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Purpose: Accurate discrimination of benign and pathogenic rare
variation remains a priority for clinical genome interpretation.
State-of-the-art machine learning variant prioritization tools are
imprecise and ignore important parameters defining gene–disease
relationships, e.g., distinct consequences of gain-of-function versus
loss-of-function variants. We hypothesized that incorporating
disease-specific information would improve tool performance.

Methods: We developed a disease-specific variant classifier,
CardioBoost, that estimates the probability of pathogenicity for
rare missense variants in inherited cardiomyopathies and arrhyth-
mias. We assessed CardioBoost’s ability to discriminate known
pathogenic from benign variants, prioritize disease-associated
variants, and stratify patient outcomes.

Results: CardioBoost has high global discrimination accuracy
(precision recall area under the curve [AUC] 0.91 for cardiomyo-
pathies; 0.96 for arrhythmias), outperforming existing tools (4–24%
improvement). CardioBoost obtains excellent accuracy (cardio-
myopathies 90.2%; arrhythmias 91.9%) for variants classified with

>90% confidence, and increases the proportion of variants
classified with high confidence more than twofold compared with
existing tools. Variants classified as disease-causing are associated
with both disease status and clinical severity, including a 21%
increased risk (95% confidence interval [CI] 11–29%) of severe
adverse outcomes by age 60 in patients with hypertrophic
cardiomyopathy.

Conclusions: A disease-specific variant classifier outperforms
state-of-the-art genome-wide tools for rare missense variants in
inherited cardiac conditions (https://www.cardiodb.org/
cardioboost/), highlighting broad opportunities for improved
pathogenicity prediction through disease specificity.
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INTRODUCTION
The accurate prediction of the effect of a previously unseen
genetic variant on disease risk is an unmet need in clinical

genetics. According to guidelines developed by the American
College of Medical Genetics and Genomics/Association
for Molecular Pathology (ACMG/AMP),1 computational
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prediction of variant pathogenicity is integrated as one line of
supporting evidence to assess the clinical significance
of genetic variation. Several tools have been developed to
predict the effects of rare variants given multiple functional
annotations to derive scores describing the likelihood of
pathogenicity.2–6

While existing genome-wide tools learn from large-scale
data over the entire genome, they might also compromise the
prediction accuracy for specific sets of genes and diseases7 in
the following ways. First, variation in a single gene can cause
distinct phenotypes via different allelic mechanisms. Genome-
wide tools that classify variants as deleterious or not, without
reference to a specific disease or mechanism, may not perform
as well as those that separate gene–disease relations since, for
example, they do not distinguish between gain- and loss-of-
function variants. Second, genome-wide classification tools
may not benefit from specific lines of evidence only available
for a subset of well-characterized genes or diseases. We have
previously shown8 that the addition of gene- and disease-
specific evidence into a classification model improves variant
interpretation in inherited cardiac diseases. Finally, most
genome-wide prediction tools are reported to have low
specificity.1

Furthermore, the measures used in the evaluation of
existing genome-wide tools are not always well defined or
the most clinically relevant. The performance of variant
classification is routinely evaluated using conventional
classification performance measures such as the receiver
operating characteristic (ROC) curve, which assesses
diagnostic performance across a range of discrimination
thresholds, or metrics such as sensitivity and specificity
derived with a single and specified threshold. We argue that
these measures should be tailored to the specific application
at hand. In particular, it is necessary to consider the relative
cost of decisions based on the type I and type II errors in
any specific application, as different contexts may favor the
control of type I error (limiting false positive assertions) or
type II error (limiting false negative assertions). For
example, when classifying a variant for predictive genetic
testing, control of the type I error is usually prioritized:
familial cascade testing on a variant falsely reported as
pathogenic can be extremely harmful.9 Conversely, if
considering whether to offer therapy effective in a subgroup
of patients with a particular molecular etiology (e.g.,
sulfonylureas in monogenic diabetes10), one might prioritize
control of type II error, to identify all those who might
benefit from targeted treatment when the benefits outweigh
the side effects. Most current genome-wide in silico variant
classifiers favor sensitivity over control of the type I error,
and thus overpredict disease-causing variants.1 The inap-
propriate use of performance measures not only affects the
construction of the best classifier, but also the evaluation of
its utility in clinical applications.
To address the disadvantages of genome-wide classification

tools, we sought to develop an accurate variant classifier
considering gene–disease relations by taking inherited cardiac

