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Abstract

Large online platforms, like Airbnb or Amazon Marketplace, increasingly direct users to

internal search engines that limit the number of sellers consumers observe. We show that

such behaviour is consistent with pro�t maximisation. To do so, we model buyer-seller

interactions as a series bipartite graphs, which are each realised with a probability chosen

by the platform owner. Prominent players disproportionately increase competition, which

decreases prices. To maximise pro�t, the platform owner ensures that buyers only observe

a consistent number of sellers in every state of the world realised with positive probability.

When products are vertically di�erentiated, the platform owner biases observation towards

high-quality products, but doing so reduces prices, and, as a result, the optimal number

of sellers in the network. The extent to which platforms in di�erent markets highlight

high-quality products and the number of sellers their search processes show is a function

of both quality dispersion and substitutability.

*I would like to thank Alex Teytelboym and Mark Armstrong for their invaluable contributions to this paper.
Thank you also to Sanjeev Goyal, Mihai Manea, Matthew Elliott, Meg Meyer and participants at conferences
at Stony Brook Game Theory Festival, the Paris School of Economics and the Northwestern-Paris-Oxford
theory seminar for their comments on this paper.
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1 Introduction

Many economic interactions occur in settings where sellers are only able to sell to a subset of

buyers. This strati�cation might occur, for example, because: sellers are unable to supply some

consumers due to geographic constraints or due to consumer preferences (see, for example,

Spiegler, 2006); consumers might be uncertain which �rms are active in a market, as in

Janssen and Rasmusen (2002); . In such settings, a seller potentially faces di�erent levels of

competition for each individual consumer that they can supply - some buyers could be supplied

by a large number of sellers, while others may only be able to buy goods from a single seller.

Buyers online platforms generally only observe a subset of sellers in any given market.

Ringer and Skiera (2016) �nd that 99.9% of potential buyers of LCD TV sets only observe

sixteen of a possible 1,124 products on a German price comparison website. Similarly, Kim,

Albuquerque and Bronnenberg (2010) examine the camcorder market on Amazon and �nd

that the median search set for consumers of these products was eleven out of a total of more

than ninety camcorders available on the platform.

By choosing a search environment, owners of large online platforms choose which buyers

observe which sellers, and how many sellers e�ectively compete with one another. Consumers

do not tend to engage as much with results lower down on a search page or products not on

the �rst page of search results (Smith and Brynjolfsson, 2001, Baye et al, 2009 and Baye et al

2016) and almost all modern-day online platforms use ordered search with limited results per

page as the dominant method of navigating products in a market.

While there are behavioural explanations (e.g. rational inattention, see Hefti and Heinke,

2015) for the similarity in the search environments of online platforms, we show that presenting

users with a �xed number of sellers is consistent with pro�t maximisation on a monopoly plat-

form. While limiting number of products consumers observe reduces total sales, the platform

is willing to forego some buyer-seller matches in order to increase prices.

We examine a case where search is decentralised in the sense that each buyer observes each
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seller with some independent probability, but each observation probability is itself randomly

determined. We �nd that a platform owner prefers a distribution of observation probabilities

to a symmetric mean-preserving spread of that distribution; the case where some sellers are

randomly more prominent than others is costly. A prominent seller in this setting faces more

competition in expectation and therefore sets a relatively low price, lowering prices across the

network.

This insight, combined with the observation that the platform owner has an incentive to

avoid settings where consumers observe a large amount of products is pro�t increasing for the

platform, implies that an environment where consumers observe the same number of sellers

on average is always optimal, as this maximises seller price for a given number of buyer-seller

interactions. Real-life search environments generate precisely this set-up as they regulate the

number of sellers observed by buyers, such that sellers know how many competitors they face

in a given market.

We also analyse the case where goods are vertically di�erentiated. We �nd that the plat-

form has the incentive to bias consumer observation towards high-quality sellers. Doing so,

however, increases the probability that sellers compete with a high-quality seller, which gen-

erates an incentive to reduce the number of sellers in the market.

