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Investigating the roles of candidate gap genes from the neuroblast timer 

series during axial patterning in the beetle Tribolium 

Olivia Rose Annecy Tidswell 

SUMMARY 
 

The gap genes encode transcription factors that play a central role in the process of 

segment patterning in Drosophila. Specifically, they interact to form the well-characterised 

‘gap gene network’, which directs the formation of segment boundaries (through regulation of 

pair-rule genes), and the subsequent diversification of segments (through regulation of Hox 

genes). Although homologues of the gap genes play important roles in segment patterning in 

many insects, there is as yet no clear understanding of the network as a whole outside of 

Drosophila. In particular, the existence of a ‘gap gene gap’ (a region of the axis that expresses 

no gap genes) in embryos of the beetle Tribolium castaneum may indicate the existence of 

additional, as yet unidentified gap genes in this species.  

In this work, I investigate the hypothesis that the neuroblast timer genes nubbin (nub) 

and castor (cas) may act as components of the gap gene network in Tribolium. I first utilise 

Hybridisation Chain Reaction in situ hybridisation to produce a comprehensive description of 

the dynamics of gap gene expression in Tribolium, concluding that, although the non-canonical 

gap genes Tc-mille-pattes and Tc-shavenbaby are expressed in the gap gene gap, their role may 

be distinct from that of the canonical gap genes, and that there are likely to be other, unknown 

gap genes expressed alongside them. I show that the four genes of the neuroblast timer series 

(hunchback, Krüppel, nub and cas) are expressed sequentially in the segment addition zone, 

with the result that nub and cas are expressed in the gap gene gap. Knocking down the 

expression of nub, but not cas, using RNAi results in weak homeotic transformations of the 

first abdominal segment towards a thoracic fate. Finally, I show that this phenotype is 

dramatically increased in severity and penetrance when Tc-nub is knocked down in addition to 

the trunk gap genes Tc-gt and/or Tc-kni. In triple knockdowns, all abdominal segments are 

transformed into thoracic segments due to a posterior expansion of the thoracic gap gene Tc-

Kr and subsequent loss of expression of the abdominal Hox genes Tc-abdominal A and Tc-

Ultrabithorax. These data indicate that Tc-nub, Tc-gt and Tc-kni act redundantly to repress the 

expression of Tc-Kr in the abdomen, and that both Tc-nub and Tc-kni should therefore be 

considered as components of the gap gene network in Tribolium.   



 iv 

My work strengthens the hypothesis that the gap gene network may have ancient 

evolutionary ties to the neuroblast timer network, and promotes a more ‘modular’ view of the 

gap gene network. I hope that this will inform future studies that aim to unravel the 

developmental role of the gap genes in sequentially segmenting arthropods, and the 

evolutionary origins of the gap gene network.   
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A1-10 – abdominal segments 1-10 
AEL – after egg lay 
abdA – abdominal A 
AbdB – abdominal B 
Antp - Antennapedia 
AP – anterior-posterior 
cad - caudal 
cas - castor 
eve – even-skipped 
grh - grainyhead 
gt - giant 
hb - hunchback 
HCR – Hybridisation Chain Reaction 
hkb - huckebein 
ISH – in situ hybridisation 
kni - knirps 
Kr - Krüppel 
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mlpt – mille-pattes 
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nub - nubbin 
PS = parasegment 
SAZ – segment addition zone 
svb - shavenbaby 
T1-3 - thoracic segments 1-3 
TF – transcription factor 
Tl10 – Toll-10 
tll - tailless 
Ubx - Ultrabithorax 
Wg – Wingless 
 
 
 
 
A note on terminology 
Throughout this text, gene names are italicised (e.g., nub), while protein names are capitalised 

in plain text (e.g., Nub). The prefixes Dm- and Tc- refer to genes or proteins specifically from 

Drosophila melanogaster or Tribolium castaneum, respectively. 
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1. GENERAL INTRODUCTION 
 

 

The evolutionary success of the phylum Arthropoda, which includes centipedes, millipedes, 

spiders, crustaceans and insects, among others, is often attributed to their characteristically 

modular, or segmented, body plan. Segmented body plans provide a great deal of evolutionary 

flexibility, as individual segments can be added, deleted or modified without disrupting 

functions carried out by others. Arthropods have made great use of this flexibility, with 

different groups adapting their body plans to invade nearly every habitat on earth. 

Understanding how this segmented body plan is generated during early development, and how 

it is modified in different lineages to produce diverse larval and adult morphologies, is a major 

area of focus for the field of evolutionary and developmental biology (Clark et al., 2019; Peel 

et al., 2005). 

This thesis is specifically focused on the evolution and function of the gap genes: a network 

of genes that encode DNA-binding transcription factors (TFs) involved in segment patterning 

in many arthropods. In particular, I am interested in similarities between the gap gene network 

and a network of genes involved in regulating cell fate in the insect nervous system (known as 

the neuroblast timer series), and what this might tell us about the origins of the gap gene 

network. 

Most of what is known about gap genes comes from studies in the ubiquitous arthropod 

model, Drosophila melanogaster. However, development in Drosophila is derived in several 

ways compared to other arthropods, including in the way that segments are patterned (Clark et 

al., 2019; Peel et al., 2005). Recent research on segmentation in arthropods has therefore turned 

to more representative species, notably the beetle Tribolium castaneum, as a point of 

comparison (Clark et al., 2019). This thesis attempts to further develop our understanding of 

the evolution and functions of the gap gene network, using Tribolium as a model system. 
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 1.1. The gap gene network and segmentation in Drosophila 

 

An introduction to the gap genes of Drosophila 

The gap gene network of the fruit fly, Drosophila melanogaster (referred to throughout 

this thesis as simply Drosophila), is one of the best studied gene networks in any organism. 

The existence of gap genes was first inferred from mutagenesis screens carried out in 1978-

1980 (Nüsslein-Volhard and Wieschaus, 1980). In these experiments, thousands of larval 

cuticles from laboratory-generated mutant Drosophila lines were examined for patterning 

defects, and assigned into different phenotypic classes (Wieschaus and Nüsslein-Volhard, 

2016). Gap mutants were so named because they were lacking one or two regions of contiguous 

segments along the anterior-posterior (AP) axis (i.e., a ‘gap’ had been introduced) (Wieschaus 

and Nüsslein-Volhard, 2016). The genes responsible for these gap phenotypes were later 

identified and correspondingly called gap genes. Segment deletions in the trunk (comprising 

the gnathal, thoracic and abdominal segments) arise from mutations in the so-called ‘trunk gap 

genes’: hunchback (hb), Krüppel (Kr), giant (gt) and knirps (kni) (Nüsslein-Volhard and 

Wieschaus, 1980; Nüsslein-Volhard et al., 1984; Wieschaus et al., 1984). In contrast, segment 

deletions in the head or tail regions arise from mutations in the ‘terminal gap genes’, tailless 

(tll) and huckebein (hkb) (Jürgens et al., 1984; Weigel et al., 1990). These genes are encoded 

on different chromosomes across the fly genome (Table 1.1), and are not closely related in 

evolutionary terms. However, it was later found that the TFs encoded by these genes interact 

to form a single network, and that they regulate many of the same target genes, during segment 

patterning in Drosophila (reviewed in Jaeger, 2011).  

 

Table 1.1. Gap gene locations and transcription factor (TF) families. Adapted from Jaeger 

(2011). 

 

Region patterned Gene name Chromosome TF family 

Trunk hunchback (hb) 3R Zinc-finger (C2H2-type) 

 Krüppel (Kr) 2R Zinc-finger (C2H2-type) 

 knirps (kni) 3L Zinc-finger (nuclear hormone receptor) 

 giant (gt) X Basic leucine-zipper 

Terminal tailless (tll) 3R Zinc-finger (nuclear hormone receptor) 

 huckebein (hkb) 3R Zinc-finger (C2H2-type) 
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The gap gene network is part of the Drosophila segmentation cascade  

The gap genes are one of four major gene classes that have been found to regulate the 

process of segment formation during Drosophila embryogenesis, the other three being the 

maternal co-ordinate genes, the pair-rule genes, and the segment polarity genes. These four 

gene classes are expressed and regulate each other in a hierarchical manner to form the segment 

boundaries in the embryonic ectoderm (Figure 1.1) (reviewed in Akam, 1987; Ingham, 1988; 

Nasiadka et al., 2002). At each level of this so-called ‘segmentation cascade’, the subdivision 

of the embryo by segment patterning genes becomes more precise.  

 

 
 

Figure 1.1. Genes of the segmentation cascade of Drosophila. A hierarchy of transcription 

factors interacts to divide the anterior-posterior axis of the embryo into increasingly precise 

units during early development. Examples of the genes comprising each level of the 

segmentation cascade are provided on the right.  
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The maternal co-ordinate genes, as their name suggests, are transcribed maternally and 

their mRNA provided to the oocyte while it is still in the ovary. Following fertilisation, 

interactions between maternally deposited mRNAs and the proteins they encode result in the 

formation of anterior-to-posterior gradients of Bicoid (Bcd) and Hunchback (Hb) proteins, and 

a posterior-to-anterior gradient of Caudal (Cad) protein (reviewed in Nasiadka et al., 2002). 

These three long-range gradients are largely responsible for establishing the initial expression 

of gap genes in broad domains along the trunk of the embryo (reviewed in Jaeger, 2011). In 

contrast, terminal gap genes are regulated primarily through localised Torso MAP-kinase 

signaling at the embryonic poles (reviewed in Furriols and Casanova, 2003; Jaeger, 2011).  

Gap gene expression domains are subsequently sharpened by gap-gap cross regulation 

(Figure 1.2) (reviewed in Jaeger, 2011). Gap proteins with non-overlapping expression 

domains (Hb/Kni and Kr/Gt) exhibit strong mutual repression (Figure 1.2A). Overlapping gap 

genes exhibit weaker, asymmetrical repression. Specifically, more anteriorly-expressed gap 

genes tend to be weakly repressed by overlapping posterior gap genes, but not vice versa 

(Figure 1.2B). This asymmetric repression, in tandem with strong repression of trunk gap genes 

by the posterior terminal gap genes (Figure 1.2C), results in a gradual posterior-to-anterior shift 

in the entire gap expression pattern (Jaeger et al., 2004).  

Following the gap genes, the next set of genes expressed in the segmentation cascade 

are the pair-rule genes. The pair-rule genes are activated by numerous broadly expressed genes, 

including the maternal co-ordinate genes; however, their restriction into spatially periodic 

patterns depends on repression by gap genes (reviewed in Nasiadka et al., 2002). Most pair-

rule genes are expressed transiently in a seven stripe pattern along the length of the embryo 

(Figure 1.1. and Nasiadka et al., 2002). These stripes are established via stripe-specific 

enhancer sequences, each of which responds to a unique combination of maternal co-ordinate 

and gap proteins (Schroeder et al., 2011). The striped patterns of different pair-rule genes are 

out of register with each other, so that together their overlapping expression patterns cover the 

entirety of the trunk. The posterior-to-anterior shift in the gap gene expression pattern drives a 

similar shift in the pair-rule gene pattern (Surkova et al., 2008) which is essential for normal 

segment patterning (Clark, 2017).  

Finally, pair-rule proteins regulate the spatial expression of the segment polarity genes, 

which are each expressed in 14-15 stripes along the length of the embryo (reviewed in Nasiadka 

et al., 2002). The segment polarity genes do not define the boundaries of morphological 

segments, but rather of patterning units known as ‘parasegments’ (Martinez-Arias and 

Lawrence, 1985). Parasegments are the same size as segments, but shifted anteriorly so as to 
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be out of register with the final, exterior segmental pattern. The discrepancy is believed to 

reflect a similar offset in the organisation of metameric elements of the nervous system (which 

are patterned early in development, and have parasegmental boundaries) and of the exoskeleton 

(which are formed later, and have segmental boundaries) (Deutsch, 2004). 

 

 
 

Figure 1.2. Gap-gap cross-regulatory interactions in Drosophila. A-D show abstractions of the 

trunk and tail region of the Drosophila embryo, with anterior to the left and posterior to the 

right.  Coloured bars indicate the approximate extent of expression of each gap gene along the 

length of the AP axis of the embryo. Strong mutual repression between gap proteins with non-

overlapping domains establishes the basic staggered pattern of gap gene expression (A). 

Weaker, asymmetrical repression between overlapping gap genes refines boundaries and leads 

to a posterior-to-anterior shift in the entire gap gene pattern over time (B). The terminal gap 

genes prevent the expression of trunk gap genes in the posterior of the embryo (C). A summary 

of these interactions is shown in D.  
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Segment diversification in Drosophila 

In addition to their role in the segmentation cascade, gap genes also play a key role in 

the diversification of segments towards different morphologies and functions (termed ‘segment 

identity’). Segment identity in Drosophila is driven by the Hox genes (Figure 1.3). Hox genes 

encode transcription factors that act as regulators of axial identity across the Bilateria (reviewed 

by many, including Akam, 1998a; Akam, 1998b; Duboule, 2007; Hughes and Kaufman, 2002; 

Krumlauf, 1994; Maeda and Karch, 2006; Mallo and Alonso, 2013). I present here only the 

aspects of their regulation that are relevant for the purposes of this thesis. 

Gap proteins are major regulators of the Hox genes. While the expression of Hox genes 

in Drosophila is activated globally, expression is restricted to specific domains largely by 

repression via gap proteins (reviewed in Nasiadka et al., 2002). For example, the gap proteins 

Hb and Kr are required to restrict expression of the Hox genes Ultrabithorax (Ubx) and 

abdominal A (abdA), respectively, to the posterior of the embryo, and to establish their anterior 

boundaries (Casares and Sánchez-Herrero, 1995; White and Lehmann, 1986). The gap gene-

mediated regulation of Hox gene expression is controlled by specific regulatory elements 

associated with each Hox gene (reviewed in Maeda and Karch, 2006). The role of gap genes 

in Hox regulation is clearly demonstrated in the case of weaker gap gene mutant alleles, where 

parasegments in the affected region are not deleted but instead take on an altered identity (also 

known as homeosis) (Lehmann and Nüsslein-Volhard, 1987).  

Like the gap genes, cross-regulation between Hox genes is also important for 

establishing the correct expression domains. Trunk Hox genes display a feature known as 

‘posterior prevalence’, wherein more posterior Hox genes are able to repress the expression of 

more anterior Hox genes (Duboule and Morata, 1994). Although gap genes are required to 

establish proper Hox gene expression domains, these domains are subsequently maintained by 

Polycomb and Trithorax proteins, which are able to remodel chromatin to create cellular 

‘memory’ of Hox gene expression state (reviewed in Nasiadka et al., 2002).  
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Figure 1.3. Hox genes are master regulators of segment identity in Drosophila. A| The Hox 

genes are encoded in two clusters in Drosophila, the Antennapedia Complex (ANT-C) and the 

Bithorax complex (BX-C). Ancestrally, these two clusters were joined into a single cluster (the 

Homeotic Cluster, or HOM-C). B| The Hox genes are expressed along the AP axis in the same 

order in which they are encoded in the genome, a phenomenon known as spatial collinearity. 

Note that many segments express more than one Hox gene. C| Segments expressing different 

Hox genes (or combinations of Hox genes) will develop towards different fates in the adult fly. 

Adapted from Gilbert (2013). 
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 1.2. Segment patterning in Drosophila is derived compared to the majority of arthropods  

Most of what we know about gap gene function and regulation comes from studies in 

Drosophila. However, Drosophila is far from a representative model of arthropod development 

with respect to segmentation (Peel et al., 2005). During early development, arthropod embryos 

typically form a blastoderm (a monolayer of nuclei or cells surrounding the yolk). The 

blastoderm will go on to form both the embryo proper (the “germ rudiment”), and 

extraembryonic membranes. Most arthropod embryos have an extensive extraembryonic 

membrane that covers the yolk surface (Jacobs et al., 2013). This single membrane has been 

elaborated in insects to form the serosa (which envelops the whole egg contents and protects 

against desiccation and infection, among other roles) and the amnion (which envelops the 

embryo itself) (reviewed in Jacobs et al., 2013; Panfilio, 2008). In most arthropods, a large 

proportion of the blastoderm must therefore be allocated to forming extraembryonic 

membranes, with only a small portion allocated to forming the germ rudiment (Davis and Patel, 

2002). In embryos with a small germ rudiment, only a few anterior segments are patterned 

early in development, and the majority of the AP axis is generated after cellularisation through 

elongation (Clark et al., 2019). Elongation is driven by a combination of cell division and cell 

intercalation in a mass of unspecified cells at the posterior end of the embryo, known as the 

segment addition zone (SAZ) (reviewed in Clark et al., 2019). The majority of the segments 

are therefore patterned sequentially, from anterior to posterior, as tissue is gradually added to 

the developing germband; a mode of segmentation known as ‘sequential segmentation’ (Figure 

1.4A) (Clark et al., 2019).  

Drosophila, and several other insect lineages, have increased the size of the germ 

rudiment at the expense of tissue allocated to extraembryonic membranes (e.g., in Drosophila, 

the serosa and amnion have been reduced to the amnioserosa) (Grimaldi and Engel, 2005). In 

these species, there is sufficient space to pattern all, or nearly all, of the segments of the embryo 

onto the germ rudiment early in development, prior to elongation and even cellularisation. 

Extensive maternal provisioning establishes a pre-pattern so that subsequent segment 

patterning can occur rapidly, and simultaneously, across the length of the AP axis through the 

activity of the segmentation cascade (Davis and Patel, 2002). This mode of segmentation is 

known as ‘simultaneous segmentation’ (Figure 1.4B). 

Most arthropods display some combination of simultaneous and sequential 

segmentation, with the number of segments patterned by each method varying between species 

(Clark et al., 2019). However, sequential segmentation is proposed to be the ancestral mode 
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within the arthropods (Davis and Patel, 2002). Only a few lineages form the majority of their 

segments by simultaneous segmentation, and these are largely limited to the Holometabola 

(insects with complete metamorphosis) (Figure 1.5). Despite this, our understanding of how 

segment patterning occurs in sequentially-segmenting arthropod species lags significantly 

behind our understanding in the simultaneously-segmenting Drosophila. Segmenting animals 

outside of the Arthropoda, such as the annelids and vertebrates, also display a sequential mode 

of segmentation, although this has been proposed to be largely convergently evolved (Clark et 

al., 2019).   

It is important to note that arthropod embryos possessing a relatively small germ 

rudiment and undergoing sequential segmentation have historically been referred to as being 

‘short germ’, whereas those possessing a relatively large germ rudiment and undergoing 

simultaneous segmentation, have been termed ‘long germ’, respectively (Davis and Patel, 

2002). However, germ size does not always correlate perfectly with the mode of segmentation 

an arthropod employs, and so I will follow recent convention of eschewing these terms in 

favour of more specific reference to the processes of sequential and/or simultaneous 

segmentation themselves (Clark et al., 2019).  

 

 

Figure 1.4. Arthropods pattern their segments simultaneously or sequentially. A| 

Sequentially segmenting arthropods form the majority of their segments sequentially, from a 

posterior segment addition zone (SAZ) as the embryo condenses and elongates. The schematic 

here shows a red flour beetle (Tribolium castaneum) embryo as an example.  B| Drosophila 

forms its trunk segments simultaneously, by subdivision of the embryo prior to any major 

embryonic morphogenesis. Based on a figure by T. Andrews.   
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Figure 1.5. A phylogeny of the arthropod phylum demonstrating that sequential segmentation 

(Seq) is the most common and likely ancestral mode of segmentation among arthropods. 

Species that form all or most of their segments by simultaneous segmentation (Sim) are found 

only in holometabolous insect lineages, where it has most likely evolved independently several 

times (Clark et al., 2019). Phylogeny is based on Rehm et al. (2014). 
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 1.3. The molecular mechanisms of sequential segment patterning 

The generation of spatially periodic pair-rule gene expression in simultaneously-

segmenting insects like Drosophila is largely under the control of non-periodic spatial cues 

from the gap genes (reviewed in Nasiadka et al., 2002). In contrast, sequential segmentation 

relies on inherently periodic oscillations in expression of the pair-rule gene network to generate 

stripes (Clark et al., 2019). These oscillations are driven by interactions between the pair-rule 

genes themselves (reviewed in Clark et al., 2019). As is the case in vertebrates (Liao and Oates, 

2017), these oscillations in pair-rule gene expression are co-ordinated between cells, most 

likely via intercellular Notch signaling (Clark et al., 2019), which has been shown to be 

required for segmentation in some non-insect arthropods (Eriksson et al., 2013; Stollewerk et 

al., 2003) and at least one sequentially-segmenting insect species (Pueyo et al., 2008).  

Pair-rule gene oscillations are limited to the SAZ, where they are activated by posterior 

factors (the most likely candidates are the TF caudal (cad) or the signaling factor Wg) 

(reviewed in Clark et al., 2019). Each oscillation begins in the posterior SAZ, where these 

signals are strongest, and subsequently spreads anteriorly, creating the appearance of a 

travelling wave (Brena and Akam, 2013; El-Sherif et al., 2012; Sarrazin et al., 2012). At the 

anterior of the SAZ, these waves slow and are stabilised to form spatially periodic stripes. In 

at least some species, the stabilisation of pair-rule gene expression in the anterior SAZ is driven 

by the TF Odd-paired (Opa), which is expressed in the anterior SAZ and acts as a cofactor for 

pair-rule proteins, changing their regulatory interactions (reviewed in Clark et al., 2019). 

Following the formation of stable pair-rule gene expression stripes, regulation of segment 

polarity genes follows much as described in Drosophila (reviewed in Clark et al., 2019). This 

method of segment patterning, in which waves of gene expression are stabilised after crossing 

a ‘wavefront’ of gene expression, is similar to the ‘clock and wavefront’ model that describes 

somite segmentation in vertebrates (Clark et al., 2019; Cooke and Zeeman, 1976).  

Remnants of this oscillatory segment patterning system are still present in Drosophila 

– pair-rule stripes are initially dynamic, shifting anteriorly across the blastoderm, and only 

become stabilised after opa is switched on across the tissue (Clark, 2017; Clark and Peel, 2018). 

Indeed, recent studies are highlighting that segmentation in Drosophila has more in common 

with sequential segmentation than once thought (Clark, 2017; Clark and Peel, 2018; Clark et 

al., 2019; Verd et al., 2018). However, the evolution of gap gene-responsive stripe specific 

elements is thought to be an adaptation associated with simultaneous segmentation (Clark et 
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al., 2019; Peel et al., 2005). This raises the question of what the role of gap genes might be in 

sequentially-segmenting arthropods. 

1.4. Evolution of gap gene expression and function in arthropods 

Homologues of all four trunk gap genes (hb, Kr, gt and kni) are widely conserved across 

the arthropods (Peel et al., 2005). Of the four, kni is the most recently derived, resulting from 

a Drosophilid-specific gene duplication of an ancestral knirps-family gene (Naggan Perl et al., 

2013) which I will also refer to as kni. The duplicate in Drosophila is known as knirps-related 

(knrl), and plays redundant roles with kni outside of segmentation (Rothe et al., 1992). The 

ancestral kni gene has been duplicated independently in a few other arthropod lineages, but is 

otherwise usually present as a single copy (Naggan Perl et al., 2013).  

Gap gene homologues do not appear to be utilised in the process of segment patterning 

outside of arthropods (for example, see Iwasa et al., 2000; John and Ward, 2011; Kerner et al., 

2006; Pinnell et al., 2006), suggesting that they were only co-opted to this role within the 

Arthropoda. Exactly when this co-option occurred is still a matter of some debate, as research 

on gap gene expression and function in non-insect arthropods is limited (Jaeger, 2011) (Figure 

1.6). None of the trunk gap genes are expressed in the SAZ during axial patterning of the 

centipede Strigamia (Chipman and Stollewerk, 2006). However, a homologue of hb is 

expressed in the anterior ectoderm of both the spider Achaearanea tepiadariorum and the 

millipede Glomeris marginata during segment addition (Janssen et al., 2011; Schwager et al., 

2009). In the former, genetic knockdown results in a canonical gap phenotype (i.e. deletion of 

several consecutive segments), although no obvious effect on Hox gene expression is detected 

(Schwager et al., 2009). Kr is also expressed in a stripe in the ectoderm of Achaearanea during 

segment patterning, but its function is yet to be tested (McGregor et al., 2008). Only the 

homologue for hb has been examined in crustaceans, and it does not appear to be expressed in 

the SAZ during axial patterning (Kontarakis et al., 2006). 

There is considerably more data available on gap gene expression and function within 

the insect clade (Figure 1.6) (reviewed in Jaeger, 2011). Homologues of all four trunk gap 

genes are expressed in “gap-like” domains in various insect lineages, including in the 

sequentially-segmenting species Tribolium and Oncopeltus (reviewed in Jaeger, 2011) (Figure 

1.5). In these two species, the gap genes are expressed sequentially in the SAZ, forming 

travelling waves that eventually stabilise to cover specific regions of the AP axis (Ben-David 

and Chipman, 2010; Zhu et al., 2017). The order of expression of gap gene domains along the 
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length of the axis is very similar to that observed in Drosophila, but the pattern appears to be 

shifted anteriorly, so that domains expressed in the posterior abdomen in Drosophila are shifted 

towards the anterior abdomen (reviewed in Jaeger, 2011). The sequential expression of the gap 

genes within the SAZ appears to be driven by regulatory interactions between the gap genes 

themselves (Boos et al., 2018). The remnants of a similar network drive damped oscillation of 

gap gene expression within cells in Drosophila, contributing to the anterior shifts of gap gene 

domains across the AP axis in this species (Verd et al., 2018 and section 1.1.2). This evidence 

suggests that these dynamics are an ancestral feature of the gap gene network, at least within 

the insect clade. However, not all of the interactions between gap genes are conserved between 

species. Studies of gap gene interaction in the sequentially-segmenting species Tribolium and 

Oncopeltus have revealed differences in the nature of interactions between different gap 

proteins and genes compared to Drosophila, and to each other (Ben-David and Chipman, 2010; 

Bucher and Klingler, 2004; Marques-Souza et al., 2008). 

As in Drosophila, the homologues of hb, Kr and gt appear to play a dual role in 

regulating segment formation and segment identity in other insect species. Knockdown or 

mutation of any one of these three genes leads to misexpression of Hox genes and homeosis in 

all of the insect species in which they have been functionally tested (Figure 1.6). Such genetic 

disruptions also typically result in either a canonical “gap” phenotype (i.e., the deletion of 

several contiguous segments within the domain of expression of a gap gene), or to a distinct 

phenotype in which segmentation terminates within or shortly after the gap gene’s domain of 

expression (‘truncation’) (Figure 1.6). These data indicate that in some cases, gap genes are 

required to regulate the formation specific pair-rule stripes, while in others they are required 

instead to maintain the activity of the pair-rule oscillator, either directly or through regulation 

of the environment in the SAZ (Bucher and Klingler, 2004; Cerny et al., 2005). Interestingly, 

gap gene knockdown has, on at least one occasion, been found to lead to the formation of 

supernumerary segments (Nakao, 2016). If gap genes are able to regulate when segmentation 

begins and ends, then they may act as a ‘timer’ to determine the duration of segmentation and 

therefore the number of segments formed during sequential segmentation (Bucher and 

Klingler, 2004; Cerny et al., 2005; Clark et al., 2019).  

Although homologues of the ancestral kni gene (which was duplicated to give rise to 

the paralogues Dm-kni and Dm-knrl in Drosophila) are often expressed in the right time and 

place to regulate trunk segment patterning in other insect species, their role in this process is 

usually minimal (or non-existent) compared to Dm-kni (Ben-David and Chipman, 2010; Cerny 

et al., 2005; Peel et al., 2013). This suggests that members of the kni family may only have 
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become a central component of the gap gene network in Drosophila, with the origin of Dm-kni 

(though a role in head patterning may be more conserved). 

 
Figure 1.6. The evolution of gap gene expression and function within the arthropod phylum. 

Each of the lineages shown on the phylogeny are represented by one or two model species for 

which data on gap gene expression and/or function exists. Columns indicate whether particular 

gap genes (hb = H; Kr =K; kni = N; gt = G) are (green/blue) or are not (red) expressed in a 

“gap-like”domain (Expression column), and whether their knockdown results in defects in 

segment formation (Segmentation column) or segment identity (Homeosis column). Grey gene 

labels indicate a lack of relevant data for this species. In the Segmentation column, letters may 

be green, indicating a canonical gap phenotype, or blue, indicating a truncation phenotype (see 

text for more details). Figure is adapted from Jaeger (2011), using the following references for 

each species: Achaearanea (McGregor et al., 2008; Schwager et al., 2009); Strigamia 

(Chipman and Stollewerk, 2006); Artemia (Kontarakis et al., 2006); Gryllus (Mito et al., 2005; 

Mito et al., 2006); Oncopeltus (Ben-David and Chipman, 2010; Liu and Kaufman, 2004a; Liu 

and Kaufman, 2004b; Liu and Patel, 2010); Apis (Wilson et al., 2010) and Nasonia (Lynch et 

al., 2006; Olesnicky, 2006; Pultz, 2005); Tribolium (Bucher and Klingler, 2004; Cerny et al., 

2005; Cerny et al., 2008; Marques-Souza et al., 2008; Peel et al., 2013) Bombyx (Nakao, 2015; 

Nakao, 2016); Drosophila (Jaeger, 2011).   
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1.5. The “gap gene gap” and new candidate gap genes 

In Drosophila, the expression domains of the four trunk gap genes are sufficient to 

cover the entire length of the trunk. In contrast, in the sequentially-segmenting insect 

Tribolium, the expression domains of these four genes covers only the anterior part of the axis 

(Cerny et al., 2008). A large region of the abdomen is therefore patterned in the absence of 

apparent gap gene expression, creating what has been described as a “gap gene gap”. The 

existence of this gap suggests that there may be additional gap genes, outside of the 

homologues of Drosophila gap genes, active in non-Drosophilid insects. In support of this 

theory, subsequent research has identified two gap gene candidates – mille-pattes (mlpt) and 

shavenbaby (svb). mlpt, also known as tarsal-less or polished-rice, does not encode a TF, but 

instead several short peptides (Galindo et al., 2007). These peptides are able to interact with a 

TF known as shavenbaby (svb) and trigger its transformation from a transcriptional repressor 

to a transcriptional activator (Kondo et al., 2010). Both of these genes are expressed in domains 

spanning contiguous segments during segment patterning in a range of different insect species 

(Ray et al., 2019). Furthermore, in some (but not all) of these species, knockdown of either 

mlpt or svb results in homeotic transformations and segmentation truncations (Jiménez-Guri et 

al., 2018; Ray et al., 2019; Savard et al., 2006; Tobias-Santos et al., 2019) in addition to 

misexpression of other gap genes (Savard et al., 2006). These two genes therefore appear to 

share many of the key features of the canonical gap genes, and mlpt, at least, has been 

incorporated into models of the gap gene network in Tribolium (Boos et al., 2018; Zhu et al., 

2017).  

1.6. The neuroblast timer genes nubbin and castor are promising candidate gap genes 

Another potential source of gap gene candidates to “fill the gap” in the series are the genes 

of the neuroblast timer network. ‘Neuroblasts’ are stem cells that give rise to the majority of 

the central and peripheral nervous system in insects during embryogenesis and later 

development. In Drosophila, each neuroblast gives rise to a number of different kinds of 

daughter cells in a stereotyped order (reviewed in Brody and Odenwald, 2005). To co-ordinate 

this process, the neuroblast sequentially expresses four TFs known as neuroblast timer genes – 

hb, Kr, nubbin (nub) and castor (cas) - that regulate the sequential assignment of fates to 

neuroblast progeny (Figure 1.7A) (reviewed in Brody and Odenwald, 2005). The same series 

is expressed during neuroblast development in Tribolium (Biffar and Stollewerk, 2014), 

indicating that this is likely a conserved feature of at least the higher Holometabola. Two of 
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these genes, hb and Kr, act as gap genes during segmentation in Drosophila and other 

arthropods, as discussed previously. However, nub and cas are also expressed in the ectoderm 

during segment patterning in Drosophila, in broad, gap-like domains (Cockerill et al., 1993; 

Fisher et al.; Isshiki et al., 2001; Mellerick et al., 1992). In fact, the nub gene appears to be 

regulated by other gap genes, and nub mutants even display disruptions in abdominal segment 

patterning (Cockerill et al., 1993; Ma et al., 1998). Despite this, nub has traditionally been 

considered a “gap-like” gene in Drosophila, sitting one tier below the ‘real’ gap genes, as it is 

apparently unable to influence the expression of other gap genes (Cockerill et al., 1993; Jaeger, 

2011) or Hox genes (Hrycaj et al., 2008). In contrast, in the sequentially-segmenting insect 

Oncopeltus, nub seems to be required for abdominal Hox expression, but not segment 

patterning (Hrycaj et al., 2008). nub is therefore theoretically capable of regulating both 

segment patterning and segment identity, as the canonical Drosophila gap genes do. In contrast, 

cas is a slightly less promising gap gene candidate, as mutants show no obvious axial 

phenotype in Drosophila (Mellerick et al., 1992); however, data on cas expression and function 

from outside of Drosophila is sorely lacking.  

Interestingly, the spatial sequence of expression of the four neuroblast timer genes along 

the Drosophila axis is identical to the temporal order in which they are expressed in neuroblasts 

(Isshiki et al., 2001) (Figure 1.7B). This similarity has led to the intriguing proposal that the 

two networks may share an evolutionary history, being co-opted for use from one context to 

another (Isshiki et al., 2001; Peel et al., 2005). Certain elements of the neuroblast timer series 

are extremely ancient; for example, the Hb homologue Ikaros and Cas homologue Casz1 are 

required for the generation of early- and late-born neuronal daughter cells, respectively, in mice 

(Alsiö et al., 2013; Elliott et al., 2008; Mattar and Cayouette, 2015; Mattar et al., 2015). In 

addition, hb and Kr are known to be expressed in the neural progenitors of non-insect 

arthropods, even in species where they are not expressed in a gap-like pattern (Chipman and 

Stollewerk, 2006; Kontarakis et al., 2006). This suggests that the neural role of these genes 

likely predates a role in segment patterning. 
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Figure 1.7. The genes of the neuroblast timer series (hb, Kr, nub and cas) are expressed 

sequentially in neuroblasts to drive the sequential assignment of daughter cell fates (A). They 

are also expressed in the same spatial order in broad domains along the length of the AP axis 

in Drosophila embryos (B). Note that there is also an additional posterior domain of Dm-hb 

expression, represented here in light green, which overlaps with Dm-cas expression.  

