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1 Introduction and Motivation

The tenuous, yet vital, task of predicting the present, the near future and the recent past1

is paramount to conducting sound macroeconomic policies and professional investing. The

need for systematically tracking big datasets characterising the economy in real time has

fuelled the pursuit of methodical forecasting approaches. Now part of the suite of real-time

forecasting tools at leading institutions2, the ’dynamic factor model (DFM)’ nowcasting has

been elevated as the new norm by Giannone, Reichlin & Small (2008). Notwithstanding the

success of nowcasting among policy-makers or financial market participants, the model may

not fully capture the effect of ’black-swan’ shocks, the COVID-19 crisis being a case in point.

As most recently proposed by Bank of England’s Chief Economist Andy Haldane (2020),

calling for a V-shaped recovery in the UK based on evidence from alternative data, these

sources of information could potentially address the shortcomings of nowcasting with stan-

dard data. While such high-frequency indicators have already been the subject of debates at

other institutions3, their proliferation has been precipitated by recent events. Google search

and mobility data, restaurant bookings, physical stores footfall and energy consumption,

to name a few, have all become popular proxies for economic activity in real time, used

by private and public sector analysts to gauge the extent of the ongoing recession and the

potential recovery. However, the lack of structure and quality controls specific to these data

may bring noise to traditional models, warranting, thus, cautious interpretations. Neverthe-

less, with their nearly real-time availability and much higher frequency, alternative data may

provide timely information about turning points and, although forecasting with such data

has already been conducted in other settings, these ought to be considered in the nowcasting

framework too.

Drawing on work from Bańbura, Giannone & Reichlin (2010), our approach to now-

casting euro area activity is novel on several dimensions. First, we introduce alternative

high-frequency data, i.e. electricity consumption, Google Trends internet search query data

and the German truck toll mileage index, previously unexploited in the nowcast literature.

Second, we adjust the factors structure to better account for the salient features of the

macroeconomy. To this end, we go beyond standard euro area models’ global, nominal

and real factors and introduce separate factors for soft data, labour and financial markets,

real-time indicators and supply side shocks. Third, albeit to a lesser extent innovative yet

useful, revisiting how some of the traditional data are used, we introduce the augmented

credit impulse for measuring monetary developments and change how business surveys are

considered. Traditionally, lending and money supply data have been exploited through their

sheer stock size, but flows might matter more for economic growth; we address this issue

with the inclusion of our comprehensive measure of monetary developments, the augmented

credit impulse. Furthermore, we change the focus of business survey data from headline

to output indices, which have a higher correlation with economic growth, and introduce a

measure of purely new demand, namely the excess of new orders relative to inventories. We

hypothesise these novelties should increase out-of-sample forecasting precision and test this

hypothesis empirically.

We examine the performance of our proposed dynamic factor nowcasting model against

the industry standard for the euro area presented in Bańbura, Giannone & Reichlin (2010).

1In Bańbura, Giannone & Reichlin (2010) parlance.
2Bok, Caratelli, Giannone, Sbordone & Tambalotti (2018) detail Fed’s approach, Bańbura, Giannone &

Reichlin (2010) ECB’s one, both drawing on Giannone, Reichlin & Small (2008).
3E.g. the ECB has long been investigating how digitalisation can be exploited to better understand the

macroeconomy; former Member of the Executive Board Benôıt Cœuré (2017) gave an earlier account of these
efforts.
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We use quantitative and qualitative assessment criteria in pseudo out-of-sample forecasting

exercises, thus simulating the real-time availability of data at the time of nowcasting. As

a result of our enhancements, out-of-sample forecasting exercises indicate non-negligible

reductions in uncertainty around our point forecast (lower RMSE) and increases in directional

forecasting accuracy (higher Kuiper’s score). While these gains are meaningful at first sight,

gains in nowcasting precision are rather modest when discarding ’black-swan’ observations

pertaining to the ’Great Lockdown’ – suggesting our proposed approach is particularly useful

during times of severe stress. With our assessment also taking into account the shock induced

by the COVID-19 pandemic, we find that our nowcast timely indicates the severity of the

downturn in Q1-2020 based on alternative data, also correctly indicating further contraction

in Q2-2020. Interpreting these results, our enriched dataset and the jointly significant factors

structure allow for a better and more timely signal extraction, as the news-based analysis of

the data flow throughout the quarters also reveals. Our findings may imply that forecasting,

as we know it, could undergo significant changes in the near future, embracing alternative

data as a beacon of light for investing and policy making, particularly during times of

heightened stress. Concluding on our findings, empirical evidence seems to support our

conjecture that alternative data carry an important informational content which can be

exploited using our enhanced methodology.

The remainder of the paper is structured as following. The second section goes through

the literature on forecasting and nowcasting, from inception to its frontiers. The third section

explains our methodology, while section four details the dataset. Section five illustrates the

empirical evidence supporting our claims, while section six concludes and draws further

directions of research. Technical details are provided in the appendices.

2 A Survey of Academic and Industry Practice

Predicting the present, the near future and the recent past has long been central to policy-

makers and financial market participants alike. Be it central bankers, the fiscal authority or

investment professionals, in order to make well informed decisions, they all need to regularly

gauge the state of the economy. Due to the nature of hard economic data, released with

a lag and in a staggered fashion, practitioners need tools to address the lack of real-time

information. In such a context, any data points preceding official statistics such as GDP

embed a signal value about the unobserved state of the economy, warranting, thus, close

monitoring (Burns & Mitchell 1946). Against this background, the advancements in eco-

nomics and statistics through the last decades have lead to a remarkable proliferation of

forecasting models.

2.1 Forecasting before Nowcasting

Literature predating present nowcasting tools has developed on several strands. Based on

earlier work of Friedman (1962), Chow & Lin (1971) have introduced an interpolation method

relating monthly data to quarterly GDP figures, later generalised by Mitchell, Smith, Weale,

Wright & Salazar (2005) and implemented to estimate monthly GDP in the UK. Other ag-

gregation schemes, also assuming monthly output to be an unobserved process, have been

used alongside state space models (e.g. Mariano & Murasawa 2003, Liu & Hall 2001). In a

similar vein, Evans (2005) has developed a technique relating daily data to quarterly GDP.

Somewhat differently, structural time series models explicitly model stochastic trends, cycles

and seasonal components using the state space form and the Kalman filter (Harvey 1990).
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Without relying on big datasets, these have also proven to be precise, outperforming autore-

gressive integrated moving averages (ARIMAs) (Harvey, Koopman & Penzer 1998). On the

other hand, without a priori imposing much structure, the multivariate vector autoregression

(VAR) proposed by Sims (1980) has also rapidly entered the standard macroeconometrics

toolbox. Furthermore, Bayesian and mixed-frequency VARs represent important modelling

extensions that improved macroeconomic forecasting (e.g. Sims & Zha 1998, Anderson &

Vahid-Araghi 2011 for a survey). More recently, advancements in the estimation of micro-

founded dynamic stochastic general equilibrium (DSGE) models have enabled DSGEs to

compete with the more standard VARs in terms of data coherence (Christoffel, Coenen &

Warne 2010). Furthermore, quoting evidence from Smets & Wouters (2004), Edge, Kiley

& Laforte (2010) and Rubaszek & Skrzypczyński (2008), Christoffel et al. (2010) advocate

forecasting with DSGEs, their new generation showing similar forecasting performance to

the one of conventional tools. Although popular and effective, these previous approaches are

not suitable for nowcasting with high-dimensional datasets.

Forecasting with big information sets characterised by ragged-edges and mixed release

frequency has been popular even before factor models. Financial markets and hard data

together with business survey indicators have been routinely followed by practitioners for

judgment-based forecasting, well before the advent of more systematic tools. The ragged-

edge at the end of the sample comes as a byproduct of the staggered release pattern of hard

data and the more timely availability of survey and financial data. However, this more sys-

tematic mixed-frequency data sampling (MIDAS) approach, whereby lower-frequency vari-

ables are ’bridged’ by higher-frequency ones in parsimonious regressions, quickly became both

powerful and popular (Bridge Equation Models, BEMs). A survey of the large literature on

BEMs in the MIDAS setting is beyond the scope of this study4.

Turning to the geographic focus of our study, Diron (2008) found the inclusion of survey

and financial data can improve forecasting performance in the euro area, even in a real-time

forecast evaluation. Similarly, Rünstler & Sédillot (2003) advocate the use of MIDAS and

BEMs instead of forecasting with lower frequency data. Bridge equations with MIDAS have

even been proven to outperform univariate time series models (Baffigi, Golinelli & Parigi

2004; Golinelli & Parigi 2007). Overall, previous studies support the inclusion of mixed-

frequency ragged-edge data to help improve the performance of euro area nowcasting.

2.2 ’Bridging’ with Factors

While previous work has demonstrated the advantages of MIDAS-based nowcasting, the

’curse of dimensionality’ began to arise as the number of relevant variables grew over time.

The literature has adopted dynamic factor models (DFMs) as the standard solution to this

problem. The temptation of over-fitting regressions to maximise in-sample performance

is usually followed by poor out-of-sample forecasting accuracy. Early evidence favouring

dimensionality reduction and modelling with few factors and limited a priori restrictions

can be ascribed to Geweke (1977) or Sargent & Sims (1977). When high dimensionality in

the cross section of long data panels is the case, it is possible to consistently estimate factors

(Stock & Watson 1998; Forni, Hallin, Lippi & Reichlin 1999) and use them for efficient

forecasting (Stock & Watson 1999; Marcellino, Stock & Watson 2003). These pioneering

ideas are essentially bridge equations with principal components as covariates, to exploit

common movements in the data, while avoiding the over-fitting problem.

