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Predicted climate change will 
increase the truffle cultivation 
potential in central Europe
Tomáš Čejka1,2*, Miroslav Trnka1,3, Paul J. Krusic4,5, Ulrich Stobbe6, Daniel Oliach7,8, 
Tomáš Václavík1,9, Willy Tegel10 & Ulf Büntgen1,2,4,11

Climate change affects the distribution of many species, including Burgundy and Périgord truffles in 
central and southern Europe, respectively. The cultivation potential of these high-prized cash crops 
under future warming, however, remains highly uncertain. Here we perform a literature review to 
define the ecological requirements for the growth of both truffle species. This information is used 
to develop niche models, and to estimate their cultivation potential in the Czech Republic under 
current (2020) and future (2050) climate conditions. The Burgundy truffle is already highly suitable for 
cultivation on ~ 14% of agricultural land in the Czech Republic (8486 km2), whereas only ~ 8% of the 
warmest part of southern Moravia are currently characterised by a low suitability for Périgord truffles 
(6418 km2). Though rising temperatures under RCP8.5 will reduce the highly suitable cultivation areas 
by 7%, the 250 km2 (3%) expansion under low-emission scenarios will stimulate Burgundy truffles 
to benefit from future warming. Doubling the moderate and expanding the highly suitable land 
by 352 km2 in 2050, the overall cultivation potential for Périgord truffles will rise substantially. Our 
findings suggest that Burgundy and Périgord truffles could become important high-value crops for 
many regions in central Europe with alkaline soils. Although associated with uncertainty, long-term 
investments in truffle cultivation could generate a wide range of ecological and economic benefits.

Anthropogenic climate change is affecting the elevational and meridional distribution of many ectomycorrhizal 
fungi1–4, which are essential components in natural ecosystems and agriculture5. Shifts to higher latitudes and 
elevations will likely continue in many regions6, resulting in either the expansion or contraction of species-specific 
habitats7. Well-informed ecological models can estimate the potential geographic distribution of individual spe-
cies under future climate change8,9.

Predicting how species distributions might change in the future is often based on species distribution models 
(SDMs), also known as climate envelope models, habitat suitability models, or niche models10. Simple correla-
tive SDMs combine information of a species’ current location with abiotic variables, such as climate, soil, and 
elevation, to predict the probability of a species’ occurrence in space and time11. Over the past two decades, more 
sophisticated SDM techniques, such as random forest12 and maximum entropy13, as well as population-based 
(mechanistic) models, dynamic range models, or combinations thereof11, have been developed9. Although the 
‘correlative’ SDM approach is simplistic and excludes certain ecological concepts, such as ‘living dead’ popula-
tions and ‘source-sink’ dynamics11, it is apparently the most feasible avenue of building niche models for the 
majority of species14, including fungi15–18. Similarly, environmental information can be extracted from a rich 
body of literature to parametrise knowledge-based niche models.
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Here, we focus on the Burgundy truffle (Tuber aestivum Vittad.) and Périgord truffle (Tuber melanosporum 
Vittad.). Although mainly growing under different ecological conditions, both genera are ectomycorrhizal fungi 
that live in a symbiotic relationship with their plant partners in the temperate and Mediterranean climates of 
Europe, Asia, Australia, as well as North and South America19. Currently growing in much of Europe20, the Bur-
gundy truffle is expected to offer great potential to be cultivated in new regions as climate change progresses21. 
The Périgord truffle has a much smaller ecological range22, which restricts its current distribution predominantly 
to the Mediterranean climate zones of Spain, France, and Italy23. The migration of Périgord truffles into higher 
latitudes north of the European Alps24,25, and the recently documented harvest decline in the species’ southern 
European habitats26, have been attributed to climate warming27.

Since truffles are commonly exceeding retail prices of ~ 200 € kg−1 (Burgundy) and ~ 600 € kg−1 (Périgord), 
their cultivation is economically highly attractive23,28. The most productive habitats for the Périgord truffle are 
natural forests and plantations in southern Europe23,28. The cultivation of Périgord truffles is therefore a lucrative 
business in many parts of rural Spain, France, and Italy29,30, whereas the Burgundy truffle is often collected in its 
natural habitats of temperate and continental Europe21. As a result of the increasing gastronomic popularity of 
truffles, numerous plantations have been established recently in central Europe20. Truffle cultivation has many 
socio-economic and ecological benefits including myco-tourism, increased land value, habitat conservation, 
and land-use diversification23,28,30.