conditions (ICCs) as examples. The resulting disease-specific
variant classification tool, CardioBoost, includes two disease-
specific variant classifiers for two groups of closely related
syndromes: one classifier for familial cardiomyopathies (CM)
that include hypertrophic cardiomyopathy (HCM) and
dilated cardiomyopathy (DCM), and the other for inherited
arrhythmia syndromes (IAS) that include long QT syndrome
(LQTS) and Brugada syndrome.
While optimally it may be desirable to train a specific model

for every gene–disease pair, this is not feasible due to current
limitations in the number of variants with well-characterized
disease consequences. Moreover, we have previously demon-
strated benefit from jointly fitting some parameters across
closely related genes or diseases.8 We therefore constructed
models that aggregate genes of closely related syndromes,
hypothesizing that these disease-specific models are biologi-
cally plausible since the computational evidence to interpret
variant effect is more likely transferable within closely related
syndromes.
Trained on well-curated disease-specific data, Cardio-

Boost integrates multiple variant annotations and patho-
genicity scores obtained from previously computational
tools, and predicts the probability that rare missense
variants are disease-causing for monogenic inherited
cardiac conditions, based on the Adaptive Boosting
(AdaBoost) algorithm.11 Our tool has improved perfor-
mances over state-of-the-art genome-wide tools in several
distinct tasks including discrimination of disease-causing
from benign variants, prioritization of variants highly
associated with disease, and prioritization of variations that
stratify clinical outcomes.

MATERIALS AND METHODS
A full description of data collection, model development,
and validation is given in the Supplementary Methods. In
brief, we constructed two classifiers, one for inherited
cardiomyopathies, and one for inherited arrhythmia syn-
dromes, to output the estimated probability of pathogenicity
for rare missense variants in genes robustly associated with
these diseases. Throughout this article, we reserve the
standard terms “pathogenic” (P) or “likely pathogenic” (LP)
recommended in the ACMG/AMP guidelines for variant
assertions from ClinVar, or for variants that have been
evaluated using the full ACMG/AMP framework. We use
“disease-causing”/“likely disease-causing” to indicate patho-
genicity predictions from in silico tools including Cardio-
Boost and benchmarked tools.
The CM classifier is applicable for 16 genes associated with

hypertrophic and dilated cardiomyopathies. To obtain train-
ing and test sets, we collected 356 unique rare (gnomAD
minor allele frequency <0.1%) missense variants in estab-
lished cardiomyopathy-associated genes (Table S1) identified
in 9007 individuals with a clinical diagnosis of CM, and
interpreted as pathogenic or likely pathogenic. For the
inherited arrhythmia classifier, we consider genes associated
with long QT syndrome and Brugada syndrome. To maximize
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the size and diversity of the training data, we used ClinVar
and only included variants with no conflicting interpretation
(conflicting: P/LP vs. benign/likely benign [B/LB]; P/LP vs.
variant of uncertain significance [VUS]; B/LB vs. VUS). Two
hundred fifty-two unique rare missense variants reported to
be P or LP with no conflicting interpretations (B or LB) in
established arrhythmia-associated genes (Table S2) were
collected from the ClinVar database.12 As a benign variant
set, 302 unique rare missense variants in cardiomyopathy
genes, and 237 unique rare missense variants in arrhythmia
genes, were collected from the targeted sequencing of 2090
healthy volunteers. Since these volunteers have no family
history of ICCs and confirmed without ICCs on electro-
cardiogram (ECG) or cardiac magnetic resonance image
(MRI), this cohort provides a lower disease prevalence than a
general population, thus the rare missense variants carried by
them should be considered as highly likely benign to inherited
cardiac conditions. To avoid overfitting, for each condition
the data set were randomly split, with two-thirds used for
training and one-third reserved as a holdout test set
(Tables S3–S5). For cardiomyopathies, 440 and 326 variants
are used for training and testing, respectively. For arrhyth-
mias, 218 and 166 variants are used for training and testing,
respectively.
For each variant, we collected 76 functional annotations

(Table S6 and Supplementary Methods) as features in our
disease-specific variant classification tool. We selected nine
classification algorithms including best-in-class representa-
tives of all of the major families of machine learning
algorithms, and applied a nested cross-validation13 to select
the optimal algorithm for our tool. In the inner fivefold cross-
validation loop, a candidate classification algorithm was
trained in order to optimize its hyperparameters. In the outer
tenfold cross-validation loop, the optimized candidate algo-
rithms were compared and the best-performing one was
selected (Fig. 1 and Supplementary Methods).
For both conditions, AdaBoost11 was selected with the best

cross-validated out-of-sample performance (see Supplemen-
tary Methods and Tables S7, S8). AdaBoost is a boosting tree
classification algorithm combining many decision trees. Each
decision tree is learned sequentially to assign more weight to
samples misclassified by the previous decision tree, and
weighted by its accuracy. Having selected AdaBoost as the
basis for our classifier, a predictive model was constructed by
training AdaBoost on the whole set of training variants for
each disease, named CardioBoost.