Although traditional DFMs address the ’curse of dimensionality’, they do not solve the

4We leave the interested reader with Ghysels, Sinko & Valkanov (2007) and Andreou, Ghysels & Kourtel-
los (2010) for an extensive exposition.
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ragged-edge problem and cannot fully exploit the timeliness of data releases for real-time

nowcasting purposes. The characteristic of MIDAS is that, due to asynchronous data re-

leases, the end of the sample contains missing observations, making it difficult for traditional

models, including DFMs, to properly account for all available information and produce ac-

curate nowcasts. Addressing this issue, the seminal work of Giannone, Reichlin & Small

(2008) – hereafter GRS (2008) – combine the DFM approach with Kalman filtering (KF)

and effectively develop a real-time tracker of the US business cycle. Their refinement of

earlier methodologies consists of seamlessly casting a monthly data factor model in the state

space form (SSF), using KF techniques to fill in missing values; the KF is also used to fore-

cast at desired horizons. While the approach resembles Harvey & Chung (2000) work on

forecasting UK quarterly unemployment with monthly claimant accounts data, it had not

been used before in conjunction with DFMs to produce nowcasts. GRS (2008) extract prin-

cipal components, in a first step, from a balanced data panel and use OLS to estimate factor

loadings. In the second step, the Kalman smoother refines the factor estimates, addressing

the ragged-edge issue. The approach of GRS (2008) has become very popular in policy and

investment institutions, with various applications for the euro area and extensive studies on

its econometric properties.

The consistency property of GRS’s (2008) methodology, later enhanced by others, has

been extensively explored. Doz, Giannone & Reichlin (2011) prove the asymptotic conver-

gence of estimators following the two-step procedure of GRS (2008). Furthermore, Doz,

Giannone & Reichlin (2012) go beyond convergence and present an efficiency-based ranking.

The latter asserts the superior nature of Quasi Maximum Likelihood (QML) estimation,

whereby initialisation with principal components coupled with ML estimation of factor load-

ings and the machine learning expectation maximisation (EM) algorithm leads to the con-

vergence of factors and loadings estimators. The properties of the techniques are evaluated

both empirically and in Monte Carlo simulations. Evidence is strongly supporting QML over

the two-step estimation; the one-step principal components option5 fares worse than both,

but remains an essential initialisation in the iterative EM algorithm.

The seminal paper on euro area nowcasting is Bańbura, Giannone & Reichlin (2010),

which refined GRS (2008) with more efficient QML estimation and the introduction of the

news concept. As per Doz et al. (2012), Bańbura & Modugno (2014) reiterate the advantages

of QML in DFMs and is the core of estimation in Bańbura et al. (2010) (BGR (2010),

hereafter). Although availability of higher-frequency data would warrant the estimation

of a daily model, BGR (2010) use an unbalanced monthly panel of data; evidence from

Bańbura, Giannone & Reichlin (2011) suggests the inclusion of daily financial data increases

the uncertainty surrounding the nowcast6. Not only does BGR (2010) effectively implement

the nowcast for the euro area, but also provide the means for an automatic and judgement

free analysis of the data flow and its impact on growth projections throughout the quarter,

through the news concept. ’Patented’ by Harvey (1990; 2006) in the KF setting, news, in

the DFM context, relate data surprises, given conditional expectations formed on the basis

of the factor model and the Kalman smoother, to the resulting revisions in the nowcast. The

news concept is, thus, preferred to the forecasting weights of Bańbura & Rünstler (2011),

5The approach consists of extracting the first (or several) principal components from the balanced dataset,
considering these the true factors, while the associated eigenvectors would be their loadings. The nth prin-
cipal component, given n series (n vectors) of data, is the product of their first n eigenvectors, ordered
by eigenvalues, and the original vectors of data. Principal components, ordered descending by their eigen-
value, are orthogonal; the first component explains most of the dataset’s variation, the contribution of the
subsequent ones being incrementally smaller.

6Giannone, Reichlin & Simonelli (2009) and Girardi, Gayer & Reuter (2016), inter alia, claim that
industrial production and survey data are already powerful nowcast ingredients, financial series potentially
adding volatility, yet being promising at the onset of the quarter, when data are scarce.
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providing a transparent way of tracking the business cycle in real time.

DFM-based nowcasting applications vary across geographies in terms of data and factors

structure, but, in spite of employing a wide range of forecast evaluation approaches, DFMs’

forecasting outperforms most other previous tools. Angelini, Bańbura & Rünstler (2008)

and Angelini, Camba-Mendez, Giannone, Reichlin & Rünstler (2011) indicate DFM-based

nowcasts clearly outperform quarterly time series models or traditional BEMs in pseudo

real-time assessments. Both studies also present a stylised bi-monthly release calendar that

mimics the data availability pattern at the aggregate euro area level. Consistent with findings

of Bańbura & Rünstler (2011), evaluation results stress out the importance of differences in

publication lags. Results from the dense literature on nowcasting are still somewhat incon-

clusive on whether country specific nowcasts pooled together would always be better than

forecasting at the aggregate currency union. However, the studies we explored, particularly

the European focused ones, are predominantly consensual on MIDAS DFMs nowcasting

outperformance, even in genuine real time, sometimes even against surveys of professional

forecasters7.

2.3 Alternative Data: Back to the Future

While the literature exploring DFM-based nowcasting is large, a salient feature of it is the

absence of (quasi) real-time alternative data – from electricity consumption to internet search

activity, air quality or even satellite imaging. Digitalisation and the pervasiveness of internet

has precipitated the exponential growth of data sources, particularly for alternative ones.

We refer to alternative data as being non-traditional information, not necessarily subject to

the same quality standards and scrutiny as official statistics, but nevertheless informative of

economic activity in approximately real time. Electricity consumption, proxied by real-time

power load data, is routinely followed by professional forecasters. Similarly, internet search

activity, in particular from Google, is increasingly more followed by marketing professionals

and economists. While forecasting with Google data has been documented, alternative

sources of data have not been exploited and, if anything, are absent in the context of DFM-

based nowcasting.

Seminal work of Choi & Varian (2009; 2012) illustrates the power of internet search

data in the context of unemployment and private consumption growth forecasting in the

US. Google collects internet search activity data and reports anonymised statistics using

its Trends platform. Given Google’s virtual monopoly on the web search market, one may

claim such data is representative for the internet user population. Choi & Varian (2009; 2012)

show how, using simple time series models, the timeliness of Trends data can be exploited

to demonstrate informational content of internet search patterns in forecasting. Ever since,

Trends data have been successfully used in a wide rage of applications even outside the US.

Google Trends classifies search terms in categories and subcategories, thus allowing for

various ways of forecasting with its data. Fundamentally, prior to any purchase, consumers

in fairly digitalised economies with strong internet usage habits, are likely to engage in search

activity. Fluctuations in the popularity of keywords or categories may indicate the underlying

state of the economy, changes in consumers preferences or simply suggest unexpected shocks

(natural disasters, terrorism, geopolitical events). Model pooling, dynamic model averaging

or dimensionality reduction have all been successfully applied to various forecasting models

7Details in Jansen, Jin & de Winter (2016); Kuzin, Marcellino & Schumacher (2013); Marcellino, Stock &
Watson (2003); Marcellino & Schumacher (2010); Liebermann (2010); Rünstler, Barhoumi, Benk, Cristadoro,
Den Reijer, Jakaitiene, Jelonek, Rua, Ruth & Van Nieuwenhuyze (2009); Schumacher & Breitung (2008);
Camacho & Perez-Quiros (2010).
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of private consumption based on (sub)categories or keywords search data in the US, the euro

area and Germany – all solid testimonials of the forecasting potential of such data8. To our

knowledge at the time of writing this paper, none are, however, implemented in the DFM

setup.

Internet search data from Google have also been successfully used in forecasting labour

market developments. As for purchases of goods and services, matters relating to (un)employability

are very likely to prompt individuals ’to google’ relevant terms. In the UK, McLaren &

Shanbhogue (2011) demonstrate the power of Trends in nowcasting unemployment. Askitas

& Zimmermann (2009) forecast Kurzarbeit and unemployment in Germany using year-on-

year changes in Trends indices, while work of D’Amuri (2009) and D’Amuri & Marcucci

(2017) confirms the leading properties of internet search data and demonstrates the out-

performance of forecasting models based on it, for the US and Italy; the recent work of

Simionescu (2020) does the same for Romania. Fondeur & Karamé (2013) reiterates the

findings for French unemployment using the KF and the SSF. The more formal treatment

from the Research Institute of the Finnish Economy, where euro area, EU-wide and coun-

try specific unemployment nowcasts (ETLAnow) are maintained, uses Bayesian methods on

uni- and multivariate time series models with Google Trends data (Tuhkuri 2016; Lehmus,

Widgrén & Tuhkuri 2016; Anttonen 2018). Not only encouraging, these applications also

justify the use of Google Trends and alternative real-time data in nowcasting problems.

3 Methodology

Our methodological approach relies mainly on BGR (2010), drawing on GRS (2008), with the

Matlab implementation of Bok et al. (2018) from the NY Fed. The theoretical underpinnings

we start from are detailed in BGR (2010); we proceed by expanding the information set and,

subsequently, the factors structure – our most impactful contribution to the literature. The

estimation of the obtained model is conducted à la Bańbura & Modugno (2014) using QML

and the EM algorithm. Expressions for the QML estimators of the model parameters are

derived from the first order conditions for maximising the joint likelihood function. Please

see Bańbura, Giannone, Modugno & Reichlin (2013) for more details.

3.1 The Problem and the News Concept

For brevity purposes, we only summarise the exposition of the nowcasting problem intro-

duced in BGR (2010). BGR (2010) illustrate the problem of nowcasting euro area GDP

growth, but the approach can be extrapolated to any other variable. Formally, denoting Ων

the vintage of data at time ν and yQt real GDP growth at time t, we define the nowcast as an

orthogonal projection of yQt on the available information set Ων . The nowcast is the expec-

tation of the variable conditional on the information set, E[yQt |Ων ]. Forming expectations is

a feature specific to the modelling strategy adopted, as we shall see later.

Characterised by ragged-edges and MIDAS, the information set can be formally described

as Ων = {xi,t, ti = 1, 2, ..., T, i = 1, 2, ..., n; yQ3k, 3k = 3, 6, ..., TQ,ν}. The first block is com-

prised of monthly data, while the second represents quarterly data observed in the last month

of the quarter. Ti,ν , the last instance of time when series i is available/published at vintage

time ν, varies across series indexed by i, given the asynchronous pattern of data availability.

The challenge of nowcasting is to exploit the large cross-section of monthly series to form

8See Götz & Knetsch (2019), Vosen & Schmidt (2011), Vosen & Schmidt (2012), Nymand-Andersen &
Pantelidis (2018), Kholodilin, Podstawski & Siliverstovs (2010), Kohns & Bhattacharjee (2019), Koop &
Onorante (2019).
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accurate (conditional) expectations of the target variable. These features of the dataset,

where subsequent vintages for the same reference period become available and provide more

information with each additional data release, are central to tracking developments in the

business cycle.