  



 20 

1.7. The definition of a gap gene 

The prospect of identifying additional gap genes begs the question of how, exactly, this 

class of genes can be defined outside of Drosophila. As discussed in section 1.1, gap genes 

were initially defined simply by their characteristic ‘gap’ phenotype, in which several 

contiguous segments of the embryo are deleted. However, this definition excludes genes that 

are now considered to be gap genes – for example, gt, which does not produce canonical gap 

phenotypes when mutated on its own due to redundancy with other gap genes (Capovilla et al., 

1992) – as well as including genes that are now not considered to be gap genes – for example, 

unpaired and hopscotch (Akam, 1987). This is because the title of ‘gap gene’ was repurposed 

to refer specifically to the subset of genes that interact as part of a discrete network, occupying 

a distinct level of the segmentation hierarchy (the “gap gene network”). As it turns out, the 

similar phenotypes generated from mutants of these genes also reflect similar underlying 

molecular properties – all of the Drosophila gap genes are able to interact directly with pair-

rule and Hox gene cis-regulatory elements to regulate gene expression (reviewed in Jaeger, 

2011). The title of gap gene in Drosophila therefore describes a discrete group of genes that 

can be linked both by network and by molecular function. The shared mutant phenotype is 

simply an unreliable proxy for more meaningful similarities.  

Homologues of Drosophila gap genes appear to play broadly analogous roles during 

segment patterning, and to interact as part of a network, in other insects. It is therefore 

reasonable to theorise that there may be networks of genes equivalent to the “gap gene 

network”, with similar overarching functions, in other insects. It is possible that the roles of 

individual genes in the network will differ and vary between each other and between species, 

even if the emergent function of the network remains conserved. For the purposes of this work, 

I will be defining a gap gene as any gene that interacts with homologues of at least some 

Drosophila gap genes, in a discrete network that regulates segment formation and/or 

segment identity. In practise, given how little is known about the molecular interactions 

between gap genes and their targets outside of Drosophila, I will be using expression patterns 

and phenotypes as proxies for gap gene identification – specifically, if the expression of a gene 

overlaps with the expression of a known gap gene (so that direct interaction is theoretically 

possible), and its knockdown results in misexpression of other gap genes and disruptions in 

segment formation or diversification, then I will consider it to be a strong candidate for a gap 

gene.  



 21 

1.8. Tribolium castaneum as a model for studying the evolution of the gap gene network 

 

Much of the research on the gap gene network in sequentially-segmenting insects has been 

conducted using the red flour beetle, Tribolium castaneum (Boos et al., 2018; Bucher and 

Klingler, 2004; Cerny et al., 2005; Cerny et al., 2008; Marques-Souza et al., 2008; Peel et al., 

2013; Rudolf et al., 2019; Savard et al., 2006; Zhu et al., 2017). Tribolium has long been a 

popular model organism for studies of population ecology, population genetics and quantitative 

genetics, largely due its ease of culture and its status as a globally distributed pest species of 

flour and grain products (Brown et al., 2009; Denell, 2008). Over the last four decades it has 

also become second only to Drosophila as a model for studying the evolution of development 

(reviewed in Brown et al., 2009; Denell, 2008; Schröder et al., 2008). As a beetle, Tribolium 

is, like Drosophila, a member of the Holometabola; however, it differs from Drosophila in 

many aspects of development, often displaying features more representative of arthropod 

development in general. These include a non-involuted head, the presence of external legs in 

the larva, and, most relevant to this work, a sequential mode of segmentation (Brown et al., 

2009).  

Current models of sequential segmentation in insects have largely been built on data 

gleaned from studies on Tribolium (Choe et al., 2006; Clark and Peel, 2018; El-Sherif et al., 

2012; Sarrazin et al., 2012). Like most insects, Tribolium patterns its most anterior segments 

in the blastoderm, prior to gastrulation – specifically, the three gnathal segments and the first 

two thoracic segments (Brown et al., 1997; Patel et al., 1994). Despite being patterned at the 

blastoderm stage, these segments are still patterned sequentially via a pair-rule oscillator 

mechanism (El-Sherif et al., 2012; El-Sherif et al., 2014), in contrast to Oncopeltus where 

segmentation is more obviously biphasic (segmentation is almost simultaneous in the anterior, 

and sequential in the posterior) (Liu, 2005). The third thoracic and ten abdominal segments are 

then patterned sequentially from the SAZ during germband extension (Brown et al., 1994). The 

final two abdominal segments are fused in the larva to produce the telson, which bears the 

terminal structures known as urogomphi (dorsally) and pygopodia (ventrally) (Bucher and 

Klingler, 2004). Elongation appears to rely on both cell rearrangement (Nakamoto et al., 2015; 

Sarrazin et al., 2012), and localised, temporally restricted cell division in the SAZ (Cepeda et 

al., 2017). 

There is one particular element of segment patterning in Tribolium that appears to be less 

representative of arthropods in general. Neither the Notch ligand Delta nor Notch signaling 

target hairy appear necessary for segmentation in Tribolium (Aranda, 2006; Aranda et al., 
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2008). Other sequentially segmenting insects (for example, Gryllus) are also able to form 

segments in the absence of Notch signaling (Kainz et al., 2011)), but this does differ from the 

inferred ancestral state for insects (Pueyo et al., 2008) and arthropods as a whole (Eriksson et 

al., 2013; Stollewerk et al., 2003).  

The gap gene network in Tribolium 

Recent papers (for example Boos et al., 2018; Zhu et al., 2017) consider four trunk gap 

genes as the canonical set in Tribolium: Tc-hb (Marques-Souza et al., 2008; Schröder et al., 

2000), Tc-Kr (Cerny et al., 2005), Tc-gt (Bucher and Klingler, 2004) and Tc-mlpt (Savard et 

al., 2006). Tc-kni is expressed during segment addition, but has been largely excluded from 

consideration as a gap gene due to its weak phenotype in the trunk (specifically, there is partial 

fusion of several segments in the posterior abdomen, well outside of the abdominal domain of 

Tc-kni expression) (Cerny et al., 2008; Peel et al., 2013). Although it is likely that the gap gene 

function of Tc-mlpt relies on interaction with Tc-svb (Ray et al., 2019), the latter gene has not 

yet been officially added to the list of gap genes in Tribolium. Knockdown of any one of Tc-

hb, Tc-Kr, Tc-gt, Tc-mlpt or Tc-svb results in both homeotic transformations and early 

termination of segmentation (Bucher and Klingler, 2004; Cerny et al., 2005; Marques-Souza 

et al., 2008; Ray et al., 2019; Savard et al., 2006), as is often observed for gap genes in other 

sequentially-segmenting insects.   

As is typical for gap genes in other sequentially-segmenting insects, the gap genes in 

Tribolium are activated sequentially in the SAZ, with each retracting from the posterior as the 

next gap gene becomes expressed (Boos et al., 2018; Zhu et al., 2017). RNAi experiments have 

shown that knocking down gap genes that are expressed early in the series can prevent the 

expression of later gap genes (Zhu et al., 2017), and that ectopic expression of an early gap 

gene by heat shock leads to ordered expression of the next genes in the series (Boos et al., 

2018). These experiments suggest that, within the context of the SAZ, the interactions between 

gap genes are necessary and sufficient for their ordered expression and subsequently for correct 

spatial patterning across the germband. The most current published model of the gap gene 

network in Tribolium is shown in Figure 1.8.  
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Figure 1.8. A current model of gap gene interactions in Tribolium. The relative positions of 

the coloured bars indicate, in broad terms, the distribution of expression domains along the 

length of the trunk (with anterior to the left). Based on the expression patterns of these four 

genes, there are likely additional, as yet unidentified gap genes that are expressed subsequently 

to Tc-gt, as represented by the question mark. Adapted from Zhu et al. (2017). 

 

Although the expression pattern of each of these genes has been described individually, we 

still lack an understanding of exactly how their expression domains relate to one another, and 

whether there is a “gap gene gap” in the abdomen when Tc-mlpt and Tc-svb are taken into 

account.  In addition, preliminary data suggests that both Tc-nub and Tc-cas are expressed in 

the SAZ during segment patterning in Tribolium (E. Raymond & A. Peel, unpublished; Biffar 

and Stollewerk, 2014). This raises the possibility that one or both genes act as components of 

the gap gene network in Tribolium, in which case current models of the gap gene network are 

incomplete. 

Given the breadth of the existing literature on gap gene expression and function, and the 

tractability of Tribolium as a model system, this species is a prime candidate as a model for 

developing a deeper understanding of how the gap gene network functions during sequential 

segmentation and how it has evolved within the insect clade.  
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1.9. Aims of this thesis 

 

In this thesis, I aimed to use Tribolium as a model to study the evolution and function of the 

gap gene network, with a focus on similarities to the neuroblast timer series. Specifically, I had 

three main aims: 

 

1. To describe in more detail the expression patterns and dynamics of the canonical gap 

genes, and the ‘unofficial’ gap gene svb, in Tribolium (Chapter 3). 

2. To examine the expression patterns and dynamics of the neuroblast timer genes during 

segment patterning in Tribolium (Chapter 4). 

3. To test whether nub and cas play an active role in axial patterning in Tribolium 

(Chapters 4 and 5). 

 

In accomplishing these aims, I hoped to gain a better understanding of the dynamics of the gap 

gene series as a whole, and to identify any remaining ‘gaps’ in the gap gene series; to 

investigate whether nub and cas might help to fill these gaps, if they exist; and also to 

investigate how the genes of the neuroblast timer series relate to the gap gene network in 

Tribolium.  
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2. MATERIALS AND METHODS 
 
 

2.1. Tribolium husbandry 

Tribolium castaneum (San Bernadino strain) were obtained from Andrew Peel, 

University of Leeds. Beetles were reared at 30 ºC in plastic boxes (with mesh windows in the 

lid to allow for air flow), on a coarse flour made by mixing 1 kg organic wholemeal flour 

(Doves Farm Organic Wholemeal Flour), ~50g of yeast (Sainsbury’s Fast Action Dried Yeast 

Sachets) and 5 g of the antifungal agent Fumagillin-B (Medivet). Wholemeal flour was sieved 

using an 800 μm steel sieve (Retsch test sieve 200 mm x 50 mm) before mixing to remove 

large particles. Incubators were maintained between 40-60 % RH (relative humidity) where 

possible. For egg collection, beetles were removed from the coarse flour mix using an 800 μm 

steel sieve (Retsch test sieve 200 mm x 50 mm) and moved onto organic white flour (Doves 

Farm Organic Strong White Bread Flour). Eggs could then be separated from the white flour 

using a 300 μm steel sieve (Retsch test sieve 200 mm x 50 mm). More details on Tribolium 

husbandry can be found in The Beetle Book (Bucher, 2009).  

2.2. Embryo dechorionation and fixation 

 

Collected eggs were transferred into small mesh baskets (with a mesh aperture of 250 

μm) and were rinsed several times in ddH2O to remove all traces of flour. Their chorions were 

then removed by washing twice in bleach (Fisher Scientific, #10527752), diluted with ddH2O 

to a final concentration of 2.5 % (v/v) hypochlorite, for 30-45 seconds. Eggs were rinsed in 

ddH2O again and transferred using a paintbrush into glass vials containing 6 mL heptane and 

3 mL of PBT (phosphate buffered saline + 0.01 % (v/v) Tween-20) containing 4 % (v/v) 

formaldehyde. Vials were rocked on a nutator for 30 minutes to allow for fixation to occur. 

The lower phase of the fixative (PBT + formaldehyde) was removed, and 8 mL of ice-cold 

methanol added. Eggs were devitellinised by first shaking the vials and then by repeatedly 

forcing the eggs through a 19G BD Microlance surgical needle (Medisave, #ND500) using a 

syringe (removing devitellinised embryos from the bottom of the vial using a glass pipette 

between attempts). Devitellinised eggs were then rinsed several times in 100 % methanol and 

stored at -20 °C. 
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2.3.  Ovary dissection and fixation 

 

Shannon Taylor (University of Otago, New Zealand) assisted with the ovary dissections from 

adult Tribolium. Ovaries were removed from sedated females in PBS using Dumont number 5 

Dumostar Biologie forceps (Fine Scientific Tools, #11295-10). Dissected ovaries were 

transferred directly into Eppendorf tubes containing 4 % formaldehyde in PBT on ice. An equal 

volume of heptane was added, and the tubes then rocked on a nutator for 20 minutes to allow 

for fixation. The ovaries were then rinsed several times in PBT and then washed into 100% 

methanol for storage at -20 ºC. 

 

2.4. Hybridisation Chain Reaction (HCR) in situ hybridisation (ISH) 

 

Version 3 HCR probes (Table 1) and fluorescently-labelled hairpins were ordered from 

Molecular Instruments (https://www.molecularinstruments.com) using NCBI or BeetleBase 

mRNA sequences as references. For each gene, 20 pairs of short probes were ordered, as per 

recommendations by Molecular Instruments.  All required buffers were made according to the 

instructions provided by Molecular Instruments, with the one exception that the percentage of 

dextran sulfate in the probe hybridisation and amplification buffers was reduced from 10 % 

(v/v) to 5 % (v/v) to reduce viscosity and improve retention of embryos during washes.  

  Fixed embryos or ovaries were prepared for HCR by removing methanol and replacing 

it with 1 mL of PBT containing 4 % formaldehyde. Tubes were rocked on the nutator for 30 

minutes to allow for additional fixing and rehydration to occur. The HCR was then carried out 

as per the Molecular Instruments protocol for whole-mount fruit fly embryos (Version 3.0) 

(https://files.molecularinstruments.com/MI-Protocol-HCRv3-FruitFly-Rev5.pdf), with the 

exception that the amount of hybridisation, wash and amplification buffers used for each tube 

of embryos was halved (to 100 μL) and the volume of probes and hairpins adjusted to give the 

same final concentration (4 nM/mL). Additionally, 1 ng/μL DAPI was added to the first 30 

minute wash on the final day so that nuclear staining could be carried out in parallel. After 

washing, embryos or ovaries were transferred first into 25 % (v/v)glycerol and then into 50 % 

(v/v) glycerol before being stored at 4 ºC for mounting.  
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Table 1. HCR probes ordered from Molecular Instruments and the reference sequences that 

were provided as templates.  

Organism Gene Initiator(s) Reference sequence 

Tribolium castaneum Tc-Wingless B1, B3, B4, B5 NM_001114350.1 

Tc-Toll10 B2, B5 TC004901 

Tc-even-skipped B2 NM_001039449.1 

Tc-caudal B1 XM_008193508.2 

Tc-single-minded B1, B3, B4 XM_008200873.2 

Tc-engrailed B5 NM_001039422.2 

Tc-distalless  AF317551.1 

Tc-twist B3 TC014598 

Tc-hunchback B2, B4 NM_001044628.1 

Tc-Krüppel B1, B5 NM_001039438.2 

Tc-mille-pattes B5 NM_001134483.1 

Tc-shavenbaby B3 XM_008193917.2 

Tc-giant B3 NM_001039442.1 

Tc-knirps B4 NM_001128495.1 

Tc-tailless B3 NM_001039413.1 

Tc-nubbin B4, B5 XM_015979462.1 

Tc-castor B1 XM_015980923.1 

Tc-grainyhead B5 XM_015978959.1 

Tc-labial B3 NM_001114290.1 

Tc-proboscipedia B2 NM_001114335.1 

Tc-deformed B1 NM_001039421.1 

Tc-Sex combs reduced B4 NM_001039434.1 

Tc-Antennapedia B5 NM_001039416.1 

Tc-Ultrabithorax B1 XM_008203013.2 

Tc-abdominal A B2 NM_001039429.1 

Tc-Abdominal B B3 NM_001039430.1 

Drosophila melanogaster Dm-Wingless B1, B4 NM_078778.5 
 

Dm-odd-skipped B1 NM_164546.2 
 

Dm-nubbin B5 NM_001103683.2 
 

Dm-abdominal A B3 NM_001260216.2 
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2.5. Mounting and imaging of embryos and adult tissue after HCR ISH 

 

Embryos, ovaries or gut tissue suspended in 50 % (v/v) glycerol were transferred into 

watch glasses for examination under a dissecting microscope. From there, blastoderm-stage 

embryos were transferred to glass-bottomed petri dishes (Cellvis, #D35-14-1.5-N) using a cut-

off plastic pipette tip. Excess glycerol was then removed, and ProLong™ Gold Antifade 

Mountant (ThermoFisher Scientific) added to cover the embryos. Germband embryos had to 

be dissected away from the yolk under a dissecting microscope using tungsten needles. 

Sharpened tungsten needles were produced using tungsten wire (Fisher Scientific, 0.375mm, 

#11390548) and a sodium nitrite stick (McCrone UK). The tungsten wire was repeatedly heated 

in a Bunsen flame and then run against the sodium nitrite stick to generate a fine tip, as 

demonstrated here: https://www.youtube.com/watch?v=WvepYAwiKU8 (“Hooke College: 

Making and Repairing Tungsten Needles. Accessed July 20th, 2020). Germband embryos were 

then transferred to a glass microscope slide and the remaining yolk gently removed using a 

paintbrush hair and an eyelash hair mounted in 240B Pin Vises (Starrett, #51137). Yolk-free 

embryos were transferred into ProLong™ Gold Antifade Mountant on a fresh slide and covered 

with a coverslip. Ovaries and gut tissue were flat mounted on glass slides in ProLong™ Gold 

Antifade Mountant under a coverslip. All slides and dishes using for mounting were left at 

room temperature in the dark to set for 1-2 days prior to imaging and subsequently stored at 4 

ºC. Mounted embryos or adult tissues were imaged on an Olympus FV3000 confocal 

microscope at the Department of Zoology Imaging Facility (University of Cambridge). Image 

stacks of 10-50 focal planes (z-step size of 0.5-3 μm) were taken using 20x/0.75NA dry, 

30x/0.95NA silicone oil or 60x/1.4NA silicone oil immersion objectives.  

 

2.6.  RNA extraction and cDNA synthesis 

 Total RNA was extracted from 0-48 hour old embryos using TRIZol reagent 

(ThermoFisher Scientific, #15596026) as per the manufacturer’s instructions, with the 

exception that a butanol wash was carried out following RNA precipitation (but prior to the 

75% ethanol wash) to further clean the RNA. RNA quality was examined on a 1 % (w/v) 

agarose gel, using the sharpness and relative intensity of the 28S and 18S rRNA bands as a 

proxy for overall RNA quality. cDNA synthesis was carried out using the Superscript First-

Strand Synthesis System for RT-PCR kit (Invitrogen, #18080-051), according to the 

manufacturer’s instructions. Oligo(dT) primers were used. 
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2.7. Tribolium gene cloning 

 

Although HCR ISH probes could be ordered directly from Molecular Instruments, any 

genes to be targeted by dsRNA had to be manually cloned. Clones for many of the genes that 

I planned to target using RNAi were provided by Andrew Peel and Rahul Sharma (University 

of Leeds), but I cloned Tc-mille-pattes (Tc-mlpt)  and Tc-shavenbaby (Tc-svb) myself (Table 

2). (Additional genes cloned but not eventually used for experiments in the thesis are listed in 

Appendix 1). Both genes have previously been cloned (Ray et al., 2019; Savard et al., 2006). 

Predicted mRNA sequences for Tc-mlpt (AM269505.1) and Tc-svb (XM_008193917.2) were 

used to design the primers indicated in Table 2 with the aid of the primer design web-interface 

Primer-Blast (NCBI). Fragments of the Tc-mlpt and Tc-svb mRNA sequences (477bp and 

566bp, respectively) were amplified from embryonic cDNA (0-48 hour old embryos) by PCR 

using the Phusion® High-Fidelity PCR Kit (New England BioLabs). PCR products were 

purified using the QIAquick PCR Purification Kit (Qiagen) and ligated into the vector 

pGEM®-T Easy using the pGEM®-T Easy System (Promega, #A1360) according to 

manufacturer’s instructions (using 50 μg/mL carbenicillin as a selection agent). The ligation 

mixture was transformed into NEB® 5-alpha Competent E.coli (Subcloning Efficiency) (New 

England BioLabs) according to manufacturer’s instructions. Blue-white selection and 

subsequent PCR colony screening using M13F and M13R primers was used to identify colonies 

with the correct size insert. Positive colonies were grown up in 5 mL of liquid culture with 50 

μg/mL carbenicillin at 37 ºC on a shaker (~225rpm) overnight, and plasmid extracted from the 

liquid cultures using the QIAprep Spin Miniprep Kit (Qiagen) according to manufacturer’s 

instructions. Sanger sequencing of inserts was carried out by Source Bioscience to confirm 

identity and sequence fidelity.  
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Table 2. Source of cloned genes and the primers used to clone them. All genes were cloned 

into the pGEM®-T Easy vector. AP = Andrew Peel (University of Leeds), GB = Gregor Bucher 

(University of Göttingen), RS = Rahul Sharma (University of Leeds). 

 

Gene Source Primers (5’-3’) 

GFP AP F: ATGGGTAGTAAAGGAGAAGAACTTT 

R: GGGATTACACATGGCATGGA 

Tc-hunchback AP F: TGGCAATTCGGCGTTTCCCAGA 

R: TGCAAGTGAACGGGTTGTGGAA 

Tc-Krüppel AP F: GCTGGACTCTCAGGAGAAGA 

R: CTTTCCACCTTGAAACCGATAAAG 

Tc-mille-pattes Cloned myself F: GCGAGTCGTGCCAAGTTATG 

R: ACTGAGTGTCATTCTTAAGGAACTT  

Tc-shavenbaby Cloned myself F: CTTACAGTTCACCGCCACCT 

R: CCAACTGCAACAGCAACCTG 

Tc-giant RS F: AATACAGCCCCGTCTCTAATAGC 

R: CTGTAGCTTCTCCAGCTCCTTC 

Tc-knirps AP (originally GB) Not recorded – fragment sequence available on request 

Tc-nubbin 5’ fragment AP F: CGTCAGCACGGCAAAGAA C 

R: CCTCCTCCTCGGAGCTAC 

Tc-nubbin 3’ fragment AP F: CGCCCACAACAACTTCAA C 

R: GGGTATGTCAGTCTAATGTTTGTAGA 

Tc-castor AP F: CCACATCAAAGACGAGCAACT 

R: CCACACTTCAATGACCCGATT 

 

2.8. Double-stranded RNA synthesis 

 

Double-stranded RNA (dsRNA) was prepared as per The Beetle Book (Bucher, 2009), 

except that dsRNA was purified using a phenol-chloroform extraction and precipitated with 

isopropanol (instead of lithium chloride). dsRNA was resuspended in 20 μL nuclease-free 

water and a 1:20 dilution used to examine RNA quality by running on an agarose gel (checking 

for a sharp, clear band of approximately the right size), and to examine concentration and 

quality on a NanodropTM spectrophotometer. Aliquots of stock dsRNA were stored at -80 ºC or 

at -20 ºC while in use. Tc-odd-skipped dsRNA was provided by Andrew Peel. 
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2.9. Parental RNAi in Tribolium 

 

Injection of dsRNA or water into adult females was carried out as described by Posnien 

et al. (2009). Specifically, injections were performed through the dorsal abdomen, under the 

elytra. Needles for microinjection were prepared on a needle puller (Sutter Instrument Co. 

Model P-87) using borosilicate glass capillaries with an outer diameter of 1 mm, an inner 

diameter of 0.58 mm and an internal filament (Warner Instruments, model number G100F-4). 

Before use, the tips were broken using forceps to produce an opening approximately 50 μM in 

diameter, and then bevelled at an angle of 30 ° using a microgrinder (Narishige, EG-4) to 

produce a smooth, angled opening. Needles were backloaded using MicroloaderTM tips 

(Eppendorf, #5242956003). Pressure for microinjection was supplied by nitrogen gas and 

regulated with a Pico-injector system (Medical Systems Corporation, model number PLI-100). 

dsRNA diluted in nuclease free water was injected at a concentration of 0.5-4 μg/μL. dsRNA 

was centrifuged for 2 minutes at 13,000 RPM before injection to pull particulates out of 

solution and reduce the risk of blockage. 

Post-injection, female beetles were left to recover at 30 ºC for a few hours in petri dishes 

containing a small section of tissue paper (to aid in drying any efflux from the wound site). 

They were then moved onto coarse flour mix (described in section 2.1) in a plastic box with a 

mesh window and left to recover overnight at 30 ºC. Male beetles were added in the next day. 

Eggs were then collected by shifting beetles onto white flour as described in section 2.1. Eggs 

were collected regularly (every 1-2 days) for 3-4 weeks after injection and used for cuticle 

preparations (as described below in section 2.10) or fixed for HCR ISH (as described in section 

2.4). 
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2.10. Cuticle preparation after pRNAi 

  

0-24 hour old eggs were collected and left to develop in petri dishes at 30 ºC for up to 

10 days (hatching normally occurs after 3-4 days (Bucher, 2009)). As larvae hatched, they were 

removed and processed for cuticle preparation. Larvae were first rinsed in 2.5 % (v/v) bleach 

to remove flour particles. They were then rinsed several times in water and transferred using a 

paintbrush to a clean glass slide. Larvae were then covered with a droplet of 1:1 Hoyer’s 

medium (Dahmann, 2008):lactic acid and a coverslip, and heated at 60 ºC until cleared. Image 

stacks of 10-50 focal planes (z-step size of 1-5 μm) were taken using the 10x/0.4NA or 

20x/0.75NA dry objectives on the Olympus FV3000 in the Department of Zoology (University 

of Cambridge).  

 

2.11. Embryonic RNAi in Tribolium 

 

My embryonic RNAi procedure for Tribolium is a modified version of the protocols 

published by Posnien et al. (2009) and Berghammer et al. (2009), adapted by myself and Matt 

Benton (University of Cambridge). 0-1 hour old eggs were collected and aged for an additional 

hour at 30 ºC to ensure that all eggs would be at least one hour old. They were then transferred 

into small mesh baskets (with a mesh aperture of 250 μm) and rinsed several times in ddH2O. 

Chorions were removed by washing twice in bleach, diluted with ddH2O to a final 

concentration of ~0.6% (v/v) hypochlorite, for 30-45 seconds. Eggs were rinsed again and then 

transferred using a cut-off glass pipette tip to a glass slide for sorting under a dissecting 

microscope. Apparently viable eggs were transferred onto 25 mm x 40 mm coverslips and 

arranged into two lines along the long axis, with the anterior end of the egg facing outwards. 

Traditionally Tribolium embryos are injected ‘dry’, as they are able to tolerate some degree of 

desiccation (Berghammer et al., 2009; Posnien et al., 2009). However, we encountered issues 

with survival using this approach, and opted instead to cover embryos in a halocarbon oil mix, 

made up of 50% Halocarbon oil 700 (Sigma Aldrich, #H8898-100ML) and 50% Halocarbon 

27 (Sigma Aldrich, #H8773-100ML).  

Needles were prepared and loaded, and dsRNA prepared, as described in section 2.9, 

save that the needles were not broken using forceps, and instead were bevelled at an angle of 

30 ° to give as small a tip diameter as possible. For double or triple knockdown, dsRNAs were 

combined before injection. Pressure for microinjection was supplied by nitrogen gas and 

regulated with a Pico-injector system (Medical Systems Corporation, model number PLI-100). 
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Injection and balance pressure were initially set to 40 and 1 psi, respectively, and adjusted on 

a case-by-case basis. Needles were inserted into the anterior pole of the egg (the presumptive 

serosa) to reduce the risk of damage to the embryo proper (Posnien et al., 2009). A footswitch 

was used to determine injection duration, rather than the internal clock. The size of the efflux 

of cytoplasm from the egg was used as a measure for consistency in injection volume.  

To prevent spreading of the halocarbon oil post-injection (which we found to reduce 

survival, presumably through exerting pressure on the egg surface), the coverslips used for 

injection were prepared with ‘feet’ attached at either end. These feet were made of sections of 

#1 coverslip cut with a FisherbrandTM Diamond Tip Pencil (Fisher Scientific). Sections of 

coverslip were attached to each other and to the base coverslip using UV curable resin (Sigma 

Aldrich, #900164-250G) set under a UV LED nail dryer lamp. Each ‘foot’ was approximately 

450 μm thick. Turning the coverslip onto the oxygen-permeable membrane of a Lumox tissue 

culture dish (Sarstedt, #94.6077.305) limits the spread of the halocarbon oil mix while still 

permitting the embryos to breathe. The feet on the coverslip create space to prevent pressure 

on the embryos as they develop. Lumox dishes with coverslips on top were placed into plastic 

containers containing damp tissue paper (to maintain humidity) and placed into a 30 ºC 

incubator to develop. Embryos were then processed for either cuticle preparation (section 2.12) 

or HCR ISH (section 2.13).  

 

2.12. Cuticle preparation after eRNAi 

 

 Eggs were left to develop for approximately 7 days, to allow time for development of 

cuticle in eggs which might be developmentally delayed. The coverslip was then carefully 

removed from the Lumox dish membrane using forceps and placed egg-side up onto a glass 

slide. Cuticles were dissected out of the chorion using sharpened tungsten needles (described 

in section 2.4) if necessary. Cuticles were then transferred into watch glasses and submerged 

in heptane and then ethanol for one hour each, to help disperse the oil on their surfaces. Cuticles 

were moved from ethanol to a clean slide using a cut-off pipette tip and the ethanol allowed to 

evaporate. A droplet of 1:1 Hoyer’s medium:lactic acid was added and the cuticles 

subsequently baked and imaged as per section 2.10.  
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2.13.  Preparation of eRNAi embryos for HCR ISH 

 

 Eggs were left to develop for the desired amount of time on Lumox dishes at 30 ºC. 

The coverslip was then carefully removed from the Lumox dish and turned onto a glass slide. 

Embryos were injected with a PBT + 10 % (v/v) formaldehyde solution using the 

microinjection protocol described in section 2.11 and left to fix at room temperature for one 

hour. Without this ‘pre-fix’, embryos are liable to burst as they are transferred from the slide 

into fixative. After an hour, embryos were transferred using a paintbrush into eppendorf tubes 

containing 500 μL of heptane and 500 μL of PBT + 4 % (v/v) formaldehyde. These tubes were 

rocked on a nutator for one hour to allow for further fixing. The bottom phase of solution (4 % 

formaldehyde) was then removed, and 500 μL of ice-cold methanol added. The chorion and 

vitelline membrane were then removed either by passing embryos vigorously through a needle, 

as described in section 2.2, or by manual dissection. I opted for the latter, as in my hands it 

resulted in a better yield of intact embryos. I left embryos overnight in fresh 100 % methanol 

(to improve tissue stiffness) before dissecting in PBT using sharpened tungsten needles. 

Dissected embryos were then kept in 100 % methanol at -20 ºC until required for HCR ISH. 

 

2.14. Drosophila husbandry and HCR 

Drosophila were reared and embryos collected at 25 ºC according to standard protocols  

(Dahmann, 2008). Two mutant lines (both pdm1/pdm2 null mutants) were used in my research; 

Df(2L)GR4/CyO (Bloomington #8857) and w1118;Df(2L)ED769/SM6a (Kyoto #150100). 

Wild-type flies were Oregon-R. HCR ISH was carried out as per section 2.4. After HCR ISH, 

embryos were flat mounted in ProLong™ Gold Antifade Mountant and imaged on the Olympus 

FV3000 as per section 2.5.  

2.15. Image processing and figure assembly 

 

Images and Z stacks were stitched using the Olympus FV3000 software. Additional 

image processing was carried out in Fiji (Schindelin et al., 2012). To account for an alignment 

issue between dichroic mirrors on the Olympus FV3000 in our department, channel alignment 

was corrected using a Fiji plugin created by Matt Wayland 

(https://github.com/WaylandM/dichroic-mirror-offsets). Fiji was used to adjust image 

brightness and contrast, and to rotate, crop and reslice images where necessary. The Spectral 
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Unmixing plugin, made by Joachim Walter (https://imagej.nih.gov/ij/plugins/spectral-

unmixing.html), was used to remove bleedthrough from selected channels in images or Z stacks 

where necessary. Figures were assembled in the open source vector graphics editor Inkscape 

(https://inkscape.org).  
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3. EXPRESSION DYNAMICS OF CANONICAL GAP GENES IN 
TRIBOLIUM 
 
3.1. INTRODUCTION 

 
3.1.1. Limitations of existing gap gene expression data for Tribolium 

 

The expression patterns of six trunk gap and gap-like genes – Tc-hb, Tc-Kr, Tc-mlpt, Tc-

gt, Tc-kni and Tc-svb – have been examined in Tribolium (Bucher and Klingler, 2004; Cerny 

et al., 2005; Cerny et al., 2008; Marques-Souza et al., 2008; Peel et al., 2013; Ray et al., 2019; 

Savard et al., 2006). However, these analyses have invariably been carried out using 

colorimetric in situ hybridisation (ISH), which presents several limitations for describing gene 

expression thoroughly.  

Firstly, when genes are expressed in overlapping domains, the chromogenic products 

utilised in colorimetric ISH can be hard to distinguish, making expression boundaries difficult 

to pinpoint. This is obviously a drawback when considering the densely overlapping domains 

of gap genes. A second, related issue is the ease of multiplexing, or visualisation of multiple 

gene products in a single embryo. In colorimetric ISH, chromogens are typically applied one 

after the other in sequential enzymatic reactions. This increases the time required for 

visualising increasing numbers of gene products in a single ISH, but more importantly, finding 

multiple reactions that are both compatible and produce distinctive chromogenic products can 

represent a significant hurdle. Together, these considerations have meant that analysis of gap 

gene expression in Tribolium has typically been in single or double ISHs, making it difficult to 

piece together the relative expression of all of the genes in the series.  