Ethics statement
Training and test data used in the development of the tool
were either already in the public domain, or do not constitute
personal data, or were obtained with patient consent and/or
approval by the following relevant research ethics committees
or institutional review boards: South Central–Hampshire B
Research Ethics Committee (09/H0504/104), Hammersmith
& Queen Charlotte’s Research Ethics Committee (09/H0707/
69), Aswan Heart Centre Research Ethics Committee

(20160401MYFAHC_HVOL), and SingHealth Centralised
Institutional Review Board C (2019/2241).

RESULTS
CardioBoost outperforms state-of-the-art genome-wide
prediction tools based on overall classification performance
measures
To estimate the classifiers’ performance on VUS, we evaluated
their classification performances on the holdout test sets.
CardioBoost was compared against state-of-the-art genome-
wide variant pathogenicity predictors including M-CAP,14

REVEL,15 CADD,5 Eigen,16 and PrimateAI,17 reported to
have leading performance in pathogenicity prediction of rare
missense variants. Classification performance was first
summarized using the area under the precision recall curve18

(PR-AUC) and the area under the receiver operating
characteristic curve (ROC-AUC), without relying on a single
predefined classification threshold to discriminate disease-
causing and benign variants.
In both inherited cardiac conditions, CardioBoost achieved

the best values in both PR-AUC and ROC-AUC (Fig. 2). The
difference in performance was statistically significant for
cardiomyopathies, with significantly increased PR-AUC
(maximum P value = 0.005 between the pairwise statistical
comparisons using permutation test) and ROC-AUC (max-
imum P value = 5×10−6 between the statistical comparisons
using Delong test19). Among probabilistic predictors (Cardi-
oBoost, M-CAP, REVEL, and PrimateAI), CardioBoost has
significantly increased Brier score for both cardiomyopathies
(maximum P value = 0.005 between the pairwise compar-
isons via permutation test) and arrhythmia syndromes
(maximum P value = 0.02 between the pairwise comparisons
via permutation test) (Table S9).
In the subsequent benchmarking studies, we specifically

demonstrate CardioBoost performances compared with M-
CAP and REVEL since they are explicitly trained to
distinguish rare disease-causing variants from rare benign
ones using ensemble learning approaches comparable with
CardioBoost, and their overall classification performances are
representative of these state-of-the-art tools shown in the
above analysis. As the pathogenicity scores of M-CAP and
REVEL were used as input features for CardioBoost,
CardioBoost might indirectly expose to variants used in their
previous training. This might worsen classification perfor-
mance if the variants were erroneously classified during
upstream training, or lead to inflated performance estimates
through overfitting, so we investigated the extent to which
these potential limitations influenced CardioBoost perfor-
mance. CardioBoost was shown to consistently improve on
cardiomyopathy- and arrhythmia-specific prediction over
existing genome-wide tools both on indirectly “seen” (variants
used to train upstream genome-wide learners) and “unseen”
(completely novel) data. The overall accuracy of CardioBoost
between the unseen and seen data sets is not significantly
different for either CM or IAS. (Tables S10, S11 and
Supplementary Methods).
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Fig. 1 Training and testing of CardioBoost, and definition of high-confidence variant classification thresholds for performance assessment. (a)
Construction of CardioBoost: (1) After defining gold standard data, (2) the data set was split with a 2:1 proportion into training and test tests. The training
set was used for two rounds of cross-validation (CV): first to optimize individually a number of possible machine learning algorithms, and second to select
the best-performing tool. (3) AdaBoost was the best-performing algorithm, and forms the basis of CardioBoost. (4) CardioBoost was benchmarked against
existing best-in-class tools using the holdout test data, (5) a number of additional independent test sets, and (6) approaches based on association with
clinical characteristics of heterozygotes that do not rely on a gold standard classification. (b) Illustrative distributions of predicted pathogenicity scores for a
set of pathogenic and benign variants obtained by a hypothetical binary classifier. In a clinical context (based on American College of Medical Genetics and
Genomics/Association for Molecular Pathology [ACMG/AMP] guidelines), variants are classified into the following categories according to the probability of
pathogenicity: disease-causing (probability of pathogenicity [Pr] ≥0.9), benign/likely benign (Pr ≤ 0.1) and a clinically indeterminate group of variants of
uncertain significance with low interpretative confidence (0.1 < Pr < 0.9). (c) The corresponding confusion matrix with the defined double classification
thresholds Pr ≥ 0.9 and Pr ≤ 0.1.
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CardioBoost outperforms existing genome-wide prediction
tools on high-confidence classification measures
In addition to estimating conventional classification perfor-
mance, we evaluated performance at thresholds corresponding
to accepted levels of certainty required for clinical decision
making1 (90%; see definitions on Fig. 1b, c and Supplementary
Methods). Using these thresholds (disease-causing: probability
of pathogenicity (Pr) ≥0.9; benign/likely benign: Pr ≤ 0.1;
indeterminate: 0.1 < Pr < 0.9), CardioBoost again outperforms
existing genome-wide machine learning variant classification
tools when assessed using holdout test data (Table 1).
CardioBoost maximizes the identification of both disease-