Given the high-frequency and irregular release pattern of data, nowcasting involves com-

puting several projections. The nature of the data implies an irregular and high-frequency

updating of the information set. Two consecutive vintages, Ων and Ων+1, can be related

through the following, if, for simplicity and without loss of generality, we abstract from data

revisions:

Ων+1 − Ων = {xj,Tj,ν+1
|j ∈ Jν+1} (1)

Tj,ν+1 = Tj,ν + 1,∀j ∈ Jν+1 (2)

meaning, thus, the information set is expanding by one observation for each j-indexed series

in the set of indices J corresponding to variables x with upcoming releases. The nowcasts,

given the consecutive vintages, are the conditional expectations: E[yQt |Ων ] and E[yQt |Ων+1].

Central to tracking business cycle developments is the possibility of relating revisions

in the sequence of nowcasts to releases of new data, revisions and their difference from

model-based expectations, through the news concept. The news concept in DFMs has been

introduced by BGR (2010), defining the new forecast as a sum of the old nowcast and its

revision

E[yQt |Ων+1] = E[yQt |Ων ] + E[yQt |Iν+1] (3)

where Iν+1, the news, is the subset of Ων+1 orthogonal to Ων . Iν+1, comprised of Jν+1

elements, with Jν+1 the number of elements in Jν+1, is the unexpected part of the new

vintage, given expectations conditional on the prior information set:

Iν+1 = xj,Tj,ν+1
− E[xj,Tj,ν+1

|Ων ] (4)

A more elegant, intuitive and useful for application purposes expression for the news-induced

nowcast revision in (3) can be easily derived.

We apply the Lemma on Conditional Expectations9 to derive a more useful expression

for nowcast revisions, E[yQt |Iν+1]. Applying the Lemma and recalling series are standardised

when entering the KF, i.e. ∼N(0, 1) (Gaussian by assumption), we obtain the expression

from BGR (2010):

E[yQt |Iν+1] = E[yQt I
′
ν+1]E[Iν+1I

′
ν+1]

−1Iν+1 (5)

and rearranging (3) yields:

E[yQt |Ων+1]− E[yQt |Ων ] = E[yQt I
′
ν+1]E[Iν+1I

′
ν+1]

−1Iν+1 (6)

While the left hand side of (6) represents the nowcast revision given updates and noting the

aforementioned standardisation of data, the right hand side contains the expression of an OLS

regression coefficient estimator, since, through the Law of Iterated Expectations, E[yQt I
′
ν+1] =

cov(E(yQt |Ων+1), Iν+1) and E[Iν+1I
′
ν+1] = var(Iν+1). Rewriting the multiplication of terms in

expectations as an Jν+1×Jν+1 matrix Bt,ν+1 with generic elements bj,t,ν+1 and, recalling Iν+1

9E[Y |X] = E[Y ] + cov(X,Y ) var(X,Y )−1[X − E(X)]; X,Y∼N(0, 1).
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is a Jν+1-dimensional column vector, we obtain the familiar BGR (2010) expression:

E[yQt |Ων+1]− E[yQt |Ων ] =
∑
j∈Jν+1

bj,t,ν+1Ij,ν+1 =
∑
j∈Jν+1

bj,t,ν+1(xj,Tj,ν+1
− E[xj,Tj,ν+1

|Ων ]) (7)

Intuitively, expression (7) indicates the nowcast revisions are weighted sums of news, de-

pending on both the size of the news and their relevance to the target variable, captured

by bj,t,ν+1. This news-based decomposition of forecasts revisions can illustrate how the data

flow through the reference quarter impacts the nowcast for the target variable.

3.2 The Monthly Factor Model and the Aggregation Scheme

To fully exploit the presence of alternative data in our model, we add a number of factors to

the standard structure of previous DFMs. As we explain in the data section, we expand the

panel with real-time alternative data (electricity consumption, internet search intensities,

truck toll mileage index) and bring other changes pertaining to how survey and monetary

data are considered (we replace headline with output indices, introduce the new orders

less inventories index and the augmented credit impulse). In order to fully benefit from

the added informational content, we augmented the factors structure introduced by BGR

(2010) 10. Our enriched specification includes, beyond standard global, real and nominal

factors from BGR (2010), additional factors for soft data, real activity, labour and financial

markets and two new others for real-time data and supply side shocks. Descriptions of blocks

and loadings follow in the data sections and appendices; it is worth mentioning we have

modified loadings of all blocks11, but the latter two are genuinely new, containing electricity

consumption, internet search data and survey-based indicators of capacity utilisation and

production constraints. Pseudo real-time forecast evaluation results confirm it is the specific

data and the blocks structure that lead to our model’s gains in prediction accuracy.

In line with findings from the literature, we refrain from further complicating the factors

lag structure or their number per block. ECB’s nowcast documented in BGR (2010) and

NY Fed’s one from Bok et al. (2018) rely on single-factor AR(1) blocks initialised by first

principal components with AR(1) processes for idiosyncratic components. Although beyond

the scope of our paper, we briefly inspect how alterations of these model choices affect the

result. We find our specification is broadly robust to changes in the number of factors per

block and their lag structure. This is in line with evidence from Bańbura & Modugno (2014)

and Doz et al. (2012), who find no material gains12 from such deviations. We, therefore, do

not depart from this baseline either.

Before diving into the mathematical apparatus, an intuitive exposition of the model is

useful. Our DFM assumes variation in the data is driven by a few unobserved common

factors. Thus, we resort to an unobserved components model, assuming a few driving factors

are behind the observed data. We also impose that an autoregressive process generates the

latent factors – not entirely unrealistic, given, barring ’black swan’ events, macroeconomic

data exhibit a certain degree of inertia. Kalman filtering is particularly useful for separating

a latent component from the observed noisy data. Due to this feature, the KF is also helpful

10The Bok et al. (2018) NY Fed US nowcast is already modifying BGR (2010), using blocks for global,
real, nominal, soft data and labour markets.

11Subjectively, based on judgement and economic intuition, we have changed data blocks; details of the
new distribution of series across factors are present in table 5.

12The literature argues that, based on Monte Carlo simulations, factor estimates converge to true factors
in long and dense enough panels of data, this feature being robust to altering the number of factors or the
order of their AR process. Empirical evidence using data up to the financial crisis indicates very modest
gains in increasing factors numbers and lag orders at the expense of computational complexity.
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for dealing with missing values and asynchronous data releases, given the ragged-edge and

the mixed frequency of the data. Casting the model in the SSF and using the KF facilitates

filling in missing past values and forecasting, exploiting information, in a timely manner,

contained in our alternative data.

Against this backdrop, we formally define dynamics of monthly data as in BGR (2010).

Monthly series enter the KF standardised and transformed13. Denoting xt the n× 1 vector

of transformed monthly data, we impose the factor representation:

xt = Λft + εt (8)

where ft is the r× 1 vector of latent common factors with loadings Λ. εt stores the idiosyn-

cratic components. To exploit inertial dynamics and increase factor estimates precision,

factors are modelled as AR(1) processes, given later restrictions on Q:

ft = Aft−1 + ut ut∼NID(0, Q) (9)

With the rationale of increasing accuracy, albeit with limited value added (Bańbura & Mod-

ugno 2014), idiosyncratic components are also modelled as AR(1) processes, with cross-

sectionally uncorrelated residuals, E[ei,tej,t] = 0 for i6=j:

εi,t = αiεi,t−1 + ei,t ei,t∼NID(0, σ2
i ) (10)

Given our blocks structure and the partitioning of ft into mutually independent global (G),

soft data (S), real activity (R), labour (L) and financial markets (F), real-time data (RT) and

supply side shocks (SS) requires additional restrictions14. We illustrate restrictions on the

AR coefficients, covariance matrices and the partitioning for the factors vector in appendix A.

This specific structure, whereby a global factor is loaded by all variables, exploits the cross-

correlation among series, before extracting common components from the more specific and

locally fine-tuned blocks.

As far as modelling of quarterly series is concerned, we employ the same aggregation

scheme as BGR (2010). Alternative techniques extract latent monthly observations for the

quarterly series, but the aim of this paper is not to produce smoothers. Consequently,

we rely on Mariano & Murasawa (2003), but we leave the interested reader to consult the

original paper or BGR (2010) for details. Accordingly, the quarterly data are included in the

framework through the modelling of partially observed monthly series and can be recovered

through the following aggregation scheme:

yQ3k = y3k + 2y3k−1 + 3y3k−2 + 2y3k−3 + y3k−4 (11)

The latent monthly data used above is modelled in the same fashion as the observed monthly

series:

yt = ΛQft + εQt (12)

εQi,t = αQ,iε
Q
i,t−1 + eQi,t eQi,t∼NID(0, σ2

Q,i) (13)

13More details in the data section and appendix C.
14BGR (2010) and most of the work for the euro area nowcasts rely on nominal and G, R factors, while

NY Fed’s uses G, S, R, L factors.
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3.3 Estimation and Forecasting

Having laid out the modelling framework in equations (8)-(13), we can resort to the SSF

and the KF. Letting xt = (x′t, y
Q
t

′
)′ we can also cast the model in the SSF as in BGR (2010):

xt = Z(θ)αt + γt

αt = T (θ)αt−1 + ηt, ηt∼NID(0,Ση(θ)) (14)

where the first and second equations are the observation and, respectively, the transition

equations, with αt the unobserved states containing the common factors and the idiosyncratic

components. θ is a column vector storing the parameters of the model, Λ,ΛQ, A,Q, α1, ..., αn,

αQ, σ1, ..., σn, σQ. γ′t =
(
εt εQt

)
stores the residuals. We rely on a very in-depth exploration

of the KF mechanics from Harvey (2006), but we do briefly present some details in appendix

B. Further details on the SSF are also available in the appendix.

As in BGR (2010), the estimation of parameters in θ is conducted using QML and im-

plemented with the EM algorithm. Proposed by Doz et al. (2012) and further explored

by Bańbura & Modugno (2014), the recursive algorithm ensures convergence of factors and

estimates to a fixed point with proven consistency properties of the estimators. In the im-

plementation we worked on, the initialisation step consists estimating the common factors,

ft(0), by means of principal components from monthly data; we OLS regress series on these

to obtain preliminary estimates of the factor loadings, Λ(0); OLS regressions are used for

estimating AR(1) coefficients for ft(0), after which estimates of the covariance matrices for

factors and idiosyncratic components are also computed, all stored in θ(0). The next step,

the expectation step (E-step), uses estimates θ(j) from the previous step j, the SSF and

KF to fill in missing factors and observations through the Kalman smoother and, based on

this artificially augmented dataset, updates the likelihood function. The maximisation step

(M-step) uses the maximum likelihood approach and the likelihood function updated in the

E-step to re-estimate θ, storing it in θ(j + 1). We iterate E-M steps until convergence; the

method ensures consistency of the factor and coefficients estimators.

