 in	 the	SOM	weight	matrices	 implied	 that	 the	processes	drawn	upon	
to perform WM tasks changed following training. This was then combined with K‐
means clustering to identify distinct groups of children who respond to the training 
in different ways. Firstly, the K‐means clustering was applied to an independent large 
sample (N = 616, Mage	=	9.16	years,	range	=	5.16–17.91	years)	to	identify	subgroups.	
We then allocated children who had been through cognitive training (N	 =	 179,	
Mage	 =	9.00	 years,	 range	=	7.08–11.50	years)	 to	 these	 same	 four	 subgroups,	 both	
before and after their training. In doing so, we were able to map their improvement 
trajectories.	Scores	on	a	separate	measure	of	fluid	intelligence	were	predictive	of	a	
child's improvement trajectory. This paper provides an alternative approach to ana‐
lysing cognitive training data that go beyond considering changes in individual tasks. 
This proof‐of‐principle demonstrates a potentially powerful way of distinguishing 
task‐specific from domain‐general changes following training and of establishing dif‐
ferent profiles of response to training.
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after	extended	practice	on	a	different	set	of	training	tasks.	Studies	
designed to test whether the training is effective typically compare 
these training effects against an active control condition and correct 
for	multiple	comparisons	across	assessments	 (Simons	et	al.,	2016).	
Thus far, evidence for improvements on tasks similar to those prac‐
tised is plentiful. In contrast, evidence for improvements on more 
distant	 tasks	 is	 limited	 (Gathercole,	 Dunning,	 Holmes,	 &	 Norris,	
2019;	Green	&	Bavelier,	2008;	Hertzog	et	al.,	2008;	Melby-Lervag,	
Redick, & Hulme, 2016; Melby‐Lervag & Hulme, 2016). Indeed, the 
transferability of training is substantially modulated by the degree 
of overlap between the training activities and the untrained assess‐
ment	tasks	(Gathercole	et	al.,	2019).

The role of individual differences in the size of training effects is 
receiving increasing attention from researchers. The longest‐stand‐
ing example of this is the aptitude by the treatment interaction (e.g., 
Cronbach,	 1957;	 Ferguson,	 1956;	 Snow,	 1989),	 or	 in	 other	words,	
how an individual's current cognitive ability interacts with their train‐
ing outcome. Two popular accounts have emerged, namely: the com‐
pensation account and the magnification account (Lövdén, Brehmer, 
Li, & Lindenberger, 2012). The compensation account suggests that 
those with higher baseline scores have less to gain, being closer to 
ceiling prior to training. This assumes that there is plateau in overall 
performance, with some subjects being closer to this before they 
start training. Conversely, the magnification account suggests that 
those with higher baseline scores will show greater improvements, 
because they have more cognitive resources available in order to 
maximize	 on	 the	 potential	 benefit	 of	 the	 training—for	 example	 to	
develop	strategies	(see	Karbach,	Könen,	&	Spengler,	2017,	for	a	re‐
cent overview). These extreme accounts are likely oversimplifica‐
tions	(Smoleń,	Jastrzebski,	Estrada,	&	Chuderski,	2018).	Noetheless,	
understanding prior factors that predict transfer effects may help 
explain the many inconsistencies concerning the effectiveness of 
cognitive training; it could also help tailor training towards those 
most responsive. Thus far, studies examining individual differences 
in training are relatively rare, but are steadily growing in number. The 
majority have explored the impact of known pre‐training individual 
differences,	such	as	age	(Borella	et	al.,	2014;	Schmiedek,	Lövdén,	&	
Lindenberger, 2010), baseline cognitive performance (Bürki, Ludwig, 
Chicherio,	&	Ribaupierre,	2014;	Guye,	Simoni,	&	Bastian,	2017;	Zinke	
et al., 2014) and cognition‐related beliefs (e.g., malleability of intel‐
ligence;	 Jaeggi,	 Buschkuehl,	 Shah,	&	 Jonides,	 2014).	 They	 provide	
evidence that some pre‐training individual differences may explain 
variability in training effects.

The majority of these studies has used univariate analytical 
techniques	(e.g.,	Jaeggi,	Buschkuehl,	Jonides,	&	Perrig,	2008;	Zinke	
et al., 2014). That is, taking single tasks and testing whether per‐
formance on them changes significantly following training, and 
whether this is moderated by a known individual difference factor. 
A	principal	 challenge	 to	 this	approach	 is	 task	 impurity—the	extent	
to	which	any	given	task	measures	an	 intended	construct—because	
this makes it difficult to identify what mechanism is being trained 
(Burgess,	2004;	Hasson,	Chen,	&	Honey,	2015;	Meyer	et	al.,	2001;	
Miyake	et	al.,	2000).	For	example,	both	N-back	and	complex	span	

tasks purportedly measure “WM capacity,” but training effects on 
these tasks do not consistently transfer to one another (Harrison et 
al.,	2013;	Li	et	al.,	2008).	Similarly,	both	letter	span	and	word	span	
tasks purportedly measure “verbal short‐term memory,” but training 
effects on letter span do not always transfer to word span (Ericcson, 
Chase,	&	Faloon,	1980).	In	short,	the	labels	assigned	to	tasks	do	not	
always correspond well to the underlying processes taxed by the 
assessment, or those enhanced via practice. Comparing individual 
tasks before and after training does not overcome this challenge, 
because changes on individual measures could stem from changes in 
multiple	different	underlying	processes	(Protzko,	2017).	As	a	result,	
a number of researchers are now beginning to explore the potential 
value of multivariate approaches to considering changes that occur 
following cognitive training.

One	 such	 approach	 is	 structural	 equation	 modelling	 (SEM),	
in which cognitive abilities are represented by latent constructs 
(Karbach	et	al.,	2017;	Schmiedek	et	al.,	2010).	Schmiedek	and	col‐
leagues conducted a large training study, in which they used Latent 
Score	Change	Modelling	(a	form	of	SEM)	and	found	transfer	effects	
to	be	detectable	at	a	latent	level.	As	they	note,	it	is	possible	to	ob‐
serve significant changes at the latent level despite non‐significant 
changes at a task‐specific level and vice versa. This is presumably 
because latent constructs may change substantially, but their con‐
tribution to any single task in the battery could be relatively small. 
Conversely, we might observe highly specific practice effects partic‐
ular to a given paradigm or stimulus set (e.g., letters or digits) that do 
not stem from changes to any broader underlying latent construct. 
This can also be a powerful tool for looking at individual differences 
because it accounts for measurement error in observed variables 
and thus provides a good way of establishing stable individual dif‐
ferences	 (Hamaker,	 Kuiper,	 &	 Grasman,	 2015).	 This	 has	 enabled	
some researchers to investigate individual differences by including 
separate predictors for the estimated change variable in their mod‐
els (e.g., Bürki et al., 2014; Guye et al., 2017; Karbach et al., 2017; 
Lövdén et al., 2012).

Although	promising,	 this	method	 is	not	without	 its	drawbacks.	
Confirmatory factor analysis approaches require researchers to 
make subjective choices (albeit based on theory) about the structure 

Research Highlights

• We used a multivariate approach to understand cog‐
nitive	 training	 mechanisms—unsupervised	 machine	
learning.