Markets in which quality dispersion is high tend to result in higher pro�ts, as the platform

is able to increase the probability that high-quality sellers are observed. Whether the number

of sellers observed by buyers is higher or lower than markets with low-quality depends on

product substitutability. If products are not that substitutable, then the competition e�ects

associated with a high-quality seller being observed dominate, and so fewer sellers are observed

on average when quality dispersion is high.

However, when products are highly substitutable, there are few competitors in the market

to start with, and the cost of missing out on sellers near the top of the quality distribution is

in expectation higher when quality is highly dispersed, so the platform shows more sellers to
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the buyers in this setting compared to the case where seller quality is more similar.

Our analysis therefore generates testable predictions about the structure of the search

environment on di�erent platforms, which we summarise in the following diagram:

Figure 1: The optimal number of sellers on a platform depends on the market(s) they operate
in. Bold text indicates an example market that has the relevant characteristics.

We model the online platform environment as a network that connects sellers with buyers

who could potentially demand goods from them. We characterise the equilibrium price setting

behaviour of sellers competing for consumer segments (i.e. groups of consumers who share

some characteristic like age or location) in a potentially large-scale stochastic network. The

network is stochastic in the sense that we assume that there is some probability of a given

buyer observing a given seller and that the actual network is only realised after price setting

has taken place.

We examine both the case in which the observation network is randomly determined by

nature, which we call �decentralised search� and the case where the network is determined by

the platform owner directly. In both cases, the observation network generates a competition
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network with links between sellers that measure the extent to which two sellers compete with

one another for consumers, which in turn determines equilibrium prices.

More speci�cally, we �nd that a seller's price is linked to their Bonacich centrality in a

network connecting sellers and consumer segments who observe them with some probability.

This result is consistent with the literature on strategic interaction in networks (e.g. Ballester,

Calvò-Armengol and Zenou, 2006), as well as more recent work applying price or quantity com-

petition to network environment (see, for example, Elliott and Galleotti, 2019). When sellers

are symmetric in terms of the substitutability of their goods and their own-price elasticity, we

�nd that a seller's price is falling in their centrality.

Our �nding that prices are decreasing in seller centrality in turn determine the pro�t

maximising network structure from the platform's perspective. The notion of a seller being

highly prominent corresponds precisely with them being more central in the network, and a

node being more central than average has a disproportionate impact on the centrality of other

nodes. Sellers in direct competition with the prominent seller, which drives a fall in prices,

which then produces a feedback e�ect: sellers in competition with sellers with lower prices

must decrease their price in order to compete e�ectively, as prices are strategic complements

(Bulow, Geanakoplos, and Klemperer, 1985).

The remainder of the results described above stem from this feedback e�ect inherent within

the equilibrium action of each seller. Search environments that reduce the probability that one

seller is particularly prominent increase aggregate pro�ts. When a seller has higher quality,

the increases the probability that they are observed by increasing the number of total sellers

buyers observe, but doing so increases competition, which implies that the platform owner has

an incentive to reduce the number of sellers that are observed.

Our analysis more generally indicates that monopoly platforms have an incentive to lower

competition on the platform by changing its structure. Given that the optimal structure from a

consumer surplus perspective is one in which each buyer observes each seller with a probability
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of one, the fact that platforms may choose to only allow consumers to observe a fraction of the

total number of goods on o�er is harmful to welfare. This suggests that competition author-

ities should examine intra-platform competition, in addition to inter-platform competition.

Regulating the internal structure of the networks that underpin large online platforms may

reduce the extent to which consumers are harmed by the formation of monopolistic platforms.

2 Literature review

In general, the literature that models buyer-seller interactions in a network setting has focused

on cases where buyers bargain with sellers they are connected to (Kranton and Minehart, 2001,

Corominas-Bosch, 2004 and Polanski, 2007) over a single, indivisible good. This approach

seems particularly relevant in relatively �thin� markets, populated by a small amount of buyers

and sellers, and where the goods being sold are discrete. In thin networks with discrete goods,

individual buyers and sellers can make bilateral agreements with one another easily.