Provided the model is estimated on sufficiently long and dense cross-sections, Kalman fil-

tering can be reliably employed to fill in missing values, smooth the data or produce forecasts

(analysing them through the news), exploiting the timeliness of MIDAS for more accurate

predictions. For a correct extraction of factors, we estimate the model on truncated datasets,

excluding incomplete quarters at the end of the sample. We then run the data through the

filter, using the updating and prediction recursions to exploit the timeliness of the addi-

tional data beyond the estimation sample. Readily available in this framework, the Kalman

smoother seamlessly fills in missing observations (backcast). After accounting for all avail-

able data in one running quarter and updating the factors estimates, the filter provides,

through the observation equation which converts factors to observations, the nowcast for the

target variable. It is this feature of the model that ensures factors are more accurately esti-

mated, making use of timely data and increasing forecasting accuracy. Beyond backcasting

and nowcasting, this framework can produce further ahead forecasts by simply applying the

prediction recursion for factors and switching from factors to observations representation via

the observation equation15. The KF framework is so rich, it even makes readily available the

calculations for the impact on nowcasts, due to revisions and new releases, in the news-based

analysis (BGR 2010, Bańbura & Modugno 2014).

15Without updating factors’ estimates, given data are missing beyond the running quarter.
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An important caveat of our current approach is the assumption of Gaussian states and

disturbances. Tail-event shocks, such as the ongoing COVID-19 pandemic recession, are

clearly not normally distributed. One way of circumventing this important issue is to dis-

card the extreme observations from March-2020 onwards as proposed by Lenza & Primiceri

(2020). Given these discarded observations would be essential in updating the states optimal

estimates during the pandemic shock, such an approach would defeat the initial purpose of

forecasting during times of extreme stress. As further indicated by Lenza & Primiceri (2020),

modelling the volatility to capture the non-linearities is another option. Beyond the scope of

our paper, non-Gaussian KF models with disturbances explicitly modelled to reflect dynamic

volatility and heavy tails could be more fruitful (e.g. Antolin-Diaz, Drechsel & Petrella 2020

drawing on earlier work of Harvey 2013, Durbin & Koopman 2012). Furthermore, a dif-

ferent strand of the literature combines well-established DFMs with machine learning and

deep neural networks to model factor nonlinearities and produce more accurate predictions

(e.g. Andreini, Izzo & Ricco 2020). However, our choice for leaving these more sophisticated

modelling strategies for further research is rooted in the current practice from the euro area

nowcasting literature; ultimately, our aim is to investigate how the addition of alternative

data and new factors to standard DFMs improves nowcasting accuracy.

4 Data

In terms of data, the standard macroeconomic and financial time series are retrieved using

Haver Analytics and their Microsoft Excel API, while IHS Markit and Google proprietary

data are obtained directly from source. ENTSOE electricity data and Germany’s truck toll

mileage index are available on a daily basis in Haver and are monthly aggregated. We use the

Bloomberg Terminal to set up the stylised calendar of releases. While all data is standardised

prior to being processed by the algorithm, we follow BGR (2010) and Bok et al. (2018) in

terms of additional transformations of the data to ensure stationarity. Details for model

specifications, the data and factor loadings are available in appendix C.

For genuine real-time data vintages, we rely on the euro area Business Cycle Network’s

(EABCN) repository, available through the ECB’s Statistical Data Warehouse (SDW). The

EABCN’s efforts for building the real-time database (RTDB) are documented in Giannone,

Henry, Lalik & Modugno (2012). The RTDB contains 230 mixed-frequency series from 1999

onwards. The database uses a ’snapshot’ approach, freezing databases available as of one

day prior to the ECB’s Governing Council, thus providing us with only a limited number of

vintages for Q1/Q2-2020; where vintages for particular series are not available in SDW, we

use the data as of 30-June-2020, which we further restrict by applying the release calendar

to simulate the real-time data availability pattern. Applying transformations and seasonal

adjustments where necessary, we use the SDW and set up four relevant vintages: 11-March-

2020, 29-April-2020, 3-June-2020 from RTDB and 30-June-2020 from our own dataset. The

availability of the series we used in the RTDB is documented in appendix C. We use the

vintages and the news-based decomposition to illustrate how our nowcast reacted to the

data-flow throughout the quarter, as the pandemic hit the economy.

4.1 Revisiting the Standard Dataset

The standard monthly panel and the specification from BGR (2010) are used for the bench-

mark DFM-based nowcast. Data are retrieved using Haver. Euro area Purchasing Managers

Indices (PMIs) are obtained directly from Markit. Quarterly series are reported in the third
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month of the quarter, hence recording missing values in the remaining months, while financial

data coming at a higher frequency are reported as the end of the month print.

In terms of business survey data, we analyse methodologies of the PMIs and European

Commission’s Business Survey (EC Survey hereafter) and conclude that PMIs are more

accurate indicators for the running month’s activity. Different collection and calculation

methodologies are justifying why PMI-based GDP growth indicators are popular and power-

ful, faring better than other business surveys, particularly against the EC Survey. Somewhat

different than what has been done so far is also how we chose to include PMIs. Instead of

using the headline figure which aggregates across several subindices of output, employment

or delivery times, we go straight to the GDP-related components, namely to output indices

for a higher correlation with economic activity. We choose to include output indices for

both manufacturing and services, without resorting to averaging by value added weights.

Our other addition to the standard procedure is the inclusion of the difference between new

orders and inventories, capturing, thus, the potential building of momentum for genuine new

demand, beyond built-up producers’ stocks. Using this composite index, which can turn

negative, would also partially solve the censoring issue inherent to the standard PMI series –

bounded in [0, 100], unable to fall below 0 in the event of an extremely severe shock. Given

the extensive and more accurate information in the PMIs, we limit the usage of EC Survey

data to its quarterly capacity utilisation and supply constraints series. While PMIs output

and new orders less inventories data are featured in the soft data factor, surveys on capacity

utilisation from Markit and EC’s one on supply constraints are considered separately in the

supply side factor.

Another potential area of improvement identified in the literature is the treatment of

monetary data. The inclusion of monetary aggregates and lending data is limited to (no-

tional) stocks and does not extend to flows. Intuition, but also more elaborate studies such

as Biggs, Mayer & Pick (2009), suggests flows matter too; in fact, we believe it is flows of

lending that push businesses to invest/produce more and consumers to spend more, acting

as an impetus for economic growth (with GDP a flow measure itself). Biggs et al. (2009)

advocate the usage of a credit impulse measure to easily quantify the impetus of lending to

GDP growth. We follow Cristea & Cabau (2019) and claim that the full picture in terms of

crediting the economic activity is given by an augmented credit impulse (ACI), which also

accounts for corporates’ market net issuance of debt and equity. Evidence suggests the euro

area ACI leads domestic demand and we believe its inclusion would provide more accurate

accounting of bank and market based lending developments. Our ACI data is featured in

the financial markets data block.

4.2 Alternative Data

Much of nowadays economic activity is conditioned by the usage of electricity, its consump-

tion being, thus, a real-time proxy for the underlying momentum. We rely on ENTSOE

power load data which comes in real time and is available on a country-by-country basis,

instead of using only Eurostat data, available with a significant lag; we reconcile the two

sources of data, ENTSOE aggregating up to Eurostat series. Without using the more refined

temperature-adjustment approach of McWilliams & Zachmann (2020), we rely on original

series aggregated for the euro area. Nevertheless, the data in figure 1 illustrates the expected

dynamics: a severe downturn starting in March-2020, bottoming out in May, as the ’Great

Lockdown’ reaches its full swing, gradually bouncing back thereafter.

As a reliable alternative proxy for euro area industrial activity, we consider the truck toll
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Figure 1: Euro Area Electricity Consumption
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Source: Haver Analytics, Author’s Calculations. Notes: More figures in appendix C.
Latest Observation: July-2020.

mileage index, in spite of it being confined to Germany only. With the increased integration

of global value chains, Germany has consolidated its central industrial hub position and we

expected data for industrial activity to be a reliable proxy for the sector’s health at the euro

area level. Indeed, the dynamics of the German toll index are closely following euro area

manufacturing PMIs. As a consequence to its high correlation with surveys, we chose to

include the toll index in the soft data factor.

In terms of internet search queries, we obtain data from Google Trends platform, using

both keywords and categories search frequencies, from 2004 to present on a monthly and

country-by-country basis16. Nymand-Andersen & Pantelidis (2018) and Anttonen (2018)

provide a detailed presentation of the Google dataset. We use results from the former to apply

national weights, based on population and internet access, for the euro area aggregation of our

Google Trends indices. Trends data on search terms popularity is available for keywords, but

also for 26 categories and even more numerous subcategories classified by Google’s natural

language processing software; the data is anonymised, reported as an index17 and with an

added white noise component18. We develop euro area indices for unemployment, short time

work and economic activity/private consumption exploiting both categories and keywords

search data.

We construct unemployment and short-time work Google indices for the euro area using

16Given the large number of queries a full aggregation would entail, we rely on the law of large numbers
and on data from the biggest six economies of the euro area (Germany, France, Italy, Spain, the Netherlands
and Belgium – Big6 hereafter), cumulatively accounting for more than 85% of euro area’s population and
GDP.

17Between 0 and 100, where 100 is reported when a keyword/category has registered its highest historical
interest. According to Anttonen (2018) and also to our own understanding, the reported search intensity

index of a term/category is calculated as It,i =
Kt,i/Gt,i

max
t

[Kt,i/Gt,i]
× 100, with Kt,i the search volume of term

’K’ at time t in geography i, with Gt,i the volume of total searches at t in i. Through this normalisation,
It,i is, effectively, the proportion/probability that one searches for ’K’ at time t in geography i.