causing and benign variants. In both conditions, CardioBoost
had the highest true positive rate (TPR) (CM 69.5%; IAS 83.3%)
and true negative rate (TNR) (CM 56%; IAS 78.6%) (Table 1, P
value < 0.001). In total, CardioBoost correctly classified 63.3% of
cardiomyopathy test variants and 81.2% of arrhythmia test
variants with 90% or greater confidence level. The proportions
of correctly classified variants are significantly higher (P value <
0.001) than those obtained with M-CAP (CM 28.4%; IAS

30.5%) and REVEL (CM 17.4%; IAS 37%). In addition,
CardioBoost minimizes the number of indeterminate variants.
Only 29.8% of cardiomyopathy test variants and 11.7% of
arrhythmia test variants achieved indeterminate scores between
0.1 and 0.9, which were significantly fewer (P value < 0.001)
than those obtained with M-CAP (CM 66.1%; IAS 66.2%) or
REVEL (CM 78%; IAS 59.7%) (Table 1).
Overall, using these thresholds CardioBoost assigned high-

confidence classifications to 70.2% of cardiomyopathy test
variants, among which 90.2% were correct. For arrhythmias,
CardioBoost reported 88.3% of test variants with high
confidence, with 91.9% prediction accuracy. The reported
results are robust to the choice of classification thresholds.
While guidelines propose 90% confidence as appropriate
thresholds for likely pathogenic or likely benign classifica-
tions, some may advocate a higher confidence threshold.
When assessed at a 95% certainty classification threshold,
CardioBoost continues to consistently outperform genome-
wide tools with significantly (P value < 0.001) higher
accuracies (Table S12).
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arrhythmia variant pathogenicity prediction. The dashed lines demonstrate the performance of a random classifier.
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CardioBoost is not intended to replace a full expert variant
assessment in clinical practice, but for comparative purposes
it is informative to consider how classification performance
changes under different application contexts. Positive pre-
dictive value (PPV) and negative predictive value (NPV) are
both dependent on the proportion of pathogenic variants in
the variant set being tested, and so it is important to consider
how our benchmarking translates to real-world application.
Here we used the TPR and TNR calculated on our holdout
test set to derive estimates of PPV and NPV for CardioBoost
applied in different contexts where the true proportion of
pathogenic variants might differ. Our estimation provides a
lower bound of PPV and NPV under the assumption that
pathogenic variants are fully penetrant. In predictive genetic
testing, the limitation of false positive prediction is prioritized,
necessitating conservative estimates of PPV. Here we estimate
reasonably conservative PPVs and corresponding NPVs of
CardioBoost applied in two scenarios: in a diagnostic referral
series and in samples from a general population. In a
diagnostic laboratory cardiomyopathy referral series, where
we estimate approximately 60% rare missense variants found
in cardiomyopathy-associated genes to be pathogenic, the
PPV and NPV of CardioBoost were estimated at 89% and
96% respectively. By contrast, in a general population, where
we estimate the proportion of rare pathogenic variants of
these ICC genes are ~1%, the PPV and NPV reach 5% and
99.9%. Similarly, we estimated the performance of Cardio-
Boost in an arrhythmia cohort (PPV: 95%; NPV: 87%) and a
general population (PPV: 3%; NPV: 99.9%). This suggests that
the predictions of disease-causing variants by CardioBoost are
calibrated for high confidence only when applied in a
diagnostic context, as would be expected. Classifications are
appropriate for variants found in patients, with a reasonable
prior probability of pathogenicity (details are described in
Supplementary Methods).
Finally, as novel pathogenic variants are more likely to be

ultrarare (minor allele frequency <0.01%), we also tested
CardioBoost performance on a holdout set of only ultrarare

variants and confirmed that it consistently outperforms
existing genome-wide tools (Table S13). Its performance on
ultrarare variants is comparable with that on rare variants.