• Following training, task relationships change, implying 
that the cognitive processes drawn upon to perform 
these tasks have changed.

• The learning algorithm also learnt that there were differ‐
ential improvement trajectories among children and an 
independent measure of fluid intelligence is predictive 
of these trajectories.
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of underlying components from the many possible configurations 
at differing levels of granularity. Furthermore, establishing training 
effects is particularly challenging because the nature of the under‐
lying constructs, their interrelationships or their task loadings may 
have changed substantially as a function of training. Investigators 
are faced with a dilemma: they could fit the same model both before 
and after training, allowing for a meaningful comparison of model 
parameters but ignoring the fact that this model may no longer be 
the	most	 appropriate.	Alternatively,	 they	 could	 fit	 the	 best	model	
separately before and after training, which would allow for the best 
representation of the underlying components, but render direct 
comparisons less meaningful.

Machine learning provides an alternative to modelling task re‐
lationships.	 Unsupervised	 learning	 algorithms	 hold	 the	 same	 ad‐
vantage as other data‐driven methods such as principal component 
analysis	 (PCA)	 and	 exploratory	 factor	 analysis	 (EFA),	 in	 that	 they	
allow researchers to explore task relationships without requir‐
ing subjective judgements to be made about their nature a priori. 
Machine learning algorithms also lend themselves well to non‐lin‐
earities in multidimensional data, allowing them to capture more 
nuanced task relationships compared with commonly used linear 
methods	(general	linear	regression,	factor	analysis,	PCA	etc.).	Some	
algorithms cluster participants in a competitive manner, rather than 
clustering tasks at the whole‐group level (as would be the case for 
PCA	 or	 EFA).	 These	 may	 be	 particularly	 useful	 when	 we	 suspect	
there	could	be	large	individual	differences—in	the	context	of	train‐
ing,resulting in differing profiles of change following an interven‐
tion. Iterative clustering techniques can provide a data‐driven way 
of subgrouping participants and thereby reveal different profiles of 
performance. This has the potential to enable researchers to explore 
individual	differences	in	training	in	a	different	way—rather	than	test‐
ing whether gains in training are predicted by known factors (e.g., 
age, baseline ability); it might allow researchers to identify individual 
differences in the profile of the training response itself. Despite these 
potential benefits, we know of no attempts to use machine learn‐
ing to understand transfer effects following cognitive training. This 
paper aims to explore the utility of combining two relatively simple 
machine	 learning	techniques,	namely:	self-organizing	maps	 (SOMs)	
and K‐means clustering, to explore task relationships and how these 
might be altered by training in two large datasets.

First	proposed	by	Kohonen	 (1990),	 SOMs	belong	 to	a	 family	of	
artificial neural networks and provide a way of organizing multidi‐
mensional data into a lower dimensional space, represented as a topo‐
graphical	 distribution.	 An	 unsupervised	 learning	 algorithm	 projects	
the original data from a multidimensional input space onto a two‐di‐
mensional grid of nodes called a map. Each node corresponds to a 
node‐weight vector with the same dimensionality as the number of 
input variables, thereby producing an inter‐variable representational 
space, wherein the geometric distance between nodes corresponds 
to the degree of similarity in the input data associated with them 
(Kohonen, 2014). This enables key inter‐variable relationships existing 
in multidimensional space to be identified and accentuated. Moreover, 
this allows the researcher to explore the overlap in representational 

space between tasks and how, or whether, this changes as a result of 
the	training.	Once	established,	SOMs	can	be	used	to	generate	quan‐
titative predictions about training effects in unseen data, something 
currently underutilized in cognitive training research.

Subsequently,	 a	 K‐means clustering algorithm can be used to 
identify relatively homogenous subgroups (i.e., “clusters”) within the 
multidimensional	node-weight	vector	space	produced	by	the	SOM	
algorithm. This allows for the exploration of individual differences 
in task relationships and makes use of information that would oth‐
erwise be lost. Identifying data‐driven subgroups with distinct cog‐
nitive profiles could be a valuable way of understanding different 
trajectories in cognitive change. We wanted to establish a method 
for doing this.

2  | METHODS

This	section	contains	a	brief	description	of	the	SOM	algorithm	and	
its generic implementation, followed by a stepwise account of the 
analyses performed on two datasets containing the same set of 
tasks.

2.1 | SOM algorithm

SOMs	were	trained	using	the	neural	network	toolbox	 in	 (MATLAB	
and	Statistics	Toolbox	Release).	SOMs	consist	of	a	predefined	num‐
ber of nodes laid out on a two‐dimensional grid plane. Each node 
corresponds to a weight vector with the same dimensionality as the 
input data. We initialized the node‐weight vectors using linear com‐
binations of the first two principal components of the input data. 
SOMs	were	then	trained	using	a	batch	implementation	(see	Figure	1	
for a graphical overview), in which each node i is associated with a 
model mi and a “buffer memory.” One cycle of the batch algorithm 
can be broken down into the following: Each input vector, in this case 
a single child's performance profile across the four assessment tasks, 
x(t) is mapped onto the node with which it shares the least Euclidean 
distance at time t.	This	node	is	known	as	its	Best	Matching	Unit.	Each	
buffer sums the values of all input vectors x(t) in the neighbourhood 
set belonging to node i and divides this by the total number of these 
input	vectors	to	derive	a	mean	value.	All	mi are then updated con‐
currently according to these values. In this way, neighbouring nodes 
become more similar to one another. This cycle is repeated, clear‐
ing all the buffers on each cycle and distributing new copies of the 
input vectors into them. The neighbourhood size (ND) decreases as 
a function of t over n steps in an “ordering” phase, from the initial 
neighbourhood size (INS) down to 1 (Equation 1). In the “fine‐tuning” 
phase the neighbourhood size is fixed at <1, meaning that the node 
weights are updated according only to the input vectors for which 
they	are	the	Best	Matching	Unit.	This	node	adjustment	process	is	the	
mechanism	by	which	the	SOM	learns	about	the	input	data.

(1)
ND=1+
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(

INS
)

×

(

1−

(

t

n

))]
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2.2 | Cognitive assessments

Four span tasks from the automated working memory assess‐
ment	battery	 (AWMA;	Alloway,	2007)	were	used	 in	 the	 current	
analysis. In Forward Digit Recall, participants hear a sequence of 
numbers and are required to repeat them back out loud, in the 
same order in which they were presented; Backward Digit Recall, 
participants hear a sequence of numbers and are required to re‐
peat them back out loud, in the reverse of the presentation order. 
These tasks purport to measure verbal short‐term and WM re‐
spectively. Dot Matrix, participants see a sequence of dots in a 
3 × 3 matrix and are required to recall the order and position of 
the dots by pointing to a blank 3 × 3 response matrix; Mr.X, par‐
ticipants are present with sequences of two cartoon characters 
placed next to one another, both of which are holding a ball in 
one of their two outstretched arms, and the one on the right is 
rotated to varying degrees on each presentation. For each pair of 
Mr. X's participants are required to make a same‐different judge‐
ment with regard to whether they are holding the ball in the same 
hand, whilst retaining the spatial information as to where the ball 
held by the right‐hand Mr. X resides. They are then required to re‐
call the previously retained spatial locations in the correct order 
by pointing to one of the eight locations represented by dots in 

a circle. These tasks purport to measure visuospatial short‐term 
and	WM	 respectively.	 All	 tasks	 along	with	 the	 instructions	 are	
computerized and practice trials were completed on each to help 
ensure comprehension.

