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Historical and projected future range sizes of the
world’s mammals, birds, and amphibians
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Species’ vulnerability to extinction is strongly impacted by their geographical range size.

Formulating effective conservation strategies therefore requires a better understanding of

how the ranges of the world’s species have changed in the past, and how they will change

under alternative future scenarios. Here, we use reconstructions of global land use and

biomes since 1700, and 16 possible climatic and socio-economic scenarios until the year

2100, to map the habitat ranges of 16,919 mammal, bird, and amphibian species through

time. We estimate that species have lost an average of 18% of their natural habitat range

sizes thus far, and may lose up to 23% by 2100. Our data reveal that range losses have been

increasing disproportionately in relation to the area of destroyed habitat, driven by a long-

term increase of land use in tropical biodiversity hotspots. The outcomes of different future

climate and land use trajectories for global habitat ranges vary drastically, providing impor-

tant quantitative evidence for conservation planners and policy makers of the costs and

benefits of alternative pathways for the future of global biodiversity.
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Habitat range size is a strong predictor of species’ vulner-
ability to extinction1,2. As a result, two major drivers of
the decline of geographic range sizes—the conversion of

natural vegetation to agricultural and urban land, and the
transformation of suitable habitat caused by climate change—are
considered two of the most important threats to global terrestrial
biodiversity3. Land-use change has caused staggering levels of
habitat contractions for a range of mammal4–6, bird7, and
amphibian species8. Simultaneously, anthropogenic climate
change has been driving shifts in species’ ranges9–12, which,
whilst resulting in larger range sizes for some species, has led to
severe range retractions for others11,13,14. Declines in global range
sizes due to land-use and climate change heavily contribute to the
loss of local species richness15–17 and abundance17–19 in many
parts of the world, thereby threatening essential ecosystem
functions17,20. With global agricultural area potentially increasing
drastically in the coming decades21, and climate change con-
tinuing to drive ecosystem change at an accelerating pace22,
future projections suggest that past trends in range contractions
may continue23,24, and likely contribute to projected large-scale
faunal extinctions12,13,25,26.

Considering the crucial role that species’ range sizes play for
extinction risks, a better understanding of the long-term range
dynamics of individual species, and projections of future changes
under alternative scenarios, is crucial for conservation planning
from the local to the global scale. Such estimates would allow
quantification of historical pressures on species, and inform
prioritisation of future efforts. Here, we estimate the habitat range
sizes of 16,919 mammal, bird and amphibian species from the
year 1700 until 2100 based on global land use and climatic
conditions. We use empirical datasets of the global distribution of
species, and combine these with species-specific biome pre-
ferences to estimate local habitat suitability under natural vege-
tation, cropland, pasture and urban land cover. By overlaying
these data with reconstructions of global biomes corresponding to
past climatic conditions, and agricultural and urban areas since
1700, we estimate the historical habitat ranges of each species
(‘Methods’). We then extend the analysis into the future based on
16 alternative land use and climate trajectories until the year
2100, representing four emission scenarios (representative con-
centration pathways (RCPs) 2.6, 4.5, 6.0, 8.5), and five socio-
economic pathways (shared socio-economic pathways (SSPs)
1–5) (‘Methods’). SSP1 and SSP3 represent futures where socio-
economic challenges for adaptation and mitigation to climate
change are both low and both high, respectively; SSP4 combines
high challenges to adaptation with low challenges to mitigation,
while SSP5 represents the opposite case; SSP2 is a middle-of-the-
road scenario of intermediate challenges to adaptation and
mitigation27,28 RCPs 2.6–8.5 represent increasing levels of global
warming by the end of the century29. Considering all possible
SSPs for any given RCP is crucial, as using only one realisation
per RCP can conflate effects and lead to contestable patterns (e.g.,
ref. 16). By design of the method used here, modelled species’
habitat ranges do not exceed the outermost geographic limits of
species’ observed and projected occurrences. Whilst this approach
still allows for ample range shifts and expansions (‘Methods’),
climate change may push some species beyond these bounds,
which our estimates would not account for. Furthermore, our
method does not account for habitat range shifts from climatic
changes that are too small to manifest as biome changes
(‘Methods’); thus, range shifts in highly climatically sensitive
species may be underdetected. Our estimates of the distribution of
species’ habitat ranges based on land use and climate represent
upper estimates for the actual distribution of populations. They
neither incorporate other types of human influence, such as
hunting30, suppression by introduced species31 and pathogens32,