Replication on additional independent test data confirms
that CardioBoost improves prediction of disease-causing
and benign variants
We collected four additional sets of independent test data to
further assess the CardioBoost performance, using variants
reported as pathogenic in ClinVar and HGMD20 (both
databases of aggregated classified variants), a diagnostic
laboratory referral series from the Oxford Molecular Genetics
Laboratory (OMGL), and a large registry of HCM patients,
SHaRe.21 When using ClinVar variants to test CM, only
variants with two-star review status (i.e., criteria provided,
multiple submitters, no conflicts) are included. CardioBoost
consistently achieved the highest TPRs: predicting the most
disease-causing variants with over 90% certainty (Table 2).
On a set of rare variants found in the gnomAD reference data
set, which is not enriched for inherited cardiac conditions and
hence where the prevalence of disease should be equivalent to
the general population, CardioBoost consistently predicts the
most variants as benign (Table 2). We also assessed the
accuracy of CardioBoost using cell-based functional mapping
of amino acid substitutions in calmodulin genes (CALM1,
CALM2, and CALM3) from a previous deep mutational
scanning (DMS) study.22 Averaged over three calmodulin
genes, CardioBoost has the significantly highest accuracy to
predict the DMS classification (Table 2). CardioBoost also
performed the best when assessed at a higher 95% certainty
classification threshold (Table S14) and on sets of ultrarare
variants (Table S15).

CardioBoost discriminates variants that are highly disease-
associated
Since benchmarking against a gold standard variant set may
be susceptible to classification errors in the data, we employed
two additional approaches to evaluate CardioBoost

Table 1 CardioBoost outperforms existing genome-wide tools for the classification of holdout test variants.

% Cardiomyopathies Arrhythmias

CardioBoost M-CAP REVEL CardioBoost M-CAP REVEL

Overall accuracy 63.3a 28.4 17.4 81.2a 30.5 37

Proportion of variants classified with high confidence 70.2a 33.9 22 88.3a 33.8 40.3

Accuracy of high-confidence classifications 90.2 83.8 79.2 91.9 90.4 91.9

Proportion of variants with indeterminate classification 29.8a 66.1 78 11.7a 66.2 59.7

TPR 69.5a 41.5 28 83.3a 48.8 65.5

PPV 86.3 81.7 76.7 90.9 91.1 91.7

TNR 56a 13 5 78.6a 8.6 2.9

NPV 96.6 92.9 100 93.2 85.7 100
The performance of each tool is reported using the clinically relevant variant classification thresholds: high-confidence disease-causing (Pr ≥ 0.9), high-confidence benign
(Pr ≤ 0.1), and indeterminate. For each predictive performance measure (see Supplementary Methods for details) the best algorithm is highlighted in bold. Permutation
tests were performed to evaluate whether the performance of CardioBoost was significantly different from the best value obtained by M-CAP or REVEL.
NPV negative predictive value, PPV positive predictive value, TNR true negative rate, TPR true positive rate.
aP value ≤ 0.001.
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predictions directly against patient characteristics, to confirm
biological and clinical relevance.
First, we directly assessed the strength of the association

between the specified disease and rare variants stratified by
the different tools. We compared the proportions of rare
missense variants in a cohort of 6327 genetically characterized
patients with HCM, from the SHaRe registry,21 with 138,632
reference samples from gnomAD v2.0 (Fig. 3a). We calculated
the odds ratio (OR) for all rare variants observed in each
sarcomere gene, and for variants stratified by CardioBoost,
M-CAP, and REVEL after excluding variants seen in our
training data.
For seven of the eight CM-associated genes (MYH7, TNNI3,

TPM1, ACTC1, TNNT2, MYBPC3, and MYL3), the OR for
variants prioritized by CardioBoost (i.e., predicted disease-
causing with Pr ≥ 0.9) was greater than the baseline OR
(including all observed variants without discriminating
disease-causing and benign variants), indicating that the tool
is discriminating a set of variants more strongly associated
with the disease. For three genes (TPM1, TNNT2, MYBPC3),
the difference was statistically significant (P value < 0.05).
Concordantly, variants in seven of the eight sarcomere genes
predicted as benign have significantly decreased association
with disease compared with the baseline OR (P value < 0.05).
By contrast, M-CAP or REVEL did not show any demon-
strable difference in disease ORs between predicted disease-
causing and predicted benign variants (Table S16).