18Querying the database on different days results in slightly different results, but the noise can be filtered
out through sequential querying and averaging.
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Figure 2: Euro Area Unemployment
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keywords search data. Our euro area unemployment index is built upon aggregated Big6

data, using the methodology and the list of search terms from the Research Institute of

the Finnish Economy on their ETLAnow project. We extrapolate ETLAnow’s approach

for unemployment to the short-time work index, by retrieving search intensity data on a

list of terms related to short-time work arrangements, widely employed under European

Commission’s SURE relief package but also used before, during the great recession19. We

report compelling evidence in figures 2 and 3 (more in appendix C) suggesting first differences

in our constructed indices are leading, or at least coincident (yet available very timely, well

before official data), with the changes in unemployment rate, total hours worked or the

number of applications for short-time work. Our findings strongly recommend the inclusion

of our labour market search indices in our euro area nowcast. Facilitating a more timely and

accurate update of the labour factor estimate, unemployment and short-time work indices

are included in the labour block, alongside euro area unemployment rate, employment and

hours worked indices.

Figure 3: Euro Area Hours Worked
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As far as activity is concerned, following the technique in Nymand-Andersen & Pantelidis

19We construct our list based on the March- 2020 briefing note on short-time work measures across EU
member states following COVID-19.
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(2018), we retrieve country-by-country categories level search intensity data from Trends on a

subjectively selected list and construct euro area indices. We rely on a few search categories

encompassing a wide range of potential search terms related to private consumption and

credit demand: ’Autos & Vehicles’, ’Finance’, ’Shopping’ and ’Travel’. Our choice is moti-

vated by Boivin & Ng (2006), claiming that factors extracted from smaller numbers of series

may have higher forecasting potential, and empirically confirmed by Götz & Knetsch (2019),

Vosen & Schmidt (2011) and Vosen & Schmidt (2012) (subcategories or too big of a key-

words/categories selection distorts the signal). Visual inspection of year-on-year percentage

changes in these categories search intensity, as reported in figure 4, reveals an unsurprising

pattern to analysts accustomed to economic developments throughout the last 15 years –

yet a ’temporary structural break’ during the sovereign debt crisis remains a mystery to us

(absent in month-on-month changes). Given our results, Google search intensity indices for

activity enter the DFM as monthly month-on-month changes of underlying levels through

the real-time data factor, together with ENTSOE and Eurostat electricity consumption.

Figure 4: Euro Area Activity Indices
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Although we restrict ourselves to using a monthly enriched factor model with alternative

data, numerous exciting extensions to our approach are left for future research. While

our alternative data sources are limited to electricity, internet search data and the toll

index, efforts on building more timely, easily accessible and more granular data are gaining

momentum, if anything, the pandemic only accelerating these trends. Due to short sample

sizes, limited country coverage or lacking quality, which prevented proper training and back-

testing of our DFM, we chose not to include in our dataset mobility indices, restaurant

bookings, pollution or satellite imaging data, to name a few. However, alongside even more

novel sources of data, such as web scraping, these are ideal candidates for leading/coincident

activity indicators, with great potential in DFM-based nowcasting. A different avenue for

research is also exploring daily-factor models, which have been studied in the past, but

not with alternative data. Bańbura et al. (2011) investigated the role of daily financial
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data in DFM-based nowcasting, but found their volatility and potential disconnect from

economic fundamentals do not lead to improvements in out-of-sample forecasting precision.

Alternative daily data, such as most of the sources mentioned here, could potentially address

the issue. One aspect is certain: the ever ongoing digitalisation will only spur the interest

in alternative data and open more avenues for time series research.

5 Empirical Evidence and Discussion

In this section, we compare the nowcast performance of our proposed rich DFM model

against several competing approaches from previous work. We replicate BGR’s (2010) best

performing euro area nowcast20 and consider it one contender. Going beyond academic

literature and relying on industry practices, we also consider the PMI-based GDP growth

tracker. Following previous academic studies, we report results relative to the benchmark

model of a näıve autoregressive process of order 1 (AR(1)) fitted on quarterly euro area

real GDP growth. Various out-of-sample forecast evaluation approaches confirm that our

rich DFM, due to its additional data and factors, tends to produce more accurate nowcasts

relative to models proposed in previous academic work and the PMI-based GDP growth

tracker. We report the forecast evaluation findings and explore, using the news concept, our

nowcasts for Q1/Q2-2020 based on pseudo and genuine real-time data vintages.

Although not the focus of academic research, business survey data, particularly PMIs,

have become increasingly important for professional forecasters. As previously discussed in

the data section, PMIs tend to be preferred over EC Survey data due to their methodology,

shorter publication lag, high data quality and a resulting higher correlation with real GDP

growth in the euro area and worldwide. Due to these features, simple models based on com-

posite output PMIs have rapidly become reliable tools for real-time forecasting in practice.

Recent Markit Economic Research reports21 propose parsimonious OLS regression models

for GDP growth explained by composite output PMIs (in logs to account for non-linearities),

with rather impressive out-of-sample forecasting precision, competing with standard now-

casts or traditional time series models. Results from testing our own specifications are in

line with evidence from the aforementioned reports22. We consider this PMI-based tracker

as a separate contender in our models comparison exercise.

5.1 The Pseudo Real Time Forecast Evaluation

We follow the literature and conduct a pseudo real-time assessment, whereby we simulate

the data availability pattern at the time of computing the forecast. To this end, we use

the stylised calendar set up in the appendix, which accounts for publication lags of included

series23. Accounting for data revisions and performing a genuine real time exercise for all

generated nowcasts is computationally burdensome and earlier evidence indicated negligible

differences (Bernanke & Boivin 2003, Schumacher & Breitung 2008).

20We do acknowledge BGR (2010) is not necessarily the official tool used by the ECB in its suite of
models; it is surely a starting framework which has been systematically reviewed over the years.

21Smith (2018), Smith & Hayes (2019) and Smith & Hayes (2020)
22We test several specifications for an euro area GDP growth tracker based on PMI composite output,

using level and log terms, squared and cubics in our OLS regressions. Regressing linearly interpolated GDP
growth on monthly natural logs of PMI composite output is the best performing model. Using the OLS
estimates, we fit, recursively and with fixed estimation, growth using the PMI data from the last month
of the quarter (alternative methods, such as averaging monthly PMIs over the quarter are inferior). We
evaluate the forecasts using the RMSE criterion on the basis of quarterly fitted and realised growth.

23The literature and the cyclical pattern of data releases suggest considering data updates in the middle
and at the end of the month. Generally, many hard data points are released with various lags in the first
half, others, such as monetary, prices and survey data, at the end of the month.
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We consider the end of the quarter nowcast as the most relevant one for the purposes

of this exercise. While properties of nowcasts as they are computed throughout the quar-

ter have been already extensively explored, for this part we only consider nowcasts derived

from data available when the reference quarter ends. We first estimate the DFM on a fully

balanced dataset truncated before the target quarter and then, exploiting KF techniques

and the estimated model, we compute pseudo out-of-sample nowcasts, employing this pro-

cedure recursively24. For a robustness check, we also restrict ourselves to nowcasting after

a fixed sample estimation of the DFM25. We follow the same pseudo real-time approach for

computing BGR’s (2010) nowcast, the PMI-based tracker and the näıve AR(1) forecast.

Figure 5: Euro Area Nowcasts and Actual Data
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Source: Haver Analytics, IHS Markit, Author’s Calculations. Notes: Models are trained on a 2000-2013
sample of data and nowcasts are computed recursively thereafter. For a target quarter, the nowcast is
computed after estimating the underlying model on the panel of data up to the previous quarter, simulating
the real-time data availability pattern at each point, but abstracting from data revisions (pseudo real-time
forecasting). We use the data vintage available as of 30-June-2020.
Latest Observation: 30-June-2020.

Employing qualitative and quantitative metrics, we assess the forecasting performance of

our best nowcast (referred to as ’rich DFM’) against the other contenders26. Visual inspection

of nowcasts in figure 5 indicates that, during normal times, the models tend to perform

somewhat similarly. However, our model manages to timely detect the turning point in Q1-

2020, due to the COVID-19 shock, and correctly points at further contraction in Q2, albeit

wrongly predicting the order of magnitude. In terms of quantitative assessment criteria,

we use the Root Mean Squared Error (RMSE) and the Diebold-Mariano (DM) test (2002),

together with its modification from Harvey, Leybourne & Newbold (1997) (HLN test). We

also calculate Kuiper’s Score (KS) to assess qualitative properties of the forecasts, namely

how accurate the nowcasts are in calling for quarter-on-quarter contractions/expansions; we

propose a modified version of the score (MKS) for checking accuracy in terms of predicting

accelerations/decelerations in economic growth. The comparison of RMSEs in table 1 shows

that, regardless of the estimation approach (recursive or fixed) and training sample (2000-

2011 or 2000-2014), our rich DFM nowcast is cca. 75% more accurate than the AR(1)

24We firstly estimate the DFM on a balanced panel of 2000-2013 data, accounting for two recessions and
construct a forecast for Q1-2014. We then extend the estimation sample by a quarter and nowcast Q2-2014.
We iterate until Q2-2020.

25We no longer expand the DFM estimation sample. Once the DFM is estimated on the 2000-2013 data,
we fix estimates and use them for nowcasting

26It would be tempting to directly compare results to evidence from BGR (2010), Bańbura & Modugno
(2014). We caution this would not be adequate. The two papers forecast evaluation uses data prior to the
global financial crisis, not accounting, hence, for extreme shocks to growth. This naturally leads to lower
RMSE, even if the models were able to pick up non-linearities.
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prediction and BGR’s (2010) nowcast. However, forecasting accuracy gains over the PMI-

based tracker are modest. At the same time, evidence from the KS and MKS for directionality

accuracy are consistent with the RMSE comparisons, favouring the usage of alternative data,

modified factors structure and the other small, yet relevant, fine-tunings in the dataset.