However, many real-world cases of networks connecting buyers and sellers are not thin

markets. For example, online platforms, such as Amazon and Airbnb have a very large number

of users, with sellers interacting with a large number of buyers at any one time. This would

make bilateral bargaining between users di�cult, and in general prices on these platforms are

not bilaterally negotiated or set by the owner of the platform itself. A natural assumption in

a thick market is that sellers choose a single price which is the same for each potential buyer.

Our starting framework is therefore more akin to the networks literature spawned by Ballester,

Calvò-Armengol and Zenou (2006), and developed in a IO setting in work such as Elliott and

Galleotti (2019) and Bimpikis, Ehsani and Ilkiliç (2018).

In terms of equilibrium characterisation, our �nding that a seller's price in equilibrium is

decreasing in their Bonacich centrality in a seller-only network is consistent with Ballester,

Calvò-Armengol and Zenou (2006), which �nds that if direct e�ects are su�ciently small,

the equilibrium action of each player in a network is proportional to their Bonacich centrality.
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The price setting behaviour of sellers are strategic complements in this setting, which might

suggest, as in Bramoullé, Kranton and D'Amours (2014), that the more central a seller in the

network, the higher their price.

Bimpikis, Ehsani and Ilkiliç (2018) examine networked quantity competition. Firms com-

pete for multiple markets, and each �rm has a non-separable cost function, such that the

quantity produced in one market a�ects the marginal cost of production in another. In this

setting, it can be shown that quantities in that model are proportional to their Bonacich

centrality with a negative decay factor.

Elliott and Galeotti (2019) show that in a Hotelling environment in which sellers compete

on price and are di�erentiated by location, a seller j's price is determined not only by the

sellers with whom directly j competes, but also those sellers in other markets that compete

with j's competitors. This result is a corollary of our more general characterisation of the

price equilibrium of the sellers on the platform.

The link we �nd between pricing and centrality is consistent with earlier work in industrial

organisation, which examines the role �captive� buyers have on optimal pricing. Ireland (1993)

and McAfee (1994) consider a framework in which sellers of a homogeneous good compete for

consumers and have �independent reach� - the fact that a consumer observes a �rm does not

a�ect the probability that the consumer observes another �rm. The unique mixed equilibrium

of this game is one in which the lowest price within each seller's strategy set is the same, but

the strategy of the seller with the largest proportion of captive consumers contains the highest

maximum price. De Francesco and Salvadori (2013) and Armstrong and Vickers (2019) extend

this analysis to cases where �rms have di�erent capacities and only the largest �rm has captive

customers respectively.

Our results in seller prominence in the decentralised search setting di�er from earlier work

on prominence such as Armstrong, Vickers and Zhou (2009), which examines the case where

consumers engage in costly search to learn the price and match value of a series of products.
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If one product is more prominent than another, then it is observed �rst, with buyers choosing

whether to buy it or search for other products. They �nd that the prominent �rm sets a lower

price than other sellers, who set a higher price than in the case where matching is random,

increasing pro�ts. In contrast, our analysis �nds that prominence causes prices to fall, because

prominence increases the expected intensity of competition, which has a disproportionately

large e�ect on prices.

By choosing the probability that di�erent networks are realised, the platform owner has

the ability to intervene in order to in�uence the actions of the sellers. There is a growing

literature on intervention in networks, though much of this literature does not consider the

question of network design directly.

An early example of a central planner intervening in a network on which players interact is

Ballester, Calvò-Armengol and Zenou (2006), which uses their characterisation of equilibrium

to identify the key player in the network, the removal of whom would allow a central planner

to reduce total activity the most with the removal of a single player.

Birge, Candogan and Chen (2018) construct a model in which �rms are connected to

buyers on a network controlled by a platform and choose their price in order to attract buyers

with di�erent valuations of a single good. They characterise the e�ect of network structure on

the pro�tability of commissions and subscriptions from a platform's perspective, �nding that

revenue loss is potentially unbounded when all sellers are charged either a common commission

or the same subscription fee regardless of their location in the network.