CardioBoost variant classification is associated with
adverse clinical outcome
As a further assessment independent of gold standard
classification, we tested the association of variants stratified

by CardioBoost with clinical outcomes in the same cohort of
patients. Patients with HCM who carry known pathogenic
variants in genes encoding sarcomeric proteins have been
shown to follow an adverse clinical course compared with
“genotype-negative” individuals (no rare pathogenic
variant or VUS in a sarcomere-encoding gene, and no
other pathogenic variant identified),21,23,24 with a
higher burden of adverse events. Patients carrying benign
variants in HCM-associated genes would be expected to
follow a similar trajectory to those genotype-negative
patients.
We evaluated clinical outcomes in a subset of the SHaRe

cohort comprising 803 HCM patients each with a rare
missense variant in a sarcomere-encoding gene, and 1927
genotype-negative HCM patients, after excluding all
patients carrying variants that were seen in the CardioBoost
training set. We compared event-free survival (i.e., age until
the first occurrence of a composite adverse clinical outcome
including heart failure events, arrhythmic events, stroke,
and death) of these patients, stratified by CardioBoost-
predicted pathogenicity (the full definition of a composite
adverse clinical outcome is described in Supplementary
Methods).
CardioBoost classification stratifies novel variants with

significantly different patient survival curves (Fig. 3b–d).
Patients carrying variants predicted as disease-causing
(CardioBoost disease-causing) were likely to have earlier
onset and a higher adverse event rate than those without
identified rare variants (CardioBoost disease-causing vs.
genotype-negative: P value < 2×10−16; hazard ratio [HR]=
1.9), or those with variants predicted to be benign
(CardioBoost disease-causing vs. CardioBoost benign: P value

Table 2 Evaluation of performance on additional test sets.

Cardiomyopathies

Pathogenic test variants (TPR) Benign/population test variants (TNR)

SHaRe (N= 129) ClinVar (N= 15) HGMD (N= 145) gnomAD (N= 2003)

CardioBoost 62.0a 66.7 41.4a 51.5a

M-CAP 37.2 40.0 22.1 20.3

REVEL 24.0 53.3 22.8 5.6

Arrhythmias

Pathogenic test variants (TPR) Benign/population test variants (TNR) Deep mutational scanning (accuracy)

OMGL (N= 77) HGMD (N= 138) gnomAD (N= 1237) Calmodulin (N= 576)

CardioBoost 88.3a 72.5a 64.3a 29.0a

M-CAP 59.7 39.9 9.8 0.3

REVEL 68.8 52.9 2.8 4.2
CardioBoost performance was evaluated against additional variant sets. Four resources provided known pathogenic variants (SHaRe cardiomyopathy registry, ClinVar
(two-star submissions), a UK regional genetic laboratory (Oxford Medical Genetics Laboratory [OMGL]) and the Human Gene Mutation Database [HGMD]). Variants
found in gnomAD population controls were expected to be predominantly benign. Since gnomAD includes variants seen in the previous ExAC data set that was partially
used to train M-CAP and REVEL, we tested against the subset of variants in gnomAD that were not in ExAC. The number of single-nucleotide variants in each set is
shown in parentheses. The TPR is reported for pathogenic variant test sets (with threshold Pr ≥ 0.9), and the TNR for benign variant test sets (with threshold Pr ≤ 0.1).
We also evaluated the classification accuracies on functional mapping of amino acid substitutions in calmodulin genes obtained through a previous deep functional scan-
ning study. For each performance measure the best algorithm is highlighted in bold. Permutation tests were carried out to evaluate whether the performance of Cardio-
Boost was significantly different from the best value obtained by M-CAP or REVEL.
TNR true negative rate, TPR true positive rate.
aP value ≤ 0.001.
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= 0.03; HR= 1.7). The probability of developing the overall
composite outcome by age 60 is 54% (95% CI: 46–59%) for
CardioBoost disease-causing patients, versus 33% (95% CI:
30–35%) for genotype-negative patients. By contrast, groups