2.3 | Participants

We	used	three	relatively	large	datasets	in	this	analysis.	All	data‐
sets consisted of age‐standardized data (i.e., M = 100, SD	=	15)	
from	 the	 four	 AWMA	 tasks.	 In	 the	 following	 sections,	 we	 de‐
scribe the datasets we used, and summary scores are described 
in Table 1.

2.3.1 | Centre for Attention, Learning and Memory

The	 first	 dataset	 comprised	 of	 data	 collected	 from	 526	 partici‐
pants (M	=	9.16	years,	 range:	5.16–17.91	years,	SD = 2.16 years; 
171 girls) who had completed assessments as part of the Centre 
for	 Attention,	 Learning	 and	Memory	 (CALM)	 initiative.	 This	 is	 a	
study of children referred based on ongoing problems in attention, 
learning and memory. Children visit the MRC Cognition and Brain 
Sciences	Unit	and	undergo	a	wide	battery	of	cognitive	and	behav‐
ioural assessments, which includes the four tasks described above.

F I G U R E  1   Illustration	of	SOM	batch	training	steps	to	update	node	weights	using	given	dataset.	(a)	Each	input	vector	x(t) is mapped onto 
its	Best	Matching	Unit.	(b)	All	input	vectors	in	each	node	are	summed	and	used	to	update	its	Best	Matching	Unit	and	neighbourhood,	which	
shrinks	with	time.	(c)	When	training	completes,	SOM	has	preserved	the	topological	information	of	the	input	data.	Data	with	similar	inter-
variable	relationships	are	assigned	to	closer	Best	Matching	Units.	(d)	Visualization	of	individual	node	weights	(wn), namely the component 
planes,	when	input	vector	contains	four	variables.	Abbreviation:	SOM,	self-organizing	map
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2.3.2 | Attention and Cognition in Education

This sample was collected for a study investigating the neural, cog‐
nitive and environmental markers of risk and resilience in children. 
Ninety	typically	developing	children	who	attend	mainstream	schools	
in	the	UK	(M = 9.42	years,	range	=	6.91–12.58	years,	SD	=	1.49	years;	
45	girls)	and	their	 families	were	 invited	to	the	MRC	Cognition	and	
Brain	Sciences	Unit	in	Cambridge	for	a	comprehensive	cognitive	as‐
sessment, which included the four tasks described above.

In later analyses, we combined data from the two above‐men‐
tioned studies for better statistical power and larger individual vari‐
ability in task profiles, which is desirable for a “baseline” dataset.

2.3.3 | Combined training studies

This dataset comprised of pre‐training and post‐training data col‐
lected	from	179	participants	(M	=	9.00	years,	range	7.08–11.50	years,	
SD	=	1.06	years;	45	girls,	combined	over	several	independent	training	
studies (Dunning, Holmes, & Gathercole, 2013; Holmes, Gathercole, 
&	Dunning,	2009;	Holmes	et	al.,	2010;	Holmes	et	al.,	2015).	Inclusion	
criteria varied across studies, such as low WM score on standard 
tests	(Dunning	et	al.,	2013;	Holmes	et	al.,	2009),	low	language	abili‐
ties	(Holmes	et	al.,	2015)	or	Attention	Deficit	Hyperactivity	Disorder	
(ADHD)	diagnosis	(Holmes	et	al.,	2010).	All	children	participated	in	
the	standard	Cogmed	RM	program	 (see	Klingberg	et	al.,	2005,	 for	
a	detailed	description	of	 the	training	tasks),	which	 involved	20–25	
sessions of adaptive training on temporary storage and manipulation 
of sequential visuospatial or verbal information, or both. Detailed 
methods regarding training program have been reported previously. 
The	 same	 four	 AWMA	 tasks	 were	 administered	 before	 and	 after	

training as measures of WM transfer, leading to a total of eight vari‐
ables	for	this	dataset.	Participants	showed	significant	improvement	
on all four tasks in the post‐training assessment (p < 0.001) com‐
pared to their baseline assessments, most notably on Dot Matrix 
and	Backwards	Digit	Span	 (Cohen's	d:	Forward	Digit	=	0.395,	Dot	
Matrix = 1.103, Backward Digit = 1.017, Mr. X = 0.732). We also 
included summaries for a combined control group who were given 
a non‐adaptive version of the Cogmed training (M = 9.02	 years,	
range	=	7.50–10.50	years,	SD	=	0.72	years;	29	girls).	Corresponding	
analysis	 of	 variance	 (ANOVA)	 established	 significant	 treatment	by	
time interactions for Forward Digit, F(1,	69)	=	4.58,	p	<	0.05;	Dot	
Matrix, F(1,	69)	=	27.36,	p < 0.001; Backward Digit, F(1,	69)	=	9.62,	
p < 0.01; Mr. X, F(1,	69)	=	4.59,	p	<	0.05.	In	all	cases,	the	improve‐
ments were significantly greater for the training group than the con‐
trol group. Furthermore, simple main effect analysis showed that the 
performances of control group on all tasks were significantly better 
at post‐training than pre‐training (p < 0.001), except for Forward 
Digit (p = 0.48).

2.4 | Analysis pipeline

2.4.1 | Training SOMs

The	SOM	learning	algorithm	and	model	require	the	selection	of	sev‐
eral parameters, including the number of map nodes, initial neigh‐
bourhood size, the ordering phase length, and fine‐tuning phase 
length. These hold important theoretical, computational and sta‐
tistical implications. However, according to Kohonen (2014), there 
are no standard mathematical definitions to inform the selection 
of such parameters. Instead, Kohonen covers some key concepts 