nor do they account for species’ mobility33, or the impacts of
habitat fragmentation34 and trophic cascade effects35 on the
viability of local populations. Our analysis reveals that species
have lost an average of 18% of their natural range sizes thus far, a
figure that may drop to 13% or increase to 23% by the end of the
century, depending on future global climatic and socioeconomic
developments.

Results and discussion
Historical changes in habitat range sizes. With moderate
impacts on the habitat ranges of most species’ up until the
industrial revolution, the expansion of agricultural production
and settlements alongside the rise in population growth since the
early 1800 s has drastically reduced range sizes of most mammals,
birds, and amphibians (Fig. 1a). Using potential natural ranges in
1850 as a reference (‘Methods’), we estimate that species had lost
an average of 18% of their natural habitat area by 2016. For most
species, alterations in the global distribution of biomes due to past
climatic change have had a much smaller effect on range sizes
compared to land use, causing average range changes of <1% in
the past 300 years (Supplementary Fig. 1). There is substantial
variability between species in terms of the experienced range
changes. Critical levels of habitat range loss affect a rapidly rising
number of species, with currently 16% have lost more than half of
their natural range. Among these species, tropical species account
for an increasingly larger proportion (Fig. 1b), whereas small-
ranged and threatened species did not experience significantly
higher ranger losses than other species (Supplementary Fig. 2).
For an estimated 18% of species, ranges have expanded in con-
sequence of anthropogenic climate change and the conversion of
unsuitable natural vegetation to cropland and pastures (Fig. 1a).

The magnitude of habitat range contractions estimated since
1700 is not merely the result of the increasing area of converted
land. Over recent centuries, range loss has increased dispropor-
tionately in relation to the total size of agricultural and urban
areas (Fig. 2a). Whilst the first billion hectares converted since
1700 caused an average 3% loss of habitat size, the most recently
converted half billion hectares are responsible for an average loss
of 6% of natural range sizes. This acceleration of marginal range
losses can be explained by a long-term trend in the location of
land-use change towards tropical regions, where both local
species richness is higher and average ranges sizes are smaller,
and thus where the destruction of natural habitat leads to
particularly high relative range losses36 (Fig. 2b, c). Following a
long period of much less land conversion than in other parts of
the world, these areas have experienced a rapid expansion of
agriculture since the end of the 19th century. Habitat conversion
rates reached their highest levels to date in South America around
the mid–late 20th century, and in the late 20th and early 21st
century in South East Asia (Fig. 2b), a global hotspot of small-
ranged species36 (Fig. 2c).

Projected future changes in habitat range sizes. Whether these
past trends in habitat range losses will reverse, continue or
accelerate will depend on the global emission and socio-economic
pathway chosen in the coming years and decades. By 2100,
average range losses could reach up to 23% in the worst-case
scenario (RCP 6.0, SSP 3), or drop to 13%—roughly equivalent to
levels in 1955—in the best case (RCP 2.6, SSP 1) (Fig. 3a). The
proportion of species suffering the loss of at least half of their
natural range size could increase to 26% (RCP 6.5, SSP 3) or
decrease to 14% (RCP 2.6, SSP 1) by 2100 (Fig. 3b). Isolating
the impact of climate change shows that higher levels of
global warming increase both the number of species experiencing
substantial range contractions and range expansions11,14
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(Supplementary Fig. 1). Across-species average range losses by
2100 increase consistently with higher emission levels for any
given socio-economic pathway (Fig. 3a). At the same time, the
differences between climate-change scenarios, in terms of average
range change, are at times smaller than the differences between
socio-economic scenarios. Across climate change scenarios,
average range loss is consistently highest for SSP 3 (high chal-
lenges for both mitigation and adaptation to climate change),
similar for SSP4 (adaptation challenges dominate), SSP5

(mitigation challenges dominate) and SSP2 (intermediate chal-
lenges), and lowest for SSP1 (low challenges for both mitigation
and adaptation). Whilst SSP 1 would enable the re-expansion of
ranges in many parts of the world as the result of the abandon-
ment of agricultural areas, notably in Southeast Asia, SSP 3
represents a continuation of land-use change in the tropics, most
strongly in the Congo basin (Supplementary Fig. 4).