stratified by M-CAP or REVEL variant classification did not
show significantly different event-free survival time (M-CAP
disease-causing vs. M-CAP benign: P value = 0.31; REVEL
disease-causing vs. REVEL benign: P value = 0.30) (Fig. S1).
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Fig. 3 CardioBoost improves prioritization of variants associated with disease and clinical outcomes in patients with hypertrophic cardio-
myopathy (HCM). (a) We compared the odds ratios (ORs) (on log scale) for three groups of variants: (i) all rare variants, (ii) rare variants predicted
disease-causing by CardioBoost (Pr ≥0.9, and excluding those seen in our training data), and (iii) rare variants predicted as benign by CardioBoost (Pr ≤
0.1, and excluding those seen in our training data). For most of the sarcomere-encoding genes, variants classified as disease-causing by CardioBoost are
enriched for disease association, and those classified as benign are depleted, compared with unstratified rare missense variants. (b–d) CardioBoost
variant classification stratifies key clinical outcomes in patients with HCM. Clinical outcomes provide an opportunity to assess classifier performance
independent of the labels used in the gold standard training data. (b) Kaplan–Meier event-free survival curves are shown for patients in the SHaRe
cardiomyopathy registry, stratified by genotype as interpreted by CardioBoost. The patients carrying variants seen in the CardioBoost training set were
excluded from this analysis. Patients with predicted disease-causing variants in sarcomere-encoding genes have more adverse clinical events compared
with patients without sarcomere-encoding variants (“genotype-negative”), and compared with patients with sarcomere-encoding variants classified as
benign. Survival curves stratified by variants as adjudicated by experts (marked in figure with prefix “SHaRe”) are shown for comparison. The composite
endpoint comprised the first incidence of any component of the ventricular arrhythmic or heart failure composite endpoint, atrial fibrillation, stroke or
death. (c) P values of the log-rank test in the pairwise comparisons of Kaplan–Meier survival curves. (d) Forest plot displays the hazard ratio (with
confidence interval) and P value of tests comparing patients’ survival stratified by CardioBoost classification and SHaRe experts’ classification based on
Cox proportional hazards models.
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DISCUSSION
Our results show that in silico prediction of variant
pathogenicity for inherited cardiac conditions is improved
within a disease-specific framework trained using expert-
curated interpreted variants. This is demonstrated through
improved classification performance, stronger disease asso-
ciation, and significantly improved stratification of patient
outcomes over published genome-wide tools.
There are several factors that may contribute to improved

performance for a gene- and disease-specific classifier like
CardioBoost over genome-wide tools. First, the use of disease-
specific labels could decrease the false prediction of benign
variants as disease-causing. A variant causative of one
Mendelian dominant disorder may be benign with respect
to a different disorder (associated with the same gene), if the
conditions result from distinct molecular pathways. Since
genome-wide tools are trained on universal labels (i.e.,
whether a variant ever causes any diseases), they would be
expected to yield false positive predictions in the context of
specific diseases. Second, while the representative genome-
wide tools M-CAP and REVEL are trained on variants from
HGMD curated from literature, CardioBoost is trained on
high-quality expert-curated variants, thus reducing label bias
and increasing the prediction performances. Third, as the
genome-wide tools are trained across the genome, the
learning function that maps the input features into the
pathogenicity score is fitted using the training samples from
all genes in the genome. However, different genes may have
different mapping functions, for example related to different
molecular mechanisms. Restricting to a set of well-defined
disease-related genes may exclude influences from other
unrelated genes.
We might expect a gene disease–specific model would most

accurately represent the genotype–phenotype relationship.
However, there is a tradeoff between the size of available
training data and the specialization of classification tasks.
Here, CardioBoost groups together genes for two sets of
closely related disorders, including three genes in which
variants with different functional consequences lead to
distinct phenotypes in our training set (i.e., SCN5A, TNNI3,
MYH7). This is a potential limitation, since we hypothesize
that distinct functional consequences might optimally be
modeled separately. We explored alternative models for
cardiomyopathy classifiers, for which our training data set is
larger than for arrhythmias. Two disease-specific models
(HCM-specific and DCM-specific) and three gene
syndrome–specific models (MYH7-HCM-specific, MYH7-
DCM-specific, and MYBPC3-HCM-specific) with the largest
training data size were built and compared (Table S17). None
of the alternative models had comparable performance with
the combined cardiomyopathy model. We therefore conclude
that given the current availability of training data, a
cardiomyopathy-specific classifier provides the best empirical
balance between grouping variants with similar phenotypic
effects and making use of relatively large training data set. It
improves prediction both over genome-wide models that

entirely ignore variants’ phenotypic effects, and over gene
disease–specific models for which there are insufficient
training data. We therefore adopted the broadly disease-
specific models as our final classifier, but anticipate that
complete separation of distinct phenotypes may be advanta-
geous when more training data become available in the future.
CardioBoost natively outputs a continuous probability of