TA B L E  1  Summary	statistics	of	task	performance	in	the	respective	datasets

Dataset  Forward Digit Dot Matrix
Backward Digit 
span Mr. X

CALM	(N = 526) M 91.93 91.55 90.80 97.45

SD 15.98 15.17 13.44 14.86

ACE	(N = 90) M 104.14 103.71 103.65 105.58

SD 13.38 14.97 14.77 15.60

CALM	+	ACE	(N = 616) M 93.86 93.46 92.81 98.64

SD 15.84 15.41 14.00 15.26

Pre-training Adaptive	(N = 179) M 93.95 90.78 85.58 89.73

SD 15.58 16.12 14.90 16.16

Non-adaptive	(N = 70) M 90.93 94.29 84.84 91.34

SD 16.27 16.93 13.04 15.88

Post-training Adaptive	(N = 179) M 100.54 110.56 101.01 102.53

SD 17.64 19.59 15.43 18.68

Non-adaptive	(N = 70) M 91.94 103.51 96.32 100.83

SD 18.01 18.89 17.23 20.91

Note: The	expected	mean	and	standard	deviation	of	the	normative	AWMA	data	is	100.00	and	15.00	respectively.
Abbreviations:	ACE,	Attention	and	Cognition	in	Education;	AWMA,	automated	working	memory	assessment;	CALM,	Centre	for	Attention,	Learning	
and Memory.
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and	provides	 suggestions	 based	on	 experience.	A	 detailed	 discus‐
sion of this topic is beyond the scope of this paper. However, for 
a more detailed explanation of our selection process and an over‐
view	of	the	results,	see	the	Supporting	Information	provided	on	this	
topic.	In	short,	we	selected	parameters	with	the	aim	that	the	SOM	
model would represent the training sample well, whilst still main‐
taining generalizability to the wider population. We trained the fol‐
lowing	three	SOMs:	(a)	a	SOM	trained	on	the	combined	CALM	and	
Attention	and	Cognition	in	Education	(ACE)	dataset	(CALM/ACE);	(b)	
a	SOM	trained	on	the	pre-training	dataset;	and	(c)	a	SOM	trained	on	
the	post-training	dataset.	The	relatively	large	sample	size	of	CALM/
ACE	 (616	participants)	provided	a	good	baseline	dataset	 for	 learn‐
ing about the overlap between the different tasks, and the possible 
cognitive profiles that exist. The smaller training datasets were used 
to investigate questions about training effects.

2.4.2 | Does the SOM model represent the samples 
well?

Cross-validation

The first step after fitting a model is to test its validity. We applied a 
cross-validation	procedure	to	test	the	null	hypothesis	that	the	SOM	
does	not	estimate	unseen	data	above	chance	levels.	Specifically,	this	
involved	 randomly	 removing	20%	of	 the	CALM/ACE	data	 (i.e.,	 ap‐
proximately 120 participants), then using the remaining 80% to fit a 
SOM,	which	was	used	to	predict	the	reserved	data.	The	prediction	
was	made	with	a	 technique	called	K-Nearest	Neighbours	 (Altman,	
1992),	in	which	the	value	of	the	to-be-predicted	variable	is	decided	
by	the	values	of	the	three	closest	SOM	nodes	in	terms	of	Euclidian	
distance with respect to the vector containing the other‐unseen var‐
iables. For example, if Forward Digit is the target variable, a subject's 
scores on the other three tasks will be fed to the algorithm to find 
the	three	nearest	SOM	nodes.	Then	the	values	of	the	three	nodes	
on Forward Digit are pooled and weighted based on distance (the 
closest node has the highest weight) to calculate the participant's 
predicted score. The mean absolute difference between the pre‐
dicted scores and true scores of the unseen sample was used as the 
measure of prediction error.

To better evaluate the average model performance, we repeated 
the cross‐validation process 1,000 times to derive distributions of 
the mean prediction errors. The distributions for chance level were 
achieved by randomly shuffling the order of the predicted scores, 
then subtracting the true scores to obtain a null mean absolute dif‐
ference. For each iteration of the 1,000 cross‐validations, we also 
repeated the shuffling 100 times to create a null distribution con‐
taining 100,000 values of prediction errors. Finally, the mean pre‐
diction errors for all variables were compared to the corresponding 
null distributions to compute p‐values by calculating the proportion 
of the null distribution greater than the mean prediction error.

Assessing generalizability across samples

We were also interested in whether the representativeness of 
the	SOM	extended	to	other	samples.	To	test	this,	we	used	a	SOM	

trained	on	the	entire	CALM/ACE	dataset	to	predict	task	scores	in	the	
pre-	and	post-training	datasets	respectively.	The	CALM/ACE	sample	
is much larger in size and included a wide range of ability levels. This 
means that a model based on these data is more likely to generalize 
well with other datasets. We generated the chance level distribu‐
tions for pre‐ and post‐training samples similar to the last step by 
shuffling	the	order	of	predicted	scores	100,000	times.	Again,	true	
prediction errors were compared to derive p‐values.

An	alternative	way	to	address	this	question	is	to	compare	predic‐
tion	errors	for	the	CALM/ACE	sample	and	the	pre-	and	post-train‐
ing	samples	respectively.	If	the	SOM	model	represents	the	training	
study	data	as	well	as	it	does	the	CALM/ACE	sample,	then	prediction	
errors should not differ from each other. For this purpose, we again 
repeated the same cross‐validation procedures 1,000 times but ran‐
domly	removed	179	participants	from	the	CALM/ACE	sample	each	
time to keep the number consistent with the size of the pre‐ and 
post-training	data.	The	remaining	CALM/ACE	data	points	were	used	
to	train	a	SOM	and	make	predictions	for	the	removed	CALM/ACE	
participants, as well as the pre‐ and post‐training samples respec‐
tively.	A	permutation	test	followed	to	test	for	significance	of	the	dif‐
ference	 in	 prediction	 errors	 between	CALM/ACE	and	 the	 training	
data	(i.e.,	CALM/ACE	vs.	pre;	CALM/ACE	vs.	post).	We	also	used	per‐
mutation tests to compare the prediction errors of the pre‐training 
and post‐training data respective to one another.

2.4.3 | Does training alter the relationships between 
tasks?

Here we ask this question in two ways. Each model node is an in‐
stance of a multivariate task relationship that exists in the data used 
to	 train	 the	 SOM.	 If	 these	 SOM	maps	 have	 less	 predictive	 power	
when used to estimate new data points this means that different 
multivariate task relationships exist in that dataset, which are not 
well accounted for by the model. This is the first way of testing 
whether the training has changed task relationships.

Secondly,	we	also	addressed	this	question	by	comparing	the	SOMs	
trained on the pre‐ and post‐training datasets directly. If two tasks tap 
into similar cognitive processes, their model representations should 
overlap; if training alters task relationships, then the model represen‐
tations	of	tasks	in	the	SOM	fit	to	pre-training	data	should	be	substan‐
tively	different	to	those	in	the	SOM	fit	to	post-training	data.

To	access	 task	similarities	as	 represented	by	SOM,	elements	of	
SOM	node-weight	vectors	can	be	extracted	individually	(e.g.,	the	first	
element of all node vectors) to form a “component plane.” Each plane 
corresponds to a representation of a task. The pairwise correlation 
coefficients between component planes can be derived and serve as 
multivariate activity patterns, which is useful for quantitative analy‐
sis. If two tasks tap into similar cognitive processes, their activity pat‐
terns ought to overlap (e.g., Figure 2 the Forward Digit and Backward 
Digit which both involve auditory information, share more topological 
similarity). By extracting the correlations between the same pair of 
tasks before and after training, we could then make a direct compari‐
son of how their relationships had changed as a result of the training. 
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To compute the relationship, component planes associated with each 
pair	of	tasks	were	compared	using	Pearson's	correlation	coefficient.	
Then, the similarity values are assembled into a 4 × 4 matrix.

Once the similarity matrices for pre‐ and post‐training were com‐
puted, we compared the same pairs of tasks between times of pre‐ 
and post‐training to identify any significant differences in correlation 
coefficients. We chose to bootstrap the node‐weight elements asso‐
ciated with the two tasks and computed the correlation coefficients 
before subtracting one from another (post‐training pairwise correla‐
tion—pre-training	pairwise	correlation).	By	repeating	this	procedure	
10,000 times, we obtained a distribution of the difference between 
correlations.	If	zero	falls	within	the	bottom	or	top	5%	of	the	distri‐
bution, we reject the null hypothesis that the two correlation coef‐
ficients are not different, with a false‐positive rate of α	=	0.05.	We	
conducted this analysis for all pairs of tasks.