Our estimates of the past and present states of species’ habitat
ranges, and how they will be impacted under alternative future

17
00

18
00

18
50

19
00

19
40

19
60

20
00

–4%

–2%

–6%

–8%

–10%

–12%

M
ed

ia
n 

ch
an

ge
 o

f h
ab

ita
t r

an
ge

 s
iz

e

–14%

–16%

–18%

1 2 3
Global agricultural and urban area (million ha)

Year

Decade of the highest rate of conversion
to agricultural and urban land

2000

2.5
× 109

2

1.5

1

0.5

1950

1900

1850

≤1800

Mean potential natural range
size of local species (ha)

4 5

a b

c

Fig. 2 Acceleration of the marginal impact of land use on species’ range sizes. a Across-species median range loss against the cumulative global
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Fig. 1 Past changes in the range sizes of mammals, birds and amphibians. a Estimated changes in range sizes between 1700 and 2016, relative to
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climatic and socio-economic scenarios, provide important evi-
dence for conservation-oriented decision-making from the local to
the global scale. Our results provide quantitative support for policy
measures aiming at curtailing the global area of agricultural
land37,38 (by sustainably intensifying production39–41, encoura-
ging dietary shifts42,43 and stabilising population growth44),
especially in areas of small-range species36, steering production
to agro-ecologically optimal areas when the additional expansion
is inevitable39,45, targeting land abandonment and restoration in
hotspot areas46,47 and limiting climate change48. Whilst our data
quantify the drastic consequences for species’ ranges if global land
use and climate change are left unchecked, they also demonstrate
the tremendous potential of timely and concerted policy action for
halting and indeed partially reversing previous trends in global
range contractions.

Methods
Global land-use data. For the historical time period 1700–2016, we used recon-
structions of global cropland, pasture, and urban areas from the HYDE 3.2 data-
set49 (available from https://doi.org/10.17026/dans-25g-gez3). Whilst HYDE 3.2
provides land-use data as far back as 10,000 BCE, we began our analysis in the year
1700, prior to which global land-use data are subject to increased uncertainty49,50.
A total of 47 maps, including lower and upper uncertainty bounds, are available at
10-year intervals between 1700 and 2000, and at 1-year intervals between 2000 and
2016. These data were upscaled from their original spatial resolution of 0.083° to a
0.5° grid by summing up the cropland, pasture, or urban areas of all 0.083° grid
cells contained in a given 0.5° cell.

For the period 2020–2100, we used 0.5°-resolution 10-year time-step
projections of global cropland, pasture, and urban areas from the AIM model51

(available from https://doi.org/10.7910/DVN/4NVGWA), covering Representative
Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5, and Shared Socio-economic
Pathways (SSPs) 1–5. The dataset contains all possible combinations of these
emission and socio-economic trajectories with the exception of RCP 2.6/SSP 3,
and RCP 8.5/SSPs 1–4. The data were harmonised with the HYDE 3.2 data by
adding the differences between HYDE 3.2 and AIM cropland, pasture and urban
area maps in the year 2010 to the AIM future land use projections. We refer to
refs. 27–29,52 for details of the emission and socio-economic pathways, and to ref. 28

for a comparison between the AIM model and other integrated assessment models.