Tribolium presents an additional problem for colorimetric ISH approaches compared to 

Drosophila, due to its more convoluted morphogenesis. During gastrulation, the Tribolium 

embryo becomes a complicated multi-layered structure, with a flattened epithelial tube 

(consisting most dorsally of cells destined to become the amnion, and laterally and ventrally of 

the ectoderm proper) sitting atop the mass of mesoderm. Many segmentation genes are 

expressed in rings around the entire epithelial tube, and additionally in the underlying 

mesoderm. Delays in patterning between the different tissue layers, and a slight dorsal bias in 

the position of the posterior patterning centre of the embryo, mean that the expression domains 
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for segmentation genes may appear to be ‘out of sync’ when viewed from above (for example, 

see the supplementary material of Benton et al. (2016) regarding Toll gene expression). Such 

discrepancies can obscure the boundaries of gene expression domains unless embryos are 

viewed in physical or optical sections. The former is laborious, and the latter is impossible 

unless alternative detection methods, such as fluorophores, are used. Fluorescent ISH (FISH) 

can be used in Tribolium (Sprecher, 2020 and personal experience), but still presents issues for 

multiplexing, as standard methods still rely on sequential enzymatic reactions for addition of 

fluorescent tags to gene products.  

 

3.1.2. Hybridisation chain reaction as a method for multiplexed in situ hybridisation  

 

Within the last five years, a widely adopted technique known as Hybridisation Chain 

Reaction (HCR) in situ hybridisation (Choi et al., 2018) has circumvented many of the 

difficulties of multiplexed visualisation of gene expression. In this technique, each gene 

product is targeted by a set of short nucleic acid probe pairs, usually between 10-20 per gene. 

Each of these probe pairs consists of two short ssDNA sequences (25bp long), both tagged with 

complementary halves of an ‘initiator’ sequence. If either member of the probe pair binds at an 

off-target site, the partial initiator sequence remains inert and the reaction stalls. However, 

when each member of a probe pair binds correctly to adjacent sites, the partial initiator 

sequences are also are brought into close contact. The complete initiator sequence can then 

trigger the unfolding and polymerisation of fluorescently-tagged DNA hairpins that are added 

subsequently, leading to amplification of fluorescent signal along the length of a gene product 

of interest. The most significant benefit of this technique is that probes for different gene 

products can be tagged with different initiators and detected by hairpins tagged with different 

fluorophores. The specificity of these interactions means that targeting and detection of 

multiple genes can be done in parallel rather than sequentially. Currently, up to five gene 

products can be detected in a single sample using the commercially provided initiators and 

hairpin sets.  

One of my first aims during my PhD was therefore to use this new potential for easy 

multiplexed analysis of gene expression to create a thorough description of gap gene expression 

in Tribolium. In particular, I wanted to produce a centralised description of the current gap and 

candidate gap genes against a standardised marker gene (discussed further in section 3.1.3); 

and also to use multiplexed expression data to confirm or refute the existence of a ‘gap gene 

gap’. 
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3.1.3. Toll genes as putative spatial and staging markers 

 

In arthropods, segment polarity genes such as Wingless (Wg) or engrailed (en) are 

commonly used to track the progress of segmentation and, by extension, the stage of embryonic 

development (e.g. Auman et al., 2017; Nakamoto et al., 2015). They may also be used as spatial 

markers for describing gene expression patterns (e.g. Savard et al., 2006; Serano et al., 2016). 

However, they become expressed only as parasegment boundaries are set, and therefore 

provide little spatial information within the pre-segmental SAZ. To account for this, many 

researchers use a combination of segment polarity genes and pair-rule genes (such as even- or 

odd-skipped, abbreviated eve and odd) for staging or spatial information (e.g. Cerny et al., 

2005; Kainz et al., 2011). Pair-rule genes are typically expressed in dynamic stripes in the SAZ 

(reviewed in Clark et al., 2019), marking the early stages of parasegment boundary formation 

and allowing temporal differentiation of embryos with the same number of mature 

parasegments. Unfortunately, the expression of these genes typically fades outside of the SAZ 

(e.g. Auman and Chipman, 2018; Green and Akam, 2013), and so the two markers must be 

used together if comprehensive spatial mapping and/or precise staging are needed. This 

represents an inconvenience for protocols where the number of genes that can be detected is 

limited. 

The Toll genes provide a potential alternative to a segment polarity/pair-rule gene 

marker system. Toll genes encode transmembrane receptors that play a range of roles in 

development and immunity in both invertebrates and vertebrates (reviewed in Leulier and 

Lemaitre, 2008). In Drosophila, a subset of the Toll genes are expressed in stripes along the 

anterior-posterior axis of the embryo as readouts of the pair-rule gene network (Graham et al., 

2019), where they act to promote cell intercalation and therefore convergent extension (Paré et 

al., 2014). This role seems to be conserved broadly across the arthropods (Benton et al., 2016). 

Tribolium has 9 Toll genes (Zou et al., 2007), two of which (Tc-Toll7 [Tc-Tl7] and Tc-

Toll10 [Tc-Tl10]) are expressed in stripes along the AP axis during segment formation (Benton 

et al., 2016). Starting at the blastoderm stage, ‘primary’ stripes with double segmental 

periodicity arise dynamically in the SAZ in a similar manner to pair-rule genes (Benton et al., 

2016). ‘Secondary’ segmental stripes later arise in the maturing segments of the germband, and 

both are maintained throughout the course of segment addition (Benton et al., 2016). The 

expression patterns of Tc-Tl7 and Tc-Tl10 have been broadly examined alongside the segment 

polarity gene Tc-Wg and the pair-rule gene Tc-eve (Benton et al., 2016). Of the two, Tc-Tl10 

provides a more promising spatial marker, as its primary stripes appear to neatly abut the 
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boundaries of odd-numbered parasegments (unlike Tc-Tl7, which overlaps even-numbered 

parasegment boundaries) (Benton et al., 2016). Because it is expressed in both the SAZ and the 

segmented germband, Tc-Tl10 has the potential to be an excellent, stand-alone spatial and 

staging marker. 

  

3.1.4. Specific aims 

 

To begin my research, I aimed to produce a dataset of multiplexed and finely staged gap 

gene expression in Tribolium embryos, covering the entire period of segment addition 

(approximately 8-22 hours AEL at 30 °C), using HCR ISH. I utilised two markers – Tc-

Wingless (Tc-Wg) and Tc-Tl10 – as a staging and spatial mapping system, described in section 

3.2.1 (note that due to unforeseen complexities in Tc-Tl10 expression, this section is rather 

dense, and it might be useful to simply skim it on first reading in order to focus on the following 

description of gap gene dynamics) . In section 3.2.2, I present a full staged series of expression 

for each of the previously described trunk gap genes in Tribolium (Tc-hb, Tc-Kr, Tc-gt, Tc-kni 

and Tc-mlpt), as well as the candidate gap gene Tc-svb. I describe their expression dynamics 

relative to my spatial and staging markers. Finally, in section 3.2.3, I present multiplexed 

expression data for the gap and candidate gap genes. From this data, I evaluate the likelihood 

of previously predicted interactions and infer additional possible interactions.  
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3.2. RESULTS 

 
3.2.1. Development of a temporal and spatial mapping system  

 

Validation of Tc-Tl10 as a spatial and staging marker 

I first examined the expression of Tc-Tl10 against Tc-Wg and Tc-eve in staged embryo 

collections using HCR to confirm that its relationships to parasegmental boundaries are 

consistent across the course of segment maturation and between different parasegments. Tc-

cad expression was also included in these HCRs as a marker for the posterior SAZ. Information 

about the relative phasing of Tc-Tl10 stripes in each embryo was abstracted into a graphical 

format as shown in Figure 3.1. The process of Tc-Tl10 stripe maturation is described in more 

detail in the text that follows.  
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Figure 3.1. Translating HCR data on Tc-Tl10 stripe phasing into a graphical abstract of gene 

expression. All images are maximum projections of Z-stacks, spanning only the optical 

sections that contain ectoderm.  A| Expression of the segment polarity gene Tc-Wingless (Tc-

Wg), the posterior SAZ marker Tc-caudal (Tc-cad), the pair-rule gene Tc-even-skipped (Tc-

eve), my candidate marker gene Tc-Toll10 (Tc-Tl10) and the nuclear marker DAPI, detected 

using HCR ISH in a single embryo. Scale bar is 100 µM. B| A close up showing expression of 

a single Tc-Tl10 stripe in the ectoderm and a graphical representation of gene expression in this 

region. Scale bar = 50 µM. C| The same embryo from A aligned against a graphical 

representation of gene expression in the ectoderm along the entire segmented trunk and SAZ.  
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Emergence and maturation of primary Tc-Tl10 stripes 

I have found that all of the primary Tc-Tl10 stripes mature following an almost identical 

pattern, described in detail here. 

As previously reported, the primary stripes of Tc-Tl10 share many aspects of their 

expression with the primary stripes of the pair-rule gene Tc-eve, including dynamic expression 

in the SAZ (Benton et al., 2016). Each primary Tc-Tl10 stripe emerges as a broad domain in 

the posterior SAZ shortly after the appearance of, and overlapping with, a new Tc-eve domain 

(Figure 3.2, A1-A3). The two genes share an anterior boundary at this stage, and both extend 

to overlap with the posterior Tc-Wg domain (Figure 3.2, A1-A5). The anterior and posterior 

boundaries of both genes subsequently begin to shift towards the anterior of the embryo (Figure 

3.2, B1-C5). Cell-tracking suggests that, for Tc-eve at least, these shifts cannot be explained by 

cell movements, and that they are instead best explained by intracellular changes in gene 

expression (Sarrazin et al., 2012). This conclusion is supported by my observations of Tc-Tl10 

expression. As each Tc-Tl10 stripe shifts anteriorly, it displays a leading edge of expression 

where transcripts are localised to the nuclei in distinct punctae (Figure 3.2, B2 and C2). This 

pattern is suggestive of newly initiated transcription localised to the leading edge of the stripe, 

something that has so far not been detected using less sensitive ISH methods (Benton et al., 

2016). Each primary Tc-Tl10 stripe also displays a weaker trailing edge while it is shifting 

(Figure 3.2, B2 and C2). Transcripts are more diffuse in this region, with fewer bright punctae; 

possibly the result of transcription turning off at the trailing edge of the stripe.  

The spatial relationship between the primary stripes of Tc-Tl10 and other segment 

patterning genes in Tribolium is largely consistent with that proposed by Benton et al. (2016). 

The anterior border of each primary Tc-Tl10 stripe (excluding the leading edge) aligns with 

that of the overlapping Tc-eve stripe throughout the SAZ, and abuts the posterior of an odd-

numbered Tc-Wg stripe in the segmented germband (Figure 3.2). This means that the position 

of this boundary relative to other segment patterning genes is consistent throughout segment 

maturation. Specifically, it marks the region of the pattern that will form the posterior boundary 

of an odd-numbered parasegment.  

By contrast, the posterior boundary of each primary Tc-Tl10 stripe does not maintain a 

consistent position relative to other segment patterning genes. The posterior boundary of each 

primary Tc-Tl10 stripe retracts to a greater extent than that of its overlapping Tc-eve stripe 

(Figure 3.2, C2-C3). The posterior boundary of the trailing edge eventually abuts the anterior 

boundary of a secondary Tc-eve stripe (Figure 3.2 C2-C3 and D2-D3). In the segmented 
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germband, the trailing edge overlaps with an even-numbered Tc-Wg stripe (Figure 3.2, D2, D4-

D5). As parasegments mature, however, this trailing edge is lost, and the posterior boundary 

of the primary stripe begins to gradually retract anteriorly until the Tc-Tl10 stripe is only a few 

cells wide, similar to a Tc-Wg stripe (Figure 3.2, E2 and E4-E5). From the location and width 

of these stripes, we can surmise that they likely overlap with stripes of the segment polarity 

gene Tc-en, which mark the anterior part of each parasegment (equivalent to the posterior 

compartment of each segment) (Brown et al., 1994). The posterior boundary of each primary 

Tc-Tl10 stripe therefore marks different elements of the segment pattern in different parts of 

the embryo. In the SAZ, the posterior of the trailing edge aligns with the anterior boundary of 

secondary Tc-eve stripes, which prefigures the posterior boundary of odd-numbered 

parasegments (Figure 3.3, B5, C5). By contrast, in mature segments, after retraction, the 

primary stripe likely overlaps neatly with Tc-en stripes in odd-numbered parasegments, so that 

the posterior boundary of the stripe marks the compartment boundary of an odd-numbered 

parasegment (Figure 3.2, D5, E5).  
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Figure 3.2. Expression of primary Tc-Tl10 stripes relative to Tc-eve and Tc-Wg at different 

points along the anterior-posterior axis of the embryo, illustrating the process of stripe 

maturation. Stripes emerge in the posterior SAZ (A1-A5), shift anteriorly across the SAZ (B1-

C5), and then stabilise and retract in the segmented germband (D1-E5). Dotted lines are used 

to compare boundaries within a single column. Arrowheads in B2 and C2 point to nuclear foci 

of transcription in the leading edge of the Tc-Tl10 stripe.  The bottom row shows a graphical 

abstraction of gene expression in each column, illustrating how this relates to parasegment 

boundary formation in the segmented germband. In E5, 1° = mature primary Tc-Tl10 stripe, 2° 

= emerging secondary Tc-Tl10 stripe. Scale bar = 50 µM. 
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Emergence and maturation of secondary Tc-Tl10 stripes 

The majority of secondary Tc-Tl10 stripes also mature in a stereotyped manner, save 

for the first secondary Tc-Tl10 stripe (described below). They are not expressed in the SAZ, 

instead emerging de novo in mature segments in the segmented germband (Benton et al., 2016). 

They are first expressed as relatively diffuse domains centred on odd-numbered Tc-Wg stripes 

(Figure 3.3, A1-A3). As they mature, expression fades in the region overlapping the Tc-Wg 

stripe (Figure 3.3, B1-B3). Mature secondary stripes are a similar width to the mature primary 

Tc-Tl10 stripes (about 3 cell widths), and I presume that they, too, overlap with Tc-en stripes. 

Emerging stripes therefore overlap the posterior-most region of each odd-numbered 

parasegment, while mature stripes overlap with the anterior part of each even-numbered 

parasegment. This positional shift between emerging and mature secondary stripes was not 

detected by Benton and colleagues (2016), possibly because the sensitivity of my ISH method 

is higher.  
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Figure 3.3. Emergence (A) and maturation (B) of secondary Tc-Tl10 stripes relative to Tc-Wg. 

Dotted lines are used to highlight the same boundaries in a single column. Scale bar = 50 µM.  
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Emergence and maturation of the first secondary Tc-Tl10 stripe 

In contrast to most secondary stripes of Tc-Tl10, which emerge de novo, the first 

secondary Tc-Tl10 stripe emerges through splitting of the first primary stripe. Following 

maturation, the first primary Tc-Tl10 stripe abuts the posterior of the first Tc-Wg stripe in the 

trunk (Figure 3.4, A1-A3). However, it then begins to expand anteriorly, eventually 

encompassing this Tc-Wg stripe (Figure 3.4, B1-B3). Over time, the centre of this domain 

becomes cleared, leaving a ring of Tc-Tl10 expression (Figure 3.4, C1-D3). The posterior of 

this ring sits just behind the first trunk Tc-Wg stripe, equivalent to the location of the first 

primary stripe, and the anterior of the ring sits just behind the newly-emerging intercalary Tc-

Wg stripe. I refer to the anterior of this ring as a secondary stripe, as it occupies a similar 

position to other mature secondary stripes, but it is expressed in a head segment rather than a 

trunk segment and will therefore not be relevant for most of my work on the trunk gap genes.    
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Figure 3.4. Development of the first secondary Tc-Tl10 stripe over time. The mature primary 

stripe initially abuts the posterior of the Tc-Wg stripe at the posterior of parasegment 0 (W0) 

(A). This stripe spreads anteriorly to form a broad domain encompassing W0 (B). The centre 

of this Tc-Tl10 domain is subsequently cleared to form a ring, with the anterior of the ring (the 

new secondary stripe, 2° in D2) sitting just behind the intercalary Tc-Wg stripe (ant), and the 

posterior of the ring (the mature primary stripe, 1° in D2) sitting behind W0 (C and D). Dotted 

lines are used to highlight the same boundaries in a single column. Scale bar = 50 µM. 
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A spatial mapping system using Tc-Tl10 

I have shown that the spatial relationships between Tc-Tl10 stripes and the segment 

patterning genes Tc-eve and Tc-Wg are consistent between different stripes, and vary in a 

predictable way along the length of the axis. Tc-Tl10 can therefore, in theory, be used as a 

stand-alone marker for mapping the expression of genes against the segment pattern in both 

the SAZ and the segmented germband.  

When considering Tc-Tl10 as a spatial marker, it is important to keep in mind that 

‘spatial’ here refers to space relative to the segment pattern. Tc-Tl10 and segment patterning 

genes are expressed dynamically in the SAZ, so a gene that is not expressed dynamically here 

will appear to be shifting relative to Tc-Tl10 stripes. Likewise, a gene that undergoes similar 

anterior shifts in expression will appear to be stationary relative to Tc-Tl10 stripes. In the 

segmented germband, by contrast, shifts relative to stable, mature Tc-Tl10 stripes represent 

shifts relative to both the segment pattern and the tissue.  

I have developed a numbering system to refer to specific stripes of Tc-Wg and Tc-Tl10 

expression in the embryo, described in more detail below and represented graphically in Figure 

3.5A. Figure 3.5B summarises how stripes of each gene relate to the segmental pattern over 

the course of segment maturation, and Figure 3.5C shows how stripe numbering relates to 

parasegment numbering in a fully elongated embryo (i.e. where all stripes are stabilised and 

mature).   

 

Tc-Wg stripe numbering: Tc-Wg stripe numbering is directly linked to parasegment 

identity. The first trunk Tc-Wg stripe, which is expressed at the posterior of parasegment 0, will 

be referred to as W0. The next Tc-Wg stripe will be labelled as Wg1 and so on until Wg15, 

marking the posterior of the 15th parasegment. There are additionally three Tc-Wg stripes 

anterior of W0 (the head, antennal and intercalary stripes) and a Tc-Wg domain in the posterior 

of the SAZ. These domains will be referred to by name where necessary.  

 

Tc-Tl10 stripe numbering: My numbering system for Tc-Tl10 stripes draws on 

existing conventions for eve, as the two genes overlap extensively, and this will facilitate 

comparison with work using eve as a spatial marker. The primary stripes will therefore be 

numbered 1-8 (To1, To2 and so on). Secondary eve stripes arise from splitting, and so the two 

resulting stripes are usually referred to as the number of the original primary stripe plus a letter 

to distinguish them (e.g. eve stripes 2a and 2b). However, the majority of secondary Tc-Tl10 
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stripes arise de novo, and I decided that it would be more appropriate to give them unique 

numbers that represent their relative position to primary Tc-Tl10 stripes. Therefore, the 

secondary Tc-Tl10 stripe that forms between To1 and To2 will be referred to as To1.5; the 

stripe that forms between To2 and To3 will be To2.5; and so on, until To8.5. Although it forms 

by splitting, the first secondary stripe will be numbered as To0.5 for consistency. There is also 

a Tc-Tl10 domain in the head (the head stripe) that will be referred to by name if necessary. 

Note that this means that the parasegment in which any specific Tc-Tl10 stripe is expressed can 

be calculated by multiplying the stripe number by 2 and subtracting 1 (for example, stripe To3.5 

is expressed at the anterior of parasegment 6).  
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Figure 3.5. A graphic representation of my stripe numbering system for Tc-Wg (light blue for 

stripes in the trunk, and dark blue for stripes or domains outside of the trunk) and Tc-Tl10 (red 

and pink for primary and secondary stripes, respectively). A) shows specific stripes in situ, to 

indicate how they arise over time and to highlight the head and posterior domains that are not 

numbered. B) summarises how stripes of Tc-Wg, Tc-eve (yellow) and Tc-Tl10 relate to 

parasegment boundaries and each other throughout segment maturation (using a simplified 

representation of the posterior of the segmented germband and the SAZ). C) provides a brief 

overview of how stripe number relates to parasegment number (using a simplified 

representation of the anterior and posterior segments of a fully elongated embryo). h = head 

domain, post = posterior domain, ant = antennal stripe, int = intercalary stripe, PS = 

parasegment.    
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Tc-Tl10 is not a precise marker for embryonic stage 

In addition to using Tc-Tl10 as a spatial marker, I wanted to test its utility as a proxy 

for the progression of segmentation and therefore as an embryonic staging marker. My main 

concern was whether the development of primary and secondary stripes together would provide 

a similar level of temporal precision for staging as a standard staging marker such as Tc-Wg. 

To determine this, I examined Tc-Tl10 expression in embryos spanning the course of segment 

addition (from 8-22h AEL), against a marker of parasegment boundary formation, Tc-Wg.  

Primary Tc-Tl10 stripes are added sequentially, from anterior to posterior, beginning at 

the start of segment addition (~8h AEL) and ending at its completion (~22h AEL) (Figure 3.6). 

The majority of secondary stripes begin to emerge later, from around 12-14h AEL (the first 

secondary stripe is a little delayed, appearing about 14-16h AEL) (Figure 3.6). The second and 

third secondary stripes emerge almost simultaneously, and the more posterior stripes then 

emerge sequentially from anterior to posterior as parasegments mature (Figure 3.6). 

Unfortunately, although primary and secondary Tc-Tl10 stripes do emerge gradually over the 

course of segment addition, the rate of their formation is not consistent with the rate of Tc-Wg 

stripe formation (Figure 3.7). This means that an embryo with different numbers of 

parasegments may display the same number of Tc-Tl10 stripes (Figure 3.6 and Figure 3.7). Tc-

Tl10 is therefore a less precise marker for the progress of segmentation than Tc-Wg.  

Tc-Tl10 can reliably be used to distinguish between embryos that differ in their number 

of parasegments by at least two (Figure 3.7), a similar level of precision as that provided by a 

pair-rule gene such as Tc-eve. This level of precision may be suitable for some lines of research, 

and so Tc-Tl10 may still has use as a stand-alone marker. However, for my work, I decided that 

this would not be sufficient.  

 

Figure 3.6 (overleaf). The relationship between Tc-Wg stripe number, Tc-Tl10 stripe 

number and time after egg lay (AEL) at 30 °C. Tc-Wg expression (cyan) and Tc-Tl10 

expression (red) are shown in embryos spanning the stages of segment addition, from 8-22 

hours AEL. Each embryo is labelled with its age AEL (within a 2 hour range, above) and with 

its staging moniker below (see text for explanation). Blue arrowheads mark Tc-Wg stripe W0, 

and red arrowheads mark Tc-Tl10 stripe To1. Specific stripes are annotated in blue (Tc-Wg), 

red (primary stripes of Tc-Tl10) or pink (secondary stripes of Tc-Tl10). The inset at stage 

W5:To5(1-2) shows a close up on Tc-Tl10 expression in the region of W1, indicating that the 

secondary Tc-Tl10 stripe To1.5 has begun to form. Scale bar = 100 µM.  
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Figure 3.7. The number of primary (red) and secondary (pink) Tc-Tl10 stripes (A) or total 

number of Tc-Tl10 stripes (B) in an embryo compared to the number of Tc-Wg stripes (as a 

proxy for the progression of segmentation). Primary and secondary stripes are not added at a 

consistent rate, and there are therefore stages at which total Tc-Tl10 stripe number does not 

vary between embryos with different numbers of parasegments (for example, embryos with 9-

12 Tc-Wg stripes cannot consistently be distinguished).  N = 51. 
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A staging system using Tc-Wg and Tc-Tl10 

Fortunately, during my validation of Tc-Tl10 as a possible marker gene, I discovered 

that it was actually possible to use two distinct marker genes in each of my HCR ISH reactions 

without ‘wasting’ a detection slot. Of the five fluorophores offered as hairpin tags by Molecular 

Instruments, two (Alexa Fluor 488 and 514) have significant overlap in their emission spectra, 

and using them together therefore risks signal bleed-through. After a long time avoiding using 

these tags together (and therefore limiting ourselves to four genes per HCR), we found that 

these tags could be used together reasonably effectively with some post-processing to eliminate 

some of the effects of bleed-through. I decided that Tc-Wg and Tc-Tl10 have distinct enough 

expression patterns that they could be distinguished even using these tags, and so most of my 

thesis uses a staging system based on both genes, with Tc-Wg providing precise information 

about the progression of segmentation and Tc-Tl10 supplementing this information (for 

example, providing staging before the emergence of the first Tc-Wg stripe, and occasionally 

allowing me to differentiate between embryos with the same number of Tc-Wg stripes). In this 

staging system, embryos are referred to using the number of the most recently formed Tc-Wg 

stripe, and the most recently formed Tc-Tl10 stripe (Figure 3.6). For example, an embryo which 

has formed no Tc-Wg stripes and one Tc-Tl10 stripe would be at stage To1; an embryo which 

has formed the first Tc-Wg stripe and the first Tc-Tl10 stripe is at stage W0:T1; and an embryo 

which has formed 8 Tc-Wg stripes and six primary Tc-Tl10 stripes is at stage W7:T6. Where 

relevant, I may distinguish otherwise identical stages based on the number of secondary stripes 

formed by writing this in brackets (e.g. W8:T6(2) would have only two secondary stripes 

formed, while W8:T6(3) would have 3 formed). This count will not include the most anterior 

secondary stripe that forms by splitting rather than de novo. 
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Tc-single-minded as a marker to highlight tissue boundaries 

Segmentation in arthropods occurs initially in the ectoderm, with the mesoderm 

becoming secondarily segmented (Azpiazu et al., 1996; Green and Akam, 2013; Hannibal et 

al., 2012). I was therefore most interested in examining gene expression in the ectoderm of the 

embryo. Single-minded (sim) is a marker for mesectoderm (the tissue that lies at 

mesoderm/ectoderm border, and will give rise to the ventral midline) in the insects Drosophila 

(Thomas et al., 1988), Apis mellifera and Tribolium (Zinzen et al., 2006), the crustacean 

Parhyale (Vargas-Vila et al., 2010), and the myriapod Strigamia (Linne et al., 2012). I decided 

that this gene could serve as a useful boundary marker for the ectoderm, and have therefore 

included it in the same channel as Tc-Wg for many of my HCR ISHs. Appendix 2 provides 

relevant information on how the two genes overlap as a validation that they can be used 

together without losing spatial information. I summarise the expression of Tc-sim in Figure 

3.8, in order to supplement the brief description already published for Tribolium (Zinzen et al., 

2006). 
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Figure 3.8. Tc-single-minded (sim) is expressed in the mesectoderm of Tribolium embryos 

throughout early development. A| Tc-sim (cyan) is expressed in the midline of the embryo in 

both the blastoderm and the germband. B| Tc-sim (cyan) is expressed specifically in the 

mesectoderm - the epithelial tissue immediately bordering or overlying the invaginating 

mesoderm (here marked by expression of twist, in red). Two transverse sections through a 

single embryo show how sim is initially expressed along the inner edge of the two ventral 

epithelial plates (1) and how these domains subsequently fuse to form a single midline 

overlying the invaginated mesoderm (2). Lower images in panels 1 and 2 are false coloured to 

show tissue layers. nuclei are detected using DAPI (grey). Scale bars for whole embryo images 

are 100 µM, and for insets in B are 50 µM. 

  



 59 

3.2.2. Expression dynamics of individual gap genes 

 

With a suitable spatial and temporal marker system established, I moved on to 

collecting data on canonical gap gene expression. I performed HCRs on Tribolium embryos 

covering the entire course of segmentation (from six hours AEL to 22 hours AEL). In each 

HCR, I included probes for Tc-Wg/Tc-Sim and Tc-Tl10 as stage and spatial markers, and for 

three overlapping gap genes. All embryos were subsequently stained with DAPI to allow for 

visualisation of nuclei.  

Using this dataset, I first examined the spatial and temporal dynamics of individual gap 

genes against Tc-Tl10 and Tc-Wg. I aimed to clarify and supplement previous descriptions of 

their expression, and to produce a comprehensive description of the expression of each gene 

against standardised markers as a resource for future study.  
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Expression dynamics of Tc-hunchback (Tc-hb) 

Expression of Tc-hb has been previously described by Wolff et al. (1995). However, 

this description uses spatial markers in only a few select stages, and the marker used (the pair-

rule gene Tc-hairy) has a complicated relationship with parasegment and segment boundaries, 

making the boundary estimates necessarily imprecise.  

In Drosophila (Margolis et al., 1994), Nasonia (Pultz, 2005) and Oncopeltus (Liu and 

Kaufman, 2004a), Dm-hb mRNA is initially provided maternally; ovarian support cells known 

as ‘nurse cells’ synthesise and load it into developing oocytes as they mature. I show that the 

same is true in Tribolium by examining the expression of Tc-hb in ovarioles (the individual 

functional units of the ovary) dissected from adult females (Figure 3.9). Unlike Drosophila, 

which has polytrophic ovaries (in which nurse cells are bundled up with each oocyte), 

Tribolium has telotrophic ovaries, in which the nurse cells are clustered at the proximal end of 

the ovariole and RNA is shuttled to the oocyte through cytoplasmic ‘nutritive’ cords (Trauner 

and Büning, 2007), visible in Figure 3.9. 

 
 

Figure 3.9. A single dissected ovariole showing that Tc-hb is expressed in nurse cells and 

provided to the developing oocytes through a nutritive cord. Maximum projection through the 

centre of a Tribolium ovariole, scale bar = 50 µM. 
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This maternal loading means that Tc-hb mRNA is ubiquitous in the early blastoderm 

(Figure 3.10, stage To0 and Wolff et al., 1995). Tc-hb expression remains ubiquitous until To1 

begins to form (approximately 9 hours AEL, after the last synchronised mitosis of the 

blastoderm). At this stage, Tc-hb mRNA clears from the posterior tip of the embryo (Figure 

3.10, stage To1 and Wolff et al., 1995). As reported by Wolff et al. (1995), expression 

subsequently intensifies in the cells of the serosa and, within the embryonic primordium, 

becomes restricted to a broad central band (Figure 3.10, stages T01-To2). This band spans from 

To1a-To2p, a region of the segment pattern that will give rise to PS1-3, and forms following 

loss of Tc-hb expression in the anterior and posterior regions of the embryo. Wolff et al. (1995) 

suggests that Tc-hb expression ‘retracts’ from the posterior of the embryo, but I have seen no 

evidence for this – instead, fading appears to occur simultaneously across the breadth of the 

domain. It may be that they interpreted the localised repression of Tc-hb at the posterior tip of 

the embryo as an early stage of retraction. I instead observe a two-stage clearance, firstly 

limited to the posterior tip of the embryo and then in a broader domain across the majority of 

the SAZ. Note that expression of Tc-hb is lost totally from the posterior of the embryo, but 

remains at a low level in the anterior for the remainder of segmentation.   

In the SAZ, Tc-hb expression fades in PS1 and PS3, and finally in PS2, so that 

expression is uniform from the anterior of the embryo back to the posterior of PS3 (Figure 

3.11, stages W1:To3-W5:To4(2)). Tc-hb then spreads from anterior to posterior in a segmental 

pattern, as parasegments mature (Figure 3.10, stage W6:To5(2) onwards, and Wolff et al., 

1995). This expression is limited to the neurectoderm (Biffar and Stollewerk, 2014) and 

mesoderm (data not shown).  

As reported by Wolff et al. (1995), a second domain of Tc-hb emerges in the posterior 

of the SAZ later in segmentation (Figure 3.10, stageW7:To6(3)). The anterior border of this 

domain shifts anteriorly in tandem with To7a (Figure 3.10, stages W9:To7(4)-W12:T07(5)), 

which will overlap with the anterior border of PS13 in the SAZ. The posterior border does not 

retract from the posterior SAZ, so that this domain of Tc-hb essentially spans from the anterior 

of PS13 to the terminus of the embryo.  

Tc-hb is therefore expressed in two gap-like domains in the trunk – one spanning the 

primordia for PS1-PS3, and one spanning from the anterior of PS13 to the terminus of the 

embryo.  
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Figure 3.10 (overleaf). HCR showing Tc-Tl10 (red) and Tc-hb (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis)). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

The asterisk marks the clearing of Tc-hb expression from the posterior terminus at stage To1. 

Scale bar = 100 µM. 
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Expression dynamics of Tc-Krüppel (Tc-Kr) 

Tc-Kr expression has been previously described using single colorimetric ISHs by 

Sommer and Tautz (1993) and double colorimetric ISHs against Tc-eve Cerny et al. (2005). 

However, the temporal dynamics of early expression in particular have been poorly 

characterised.  

Interestingly, Tc-Kr expression in the SAZ appears to be established in two steps – it is 

first activated in a small region at the posterior tip of the embryo (Figure 3.10, stage To0), and 

subsequently becomes expressed in a broad domain across the posterior SAZ, initially in a 

posterior to anterior gradient but subsequently becoming relatively uniform (Figure 3.10, 

stages To1-W0:To2). This seem to mirror the two-step clearance of Tc-hb observed in the 

posterior SAZ.  The first phase of Tc-Kr emergence appears to have been missed by Cerny et 

al. (Cerny et al., 2005) or Sommer and Tautz (Sommer and Tautz, 1993), but is presented 

without comment in Zhu et al. (2017). These data suggest that there may be two distinct phases 

of regulation required to establish repression and activation, respectively, of Tc-hb and Tc-Kr 

in the SAZ.  

The broad, posterior domain of Tc-Kr subsequently shifts anteriorly in tandem with the 

segment pattern, as is previously reported (Cerny et al., 2005). Previous descriptions consider 

the gap domain of Tc-Kr to cover T1-T3 precisely, in phase with the segmental, rather than 

parasegmental, pattern (Cerny et al., 2005). My data suggests that this domain instead initially 

covers PS3-PS5 in their entirety (spanning from the posterior compartment of the mandibular 

segment to the anterior compartment of T3) (Figure 3.11, stages W2:To4-W5:To5(2)). I 

suspect that the discrepancy between my own results and those and Cerny et al. (2005) are due 

to the difficulty of picking out overlaps in colorimetric ISHs, as it is ambiguous whether the 

boundaries of this Tc-Kr domain overlap or abut their spatial marker, Tc-eve.  

A segmental pattern of Tc-Kr expression subsequently emerges in mature 

parasegments, likely related to a function of Tc-Kr in the neurectoderm (Biffar and Stollewerk, 

2014). Late in segmentation, a new domain of Tc-Kr also appears in the primordia of the gut 

at the posterior end of the germband (Figure 3.11, stage W15:To8(7)). Both of these features 

have been previously reported by Cerny et al. (2005), but my data provides more precision as 

to the timing of their development for future reference.  
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Figure 3.11 (overleaf). HCR showing Tc-Tl10 (red) and Tc-Kr (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

Scale bar = 100 µM. 
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Expression dynamics of Tc-mille-pattes (Tc-mlpt) 

Tc-mlpt expression has been previously described in some detail by Savard et al. 