Table 1: Pseudo Out-of-sample Performance Relative to the Näıve AR(1) Forecast

Recursive 2000-2011 Recursive 2000-2013 Fixed 2000-2013

RMSE KS MKS RMSE KS MKS RMSE KS MKS
PMI-based tracker 0.35 1.53 2.18 0.28 90.01 2.73 0.28 90.01 4.32
BGR (2010) nowcast 1.02 0.74 1.18 1.02 -3.75 1.73 1.05 -4.17 2.16
Rich DFM nowcast 0.29 0.79 2.64 0.23 90.01 3.67 0.24 90.01 5.21

Headers indicate the type of estimation and the time span of the used sample for the training of under-
lying models and parameters estimation. Results are reported relative to the metrics obtained from the
same exercise applied for predictions made with a näıve AR(1) model. Formulae for the Root Mean
Squared Error (RMSE), the Kuiper Score (KS) and our proposed modification of it (MKS) are presen-
ted in the appendix, where raw statistics for all models are also included. Forecast evaluation metrics
are calculated on windows starting after the endpoint of the estimation sample, also simulating the real-
time data availability pattern at each point in time where a nowcast is computed, but abstracting from
data revisions (pseudo real-time forecasting). Results of the pseudo out-of-sample exercise are based on
a vintage of data available at the end of June 2020.

Table 2: Diebold-Mariano Tests for Differences between Squared Nowcasts’ Errors

Recursive 2000-2011 Recursive 2000-2013 Fixed 2000-2013
RMSE DM HLN RMSE DM HLN RMSE DM HLN

Rich DFM nowcast 0.20 1.05 1.03 0.18 1.03 1.01 0.19 1.02 1.00
(0.30) (0.31) (0.32) (0.32) (0.32) (0.33)

Näıve AR(1) Forecast 0.70 0.78 0.77

Headers indicate the type of estimation and the time span of the used sample for the training of under-
lying models and parameters estimation. Formulae for the Root Mean Squared Error (RMSE), the Die-
bold-Mariano (DM) test and its modified version (HLN) are presented in the appendix, where raw sta-
tistics for all models are also included. Forecast evaluation metrics are calculated on windows starting
after the endpoint of the estimation sample, also simulating the real-time data availability pattern at
each point in time where a nowcast is computed, but abstracting from data revisions (pseudo real-time
forecasting). Results of the pseudo out-of-sample exercise are based on a vintage of data available at
the end of June 2020. The Diebold-Mariano (DM) and its modified version (HLN) use the calculated
statistic to test for H0: ’No significant difference in the squared error’ against the alternative. A high
statistic is evidence against the null hypothesis and indicates our rich DFM nowcast is more accurate,
in a statistically significant manner, provided P-values reported in parentheses are commensurately
small with the desired significance level. Testing is concerned with differences in squared nowcasts’
errors between the rich DFM and the AR(1) models.

Several results and aspects inherent to the considered sample and frequency of data

prompt us to qualify our argument. Although some marked differences in RMSE exist, the

DM test seems to fail to reject the null of no significant difference in the squared errors

between our nowcast and the AR(1) prediction, at confidence levels beyond 70% (table 2).

While this may, indeed, be the case between our nowcast and the PMI-based tracker, it can

hardly be true when it comes to BGR’s (2010) or the AR(1)’s performance, where the RMSE

differences are notably higher. However, the confluence of several factors may distort results

from the DM and HLN tests, also true for KS and MKS scores. Firstly, actual GDP data

comes in with quarterly frequency and, in spite of having a long panel of monthly data, there

are only 80 quarterly observations. Secondly, estimating the model on already cca. 70% of

the data leaves us with a small number of out-of-sample quarterly data points for evaluation

(25), this being problematic, particularly for the DM test. Among the first attempting to

address some of the DM test’s issues, Harvey, Leybourne & Newbold (1997) highlight its

potential small sample bias. Furthermore, as illustrated in Enders (2008) and appendix D,

21



the DM and HLN tests rely on the Central Limit Theorem to establish the loss differential

is normally distributed and use its asymptotic variance in the calculations of test statistics.

Consequently, our very limited sample size implies the results from the DM and HLN tests

may not be valid. Nevertheless, the RMSE is still indicating sizeable gains in nowcasting

with alternative data and richer factors structure.

Figure 6: Euro Area Squared Nowcasts’ Errors
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Source: Haver Analytics, IHS Markit, Author’s Calculations. Notes: Models are trained on a 2000-2013
sample of data and nowcasts are computed recursively thereafter. For a target quarter, the nowcast is
computed after estimating the underlying model on the panel of data up to the previous quarter, simulating
the real-time data availability pattern at each point, but abstracting from data revisions (pseudo real-time
forecasting). We use the data vintage available as of 30-June-2020 and, for the purposes of calculating the
squared error in Q2 only, we artificially add the GDP figure for Q2-2020, unavailable, otherwise in the
considered sample.
Latest Observation: 30-June-2020.

Turning to another angle in comparing the forecasting accuracy of our models, we inspect

directly the out-of-sample squared forecast errors (figure 6). As it was already evident with

the nowcasts in figure 5, we ascribe the higher RMSE of nowcasts based on BGR (2010)

and AR(1) models mainly to their inability of picking up the downturn in Q1-2020, squared

errors remaining somewhat similar before 2020. While the BGR (2010) nowcasts are fairly

similar to those of our proposed rich DFM prior to 2020, the BGR (2010) nowcast for Q1-

2020 indicated a positive 0.2% quarter-on-quarter growth, significantly different from the

actual outcome. BGR’s (2010) specification relies on a traditional dataset, where most

timely sources of data are business survey series, a large fraction of which had already been

collected by the time COVID-19 has affected activity in mid-March. It should, therefore,

perhaps not be surprising that more timely alternative data helped the rich DFM model

indicate the turning point better. Furthermore, as we show in table 3, while differences in

RMSE remain in favour of the rich DFM, they become modest when excluding the ’black

swan’ shock of Q1-2020. Artificially including the real GDP growth outcome of Q2-202027

in the vintage of data we used (end of June 2020) further increases the disparities in RMSE.

These findings support our view that while in normal times the rich DFM does not add much

to nowcasting accuracy, abnormal times illustrate the usefulness of its expanded dataset and

factors structure.

To further support our proposed model extensions, we illustrate how the sequential addi-

tion of factors impacts the RMSE of our nowcasts. We depart from nowcasting with a DFM

specification strongly resembling that of BGR’s (2010), which uses global, nominal and real

factors. Starting from a dual-factor model comprising global and real blocks, we sequentially

add specific data and factors and report the pseudo out-of-sample nowcasting RMSE in table

27For RMSE calculation purposes only and not DFM estimation or Kalman filtering, since the observation
was not available as of 30-June-2020, our used vintage.
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Table 3: Pseudo Out-of-sample Forecast Evaluation on Different Data Samples
Näıve AR(1) forecast PMI-based tracker BGR (2010) nowcast Rich DFM nowcast

Including Q4-19 0.22 0.19 0.21 0.18
Including Q1-20 0.78 0.22 0.80 0.18
Including Q2-20 2.08 2.32 1.67 1.34

The table reports nowcasting RMSE, for models mentioned in the headers, where nowcasts are considered up to Q4-2019,
Q1-2020 and Q2-2020. Estimation of the underlying models is conducted on the 2000-2013 sample of data, available as
of 30-June-2020, also simulating the real-time data availability pattern at each point in time where a nowcast is computed,
but abstracting from data revisions (pseudo real-time forecasting). Nowcasts are computed recursively, thereafter. Q2-2020
real GDP growth outcome has been artificially added to the vintage for RMSE calculation purposes only.

4. Except for the addition of the labour factor, the real-time data factor and the ACI series

in the financial data factor, enriching the factors structure has resulted in outright reductions

of RMSE. We then test the jointly restricted DFM-based nowcast, where factors and data

previously increasing the RMSE have been excluded. Results indicate that excluding these

data and factors from the model leads to significant deterioration in nowcasting accuracy, i.e.

these discarded factors are seemingly jointly significant. We believe these findings suggest a

DFM without the rich factors structure may be misspecified, the omission of these factors

and variables biasing the nowcasts and leading to higher RMSE.

Table 4: Pseudo Out-of-Sample Forecast Evaluation with Sequential Factors Addition
Model Specification

BGR (2010) Rich DFM (restricted) Rich DFM
0.80

G R 0.80
G R S (ex. Trucks Toll Index and PMI New Orders-Inventories) 0.72
G R S 0.70
G R S L 0.71
G R S L F (ex. ACI) 0.35
G R S L F 0.54
G R S L F RT 0.54
G R S L F RT SS 0.18

Joint Restriction: G R S F (ex. ACI) SS without L RT factors 0.73

0.18

The table reports the RMSE for various nowcasts based on restricted and unrestricted DFM specifications. Global (G), Real (R), Soft
Data (S), Labour (L), Financial Data (F), Real-time Data (RT) and Supply Side Shocks (SS) factors are sequentially considered in
the DFMs trained on 2000-2013 data, with nowcasts computed recursively thereafter, based on the vintage of data from the end of
June 2020. BGR (2010) original specification encompasses G, R and nominal factors, but, given our proposed approach, we start
with the closest specification, namely a dual G, R factors structure. We sequentially add restricted and unrestricted factors to assess
their contribution to the reduction of uncertainty around the point forecast. The table reports RMSE for each specification, including
a jointly restricted model where factors and data that were increasing the RMSE with their addition have been jointly excluded. RMSE
for BGR’s (2010) and our full specification Rich DFM are reported for comparison. The lhs column indicates which specification is
used in the Restricted Rich DFM nowcast.

5.2 The COVID-19 Shock

This section makes use of the news-based decomposition of the nowcast revisions, introduced

in DFMs by BGR (2010), to illustrate the contribution of specific blocks to the changes in

our rich DFM-based predictions for Q1/Q2-2020. We present results from two exercises. In

the first one, we use the pseudo real-time environment and the stylised calendar to generate

and analyse the series of nowcasts for Q1/Q2-2020 in the middle and at the end of each

month of the quarter, roughly corresponding to the release dates of major data points. Our

second exercise looks into the evolution of our Q2-2020 nowcast using two EABCN vintages

of data alongside our dataset as available at the end of June-202028; given the availability of

data in the RTDB, the exercise is not feasible in the case of Q1-2020. Forecasts are computed

recursively, in the sense that, at each moment in the quarter, we train the rich DFM and

28We use the RTDB vintages from 29-April-2020 and 03-June-2020 alongside our own 30-June-2020 vin-
tage. Wherever the needed series were unavailable in the RTDB, these have been sourced from the 30-June-
2020, in this respect the exercise remaining a pseudo real-time simulation, and not a genuine one.
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re-run the data through the KF using the panel of data ending prior to the running quarter,

with the real-time data availability pattern simulated according to the same stylised calendar

at each point of the projection; unavoidably, the retraining and refiltering leads to model

recalibrations29. Results indicate three important aspects: for one, alternative data sources

and the rich factors structure seem to have been driving the nowcasts towards detecting the

turning point; secondly, the impact from revisions seems to be rather muted, in line with

findings from earlier literature; last but not least, the volatile and non-Gaussian nature of the

datapoints reflecting the pandemic-induced shock leads to non-negligible model recalibrations

with marked effects on how the nowcasts are revised.