2.4.4 | Are there subgroups with different 
profiles of change following training?

K‐means clustering provides a data‐driven method for identifying k 
relatively	homogenous	subgroups	within	the	SOM	node-weight	vec‐
tor space by minimizing the distance between data points and the 
centroids	of	 each	 cluster	 (MacQueen,	1967).	Although	 there	 is	no	
clear theoretical rationale for the choice of number of clusters, in 

the	Supporting	Information	we	included	multiple	cluster	solutions	to	
demonstrate the resulting differences from various choices of k, and 
included	a	Silhouette	Analysis	of	the	different	clustering	solutions	as	
a measure of the clustering quality.

We	first	 identified	 subgroups	within	 the	SOM	fit	 to	 the	CALM/
ACE	data,	by	applying	K‐means clustering to the node weights. Once 
nodes were grouped based on similarity, participants were allocated 
to	the	cluster	to	which	their	Best	Matching	Unit	belongs	to.	This	pro‐
vided us with clusters of children based on nodes they were assigned 
to in the original mapping. This process was repeated 1,000 times, 
with the map retrained on every iteration; and the K‐means cluster‐
ing	 recalculated	 to	check	 that	 the	clusters	were	 robust.	Participants	
in the training datasets were also allocated to these identified clusters 
in the same manner (i.e., based on closest Euclidean distance) at both 
pre-	and	post-training,	separately.	Profiles	of	subgroups	were	charac‐
terized by calculating their respective means and standard errors on 
each of the tasks and compared between groups to identify the ways 
in which they differ. In the case of the cognitive training datasets, we 
also contrasted children who changed subgroup following the training. 
We did this by calculating gain scores (post‐ minus pre‐training) on 
each task as a way of testing how different gain scores are associated 
with changes in subgroup membership.

Finally, we tested whether these clusters were predicted by another 
measure	that	was	not	included	in	the	SOM	training	or	clustering,	namely	

F I G U R E  2  Overview	of	SOM	model	trained	on	CALM/ACE	sample.	(a)	Visualization	of	node	weights	of	the	SOM	(component	planes)	
separated	by	each	task.	(b)	Number	of	participants	allocated	to	each	node.	Abbreviations:	CALM/ACE,	Centre	for	Attention,	Learning	and	
Memory/Attention	and	Cognition	in	Education;	SOM,	self-organizing	map
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matrix reasoning scores. Importantly this is neither a baseline outcome 
assessment	 nor	 in	 the	 training	 regime.	 Scores	 on	 a	matrix	 reasoning	
task	 taken	 from	Wechsler's	 Abbreviated	 Scale	 of	 Intelligence	 (WASI;	
Wechsler,	Scales,	&	Index,	2012)	were	available	for	158	participants	in	
the training sample. Matrix reasoning is considered a measure of gen‐
eral fluid intelligence (Gf), which refers to the ability to reason and solve 
novel problems. Gf is a critical factor for success in a wide variety of 
cognitive tasks and the capacity to learn in general (Gray & Thompson, 
2004).	We	explored	whether	performance	on	the	WASI	matrix	reason‐
ing task assessed prior to training was predictive of change of subgroup 
membership.

2.4.5 | Summary

The	above	pipeline	describes	our	stepwise	analyses.	(a)	SOMs	were	
used to model task relationships. We cross‐validated the model 
trained	on	the	 large	CALM/ACE	sample	and	tested	 its	representa‐
tiveness	with	 the	pre-	 and	post-training	 samples.	 (b)	 SOM	models	
representing pre‐ and post‐training samples were compared directly 
by	 training	 new	SOMs	with	 the	 two	 samples	 and	 then	 comparing	
them through a representational dissimilarity analysis that examined 
how task relationships changed following training. (c) K‐means clus‐
tering was used to identify relatively homogeneous cognitive pro‐
files	 in	 the	CALM/ACE	sample	as	represented	by	the	SOM	model.	
(d)	Participants	 in	 the	 training	dataset	were	 subsequently	mapped	
to these subgroups to investigate the changes in these profiles as 
a function of training. (e) We tested whether fluid intelligence pre‐
dicted the change in profiles following training.

3  | RESULTS

A	64-node	(8	×	8)	SOM	with	an	 initial	neighbourhood	size	of	2	was	
trained over 10 ordering phase steps and two fine‐tuning phase steps 

using	 the	CALM/ACE	data	 (Quantization	error	=	9.72);	 quantization	
error is defined as the mean absolute distance between the input 
vectors (i.e., training data) and their corresponding Best Matching 
Units.	The	rationale	behind	the	selection	of	these	parameters,	along‐
side different solutions with different parameters, is included in the 
Supporting	Information.	Figure	2	shows	how	the	SOM	represents	the	
four tasks as well as the number of participants allocated to each node.

3.1 | Does the SOM model represent the samples well?

We	first	cross-validated	the	model	performance	of	SOM	trained	on	
the	CALM/ACE	data	using	permutation	testing.	The	SOMs	proved	
capable	 of	 predicting	 unseen	CALM/ACE	 data	 significantly	 better	
than chance for all four task variables (Table 2).

Next,	a	SOM	trained	on	the	entire	CALM/ACE	sample	was	then	
used to test how well it represents the pre‐ and post‐training data‐
sets, again using the same method. The model predicted unseen 
data from other samples better than chance on all tasks.

We	also	directly	compared	the	CALM/ACE	prediction	errors	with	
the	 pre-	 and	 post-training	 data	 (Table	 3).	 Predicting	 the	 remaining	
CALM/ACE	 sample	was	 more	 accurate	 than	 predicting	 the	 pre-	 or	
post-training	samples.	A	direct	comparison	of	the	pre-	and	post-train‐
ing prediction accuracies revealed comparable prediction accuracies 
on all tasks except on the Dot Matrix task, wherein the prediction ac‐
curacy dropped significantly for the post‐training sample.

3.2 | Does training alter the relationships between tasks?