(2006). However, they relate Tc-mlpt expression only to the expression of a segment polarity 

gene (excluding dynamics within the SAZ) and this only at 5 distinct stages of development 

(none of them prior to germband formation). I therefore aim to flesh out this description here.   

As reported by Savard et al. (2006), Tc-mlpt is first expressed in a broad domain in the 

presumptive head (Figure 3.12, stage To0). I found that this domain extends from the anterior 

of the embryo proper to To1p, subsequently fading within stripe To1 so that its posterior border 

sits at the back of PS0 (Figure 3.12, stages To1-W1:To3). The anterior of this head domain 

then fades, leaving a stripe of Tc-mlpt between To1a and W0p – i.e., spanning PS0 (Figure 

3.12, stages W2:4-W5:To4(2)). Savard et al. (2006) describe this stripe as instead precisely 

spanning the mandibular segment. This appears to result from a misunderstanding of their 

segment marker, the segment polarity gene gooseberry. gooseberry overlaps precisely with 

stripes of Wg (Li and Noll, 1993), so our results are directly comparable. Their data shows the 

anterior stripe of Tc-mlpt as abutting the anterior boundary of the first gooseberry stripe, 

equivalent to my results. The first Tc-Wg stripe, and therefore the first Tc-gooseberry stripe, 

formed in the trunk sits mid-way through the mandibular segment, and so their data also 

suggests a parasegmental rather than segmental stripe of expression. At later stages, the PS0 

stripe fades and Tc-mlpt becomes expressed in specific neuroblasts of the head and anterior 

trunk (Figure 3.12, stages W7:To6(3)-W15:To8(8)).  

Savard et al. (2006) report that two waves of Tc-mlpt emerge from the SAZ over the 

course of segment addition. In addition to these two, I detect a third, weaker domain which 

emerges near the end of segment addition (stage W13:To8(7)). Like Tc-Kr, the first domain of 

Tc-mlpt emerges in two phases – first, it is expressed in a small patch at the posterior tip of the 

embryo, overlapping with the posterior Tc-Wg domain, (Figure 3.12, stage To2), and then it 

becomes expressed in a broader domain across the posterior SAZ (Figure 3.12, stage To2). The 

weaker, anterior region of this domain fades rapidly, leaving a strong posterior domain that 

shifts anteriorly in tandem with the segment pattern (Figure 3.12, stages To2-W1:To3). The 

anterior boundary of this domain overlaps with To3a, and the posterior boundary overlaps with 

To5a, so that it later spans PS4-8 in the segmented germband (Figure 3.12, stages W1:To3-

W8:To7(3)). The second wave of Tc-mlpt expression emerges in the posterior SAZ shortly 

after the patterning of PS6 (i.e. at the start of abdominal patterning) (Figure 3.12, stage 

W7:To6(3)). This domain also shifts anteriorly in tandem with the segment pattern, spanning 
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from To6p-To7p (later PS12-13) (Figure 3.12, stages W7:To6(3)-W13:To8(7)). Both of these 

descriptions are largely consistent with the results of Savard et al. (2006) (ignoring the fact that 

their descriptions do not match their data), save that they observe expression of the second 

domain only in PS12. Expression in PS13 fades rapidly compared to expression in PS12  

(Figure 3.12, stages W13:To8(7) and W14:To8(7)), so it is not surprising that this may have 

been missed. The third and final burst of Tc-mlpt expression in the SAZ is weak and transitory, 

appearing across the entirety of the SAZ at stage W13:To8(7) (Figure 3.12). This domain was 

missed entirely by Savard et al. (2006), likely due to its transitory nature. It is expressed 

between To8a and the posterior of the Tc-Wg domain, indicating transient expression in at least 

the tissue that will give rise to PS15-16. Tc-mlpt is therefore expressed in the SAZ during the 

patterning of PS4-8, 12-13 and 15-16.  

Each of these three domains of Tc-mlpt expression fade in the segmented germband at 

about the same time that secondary Tc-Tl10 stripes begin to emerge in the relevant 

parasegments. Tc-mlpt subsequently becomes expressed ubiquitously across the embryo 

(Figure 3.12, stage W15(To8(8)). This ubiquitous expression may reflect a role in epidermal 

patterning (Ray et al., 2019).  

 

 

 

 

 

Figure 3.12 (overleaf). HCR showing Tc-Tl10 (red) and Tc-mlpt (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1.  

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

Scale bar = 100 µM. 
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Expression dynamics of Tc-shavenbaby (Tc-svb) 

Tc-svb expression has, prior to this work, been examined only in single colourimetric 

ISHs and in a limited range of stages (Ray et al., 2019). This is therefore the first description 

of its expression relative to a segment marker.  

Tc-svb is expressed weakly but ubiquitously across the blastoderm during the formation 

of the first Tc-Tl10 stripe (Figure 3.13, stage To1). This early expression was not described by 

Ray et al. (2019), and suggests that Tc-svb may have a more global role in early embryonic 

development. As To1 is refined, Tc-svb expression begins to fade in first the presumptive 

serosa, and then the anterior embryonic primordium, while it strengthens in the posterior third 

of the embryo (Figure 3.13, stage To1). The anterior boundary of this domain overlaps with 

To2a (Figure 3.13, stage To2), but the domain soon evolves into a strong stripe overlapping 

with To2 (Figure 3.13, stage W1:To3). This stripe is maintained for a short time in the 

germband, neatly overlapping with PS3 (Figure 3.13, stage W4:To4(1)). Shortly afterwards, a 

new domain of Tc-svb emerges in the posterior SAZ (Figure 3.13, stage W4:To4(1)). The 

anterior border of this domain abuts To5p (Figure 3.13, stage W5:To5(2)), and its posterior 

border eventually shifts forwards to rest just anterior of To7p (Figure 3.13, stage W8:To7(3)). 

This is equivalent to PS9-12, although by the time it reaches the segmented germband the 

anterior boundary of this domain is obscured by ubiquitous expression of Tc-svb (Figure 3.13, 

stage W13:To8(5)). Both of these domains have been described by Ray et al. (2019) without 

reference to spatial markers. However, as for Tc-mlpt, I also observe a third wave of Tc-svb in 

the SAZ that emerges near the end of segment addition (Figure 3.13, stage W13:To8(5)). This 

domain spans from To7p (eventually W14p) to the back of the posterior Tc-Wg domain.  

In contrast to other gap genes, the expression of Tc-svb is seldom entirely lost in the 

SAZ – there are periods in which it is expressed at a lower level, or expressed in only the 

anterior SAZ, but it is always present to some extent (Figure 3.13). However, it is expressed 

most strongly during the patterning of PS5, PS9-12 and PS14-16.  
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Figure 3.13 (overleaf). HCR showing Tc-Tl10 (red) and Tc-svb (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

Scale bar = 100 µM. 
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Expression dynamics of Tc-giant (Tc-gt) 

Tc-gt expression has been described by Bucher and Klingler (2004). This description 

makes use of the pair-rule gene Tc-eve as a parasegmental/segmental marker, but again, only 

for a few select stages.  

As in Drosophila, Tc-gt is provided maternally in Tribolium so the mRNA is initially 

ubiquitous (Figure 3.14, stage To0 and Bucher and Klingler (2004)). After the formation of the 

uniform blastoderm, however, mRNA is cleared anteriorly, from the presumptive serosa, and 

posteriorly, from a small patch at the terminus of the egg (Figure 3.14, stage To0 and Bucher 

and Klingler (2004)). The posterior third of the egg is then cleared of mRNA, leaving a broad 

domain of Tc-gt in the anterior embryo (Figure 3.14, stage To2 and Bucher and Klingler 

(2004)). Note that this repression of Tc-gt in the posterior of the embryo occurs in a two-step 

process, similar to Tc-hb and to the initial activation of Tc-Kr and Tc-mlpt in the SAZ. These 

similarities suggest that these four genes may be regulated by similar regulatory inputs and/or 

regulate each other. 

Over time, the head domain of Tc-gt evolves into a stripe that is offset slightly 

posteriorly compared to To1, and spans from W0p to a short distance behind W1p (presumably 

overlapping with the first engrailed stripe, en1 - Figure 3.14, stages To2-W2:To3). Bucher and 

Klingler (2004) describe this head stripe as neatly overlapping the maxillary segment – my 

data, by contrast, suggest that this domain overlaps at least some of the mandibular segment as 

well as the entirety of the maxillary segment. The head stripe fades soon afterwards, such that 

Tc-gt is expressed at low levels across the head back to the posterior of PS1 (Figure 3.14, stage 

W5:To4(1)). Expression subsequently fades in PS1, and Tc-gt becomes expressed in specific 

neuroblasts in the head (Figure 3.14, stages W6:To5(2) onwards). 

Shortly after maternal Tc-gt is cleared from the SAZ, the trunk gap domain emerges at 

the posterior-most tip of the embryo (Figure 3.14, stage To2). The anterior border of this 

expression domain shifts anteriorly (Bucher and Klingler, 2004) until it sits a short distance 

behind To3a (Figure 3.14, stage W1:To3). A strong stripe forms, spanning from this boundary 

back to abut To4a, and a second stripe subsequently forms spanning from a short distance 

behind To4a back to abut To5a (Figure 3.14, stages W1:To3-W6:To5(2)). In the segmented 

germband, these two stripes are refined to cover the majority of PS5 and the majority of PS7-

8 (Figure 3.14, stages W6:To5(2)-W8:To7(3)). By contrast, Bucher and Klingler (2004) report 

that these two stripes neatly overlap with segments T3 and A1. It appears that the boundaries 

of these stripes may change as they emerge from the SAZ – the fact that their anterior 
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boundaries initially sit a short distance behind the anterior boundaries of Tc-Tl10 stripes 

suggest that they are initially out of sync with the parasegmental pattern, but later come into 

sync as the pattern matures. Examination of Tc-gt expression with a segmental, rather than 

parasegmental, marker, may help to clarify this issue.  

The two stripes of Tc-gt expression fade well before the end of segment addition, and 

expression is subsequently detected only in neuroblasts of the head (Figure 3.14, stage 

W10:To7(4) onwards). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 (overleaf). HCR showing Tc-Tl10 (red) and Tc-gt (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

Scale bar = 100 µM. 
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Expression dynamics of Tc-knirps (Tc-kni) 

Tc-kni expression has been described by Cerny et al. (2008) and Peel et al. (2013), but 

most focus has rested on the anterior domain, with no attempt made to map the posterior 

domain against segmental or parasegmental markers.  

As reported by Cerny et al. (2008) and Peel et al. (2013), Tc-kni is first expressed in the 

early blastoderm in a broad head domain, excluding the differentiating serosa (Figure 3.15, 

stage To0). Within this domain, a stronger stripe of Tc-kni forms, spanning from the posterior 

boundary of the Tc-Tl10 head stripe to To1a (Figure 3.15, stage To2). This is consistent with 

reports of the Tc-kni head stripe overlapping with PS0 (Peel et al., 2013). This stripe of Tc-kni 

is not maintained for long, and almost all head expression is gone by W6:To5(2) (Figure 3.15) 

save for an anterior region that marks the developing labrum (Figure 3.15, W6:To5(2) onwards 

and Cerny et al. (2008)).  

The posterior domain of Tc-kni first emerges at the posterior pole of the embryo at stage 

To2 (Figure 3.15). Its anterior boundary then shifts anteriorly in tandem with Tc-Tl10 stripes, 

abutting To3p (Figure 3.15, stages To2-W3:To4). This domain is strongest in a stripe spanning 

from To3p to To4a (later corresponding to PS6 - Figure 3.15, stage W3:To3). This stripe begins 

to fade soon after it emerges, faster than the remaining Tc-kni expression in the posterior SAZ 

(Figure 3.15, stage W4:To4(1)). After this posterior domain fades, expression is retained in the 

posterior mesoderm and mesectoderm (Figure 3.15, stages W5:To5(2)-W10:To7(4)). As 

reported by Cerny et al. (2008), I also observe expression of Tc-kni in the tracheal placodes 

(Figure 3.14, stage W8:To7(3) onwards) and overlapping with the posterior Tc-Wg domain at 

the end of segmentation, perhaps corresponding to a function in gut patterning (Figure 3.15, 

stages W13:To8(7) and W15:To8(7)). 
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Figure 3.15 (overleaf). HCR showing Tc-Tl10 (red) and Tc-kni (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. 

Scale bar = 100 µM. 
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3.2.3. Multiplexed expression analysis of gap gene dynamics 

 

I next aimed to generate an integrated description of gap gene expression across the 

entire period of segment addition. I performed HCR ISHs against triplets of gap and gap-like 

genes (Tc-hb, Tc-Kr, Tc-svb, Tc-mlpt, Tc-gt, Tc-kni and/or Tc-tll) in addition to my three 

marker genes (Tc-Tl10, Tc-Sim and Tc-Wg). A representative series from each of three different 

triplet HCR ISHs is shown in Figure 3.16. Embryos at the same stage of development according 

to my staging system were pooled together, and information about the relative phasing of each 

gap or gap-like gene against my marker genes was abstracted into a graphical format as shown 

in Figure 3.17. The head was omitted from this abstraction for simplicity, although information 

on head expression is available in my dataset. In Figure 3.18 I show a condensed version of 

my full graphical dataset, focusing on expression of gap genes in the SAZ and newly formed 

parasegments over the course of segmentation. For simplicity, I have excluded the earliest 

stages of gap gene expression (prior to stage To1), and instead describe the relevant dynamics 

in the following text. 
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Figure 3.16. A selection of representative embryos from triplet HCR ISHs, spanning the course 

of segment addition. Each embryo contains information on the expression of three gap or gap-

like genes, and my three marker genes (Tc-Wg, Tc-Tl10 and Tc-sim – here excluded for 

simplicity). The triplet of gap or gap-like genes shown in each row are indicated above. Scale 

bar is 100 µM. 
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Figure 3.17. Compiling HCR data on canonical gap gene expression into a graphical abstract. 

A| A maximum projection through the ventral epithelium of a Tribolium embryo after HCR 

showing expression of Tc-Wg and Tc-sim (green) and Tc-Tl10 (magenta) (A). Tc-sim-

expressing tissue (mesectoderm) and the interior mesoderm are discounted from further 

analysis (A’). Information on Tc-Wg and Tc-Tl10 expression in the ectoderm can be 

represented graphically as shown in A’’. The central black line represents where mesectoderm 

and mesoderm have been ‘excised’. B| HCR data on the expression of three gap genes from 

the same embryo as in A (B) can be represented graphically alongside Tc-Wg and Tc-sim 

expression as shown in B’ (note that left-right differences are also discounted in my dataset, so 

position of stripes on the y axis is arbitrary).  For my purposes, the shape of the embryo and 

expression of genes in the head is discounted so that the final dataset for this embryo appears 

as in B’’.  
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Figure 3.18 (overleaf). Graphical representation of gap gene expression  in the SAZ and newly 

formed parasegments at the indicated stages over the course of segment addition. Dark grey 

stripes indicate Tc-Wg stripes and the posterior Tc-Wg domain; light grey stripes indicate 

regions of the segment pattern that will give rise to odd-numbered parasegments in the SAZ 

(based on the boundaries of Tc-Tl10 stripes) and odd-numbered parasegments in the segmented 

germband. The first column shows the trunk and posterior terminus in their entirety, while the 

subsequent columns show only the two most recently patterned parasegments and the SAZ for 

brevity. Segmentally repeated expression domains that emerge de novo in the segmented 

germband are excluded.  
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Early repression of Tc-hb and Tc-gt, and activation of Tc-Kr, occurs in a region overlapping 

with Tc-tll expression 

A homologue of the terminal gap gene Dm-tll is expressed at the posterior pole of the 

Tribolium embryo prior to gastrulation (Schröder et al., 2000). The relationship between this 

domain of Tc-tll and other gap gene domains suggests that it does not play a similar role to its 

homologue in Drosophila (for example, it is expressed well before the formation of the 

terminal hb stripe, which it plays a role in repressing in Drosophila) (Schröder et al., 2000). 

The role of Tc-tll has therefore been proposed to be limited largely to pre-patterning of the 

embryonic terminus, with little or no involvement in the gap gene cascade (Schröder et al., 

2000).  

I theorised that the posterior domain of Tc-tll might be involved in the initial, localised 

phase of repression of Tc-hb and Tc-gt at the posterior pole. To investigate this hypothesis 

further, I examined the expression of Tc-tll alongside Tc-hb, Tc-gt and/or Tc-Kr in blastoderm 

stage embryos (Figure 3.19). 

I found that the expression of Tc-tll precedes the localised loss of expression of Tc-hb 

and Tc-gt in the posterior terminus of the embryo, and that its expression domain neatly 

overlaps the region of degradation (Figure 3.19, A-B’). Tc-Kr expression emerges at the same 

time as the expression of Tc-hb and Tc-gt is lost at the posterior pole (Figure 3.19, A-B’). In 

Drosophila, Dm-tll is able to repress Dm-hb and Dm-gt (reviewed in Jaeger, 2011), so a 

causative relationship is plausible. Confirming this will, of course, require functional analysis.  
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Figure 3.19. Tc-tll expression prefigures terminal repression of Tc-hb and Tc-gt.  A| Tc-tll is 

expressed at the posterior terminus, initially overlapping Tc-hb and Tc-gt. At this stage both of 

the latter genes reach all the way to the posterior terminus and Tc-Kr is not expressed. B| Tc-

hb and Tc-gt expression are subsequently lost in the region in which Tc-tll is expressed. Tc-Kr 

expression then emerges overlapping with Tc-tll. Note that in both panels, Tc-gt and Tc-Kr 

images are from different embryos than Tc-hb and Tc-tll (and each other) but have been 

determined to be an equivalent age using DAPI staining. Scale bar is 100 µM.  
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Tc-svb fills the gap gene gap 

My multiplexed data confirms previous observations that the gap and gap-like genes 

are expressed in densely overlapping but staggered domains in the SAZ during patterning of 

the anterior regions of the embryo (from PS0-7, spanning from the mandibular segment back 

to encompass the anterior compartment of A2), and more sparsely during the patterning of 

posterior regions (Figure 3.19). A key observation is that the candidate gap gene Tc-svb is 

expressed in the ‘gap gene gap’, being the sole gap gene expressed in the SAZ during the 

patterning of much of the posterior abdomen (~PS9-12) (Figure 3.19). However, as noted 

earlier, the expression of Tc-svb is far from typical for a canonical Tribolium gap gene. Rather 

than being expressed in one or two contiguous blocks of segments, Tc-svb is expressed in the 

SAZ for almost the entire course of segmentation, although it is lost from the posterior SAZ 

just after the beginning of abdominal segmentation (Figure 3.19, stages W3:To4-W8:To7) and 

lost entirely from the SAZ just before the end of segment addition (Figure 3.19, stage 

W12:To8).  
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The switching of Tc-Svb protein to an active from correlates temporally and spatially with the 

emergence of posterior Tc-gt, Tc-kni and Tc-hb domains 

Given the unusual expression dynamics of Tc-svb, I decided to investigate how its 

expression relates to that of its proposed ‘co-factor’, Tc-mlpt. Based on their analysis of single 

colorimetric ISHs, Ray et al. (2019) report that the expression patterns of Tc-mlpt and Tc-svb 

are most likely mutually exclusive for the majority of segment addition, save for one short 

period just prior to gastrulation. Using multiplexed data, I show that the expression of Tc-mlpt 

and Tc-svb overlaps extensively in the SAZ three times during segment addition – firstly, as 

previously described, in the blastoderm prior to gastrulation, in a region covering the primordia 

PS5-7; secondly, midway through segment addition, in the primordia for PS12-13; and finally 

at the end of segment addition, in the primordia for PS15-16 (Figure 3.19 and Figure 3.20).  

As discussed in the introduction, mlpt peptides are able to trigger transformation of Svb 

protein from a repressor to an activator (Kondo et al., 2010). The interactions observed between 

Tc-mlpt and other gap genes (Savard et al., 2006) are therefore likely to be indirect, mediated 

through its interaction with Tc-Svb. I wondered whether changes in the form of the Svb TF, as 

predicted by co-expression (or lack thereof) with mlpt, might correlate with changes in gap 

gene expression in the SAZ.  

The first burst of Tc-mlpt expression, and presumably the switching of Tc-Svb to an 

active form, precedes the emergence of the posterior Tc-gt and Tc-kni domains (Figure 3.21). 

We know from previous work (Savard et al., 2006) that Tc-mlpt is required for the emergence 

of at least the posterior Tc-gt domain – it seems feasible that the interaction between Tc-mlpt 

and Tc-gt is mediated through Tc-Svb and its switch into an activator. Whether Tc-mlpt or Tc-

svb knockdown impacts the expression of Tc-kni has not been tested. As Tc-mlpt expression 

fades in the SAZ, and Tc-Svb presumably returns to a repressive form, Tc-gt and Tc-kni 

expression also fade (Figure 3.19), suggesting that they might be repressed by Tc-svb in the 

absence of Tc-mlpt. Tc-svb then remains expressed alone in the SAZ until the second burst of 

Tc-mlpt, which directly precedes the emergence of the posterior Tc-hb domain (Figure 3.22)..  

Together, these expression data suggest that Tc-mlpt and Tc-svb may play important 

roles in co-ordinating the activation and repression of different gap genes.   
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Figure 3.20. Tc-svb (cyan) and Tc-mlpt (red) expression over the course of segment addition. 

Dotted lines in greyscale images mark the same boundary in each pair of images, allowing 

easier comparison of overlap. Yellow stage names are used to indicate where there is extensive 

overlap of Tc-mlpt and Tc-svb expression. Scale bar is 100 µM. 
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Figure 3.21. Tc-mlpt and Tc-svb are co-expressed shortly before the emergence of posterior 

Tc-gt  and Tc-kni. A| A blastoderm stage embryo at the same stage as that in B (staged using 

Tc-Wg, Tc-Tl10 and DAPI) showing the emergence of Tc-mlpt within the posterior Tc-svb 

domain. B| Cropped images of the posterior terminus of two embryos after the emergence of 

the posterior domain of Tc-mlpt, showing that this prefigures the emergence of posterior Tc-gt 

and Tc-kni. Scale bar is 100 µM. 
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Figure 3.22. Tc-mlpt and Tc-svb are co-expressed shortly before the emergence of posterior 

Tc-hb. A| A mid-segmentation embryo at a similar stage to those in B showing that Tc-mlpt is 

co-expressed with Tc-svb at this stage. B| Cropped images of the posterior terminus of three 

embryos before and during the emergence of the posterior domain of Tc-mlpt, showing that 

this prefigures the emergence of posterior Tc-hb. Scale bar is 50 µM. 
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3.3. DISCUSSION 
 

In this chapter I have established a spatial and temporal marker system to use for my 

analyses going forward. In doing so, I have validated Tc-Tl10 as a spatial marker that combines 

useful features of both segment polarity and pair-rule gene markers and provided the first 

description of Tc-sim in a sequentially-segmenting insect. I then present a thorough description 

of the expression of each of the canonical and candidate gap genes in Tribolium against my 

standardised marker set. The greater level of precision and temporal coverage in my HCR 

dataset compared to previous colorimetric datasets has allowed me to pinpoint boundaries or 

domains previously missed, and also to correct some errors in published work. Notably, this is 

the first description of Tc-svb expression against a segment marker of any kind. Finally, I 

compared the expression of the gap genes in multiplexed HCR datasets in order to compile an 

abstracted summary of gap gene expression in the SAZ across the course of segment addition. 

This will present a useful resource to anyone studying gap genes, but has also generated some 

novel observations that are discussed below.    

 

3.3.1. Tc-Tl10 can be used as a spatial marker across the SAZ and germband 

 

My results indicate that the relationship between Tc-Tl10 and the segmental pattern is 

slightly more complex than previously understood (Benton et al., 2016). In the SAZ, a weak 

leading edge is detected at the anterior of primary Tc-T10 stripes, which must be discounted if 

one wants to use the anterior boundary as an indicator for future parasegment boundaries. 

Furthermore, the secondary stripes of Tc-Tl10 initially overlap with Tc-Wg stripes before 

taking on their final position directly behind them, so that one must differentiate between 

immature and mature stripes in order to relate them to the parasegment pattern. If I had known 

that I would be able to use two spatial markers from the beginning of my PhD, I may instead 

have chosen to use Tc-Wg and Tc-eve as a dual spatial marker system, as Tc-eve does not appear 

to have a leading edge in the SAZ, and its secondary stripes do not shift relative to the segment 

pattern during maturation. However, I believe the validation of Tc-Tl10 as a spatial marker 

suitable for standalone use will be useful to those who are unable to perform highly multiplexed 

reactions, or those who do not have access to a confocal microscope with a broad range of 

lasers.  
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3.3.2. The terminal system and activation of Tc-Kr  

 

One of the key early events in the gap gene series in Tribolium is the degradation of 

maternally provided Tc-hb and Tc-gt at the posterior pole, and the subsequent emergence of 

Tc-Kr expression in this region. Schmitt-Engel et al. (2012) propose that the repression of both 

genes is mediated through the activity of the products of the posteriorly-localised mRNA Tc-

nanos and its co-factor, Tc-pumilio. When one or both of these genes are knocked down by 

pRNAi, Tc-Hb and Tc-Gt fail to retract from the posterior pole, and the posterior domains of 

Tc-Kr, Tc-gt, Tc-mlpt and Tc-kni never arise (Schmitt-Engel et al., 2012). In Drosophila, Dm-

Hb is translationally repressed by Dm-Nanos and Dm-Pumilio, resulting in loss of 

autoactivation and subsequently loss of expression; however, there is no evidence that they 

interact with Dm-gt in this way (Hülskamp et al., 1989; Irish et al., 1989b). Tc-gt may differ 

from Dm-gt in that it appears to contain a Nanos Response Element (NRE) sequence, like Dm-

hb and Tc-hb (Schmitt-Engel et al., 2012).  

Another way in which Nanos may influence Tc-hb and Tc-gt expression is through the 

terminal gene Tc-tll. In Drosophila, Dm-Nanos promotes the expression of Dm-tll at the 

posterior pole (Cinnamon et al., 2004), and Dm-tll is able to repress Dm-gt and Dm-hb in order 

to repress them from the terminus of the embryo (reviewed in Jaeger, 2011). The distribution 

of Tc-nanos mRNA or protein has not yet been examined in Tribolium embryos (Schmitt-Engel 

et al., 2012), but if it is similar to its Drosophila homologue, then we might expect the protein 

to be distributed in a broad posterior-anterior gradient (Wang et al., 1994). If this is the case, 

then perhaps Tc-hb and Tc-gt are repressed at the very terminus of the embryo by localised Tc-

Tll protein, and subsequently repressed in a broad posterior domain by the gradient of Tc-

Nanos protein. To dissect which aspects of the terminal patterning network are, indeed, 

required for regulating gap gene expression in Tribolium, more functional tests will be required 

– in particular, no-one has yet examined gap gene expression in a Tc-tll knockdown.  
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3.3.3. The expression dynamics of Tc-mlpt and Tc-svb correlate with activation and 

repression of other gap genes 

 

My expression data suggests that both activation and repression by Tc-Svb may be 

required for transitions in gap gene expression over the course of segmentation.  

I have shown that co-expression of Tc-mlpt and Tc-svb (and so presumably the 

switching of Tc-svb to an active form) correlates with the switching on of posterior Tc-gt and 

Tc-kni domains. Tc-mlpt has previously been shown to be required for activation of the 

posterior Tc-gt domain (Savard et al., 2006), and I propose that this activation is mediated 

through its interaction with Tc-Svb. Both Tc-mlpt and Tc-svb knockdowns show homeotic 

transformation of abdominal segments towards a thoracic fate (Ray et al., 2019; Savard et al., 

2006), a phenotype that is not observed in Tc-gt knockdowns (Bucher and Klingler, 2004). It 

therefore seems likely that they have at least one more target in the abdomen. Tc-kni 

knockdowns also show no abdominal transformations (Cerny et al., 2005). However, in 

Drosophila, Tc-gt and Tc-kni seem to act redundantly to prevent expansion of Tc-Kr into the 

abdomen (Kraut and Levine, 1991). If this redundant repression is conserved in Tribolium, then 

the abdominal phenotype of Tc-mlpt and Tc-svb knockdowns could result from loss of both Tc-

gt and Tc-kni expression. This could be confirmed by examining Tc-kni expression in Tc-mlpt 

knockdowns, and performing double knockdowns for Tc-gt and Tc-kni (see Chapter 5).  

I also show that co-expression of Tc-mlpt and Tc-svb prefigure the emergence of the 

posterior Tc-hb domain. In Drosophila, the formation of the posterior Dm-hb domain requires 

terminal Dm-tll expression, although it is likely that this regulation is indirect, through 

repression of Dm-kni (reviewed in Jaeger, 2011). It has therefore been somewhat of a mystery 

how the posterior domain of Tc-hb is regulated, given that it is expressed well after both Tc-tll 

and Tc-kni have faded from the SAZ. The correspondence in timing and location of this domain 

with the emergence of the second wave of Tc-mlpt seems too exact to be a coincidence. 

Knockdown of Tc-mlpt does seem to delay the expression of this domain; however, it still 

forms eventually (Savard et al., 2006), suggesting Tc-Svb cannot be the sole activator for this 

domain, if it does indeed act as an activator.  

To dissect how Tc-Mlpt and Tc-Svb interact with the gap gene network, it would be 

interesting to compare gap gene expression in both knockdowns, given that knockdown of the 

former should result in a loss of only the activator function of Tc-Svb, while knockdown of the 

latter should result in loss of activating and repressing functions. This is, of course, assuming 
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that Tc-Mlpt does not also have roles independent of Tc-Svb, which its homologues certainly 

do outside of segment patterning (Pueyo and Couso, 2008). 

This work demonstrates how analyses of multiplexed gene expression can provide an 

invaluable supplement to the information gleaned from knockdown experiments. Based on 

knockdown alone, it is not possible to determine whether a protein interacts directly or 

indirectly with the genes that become misexpressed. Examining the temporal and spatial 

dynamics of gene expression can then provide evidence for or against hypotheses about direct 

interactions between genes. My dataset will, I hope, remain useful for future studies that wish 

to further investigate the interactions between gap genes.  

 
3.3.4. Do Tc-mlpt and Tc-svb have a distinct role compared to other gap genes? 

 

In this chapter, I show that Tc-mlpt and Tc-svb together almost entirely fill the so-called 

‘gap gene gap’ – one or both of them are expressed in the SAZ throughout the course of 

abdominal segment formation (Figure 3.23). However, as discussed in the results, Tc-svb is 

expressed in the SAZ for the majority of segment addition, in contrast to any other gap gene. 

Given the relationship between the expression of Tc-mlpt, Tc-svb and other gap genes, I 

propose that the role of Tc-svb and Tc-mlpt may be more akin to an ON/OFF switch that 

regulates the gap gene state of the SAZ. To understand this, it may be helpful to visualise the 

experience of a single cell in the SAZ (Figure 3.24). As it cycles through the expression of 

different gap genes, it is also oscillating between two states, determined by the activity of Tc-

Svb; either Tc-Svb is co-expressed with Tc-mlpt, in which case it acts as an activator (Svb-A), 

or it is not, and it acts as a repressor (Svb-R). The state of this switch seems to be under the 

control of the rest of the gap gene network to at least some extent, as the first burst of Tc-mlpt 

is lost in Tc-Kr knockdowns and expanded in Tc-gt knockdowns (Savard et al., 2006). 

However, how the second Tc-mlpt burst is triggered is as yet unknown. 

A striking observation when viewing the gap gene network from this perspective is that 

although Tc-svb is co-expressed with other gap genes for almost the entirety of development, 

no other gap gene is expressed between the turning off of Tc-gt and Tc-kni and the turning on 

of Tc-hb. I therefore remain unconvinced that Tc-svb presents an answer to the issue of the gap 

gene gap. It is entirely possible that there are additional candidate gap genes that are expressed 

during the patterning of the abdominal segments, and I will present my examination of three 

candidates in the next results chapter.  
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Figure 3.23. Summary of the gap genes expressed by trunk (para)segments as they are 

specified (i.e. at the time that segmental Wg stripes first emerge) in Drosophila (A) and 

Tribolium (B).  Note that the pattern is compressed anteriorly in Tribolium, with much of the 

abdominal segments expressing only Tc-mlpt and/or Tc-svb. Term = terminus of the embryo.  

 

 
Figure 3.24. Representation of gap genes expressed by a single cell in the SAZ over the course 

of segment addition. In this model, Tc-svb and Tc-mlpt expression are externalised into an 

ON/OFF switch, the output of which is whether Tc-Svb is acting as an activator (co-expressed 

with Tc-mlpt – Svb-R) or as a repressor (not co-expressed with Tc-mlpt – Svb-A). See text for 

more details.   
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4. INVESTIGATING CANDIDATE GAP GENES FROM THE 
NEUROBLAST TIMER SERIES 
 
 
 

4.1. INTRODUCTION 
 

4.1.1. The neuroblast timer series is a source of gap gene candidates for Tribolium 

 

Homologues of all four of the canonical trunk gap genes from Drosophila (Dm-hb, Dm-

Kr, Dm-gt and Dm-kni) have been shown to regulate segment patterning and/or identity in 

Tribolium (Bucher and Klingler, 2004; Cerny et al., 2005; Cerny et al., 2008; Marques-Souza 

et al., 2008; Peel et al., 2013). However, unlike in Drosophila, the expression domains of these 

genes are insufficient to cover the length of the trunk during segment addition, resulting in a 

period during which the SAZ expresses no canonical gap genes and creating  ‘a gap gene gap’ 

(Cerny et al., 2008). Although Tc-mlpt and Tc-svb are expressed in the SAZ during this period, 

I have argued in the previous chapter that their expression patterns are more consistent with 

their acting as regulators of the gap gene network than as gap genes themselves. If this is the 

case, then it suggests that there are additional gap genes yet to be identified in Tribolium.  