Global biome data. We used the BIOME4 vegetation model53 (available from
https://pmip2.lsce.ipsl.fr/synth/biome4.shtml) to simulate the distribution of global
potential natural biomes between the years 1700 and 2000, and between 2020 and
2100 for each of the four climate-change scenarios considered here (RCPs 2.6, 4.5,
6.0, 8.5), at a spatial resolution of 0.5°. Inputs required by BIOME4 include global
mean atmospheric CO2 concentration, and gridded monthly means of temperature,
precipitation, and percent sunshine. Past and RCP-specific future CO2 levels were
obtained from refs. 54 and 55, respectively. The climatic data were generated as
follows. For the period 1700–1900, we used annual simulations from the HadCM3
climate model56 (available from https://esgf-node.llnl.gov/search/cmip5/; Experi-
ments ‘past1000’ and ‘historical’, Ensemble ‘r1i1p1’). For the period 1901–2016, we
used 0.5° resolution annual observational data57 (available from https://doi.org/
10.5285/10d3e3640f004c578403419aac167d82). For the period 2020–2100, and for
each RCP (2.6, 4.5, 6.0, 8.5), we used annual simulations from the HadGEM2-ES
climate model58, the MIROC5 climate model59 and the CSIRO-Mk3.6.0 climate
model60 (available from https://esgf-node.llnl.gov/search/cmip5/; for each climate
model and each RCP, we used averages from Ensembles ‘r1i1p1’, ‘r2i1p1’, ‘r3i1p1’,
‘r4i1p1’). We downscaled and bias-corrected both the pre-1901
HadCM3 simulations and the future HadGEM2-ES, MIROC5, and CSIRO-
Mk3.6.0 simulations using the delta method61. This method is based on applying
the difference between simulated and observed climate at times at which both are
available (here we used the 1900–1930 period for the historical data, and the year
2006 for the future data) to the simulated climate at points in time at which only
simulated data exist (i.e., pre-1901 and post-2016) in order to correct systematic
biases in the climate model61,62. The delta method also serves to spatially down-
scale the simulated climate to the 0.5° resolution of the observational data.

For the computation of the global biome distribution at a point in time t, we
used as inputs for BIOME4 the atmospheric CO2 concentration and gridded
monthly climate values averaged across the time interval [t – 30 years, t]. Biome
simulations were performed at 10-year intervals for both the historical and the
future period. The complete time series of global biome simulations are available as
Supplementary Movies 1–13.

Estimation of species’ habitat ranges. We estimated the geographic habitat
ranges of an individual bird, mammal, and amphibian species through time fol-
lowing the general methodology in ref. 23. Our approach combines the following
data:

I. Spatial polygon data of species-specific extents of occurrence of all known
birds63 (available from http://datazone.birdlife.org/species/requestdis),
mammals, and amphibians64 (available from https://www.iucnredlist.org/).

II. Species-specific biome requirements63,64 (data also available from the above
websites).
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Fig. 3 Projected future range changes of mammals, birds and amphibians for representative concentration pathways (RCPs) 2.6, 4.5, 6.0, 8.5, and
shared socioeconomic pathways (SSPs) 1–5. a Across-species median range size changes, relative to potential natural ranges in 1850 (analogous to the
black line in Fig. 1a). b Percentage of species projected to experience a loss of more than half their natural range size. In (a), (b), lines represent the means
of projections derived based on n= 3 different climate models; uncertainty bands represent standard deviations and indicate the uncertainty of the
projections with respect to the climate data ('Methods'). Uncertainties of the AIM land-use projections of specific RCP/SSP scenarios are not available.
RCP/SSP scenarios not shown are either incompatible or the relevant land-use data were not generated with the AIM model51. Complete fan charts
showing 10%–90% percentiles of range changes across species (as in Fig. 1a), and bar charts showing critical range losses by primary mega-biome (as in
Fig. 1b), are shown in Supplementary Fig. 3 for individual RCP/SSP combinations.
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III. Maps of global potential natural biome distributions corresponding to the
relevant climatic conditions through time (i.e., reconstructions for the past,
and RCP-specific projections for the future).

IV. Maps of global cropland, pasture, and urban areas through time (i.e.,
reconstructions for the past, and RCP- and SSP-specific projections for the
future).