pathogenicity that is directly interpretable. Users may there-
fore define their own confidence thresholds according to
intended application. The posterior probability can also be
updated by incorporating further evidence, such as linkage
scores calculated from the evaluation of segregation in a
family.
There are several potential limitations and avenues for

future refinement. First, we have only considered the
prediction of pathogenicity for missense variants thus far.
The inclusion of different classes of variants in disease-specific
model is challenging since there are limited high-confidence
training data for nonmissense variants.
A second key limitation of CardioBoost is that it does not

consider all relevant lines of evidence, and therefore it is not
intended to serve as a tool for comprehensive assessment of
variant pathogenicity. Some evidence types are limited by
availability such as population allele frequency data and
segregation data. Others could not be systematically included
into a machine learning framework either because they are
not well structured as in the case of functional data, de novo
data, and allelic data, or they are too sparse. For example,
many variants lack experimental data, and the precise
population allele frequency of many variants is unknown,
though this implies significant rarity. In our training data,
45% of variants in cardiomyopathies and 44% of variants in
arrhythmias were not seen in the gnomAD control popula-
tion. Here, we do not include allele frequencies in gnomAD as
a predictive feature since the relation between variant
pathogenicity and allele frequency scale beyond current
observation is clearly unknown.
For these reasons, while we show advantages of the

proposed model for variant classification in known disease
genes over existing genome-wide tools, we emphasize that
CardioBoost is not intended for use as a standalone clinical
decision tool, or as a replacement for the existing ACMG/
AMP guidelines for variant interpretation. Rather, in its
current form it could provide a numerical value for evidence
PP3 (“Multiple lines of computational evidence support a
deleterious effect on the gene/gene product”) and BP4
(“Multiple lines of computational evidence suggest no impact
on gene/gene product”) that is more reliable and accurate
than existing genome-wide variant classifiers in the context of
inherited cardiac conditions. We suggest that CardioBoost
high-confidence classifications might appropriately activate
PP3 (Pr > 0.9) and BP4 (Pr < 0.1). It is interpreted as the
supporting evidence being activated with at least 90%
confidence.
The widely adopted ACMG/AMP framework is semiquan-

titative, but one limitation is that the weightings applied to
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different rules are not all evidence-based or proven to be
mathematically well calibrated. We do anticipate that, with
more training data and robust validation, quantitative tools
like CardioBoost will prove informative for variant inter-
pretation, and will carry more weight in a quantitative
decision framework than the current ACMG/AMP PP3 and
BP4 rule affords.
While CardioBoost improves on existing tools, there remain

a substantial number of variants receiving indeterminate
classification by CardioBoost at high-confidence classification
thresholds (Table 1: CM 29.8% IAS 11.7%). We anticipate
that additional relevant functional annotations and accumu-
lation of further gold standard interpreted data will continue
to improve in silico prediction over time.
While CardioBoost performs well overall, the prediction

performance and confidence vary for different genes accord-
ing to the size of the training/test set for that gene. Five genes
account for the majority of genetically explained cardiomyo-
pathy and long QT (MYH7, MYBPC3, KCNQ1, KCNH2,
SCN5A), resulting in narrower prediction confidence inter-
vals. For other genes, the gold standard data remain relatively
sparse (Fig. S2), resulting in wider prediction confidence
intervals. Classifications of variants in these genes should be
considered with appropriate care.
In conclusion, as exemplified in inherited cardiac condi-

tions, we have substantiated that a disease-specific variant
classifier improves the in silico prediction of variant
pathogenicity over the best-performing genome-wide tools.
Our study also emphasizes the pitfalls of relying on genome-
wide variant classifiers and the necessity to develop disease-
specific variant classifiers to accurately interpret variant
pathogenicity on specific phenotypes and diseases. We also
highlight the need to evaluate variant pathogenicity prediction
in clinical settings including accuracies on high-confidence
classification thresholds equivalent to accepted certainty
required for clinical decision making, variants’ association
with disease, and patients’ clinical outcomes. To support
accurate variant interpretation in inherited cardiac conditions,
we provide precomputed pathogenicity scores for all possible
rare missense variants in genes associated with inherited
cardiomyopathies and arrhythmias (https://www.cardiodb.
org/cardioboost/). The demonstrated development and eva-
luation framework could be applicable to develop accurate
disease-specific variant classifiers and improve variant inter-
pretation in a wide range of Mendelian disorders.
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