In an industrial organisation setting, Cominetti, Correa and Stier-Moses (2009) and Chawla

and Roughgarden (2009) compare the e�ciency of competitive equilibria of a game involving

Bertrand competition between �rms who act as intermediaries who control the �ow of some

good (for example) by controlling the edges of a network compared with the optimally e�cient

network �ow.

Galeotti, Golub and Goyal (2019) examine a case where a central planner can partly
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determine (at an exogenously imposed cost) the payo� of players in a network, which in turn

determines the equilibrium actions of each player. While there is similarity between this

approach and the one utilised here, our intervention in the network is on its design, rather

than on the payo� functions of the agents. Furthermore, the cost of intervention in our model

arises endogenously from the e�ect that changing observation probabilities has on increasing

competition.

Li (2019) examines the case where a central planner chooses the design of a directed

graph on which agents experience local strategic complements. In this context, and with

no constraints on the strength of links, they �nd that all optimal networks are generalized

nested split graphs as this maximises the sum of centralities via the feedback e�ect inherent

in this set-up. Our setting involves a bipartite network in which the sellers are linked by their

connections with non-active agents, which generates a natural constraint on the direction of

links in the network, and actions are decreasing in centrality, leading to the optimal graph (at

least in the symmetric case) being one in which centralities are equal, reducing the feedback

e�ect.

Charlson (2020) uses an initial set-up similar to the one here to examine the case where

the platform owner su�ers from incomplete information, and must design the network without

knowing the quality of the sellers on the platform. The platform owner utilises ratings as a

way of biasing search results towards high-quality sellers, but in doing so decreases prices in

expectation because increasing the prominence of high-quality sellers drives down prices due to

an increase in total centrality. As a result of this trade-o�, some platforms may prefer random

matching to using ratings as a way of biasing search results, to the detriment of consumers.

More broadly, we contribute to the wider literature on competition and platforms. Tra-

ditional accounts of platform industrial organisation have focused on competition between

platforms (Tirole and Rochet, 2003, Armstrong, 2006 and Tan and Zhou, 2019), our model re-

gards intra-platform competition. There is less analysis in economics relating to intra-platform
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competition and platform design, with most of the work on the latter relating to information

design on platforms (Armstrong and Zhou, 2020 and Elliott and Galleoti, 2020), rather than

network design speci�cally. Within network competition has been examined in a management

context (Zhu and Liu, 2018 and Nambisan and Baron, 2019), but these analyses relate to

seller development and platform-seller con�ict, rather than how platforms shape buyer-seller

interactions.

3 Motivating example

Large, online platform owners must design platforms in which many sellers compete for many

buyers. If sellers can only set one price, then network design has implications for the nature of

competition between sellers for di�erent buyers. If a platform owner can a�ect which buyers

observe which sellers and sellers only set one price, then the platform owner faces a trade-

o� between more sellers being observed, increasing demand, and the resultant increase in

competition.

As an example, suppose the probability that two buyers observe two sellers is strictly

between 0 and 1. Then all the possible ex-post market structures (ignoring the case where no

buyer observes any sellers) are shown in Figure 2.
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Figure 2: The black nodes represent sellers, the white nodes represent buyers. Assuming
sellers and buyers are identical, these con�gurations represent all possible market types when
there are two sellers and two buyers.

Consider the nature of total pro�ts and competition if prices were set after the realisation

of a network structure. Market structures on the bottom and to the right of the diagram

exhibit less competition, but pro�ts are lost because the buyers will be assumed throughout

to purchase at least some goods from any seller they observe. This issue is reduced in market

structures above and to the left of the diagram; however, there, the two sellers are in more

direct competition with one another, which reduces pro�t due to both sellers setting a lower

price.