The data I–IV were used to estimate the habitat range of individual species at a
given point in time as illustrated in Fig. 4 and detailed in the following. In a first
step, we used species-specific extents of occurrence (data I), which represent the
outermost geographic limits of species’ observed, inferred or projected
occurrences1. These spatial envelopes do not account for the distribution of natural
or artificial land cover within that area, and therefore generally extend substantially
beyond a species’ actual area of occupancy65,66. We first remapped extents of
occurrence from their original spatial polygon format to a 0.083° resolution grid
using the ‘rasterise’ function of the ‘raster’ package in R, which maps spatial
polygons to those raster grid cells whose centres are contained within the polygons.
For each species, we then determined the proportion of 0.083° cells contained in
each 0.5° grid cell that represents the species’ extent of occurrence. This provides an
estimate of the proportion of each 0.5° grid cell that is contained in the species’
extent of occurrence. Compared to the rasterising extent of occurrence directly to a
0.5° grid, this approach provides for more accurate estimates of species’ ranges and
reduces the number of species that are not included in our analysis because their
extents of occurrence do not overlap with any grid cell centre.

In a second step, we refined the derived species-specific maps of the proportion
of 0.5° grid cells contained in species’ extents of occurrence by combining
them with species-specific biome requirements and maps of global biome
distributions. Species-specific biome requirements (data II) include one or
more habitat categories (cf. Supplementary Table 1), in which each species is
known to occur. A species was estimated as being present in a grid cell contained in
its previously derived extent of occurrence under the potential natural biome at a
given point in time if the species’ list of habitat categories contained the local (i.e.,
grid cell-specific) potential natural biome at the relevant time (data III; see above).
This required matching IUCN habitat categories (https://www.iucnredlist.org/
resources/habitat-classification-scheme) with the biome categories of the
Biome4 vegetation model, which was done as shown in Supplementary Table 1. In
this way, we subset extents of occurrences by only retaining grid cells where the
natural biome type is included in a species’ list of suitable habitat categories. The
result of this step represents a species’ estimated potential natural habitat range
(i.e., in the hypothetical absence of anthropogenic land use) at a given point
in time.

In a third step, we estimated actual habitat ranges by including maps of global
land use through time. Each species’ actual habitat range at a given time was
derived by removing any unsuitable anthropogenic land from the previously
estimated potential natural range. Historical and projected future land use maps
(data IV; see above) provide the fraction of each grid cell that is occupied by
cropland, pasture or urban areas. These data were combined with information on
which of these three artificial land cover types, if any, species can occur in, which is
also included in the list of species’ biome requirements (data II). This allowed us,
for each grid cell contained in a species’ potential natural range at a given time, to
estimate the proportion of the grid cell that contained suitable habitat. A species’
actual habitat range size was then obtained as the sum of the areas of the remaining
suitable habitat from all relevant grid cells.

We applied the above method at each point in time for which global land use
data is available (see above). In this way, we obtained potential natural ranges and
actual ranges for 47 points in time between 1700 and 2016—using the baseline as
well as lower and upper uncertainty bounds of the HYDE 3.2 land-use
reconstructions—, and for nine points in time between 2020 and 2100—using the
16 combinations of future climatic and socio-economic pathways (see above), each
of which, in turn, was considered based on climate data from three alternative
models. Thus, we considered a total of 141 historical and 432 future scenarios.

Since the global distribution of natural biomes varies over time as the result of
(naturally or anthropogenically) changing climatic conditions, the sizes of potential
natural habitat ranges are time-dependent. This motivates to consider range
changes in relation to the potential natural ranges estimated at a particular
reference time, for which we chose the year t0= 1850, representing a modern pre-
industrial baseline. Denoting the potential natural range and the actual range of a

species i at a time t by Apotential
i ðtÞ and Aactual

i ðtÞ, respectively, the range change
associated with species i at time t as the result of the distribution of biomes and
land use at that time was calculated at as

ΔAi tð Þ ¼ 100% � Aactual
i ðtÞ

Apotential
i ðt0Þ

� 1

 !
: ð1Þ

Species whose potential natural habitat range size in the reference year t0=
1850 (i.e., the range size estimated in the absence of anthropogenic land use and

based on the global distribution of biomes in 1850) is zero, Apotential
i t0ð Þ ¼ 0, were

not included in the analysis as, in this case, changes in range size are not defined.
Based on the set ΔAi tð Þf gi¼1;2;¼ of the individual range changes of all species
through time, we calculated range change percentiles at each point in time (Fig. 1a),
and determined the proportion of species that have experienced the loss of a given
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percentage of their baseline range (Fig. 1b). Similarly as in Eq. (1), we also
computed the range change attributed only to climate-change-induced biome

changes, 100% � Apotential
i ðtÞ=Apotential

i ðt0Þ � 1
� �

(Supplementary Fig. 1).