New	SOMs	trained	on	pre-	and	post-training	data	respectively	were	
compared to examine changes in task relationships as a function 
of	 training.	 Pairwise	 correlation	 coefficients	were	 computed	 from	
the	 SOMs	 component	 planes	 representing	 tasks	 and	 assembled	
into similarity matrices. Figure 3a,b depict the pre‐ and post‐train‐
ing matrices. We conducted pairwise comparisons before and after 

TA B L E  2  SOM	prediction	errors	for	CALM/ACE	sample,	pre-	and	post-training	sample	respectively

  Forward Digit Dot Matrix Backward Digit Mr. X

CALM/ACE Prediction	error	(standard	
score)

11.68 11.57 9.41 11.91

p <0.001*** <0.001*** <0.001*** <0.01**

Pre-training Prediction	error	(standard	
score)

13.41 12.24 11.83 14.13

p <0.001*** <0.001*** <0.001*** <0.001***

Post-training Prediction	error	(standard	
score)

14.25 17.67 12.12 14.71

p <0.001*** <0.001*** <0.001*** <0.001***

Note: Prediction	error	was	defined	as	mean	absolute	difference	between	the	predicted	scores	and	true	scores.	p‐values were derived from comparing 
the prediction errors against the corresponding chance level distributions. The chance levels were achieved by randomly shuffling the order of the 
predicted scores, then subtracting the true scores for 100 times within each cross‐validation literation, to obtain a null distributions of mean absolute 
difference.
Abbreviations:	ACE,	Attention	and	Cognition	in	Education;	CALM,	Centre	for	Attention,	Learning	and	Memory;	SOM,	self-organizing	map.
**p < 0.01. 
***p < 0.001. 
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the training to understand whether there are specific alterations be‐
tween	any	of	the	task	relationships.	Permutation	testing	indicated	a	
significant difference in the Backward Digit‐MR.X pair (p < 0.01) and 
in the Forward Digit‐Backward Digit pair (p <	0.05).	In	other	words,	
the	 way	 tasks	 are	 represented	 in	 the	 SOM	 weights	 changes	 fol‐
lowing training, with some becoming more similar and others more 
dissimilar	(we	refer	the	readers	to	Figure	S10	and	the	section	titled	
“Comparison	with	the	control	group”	in	the	Supporting	Information	
for the same analysis in the control data).

3.3 | Are there subgroups with different profiles of 
change following training?

We applied K‐means clustering to the node‐weight vector space 
pertaining	 to	 the	 SOM	 trained	 on	 the	 CALM/ACE	 data	 using	 a	
K	=	4	(see	the	Supporting	Information	for	robustness	of	clustering	

quality across different Ks).	 The	 resulting	partition	of	 the	SOMs	
nodes	can	be	seen	in	Figure	4a.	Participants	were	allocated	to	the	
cluster	 to	which	 their	Best	Matching	Units	belonged.	Profiles	of	
subgroups were characterized by calculating the respective means 
and	 standard	 errors	 on	 all	 four	 tasks	 in	 the	 CALM/ACE	 sample	
(Figure 4c).

Between-group	ANOVAs	were	conducted	for	each	task	and	all	
indicated significant differences (Forward Digit: F(3, 612) = 233.17; 
Dot Matrix: F(3, 612) = 244.03; Backward Digit: F(3,612)	=	175.59;	
Mr. X: F(3,	612)	=	179.41;	all	p < 0.001). Results from the post‐hoc 
Tukey's	HSD	tests	showed	that	all	subgroups	differed	significantly	
from	one	another	at	the	0.05	level	except	for	Groups	2	and	3	on	Dot	
Matrix and Groups 3 and 4 on Forward Digit and Backward Digit. 
The algorithm identified a subgroup of participants who achieved 
a high level of performance on all tasks, a subgroup whose scores 
were at the lower end of the distribution and two subgroups who 

TA B L E  3  Direct	comparisons	between	SOM	prediction	errors	between	unseen	CALM/ACE	and	pre-training	sample	(CALM/ACE	vs.	pre-
training),	as	well	as	between	CALM/ACE	and	post-training	(CALM/ACE	vs.	post-training),	and	between	the	pre-training	and	post-training	(pre	
vs. post‐training)

  Forward Digit Dot Matrix Backward Digit Mr. X

CALM/ACE	versus	pre-training Prediction	error	
difference

1.73 0.66 2.42 2.21

p <0.001*** 0.177 <0.001*** <0.001***

CALM/ACE	versus	
post‐training

Prediction	error	
difference

2.57 6.09 2.70 2.80

p <0.001*** <0.001*** <0.001*** <0.001***

Pre-	versus	post-training Prediction	error	
difference

0.83 5.43 0.28 0.59

p 0.201 <0.001*** 0.373 0.296

Note: p‐values were derived from permutation tests.
Abbreviations:	ACE,	Attention	and	Cognition	in	Education;	AWMA,	automated	working	memory	assessment;	CALM,	Centre	for	Attention,	Learning	
and Memory.
***p < 0.001. 

F I G U R E  3  Pairwise	task	relationships	derived	from	SOM	weights	before	and	after	training	and	the	difference	over	time.	Larger	value	
indicates more similarity between the two tasks. (a) Task relationships for pre‐training sample. (b) Task relationships for post‐training sample. 
(c)	Difference	in	similarity	between	pre-	and	post-training	(post–pre).	The	Backward	Digit-	Mr.	X	pair	showed	significant	change	after	training	
(p < 0.01), as did the Forward Digit‐Backward Digit pair (p <	0.05).	Abbreviation:	SOM,	self-organizing	map
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were in the middle. One of these middle subgroups tended to have 
average performance on all tasks, whereas the other tended to have 
average or slightly above average performance on the visual spatial 
tasks but below average performance on the verbal tasks.

Participants	 in	 the	pre-	 and	post-training	 sample	were	 also	 al‐
located to one of the four identified subgroups (Figure 4d,e). The 
profiles of the training study participants in each subgroup were 

similar	 to	 those	 of	 the	 CALM/ACE	 sample,	 highlighting	 the	 abil‐
ity of K‐means clustering to determine relatively homogenous 
groups	 (see	 Supporting	 Information).	 Specifically,	 ANOVAs	 indi‐
cated significant group differences across all measure for pre‐ and 
post‐training (pre‐training: Forward Digit: F(3,	 175)	 =	 28.58;	 Dot	
Matrix: F(3,	175)	=	69.84;	Backward	Digit:	F(3,	175)	=	40.76;	Mr.	X:	
F(3,	 175)	 =	 55.67;	 all	p < 0.001; post‐training: Forward Digit: F(3, 

F I G U R E  4   Results of K-means	clustering	and	comparison	of	subgroup	profiles.	(a)	SOM	nodes	were	partitioned	into	four	clusters.	(c–e)	
Comparison	of	task	scores	among	the	subgroups	in	the	CALM/ACE,	the	pre-training	and	the	post-training	sample	respectively.	Error	bar	
indicates	95%	confidence	interval.	(f)	Comparison	of	improvement	profiles	of	the	interest	groups:	participant	who	moved	to	the	highest-
performing group (Cluster 1) after training, those who moved to the medium group with verbal‐specific gains (Cluster 2), those who moved 
to the medium group with visuospatial‐specific gains (Cluster 3), and those who stayed in the low‐performing group (Cluster 4). For clarity, 
the first three interest groups only included participants who moved to the respective group from the outside, not those that were already 
there	at	pre-training,	and	vice	versa	for	the	fourth	interest	group.	(b)	WASI	matrix	reasoning	score	of	the	three	interest	groups.	*p <	0.05.	
Abbreviations:	CALM/ACE,	Centre	for	Attention,	Learning	and	Memory/Attention	and	Cognition	in	Education;	SOM,	self-organizing	map;	
WASI,	Wechsler's	Abbreviated	Scale	of	Intelligence
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175)	 =	 50.31;	Dot	Matrix:	F(3,	 175)	 =	 58.08;	Backward	Digit:	F(3, 
175)	=	33.63;	Mr.	X:	F(3,175)	=	55.18;	all	p	<	0.001).	Post-hoc	Tukey's	
HSD	tests	revealed	all	pairwise	groups	were	significantly	different	at	
the	0.05	level	except	for	Groups	2	and	3	on	Dot	Matrix	and	Groups	
3	and	4	on	Forward	Digit	in	the	Pre-training	dataset;	difference	be‐
tween Groups 1 and 2 on Forward Digit was marginally non‐signif‐
icant (p = 0.06). For the post‐training, all subgroups were different 
from one another.