One promising source of gap gene candidates is the neuroblast timer series in 

Drosophila.  Of the four core neuroblast timer genes, two (hb and Kr) are also canonical gap 

genes, and two others (nub and cas) are regionally expressed along the AP axis of the 

blastoderm in the same manner as the gap genes (Isshiki et al., 2001; Jaeger, 2011; Peel et al., 

2005). In addition to these four core genes, the TF  grainyhead (grh), may act as a fifth timer 

gene in certain neuroblast lineages (Baumgardt et al., 2009; Brody and Odenwald, 2000; Brody 

and Odenwald, 2002; Cenci and Gould, 2005); however, at least in Drosophila, its expression 

during segment patterning is less suggestive of a role in AP patterning (Dynlacht et al., 1989; 

Huang et al., 1995). 

Save for a brief description of the expression of nub and cas in neuroblasts (Biffar and 

Stollewerk, 2014) and unpublished preliminary work of our collaborator’s student, E. 

Raymond, on the same genes, the expression and function of Tc-nub, Tc-cas and Tc-grh have 

yet to be characterised in Tribolium embryos. Below, I describe these genes and their roles in 

development in more detail, and assess their potential as candidate gap genes.  
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4.1.2. Nubbin (nub) as a candidate gap gene 

 

nub encodes a class II POU domain transcription factor that shares homology with the 

mammalian Oct factors Oct1 and Oct2 (Billin et al., 1991; Dick et al., 1991; Lloyd and Sakonju, 

1991; Prakash et al., 1992). Nub exists as a single copy in most arthropods (Li and Popadić, 

2004), but in Drosophila this gene has undergone a duplication to produce the two linked genes 

pdm1 (POU domain protein 1 - also referred to as nub) and pdm2 (Billin et al., 1991; Cockerill 

et al., 1993; Dick et al., 1991; Lloyd and Sakonju, 1991). These genes are expressed in almost 

identical patterns during development (Cockerill et al., 1993; Dick et al., 1991; Lloyd and 

Sakonju, 1991), and are largely functionally redundant (Yeo et al., 1995). Henceforth, nub will 

be used to refer to both the ancestral gene and pdm1 in Drosophila, with the assumption that 

pdm2 expression and function is very similar or identical. Pdm1/pdm2 double mutants will be 

referred to as nub mutants for simplification.  

Like other Oct genes, nub plays a broad range of roles in development, tissue 

homeostasis and regeneration, most of which have been investigated functionally only in 

Drosophila. Nub is expressed in the developing nervous system in a range of insects (Biffar 

and Stollewerk, 2014; Li and Popadić, 2004) as well as in spiders and crustaceans (Damen et 

al., 2002). Functional studies in Drosophila indicate that its expression is necessary in 

developing neuroblasts for the formation of daughter cells with mid/late neural fates 

(Grosskortenhaus et al., 2006; Isshiki et al., 2001) and in a subset of neurons for axonal 

pathfinding later in development (Yeo et al., 1995).   

Also deeply conserved is the expression of nub in developing arthropod appendages. It 

is expressed in rings along the length of the limbs in crustaceans, spiders and various insect 

species (Abzhanov and Kaufman, 2000; Averof and Cohen, 1997; Damen et al., 2002; Prpic 

and Damen, 2005; Prpic and Damen, 2009; Turchyn et al., 2011). In insects, at least, this 

expression seems to be regulated by Notch signaling and is required for proper formation of 

the leg joints (Turchyn et al., 2011). Nub is also commonly expressed in derivatives of limbs 

or of parts of limbs, for example in the wing imaginal disc of Drosophila (where it is required 

for proximal-distal patterning) (Cifuentes and García-Bellido, 1997; Ng et al., 1995), and the 

spinnerets, book gills and tracheae of spiders (Damen et al., 2002). 

nub has also been shown to be required post-embryonically in Drosophila to regulate 

the activity of the immune system in the gut (Dantoft et al., 2013; Dantoft et al., 2016) and of 

intestinal stem cells for gut homeostasis and repair (Lindberg et al., 2018; Tang et al., 2018). 

Interestingly, in these contexts, alternative splicing of Dm-nub has been suggested to be 



 99 

important for its function. Alternative transcripts of Dm-nub give rise to one of two protein 

products (NUB-PD or NUB-RD) which differ in their N-terminal sequences and play opposite 

roles in the gut (Lindberg et al., 2018). One promotes maintenance of pluripotency and division 

of intestinal stem cells, while the other promotes differentiation (Tang et al., 2018) and 

likewise, one promotes immune repression in the gut and the other activation (Lindberg et al., 

2018). 

Of the neuroblast timer genes, nub is certainly the most promising gap gene candidate. 

It is expressed in a gap-like domain in the abdomen during segment specification in Drosophila 

(Billin et al., 1991; Cockerill et al., 1993; Dick et al., 1991; Lloyd and Sakonju, 1991; Prakash 

et al., 1992), in the hemipteran Oncopeltus (Hrycaj et al., 2008) and in the house cricket Acheta 

(Turchyn et al., 2011). Preliminary evidence also suggests that it is expressed during the 

patterning of abdominal segments in Tribolium (Biffar and Stollewerk, 2014 and E. Raymond, 

unpublished). Ectopic expression of Dm-nub generates classical gap gene phenotypes; 

specifically, deletion of the first two abdominal segments and occasionally deletion or fusion 

of T2 and T3 (Cockerill et al., 1993). At the molecular level, this is reflected in fusion or 

deletion of pair-rule gene stripes (Cockerill et al., 1993). nub mutants show less obvious 

segmentation defects, with only occasional and partial fusion of pair-rule stripes in the 

abdomen (although this is exacerbated in Dichaete mutants) (Ma et al., 1998). The expression 

of Dm-nub in the abdomen is regulated by other gap genes – it is repressed by Dm-hb, Dm-kni 

and the terminal gap gene Dm-tll (Cockerill et al., 1993). However, Dm-nub is first expressed 

a short time after the other trunk gap genes become expressed, and does not seem to regulate 

any of them itself (Cockerill et al., 1993). For this reason, it is thought to occupy a space 

somewhere between the gap gene network and the pair-rule gene network in the segmentation 

hierarchy (Cockerill et al., 1993), hence the title of a ‘gap-like’ gene.  

Interestingly, nub appears to play different roles in segment patterning in different 

insect species. While nub mutation in Drosophila primarily impacts segment boundary 

formation (Cockerill et al., 1993), with no effect on Hox gene patterning (Hrycaj et al., 2008), 

nub RNAi in Oncopeltus leaves segment patterning intact but results in homeotic 

transformation of abdominal segments towards a more thoracic fate (Hrycaj et al., 2008). 

Specifically, expression of the Hox gene abdA in the abdomen is repressed, resulting in the 

formation of ectopic legs on segments A2-A6 (Hrycaj et al., 2008). By contrast, RNAi against 

nub in the house cricket Acheta affects the development of limb joints but has no impact on 

segment patterning or identity in the abdomen, despite its prominent expression domain here 

during segment addition (Turchyn et al., 2011). As a non-Drosophilid holometabolous insect, 
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and a representative of the extremely diverse Coleoptera, Tribolium represents a useful 

additional datapoint to aid in determining which aspects of nub’s activity are conserved across 

the insects.  

 

4.1.3. Castor (cas) as a candidate gap gene 

 

cas (or ming) encodes a zinc finger transcription factor (Cui and Doe, 1992; Mellerick 

et al., 1992) homologous with the gene Casz1 (or Cst) in vertebrates (Christine and Conlon, 

2008; Vacalla and Theil, 2002). Casz1 plays varied roles in cell fate specification and 

differentiation – for example, it is required for the formation of mid/late born neurons in the 

retina (Mattar et al., 2015), function of rod photoreceptors in the eye (Mattar et al., 2018) and 

for heart and vascular development (Charpentier et al., 2013, 1; Christine and Conlon, 2008; 

Dorr et al., 2015; Liu et al., 2014). In arthropods, the expression and function of cas has been 

examined only in Drosophila, but it appears to regulate cell fate decisions in at least two 

contexts; in neuroblasts, where it is essential for the formation of daughter cells with mid/late 

born fates (Cui and Doe, 1992; Isshiki et al., 2001; Mellerick et al., 1992); and in the ovary, 

where it is required for the maintenance of follicle stem cells and their differentiation into polar 

and stalk cells (Chang et al., 2013).  

Like Dm-nub, it is also expressed at the blastoderm stage in a broad, gap-like domain 

in the presumptive abdomen of Drosophila (Isshiki et al., 2001; Mellerick et al., 1992). 

However, this domain is limited to the ventral, presumably neurogenic, ectoderm, and Dm-cas 

null mutants do not display any overt defects in segmentation or in segment identity (Mellerick 

et al., 1992). There is, as yet, no evidence for its regulating the expression of any canonical gap 

gene, although it is able to repress Dm-nub (Kambadur et al., 1998). Given these observations, 

Tc-cas is a less promising gap gene candidate than Tc-nub, but it does appear to be expressed 

at the right place and time to contribute to filling the gap gene gap; preliminary descriptions 

suggest that it is expressed in the SAZ during the patterning of the mid/posterior abdomen 

(Biffar and Stollewerk, 2014 and E. Raymond, unpublished). Additionally, if the role of nub 

in the gap gene network is more prominent in Tribolium than in Drosophila, then it could be 

that repression of nub by cas is also required for correct abdominal patterning. Regardless of 

whether it plays a role in segment patterning, examination of cas expression and function in 

another insect will also help to broaden our understanding of its role in development.   
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4.1.4. Grainyhead (grh) as a candidate gap gene 

 

Grh encodes a transcription factor also known as Elf-1 or NTF-1 (Bray and Kafatos, 

1991). Elf-1 belongs to the LSF/GRH family of transcription factors, which is conserved across 

the animal kingdom (Traylor-Knowles et al., 2010). The GRH members of this family are 

primarily expressed in epithelial tissues and involved in epithelial organogenesis and epidermal 

wound repair (Frisch et al., 2017; Wang and Samakovlis, 2012). It is the least promising of the 

neuroblast timer genes as a gap gene candidate, as it does not have an obvious gap-like 

expression domain in the Drosophila blastoderm – instead, it is expressed in specific 

neuroblasts and more broadly across the epidermis of the later embryo (Bray et al., 1989; 

Dynlacht et al., 1989). In the former context, it acts as a determinant of late-born neural fates 

(Baumgardt et al., 2009) as well as regulating the regional activity of post-embryonic 

neuroblasts in tandem with Hox gene expression (Almeida and Bray, 2005; Cenci and Gould, 

2005; Khandelwal et al., 2017). Its roles in the epidermis are varied; it is a key regulator of the 

planar cell polarity system (Lee and Adler, 2004); required for tracheal morphogenesis 

(Hemphälä, 2003); and required for epithelial differentiation and wound healing (Gangishetti 

et al., 2012; Mace, 2005). Accordingly, grh null mutants present with issues in cuticle 

formation and patterning but no defects in segment patterning or identity (Bray and Kafatos, 

1991).  

However, Grh displays some properties that could make it a plausible gap gene 

candidate in the right context. In vitro studies indicate that it is a direct regulator of both a pair-

rule gene (Ftz) and a Hox gene (Ubx) (Biggin and Tijan, 1988; Dynlacht et al., 1989), although 

its deletion does not seem to affect their expression in the epidermis or CNS (Bray and Kafatos, 

1991; Cenci and Gould, 2005). In neuroblasts, it is required for maintenance of expression of 

the Hox gene abdA (Cenci and Gould, 2005). Grh also interacts with the terminal gap gene tll, 

acting to repress it in the absence of terminal torso signaling (Liaw et al., 1995), and is able to 

repress Dm-cas in neuroblasts (Baumgardt et al., 2009). Because grh expression has not been 

studied in any insects outside of Drosophila, I decided to include it in my investigation of 

potential gap gene candidates from the neuroblast timer series.  
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4.1.5. Specific aims  

 

In this chapter, I aim to determine whether Tc-nub, Tc-cas, or Tc-grh have a detectable 

role in axial patterning in Tribolium. In section 4.2.1, I present descriptions of the expression 

patterns of Tc-nub, Tc-cas and Tc-grh against my temporal and spatial mapping system, and 

confirm that the former two genes (but not the latter) display gap-like expression domains. In 

section 4.2.2, I examine the expression of Tc-nub and Tc-cas in relation to the expression of 

other gap genes using multiplexed HCR ISH; firstly, to determine if the order of expression of 

the neuroblast timer series (hb, Kr, nub, cas) is conserved along the length of the axis of 

Tribolium, as it is in Drosophila; secondly, to determine whether Tc-nub and Tc-cas are 

expressed within the gap gene gap; and thirdly, to predict plausible interactions between Tc-

nub, Tc-cas and other gap genes. In section 4.2.3, I perform RNAi against Tc-nub and Tc-cas 

to determine whether they have a detectable role in axial patterning in Tribolium.  
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4.2. RESULTS 
 

4.2.1. Expression of candidate gap genes from the neuroblast timer series 

 

Expression of Tc-nubbin (Tc-nub) 

Tc-nub expression during segment addition has been briefly examined in Biffar and 

Stollewerk’s (2014) work on insect neuroblasts, and in more depth by a student of our 

collaborator, Andrew Peel (E. Raymond, unpublished). Both studies found that, as in 

Drosophila, this gene is expressed in a gap-like domain for at least some of the period of 

segment addition. However, my work here presents the first detailed description of Tc-nub 

expression against parasegmental markers covering the entire period of segment addition.  

Like Dm-nub, Tc-nub has been annotated as producing two transcripts (TC032751-RA 

and -RB), both transcribed from the same strand. However, these transcripts have not been 

verified experimentally, and pooled RNA-Seq data suggests that at least one of two TC032751-

RB-specific exons is not expressed at any stage during development (Beetlebase website: 

http://www.Beetlebase.org, Official Gene Set 3 of Tribolium castaneum GA2 strain). In 

addition, previous manual annotations of the gene predict only one transcript, TC032751-RA 

(E. Raymond, unpublished). Given these conflicting reports, I chose to order probes against 

the verified and manually annotated transcript, TC032751-RA.  

I first examined Tc-nub expression in an ovariole dissected from an adult female ovary, 

to determine whether mRNA might be provided maternally to the egg. Tc-nub is expressed in 

the nurse cells at the proximal end of the tropharium, but not provided to the oocytes (Figure 

4.1A). Interestingly, this domain overlaps with a region of weakened Tc-hb expression (Figure 

4.1A’).  
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Figure 4.1. HCR ISH showing expression of Tc-nub in an ovariole dissected from an adult 

female ovary. A’ shows the expression of Tc-hb and Tc-nub in the tropharium. P = proximal 

end of ovariole, D = distal end of ovariole. Scale bar is 100 μM. 

 

Next, I examined Tc-nub expression in embryos spanning the period of segment 

addition. Tc-nub is first expressed in the blastoderm as the serosa begins to differentiate. At 

this stage, it is expressed weakly across the entire embryonic primordium but largely excluded 

from the serosa (Figure 4.2, stage T0). Expression gradually strengthens in the anterior of the 

embryo, spanning from the junction with the serosa back to the posterior of To0 (Figure 4.2, 

stages To1-2 and W0:To2). This head domain therefore covers the entirety of the head lobes 

back to the posterior of  the primordium for PS0. In Drosophila, nub is also expressed in the 

head early in development, but this is limited to the primordium of the clypeolabrum (the fused 

product of the clypeus – a facial sclerite – and labrum)  (Lloyd and Sakonju, 1991). Tc-nub 

expression in the Tribolium head appears to specifically exclude the region of the developing 

labrum (Figure 4.2, stage W1:To3-4).  

By stage W0:To2, a new domain of Tc-nub has emerged in the posterior-most region 

of the embryo, overlapping with the posterior Tc-Wg domain (Figure 4.2). This anterior border 

of this domain shifts anteriorly as To3 is formed. Expression is strongest in the posterior of the 

SAZ, behind To3, and fades towards the anterior of the SAZ until it is almost undetectable 

anterior to To2p (Figure 4.1, stage W1:To3-4). This domain displays gap-gene-like dynamics, 

with the anterior border shifting anteriorly in tandem with dynamic Tc-Tl10 stripes and the 
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posterior border retracting from the back of the SAZ (Figure 4.2, stages W1:To3-4-

W4:To5(1)). As the parasegments at the anterior edge of this domain mature, the weakly 

expressed region resolves into an early neuroectodermal pattern (Figure 4.2, stage W5:To5(2)). 

Neuroectodermal expression is initially detected in only parasegments 2 and 3 (Figure 4.2, 

stage W5:To5(2)) but it rapidly spreads anteriorly until it is present in all mature parasegments 

(Figure 4.2, stage W7:To6(3)). Neuroectodermal expression of Tc-nub fades in the regions 

overlapping with Tc-Wg stripes (Figure 4.2, stages W5:To5(2)-W10:To7(4)), suggesting a 

possible interaction. During this period, the posterior border of the Tc-nub domain continues 

to shift anteriorly, away from the posterior of the SAZ, in tandem with shifts in the segment 

pattern. This border abuts the anterior of the To7 stripe (Figure 4.2, stage W12:To7(5)). Tc-

nub is therefore strongly expressed in the SAZ during the patterning of approximately PS5-12, 

comprising the posterior compartment of T2 through to the anterior compartment of A7. There 

is some uncertainty in interpreting the precise borders of Tc-nub expression. The anterior 

border is initially located a short distance behind W4p (Figure 4.2, stage W4:To5(1)), which is 

consistent with it abutting the back of en4, and therefore the back of the T2 segment, as reported 

by E. Raymond (unpublished)). However, shortly afterwards, it appears to directly abut W4p 

(Figure 4.2, stage W5:T05(2)). In addition, although the posterior border initially abuts To7a 

(Figure 4.2, stage W12:To7(5)) (which marks the future anterior border of PS13), it 

subsequently appears to sit a short distance anterior of this, abutting W12a (Figure 4.2 stage 

W14:To8(7)). Both phenomena may be related to regulation of Tc-nub by Tc-ftz – in 

Drosophila, Dm-ftz is responsible for promoting parasegmental stripes of Dm-nub out of phase 

with the Dm-Wg stripes (Lloyd and Sakonju, 1991), an interaction that may come into effect 

only outside of the SAZ. I will continue to use the PS5-PS12 approximation when discussing 

regions of the axis potentially affected by Tc-nub expression, but these subtleties are worthy of 

further investigation.  

By the end of segment addition, Tc-nub is expressed in the developing appendages, in 

neuroblasts within the head and across the length of the segmented germband, and also in the 

lateral part of the posterior Tc-Wg domain (Figure 4.2, stage W15:To8(8)). These domains will 

not be described here in more detail, as they are not relevant to my primary research questions.  
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Figure 4.2 (overleaf). HCR showing Tc-Tl10 (red) and Tc-nub (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections (arrows indicate where the midline of the embryo is turned 

either to the left or to the right, i.e. where the optical sections are not perfectly perpendicular 

to the dorsoventral axis). Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

For simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-

Wg stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ 

refers to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe.  

The asterisk in the embryo at stage W1:To3-4 marks the absence of Tc-nub expression in the 

tissue that will give rise to the labrum. Scale bar = 100 µM. 
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Expression of Tc-castor (Tc-cas) 

Preliminary examination of Tc-cas expression by Biffar and Stollewerk (2014) 

indicates that it is also expressed in the SAZ during the patterning of abdominal segments. E. 

Raymond and A. Peel determined that this abdominal expression overlaps with that of Tc-nub, 

but did not determine its exact positioning (unpublished data). I therefore show here the first 

in depth description of Tc-cas expression, representing the first thorough description in any 

arthropod other than Drosophila.  

Tc-cas is expressed in the follicular cells surrounding mature oocytes in the ovary 

(Figure 4.3), consistent with the role of its homologue in regulating follicular cell development 

in Drosophila (Chang et al., 2013). However, Tc-cas mRNA is not present in the oocyte itself, 

and is not present in the embryo until after the germband has formed (data not shown and 

Figure 4.4).  

 
 
Figure 4.3. HCR ISH showing expression of Tc-cas in an ovariole dissected from an adult 

female ovary. A shows a projection through the entire ovariole, indicating that expression is 

localised to the mature distal oocyte; and B shows a projection through the centre of the 

ovariole, indicating that expression is limited to the outer layer of follicular cells and mRNA 

is not present in the oocyte itself. P = proximal end of ovariole, D = distal end of ovariole. 

Scale bar is 100 μM. 
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During embryonic development, Tc-cas expression is initially detected in the 

developing labrum (Figure 4.4, stage W3:To4). Expression is initially faint, but becomes 

stronger at the end of segment addition (Figure 4.4, stage W15:To8(8)). There is no obvious 

parallel to this expression in Drosophila – Dm-cas is expressed in the head, but this expression 

is limited to small neurogenic cell clusters, none of them in the developing clypeolabrum 

(Mellerick et al., 1992).  

Expression in the SAZ is first detected faintly at stage W4:To4 (Figure 4.4). Expression 

at this stage is punctate and patchy. The anterior border eventually aligns with To4a (and with 

W6p, when this parasegment boundary becomes patterned), and the posterior border does not 

quite reach the back of the SAZ. This singular weak domain resolves into several subdomains 

over the course of segment addition. Each of these subdomains begins as strongly expressed in 

the lateral ectoderm of the SAZ, and then fades as the pattern moves into the segmented 

germband (Figure 4.4, stages W8:To6(3)-W12:To7(5)). One of these subdomains forms in 

each of PS9-12. Throughout mid-late segment addition, Tc-cas is also expressed in the 

posterior of the SAZ, in two lateral domains that overlap with posterior Tc-Wg (Figure 4.4, 

stages W8:To6(3)-W14:To8(7))). This domain expands anteriorly slightly at the end of 

segment addition to cover part of the SAZ during patterning of PS15 (Figure 4.4, W14:To8(7)). 

 

 

 

 

 

 

Figure 4.4 (overleaf). HCR showing Tc-Tl10 (red) and Tc-cas (cyan or grey) expression in 

Tribolium embryos over the course of segment addition. Images are maximum projections 

through coronal optical sections. All embryos have been dissected away from the egg. Stage is 

given above each embryo according to the staging system I present in section 3.2.1. For 

simplicity, Tc-Wg expression is not shown, but the positions of selected Tc-Tl10 and Tc-Wg 

stripes are indicated on greyscale images (in red and white respectively). The suffix ‘a’ refers 

to the anterior boundary of a stripe, while ‘p’ refers to the posterior boundary of a stripe. Scale 

bar = 100 µM. 
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This means that Tc-cas is expressed in the SAZ weakly during the patterning of PS6-7, 

and more strongly during the patterning of PS9-12 (and perhaps some of PS15). In Drosophila, 

the exact boundaries of Dm-cas expression have not been determined; however, my data 

suggests some other deviations in expression of Tc-cas compared to its Drosophila homologue. 

Dm-cas expression is restricted to the ventral ectoderm and mesoderm, supporting the idea that 

is not required for patterning of non-neural ectoderm (Mellerick et al., 1992). By contrast, Tc-

cas is expressed in ventral, lateral and dorsal ectoderm in the SAZ of Tribolium, and is instead 

excluded from the mesoderm (Figure 4.5). This is more suggestive of a potential role in 

segmental patterning than the expression pattern observed in Drosophila. Note that other gap 

genes, and Tc-nub, are similarly expressed in dorsal, lateral and ventral ectoderm, but are also 

typically expressed in the mesoderm (Figure 4.5). 

At the end of segment addition, Tc-cas becomes expressed in neuroblasts in the head 

and along the midline, and in developing gnathal and thoracic appendages (stage W15:To8(8) 

and E. Raymond, unpublished). These domains will not be described here in more detail, as 

they are not relevant to my primary research questions.  

 

 
Figure 4.5. Expression of Tc-nub and Tc-cas in a transverse section through the SAZ, 

indicating that Tc-nub but not Tc-cas is expressed in the mesoderm. Mes = mesoderm, shaded 

pink. Insets show a close up on apposing dorsal and ventral ectoderm cells, showing that Tc-

nub and Tc-cas are expressed in both. Scale bar = 50 µM. 
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Expression of Tc-grainy-head (Tc-grh)  

Tc-grh expression has not previously been examined, and my work here represents the 

first description of its expression in any insect species outside of Drosophila. I found no 

evidence for a broad, gap-gene-like expression domain in the SAZ during segment addition 

(Figure 4.6). Tc-grh can first be detected in the blastoderm, when it is expressed broadly in the 

embryonic ectoderm but excluded from the developing serosa and mesoderm (Figure 4.6, stage 

To1-2). Tc-grh is then expressed broadly across the germband throughout segment addition, 

becoming excluded from the brain and central nervous system at later stages (Figure 4.6). This 

expression pattern is consistent with its playing a role in epithelial development, as in 

Drosophila (Gangishetti et al., 2012). Due to its unpromising expression pattern and my time 

limitations, Tc-grh was excluded from further analysis.  
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Figure 4.6. HCR showing Tc-Tl10 (red) and Tc-grh (cyan or grey) expression in Tribolium 

embryos over the course of segment addition. Images are maximum projections through 

coronal optical sections. Germband stage embryos have been dissected away from the egg. 

Stage is given above each embryo according to the staging system I present in section 3.2.1. 

Scale bar = 100 µM. 
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4.2.2. Expression of Tc-nub and Tc-cas relative to other gap genes 

 

Having confirmed that both Tc-nub and Tc-cas have gap-gene-like expression domains, 

I wanted to investigate how these domains relate to those of other gap genes in Tribolium. In 

particular, I wanted to understand how the expression domains of the four neuroblast timer 

genes related to one another, and whether the expression patterns of Tc-nub and Tc-cas are 

suggestive of interactions with gap genes outside of this series. 

 

The neuroblast timer genes Tc-hb, Tc-Kr, Tc-nub and Tc-cas are expressed in a conserved 

spatiotemporal order in the SAZ of Tribolium 

I first investigated whether the temporal order of expression of the four core neuroblast 

timer genes (Tc-hb, Tc-Kr, Tc-nub and Tc-cas) was reflected in their order of expression along 

the anterior-posterior axis of Tribolium, as in Drosophila. To do this, I performed multiplexed 

HCR ISH against these four genes in embryos spanning the course of segment addition.  

 As in Drosophila, the four neuroblast timer genes are expressed in a conserved spatial 

order along the length of the anterior-posterior axis of Tribolium (Figure 4.7A). This spatial 

order is established by sequential expression of Tc-hb, Tc-Kr, Tc-nub and Tc-cas in the SAZ 

(Figure 4.7B), so that the cells of the SAZ experience the same sequence of these genes as 

neuroblasts do (Figure 4.7C). However, unlike in neuroblasts, Tc-hb becomes expressed again 

in the SAZ at the end of segment addition, abutting the back of the Tc-nub and Tc-cas domains 

(Figure 4.8 and Figure 4.7B). Together, the expression domains of these four genes are 

sufficient to cover the length of the segmented trunk.  

 I also noticed that all four neuroblast timer genes are expressed in nested domains in 

the posterior gut tissue at the end of segment addition. On closer inspection, the spatial order 

of these domains is the same as along the anterior-posterior axis, but in reverse order (i.e. Tc-

cas is most anterior, Tc-hb most posterior) (Appendix 3). This additional example strengthens 

the theory that the four neuroblast timer genes might have been redeployed as a network for 

use in other developmental scenarios.  
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Figure 4.7. HCR ISH showing expression of the four core neuroblast timer genes, Tc-hb, Tc-

Kr, Tc-nub and Tc-cas, in Tribolium embryos during segment addition. A) shows that the four 

genes are expressed in sequential spatial order along the anterior-posterior axis of the embryo 

during mid-segmentation. B) and C) show that this spatial order is established by sequential 

temporal expression in the posterior SAZ. Images of blastoderm stage embryos are maximum 

projections through the ventral (or lateral where labelled) half of the embryo. Images of 

germband stage embryos are maximum projections through the sections that contain Tc-Wg-

expressing epithelium (i.e. the ectoderm proper). All images are orientated with anterior at the 

top. Scale bar is 100 μM. 
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Tc-nub and Tc-cas are expressed in the gap gene gap  

 Tc-nub and Tc-cas are both expressed within the ‘gap gene gap’ that spans 

approximately from PS8 to PS12 (Figure 4.8). The anterior portion of the Tc-nub domain also 

overlaps with the dense field of gap gene domains straddling the thoracic-abdominal boundary. 

In particular, the posterior domains of Tc-nub, Tc-gt and Tc-kni all overlap extensively in PS5-

8 (T2p-A3a), and in fact emerge at almost the same time (Figure 4.8, stage To2 onwards). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8, overleaf. Expression of Tc-nub and Tc-cas compared to other gap genes in 

Tribolium. Parasegments (in the segmented germband), and the patterning units that will later 

specify parasegments (in the SAZ), are labelled in normal text or in italics, respectively. Odd-

numbered parasegments/parasegment patterning units, which express Tc-Tl10/Tc-eve, are 

marked by light grey bands. Tc-Wg stripes are marked by dark grey bands. After the first 

column, the anterior of the embryo is cut off and only the most recent two mature parasegments 

are represented, for optimal use of space.  
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The expression dynamics of Tc-nub and Tc-cas relative to other gap genes suggest that they 

may interact in the process of segment addition 

 Previous research has identified several likely interactions between nub, cas and other 

gap genes in the context of neuroblast development and segment patterning in Drosophila. My 

expression analyses suggest that many of these interactions may be conserved in the context of 

axial patterning in Tribolium.   

 

Tc-nub: Dm-Hb appears to be a potent repressor of Dm-nub, both in neuroblasts 

(Kambadur et al., 1998) and in the process of segment patterning (Cockerill et al., 1993; Lloyd 

and Sakonju, 1991). In the latter context, at least, this interaction appears to be direct 

(Kambadur et al., 1998). The dynamics of Tc-nub expression are consistent with this interaction 

being conserved during axial patterning in Tribolium. Tc-nub expression first emerges in the 

SAZ shortly after Tc-hb expression fades (Figure 4.8, stage W0:To3). Its expression is strong 

where there is no detectable Tc-hb mRNA, and weaker where low levels of Tc-hb are detected 

(Figure 4.7, stage W0:To3). Although Tc-nub expression in the SAZ begins to fade before the 

posterior domain of Tc-hb emerges (Figure 4.8, stage W7:To5), the two genes neatly abut for 

the remainder of segment addition (Figure 4.8, stage W9:To7 onwards and Figure 4.9). It 

therefore seems likely that Tc-Hb plays an important role in setting or maintaining the anterior 

and posterior boundaries of Tc-nub expression.   

The terminal system, and tll in particular, is also thought to be required to repress nub 

in Drosophila (Cockerill et al., 1993). Indeed, the emergence of the abdominal Tc-nub domain 

correlates with the fading of Tc-tll expression in the terminus of the embryo (Figure 4.8, stage 

To2). However, this could be an indirect effect, resulting from repression of Tc-hb by Tc-Tll.   

In Drosophila, Kni also has a repressive effect on nub expression, resulting in the 

splitting of the nub domain into two stripes (Cockerill et al., 1993). By contrast, in Tribolium, 

Tc-nub and Tc-kni domains overlap extensively, and there is no evidence that the latter 

represses the former (Figure 4.8).  

Interestingly, the emergence of the posterior Tc-nub domain correlates closely with the 

emergence of the posterior Tc-gt and Tc-kni domains. It is worth considering that these three 

genes may share some elements of regulation, whether this be repression by Tc-tll or activation 

by Tc-mlpt and Tc-svb, as proposed in the previous chapter.  

Dm-nub itself is thought to repress Dm-Kr in the context of neuroblast patterning 

(Grosskortenhaus et al., 2006; Isshiki et al., 2001; Tran and Doe, 2008), although no evidence 

of this interaction has been found in axial patterning (Cockerill et al., 1993). Such an interaction 
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is certainly plausible in Tribolium, based on the expression dynamics of Tc-nub and Tc-Kr. Tc-

nub expression emerges within the Tc-Kr domain, and where it is expressed strongly, Tc-Kr 

expression subsequently fades (Figure 4.8).   

 

Tc-cas: There is less known about interactions of cas with gap and gap-like genes. Like 

Dm-nub, Dm-cas appears to be repressed by Dm-Hb in neuroblasts (Isshiki et al., 2001). As 

for Tc-nub, the posterior boundary of the gap-like Tc-cas domain neatly abuts the posterior 

domain of Tc-hb (Figure 4.8, Figure 4.9), so it is plausible that Tc-Hb represses Tc-cas in this 

context too.   

The activation of Tc-cas in the SAZ is harder to explain. In neuroblasts, Dm-cas is 

thought to become expressed due to a combination of activation via Dm-Nub and derepression 

as expression of Dm-hb and Dm-Kr fades (Isshiki et al., 2001). In Tribolium, Tc-cas first 

becomes expressed some time after Tc-hb and Tc-Kr expression fades, and after Tc-nub first 

becomes expressed, suggesting that these interactions are less important for establishing the 

gap-like domain of Tc-cas expression. The emergence of this domain does correlate well with 

fading of Tc-gt and Tc-kni in the SAZ (Figure 4.8, stage W5:To4), so perhaps one or both of 

these genes acts a repressor of Tc-cas to control the timing of its expression.  

 

Note that it was my intention to test many of these interactions as a part of my PhD, but 

unfortunately, the COVID-19 pandemic cut some of my experiments short. However, some of 

these interactions are tested in this and the next chapter. 
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Figure 4.9. Expression of Tc-hb, Tc-nub and Tc-cas in a mid-elongation germband. The 

anterior boundary of the posterior Tc-hb domain is marked with a dotted line. Scale bar is 100 

μM. 
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4.2.3. Investigating the function of Tc-nub and Tc-cas in axial patterning using RNAi  

 

The expression patterns of Tc-nub and Tc-cas are consistent with their playing a role in 

axial patterning, in particular during abdominal segment formation. I next aimed to investigate 

the role of each gene in axial patterning using parental RNAi (pRNAi) and embryonic RNAi 

(eRNAi).  

 

Both Tc-nub and Tc-cas pRNAi reduce viability and hatching rate 

For my first pRNAi experiment, I injected females with 1 μg/μL GFP dsRNA as a 

negative control (N=32), Tc-odd dsRNA as a positive control (N=16), or Tc-nub dsRNA 

(N=31) or Tc-cas dsRNA (N=31). Eggs were collected every 2-3 days for a period of four 

weeks and left to develop into larvae for cuticle preparation. Survival of injected females after 

two days was high for all treatments (93-100%).  

As expected, injection of GFP dsRNA had no noticeable effect on cuticle formation or 

hatching in offspring compared to uninjected controls (data not shown). Injecting Tc-odd 

dsRNA also had the expected effect on offspring, with just over half of embryos failing to form 

cuticles (counted as ‘empty eggs’) and the remaining embryos displaying distinctive truncation 

phenotypes in line with those described by Choe et al. (2006) (Table 4.1).  