Analyses were conducted using Matlab R2019a67 and R v3.6.368.

Method discussion. Whilst the available climate data for a given point in time
only allows us to assign one primary natural biome type to each 0.5° grid cell,
microclimates within cells may, in reality, result in the presence of different biomes
in parts of a cell that are not represented in our data. By design of the approach
used here, grid cells containing a non-primary biome that is suitable for a species,
whilst the estimated primary biome is not, do not contribute to our estimation of
the species’ habitat range. Conversely, grid cells containing a non-primary biome
that is not suitable for a species, whilst the primary biome is suitable, would be
included in their entirety in the species’ estimated range. This may lead us to
underestimate the range sizes of species typically occurring in non-primary biomes
in areas in which the estimated primary biomes are not suitable for the species, and
to overestimate the range sizes of species typically occurring in the estimated
primary biome in areas where other biomes also occur that are not suitable.
Higher-resolution biome data could, in principle, reduce inaccuracies; however,
generating such data in a reliable manner is not trivial. We are not aware of
indications that this aspect of the approach would either systematically increase or
decrease our overall estimates for range size changes across species in Fig. 1a.

Our estimation of species’ habitat range sizes does not take into account habitat
connectivity within or across grid cells. In principle, this can result in disconnected
patches being included in a species’ estimated range, despite in reality being too
small to represent potentially suitable habitat. However, neither species-specific
data on the minimum size that spatially connected areas must not fall below before
becoming non-viable nor reliable very-high-resolution land use and biome data,
both of which would be needed to fully accommodate this issue, are currently
available.

Although species’ extents of occurrence are based not only on known, but also
inferred and projected occurrences, the data remain very likely biased as the result
of range contractions that occurred before the beginning of the systematic
collection and mapping of species’ distributions, and that cannot be fully
reconstructed. Whilst this may lead us to underestimate the absolute range sizes of
species, it does not necessarily imply that we either systematically underestimate or
overestimate the percentage change of species’ ranges through time.

We chose the 0.5° resolution for our analysis as both the 1901–2016
observational climate data (and therefore also the pre-1901 and future climate data,
which were downscaled using the observational data) and the projections of future
land use are only available at this resolution. Attempts to further downscale these
data would likely involve significant additional uncertainties. We are not aware of
indications that an increase in the resolution of the analysis (if indeed the necessary
datasets were available) would result in a systematic increase or decrease of either
the absolute range sizes or the percentage change of range sizes relative to the
baseline sizes, estimated here, at any point in time.

Species-specific extents of occurrence and habitat preferences have been argued
to be subject to uncertainty69; however, uncertainty estimates (quantitative or
otherwise) are not provided with the data. In our main analysis, we therefore used
the available data at face value. However, to verify that our results are not overly
impacted by specific species, we performed the following bootstrapping analysis.
Based on the set of species-specific range changes of all 16,919 species, estimated
for the year 2016, we randomly sampled 16,919 values from this set with
replacement a total of 104 times. For each of these 104 sets of range change
estimates, we calculated 10%–90% percentiles analogous to Fig. 1a. For each
percentile, we then calculated the mean and standard deviation of the computed
104 values. The result, shown in Supplementary Fig. 5, demonstrates that the
uncertainties of our estimates with respect to specific species are very small,
indicating that our results are robust with respect to potential uncertainties in the
species data.

Estimates of temporal delays in biome shifts in response to climatic changes70

are currently not available with the global coverage that would allow us to further
refine our approach of assuming that biomes at a given point in time are
determined by the climatic conditions in the preceding 30 years. This also applies
to data on the dispersal speeds of plant functional types, and their effect on
potential delays in colonisations of previously climatically unsuitable areas33;
current studies on this topic are too spatially scarce to inform our approach. In our
main analysis, we therefore followed the assumption commonly made in global
vegetation models of no seed dispersal limitations71. However, to explore the
impact of this assumption, we also repeated our analysis based on the extreme
scenario of biomes not shifting at all between the present (year 2016) and 2100.
The estimated range size changes (Supplementary Fig. 6) are quantitatively similar
to the results of our main analysis (Fig. 3), consistent with our assessment of the
overall stronger impact of land use compared to climate-driven biome changes.
Qualitatively, i.e., in terms of how different RCP/SSP scenarios rank relative to each
other, results are equivalent to those of our main analysis.