In this study, we review the ecological requirements of Burgundy and Périgord truffles in the existing body of 
literature, model the current (2020) and future (2050) cultivation potential of both truffle species in the Czech 
Republic, discuss the uncertainties of our model approach, and outline the implications associated with a pos-
sible increase of truffle cultivation in central Europe under future climate change.

Materials and methods
Study area and environmental data.  To identify those areas that are potentially suitable for the culti-
vation of truffles under current and predicted climate in 2020 and 2050, respectively, we confined our study to 
49–51°N and 12–19°E. This area, within the border of the Czech Republic, contains most of central Europe’s bio-
geographic zones, and a wide range of geological bedrock. Since truffle growth and maturation require high pH 
levels31, the most suitable bedrock is high-calcium Palaeozoic limestone karst (e.g., Czech Karst, Moravian Karst 
and Pavlov Hills Mts.), secondary and tertiary deposits32 (e.g., Czech Cretaceous basin), as well as Quaternary 
sediments33 (e.g., southern Moravia). The most favourable soils are fertile chernozems and phaeozems below 
300–400 m a.s.l., and calcareous leptosols34.

Climate zones in the Czech Republic range from temperate maritime in the west to more continental in the 
east35. Based on the 30-year average from 1989–2018, the mean annual temperature varies from 1.7 °C in the 
mountainous areas (January: − 5.9 °C, July: 10.3 °C) to 10.5 °C in the warmest and driest lowlands (January: 
− 0.3 °C, July: 20.8 °C). Annual precipitation totals are largely affected by topography and range from 450 mm 
in the Czech lowlands to 1550 mm at higher elevations in the northeast. Overall, annual precipitation totals 
reach their maxima in summer (185–505 mm) and minima in winter (60–425 mm). These temperate climate 
conditions favour a predominance of broad-leaved deciduous forests34. However, persistent sylvicultural and 
agricultural practices over many centuries have resulted in a heterogeneous landscape. The Czech Republic 
comprises a mosaic of forests and arable land (33.4% and 57.0%, respectively), with the remainder consisting of 
perennial grasslands and human settlements34.

The GIS-based climatological data used to identify suitable areas of truffle growth consist of five raster vari-
ables that describe the current ‘baseline climate’ conditions (2020), and five model-derived climate variables 
for predicting the ‘future climate’ conditions (2050). The 2020 ‘baseline climate’ was defined by both, the mean 
annual temperature and the temperature extremes of the coldest and warmest months (i.e., January and July). 
From a network of 268 climatological stations distributed across the Czech Republic, we used precipitation meas-
urements to define the ‘baseline climate’ (1989–2018; Czech Hydrometeorological Institute). With regression 
kriging that uses altitude as the predictor, we interpolated both, the temperature and precipitation measurements 
into a 500 × 500 m grid, following common climate resolution standards36. To eliminate possible offset from 
the kriging procedure, we added the delta values to the interpolated layer, thus reduced the modelling error at 
each station location to zero. Finally, we aggregated the ‘baseline climate’ into monthly, seasonal, and annual 
temperature means and precipitation totals. Model estimates of the above-mentioned variables from 2041–2060 
were hereafter defined as ‘future climate’ and expressed as the year 2050. For the low- (2.6), mid- (4.5), and high-
emission (8.5) Representative Concentration Pathways scenarios (RCPs), we computed the combined average 
of five Global Climate Models (GCMs), i.e. BNU-ESM37, CNRM-CM538, HadGEM2-ES39, IPSL-CM5A-MR40, 
MRI-CGCM341, which were pre-selected via the evaluation method introduced by Dubrovský et al.42. To obtain 
the ‘future climate’ values, we used the delta-change approach43 and added/subtracted delta values as derived 
from the GCM’s combined average to the monthly parameters of ‘baseline climate’ at 500 × 500 m resolution.