The trade-o� highlighted by this simple example is one that the platform owner faces

when designing the network. The framework examined here involves a platform owner that

chooses the probability that each possible network between a �xed number buyers and sellers

is realised. We identify the extent to which changing these probabilities a�ects competition

and prices, and characterise the pro�t-maximising probability vector.
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4 Model

Sellers, buyers and the platform owner

Suppose there is a �nite set, B, whose elements are �consumer segments�, in the sense that

they are a �nite mass of consumers who are assumed to share some trait, such as geographical

location, age demographic, occupation, etc. We use n to denote the number of consumer

segments.

Similarly, let S be a �nite set of sellers, where |S| = m. Sellers each sell a single type

of completely divisible good, and each seller's good is an imperfect substitute for each of the

goods.

Sellers and buyers interact on a platform, with each buyer observing a subset of S. These

observations generate a network Gi = (B ∪ S). We assume that the graph generating process

is stochastic in the sense that there is a probability θi ∈ [0, 1] that a graph Gi is generated for

every possible m − n bipartite graph, and hence
∑

i θi = 1. Let θ denote a vector whose ith

entry is θi.

Consider a simple example of the above set-up, with three sellers (X,Y and Z) and three

consumer segments (1, 2 and 3). Suppose there are two graphs which can be realised with some

positive probability are: (1) the complete graph, in which each buyer observes each seller and;

(2) the graph depicted on the right of Figure 3, in which sellers Y and Z compete for consumer

segment 2 but the other two segments are captive. Assume both of these graphs are realised

with equal probability.
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Figure 3: A case where two graphs can be realised.

Let p denote a m×1 vector whose jth entry is pj ∈ R+, the price of j's good. We assume that

sellers set prices prior to the realisation of the links in the network, but with full knowledge

of the vector θ. We will assume that if a consumer segment i observes a seller j, then their

demand function, xij(.) : Rm → R+, for product j can be expressed as follows:1:

xij(p) = aγj − apj +
∑
k 6=j

c(pk − γk).

where a, γj , c are all strictly positive scalars. The parameter γj can be thought of as a

measure of the quality of the seller j. We will assume throughout that a is large enough such

that xij > 0 for each observed good: this restriction will be discussed in more detail below.

As cik > 0 for all i, k 6= i, each product is a gross substitute for every other product.

Note that the demand function above is an ex-post demand function, in that it is generated

after the realisation of the network structure is realised, and hence after the sellers set prices.

De�ne i's ex-ante demand function for a good j as follows:

E[xij(p;θ)] =
∑
τ

θτµij(Gτ )(aγj − apj +

m∑
k=1

µik(Gτ )cjk(pk − γk)),

where µij(Gτ ) is a function such that if Eij ∈ Gτ and 0 otherwise. Seller j's expected aggregate

demand function is then de�ned:

1We show that this assumption is an approximation of the linear demand curve that is generated from a
quadratic, quasi-linear demand curve in the �rst section of the Appendix.
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E[xj(p;θ)] =
n∑
i=1

E[xij ].

A seller, j, is assumed not to be able to price discriminate across buyers, and hence sets a

single price pj ∈ R+. Sellers compete with one another on price, and set prices simultaneously.

Therefore, each seller's maximisation problem can be expressed:

max
pj

E[πj(pj , p_j ; θ)].

Let Γ(θ) represent the simultaneous move m-player game played on a network G with payo�s

as speci�ed above and strategy spaces R+.

The platform owner has the following pro�t function:

E[πP (p;θ)] = χ
m∑
j=1

E[πj(p;θ)]

where 0 < χ < 1.

The search environment

We will consider two search environments:

1. The decentralised search environment, in which a consumer segment, i, observes a

seller j with probability 0 ≤ wij ≤ 1. The observation probabilities are themselves

stochastically determined in the following sense. Each wij is the realisation of a random

variable w̃ij according to the symmetric probability distribution, Λ, which is bounded

such that 0 ≤ wij ≤ 1 and has mean υ. The random variables w̃ij are independently

and identically distributed

2. The centralised search environment, in which the platform owner chooses the proba-

bility vector θ, optimising their above pro�t function.
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In the decentralised case, nature determines the observation probabilities. This in turn gen-

erates the probability vector θ. In the centralised case, the platform owner chooses this

probability vector directly in order to solve the following maximisation problem:

maxθE[πP (p;θ)]

which we will assume is subject to the constraint that θi ∈ [0, 1],
∑

i θi = 1 and:

βj(θ) :=
∑
i

∑
τ

θτ [µij(Gτ )] > 0 ∀j.