Injection with either Tc-nub or Tc-cas dsRNA led to an increase in the number of empty 

eggs compared to negative controls (55-60% compared to 17% for the GFP treatment) (Figure 

4.1). I hypothesise that this early mortality might be related to an early role of Tc-nub and Tc-

cas in ovary function. Those embryos that did form cuticle did not display any overt 

morphological defects. However, although 40-45% of embryos laid by Tc-nub or Tc-cas 

injected mothers had normal cuticles, only 3-5% of embryos succeeded in hatching, compared 

to 78.5% for the GFP treatment (Table 4.1). The failure of otherwise ‘normal’ larvae to hatch 

could be a result of defects in the nervous system. Both Tc-nub and Tc-cas are expressed in 

neuroblasts in Tribolium (Biffar and Stollewerk, 2014), and Dm-cas mutation has been shown 

to prevent hatching of Drosophila embryos with otherwise normal cuticles, presumably 

because of disruption to the nervous system (Mellerick et al., 1992).  
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Table 1. Cuticle phenotypes of offspring produced by mothers injected with 1 μg/μL GFP, Tc-

nub or Tc-cas dsRNA. N = number of eggs examined; WT = wild type; ‘other’ refers to 

offspring that produced a non-wild-type cuticle.  

 

Treatment (1 μg/μL) N % WT cuticles % empty eggs % other % hatching 

GFP dsRNA (-) 404 83.2 16.8 0 78.5 

odd dsRNA (+) 116 0 57.8 42.2 
 

0 

nub dsRNA 447 44.3 55.7 0 3.6 

cas dsRNA 167 40.7 59.2 0 4.8 

 

 

To confirm that RNAi was working as expected, I examined Tc-nub expression in 24-27 hour 

old embryos from water- or 1 μg/μL Tc-nub dsRNA-injected mothers. (Note that this and the 

following pRNAi trials use water as a negative control, as I had been advised and tested for 

myself that injections with water and with GFP dsRNA give similar outcomes to no-injection 

controls (data not shown)). Interestingly, in this experiment, the percentage of empty eggs was 

very similar to that observed in the water control treatment, although hatching rate remained 

low (data not shown) – I surmise that the dose of Tc-nub received by parents may have been 

lower than in my initial experiments, with hatching being more sensitive to knockdown than 

the early viability phenotype.  

I found that expression of Tc-nub was reduced in extended germband embryos after Tc-

nub pRNAi, and the remaining expression was limited mainly to distinct punctae (Figure 4.12). 

These punctae likely represent sites of nascent transcription in nuclei, which are not impacted 

by RNAi. Tc-nub mRNA in the cytoplasm therefore seems to be effectively degraded after 

pRNAi, even at 1 μg/μL. It would be useful to investigate the extent of knockdown in several 

replicates at this concentration using qPCR, to better understand where the variability in the 

viability phenotype comes from.  
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Figure 4.12. Expression of Tc-nub in embryos laid by mothers injected with either water 

(negative control) or 1 μg/μL Tc-nub dsRNA. Note that there is little detectable cytoplasmic 

transcript in the latter, with expression instead limited primarily to punctae that likely mark 

nuclear transcription. Embryos are 24-27h AEL. Each panel shows just the head of a single 

embryo with anterior at the top. Scale bar is 50 μM. 
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Increasing the concentration of Tc-nub dsRNA results in the appearance of abdominal 

phenotypes at low penetrance 

Increasing the concentration of Tc-nub or Tc-cas dsRNA to 2 μg/μL resulted in the 

emergence of a very small number of unusual phenotypes in offspring cuticles (Table 4.2). 

Again, close to half of the eggs produced by mothers injected with Tc-nub or Tc-cas dsRNA 

failed to form cuticle, compared to 17% of GFP control embryos, and the rate of hatching was 

markedly reduced. Of the embryos examined after Tc-nub pRNAi, 8/120 (6.7%) contained 

cuticles with defects in abdominal patterning. Specifically, five embryos had abdominal 

truncations (missing from 1-4 segments and the terminus of the embryo); one had disorganised 

segment boundaries in the anterior abdomen; and two had small cuticular protrusions growing 

out of segments A1 and/or A2 (Figure 4.13). Increasing the concentration of Tc-nub dsRNA to 

3 μg/μL did not increase the frequency of axial phenotypes further (data not shown).  

Increasing the dose of Tc-cas dsRNA to 2 μg/μL resulted in the appearance of one 

unusual cuticle (with an ectopic leg on T2) (Table 4.2) – however, this phenotype was not 

observed again and so likely represents a chance disruption of embryogenesis, unrelated to my 

RNAi treatment.  
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Table 4.2. Cuticle phenotypes of offspring produced by mothers injected with water or 2 μg/μL 

Tc-nub or Tc-cas dsRNA. N = number of eggs examined; WT = wild type; ‘other’ refers to 

offspring that produced a non-wild-type cuticle.  

 
Treatment N % WT cuticles % empty eggs % other % hatching 

Water 100 83 17 0 82 

nub dsRNA (2 μg/μL) 120 50 43.3 6.7 2.5 

cas dsRNA (2 μg/μL) 116 37.9 61.2 0.9 3.4 

 

 

 
 

Figure 4.13. Cuticles of larvae produced by mothers injected with water (negative control) (A-

A’) or with 2 μg/μL Tc-nub dsRNA (B-B’). Insets A’ and B’ show a close up on the regions 

indicated in A and B, respectively. The white arrowhead indicates a cuticular ‘nub’ growing 

on segment A1. Scale bar is 200 μM. 
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Tc-nub eRNAi circumvents early embryo death and results in a higher proportion of abdominal 

phenotypes  

In parallel, I performed knockdowns using eRNAi to validate my results. Because it 

involves mechanical disruption of the egg, eRNAi is more disruptive to embryonic 

development than pRNAi, and the percentage of injected embryos surviving to make cuticles 

is therefore much lower (~50-60% for eRNAi in my hands, c.f. ~80-83% after pRNAi,). eRNAi 

has also been observed to produce more non-specific phenotypes than pRNAi, often related to 

the injection site (M. Benton, personal communication, and my own observations). I, for 

example, was injecting into the anterior of the embryo, in order to leave the posterior SAZ 

intact, and observed many embryos with disfigured or missing heads even in control treatments 

(usually varying between 0-20% in frequency). However, as long as these effects are controlled 

for, eRNAi provides a useful alternative to pRNAi that circumvents possible roles of genes in 

oogenesis.  

In contrast to my observations using pRNAi, embryos injected with 2 μg/μL Tc-nub or 

Tc-cas dsRNA formed cuticles at comparable rates to those injected with GFP dsRNA (Table 

4.3). This suggests that the high proportion of empty eggs laid by mothers injected with Tc-

nub or Tc-cas dsRNA results from the effects of knockdown on either oogenesis or very early 

embryogenesis. Given that neither gene is expressed strongly in the oocyte or early embryo, 

but is expressed in the ovary (see section 4.5), I would suggest that it is the former. Determining 

whether Tc-nub and Tc-cas play roles in ovary function and oogenesis will require more 

investigation, however (for example, examining the phenotype of ovaries and oocytes after 

knockdown).  

In addition, I observed a higher frequency of unusual abdominal phenotypes specific to 

the Tc-nub eRNAi treatment (Table 4.3). Minor abdominal truncations were observed at a low 

frequency in all treatments, with only a marginal increase in the Tc-nub treatment. Abdominal 

segment boundaries were disrupted in 6.5% of cuticles arising from Tc-nub eRNAi, but in none 

of the other treatments. Most notably, 10% of the cuticles arising from Tc-nub eRNAi displayed 

cuticular ‘nubs’ on segment A1 (Figure ZF), a phenotype never observed in the other two 

treatments. Use of a higher dose of Tc-nub dsRNA (4 μg/μL) increased the penetrance of the 

‘nub’ phenotype to 30%, although no truncations or segment boundary disruptions were 

observed in this treatment (Table 4.4). 

No unusual phenotypes were observed to be specific to Tc-cas dsRNA-injected 

embryos using eRNAi.  
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Table 4.3. Cuticle phenotypes of embryos injected with 2 μg/μL GFP, Tc-nub or Tc-cas 

dsRNA. N = number of eggs injected; ‘No. (%) cuticles’ refers to the number (%) of injected 

embryos going on to form cuticles; ‘boundary’ refers to segment boundary disruptions; and 

‘nubs’ refers to small, bilateral cuticular protrusions on the abdominal segments.  

 
   % abdominal phenotype  

Treatment (2 μg/μL) N No. (%) cuticles % truncation % boundary 

disruption 

% ‘nubs’ 

GFP dsRNA 94 53 (56.4) 1.9 0 0  

nub dsRNA 148 91 (61.4) 5.4 6.5 12.1  

cas dsRNA 89 43 (48.3) 2.3 0 0  

 

 

Table 4.4. Cuticle phenotypes of embryos injected with 4 μg/μL GFP or Tc-nub. N = number 

of eggs injected; ‘No. (%) cuticles’ refers to the number (%) of injected embryos going on to 

form cuticles; ‘boundary’ refers to segment boundary disruptions; and ‘nubs’ refers to small, 

bilateral cuticular protrusions on the abdominal segments.  

 
   % abdominal phenotype  

Treatment (4 μg/μL) N No. (%) cuticles % truncation % boundary 

disruption 

% ‘nubs’ 

GFP dsRNA 49 31 (63.2) 3.2 0 0  

nub dsRNA 49 25 (51.0) 0 0 32  
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Figure 4.14. Cuticles produced by embryos injected with 2 μg/μL GFP dsRNA (negative 

control) (A-A’) or with 2 μg/μL Tc-nub dsRNA (B-B’). Insets A’ and B’ show a close up on 

the regions indicated in A and B, respectively. The white arrowhead indicates a cuticular ‘nub’ 

growing on segment A1. Scale bar is 200 μM. 
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Tc-nub knockdown results in misexpression of the Hox gene Tc-abdA  

The formation of a cuticular protrusion in the posterior compartment of A1 suggests a 

subtle homeotic transformation. Tc-abdA mutants display similar protrusions along the length 

of the abdomen (Stuart et al., 1993), so I hypothesised that the phenotype observed after Tc-

nub pRNAi might result from repression of Tc-abdA in PS7 (A1p-A2a). In the absence of Tc-

abdA, abdominal parasegments take on the fate of PS6 (T3p-A1a), therefore forming the 

posterior portion of a T3 leg on each segment (Lewis et al., 2000; Stuart et al., 1993). The 

cuticular ‘nubs’ observed could therefore represent partial thoracic appendages.  

To investigate this hypothesis, I examined Tc-abdA expression in extended germband 

embryos produced by mothers injected with 2 μg/μL Tc-nub dsRNA. In accordance with my 

hypothesis, I frequently observed a reduction in Tc-abdA expression in the anterior portion of 

PS7 (Figure 4.15). The percentage of embryos showing some degree of Tc-abdA repression in 

PS7 (7/9, or 77.8%) was vastly higher than the percentage of cuticles displaying the ‘nub’ 

phenotype after pRNAi (2%). It may be that I have missed subtler phenotypes in cuticles 

produced after pRNAi in my earliest experiments, so that the actual percentage of embryos 

with the phenotype is higher. Alternatively, it may be that embryos are usually able to recover 

from this degree of misexpression and pattern their abdomens correctly. (Note that the number 

of embryos examined for this experiment was low as it was performed while I was trouble-

shooting how to effectively collect small batches of embryos. I had meant to repeat this 

experiment for confirmation, but work on this was truncated by COVID-19). 

I observed normal expression of three potential regulators of Tc-abdA - Tc-hb, Tc-Kr 

and Tc-gt - in 14-17h embryos laid by mothers injected with 2 μg/μL Tc-nub dsRNA (data not 

shown). Tc-Kr abuts the anterior of the Tc-nub domain, and its expansion in Tc-gt knockdowns 

appears to promote ectopic appendage development (Cerny et al., 2005), and Dm-Kr and Dm-

gt regulate Dm-abdA expression in Drosophila (Casares and Sánchez-Herrero, 1995). It is 

possible that any changes in the expression of these gap genes is only transient and not visible 

at the stage I observed. Alternatively, Tc-nub may be directly required for activation of Tc-

abdA in the anterior of PS7.  
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Figure 4.15. Expression of Tc-nub in stage-matched embryos laid by mothers injected with 

either water (negative control) or 2 μg/μL Tc-nub dsRNA. Insets A’ and B’ show close ups on 

the regions indicated in A and B, respectively, highlighting the reduced expression of Tc-abdA 

in the anterior of PS7 (Wg6 is marked with an asterisk). Scale bar is 200 μM. 
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Contrary to previous reports, Dm-nub may be required for proper expression of Dm-abdA 

Previous reports have found that Drosophila Dm-nub mutants show normal Dm-abdA 

expression (Hrycaj et al., 2008). Given the subtlety of the effect of Tc-nub knockdown on Tc-

abdA expression in Tribolium, I decided to re-examine this claim using two different mutant 

lines; DfGR4, used by Hrycaj et al. (2008) to examine effects on Dm-abdA expression, and 

DfED769, which has a smaller deletion which still removes both pdm1 and pdm2.  

I found subtle effects on Dm-abdA expression in both mutant lines (results for Df760 

shown in Figure 4.16). Specifically, Dm-abdA expression is repressed at the edges of its normal 

domain in embryos lacking Dm-nub expression (Figure 4.16). It seems as if Dm-abdA 

expression is normal in the region where Dm-nub is not normally expressed (in the central dip 

which overlaps with Dm-kni expression), but is repressed in regions where Dm-nub should 

normally be expressed (PS7 and PS9). However, by the end of segmentation, Dm-abdA 

expression has recovered and is identical in mutants and non-mutants (data not shown). 

Together, these observations suggest that Dm-nub may have a role in initiating Dm-abdA 

expression, but is not necessary for the final elaboration of the Dm-abdA domain.  
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Figure 4.16. Expression of Dm-nub and Dm-abdA in stage-matched wild type Drosophila 

embryos (+/+ (WT)) and nub mutants ( -/- (mut), mutant line Df760). Note that in the nub 

mutant, Dm-abdA expression is reduced at the lateral edges of its domain, in particular in PS7 

and PS11 where Dm-nub is usually expressed. Scale bar is 100 μM. 
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4.3. DISCUSSION 
 

In this chapter, I have shown that the neuroblast timer genes Tc-nub and Tc-cas are 

expressed in broad, gap-like domains during segment patterning. The four genes of the 

neuroblast clock (Tc-hb, Tc-Kr, Tc-nub and Tc-cas) are expressed in temporal series in the 

SAZ, generating ordered expression domains along the AP axis (similar to what is observed in 

Drosophila). I additionally show that Tc-nub is required for normal expression of Tc-abdA in 

PS7, but that Tc-cas knockdown has no obvious effect on segmental patterning. Together, these 

results have interesting implications for the evolution of the gap gene network and its relation 

to the neuroblast timer series.  

 

4.3.1. The SAZ of Tribolium expresses the neuroblast timer genes in the same order as 

neuroblasts themselves 

 

I show here that the neuroblast timer genes are expressed in the same temporal order in 

the SAZ of Tribolium as they are in neuroblasts themselves. Sequential expression of Tc-hb, 

Tc-Kr, Tc-nub and Tc-cas in the SAZ results in these genes forming an ordered series of 

domains that covers the length of the AP axis (Figure 4.17). It is possible that some remnant 

of this temporal order exists in Drosophila – although no single cell will cycle through 

expression of all four genes, maternal Dm-Hb is certainly present before Dm-Kr becomes 

expressed, and Dm-nub is first expressed a cell cycle later than either of these genes (Cockerill 

et al., 1993). However, overall, the process by which expression domains of Tc-hb, Tc-Kr, Tc-

nub and Tc-cas are established in Tribolium is much more obviously analogous to the process 

of sequential fate assignment in neuroblasts. Similar to neuroblasts, the undifferentiated cells 

in the SAZ express each of these genes in order until they ‘mature’ (in this case, move into the 

segmented germband), at which point they cease to cycle through the timer series.  

In neuroblasts, the function of this sequential expression is to allow the production of 

different daughter cell types in a stereotyped order (Isshiki et al., 2001). It is easy to imagine 

how such a function would be usefully co-opted for axial patterning; the SAZ has to generate 

segments in a stereotyped order, with the earliest-maturing cells contributing to the gnathal 

segments; those maturing slightly later, to the thorax; and the latest-maturing contributing to 

the abdomen. My work and others’ (Hrycaj et al., 2008) suggest that nub may be required to 

some extent for full realisation of abdominal fates (discussed further in section 4.3.4). 
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Figure 4.17. Summary of the expression of the four neuroblast timer genes in trunk 

(para)segments as they are specified (i.e. at the time that segmental Wg stripes first emerge) in 

Tribolium. Term = terminus of the embryo. 

 

4.3.2. Tc-nub and Tc-cas are expressed in the ovary and are likely to function during 

oogenesis 

 

I found that both Tc-nub and Tc-cas are expressed in the ovaries of Tribolium. The fact 

that eRNAi results in fewer ‘empty eggs’ than pRNAi also suggests that these two genes may 

play an active role in oogenesis. Such a finding is not surprising for Tc-cas; as mentioned in 

the results, Dm-cas is also required for ovary function in Drosophila (Chang et al., 2013). The 

iBeetle screen reports that pRNAi against Tc-cas results in a reduction in the number of 

previtellogenic egg chambers and the size of the tropharium (Dönitz et al., 2018). These results 

pertain to only 2 individuals, so further investigation is warranted, but support the theory that 

Tc-cas plays an active role in ovary function in Tribolium as in Drosophila.  

This is, by contrast, the first report of a nub homologue being expressed in the ovary of 

any arthropod. It is interesting that Tc-nub should mark out a distinct population of nurse cells. 

In the late pupal stage, ‘pro-nurse’ cells at the proximal end of the tropharium undergo 

polyploidisation, subsequently allowing the expansion of the nurse cell syncytium (Trauner 

and Büning, 2007). It is possible that this proliferative activity continues into adulthood, in 

which case Tc-nub may be a marker for pro-nurse cells. Such a role would be consistent with 

nub’s role in regulating proliferation in other contexts, such as the adult intestine of Drosophila 

(Tang et al., 2018). 
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4.3.3. RNAi against Tc-nub and Tc-cas does not affect leg development, despite their 

expression in developing limb buds 

 

Tribolium provides an advantage for studying appendage development compared with 

Drosophila, as like most arthropods, the limbs are patterned in the embryo; by contrast, the 

limbless Drosophila larva delays appendage patterning until pupation. I show here that both 

Tc-nub and Tc-cas are expressed in the developing gnathal and thoracic appendages of 

Tribolium embryos.  nub is expressed in the appendage buds of diverse arthropods (Abzhanov 

and Kaufman, 2000; Averof and Cohen, 1997; Damen et al., 2002; Prpic and Damen, 2005; 

Prpic and Damen, 2009; Turchyn et al., 2011), but this is the first known example of cas being 

expressed in appendage buds.  

Despite their expression in appendage buds, knockdown of neither Tc-nub nor Tc-cas 

had any obvious effect on the limb development. Knockdown or knockout of nub has been 

shown to cause defects in leg formation in a range of different insects (Cifuentes and García-

Bellido, 1997; Hrycaj et al., 2008; Turchyn et al., 2011), so this is an unusual observation. The 

concentrations of nub dsRNA that I have used (2-2.5 μg/μL) are within the ranges employed 

by Hrycaj et al. (2008) and Turchyn et al. (2011), but it is possible that the efficacy of RNAi 

was lower in my experiments. This could result from intrinsic differences in the RNAi 

machinery of Tribolium compared to other insects, or from differences in injection volume or 

post-injection leakage. I find it unlikely that experimental error explains the discrepancy, as 

my positive control (Tc-odd) as well as RNAi trials for other previously described gap genes 

(Tc-hb, Tc-Kr and Tc-mlpt) worked well in my hands. Perhaps the role of Tc-nub has recently 

diverged so that its expression, but not its function, in limbs is maintained. Alternatively, 

perhaps its role has become redundant with some other protein in Tribolium (see Chapter Five 

for more on this).  

 

4.3.4. nub regulates abdA gene expression in disparate insect groups 

  

I found little evidence for a role of Tc-cas in segment patterning. By contrast, I did 

observe a subtle impact of Tc-nub pRNAi and eRNAi on segment identity. Specifically, partial 

loss of Tc-abdA expression in PS7 in Tc-nub knockdowns leads to the formation of cuticular 

‘nubs’, which I have proposed are partially formed thoracic legs, on the first abdominal 

segment. I have also shown, contrary to previous reports (Hrycaj et al., 2008) that Dm-abdA 

expression is subtly disrupted in Drosophila nub mutant embryos. It has previously been 
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reported that in Oncopeltus, knockdown of Of-nub leads to repression of Of-abdA across the 

length of the abdomen (Hrycaj et al., 2008). There are therefore now three examples of nub 

regulating abdA expression in three disparate insect groups. In all of these cases, knockdown 

or loss of nub leads to loss of abdA expression, suggesting either that nub acts as an activator 

of abdA or that it represses a repressor of abdA. Regulation of the infraabdominal regions in 

Drosophila (the regulatory regions that drive Dm-abdA and Dm-AbdB expression in specific 

parasegments) is thought to be accomplished through a combination of general activation, and 

specific repression by gap genes (specifically Dm-Hb and Dm-Kr) (Casares and Sánchez-

Herrero, 1995). Tc-Kr is also likely to repress Tc-abdA in Tribolium – after Tc-mlpt RNAi, 

embryos display expanded expression of Tc-Kr and concomitant repression of Tc-abdA 

expression in the abdomen (Savard et al., 2006). Combined with the fact that Tc-nub and Tc-

Kr abut at a sharp boundary, and that Dm-nub is able to repress Dm-Kr (Grosskortenhaus et 

al., 2006), derepression of Tc-Kr seems a plausible explanation to explain the repression of Tc-

abdA in Tc-nub knockdowns. I failed to observe any impact of Tc-nub knockdown on Tc-Kr 

expression, but given the subtlety of the effects on Tc-abdA expression I cannot rule out having 

missed equally subtle and/or transient effects on Tc-Kr expression. Detailed examination of Kr 

expression after nub mutation or knockdown in Tribolium, Drosophila and Oncopeltus would 

be a useful next step.  

It is worth asking why I might have observed such a mild phenotype in Tribolium 

compared to another sequentially-segmenting insect like Oncopeltus. Knockdown of Of-nub 

leads to abdominal transformations with greater severity (A2-A9 segments are all transformed 

into appendage bearing segments, with many of these appendages being close to normal 

thoracic legs) and high penetrance (~90-100% of Oncopeltus embryos display abdominal 

transformations, compared to only 10-30% of treated Tribolium embryos) (Hrycaj et al., 2008). 

Difference in experimental methods might account for this discrepancy, if I exposed my beetles 

to a lower total dose of nub dsRNA, but I find this an unconvincing explanation; my HCRs 

indicate that Tc-nub is effectively knocked down, and as discussed above, RNAi experiments 

using dsRNAs with known effects worked as expected, arguing against any consistent 

experimental bias. In addition, I performed several experiments using even higher 

concentrations of Tc-nub dsRNA, and although they increased the penetrance of the ‘nub’ 

phenotype somewhat, they did not impact the severity.  

Another possible explanation is that the relative importance of nub for abdominal Hox 

regulation varies between different insect species. I show here that Dm-nub has only subtle 

effects on abdA expression, and nub seems to have no impact on abdominal identity in the 
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house cricket Acheta (Turchyn et al., 2011). Clearly, the relative importance of nub for 

patterning the abdomen varies between different insect groups.  

Given that Tc-nub expression overlaps extensively with other gap genes in the anterior 

abdomen, I wondered whether its subtle effect here might result from functional redundancy 

with one or more of these genes. This possibility is discussed in more detail, and investigated, 

in Chapter Five.  
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5. REDUNDANT ACTIVITY OF ABDOMINAL GAP GENES 
 

 
5.1. INTRODUCTION 

 
 

5.1.1. Redundancy in the gap gene network 

 

I have shown in Chapter Four that Tc-nub knockdowns in Tribolium result in weak 

abdominal transformations with low penetrance, in contrast to the strong abdominal 

transformations observed in Of-nub knockdowns in Oncopeltus embryos (Hrycaj et al., 2008). 

As discussed at the end of that chapter, there are several reasons why Tc-nub may have a 

weaker RNAi phenotype than Of-nub. One of the most intriguing is that Tc-nub may be acting 

redundantly with other abdominal gap genes to fulfil a function in axial patterning.  

In Drosophila, strong, mutual repression between non-overlapping pairs of gap genes 

(Dm-hb/Dm-kni and Dm-Kr/Dm-gt) is sufficient to establish staggered, static gap gene 

domains, but dynamic anterior shifts are produced by weaker, asymmetric repression between 

overlapping pairs of gap genes (Dm-Kr⊣Dm-hb, Dm-Kni⊣Dm-Kr and Dm-Gt⊣Dm-kni) 

(reviewed in Jaeger, 2011) (Figure 5.1A). Where these two spatial systems meet, they often 

generate some degree of redundancy; for example, although Dm-gt is a strong repressor of Dm-

Kr, Dm-gt mutants show almost normal Dm-Kr expression as its boundaries are maintained via 

repression by Dm-Hb (anteriorly) and Dm-Kni (posteriorly) (Kraut and Levine, 1991).  

By contrast, current models of the gap gene network in Tribolium include very little 

redundancy (Figure 5.1B). The low redundancy postulated in this network is at odds with the 

large number of overlapping gap and gap-like gene domains in the posterior thorax and anterior 

abdomen. In particular, PS5-PS7 (T2p-A2a) express Tc-mlpt + Tc-svb, Tc-gt and Tc-kni in 

addition to Tc-nub during their early specification (Chapters 3 and 4). It has been proposed that 

the large number of overlapping gap gene domains in this region might be necessary for pair-

rule patterning to be maintained during the transition from blastoderm to germband, with the 

staggered boundaries of these gap genes directing the formation of specific pair-rule gene 

stripes (Cerny et al., 2008). However, neither Tc-nub nor Tc-kni knockdowns show any 

disruptions in segment patterning at the thorax-abdomen transition (Chapter 4 and Cerny et al., 
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2008; Peel et al., 2013). As of yet, no-one has carried out double or triple knockdowns in 

Tribolium to investigate whether these genes may act redundantly.  

 

 
 

Figure 5.1. Core interactions between gap genes in the Drosophila (A) and Tribolium (B) gap 

gene networks. Panel A is adapted from Jaeger (2011) and panel B is adapted from Zhu et al. 

(2017). In A, solid lines indicate strong repression, while dotted lines indicate weak repression. 

Where functional data has indicated some degree of redundancy in an interaction, those 

interactions are highlighted in the same colour as the target gene. For example, the posterior 

border of Dm-Kr (orange) is set via repression from both Dm-gt and Dm-kni, so the lines 

corresponding to these interactions are coloured orange.   

 

5.1.2. Does Tc-Nub act redundantly with Tc-Gt and/or Tc-Kni to repress Tc-Kr in the 

abdomen? 

 

Interestingly, all of the gap genes expressed in the posterior thorax and anterior 

abdomen of Tribolium are able to repress Kr expression in some context in Tribolium and/or 

Drosophila (Table 5.1). However, knocking down Tc-nub or Tc-gt has no obvious impact on 

the posterior border of Tc-Kr expression (Chapter 4 and Cerny et al., 2005), and Tc-kni 

knockdowns show no anterior abdominal phenotype, indicating that this is probably also the 

case for Tc-kni. If the posterior boundary of Tc-Kr is set via repression by Tc-gt, Tc-kni and 

Tc-nub this would explain why knockdown of any one of these genes has little or no impact on 

Tc-Kr expression. There is, as of now, only one gene which has been shown to repress Tc-Kr 

in the abdomen in Tribolium – Tc-mlpt (Savard et al., 2006). I have discussed earlier how the 

co-expression of Tc-mlpt and Tc-svb precede the emergence of the abdominal Tc-gt, Tc-kni and 

Tc-nub domains in the SAZ, and how this might indicate co-ordinated activation of some or all 
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of the three genes by Tc-Svb in its activator form (Chapters 3 and 4). This could explain why 

Tc-mlpt knockdowns might have a more pronounced effect on Tc-Kr expression than any one 

of Tc-nub, Tc-gt or Tc-kni.  

 

Table 5.1. Effects of mlpt/svb, nub, gt or kni misexpression on Kr expression during neuroblast 

(NB) and/or axial patterning in Drosophila or Tribolium. All have been shown to repress Kr 

expression in one context or another (evidence against their acting as repressors of Kr are 

highlighted in red).  

 

 

  

Gene Drosophila  Tribolium  
mlpt/svb _ _ Tc-mlpt knockdowns show 

posterior expansion of Tc-
Kr gap domain. 

(Savard et al., 
2006) 

   Tc-svb knockdowns show 
same homeotic 
transformations as Tc-mlpt. 

(Ray et al., 2019) 

nub Repression or ectopic 
expression in NBs leads to 
extended or abolished 
expression of Dm-Kr, 
respectively.  

(Grosskortenhaus 
et al., 2006; Tran 
and Doe, 2008) 

Knockdowns exhibit no 
obvious effect on Tc-Kr 
expression. 

Chapter 4, E. 
Raymond 
(unpublished) 

 Mutants show normal 
Dm-Kr gap gene domain.  

(Cockerill et al., 
1993) 

  

     
gt Ectopic expression 

represses Dm-Kr gap 
domain. 

(Kraut and 
Levine, 1991) 

Knockdowns show anterior 
expansion of Tc-Kr gap 
domain. 

(Cerny et al., 2005) 

kni Mutants show posterior 
expansion of Dm-Kr gap 
gene domain. 

(Jäckle et al., 
1986) 

_ _ 
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5.1.3. Potential redundancy of Tc-nub and Tc-cas in the posterior abdomen 

 

As discussed in the previous chapter, knockdown of Tc-cas has no obvious effect on 

abdominal segmentation or segment identity, despite its prominent expression domain in the 

SAZ during posterior abdominal segment patterning. However, the gap-like domain of Tc-cas 

expression entirely overlaps with the posterior of the abdominal Tc-nub expression domain 

(Chapter 4). This raises the question of whether these two genes may also play a redundant role 

in the abdomen.  

 
5.1.4.  Specific aims  

 

In this chapter, I aimed to determine whether Tc-nub might be acting redundantly with 

Tc-gt and/or Tc-kni in the anterior abdomen, and with Tc-cas in the posterior abdomen, to 

influence axial patterning. To do this, I performed double and triple knockdowns of these genes 

in Tribolium embryos using eRNAi, and analysed the resulting phenotypes using cuticle 

preparations and HCRs against Hox and other gap genes. I also examined gene expression in 

Tc-svb knockdowns to investigate whether the resulting abdominal transformations are related 

to misexpression of Tc-nub.   
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5.2. RESULTS 

 
5.2.1. Validation of Tc-kni and Tc-gt dsRNA: Tc-gt knockdown generates abdominal 

transformations with low penetrance 

 

 I first aimed to validate the dsRNA I had synthesised for Tc-gt and Tc-kni by performing 

eRNAi against both genes individually. dsRNA injected at 1 μg/μL was sufficient to generate 

phenotypes consistent with those previously described for Tc-gt and Tc-kni knockdowns 

(Bucher and Klingler, 2004; Cerny et al., 2008; Peel et al., 2013) (Tables 5.1 and 5.2 and Figure 

5.2).  

 

Tc-kni: Approximately 90% of cuticles formed in eggs injected with Tc-kni dsRNA 

lacked one or both antennae, and 25% displayed disruptions in posterior abdominal segment 

boundaries (Figure 5.2B). Most of the cuticles lacking antennae also lacked or displayed only 

remnants of the mandibles, although this was not quantified. Injecting Tc-kni dsRNA at a 

higher concentration (2 μg/μL) resulted in a similar number of cuticles lacking antennae 

(~83%) but no disruptions in abdominal segment boundaries. Cerny et al. (2008) describe this 

phenotype as displaying lower and variable penetrance than the head phenotype, so I am not 

overly concerned about this discrepancy. Previous studies indicate that increasing the 

concentration of dsRNA up to 4 μg/μL does not qualitatively affect the resulting phenotypes 

(Cerny et al., 2008; Peel et al., 2013), so we can be reasonably confident in saying that 

knockdowns of Tc-kni do not affect anterior abdominal segment patterning or identity despite 

its expression in this region. 

Tc-gt: All of the cuticles formed in eggs injected with 1 or 2 μg/μL Tc-gt dsRNA 

displayed canonical phenotypes associated with Tc-gt knockdown, in particular truncation (i.e., 

a lower total number of segments than the wild type cuticles) and transformation of the maxilla 

and labium into thoracic legs (Figure 5.2C) (Bucher and Klingler, 2004). However, I also 

observed an additional phenotype, not reported by Bucher and Klingler (2004). Cuticles formed 

after Tc-gt eRNAi typically display 5 pairs of legs, representing those on the two transformed 

gnathal segments and the three thoracic segments. In addition, 11% of cuticles injected with 1 

μg/μL Tc-gt dsRNA, and 17% of cuticles injected with 2 μg/μL Tc-gt dsRNA, developed a pair 

of partial or complete legs on the following segment, which in a wild type embryo would 

represent segment A1 (Figure 5.2D, Table 5.2).   
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Table 5.1. Cuticle phenotypes of embryos injected with 2 μg/μL GFP dsRNA, 1 μg/μL Tc-kni 

dsRNA + 1 μg/μL GFP dsRNA or 2 μg/μL Tc-kni dsRNA. N = number of eggs injected; ‘No. 

(%) cuticles’ refers to the number (%) of injected embryos going on to form cuticles; ‘lost 

antenna’ refers to cuticles which lack one or both antennae; and ‘boundary disrupted’ refers to 

cuticles displaying partial fusions and/or deletions of segments in the abdomen.  