To create GIS-suitable pH data for the entire Czech Republic, we combined two datasets that were available 
from the State Land Office (Ministry of Agriculture) and the Forest Management Institute. The first dataset 
includes ~ 150,000 unevenly distributed pH field measurements, mostly from agricultural land at lower eleva-
tions, which roughly translated into one measurement per two cells at 500 × 500 m resolution (Supplementary 
Figure S1). The second dataset includes thousands of soil survey units for the Czech Republic, which are clas-
sified into ~ 100 typological units (Supplementary Table S1 and Figure S2). Each unit represents a specific soil 
type without pH information44,45. Since many areas, including forests, lack pH measurements, we extrapolated 
the field pH measurements to all typological units over the Czech Republic. We did so by attributing the typo-
logical unit to the average pH calculated from the field measurements of the corresponding soil survey units 
(Supplementary Table S1). Since the pH field measurements for a given typological unit generally exhibit a high 
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standard deviation (average ~ 0.45; Supplementary Table S1), we used the median instead of the mean field pH 
value. Based on a maximum combined area algorithm (via ArcGIS Pro v. 2.3.0)46, we were able to cover 64% of 
the Czech Republic with soil pH information.

The raster elevation model variable was obtained from the ArcČR 500 v. 3.3 database47. This model is based 
on a high-resolution LIDAR mapping performed by the Surveying and Cadastre Office of the Czech Republic. 
The original data from 2017 were acquired in 5 × 5 m resolution with a vertical error of 0.3 (open area) and 1 
(forest) m, respectively. Since the elevation parameter is an indirect expression of temperature and precipitation, 
it was also considered as a constant proxy for climate that does not change from 2020 to 2050.

Truffle ecology and modelling.  To model current and future areas suitable for Burgundy and Périgord 
truffle cultivation (in 2020 and 2050), we extracted and synthesized all the available information about the envi-
ronmental and ecological requirements of both truffle species from 57 scientific publications (Supplementary 
Table  S2). The literature review focussed on temperature means and precipitation totals, elevational ranges, 
host species, and levels of soil pH (Supplementary Table S2). Except for the host species, each species-specific 
requirement comprises a set of extracted numerical values that defines the truffle’s theoretically viable ecological 
range with a probability range from 0.0001–1% of a normal distribution. Each truffle species’ ecological range 
is equally divided into five suitability classes attributed with a score from 1–5 representing the least and most 
optimal conditions48. Since both species require alkaline soils31, the value range with the pH above 7 was divided 
into five decimal intervals, each of which corresponds to a class of suitability. The uppermost interval above 7.4 
obtained the highest score (5), and the lowest (7.0–7.09) was assigned a score of 1 (Supplementary Table S3).

We used a multicriteria analysis48 to attribute each truffle requirement parameter with a weight of relative 
importance (Supplementary Table S3). This was based on the rank sum method48, following the expert judge-
ment found in the literature (Supplementary Table S2). With the highest (first) rank of 0.1842, soil pH is the 
most common nonclimatic property affecting truffle growth49. Since the effect of soil chemistry on the pace of 
truffle ripening is unknown50, we consider pH to stimulate growth regardless of the fungus life cycle. While both 
species slightly differ in phenology20,51, annual climatic parameters (mean temperature and total precipitation) 
are integrated as second in rank/importance (0.1579) to provide a coarse estimate of the potential distribution51. 
The risk of winter frost is represented by January temperature (0.1316), and the likelihood of summer drought is 
expressed by July temperature and precipitation (0.1316)20,52. Elevation was used as the least important parameter 
(0.1053). The weighted scores were summarized into final suitability values for truffle cultivation, which were 
then converted to percentages53. When addressing differences in the species-specific current and future cultiva-
tion potential, the suitability range was divided equally into five rescaled suitability categories48. The resulting 
distribution maps were created using the Overlay Algebra interface in ArcGIS Pro 2.3.046.