We also contrasted children who moved to a different subgroup 
following training and calculated their gain scores (post‐training 
minus pre‐training scores) to capture individual differences in train‐
ing‐related improvement. Four interest groups were identified (sep‐
arate from but related to the original four clusters), namely: children 
who moved to the highest performance group (mover to Cluster 1), 
children who moved to Group 2, children who moved to Group 3 
and children who stayed in the lowest performance group (stayer in 
Cluster 4). For clarity, the first three interest groups only included par‐
ticipants who moved to the respective group from the outside, not 
those that were already there at pre‐training, and vice versa for the 
fourth interest group. The gain scores of these groups are shown in 
Figure 4f. These groups were significantly different from each other 
according	to	ANOVA	(Forward	Digit:	F(3,	122)	=	4.94;	Dot	Matrix:	F(3, 
122) = 7.14; Backward Digit: F(3, 122) = 6.34; Mr. X: F(3,	122)	=	8.57;	
all p < 0.001) and post‐hoc tests (see Table 4 for multiple pairwise 
comparison results). Overall, movers to 1 had the highest improve‐
ment across all measures compared to the other groups. Movers to 

2 were characterized by moderate gains globally but benefited less 
on Dot Matrix and Mr.X relative to children moved to Cluster 1. The 
third group, children moved to Cluster 3 had comparable magnitude 
of gains on Dot Matrix and Mr.X to movers to 1, but significantly less 
gains on Forward and Backward Digit tasks than movers to 1 or 3. 
Unsurprisingly,	children	who	stayed	in	the	lowest	performance	group	
(Cluster 4) had overall limited benefit from the training.

To investigate whether performance on a measure of fluid intelli‐
gence	(WASI	matric	reasoning)	could	predict	individual	differences	in	
patterns	of	improvement,	we	compared	the	four	interest	groups’	WASI	
scores	assessed	prior	to	training	(see	Figure	4b).	ANOVA	indicated	sig‐
nificant	WASI	score	difference	among	the	groups	(F(3, 122) = 28.83, 
p	<	0.001).	Post-hoc	tests	showed	that	movers	to	Cluster	1	had	higher	
WASI	 scores	 (M = 108.72, SD	 =	 17.39)	 than	 movers	 to	 Cluster	 2	
(M = 88.46, SD = 8.70, p < 0.001), movers to Cluster 3 (M	=	92.31,	
SD	=	7.94,	p < 0.001), and stayers in Cluster 4 (M = 81.76, SD = 8.72, 
p <	0.001).	Movers	 to	 3	 also	 had	 higher	WASI	 scores	 compared	 to	
stayers in 4 (p	<	0.05).

4  | DISCUSSION

Our understanding of cognitive training has hitherto focused on explor‐
ing its impact on single tasks (though with some notable exceptions, 
e.g.,	Guye	et	al.,	2017;	Karbach	et	al.,	2017;	Schmiedek	et	al.,	2010)	
and treating all participants as a single homogenous group (e.g., Borella 

 Movers to C1 Movers to C2 Movers to C3 Stayers in C4

Forward Digit

Movers to C1 NA p = 0.88 p = 0.36 p	<	0.05*

Movers to C2  NA p	=	0.09 p < 0.01**

Movers to C3   NA p = 0.63

Stayers	in	C4    NA

Dot Matrix

Movers to C1 NA p = 0.08 p	=	0.90 p < 0.001***

Movers to C2  NA p = 0.18 p = 0.06

Movers to C3   NA p < 0.01**

Stayers	in	C4    NA

Backward Digit

Movers to C1 NA p = 0.71 p < 0.01** p < 0.01**

Movers to C2  NA p	<	0.05* p = 0.06

Movers to C3   NA p	=	0.9

Stayers	in	C4    NA

Mr. X

Movers to C1 NA p < 0.01** p	=	90 p < 0.001***

Movers to C2  NA p	=	0.05 p = 0.30

Movers to C3   NA p < 0.01**

Stayers	in	C4    NA

*p	<	0.05.	
**p < 0.01. 
***p < 0.001. 

TA B L E  4   Results of multiple 
comparison between different 
improvement profiles
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et	al.,	2014;	Bürki	et	al.,	2014;	Guye	et	al.,	2017;	Zinke	et	al.,	2014).	In	
the present study, we used machine learning to show that WM training 
alters the relationships between tasks, implying that the cognitive pro‐
cesses recruited for performing those tasks can change following train‐
ing. Furthermore, we identified subgroups with differential responses 
to training which were predicted by fluid intelligence scores.

4.1 | SOMs accurately represent task relationships

A	SOM	was	fit	to	a	large	dataset	of	children	who	were	assessed	on	
standardized measures of verbal and visuospatial short‐term and 
WM.	 Using	 leave-N-out	 cross-validation,	 we	 showed	 that	 SOMs	
fitted on these data predicted performance on unseen data for all 
tasks. These predictions generalized to the cognitive training sam‐
ples; importantly, however, the model fit and prediction accuracy 
was reduced significantly following training for the Dot Matrix, the 
implication of which is discussed subsequently.

4.2 | Task relationships change following training

Multiple studies have shown that performance on individual tasks 
improves following training (for reviews, see Hertzog et al., 2008; 
Melby‐Lervag et al., 2016; von Bastian & Oberauer, 2014). But this 
does not provide any insight into whether or how underlying con‐
structs are being changed, or whether different cognitive processes 
are recruited following the intervention. One way of investigating 
this is to test whether relationships between tasks change as a func‐
tion of training. Following training, we identified a large decrease in 
prediction accuracy for the Dot Matrix task mirroring substantial im‐
provements in task performance. Lower prediction accuracy following 
training also suggests that the relationships between Dot Matrix and 
the other tasks may have been altered. In other words, new task rela‐
tionships (i.e., multivariate data points) exist in the post‐training data 
that were not learnt or represented in a large sample of children who 
did not complete cognitive training. In this case, the training program 
contains many exercises similar to the Dot Matrix task (i.e., visuospa‐
tial	serial	recall,	Klingberg	et	al.,	2005),	and	thus	subjects	may	show	a	
more task‐specific effect rather than a domain‐general improvement. 
This is in line with demonstrations of maximal transfer to assessment 
tasks	most	similar	to	those	trained	(Gathercole	et	al.,	2019),	with	high‐
est levels of transfer for tasks with the greatest numbers of shared task 
features	(Soveri,	Antfolk,	Karlsson,	Salo,	&	Laine,	2017).	If	the	bulk	of	
improvements had been domain general, then we would expect simi‐
lar‐sized improvements on other tasks measuring visuospatial WM 
(i.e., Mr X), but these improvements were relatively small. Moreover, 
this is further exaggerated when we look at the size of improvements 
relative to those in the control group, indicative of practice effects. 
These changing task relationships underscore the fact that the cogni‐
tive processes we recruit for individual tasks are not static but can 
change as a function of experience.