As noted in the Introduction, our estimates of future habitat ranges represent
upper estimates of species’ actual geographic distributions. In particular, our main
analysis does not account for species’ ability to migrate to areas that will become
suitable habitat at a future point in time but are not at present. However, our

framework allows us to examine the effect of excluding such areas from the
estimated habitat range. We repeated our analysis of future changes in habitat
range sizes, but considered a grid cell as part of a species’ range only if the local
biomes estimated for both the relevant point in the future and for the present (year
2016) were included in the species’ list of biome requirements. In other words, grid
cells outside of species’ current potential natural habitat ranges were not counted
towards their future range sizes, assuming that species are not able to migrate at all.
This represents an extreme scenario that will underestimate most species’ mobility
(e.g., over half of the species considered here can fly) and their ability to track
biome shifts. Since the habitat range derived for a species in this manner is a subset
of the one estimated in our main analysis, projected range losses based on this
approach are, by design, higher (Supplementary Fig. 7). Qualitatively, results are
equivalent to those in Fig. 3 in terms of how different RCP/SSP scenarios rank
relative to each other.

As the empirical data on species’ habitat preferences only provide categorical
biome requirements, not continuous climatic envelopes, the method used here does
not account for range changes due to changes in climatic conditions that are too
small to manifest as biome changes. However, estimating precise climatic envelopes
of species can be subject to considerable uncertainty and be highly sensitive to the
way in which they are estimated (see below). By construction of the method used
here, species’ ranges over time vary within the extents of occurrence provided with
the empirical data, and do not exceed those. Justification for this assumption is
provided by the fact that potential natural ranges (and, much more, actual ranges)
are generally well-contained within extents of occurrence, with the former
accounting for an average of 64% of the area of the latter in the reference year 1850,
thus providing ample space for range shifts and expansions within the boundaries.
Additional evidence that the restriction of habitat ranges to the extents of
occurrence does not prevent significant range expansions can be seen in the
sizeable number of species that have already experienced such range expansions
(Fig. 1a and Supplementary Fig. 1) or are predicted to do so in future scenarios of
strong global warming (Supplementary Fig. 1 and Supplementary Fig. 3a).

Climate niche models estimate statistical relationships between climatic
conditions and species’ spatial distributions, and apply these to climate projections
in order to estimate future distribution patterns72. By design, they have great
potential for mapping species’ distributions under a high degree of complexity in
terms of possible predictor variables and their interactions, which has made the
approach very useful in scenarios where the number of species, the geographic
region and/or the temporal scale considered is relatively small so that statistical
challenges are well-manageable73–75. In an analysis involving a large number of
species, points in time, and different climatic and land-use scenarios considered
here, the challenges commonly faced by climate nice models, specifically in terms
of ensuring the robustness of the underlying statistical model and the estimated
parameters, and avoiding unwanted artefacts in the extrapolation behaviour76–81,
would be very difficult to manage. By operating directly and transparently on the
empirical data of species’ extents of occurrence and biome requirements, and not
being reliant on any particular statistical model or parameterisation, the approach
used here provides the robustness needed at this scale of data23,82.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data associated with this study are available on the Open Science Framework https://doi.
org/10.17605/OSF.IO/TJ6C5. Bird distribution and habitat data are available from http://
datazone.birdlife.org/species/requestdis; mammal and amphibian distribution and
habitat data are available from https://www.iucnredlist.org/; HYDE 3.2 past land use
reconstructions are available from https://doi.org/10.17026/dans-25g-gez3; AIM future
land-use projections are available from https://doi.org/10.7910/DVN/4NVGWA;
Historical and future climate simulations are available from https://esgf-node.llnl.gov/
search/cmip5/; 1901–2016 observed climate data are available from https://doi.org/
10.5285/10d3e3640f004c578403419aac167d82.
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