Results
The optimal annual temperature for Burgundy truffle growth is ~ 10 °C, and the ideal July and January tempera-
tures are 19.8 °C and 2.1 °C, respectively (Fig. 1). The Burgundy truffle should receive ~ 700 mm annual precipi-
tation, of which ~ 160 mm should occur in summer. The species’ optimal soil pH is ~ 7.5, and its ideal elevation 
seems to be ~ 570 m a.s.l.. Favourable host trees for Burgundy truffles in the Czech Republic are Carpinus betulus, 
Corylus avellana, Fagus sylvatica, Ostrya carpinifolia, Picea abies, Pinus nigra, Pinus sylvestris, Quercus cerris, Q. 
petraea, Q. pubescens, Q. robur, and Tilia cordata. The optimal annual temperature for Périgord truffle growth 
is ~ 12 °C, and the ideal July and January temperatures are 20.5 °C and 3.8 °C, respectively (Fig. 1). The Périgord 
truffle should receive ~ 780 mm of annual precipitation, with at least ~ 140 mm falling in summer. The species 
favours a pH of ~ 8, and is mainly found at ~ 620 m a.s.l.. Potential host tree species for Périgord truffles in the 
Czech Republic are Corylus avellana, Carpinus betulus, Pinus nigra, Quercus pubescens, and Tilia cordata. Our 
results show that Burgundy truffles exhibit a 1.5 to 2.5-fold broader temperature range than Périgord truffles. 
While Burgundy truffles are 50% more tolerant to changes in summer precipitation, both species exhibit equally 
broad rainfall requirements. Moreover, both species grow at similar elevations and tolerate similar pH levels.

Under the current climate conditions (2020), about 14% of the Czech Republic (77% of the cultivation area) is 
already highly suitable for the cultivation of Burgundy truffles (8486 km2; Table 1). Central Bohemia and southern 
Moravia exhibit the highest cultivation potential with values between 50 and 80%, respectively (Fig. 2). For the 
Périgord truffle cultivation potential under current climate conditions, most of the Czech Republic is recognized 
as low (~ 8%; 6418 km2) and moderate (~ 6%; 4482 km2) (Table 1). With 30% to 50%, southern Moravia exhibits 
the highest Périgord truffle cultivation potential (Fig. 3).

As a response to increasing temperature means until 2050 (annual, July, and January), the potential cultivation 
areas for Burgundy truffles will expand under low- and mid-emission scenarios (~ + 98 km2) but decline under 
RCP8.5 ( ~ − 57 km2) (Fig. 4, Table 1). The suitability to cultivate Burgundy truffles in these areas will increase 
under low-emission scenario (2.6). The actual 8486 km2 of high suitability will expand by ~ 3% (250 km2). 
With a negligible ~ 1.5% (39 km2) decline of high suitability under mid-emission scenario (4.5), the potential 
to cultivate Burgundy truffles remains comparable to the current climate conditions (Fig. 4, Table 1). Under the 
high-emission scenario (8.5), the highly suitable land for Burgundy truffles will decrease only by ~ 7% (572 km2). 
The very highly suitable land will grow from 2 km2 by 99–195 km2 in 2050 under all scenarios (Fig. 4, Table 1). 
With an annual rate of change of ~ 4 km2 from 2020 to 2050, the cultivation suitability of Burgundy truffles will 
change much slower compared to Périgord truffles.

At a pace of change in the order of 83 km2 per year, the suitable land for Périgord truffles will expand nearly 20 
times faster than that of Burgundy truffles (Fig. 5, Table 1). While current potential cultivation areas for Périgord 
truffles will remain constant regardless of future warming, the suitability will rise substantially under all scenarios. 
The future temperature increase will generate up to 352 km2 of high suitability (RCP8.5; above 60%). From its 
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current 4482 km2 to ~ 9316 km2 (RCP mean), the potential area of moderate suitability to cultivate Périgord 
truffles will virtually double in 2050 (Fig. 5, Table 1). As a result, the land under very low and low suitability will 
drop by up to ~ 75% (82 km2) and ~ 82% (5313 km2) under high-emission scenario.

Discussion
First, we discuss the uncertainties associated with our modelling experiment. We then outline the ecological and 
economic implications of a possible increase in central European truffle cultivation under future climate change. 
Finally, we address issues related to irrigation demands and changes in host tree distribution.