 

Treatment  Conc N No. (%) 

cuticles 

% lost antenna 

 

% boundary 

disrupted 

 

GFP dsRNA 2 μg/μL 94 53 (56.4) 0 0  

Tc-kni dsRNA 1 μg/μL  
(+1 μg/μL GFP) 

45 28 (62.2) 89.3 25  

  
2 μg/μL 

 
45 

 
30 (66.7) 

 
83.3 

 
0 

 

 

 

Table 5.2. Cuticle phenotypes of embryos injected with 2 μg/μL GFP dsRNA, 1 μg/μL Tc-gt 

dsRNA + 1 μg/μL GFP dsRNA or 2 μg/μL Tc-gt dsRNA. N = number of eggs injected; ‘No. 

(%) cuticles’ refers to the number (%) of injected embryos going on to form cuticles; ‘gnathal 

trans’ refers to cuticles with maxillary and labial segments transformed to leg-bearing thoracic 

segments; ‘extra ‘legs’’ refers to cuticles in which at least one abdominal segment has been 

transformed to bear a pair of complete or partial legs (this is in addition to the transformed 

gnathal segments).  

 
Treatment  Conc N No. (%) 

cuticles 

% gnathal 

trans 

% 

truncation 

% extra 

‘legs’ 

 

GFP dsRNA 2 μg/μL 94 53 (56.4) 0 1.2 0  

Tc-gt dsRNA 1 μg/μL  
(+1 μg/μL GFP) 

45 28 (62.2) 100 100 11.1  

  
2 μg/μL 

 
45 

 
30 (66.7) 

100 
 

100 
 

17.4  
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Figure 5.2. Cuticles from eggs injected with 2 μg/μL GFP, Tc-kni or Tc-gt dsRNA. Red 

annotations indicate characteristic phenotypes in B and C (an*, md*, mx* and lb* = deletion 

of antennae, mandibles maxilla and labium, respectively; A6/A7* = partial fusion of segments 

A6 and A7; A6* truncation after segment A6) and a novel phenotype for Tc-gt eRNAi in panel 

C’ (formation of an ectopic leg on segment A1). Note that the GFP dsRNA image in A is re-

used in several eRNAi figures in this thesis, but is representative of experiments carried out in 

parallel to each eRNAi knockdown. The image in panel C’ was taken on a compound instead 

of a confocal microscope, and is from a poorer quality cuticle preparation – with more time, 

this experiment would have been repeated to gather higher quality images. Scale bar is 200 

μM.  
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The reason for the discrepancy between my results and those of Bucher and Klingler 

(2004) is not immediately clear. They performed eRNAi against Tc-gt using dsRNA prepared 

from the same gene fragment, and using the same concentration as me (up to 2 μg/μL). 

However, dsRNA concentration is not always an effective predictor of knockdown strength, as 

this can be impacted by the quality of the dsRNA preparation or the volume of dsRNA injected. 

It is possible that the strength of the knockdowns performed by Bucher and Klingler (2004) 

was slightly under the threshold required to generate partial legs. Regardless, it seems that Tc-

gt has a role in regulating abdominal segment identity in segment A1. The fact that both Tc-

nub and Tc-gt knockdowns generate homeotic transformations of segment A1 at low 

penetrance supports the hypothesis that the two genes may have partially redundant roles in 

regulating anterior abdominal segment identity.   
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5.2.2. Knockdown of Tc-nub with Tc-gt and/or Tc-kni results in stronger and more 

penetrant abdominal transformations 

  

Having established that Tc-nub and Tc-gt knockdowns affect anterior abdominal 

identity in a small percentage of cuticles, and that Tc-kni has no apparent role in the anterior 

abdomen, I set out to determine whether knocking combinations of these genes out together 

might increase the penetrance or severity of the phenotypes observed. Indeed, I observed that 

knocking down Tc-nub with Tc-kni and/or Tc-gt, or Tc-kni with Tc-gt, increased the severity 

and penetrance of abdominal segment transformation compared to knocking down any of these 

genes singly (Figures 5.3, Table 5.3 and Figure 5.4).  

At 1 μg/μL, Tc-gt knockdown alone results in the formation of partial or complete legs 

on segment A1 in ~10% of cuticles; at the same concentration, Tc-nub knockdown alone results 

in the formation of nubs on segment A1 at a similar frequency; and Tc-kni knockdown has no 

obvious homeotic effect on the abdomen. Knocking Tc-nub and Tc-kni down together, 

however, increases the frequency of cuticles with only weak abdominal transformations to 

40%, and additionally results in strong transformations in ~24% of cuticles (Figure 5.3B, Table 

5.3, Figure 5.4). These transformations, unlike those observed in single Tc-nub knockdowns, 

often affect both segment A1 and A2. Likewise, knocking Tc-gt down in tandem with Tc-kni 

more than doubles the frequency of weak transformations to ~25%, with an additional ~46% 

of cuticles displaying at least one segment with a strong transformation (Figure 5.3C, Table 

5.3, Figure 5.4). Again, unlike Tc-gt knockdowns, both A1 and A2 are often affected. In both 

of these double knockdowns, transformations of A1 are more likely to be weak, and those on 

A2 to be strong (Figure 5.3B and C), so that the average number of additional pairs of legs in 

cuticles displaying transformations is 1 (Table 5.3).  

If the effect of knockdown of Tc-nub and Tc-gt was simply additive, we would expect 

the double knockdown to result in ~10% of cuticles displaying a weak transformation (nubs) 

and ~10% displaying strong transformations (partial or complete legs). Instead, weak 

transformations are observed in ~30% of cuticles, and an additional 50% show at least one 

strongly transformed segment (Figure 5.3D, Table 5.3, Figure 5.4). Tc-nub/Tc-gt knockdowns 

are more likely to have strong transformations of both A1 and A2 than Tc-nub/Tc-kni or Tc-

gt/Tc-kni double knockdowns, and so have a slightly higher average number of additional leg 

pairs (1.3 - Table 5.3).    

Finally, knocking down all three genes together produces the most severe and penetrant 

phenotype of all (Figure 5.3E, Table 5.3, Figure 5.4). Specifically, ~95% of cuticles developing 
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from embryos injected with all three dsRNAs have strong transformation of at least one 

abdominal segment towards a thoracic fate. These cuticles have an average of 4 extra pairs of 

legs (not including the maxillary legs induced by Tc-gt knockdown), and a maximum of seven 

extra pairs (Table 5.3), indicating transformation of up to seven abdominal segments. The legs 

are also often fully formed, rather than the partial legs observed commonly in double 

knockdowns (Figure 5.3). Weaker triple knockdowns display fully formed thoracic legs on the 

anterior abdominal segments, and ‘nubs’ or partial legs on the more posterior segments (data 

not shown), indicating that the anterior abdomen is more sensitive to knockdown.  

Triple knockdown experiments also produced a higher percentage of empty eggs. 

Around 60-70% of embryos in single knockdown treatments, but only 25% of those in triple 

knockdown treatments, went on to form cuticle (Table 5.3). Two of the double knockdowns 

(Tc-nub/Tc-kni and Tc-nub/Tc-gt) also had a slightly reduced frequency of cuticle formation 

compared to single knockdowns (~45%; Table 5.3). 
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Figure 5.3. Cuticles from eggs injected with 2 μg/μL GFP dsRNA, or with mixtures 1 μg/μL 

of Tc-nub, Tc-kni and/or Tc-gt dsRNA. Abdominal segments displaying ectopic ‘nubs’ or 

partial/complete legs are labelled in orange or red, respectively. Triple knockdown segment 

annotations, marked with an asterisk, represent my best guess of wild type segment identity, 

assuming that the first leg-bearing segment represents the maxillary segment. The arrowhead 

in E indicates damage to the cuticle. Scale bar is 200 μM.  
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Figure 5.4. The percentage of cuticles displaying transformations of abdominal segments is 

increased in double or triple knockdowns of Tc-nub, Tc-gt and/or Tc-kni compared to single 

knockdowns of any one of these genes. Cuticles with abdominal transformations are split into 

those that display only ‘nubs’ (white) – weaker abdominal transformations - or at least one 

partial or complete leg (gray) – stronger abdominal transformations.  
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Table 5.3. Cuticle phenotypes of embryos injected with GFP dsRNA compared to single, 

double and triple knockdowns of Tc-nub, Tc-gt, and Tc-kni (single knockdowns were carried 

out using 2 μg/μL of dsRNA, while all doubles and triple knockdowns used the component 

dsRNAs mixed to a final concentration of 1 μg/μL each). N = number of eggs injected; ‘No. 

(%) cuticles’ refers to the number (%) of injected embryos going on to form cuticles; 

‘abdominal transformations’ refers to cuticles in which abdominal segments have been 

transformed towards a thoracic fate; ‘nubs’ and ‘legs’ refer to ‘nubs’ or partial/complete legs, 

respectively, formed on abdominal segments; ‘Av(max) # extra leg pairs’ refers to the average 

(or maximum) number of pairs of legs presumed to have formed through homeotic 

transformation of an abdominal segment.  

 

 
    % abdominal transformations  

Treatment (dsRNA injected) N No. (%) 

cuticles 

% ‘nubs’ % legs Total % Av(max) # 

extra leg pairs 

Singles GFP  266 171 (63.9) 0 0 0 0 

 Tc-nub  148 91 (61.5) 12.1 0 12.1 0 

 Tc-kni  45 28 (62.2) 0 0 0 0 

 Tc-gt  50 36 (72) 0 11 11 1 (1) 

Doubles Tc-nub + Tc-kni  93 41 (44.0) 43.3 24.3 67.6 1 (1) 

 Tc-gt + Tc-kni  49 28 (57.1) 25 46.4 71.4 1 (1) 

 Tc-nub + Tc-gt  95 38 (45.9) 31.6 50 81.6 1.3 (2) 

Triple Tc-nub + Tc-gt + Tc-kni  136 35 (25.7) 0 0 94.3 4.0 (7) 
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Interestingly, knocking down Tc-gt in addition to Tc-kni and/or Tc-nub does not appear 

to impact the penetrance or severity of embryonic truncations. Tc-gt knockdowns result in 

truncations of the posterior abdomen with a very high penetrance, usually affecting 4 segments 

(Table 5.4). Tc-nub/Tc-gt and Tc-nub/Tc-gt/Tc-kni knockdowns both generate a similar 

frequency and severity of truncations (Table 5.4). In contrast, Tc-nub/Tc-kni knockdown results 

in a very low number and severity of truncations, similar to what is observed in GFP controls 

(Table 5.4). These data suggest that the truncations observed in Tc-nub/Tc-gt or Tc-nub/Tc-

gt/Tc-kni knockdowns result primarily from loss of Tc-gt, and that neither Tc-nub nor Tc-kni 

play any substantial role in maintaining the segmentation clock.  

 

Table 5.4. Cuticle phenotypes of embryos injected with GFP dsRNA compared to single, 

double and triple knockdowns of Tc-nub, Tc-gt, and Tc-kni (single knockdowns were carried 

out using 2 μg/μL of dsRNA, while all doubles and triple knockdowns used the component 

dsRNAs mixed to a final concentration of 1 μg/μL each). N (cuticles) = number of cuticles; % 

truncated = % of cuticles that have lost one or more segment.  

 
Treatment (dsRNA injected) N (cuticles) % truncated No. segments deleted 

(Max (mode)) 

Singles GFP  42 0.2% 1 (0) 

 Tc-gt  35 94% 7 (4) 

Doubles Tc-nub + Tc-kni  43 0.7% 1 (0) 

 Tc-nub + Tc-gt  22 95% 7 (3) 

Triple Tc-nub + Tc-gt + Tc-kni  19 95% 7 (3) 
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Tc-nub, Tc-gt and Tc-kni do not have redundant functions in the head 

Several of the head and gnathal appendages are deleted or transformed in Tc-gt and Tc-kni 

knockdowns ((Bucher and Klingler, 2004; Cerny et al., 2008; Peel et al., 2013). In the former, 

the maxillary and labial appendages are transformed into thoracic legs, while the anterior head 

appendages (the mandibles, antennae and labrum) are left intact (Bucher and Klingler, 2004). 

In contrast, in Tc-kni knockdowns, the antennae and often mandibles are lost, due to issues 

with segment boundary patterning (Cerny et al., 2008; Peel et al., 2013). Although Tc-nub is 

expressed in the head, it does not display any overt head phenotypes. I wondered whether, as 

in the abdomen, these three genes may have partially or fully overlapping roles which might 

be revealed by double or triple knockdown. However, knocking Tc-nub down in tandem with 

Tc-kni or Tc-gt does not worsen their effects on head and gnathal segment formation (Figure 

5.5B and C). Likewise, knocking down Tc-gt and Tc-kni together (with or without Tc-nub) 

results in a phenotype equivalent to the sum of their effects - loss of the antennae and 

mandibles, and transformation of the maxillary and labial segments into thoracic legs, leaving 

the labrum unaffected (Figure 5.5D). We can conclude that Tc-nub is not acting redundantly 

with these other gap genes in the head, at least with respect to visible aspects of cuticle 

morphology.  
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Figure 5.5. Close ups on the heads of cuticles from eggs injected with 2 μg/μL GFP dsRNA, 

or with mixtures of 1 μg/μL Tc-nub, Tc-kni and/or Tc-gt dsRNA. An = antenna; Md = 

mandible; Mx = maxilla; Li = labium; Lr = labrum. In C, Md* indicates the single remaining 

mandible (the second mandible is lost in this knockdown). Scale bar is 50 μM.  
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5.2.3. Double or triple knockdowns of Tc-nub, Tc-gt and/or Tc-kni misexpress abdominal 

and thoracic Hox genes 

 

 The homeotic transformation of abdominal segments into thoracic segments that results 

from double and triple knockdowns of Tc-nub, Tc-gt and Tc-kni suggest that these genes may 

regulate Hox gene expression. To determine whether Hox genes are misexpressed in double 

and triple eRNAi embryos, I performed HCR ISH against the thoracic Hox gene Tc-Antp and 

the abdominal Hox genes Tc-abdA and Tc-Ubx in 16-17 hour old embryos (mid segment-

addition).  

I used Tc-Wg as a marker to track the progress of segmentation in each embryo (Figure 

5.5B, 5.6B, 5.7B). Uninjected embryos have anywhere between 8 and 13 Tc-Wg stripes when 

they are 16-18 hours old, with the average being 10 and the mode being 11 (Chapter 1). 

Embryos injected with GFP dsRNA are slightly developmentally delayed, showing an average 

and mode of 7 Tc-Wg stripes at 16-17 hours. Embryos injected with any combination of Tc-

nub, Tc-kni and Tc-gt dsRNA have even fewer stripes at 16-17 hours, with averages of 4-6 

(data not shown). This could represent developmental delays, segment deletion, or posterior 

truncation. Tc-kni knockdown is known to result in loss of the antennal and deterioration of the 

mandibular segment polarity stripes (Peel et al., 2013), and this is often observed in Tc-gt/Tc-

kni knockdowns (Figure 5.5B). Tc-gt knockdown has also been shown to result in disruption 

of pair-rule patterning across the thorax and abdomen (Bucher and Klingler, 2004), and I 

observed similar defects in many knockdowns involving Tc-gt dsRNA (Figure 5.5B). In order 

to compare embryos at similar stages of segment development, I chose those with milder 

segmentation phenotypes (i.e. with 5-7 Tc-Wg stripes) for display in Figure 5.5 (with the 

exception of one example of a severe triple knockdown).  

I found that expression of the abdominal Hox gene Tc-abdA is repressed or lost during 

anterior abdominal patterning in all double or triple knockdowns (Figure 5.5). In double 

knockdowns, Tc-abdA is still expressed in the SAZ, but with reduced intensity, in particular in 

the anterior of its usual domain (Figure 5.5). This likely corresponds to reduced expression in 

the tissue that will give rise to PS6 and perhaps PS7. Note that expression of Tc-abdA in the 

germ cells, which at this stage are migrating over the ventral surface of the SAZ, is unaffected 

(data not shown). Finally, triple knockdowns display total loss of Tc-abdA expression in the 

SAZ (Figure 5.5).   



 156 

 
 

Figure 5.5. Expression of Tc-Wg (and sometimes Tc-sim) (B) and Tc-abdA (C) in 

representative embryos injected with 2 μg/μL GFP dsRNA or with mixtures of 1 μg/μL Tc-

nub, Tc-kni and/or Tc-gt dsRNA. Specific Tc-Wg stripes are annotated. Note the deteriorated 

Wg1 stripe in Tc-kni/Tc-gt eRNAi embryos. The white arrow in C indicates the germ cells, 

which express Tc-abdA and were unable to be removed from the optical section. Germ cells 

are frequently lost during the dissection process after eRNAi. Scale bar is 100 μM. 
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Previous research indicates that knockdown of Tc-abdA alone results in the formation 

of small cuticular protrusions (‘nubs’), rather than fully formed thoracic legs; to achieve the 

latter phenotype, loss of both Tc-abdA and Tc-Ubx is required (Lewis et al., 2000). This 

suggests that Tc-Ubx expression is likely also affected in many of my knockdowns.   

All knockdowns showed reduced intensity of Tc-Ubx expression in the majority of 

embryos examined, with triple knockdowns showing the greatest reduction in intensity (Figure 

5.6). The spatial distribution of Tc-Ubx transcript in Tc-nub/Tc-kni double knockdowns was 

normal; however, in any knockdown including Tc-gt dsRNA, the anterior border of Tc-Ubx 

was shifted anteriorly to encompass at least PS3 and PS4 (Figure 5.6). This is likely related to 

the anterior expansion of Tc-Kr in Tc-gt knockdowns , and the subsequent transformation of 

gnathal to thoracic segments (Bucher and Klingler, 2004).  
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Figure 5.6. Expression of Tc-Wg (and sometimes Tc-sim) (B) and Tc-Ubx (C) in representative 

embryos injected with 2 μg/μL GFP dsRNA or with mixtures of 1 μg/μL Tc-nub, Tc-kni and/or 

Tc-gt dsRNA. Specific Tc-Wg stripes are annotated. Scale bar is 100 μM. 
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Lastly, I examined the expression of the thoracic Hox gene Tc-Antp. Many Hox genes 

display a regulatory feature known as posterior prevalence, whereby more posterior Hox genes 

repress those normally expressed in the anterior of the embryo (reviewed in Duboule and 

Morata, 1994; Morata, 1993). We might then expect that loss or repression of Tc-abdA and Tc-

Ubx in the abdomen would allow Tc-Antp to expand posteriorly, subsequently promoting the 

development of segments towards a thoracic fate. At stage W6, Tc-Antp is usually expressed 

most strongly in PS3-6, with weaker expression in the anterior SAZ (Figure 5.7). Double Tc-

nub/Tc-kni knockdown embryos exhibit a similar pattern of expression, but in triple 

knockdowns, Tc-Antp expression is expanded anteriorly (to encompass PS0-PS2) and 

expanded posteriorly and intensified in the SAZ (Figure 5.7).  Anterior expansion of Tc-Antp 

following Tc-gt knockdown has been reported by Cerny et al. (2005), and presumably underlies 

the transformation of gnathal segments into thoracic legs observed in these knockdown 

treatments. The posterior expansion of Tc-Antp in triple knockdown embryos likely contributes 

to the high frequency of ‘complete’ thoracic legs formed in the abdomen, compared to double 

knockdowns where ‘nubs’ or partial legs are more common.  
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Figure 5.7. Expression of Tc-Wg and Tc-sim (B) and Tc-Antp (C) in representative embryos 

injected with 2 μg/μL GFP dsRNA or with mixtures of 1 μg/μL Tc-nub and Tc-kni (double 

kmockdowns) or 1 μg/μL of Tc-nub, Tc-kni and Tc-gt dsRNA (triple knockdowns). Specific 

Tc-Wg stripes are annotated. Scale bar is 100 μM. 



 161 

5.2.4. Tc-Kr expression is expanded into the abdomen in double and triple knockdowns  

 

I next aimed to better determine the cause of Hox gene misexpression by examining the 

expression of other gap genes. The anterior borders of Dm-Ubx and Dm-abdA in Drosophila 

are set primarily via direct repression by Dm-Hb and Dm-Kr, respectively (Casares and 

Sánchez-Herrero, 1995; White and Lehmann, 1986). I examined the expression of both genes 

in embryos following double or triple knockdowns.  

 I did not observe any expansion of Tc-Hb expression in triple knockdown embryos, 

despite the reduced intensity of Tc-Ubx staining – indeed, in several instances, anterior Tc-hb 

expression was itself reduced in intensity (data not shown). However, Tc-Kr expression is very 

obviously expanded posteriorly in both double and triple knockdowns, with a more pronounced 

expansion in the latter (Figure 5.8C). In control embryos at stage W5, Tc-Kr is usually 

expressed strongly in PS1-5, and more weakly in PS6 (Figure 5.8C, GFP dsRNA-injected 

embryos). In Tc-nub/Tc-gt and Tc-gt/Tc-kni  double knockdowns at the same stage, by contrast, 

Tc-Kr expression is extended posteriorly, beyond the posterior border of PS6 and into the SAZ 

(Figure 5.8C). This aligns well with the repression of Tc-abdA that is observed in the anterior 

SAZ at this stage (Figure 5.5C). I was unable to perform an HCR ISH against Tc-Kr in Tc-

nub/Tc-kni double knockdowns due to time constraints, but I assume that they exhibit a 

posterior expansion of Tc-Kr expression similar to the other two double knockdowns. In triple 

knockdowns, Tc-Kr expression is expanded all the way to the back of the SAZ (Figure 5.8C), 

which aligns with the total loss of Tc-abdA expression observed in the SAZ at similar stages 

(Figure 5.5C).  

 Tc-Kr expression in the head indicates that both Tc-nub/Tc-gt and Tc-gt/Tc-kni  

knockdown embryos may be more advanced in head development than the GFP controls 

(Figure 5.8C), despite their similar progress through segmentation (Figure 5.8B). Both of the 

former exhibit paired head domains of Tc-Kr which usually do not emerge until at least stage 

W7 (Chapter 3). Tc-Kr expression is also expanded anteriorly into at least PS0 in these double 

knockdowns. This does not usually occur at all in wild type embryos (Chapter 3). I propose 

that this is likely due to the actions of Tc-gt alone; if Tc-gt has a more prominent role in 

repressing Tc-Kr anteriorly, then the expansion of the latter in Tc-gt knockdowns would explain 

the transformation of gnathal to thoracic segments. I am not certain why anterior expansion of 

Tc-Kr is not observed in triple mutants. Examination of additional gap and Hox genes, and a 

detailed description of segment patterning, in triple knockdowns may be required to understand 

the fate of the head segments.   
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Figure 5.8. Expression of Tc-Wg (B) and Tc-Kr (C) in representative embryos injected with 2 

μg/μL GFP dsRNA or with mixtures of 1 μg/μL Tc-nub, Tc-kni and/or Tc-gt dsRNA. Specific 

Tc-Wg stripes are annotated. Note the deteriorated W0 stripe in Tc-kni/Tc-gt eRNAi embryos. 

Scale bar is 100 μM.  
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5.2.5. Tc-Svb is not required for Tc-nub expression 

 

Tc-mlpt and Tc-svb knockdowns also result in transformations of anterior abdominal 

segments to a thoracic fate (Ray et al., 2019; Savard et al., 2006), similar in severity to any of 

the three double knockdowns tested here, but less severe than those observed in triple 

knockdowns. I wondered whether this might indicate that Tc-mlpt/Tc-svb (i.e. Tc-Svb in its 

activator form) might be required for the expression of at least two of Tc-nub, Tc-gt and Tc-

kni. Tc-mlpt is certainly required for expression of Tc-gt (Savard et al., 2006), and my 

multiplexed expression analysis suggests that all three genes are first expressed shortly after 

Tc-mlpt and Tc-svb are co-expressed in the posterior SAZ (Chapters 3 and 4). To investigate 

this hypothesis, I examined the effects of Tc-svb knockdown on gene expression in the embryo 

(in hindsight, Tc-mlpt is the more obvious choice, as knocking it down should remove only the 

‘activating’ function of Tc-Svb – knocking Tc-svb down will remove its activity as an activator 

or a repressor. However, I was keen to confirm that the phenotype in Tc-svb knockdowns had 

the same etiology as in Tc-mlpt knockdowns, and this seemed a good chance to do that).  

I first confirmed that Tc-Kr is posteriorly expanded in Tc-svb knockdown embryos 

(Figure 5.9), as it is after Tc-mlpt knockdown (Savard et al., 2006).  Knockdown efficacy was 

assayed by examining Tc-svb expression in HCR ISHs and also by comparing cuticle 

preparations to those described in previous publications. At stage W7, Tc-Kr is expressed 

strongly as far back as PS5 and weakly in PS6 (Figure 5.9A). By contrast, Tc-svb knockdowns 

with the same number of Tc-Wg stripes show Tc-Kr expression spanning back into the SAZ, 

beyond PS7 (Figure 5.9A). This means that Tc-Kr is ectopically expressed throughout the 

entirety of PS6 and PS7 (T3p-A2a), and to some extent in PS8. As in double Tc-nub/Tc-kni, 

Tc-nub/Tc-gt or Tc-kni/Tc-gt knockdowns, this expansion is associated with repression of Tc-

abdA expression in these parasegments (Figure 5.9B).  
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Figure 5.9. Expression of Tc-Wg and Tc-Kr (A) or Tc-abdA (B) in representative embryos 

injected with 2 μg/μL GFP OR Tc-svb dsRNA. Scale bar is 100 μM. 

 

Next, I confirmed that posterior Tc-gt expression was disrupted after Tc-svb 

knockdown. In Tc-mlpt knockdowns, the abdominal domain of Tc-gt is lost entirely (Savard et 

al., 2006). If this is due to a loss of activated Tc-svb, we might expect Tc-svb knockdowns to 

give a similar phenotype. Indeed, Tc-gt expression is almost entirely lost in Tc-svb knockdowns 

(Figure 5.10A). However, Tc-nub expression is not abolished, instead remaining expressed in 

the SAZ while being repressed in the segmented germband (Figure 5.10B). These results 

suggest either that Tc-Svb is not strictly required for expression of Tc-nub. It would be useful 

to examine Tc-nub expression in Tc-mlpt knockdowns to confirm whether Tc-Svb is able to 

regulate Tc-nub in its repressor form.  

If Tc-svb does not interact with Tc-nub in the SAZ, then Tc-kni becomes an attractive 

alternative target to explain the homeotic transformations observed in the anterior abdomen 

following Tc-svb or Tc-mlpt knockdown. Unfortunately, I did not have time to examine Tc-kni 

expression in Tc-svb knockdowns. This is a promising avenue for anyone aiming to gain a 

deeper understanding of the roles of Tc-mlpt and Tc-svb in segment patterning.   
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Figure 5.10. Expression of Tc-Wg, Tc-gt (A) and Tc-nub (B) in representative embryos injected 

with 2 μg/μL GFP OR Tc-svb dsRNA. Scale bar is 100 μM. 

 
In order to better understand the regulation of Tc-nub, I additionally examined its 

expression in Tc-hb knockdowns. Research in the context of the neuroblast timer series 

(Kambadur et al., 1998) and the gap gene network (Cockerill et al., 1993) indicates that Dm-

hb is able to repress Dm-nub. In contrast to this, I found that knocking down Tc-hb results in 

loss of Tc-nub expression entirely (data not shown). However, Tc-hb knockdown also results 

in loss of Tc-Kr expression (Cerny et al., 2005) and subsequently Tc-mlpt expression (Savard 

et al., 2006). Given that Tc-Svb is not apparently required for Tc-nub expression, I would 

propose that it is likely that Tc-Kr is required for Tc-nub activation, as it appears to be in 

neuroblasts (Isshiki et al., 2001).  
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5.2.6. Double knockdowns of Tc-nub and Tc-cas show no abdominal phenotype but show 

leg patterning defects 

 

In addition to double and triple knockdowns of Tc-nub with Tc-gt and/or Tc-kni, I also carried 

out knockdowns of Tc-nub and Tc-cas to determine whether they might play a redundant role 

in the posterior abdomen. Double Tc-nub/Tc-cas knockdowns do not appear to display any 

posterior abdominal phenotypes, but 52% of cuticles examined exhibit defects in leg formation. 

Specifically, the pretarsus, or claw, is almost entirely abolished (Figure 5.11). I examined the 

expression of Tc-nub and Tc-cas in 1-3 day old wild-type Tribolium embryos to determine how 

they might influence leg development in this way. As in most sampled insects, Tc-nub is 

expressed in rings around each thoracic appendage, likely corresponding to the future leg joints 

(Li and Popadić, 2004; Turchyn et al., 2011) (Figure 5.12). Consistent with a role in pretarsus 

formation, Tc-cas is expressed at the terminus of each developing thoracic appendage (Figure 

5.12). Given that Tc-nub is not even expressed in the pretarsus itself, it is not clear why these 

two genes would have redundant functions in pretarsus development. 
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Figure 5.11. Close ups on the thoracic legs of cuticles from eggs injected with 2 μg/μL GFP 

dsRNA (A-A’), or with a mixture of 1 μg/μL Tc-nub and Tc-cas dsRNA (B-B’). Panel C 

illustrates the components of a normal larval leg. Note that the pretarsus (pt) is significantly 

reduced after Tc-nub/Tc-cas dsRNA (B’). Scale bar is 100 μM.  

 

 
Figure 5.12. Tc-nub and Tc-cas expression in the thoracic legs of a Tribolium embryo (post-

segmentation). Tc-nub is expressed in rings, marked by arrowheads (likely corresponding to 

the future joints) and Tc-cas is expressed in a broad domain at the base of the leg, and at the 

leg tip (marked by an arrowhead). Scale bar is 100 μM.  
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5.3. DISCUSSION 
 

In this chapter, I have shown that at least three genes – Tc-nub, Tc-gt and Tc-kni – play semi-

redundant roles in repressing Tc-Kr expression in the SAZ of Tribolium during abdominal 

segment patterning. In their absence, Tc-Kr becomes expressed in the abdominal segment 

primordia, and these segments are transformed into thoracic segments due to misexpression of 

the Hox genes Tc-Antp, Tc-Ubx and Tc-abdA. This has several interesting implications for the 

structure and evolution of the gap gene network, and also for the regulation of Hox genes by 

this network, as discussed in the following sections.  

 

5.3.1. Tc-kni and Tc-nub act as trunk gap genes in Tribolium 

 

Although its homologue, Dm-kni, plays a significant role in the gap gene network of 

Drosophila (reviewed in Jaeger, 2011), Tc-kni is not considered to act as a trunk gap gene in 

Tribolium (Cerny et al., 2008), leading to its exclusion from recent analyses of the gap gene 

network (for example, Zhu et al., 2017). Dm-nub is considered to act at a level below the 

canonical trunk gap genes, as although it is regulated by other gap genes, it does not apparently 

regulate any itself (Cockerill et al., 1993). Similarly, in Tribolium, knockdowns of Tc-nub alone 

do not result in misexpression of other gap genes (Chapter 4). However, my work in this 

chapter indicates that both Tc-kni and Tc-nub are able to regulate the gap gene Tc-Kr, and 

through this regulation play an essential role in establishing Hox gene domains in the abdomen. 

I would therefore propose that both genes should be considered components of the trunk gap 

gene network in Tribolium.  

It is possible that redundancy may have led to the roles of these genes being overlooked 

in the gap networks of other insect species. For example, the fact that Dm-nub mutants have 

normal Dm-Kr expression may result from redundant repression by Dm-Gt and/or Dm-Kni, as 

I have observed in Tribolium. Indeed, similar redundancy between Dm-Gt and Dm-Kni nearly 

excluded the former from consideration as a gap gene during the early investigations of this 

network (Kraut and Levine, 1991). Two experiments would be particularly useful to further 

investigate the role of Dm-nub in axial patterning: firstly, driving ectopic expression of Dm-

nub with a heat shock line, and seeing whether this is sufficient to repress Dm-Kr expression; 

and secondly, knocking down the expression of Dm-gt and/or Dm-kni in Dm-nub mutants, to 

see if these genes act redundantly in Drosophila too. (I had already synthesised dsRNA for this 
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latter experiment and begun eRNAi trials, but unfortunately COVID-19 lockdown truncated 

this experiment).  

The degree of redundancy between nub and other abdominal genes may also vary 

between insect species. For example, in Oncopeltus, Oc-nub knockdown is sufficient to 

generate transformations of most abdominal segments towards a thoracic fate (Hrycaj et al., 

2008). Given my observations from Tribolium, I would hypothesise that this phenotype results 

from overexpression of Oc-Kr, suggesting that Oc-nub plays a more central role in Kr 

repression than Tc-nub does. Indeed, knocking down Oc-gt or Oc-kni has no impact on segment 

identity in the anterior abdomen (Ben-David and Chipman, 2010; Liu and Patel, 2010). The 

differences between Oncopeltus and Tribolium highlight the importance of examining a variety 

of short germ species if we are to understand the evolution of the gap gene network in insects.  

 

5.3.2. Similarities between the axial patterning network and the neuroblast timer series  

 

The finding that Tc-nub acts as a trunk gap gene lends further support to the idea that 

the same basic gene network (Hb, Kr, nub and cas) has been deployed both for neuroblast fate 

determination and axial patterning in insects. Some of the interactions between neuroblast 

timer genes are also displayed by the trunk gap genes; for example, Tc-hb is required for 

expression of Tc-Kr, and Tc-Kr represses Tc-hb (Marques-Souza et al., 2008). I have not yet 

obtained a clear picture of Tc-nub regulation, but it is plausible from my results that Tc-nub is 

activated by Tc-Kr, and it is almost certain that Tc-nub is able to repress Tc-Kr. It seems that 

the similarities between the axial patterning network and the neuroblast timer series may go 

beyond the identity and order of genes expressed, into the interactions between the genes 

themselves. If this series forms a stand-alone module of the gap gene network, it begs the 

question of how additional genes such as Tc-mlpt, Tc-svb, Tc-gt and Tc-kni have been 

integrated. Studying when and how these components were assembled into different gap gene 

network topologies will bring us towards a deeper understanding of the evolution of axial 

patterning in insects.  