Figure 7: News-analysis of Euro Area Nowcasts in Pseudo Real Time
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Source: Haver Analytics, IHS Markit, Author’s Calculations. Notes: Models are trained on a 2000-2013
sample, with nowcasts computed recursively thereafter, based on a 30-June-2020 vintage. Nowcasts are
computed after estimating the model on the sample up to the previous quarter. Charts illustrate, using the
news, how data surprises from various factors impact the nowcast throughout the quarter. Factors
contributions to the nowcast revision are multiplied by 10 up to and including 15-March in order to be
visible when compared to the pandemic-shock.

News-based pseudo real-time analysis of the data flow in the first quarter of 2020 reveals

how our alternative data and factors detect the turning point. The first panel in figure 7

illustrates the evolution of our Q1 nowcast, using the news concept30. As the euro area

economy was slowly bottoming out of its industrial recession, soft data factors have system-

atically picked up data surprises, eventually being matched by revisions due to the lagged

hard data releases in the real factor in mid-March. As COVID-19 started to ravage Europe,

the first relevant data points and nowcast revisions came in through soft data, more precisely

business surveys and the toll index with reference to March activity. However, the bulk of

the nowcast downward revision came from the labour factor (cca. -3 pp.), where our Google

Trends labour and short-time work indices detected pressures on employment and jittery

sentiment among employees, surprising to the downside model-based expectations. Without

our novel labour factor’s contribution, our nowcast would have indicated, ceteris paribus, a

modest -0.1% quarter-on-quarter growth.

Looking into the most affected quarter at the time of writing, our Q2 nowcast and the

news-based analysis of the data flow indicates our model has correctly identified the underly-

ing economic trends. In Q2, with synchronised lock-downs in full swing across Europe, April

tepid activity has been reflected in downward nowcast revisions stemming from business

29These imply both changes in the estimated model parameters but also in the estimated unobserved
factors.

30Factors contributions are multiplied by 10 up to and including 15-March in order to be visible when
compared to the pandemic-shock.
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Figure 8: News-analysis of Euro Area Nowcasts in Real Time
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Source: Haver Analytics, IHS Markit, Author’s Calculations. Notes: Models are trained on a 2000-2013
sample, with nowcasts computed recursively thereafter, based on RTDB and our own 30-June-2020
real-time vintages. Nowcasts are computed after estimating the model on the sample up to the previous
quarter. Charts illustrate, using the news concept, how data surprises from various factors impact the
nowcast throughout the quarter.

survey releases in April and lagged hard data prints coming in mid-June (rhs figure 7). As

a result of monetary and fiscal policy pledges and the gradual lifting of lock-down measures,

the tentative rebound in confidence and activity from May and June was reflected in soft and

real data factors. These have surprised our model to the upside, lifting somewhat our Q2

nowcast too. Evidence from the genuine real-time exercise illustrated in figure 8 is consistent

with our observations; it also confirms earlier findings in the literature that data revisions

have a limited impact only. However, the striking aspect coming out of Q2’s data is the

impact of recalibrations and refiltering with each nowcasting iteration, likely reflecting the

fact that our DFM model heavily relies on the assumption of Gaussian data, the COVID-19

shock coming in clearly as a tail-event.

6 Concluding Remarks

In this paper, we take the standard approach of nowcasting euro area real GDP growth of

Giannone, Reichlin & Small (2008) and explore how several extensions impact the accuracy

of the forecasts. More precisely, we look at how nowcasting performance changes after

augmenting the standard model with alternative data, expanding the latent factors structure

and changing how some of the standard model data is included. We report results from

several pseudo and genuine out-of-sample forecast evaluation exercises and illustrate how

our nowcasts have performed throughout Q1 and Q2-2020, the height of the COVID-19

induced recession in the euro area.

We present empirical evidence in favour of the hypothesis that our proposed dataset

and factors expansion increase nowcasting accuracy in times of severe stress. While gains

in forecasting accuracy remain modest over other standard models outside the COVID-

19 crisis, improvements in the root mean squared error and Kuiper’s score for directionality

accuracy, when considering the whole panel of data, are meaningful and non-negligible. In the

paradigm of the classical regression model hypothesis testing, we also explore the contribution

of each of our model innovations to the improvement in nowcast accuracy. Finally, building

on the news-based nowcasting revisions decomposition proposed by Bańbura et al. (2010),

we show how and owing to what data sources our forecasts have changed throughout the
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quarters. The news-based analysis indicates the alternative data did help detecting the

turning point in Q1 and, while it deems data revisions irrelevant, it also shows that model

recalibrations, due to recent non-Gaussian observations, lead to significant nowcast revisions.

While our results seem exciting and encouraging for data science enthusiasts, we note

several caveats the researcher should bear in mind. The increasingly more rapid expansion

of alternative data sources means more opportunities for implementing this new paradigm

in traditional models used by policy-makers and investors. At the same time, these novel

sources of data should be cautiously embraced, as they are not subject to the same structur-

ing, quality controls and scrutiny specific to traditional official statistics. Relying on tools

exploiting such data when making policy or investing decisions seems premature. Further-

more, our proposed methodology is essentially attempting to capture non-linearities using

a linear model; given the underlying Kalman filtering techniques we used are grounded in

the assumption of normally distributed data, our results, particularly given the severe shock

of the ’Great Lockdown’, should be read with even more caution. Nevertheless, our study

is, we hope, a useful illustration of how alternative data could be effectively employed in

real-time nowcasting.

As discussed throughout our paper, there are several avenues of future research. In spite

of having been explored in the past, daily factor models have not included yet alternative

data sources. As the pandemic has accelerated the use and public dissemination of these

data and many other, this approach may be fruitful. Another direction for future research

consists of explicit and more sophisticated (than we did) modelling of stochastic volatility

and using non-Gaussian Kalman filtering in the nowcasting framework.
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Appendices

A Details of the State Space Form (SSF)

Factors partitioning, AR coefficients, covariance matrix:

Λ =



ΛS,G ΛS 0 0 0 0 0

ΛR,G 0 ΛR 0 0 0 0

ΛL,G 0 0 ΛL 0 0 0

ΛF,G 0 0 0 ΛF 0 0

ΛRT,G 0 0 0 0 ΛRT 0

ΛSS,G 0 0 0 0 0 ΛSS


ft =



fGt

fSt

fRt

fLt

fFt

fRTt

fSSt



A =



AG 0 0 0 0 0 0

0 AS 0 0 0 0 0

0 0 AR 0 0 0 0

0 0 0 AL 0 0 0

0 0 0 0 AF 0 0

0 0 0 0 0 ART 0

0 0 0 0 0 0 ASS


Q =



QG 0 0 0 0 0 0

0 QS 0 0 0 0 0

0 0 QR 0 0 0 0

0 0 0 QL 0 0 0

0 0 0 0 QF 0 0

0 0 0 0 0 QRT 0

0 0 0 0 0 0 QSS


The SSF:

xt =

(
Λ 0 0 0 0 In 0 0 0 0 0

ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ 0 1 2 3 2 1

)



ft

ft−1

ft−2

ft−3

ft−4
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εQt

εQt−1
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+
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εQt
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εQt

εQt−1

εQt−2

εQt−3

εQt−4



=
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I7 0 0 0 0 0 0 0 0 0 0
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0 0 I7 0 0 0 0 0 0 0 0

0 0 0 I7 0 0 0 0 0 0 0

0 0 0 0 0 αn 0 0 0 0 0

0 0 0 0 0 0 αnQ 0 0 0 0
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0 0 0 0 0 0 0 0 InQ 0 0

0 0 0 0 0 0 0 0 0 InQ 0
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ft−5
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εQt−1
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εQt−3

εQt−4

εQt−5



+



ut

0

0

0

0

et

eQt

0

0

0

0



(15)

n/nQ: number of monthly/quarterly series; αn = diag(α1, ..., αn); αnQ = diag(αQ,1, ..., αQ,nQ).
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B The Kalman Filter (KF) and Smoother

Given full SSF notation from (14) and Harvey (2006) notes on KF, we have ft−1 the

latent true states at t − 1 with their unconditional optimal estimate, the unconditional

mean at−1 using information up to and including t − 1 and covariance matrix Pt−1 =

E[(ft−1 − at−1)(ft−1 − at−1)
′]. The prediction equations yielding factors’ expectations and

the covariance at t conditional on t− 1 information are:

at|t−1 = T (θ)at−1 (16)

Pt|t−1 = T (θ)Pt−1T (θ)′ + Ση(θ) (17)

New observations in xt update the estimate of ft, at|t−1, and the covariance through the

updating equations (yielding unconditional means/variances for factors estimates):

at = at|t−1 + Pt|t−1Z(θ)′F−1t [xt − Z(θ)at|t−1] (18)

Pt = Pt|t−1T (θ)′ − Pt|t−1Z(θ)′F−1t Z(θ)Pt|t−1 (19)

where Ft = Z(θ)Pt|t−1Z(θ)′ + Qt. The innovation term in brackets in the first updating

equation is an error between realised and predicted values. One can intuitively read the

updating equations as correcting the state estimate given innovations, while the covariance,

i.e. uncertainty, around the state estimate shrinks with new information. A key quantity is

the Kalman gain, Pt|t−1Z(θ)′F−1t ; it provides the means for ’correcting’ (updating), the state

estimates and covariance when innovations become available.

The SSF, the prediction and updating equations are key in our model and enable us to

exploit the timeliness of data. The updating equation helps increasing the accuracy of states

estimators given incoming data, while the prediction equation forms expectations about

the states in the future. The observation equation in (14) enables us go back from states

representation to pure observations and form our nowcasts.