Apart from a few brief reports of past truffle harvests and trade, in tandem with scarce herbarium specimens54, 
the occurrence of truffles in the Czech Republic is basically unknown. It should be further noted that Burgundy 
truffles are strictly protected, and any harvesting attempt is banned55. Moreover, the few written documents 
from the early and mid twentieth century lack rigorous species identification nor do they provide sufficiently 
detailed information on the locations of truffle growth. Estimates of the potential truffle occurrence based on 

Figure 1.   Ecological ranges for Burgundy and Périgord truffle (green and blue line/circle) as probability 
distribution functions based on numerical values extracted from the literature. Number above each graph 
represents the mean (optimum) followed by the number of values/studies used for the calculation.

Table 1.   The potentially cultivatable area (km2) for categories of suitability for Burgundy truffle and Périgord 
truffle under current and predicted climate conditions (RCPs) in Czech Republic (78,865 km2). The gain/loss 
in brackets displays the predicted increase/decrease of area (km2) for each category, respectively.

Suitability in km2 ( ±) Current (2020) RCP2.6 (2050) RCP4.5 (2050) RCP8.5 (2050)

Burgundy truffle

Very low 5 1 (− 4) 1 (− 4) 1 (− 4)

Low 233 97 (− 136) 63 (− 170) 24 (− 209)

Moderate 2255 2102 (− 153) 2371 (+ 116) 2884 (+ 629)

High 8486 8736 (+ 250) 8447 (− 39) 7914 (− 572)

Very high 2 141 (+ 139) 197 (+ 195) 101 (+ 99)

Total 10,980 11,077 (+ 97) 11,078 (+ 98) 10,923 (− 57)

Périgord truffle

Very low 109 53 (− 56) 48 (− 61) 27 (− 82)

Low 6488 2154 (− 4334) 1377 (− 5111) 1175 (− 5313)

Moderate 4482 8866 (+ 4384) 9559 (+ 5077) 9525 (+ 5043)

High 0 5 (+ 5) 96 (+ 96) 352 (+ 352)

Very high 0 0 (0) 0 (0) 0 (0)

Total 11,079 11,078 (− 1) 11,079 (0) 11,079 (0)
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Figure 2.   Quantified modelled potential distribution range of suitable Burgundy truffle sites based on pH level, 
elevational ranges, temperature means, and precipitation totals distinctive for the current climate conditions. 
The white polygons show the administrative regions of the Czech Republic. The map was created using ArcGIS 
Pro v. 2.3.046 (https​://www.esri.com/en-us/arcgi​s/produ​cts/arcgi​s-pro/overv​iew).

Figure 3.   Quantified modelled potential distribution range of suitable Périgord truffle sites based on pH level, 
elevational ranges, temperature means, and precipitation totals distinctive for the current climate conditions. 
The white polygons show the administrative regions of the Czech Republic. The map was created using ArcGIS 
Pro v. 2.3.046 (https​://www.esri.com/en-us/arcgi​s/produ​cts/arcgi​s-pro/overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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the detection of mycorrhiza in the roots of potential host trees were recently provided for the Czech Republic 
using a PCR screening method56. However, we cannot use these data for validation, since species-specific truffle 
primers for PCR detection are still associated with large uncertainties, and the presence of mycorrhiza alone does 
not automatically imply the production of fruiting bodies57. Supported by numerous Burgundy truffle finds in 
neighbouring countries21,58, our model estimates should be confirmed by extensive field studies.

The predicted increase in cultivation suitability of the Burgundy truffle by 2050 under the low-emission 
scenario (RCP2.6) indicates that this fungal species will likely benefit from moderate warming. That, in addition 
to the broad temperature niche20 and slower suitability changes, strengthens the notion of climate plasticity of 
Burgundy truffles and corresponds to the species’ wide geographical distribution across Europe. However, our 
models suggest that the very strong temperature increase under the high-emission scenario (RCP8.5), together 
with the cumulative likelihood of summer droughts27, will suppress fruit body formation (and thus total pro-
duction)20, regardless of the sporocarp’s ability to survive under extreme aridity. Hence, we expect that the most 
favourable climate conditions will move northward, which coincides with the predicted latitudinal shift reported 
in Büntgen et al.26, and agrees with the overall climate-induced migration of ectomycorrhiza fungi1–4. The lower 
suitability for the Périgord truffle corresponds with the species’ current restriction to southern Europe23. However, 
the Périgord truffle is expected to benefit largely from climate change, which has already been demonstrated by 
first signs of the species’ northward migration24–27.