Most task relationships remained stable across training, but the 
correlations between MR.X‐Backward Digit and Forward Digit‐
Backward Digit changed significantly. The MR.X‐Backward Digit pair 

substantially decreased in correlation following training, whereas 
there as a moderate increase for the Forward Digit‐Backward Digit 
pair.	 Again,	 this	 shows	 that	 relationships	 between	 tasks,	 as	 repre‐
sented	by	the	SOM,	are	subject	to	change	following	training.	One	pos‐
sibility	is	that	as	subjects	practice	the	Backwards	Digit	task—a	version	
of	which	exists	in	the	training	battery—they	gradually	start	to	recruit	
similar cognitive processes or strategies that they previously used for 
the	Forward	Digit	task,	like	chunking.	The	end	result	is	that	the	SOM	
represents these tasks more similarly following training. By contrast, 
the task is now represented more differently to the other complex 
span task in the assessment battery, Mr X. In short, even though both 
Backwards Digit and Mr X are described as WM tasks, and both im‐
prove overall following training, the changing way that they are rep‐
resented	by	the	SOM	indicates	that	different	cognitive	processes	or	
strategies are recruited for them following training. Importantly this 
would not be captured by a conventional approach to testing for 
transfer.

4.3 | Subgroups with different training profiles

There is an increasing interest in individual differences in cognitive 
training effects. The approach typically taken is to explore the impact 
of	known	factors,	like	age	(Borella	et	al.,	2014;	Schmiedek	et	al.,	2010),	
baseline	ability	(Bürki	et	al.,	2014;	Guye	et	al.,	2017;	Zinke	et	al.,	2014)	
or cognition‐related beliefs (e.g., malleability of intelligence; Jaeggi et 
al., 2014), on training‐related gains. Here we explored individual dif‐
ferences in a different way, by identifying subgroups in the training 
profiles themselves. Clustering identified four groups that differed 
in their performance across tasks (High, Medium [visuospatial and 
verbal profiles], and Low). Changes in group membership after train‐
ing were associated with the magnitude, and patterns of, gain scores. 
This suggests there are differential improvement trajectories among 
children, which would be lost in conventional group‐level compari‐
sons. These improvement profiles were meaningfully associated with 
fluid intelligence: those who made the largest improvements across 
all measures (movers to the highest performing group) had signifi‐
cantly higher fluid reasoning skills compared with those who stayed 
in one of the low‐performing groups. General intelligence is thought 
as the ability to reason and solve novel problems (Duncan & Owen, 
2000), or an index for flexible cognitive resources believed to play a 
critical role in the process of decomposing the unfamiliar tasks into 
their component parts (Duncan, Chylinski, Mitchell, & Bhandari, 
2017). This may indicate that the ability to abstract and generalize 
newly learned routines to unpractised tasks is one of the deciding 
factors	of	transfer	effects	(Gathercole	et	al.,	2019).

The positive association between fluid intelligence and improvement 
profile is reminiscent of some previous studies that have shown age‐re‐
lated and ability‐related magnification effects in the context of cogni‐
tive training (e.g., Bürki et al., 2014; Guye et al., 2017). Magnification 
effects are more typically observed in the context of strategy‐based 
training	than	process-based	training	(e.g.,	Karbach	&	Verhaeghen,	2014;	
Karbach et al., 2017), possibly indicating that the training interven‐
tion in this study facilitated strategy acquisition (Guye & von Bastian, 
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2017). Indeed, it has been shown that training‐related improvements 
in WM may be mediated by implicit development of task‐specific strat‐
egies such as grouping of sequential information for recall (Dunning & 
Holmes,	2014;	Minear	et	al.,	2016).	Gathercole	et	al.	(2019)	argue	that	
these kinds of effects are evidence that training‐related gains rely on the 
construction and refinement of new cognitive routines and strategies. 
Individuals with higher levels of cognitive performance at baseline may 
have more capacity to acquire and perform strategies that enhance the 
training	effect	(Lövdén	et	al.,	2012).	Our	findings	would	support	this.	An	
interesting line of enquiry would be to investigate whether children with 
relatively low intelligence scores could benefit from explicit instructions 
to help aid strategy generation while training.

4.4 | General discussion

We show that task relationships change following training (accord‐
ing to two separate measures), thereby indicating that the under‐
lying mechanisms tapped by training might be task‐specific rather 
than domain‐general, and subject to change over time. We have also 
demonstrated that task performance trajectories are subject to in‐
dividual differences under this paradigm. This highlights the need 
to reconsider the interpretation of training‐related gains. Children 
could improve significantly on a particular task via learning specific 
strategies whilst having moderate or no gains on other tasks claimed 
to measure the same construct (Moreau, Kirk, & Waldie, 2016).

To remedy this, previous studies investigating the training‐induced 
improvement on the ability level used latent factor analysis, which is 
necessarily constrained by how the observed variables load onto the 
latent factors before and after the training for the sake of model com‐
parability and interpretability (Bürki et al., 2014; Guye et al., 2017; 
Karbach	 et	 al.,	 2017;	 Lövdén	 et	 al.,	 2012;	 Schmiedek	 et	 al.,	 2010).	
However, this assumption is challenged by the current findings, which 
imply that training does not only enhance the performance, but also 
alters	the	task	structures.	In	the	Supporting	Information,	we	show	that	
this is indeed the case in the context of the current dataset, by fitting 
linear models to the data. The difference in best fitting model before 
and after training could either be due to the enhancement of task‐spe‐
cific processes or an increase in individual variance across tasks, or 
both. Either way, it suggests that the best latent variable model before 
and after the training may not necessarily be the same. Fitting differ‐
ent models pre‐ and post‐training would limit the meaningfulness of 
comparisons across time points (Dimitrov, 2006). Conversely, impos‐
ing parameter invariance when the real data suggest otherwise could 
lead to a large estimation bias of the model, which cannot be reliably 
indicated	by	fit	statistics	(Clark,	Nuttall,	&	Bowles,	2018).	If	such	cases	
arise,	the	SOM	approach	taken	here	is	a	potentially	more	flexible	alter‐
native that does not rely on as many assumptions, while still allowing 
for meaningful comparisons over time.

Importantly, our findings may be specific to the set of training 
and assessment tasks we had available. Moreover, our dataset was a 
composite of many individual studies, with independent recruitment 
criteria.	Nonetheless,	our	primary	aim	was	to	demonstrate	a	proof	
of principle, with potential benefits for those exploring multivariate 

profiles of change. The next step is for this to be tested in well‐pow‐
ered training studies with a broader set of assessments.

5  | CONCLUSION

SOM	models	provide	an	effective	alternative	for	the	representation	
and prediction of multivariate data typically found in training stud‐
ies.	Applying	SOMs	 to	 the	current	 training	data	 revealed	nuanced	
task relationships that are subject to change following WM training, 
suggesting that the underlying cognitive mechanisms of improve‐
ment may be at least partially task‐specific rather than domain‐gen‐
eral. The use of K‐means clustering revealed distinct subgroups with 
differentiable improvement trajectories. These improvement trajec‐
tories were related to pre‐training fluid intelligence.
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