Before KF predicting and smoothing, one has to recover the parameters stored in θ. The

estimation of θ is conducted through maximising the joint likelihood of the observed data.

This ML estimation, the M-step in the EM algorithm of the QML, is equivalent to minimising

the prediction error and variance. The log-likelihood in Harvey (2006) is:

LL(x1,...,n|θ) = −NT
2

log 2π − 1

2

T∑
1

log |Ft| −
1

2

T∑
1

v′tF
−1
t vt (20)

where vt = xt−Et|t−1[xt] are innovations. Missing values in xt are filled in, using the Kalman

smoother, with Et|T [xt]; this data augmentation with fabricated observations is crucial in

computing the joint likelihood and represents the E-step of the EM algorithm. Taking the

first order conditions to maximise LL(x1,...,n|θ) w.r.t θ yields the expressions for the QML

estimators (BGR (2010), Bańbura & Modugno 2014, Bańbura et al. 2013).

While the KF enables prediction of observed and latent data at t given prior information,

the Kalman smoother yields expectations conditional on the whole information set. Filtering

relies on information up to and including t − 1 for predicting the state and, through the

observation equation, the observable data in time t, i.e. Et|t−1[ft] and Et|t−1[xt], respectively.

The smoother gives the model implied expectation of states and observations at t conditional

on the whole data up to T , i.e. Et|T [ft] and Et|T [xt]. Since t runs from 1 to T , the smoother

is a ’backcasting’ tool, crucial in filling in missing values (E-step). Forecasting/nowcasting

implies using the KF – e.g. nowcasting the state with ET |T−1[fT ], i.e. aT |T−1, and, through the
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observation equation, obtaining the nowcast for the target series from the vector ET |T−1[xT ] =

Z(θ)aT |T−1.

Recursions for fixed interval smoothing from Harvey (2006):

at|T = at + P ∗t (at+1|T − Z(θ)at) (21)

Pt|T = Pt + P ∗t (Pt+1|T − Pt+1|t)P
∗
t
′ (22)

with P ∗t = PtZ(θ)′P−1t+1|t, while t runs backwards from T −1 to 1. ’Initial conditions’ starting

the smoother are aT |T = aT and PT |T = PT stored, together with at and Pt, after running

the data through the standard KF.

C The Dataset and Model Specifications

Table 5: Data Description and Model Specification
Series Group Freq. Transf. Pub. Lag Week Rich DFM BGR (2010) EABCN

IP, Total Industry Real Monthly pch 2 2 x x x
IP, Manufacturing Real Monthly pch 2 2 x x x
Retail Trade Real Monthly pch 2 1 x x x
New Passenger Car Registrations Real Monthly pch 1 3 x x x
Manufacturing New Orders Real Monthly pch 2 3 x x
Extra EA Exports Real Monthly pch 2 2 x x
Unemployment Rate Labour Quarterly chg 3 1 x x x
Index of Employment, Total Industry ex Energy Labour Quarterly pch 3 3 x x x
PMI Manufacturing Output Soft Monthly chg 0 4 x
PMI Manufacturing New Ord - Inventories Soft Monthly chg 0 4 x
PMI Manufacturing Capacity Utilisation Supply Side Shocks Monthly chg 1 4 x
PMI Manufacturing Headline Soft Monthly chg 0 4 x
PMI Services Headline Soft Monthly chg 0 4 x
EC Survey Industrial Confidence Soft Monthly chg 0 4 x
EC Survey Consumer Confidence Soft Monthly chg 0 4 x
EC Survey Services Confidence Soft Monthly chg 0 4 x
EC Survey Retail Confidence Soft Monthly chg 0 4 x
EC Survey Construction Confidence Soft Monthly chg 0 4 x
HICP Overall Global Monthly pch 0 4 x x x
PPI Global Monthly pch 2 1 x x x
EC Survey Industrial Selling Price Exp Soft Monthly chg 0 4 x
M3 Index of Notional Stocks Financial Monthly pch 1 4 x x
Lending Index Financial Monthly pch 1 4 x
DJ Euro Stoxx Broad Financial Monthly pch 0 4 x x x
3-month EURIBOR Financial Monthly chg 0 4 x x x
Narrow Effective Exchange Rate Financial Monthly pch 0 4 x
EA RGDP Chained Real Quarterly pch 3 4 x x x
Employment Labour Quarterly pch 3 2 x x x
EC Survey Industry Expected Constraints Supply Side Shocks Quarterly chg 0 4 x
EC Survey Capacity Utilisation Index Supply Side Shocks Quarterly chg 0 4 x x
EC Survey Capacity Utilisation Services Supply Side Shocks Quarterly chg 0 4 x
US RGDP Global Quarterly pch 2 4 x
Unit Labor Costs Labour Quarterly pch 3 2 x
Compensation per Employee Labour Quarterly pch 3 2 x
Augmented Credit Impulse (levels) Financial Monthly chg 2 2 x
Real Time Electricity Consumption ENTSOE Real Time Monthly pch 0 4 x
EUROSTAT Electricity Consumption Real Time Monthly pch 2 2 x
Google Trends Autos & Vehicles Real Time Monthly chg 0 4 x
Google Trends Finance Real Time Monthly chg 0 4 x
Google Trends Shopping Real Time Monthly chg 0 4 x
Google Trends Travel Real Time Monthly chg 0 4 x
Google Trends Short-time Work Labour Monthly chg 0 4 x
Google Trends Unemployment Labour Monthly chg 0 4 x
ECB Total Hours Worked Labour Quarterly pch 3 2 x
ECB Hours Worked Per Employee Labour Quarterly pch 3 2 x
ESTAT Total Hours Worked Labour Quarterly pch 3 4 x
Germany Trucks Toll Index Soft Monthly pch 0 4 x

”Group” refers to the factor block which the series is loaded on, by default all variables being loaded on the Global factor, most of them having loadings on other na-
rrow factors, too. The two possible transformations applied to the series are monthly percentage changes (”pch”) or monthly changes (”chg”). Publication lags and
the specific week indicate the lag, with respect to the running month, and the week of the month when the data are finally published, needed for the stylised calendar.
We label our specification ”Rich DFM” while the benchmark from the literature ”BGR (2010)”; note that our DFM has its specific factors structure and for BGR’s
(2010) specification we use the structure from the original paper. We start from a panel of 90 series but through systematic trial and error end up with a panel of
dimensions (N, T ) = (34, 249). EABCN column indicates the availability of series in the EABCN RTDB, or lack thereof.
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Figure 9: Euro Area Electricity Consumption
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Latest Observation: July-2020.

Figure 10: Euro Area Short-time Work
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D Details of the Empirical Results

Table 6: Full Results of the Pseudo Out-of-sample Nowcasting Evaluation

Recursive 2000-2011 Recursive 2000-2013 Fixed 2000-2013

RMSE KS MKS RMSE KS MKS RMSE KS MKS
Näıve AR(1) Forecast 0.70 0.63 0.24 0.78 0.01 0.19 0.77 0.01 0.12
PMI-based tracker 0.24 0.96 0.53 0.22 1.00 0.53 0.21 1.00 0.53
BGR (2010) nowcast 0.71 0.46 0.29 0.80 -0.04 0.34 0.81 -0.04 0.27
Rich DFM nowcast 0.20 0.50 0.64 0.18 1.00 0.71 0.19 1.00 0.64

Headers indicate the type of estimation and the time span of the used sample for the training of under-
lying models and parameters estimation. Results are raw, not relative to the metrics obtained from the
same exercise applied for predictions made with a näıve AR(1) model. Formulae for the Root Mean
Squared Error (RMSE), the Kuiper Score (KS) and our proposed modification of it (MKS) are presen-
ted in the appendix, where raw statistics for all models are also included. Forecast evaluation metrics
are calculated on windows starting after the endpoint of the estimation sample, also simulating the real-
time data availability pattern at each point in time where a nowcast is computed, but abstracting from
data revisions (pseudo real-time forecasting). Results of the pseudo out-of-sample exercise are based on
a vintage of data available at the end of June 2020.

RMSE =

√
{ytarget − ET [ytarget]}2

T

In answering whether the prediction accuracy significantly differs between models, we

use the Diebold-Mariano (DM) test, yet remain cautious on its interpretation. Diebold &

Mariano (2002) introduced the method which relies on the loss function associated with the

exercise – here, the squared error L(ytarget,ET [ytarget]) = L(etarget) = {ytarget−ET [ytarget]}2. It

then tests the null of equal expected loss, E[L(eatarget)] = E[L(ebtarget)], against the alternative

(different accuracy). The DM test is based on the loss differential dtarget,T = L(eatarget) −
L(ebtarget), testing H0 : E[dtarget] = 0 vs. Ha : E[dtarget] 6= 0. The test is concerned with

population quantities, but is conducted using sample counterparts:

DM =
d√

avar(d)
=

d√
LRVd

∼ N(0, 1)

with d = 1
N

∑N
i=1 d

i
target,T , LRVd = γ0 + 2

∑∞
k=1 γk and γk = cov(dtarget, dtarget−k); N denotes

the number of nowcasts computed. Hence, the test is not ideal for small samples, as it is the

case in our analysis.

Harvey, Leybourne & Newbold (1997) suggest modifying the DM, but their HLN test

does not fully address small sample issues either. We use it following HLN = DM × k

where k = {[N + 1−2×h+h× (h−1)/N ]/N}1/2 and h denotes the horizon for the nowcast

computation.

Table 7: Events and Outcomes for the KS (MKS)

Outcomes
Up yt ≥ 0 (yt ≥ yt−1) Down yt < 0 (yt < yt−1)

Forecasts Up Et[yt] ≥ 0 (Et[yt] ≥ yt−1) Hits Nuu False Alarm Nud

Down Et[yt] < 0 (Et[yt] < yt−1) Misses Ndu Correct Rejection Ndd

Note the headers indicate in parantheses the definition of events and outcomes for the MKS as well

The qualitative criteria we use are Kuiper’s Score (KS) and our proposed modification of it

(MKS), aiming to assess the ability of our models to correctly identify economic events from

non-events, checking whether the models are correctly distinguishing booms/recessions and
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accelerations/decelerations. We define events and outcomes below and compute the scores

as a differential between the proportion of correct hits, H, and false alarms, F ; H = Nuu
Nuu+Ndu

and F = Nud
Nud+Ndd

.
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