Under predicted climate change scenarios, the temperature increase in the Czech Republic will acceler-
ate evapotranspiration, leading to an elevated risk of agricultural drought59, which may critically affect truffle 
cultivation as well60. However, with up to 15 years temporal offset between plantation establishment and truffle 
harvest51, irrigation may help to overcome the constraints natural summer precipitation totals will have on truffle 
growth61. Although irrigation systems are currently available on 1.5% of agricultural land in the Czech Republic62, 
artificial water supplies are expected to increase under future climate change63. Reducing the limiting effects of 
evapotranspiration in a warmer world, advanced irrigation techniques may enhance interannual stability and 
the total production51. We therefore expect an increasing potential to cultivate truffles in agricultural regions of 
southern Moravia and central Bohemia (Figs. 2, 3, 4, 5). Moreover, we speculate that these regions could benefit 
from an increasing interest in truffle cultivation due to land-use diversification and biodiversity28.

Figure 4.   Change of the suitability potential of Burgundy truffle areas in Czech Republic between current (a; 
1989–2018) and future climate conditions described by RCP2.6 (b), 4.5 (c) and 8.5 (d). The absolute values 
(km2) on the bottom line denote the area of very low/low suitable/moderately suitable/high/very high suitable 
land. The three diagrams represent the absolute area change (km2) for categories of suitability (columns) 
between the current conditions and future scenarios. The maps were created using ArcGIS Pro v. 2.3.046 (https​://
www.esri.com/en-us/arcgi​s/produ​cts/arcgi​s-pro/overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview


7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21281  | https://doi.org/10.1038/s41598-020-76177-0

www.nature.com/scientificreports/

Although potential host trees are not specifically included in our modelling experiments, we recognize their 
importance for evaluating potential truffle habitats. Consequently, we compare the host tree species list from the 
literature review with the species database from the Nature Conservation Agency of the Czech Republic64, and 
find many examples of common occurrences between the two lists. Despite the fact that most of the cultivated 
woody vegetation in the Czech Republic is a result of human activities34, much of it originates from indigenous 
species that represent a large portion of the potential truffle host trees. In addition, the wide ecological range of 
the reported host species is a promising prerequisite for the successful establishment and maintenance of truffle 
plantations on agricultural land.

We suppose that truffle cultivation efforts under future climate change would be most viable in association 
with drought-tolerant oaks (Quercus spp.) (Fig. 1), which used to grow naturally in many of the country’s low-
elevation regions34. Truffles will most likely benefit from the occurrence of Quercus pubescens that is already 
expanding from the southernmost part of the Czech Republic34, and Quercus cerris, which is naturally distributed 
across Pannonia, the Balkan, and the Apennine65.

Conclusions
Based on a comprehensive literature review, we estimate the theoretically viable ecological ranges for Burgundy 
and Périgord truffles, and use this information in ecological niche models to predict the species-specific truf-
fle cultivation potential in the Czech Republic under current and future climate conditions in 2020 and 2050, 
respectively. Although associated with uncertainties, climate change will most likely facilitate the cultivation 
of both truffle species on alkaline soils of pH > 7, generating a wide range of ecological and economic benefits.

Received: 21 May 2020; Accepted: 13 October 2020

Figure 5.   Change of the suitability potential of Périgord truffle areas in Czech Republic between current (a; 
1989–2018) and future climate conditions described by RCP2.6 (b), 4.5 (c) and 8.5 (d). The absolute values 
(km2) on the bottom line denote the area of very low/low suitable/moderately suitable/high/very high suitable 
land. The three diagrams represent the absolute area change (km2) for categories of suitability (columns) 
between the current conditions and future scenarios. The maps were created using ArcGIS Pro v. 2.3.046 (https​://
www.esri.com/en-us/arcgi​s/produ​cts/arcgi​s-pro/overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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