I have been unable to uncover any obvious function for the abdominal domain of Tc-

cas. It is possible that its role in Tribolium is limited to neural patterning, in contrast to the first 

three neuroblast timer genes. It is also possible that it plays a role in segment patterning in other 

species that has been lost in Tribolium. Currently, data on the expression and function of cas 

in insects outside of Drosophila are sorely lacking, and I look forward to seeing more studies 

on the topic.                   
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5.3.3. Redundant repression of Kr in the abdomen is a conserved feature of Drosophila 

and Tribolium gap gene networks 

 

As described in the introduction, repression of Dm-Kr in the abdomen of Drosophila 

relies on the activity of both Dm-Gt and Dm-Kni (Figure 5.13A). I have shown that redundant 

repression of Tc-Kr is also an important feature of abdominal patterning in Tribolium (Figure 

5.13B). In Drosophila, this redundancy is likely to be a consequence of the requirement to set 

up staggered gap gene domains but also to drive expression domains anteriorly over the course 

of segmentation (Jaeger, 2011). However, in Tribolium, both of these features have been 

proposed to be driven by a simple network in which each gap gene promotes the expression of 

the next, and represses the expression of the one before (Zhu et al., 2017) (Figure 5.1). In the 

presence of a graded activator (Tc-cad), these interactions are proposed to be sufficient to drive 

the sequential expression of gap genes (Zhu et al., 2017). This raises the question of what the 

role of such redundancy might be in a short germ insect like Tribolium.  

 

 
Figure 5.13. The core interactions of the gap gene network in Drosophila (A) compared to my 

updated model of gap gene interactions in Tribolium (B). Where functional data has indicated 

some degree of redundancy in an interaction, those interactions are highlighted in the same 

colour as the target gene. For example, the posterior border of Dm-Kr (orange) is set via 

repression from both Dm-gt and Dm-kni, so the lines corresponding to these interactions are 

coloured orange. Note that in both networks, Kr is repressed posteriorly by multiple gap 

proteins. 

 

One benefit that redundancy in gene networks provides is robustness. The containment 

of Kr expression to the centre of insect embryos plays a crucial role in establishing the tagma 

of the adult. Kr is typically expressed in segments that are destined to form part of the thorax 
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(Cerny et al., 2005; Knipple et al., 1985; Liu and Kaufman, 2004b; Mito et al., 2006). Here, it 

represses more anterior, gnathal Hox genes (such as sex combs reduced (scr) and deformed 

(dfd)) (Cerny et al., 2005; Lavore et al., 2014; Liu and Kaufman, 2004b; Riley et al., 1987) and 

more posterior, abdominal Hox genes (such as abdA) (Casares and Sánchez-Herrero, 1995). It 

follows from this that misexpression of Kr can have disastrous effects on axial patterning. For 

example, expansion of Tc-Kr into the anterior of the embryo leads to repression of Tc-scr and 

Tc-dfd and subsequent transformation of gnathal appendages to legs (this chapter and Cerny et 

al., 2005), while expansion into the abdomen leads to repression of Tc-abdA and transformation 

of legless segments into leg-bearing segments (this chapter). These drastic transformations will 

almost certainly be lethal, and so robust mechanisms for regulating Kr expression are essential. 

It makes sense, then, that there may be several genes with a role in repressing Tc-Kr expression 

in overlapping domains in the abdomen. This explanation is, however, at odds with the 

comparatively un-robust repression of Tc-Kr in the anterior of the embryo, where knockdown 

of Tc-gt alone is sufficient to allow expansion of Tc-Kr expression and homeotic 

transformation (Cerny et al., 2005). It is possible that subtle differences in the timing and 

distribution of expression, or strength of repression, between Tc-gt, Tc-kni and Tc-nub are 

important for fine-tuning Tc-Kr expression at the border between the thorax and abdomen, 

where multiple segment identities can be found in close contact.  

 

5.3.4. Tc-nub and Tc-kni have no obvious effect on the segmentation clock 

 

 I observe truncations of the embryo only in double or triple knockdown experiments 

that include knockdown of Tc-gt. Furthermore, knocking down Tc-nub and/or Tc-kni does not 

appear to increase the severity or penetrance of truncations in Tc-gt knockdowns. These results 

suggest that of the three genes, only Tc-gt has any significant role in regulating the activity of 

the segmentation clock. If this is the case, then a dual role in segment formation and 

diversification is not necessarily a characteristic feature of individual gap genes in Tribolium, 

as it is in Drosophila. Indeed, my results suggest that the role of Tc-Nub in segment patterning 

may be limited to its redundant repression of Tc-Kr, with no obvious direct interaction with 

Hox genes or the segmentation clock.  

Overall, my findings suggest that the gap gene network of Tribolium is not as 

conceptually simple as once thought. Instead, it displays redundancy, and different elements 

appear to be specialised towards different tasks (simply regulating other gap genes, 
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maintenance of the segmentation clock and/or Hox regulation). Determining how these 

functions are distributed over the network will be an important future endeavour. 
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6. GENERAL DISCUSSION 
 

In this thesis, I have shown that the genes of the neuroblast timer series are expressed 

in the same temporal order in the SAZ of Tribolium as they are in insect neuroblasts. 

Furthermore, I have demonstrated that the neuroblast timer gene nub plays an active role in 

segment patterning in Tribolium. These findings bolster the theory that a modified version of 

the neuroblast timer network may form a module of the gap gene network. I have additionally 

proposed in Chapter 3 that mlpt and svb together form an on/off switch that acts to modulate 

the expression of other gap genes.  

  One of the overarching themes of my thesis is therefore a reimagining of the gap gene 

network as consisting of several interlocking modules, with different evolutionary origins and, 

potentially, varying purposes. In the following discussion, I will go into some more detail about 

my hypotheses regarding the functions and evolutionary origins of the neuroblast timer, 

mlpt/svb and gt/kni modules, and how this might impact our understanding of gap genes and 

the gap gene network as a whole.    

 

6.1. The neuroblast timer module and Hox gene regulation 

 

As discussed in the introduction, homeotic transformations have been considered a 

defining phenotypic trait of gap gene mutants or knockdowns across the insects. In Drosophila, 

all four of the trunk gap genes (hb, Kr, kni and gt) regulate Hox genes directly, by binding to 

associated cis-regulatory regions (Casares and Sánchez-Herrero, 1995; Irish et al., 1989a; Qian 

et al., 1991; Shimell et al., 2000). This is therefore a shared molecular feature of the canonical 

Drosophila gap genes. By contrast, it is not clear whether this is a shared feature of all of the 

genes making up the Tribolium gap gene network. At least Tc-Hb and Tc-Kr are thought to 

regulate Hox genes directly in Tribolium, as they play similar roles in Hox gene regulation to 

their Drosophila counterparts (Cerny et al., 2005; Marques-Souza et al., 2008). I have shown 

in this thesis that although Tc-Nub, Tc-Gt and Tc-Kni all play a role in establishing abdominal 

Hox gene expression in Tribolium, this can most parsimoniously be explained as an indirect 

effect of their interaction with Tc-Kr. The homeotic transformations observed in the gnathal 

segments of Tc-gt knockdowns can also be explained by Tc-Kr expansion (Bucher and 

Klingler, 2004). Likewise, the role of Tc-mlpt/Tc-svb in establishing abdominal Hox gene 

expression can be explained via indirect regulation of Tc-Kr (most likely through Tc-gt and Tc-

kni). Of course, it is possible that Tc-Nub, Tc-Kni, Tc-Gt and/or Tc-Mlpt/Tc-Svb regulate Hox 
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genes directly in addition to indirect regulation via Tc-Kr. Determining this will require more 

detailed analysis of the cis-regulatory regions of the Hox cluster. If direct regulation of Hox 

genes is, however, limited to Tc-Hb and Tc-Kr, then this can hardly be considered a shared 

molecular function of the gap genes.  

The first three genes in the neuroblast timer series (Tc-hb, Tc-Kr and Tc-nub) have an 

intriguing relationship to Hox gene expression and regulation. The expression domains of Tc-

hb, Tc-Kr and Tc-nub all broadly align with the three trunk tagma (gnathum, thorax and 

abdomen, respectively) in Tribolium, save that they are shifted anteriorly to align with 

parasegment boundaries, and nub covers most but not all of the abdominal parasegments 

(Figure 6.1A). Furthermore, each of these genes plays an active role in specifying its particular 

tagma; Tc-Hb appears to repress thoracic (central) and abdominal (posterior) Hox genes to 

allow gnathal (anterior) Hox genes to be expressed; Tc-Kr represses gnathal and abdominal 

Hox genes to allow the thoracic Hox gene Antp to be expressed; and Tc-Nub appears to 

indirectly promote the expression of abdominal Hox genes by repressing Tc-Kr (Figure 6.1B). 

This minimal network therefore, in theory, provides enough information to lay down the basic 

functional divisions of the insect axis (although not, of course, the fine details of individual 

segment identity).  

As discussed in Chapter 5, it is easy to see a parallel between sequential specification 

of neural identities and sequential specification of segmental identities. The indirect regulation 

of cell fate by Tc-Nub also has a parallel in certain neuroblast lineages. In NB3-1 neuroblasts, 

Dm-Hb and Dm-Kr play an active role in defining the identities of cells produced during the 

first and second temporal identity windows; loss of either gene results in a loss of the cell types 

usually produced during those windows (Tran and Doe, 2008). By contrast, loss of Dm-nub 

delays the onset of the third temporal identity window, but does not prevent the relevant cell 

types from being produced (Tran and Doe, 2008). This means that rather than being required 

to drive the identity of third-born neurons, Dm-Nub is simply required to close the second 

temporal identity window by repressing Dm-Kr (Tran and Doe, 2008). This may be either 

because there is an additional factor that is required to specify the third temporal identity 

window (Tran and Doe, 2008), or, alternatively, because this identity is the default state, 

usually repressed by earlier temporal factors such as Dm-Hb and Dm-Kr. During segmental 

patterning in Drosophila and vertebrates, the posterior Hox genes are able to repress anterior 

and middle Hox genes by posterior prevalence. This provides a possible explanation for how 

Tc-Nub might be able to drive posterior fates simply by repressing Tc-Kr - in the absence of a 
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repressor, the interactions between the Hox genes automatically output posterior fates (Figure 

6.1B).      

 

 
 

Figure 6.1. The neuroblast timer module as a core regulator of axial fates. A| The first 

three neuroblast timer genes are expressed in domains (green, blue and purple) that broadly 

overlap the three tagma of the insect embryo – the head/gnathum, the thorax and the abdomen 

(represented in the context of the embryo and as simplified grey bars). B| These same three 

genes interact with Hox genes and with each other in such a way as to drive a ‘minimal 

network’ to lay down anterior, middle and posterior Hox gene expression. Each box represents 

a different region of the embryo, expressing a different neuroblast timer gene (shown as non-

overlapping for simplicity).  
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My model has little to say about the restriction of Tc-AbdB, the posterior-most Hox 

gene, to the posterior of the abdomen. Obvious candidates for regulating this gene are the 

overlapping domains of Tc-cas and Tc-hb. As discussed in Chapters 4 and 5, I have not found 

any obvious role for cas in segment patterning. There are tantalising links between Dm-cas and 

Dm-AbdB in Drosophila neuroblasts – for example, Dm-AbdB protein activates the expression 

of Dm-cas in posterior neuroblasts (Ahn et al., 2010; Kim and Yoo, 2014). However, there is 

thus far no evidence for regulation in the other direction. The function of the posterior domain 

of Tc-hb is yet to be tested directly, but this domain is interesting for several reasons. Firstly, 

Dm-hb expression never follows Dm-cas expression in neuroblasts; its expression in the SAZ 

therefore represents a departure from the linear progression of the neuroblast timer series, and 

suggests the possibility of cyclic expression.  In addition, the posterior domain of hb is thought 

to be linked to the termination of segmentation in some way, at least in Bombyx (Nakao, 2016). 

Posterior Hox genes can terminate axial elongation in vertebrates (Denans et al., 2015; Young 

et al., 2009), so perhaps this role of hb is mediated through regulation of AbdB. It is, of course, 

possible that the restriction of AbdB expression to the posterior abdomen does not depend on 

gap genes. Given these uncertainties, the regulation of Hox genes in the posterior abdomen of 

sequentially-segmenting insects represents a compelling topic for further investigation. 

Given that the role of Hb, Kr and Cas in neural specification appears to pre-date their 

expression during/function in segment patterning, it seems likely that the neuroblast timer 

network was co-opted for use in segment patterning, rather than vice versa (reviewed in the 

General Introduction). If this is the case, then the neuroblast timer network must have at some 

point been altered to regulate Hox gene expression. Although Hox genes are expressed in 

neuroblasts (for example, Bello et al., 2003; Tsuji et al., 2008), there is no evidence that they 

are regulated by genes of the neuroblast timer series in this context. A better understanding of 

the gene networks acting downstream of the neuroblast timer series in neuroblasts, and of how 

exactly the neuroblast timer genes interact with Hox genes during segment patterning, might 

shed light on this question.   

  



 177 

6.2. The mlpt/svb module - a link to segment patterning? 

 

In addition to direct regulation of Hox genes, the four Drosophila trunk gap genes also 

share the ability to directly bind to stripe-specific cis-regulatory enhancers of pair-rule gene 

expression (Schroeder et al., 2011). However, as discussed in the Introduction, gap genes have 

not been shown to regulate specific pair-rule gene stripes in Tribolium, and in selected other 

sequentially-segmenting insects; instead, their knockdown leads to early termination of 

segmentation and axial elongation. This suggests that one or more of them are required for the 

ongoing activity of the pair-rule oscillator in the SAZ. I argue in this section that there is an 

obvious candidate for this role – the Tc-mlpt/Tc-svb module – and that the truncations observed 

in various gap gene knockdowns might all be explained through their interactions with this 

module. 

Like many other gap gene knockdowns, mlpt/svb knockdowns result in early 

termination of segmentation and axial elongation in several different insect species (Ray et al., 

2019), including Tribolium (Ray et al., 2019; Savard et al., 2006). Ray et al. (2019) have 

proposed that Mlpt and Svb may directly regulate segment addition through an interaction with 

Notch signaling. Notch signaling is thought to be required to co-ordinate pair-rule gene 

oscillations between cells in many different arthropod species (reviewed in Introduction). Mlpt 

peptides are known to regulate Notch signaling in many different developmental contexts in 

Drosophila - for example, in sensory organ specification, patterning of veins and the 

dorsoventral boundary of the wing, and in leg joint formation (Pi et al., 2011; Pueyo and Couso, 

2011). In the leg joints, Mlpt peptides trigger the transformation of Svb to an activator, and 

Svb subsequently drives the (presumably indirect) repression of the Notch ligand Delta, 

creating a sharp Dl+/Dl- boundary at the future joint position (Pueyo and Couso, 2011). 

Comparative expression patterns suggest that the role of mlpt/svb in regulating Notch signaling 

in the leg may be deeply conserved within the arthropods (Pueyo and Couso, 2011). Svb, 

furthermore, seems to have a very ancient association with Notch – indeed, a homologue of the 

Svb gene regulates Notch signaling during vertebrate hair development (Wells et al., 2009). If 

mlpt/svb are able to regulate Notch signaling in the SAZ, then disruption of their expression 

might also lead to loss of co-ordination in pair-rule gene oscillations and subsequent 

breakdown in segment patterning.  

Several gap gene knockdowns (at least Tc-hb, Tc-Kr, Tc-gt and Tc-mlpt) result in early 

termination of truncation and segment addition in Tribolium (Bucher and Klingler, 2004; Cerny 

et al., 2005; Marques-Souza et al., 2008; Savard et al., 2006), and all of these knockdowns also 
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result in misexpression of mlpt (Savard et al., 2006). The extent of truncation in these 

knockdowns shows some relation to the nature of mlpt misexpression; in Kr knockdowns, 

where mlpt expression is lost (Savard et al., 2006), truncations occur just posterior to the normal 

domain of mlpt expression (between the thorax and abdomen) (Cerny et al., 2005), whereas in 

gt knockdowns, where mlpt expression is expanded anteriorly (Savard et al., 2006), truncations 

occur from the anterior thorax backwards (Bucher and Klingler, 2004). If the effects of Hb, Kr 

and Gt on segment addition and elongation were indeed mediated via mlpt/svb in sequentially-

segmenting insects, this would have two important implications. Firstly, in this case, a direct 

role in regulating segment addition/elongation would not be a feature shared by most gap gene 

homologues in sequential segmentation. This would align with the proposal that the ancestral 

role of gap genes was to regulate Hox gene expression, rather than to regulate segment 

formation (Peel et al., 2005). Secondly, it would suggest that interactions between the mlpt/svb 

module and the neuroblast timer module may be key to co-ordinate segment formation 

(regulated primarily by the former) and segment diversification (regulated primarily by the 

latter). 

There are two major caveats to this theory. Firstly, Ray et al.’s (2019) model of 

Mlpt/Svb  function suggests that the two genes interact to form a retreating wavefront of active 

Svb, which is able to stabilise Notch oscillations much as the SAZ timer gene opa stabilises 

pair-rule gene oscillations (Clark and Peel, 2018). This is based on what is known of the role 

of Mlpt/Svb in Notch regulation in the leg (Pueyo and Couso, 2011). However, the expression 

patterns that I report for Tc-mlpt and Tc-svb are incompatible with such a theory, as the 

expression domains of both genes move anteriorly in tandem with the segment pattern (and 

therefore do not form a retreating wavefront) (Chapter 3). Tc-mlpt is also expressed in bursts 

that have no obvious relationship to the periodicity of segmentation (Chapter 3). It is not clear 

how these patterns could contribute to co-ordination of Notch signals across the tissue of the 

SAZ. Furthermore, it is not clear that Notch signaling is even required for segmentation in 

many sequentially-segmenting insects, including Tribolium; for example, the Notch ligand 

Delta is not expressed in the SAZ of Tribolium, Oncopeltus or Gryllus (Aranda, 2006; Aranda 

et al., 2008; Auman et al., 2017; Kainz et al., 2011). The absence of Delta does not necessarily 

rule out a role for Notch in segment patterning (Clark et al., 2019), but if Notch signaling is 

not required to co-ordinate pair-rule gene oscillations, then it becomes harder to explain why 

mlpt/svb knockdowns would lead to truncations.  

I am, of course, open to the idea that other genes from the gap gene network may 

regulate segment patterning and/or axial elongation in addition to, or instead of, Tc-mlpt and 
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Tc-svb. There is certainly evidence that components of this network can influence the balance 

of cell division and differentiation in neuroblasts. Extended expression of Dm-nub in specific 

neuroblast lineages is sufficient to delay quiescence and maintain cell division, while 

expression of Dm-cas triggers quiescence and termination of mitoses (Tsuji et al., 2008). Dm-

cas is also able to downregulate the expression of Dm-Dichaete (a SAZ timer gene) in 

neuroblasts (Maurange et al., 2008), suggesting the possibility that it might do something 

similar in the SAZ as part of the termination of segmentation. Neither nub nor cas RNAi 

produces any defects in segment patterning or elongation in Tribolium, but it is worth 

investigating the possibility that they might in other insects and non-insect arthropods.  

The observation that Tc-gt and Tc-kni are both transiently expressed in pair-rule stripes 

in Tribolium (Bucher and Klingler, 2004; Cerny et al., 2008; Peel et al., 2013), might be taken 

to suggest that these genes play a role in regulating segmentation. However, this is thought to 

be as a result of regulation of these genes by pair-rule genes, rather than vice versa (A. Peel, 

pers. comm.). Tc-kni is certainly regulated by the pair-rule gene Tc-eve in the head (Peel et al., 

2013).  

 

6.3. gt and kni – an intermediate module? 

 

My outline of the two modules above raises the question of why Tc-gt and Tc-kni may 

have been recruited to segment patterning in the trunk. One possibility, represented in Figure 

6.2, is that Tc-gt and Tc-kni may act as a key link between the neuroblast timer and Tc-mlpt/Tc-

svb module. Several genes, including Tc-gt (but not including Tc-nub), are misexpressed 

following Tc-mlpt or Tc-svb knockdown (Chapter 5 and Savard et al., 2006). However, my 

expression analysis suggests that the strongest candidates for direct regulation by Tc-Svb are 

Tc-gt and Tc-kni (Chapter 3). I have also shown that both Tc-Gt and Tc-Kni feed back onto the 

neuroblast timer module through their repression of Tc-Kr (Chapter 5). Both genes are 

expressed during the transition from thoracic segment patterning (carried out largely in the 

blastoderm, during cellularisation) to abdominal segment patterning (carried out in the SAZ, 

following cellularisation). Perhaps co-ordination between the networks driving segment 

formation and diversification is especially important during this handover period.   

It is also feasible that they are required to ‘fine-tune’ the timing and distribution of Tc-

Kr expression in the posterior thorax and abdomen in order to promote segment-specific 

differences in identity. It may be useful to examine larval morphology beyond the cuticle in 

Tc-gt and Tc-kni knockdowns to see whether finer-scale segment identity is maintained.   
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6.4. A revised understanding of the gap gene network in Tribolium (and beyond) 

 

I present a visual summary of my hypotheses regarding the interactions of the “gap 

genes” in Tribolium in Figure 6.2. Interactions have been inferred or predicted based on the 

work in this thesis, previous analyses of the gap gene network in Tribolium, and extrapolations 

from what we know of the neuroblast timer network (in particular, see Averbukh et al., 2018) 

and the Drosophila gap gene network (reviewed in Jaeger, 2011). Previous models of the gap 

gene network in Tribolium emphasise direct activation as being the driving force for sequential 

gene activation, with repression mainly acting to turn off the previous gene in the series (Zhu 

et al., 2017) (see Figure 5.1 in Chapter 5). By contrast, my model borrows from updated models 

of the neuroblast timer network in proposing a central role for repressor decay in driving 

sequential gene activation (Averbukh et al., 2018). This is thought to generate a more robust 

network and can better explain experimental data from neuroblasts (Averbukh et al., 2018). All 

of these interactions are predictions based on knockdown or mutant data, rather than 

representations of direct interactions – I have made some guesses as to which interactions are 

likely to be direct (non-dotted lines) and which indirect (dotted lines), but these guesses will 

need to be tested by analysis of binding in the cis-regulatory regions of each gene.  

A takeaway from my work is that the most functionally precise definition of a “gap 

gene”– a gene that directly regulates both Hox gene and pair-rule gene expression, as well as 

the expression of other gap genes - is not usefully applied outside of Drosophila. Savard et al. 

(2006) have proposed an updated definition to account for differences in function between the 

gap genes in Drosophila and their homologues in sequentially-segmenting insects - “a gene 

that shows early contiguous expression domains and whose loss leads to a loss of adjacent 

segments and the transformation of segments”. Because it makes no reference to function at 

the molecular level, this definition is extremely broad, encompassing a range of genes that 

likely have different molecular functions and share a phenotypic class simply because they 

interact as part of a network. There is certainly an argument to be made that gap genes might 

be defined by the output of their network, rather than by any one gene individually, but 

referring to the complicated series of modules in Figure 6.2 as a single network seems to be an 

oversimplification. I believe that it will be more useful, going forward, to use the term “gap 

gene” in a highly contextual way, referring specifically to Drosophila hb, Kr, gt, kni, tll and 

hkb, with the “gap network” comprising the well-described interactions between these genes 

in Drosophila. When discussing the evolution of the gap gene network, it may be more useful 
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instead to discuss the evolution of specific interacting modules (such as the neuroblast timer 

and mlpt/svb modules) that co-ordinate Hox gene expression and segment patterning. 

 

 
Figure 6.2. A revised model of the Tribolium gap gene network. The relative expression 

domains of the genes of the neuroblast timer module, and gt and kni, are indicated by the extent 

of their coloured bars. The width of the grey box surrounding the neuroblast timer module 

indicates the extent of the segmented trunk region. The expression domains of the mlpt/svb 

genes are not shown, as I believe they play a role in regulating gap gene expression over the 

entire course of segment addition. The interactions between genes are indicated by unbroken 

lines (predicted direct interactions) or dotted lines (predicted indirect interactions). The major 

outputs of each module are indicated in dark grey boxes on the right.  
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6.5. Future directions 

 

My work has opened up several lines of enquiry that I think will be promising to pursue 

in the future. The deployment of the neuroblast timer module during segment patterning in 

Tribolium, some 300 million years diverged from Drosophila, suggests that this may be a more 

widely conserved feature of the insects, and perhaps even of the arthropods. Examining the 

expression and function of these four genes in a range of species will be crucial to confirm that 

this network initially evolved in the context of neural patterning, and to determine when and 

how it was co-opted for segment patterning. Note that my work highlights the importance of 

considering redundancy in any mutant or knockdown studies. It is therefore worth revisiting 

the function of nub (and kni) in other species where they are thought to have little or no role in 

segment patterning (including Drosophila). 

Existing models of the gap gene network in Tribolium are based almost entirely on the 

results of knockdown studies. My thesis highlights how multiplexed expression analyses can 

provide a useful supplement for predicting (or ruling out) genetic interactions, and can 

therefore help to build more robust network models. Approaches such as HCR ISH can also be 

applied broadly, even to experimentally intractable species, making them well-suited for 

making evolutionary comparisons. However, confirming how gap genes truly interact with 

each other, and with other segmentation genes, during sequential segmentation can only result 

from more intensive study of their regulation at the molecular level. Analysing the cis-

regulatory sequences associated with pair-rule, gap and Hox genes (for example, looking for 

consensus binding sequences and driving expression from specific enhancers using enhancer 

traps), and what is bound to them at different stages of development (for example, using ChIP-

Seq), would provide a deeper understanding of how the ‘gap gene network’ in Tribolium relates 

to genes at other levels of the segmentation hierarchy. In particular, I would be interested to 

know how many of the proposed gap genes in Tribolium are actually able to bind to regulatory 

elements associated with pair-rule or Hox genes, like the gap genes in Drosophila.  

Finally, I would note that the neuroblast timer network represents just one of many 

elements that are shared between neural and segment patterning. I hope that further comparison 

of the two systems will help to illuminate exactly how the complex process of segmentation 

evolved in arthropods. 
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7. APPENDICES 
 

Appendix 1. A list of genes that were cloned but not used in experiments in this thesis.  

The primers used for each gene are also provided. The final column lists whether probes were 

synthesised (Y) or not.  

 

Gene Significance Primers (5’-3’) Probes  

Tc-chinmo 

 

Associated with 

neuroblast timer series 
F:TGCAACATCGTTCAGCAACC Y 

R:GTTCGTGGAGAGTCTCGCTG 

Tc-Wnt5 SAZ signaling factor F:GTTCGTGGAGAGTCTCGCTG  

R:ACTGATCGCACACACGTCTT  

Tc-Wnt8 SAZ signaling factor F:AAGAGCGGTCTCTTTGTCGG Y 

R:GAGCATCGCTGCTTTCTTCG 

Tc-WntA SAZ signaling factor F: TTTGCTTCCGTCGCTTTGTG Y 

R:GCACAACAATCTGCAACCGT 

Tc-fgf8 SAZ signaling factor F: CGCTTATCCGCTCTCCATGT  

 R: AGTCATCGTCCGGCAGAAAG  

Tc-trithorax Trithorax group gene 

(Hox regulation?) 
F: GTGATTGCGAGAATGACGGC  

R: TCCAAGGCTCGACAGTTGAC 

Tc-Ash1 Trithorax group gene 

(Hox regulation?) 
F: CGCAACTGACGTTTCGTACA 

R: GTCCGAGCTGGAATAGGTCG 

 

Tc-E(Z) Polycomb group gene 

(Hox regulation?) 
F: CCCTTCCCTCAGTTCGCATT Y 

R: ACACGCTTGAAGACCTTGCT 

Tc-

myoglianin 

Homolog of 

mammalian GDF11 

(posterior Hox 

regulation?) 

F: AGGAGGAGGACGACTACCAC Y 

R: ATCGGGTCGATTACGAGCAC 
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Appendix 2. Expression of Tc-sim and Tc-Wg at selected stages of segment addition.  

In order to determine whether Tc-Wg and Tc-sim could be visualised in the same 

channel without losing informative aspects of expression for either gene, I examined their 

expression in double HCRs across the course of segment addition. In particular, I wanted to 

ensure that that anterior and posterior boundaries of the Tc-Wg domain could be detected, as I 

planned to use these landmarks in my analyses. 

The posterior Tc-Wg domain first appears as a ring around the posterior-most tip of the 

blastoderm (Figure 7.1, A, A’, C and C’). Tc-Sim is strongly expressed in the presumptive 

mesoderm and mesectoderm, and overlaps with the ventral half of the Tc-Wg ring (Figure 7.1, 

A-B’). The two genes share a posterior boundary, and the (fuzzy) anterior boundary of the Tc-

Wg domain is clearly distinguishable in the ventral and dorsal ectoderm. 

Interestingly, the cells at the posterior tip of the embryo, which express neither gene, 

form a morphologically distinct ‘pocket’ (Figure 7.1, D), and almost certainly include the 

primordial germ cells given what we know of their behaviour and the expression of the 

primordial germ cell marker vasa in Tribolium (Schröder, 2006). As the germband forms, these 

cells will detach from the epithelium and begin to migrate along the ventral surface (Schröder, 

2006).  

 
Figure 7.1. Posterior Tc-Wg and Tc-sim expression in the early blastoderm (stage To1). A-C 

show expression of Tc-sim (cyan) and Tc-Wg (red) in the posterior half of a blastoderm stage 

embryo (maximum projection through coronal sections). A’, B’ and C’ show the posterior of 

the same embryo (maximum projection through transverse sections), illustrating the ventral arc 

of Tc-sim and ring of Tc-Wg. D shows a sagittal section through the same embryo illustrating 

the morphologically distinct pocket of cells sitting within the Tc-Wg ring.  Scale bar = 50 µM.  
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By stage W2, Tc-Sim expression has almost entirely faded from the central mesoderm 

and is retained in what is presumably mesectoderm (Figure 7.2, A, A’, B and B’). The ring of 

Tc-Wg has now evolved into an arc – given that it overlaps with Tc-sim expression, this may 

be the ventral half of the ring, suggesting that Tc-Wg is repressed in the dorsal ectoderm at 

some point before this stage. The arcs of Tc-sim and Tc-Wg overlap extensively, but they share 

an anterior border, and the region posterior to the Tc-Wg arc expresses Tc-sim at a much lower 

intensity.    

Note that if the Tc-Wg arc here does indeed represent the ventral part of the ring 

observed at the blastoderm stage, then either the domain has shifted across the tissue, or the 

tissue has shifted posteriorly and dorsally so that the arc now has its posterior border in the 

dorsal ectoderm (Figure 7.2, B and B’’). This observation highlights the importance of using a 

patterning marker rather as a posterior boundary for the SAZ, rather than simply the posterior 

of the embryo. 

 
 

Figure 7.2. Posterior Tc-Wg and Tc-sim expression in the early germband (stage W2). A-A’ 

show expression of Tc-sim (cyan) and Tc-Wg (red) in the posterior half of an early germband 

stage embryo (maximum projection through coronal sections). Insets 1 and 2 show different 

sections through the same embryo. 1 shows a maximum projection through sagittal sections, 

illustrating how the posterior boundary of Tc-sim and Tc-Wg has sits in the dorsal epithelium. 

2 (B-B’’) shows a maximum projection through transverse sections of the posterior-most tip 

of the embryo. Note the overlapping arc of Tc-sim and Tc-Wg. Scale bar = 50 µM.   
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The posterior domain of Tc-Wg continues to overlap with Tc-sim into mid-elongation (Figure 

7.3, stage W7). Both still have their posterior borders in the dorsal ectoderm, although the 

posterior border of Tc-Wg is now more dorsal than that of Tc-sim (Figure 7.3, 1 and 3). Within 

the ventral epithelium, Tc-Wg overlaps expression of Tc-sim in the medial mesectoderm but 

also extends laterally into the ventral ectoderm proper (Figure 7.3, 2).  

 

 
 

Figure 7.3. Posterior Tc-Wg and Tc-Sim expression in a germband embryo during mid-

elongation (stage W7). A-A’ show expression of Tc-sim (cyan) and Tc-Wg (red) in the posterior 

of a mid-elongation germband stage embryo (maximum projection through coronal sections). 

Insets 1, 2 and 3 show different sections through the same embryo. 1 shows a maximum 

projection through sagittal sections, highlighting how the posterior boundary of both genes still 

sits on the dorsal surface. 2 and 3 show maximum projections through transverse sections; 2 

(B-B’’) in a region close to the posterior of the embryo, highlighting the lateral domains of Tc-

Wg in the ectoderm; and 3 (C-C’’) at the posterior tip of the embryo, showing the overlapping 

arcs of Tc-sim and Tc-Wg, again with protruding lateral domains of Tc-Wg. Scale bar = 50 µM. 
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By stage W12, the posterior domain of Tc-Wg has evolved dramatically, now sitting as a stripe 

across the ventral ectoderm (Figure 7.4, A-A’’ and 1). This may be through shifting of the 

domain itself, or through movement of the tissues at the posterior terminus. Interestingly, the 

posterior of the Tc-sim domain does not undergo a similar ventral shift, now marking the 

midline back to the posterior terminus of the embryo (Figure 7.4, A-A’’). Within its posterior 

domain, Tc-Wg expression is beginning to fade in the mesectoderm but is strong in the ventral 

and lateral ectoderm (Figure 7.4, 2). From this stage onwards, the anterior and posterior 

boundaries of the Tc-Wg stripe remain distinct relative to Tc-sim expression.   

 

 
 

Figure 7.4. Tc-Wg and Tc-Sim expression in the SAZ of a Tribolium during late elongation 

(stage W12). A-A’ show expression of Tc-sim (cyan) and Tc-Wg (red) in the posterior of a 

mid/late-elongation germband stage embryo (maximum projection through coronal sections). 

Insets 1 and 2 show different sections through the same embryo. 1 shows a maximum 

projection through sagittal sections, highlighting how the posterior domain of Tc-Wg has 

shifted to sit in the ventral ectoderm. 2 (B-B’’) shows a maximum projection through transverse 

sections at the level of the posterior Tc-Wg stripe, illustrating how Tc-Wg is expressed in the 

ventral ectoderm but not in the dorsal ectoderm, mesoderm or mesectoderm. (where Tc-sim is 

still expressed). Scale bar = 50 µM. 
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Appendix 3. Tc-hb, Tc-Kr, Tc-nub and Tc-cas) are expressed in spatial order in the gut 

primordium (from posterior to anterior) at the end of segment addition in Tribolium.  

A) shows a maximum projection through coronal sections of the entire terminus of the embryo, 

while B) shows maximum projections of transverse sections through the regions indicated. Tc-

cas is expressed in the most anterior section, section 1; Tc-nub is expressed in the ectoderm in 

section 2; and Tc-hb and Tc-Kr are co-expressed in the ectoderm in the most posterior section, 

section 3. Scale bar = 50 µM. 
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