We therefore assume that each seller is observed by at least one buyer with a strictly positive

probability. This assumption ensures that the centrality of each seller in the network is de-

�ned for any proposed solution to the above maximisation problem, and seems conceptually

legitimate as we do not explicitly model the entry decision either from the seller or platform

side.

In both search cases, θ is common knowledge, and prices are hence set after the realisation

of θ, but, as stated previously, prior to the realisation of the actual observation network.

5 Equilibrium characterisation

We characterise the equilibrium price setting behaviour for a given vector of graph probabilities

θ. De�ne αj(θ) and βj(θ) as follows:

αj(θ) :=
∑
i

∑
τ

θτ [µij(Gτ )(aγj − c
∑
k

µik(Gτ )γk)],

and:

βj(θ) :=
∑
i

∑
τ

θτµij(Gτ ).
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Thus, αj(θ) represents the expected value of the intercept of the aggregate demand function

of j, and βj represents the expected aggregate price sensitivity. It is thus possible to write the

pro�t function above as follows:

E[πj(p;θ)] = pj(αj − aβjpj +

m∑
k=1

ĉjkpk), (1)

where ĉjk =
∑

τ θτ (
∑

i

∑
k µik(Gτ )cik), which is therefore a measure of the strength of the

connection between j and k because it measures the weighted link between the sellers and

shared buyers. Rescaling the pro�t function above by 1/bβi and multiplying by 1
2 generates

the following:

E[π̃j(p;θ)] = pj(θ)α̃j(θ)− 1

2
p2
j (θ) +

m∑
k=1

c̃jk(θ)pj(θ)pk(θ)

where α̃j(θ) =
1
2
αj(θ)

βj(θ) and c̃jk(θ) =
1
2
ĉjk(θ)

βj(θ) . The maximisation problem maxpi π̃i(p;θ) has

the same set of �rst-order conditions as the one that involves maximising a vector containing

the pro�t functions in (1). This transformation yields a competition network, GS(θ), which

is a projection of G(θ), where the edge between sellers j and k has the weight c̃jk. The

competition network of the probability vector θ that generates the two graphs in Figure 3

with equal probability is shown in Figure 4 below.

Figure 4: Transforming the network G into the competition network GS . Here it is assumed
that b = 1 and c = 0.25 for each buyer and γj = 1 for all j.

De�ne RS(θ) as a symmetric zero diagonal matrix of a network GS(θ) with elements c̃ij(θ).
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Let α̃(θ) represent a m × 1 vector with element j α̃j . To ensure that an equilibrium of the

game is unique, it is necessary to ensure that demand is positive for all sellers.

Let γl denote the smallest element of the vector γ. Throughout, we make the following

assumption:

(A1) : a > nc

∑
j 6=l γj

γl
.

De�ne Cα̃(θ) = [I − RS(θ)]−1α̃(θ), which is the weighted transformed Bonacich centrality

measure of the network GS . The following Proposition, which characterises the equilibrium

price vector, then holds:

Proposition 1. If (A1) holds, then the game Γ(θ) has a unique Nash equilibrium in pure

strategies, which is the equilibrium price vector:

p∗(θ) = Cα̃(θ).

There exists a unique Nash equilibrium price vector that is equal to the Bonacich centrality

of the sellers in the network GS(θ) multiplied by α̃(θ).

The assumption (A1) provides a restriction on each c̃ij , which is measures the substi-

tutability of the model, relative to the e�ect own price has on demand, which is captured

by a. Speci�cally, (A1) guarantees both that (a): xij(θ) > 0 for all i, j pairs and (b) that

L = I − λRS(θ) is strictly diagonally dominant for all θ, which implies that L is also positive

de�nite. Jointly, these two facts guarantee that the Nash equilibrium of the game both exists

and is unique for any graph structure.

De�ne γ as an m×1 vector with jth element γj . Proposition 1 implies the following result:
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Corollary 1. The unique pure-strategy Nash equilibrium of Γ(θ) is:

p∗(θ) = γ − 1

2
C(θ)γ.

Hence, a seller's equilibrium price is decreasing in their centrality in GS(θ). Sellers who

are connected to more isolated consumer segments (particularly those who are captive) face

relatively less competition than sellers who are largely connected to segments with di�erent

goods to choose from, and therefore are able to set a higher price in equilibrium than other

sellers. The above expression implies seller j's price is increasing in γj but is decreasing in

every other element of the vector γ.

Returning to the example in Figures 3 and 4, Proposition 1 suggests that the centrality of

each seller and their price is as follows for the parameter values speci�ed in Figure 4:

Centrality Price

X 1.268 3.66

Y 1.272 3.64

Z 1.217 3.91

Seller Z has a uniquely connected segment with probability 0.5 and therefore has lower cen-

trality in the competition network than X or Y. As a result, Z's price is higher than either X

or Y's. Y's price is the centrality is the highest because they compete with both X and Z in

the graph where every consumers does not observe every seller.

6 Decentralised search

The preceding analysis shows that the platform owner faces a trade-o� between increasing

sales on the one hand and reducing competition on the other. We now examine the pro�t
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maximising graph structure, taking that minimises the level of competition for a given level

of expected sales.

The observation probabilities can be thought of as a measure of �prominence� in the sense

that they capture the likelihood that the seller is observed by a given buyer. Seller j's promi-

nence in the network potentially increases pro�ts as a result of increasing the probability

of sales, but at the same time it imposes a cost on the rest of the network by increasing

competition, reducing prices of every seller, including for the more prominent seller.

As the number of sellers and the centrality of those sellers in the network GS increases,

increasing wij has an increasingly large e�ect on prices. To see this, note that the centrality

vector in GS can be expressed:

C(θ)1 =
∞∑
k=0

RkS(θ)1.

It follows that ∂2Ck(θ)
∂2wij

> 0. Recall that prices are falling in the centrality of the sellers in this

setting. Hence, increasing wij imposes a cost upon the platform owner because the centrality

measure has a feedback e�ect such that increasing an observation probability wij (weakly)

reduces j's price, which reduces every other seller's price, which then reduces j's price and so

on. This feedback e�ect, which is a feature of the Bonacich centrality measure, is increasing

as the centralities of the sellers in GS become larger.

The preceding analysis implies the following result. Suppose w̃ij ∼ Λ1 and let Λ2 be a

mean-preserving spread of Λ1 such that when w̃
′
ij ∼ Λ2 constructed in the following way:

w̃
′
ij = w̃ij + εij

where εij is symmetrically distributed and has mean 0, and is bounded such 0 ≤ w̃′ij ≤ 1. Let

θ̃k denote the random probability vector generated by the distribution Λk. Then the following

result holds:

19



Theorem 1. Suppose γj = γ ∀j and c > 0. Then, E[pj(θ̃1)] > E[pj(θ̃2)] and E[πP (θ̃1)] >

E[πP (θ̃2)].

The expected number of matches (i.e. E[
∑

i

∑
j w̃ij ]) is the same for both probability distri-

butions. Hence, any di�erences in expected pro�t between the two are the result of di�erences

in the expected price level.

As the quality vector γ is independent of centrality in this case, the expected price level

can be denoted:

E[p∗(θ̃)] = γ − 1

2
E[C(θ̃)]γ.

Suppose that w̃ij ∼ Λ1 and w̃
′
ij ∼ Λ2. Recalling that ∂2Ck

∂2wij
> 0 and that the w̃ijs are

independent of one another, then it must be the case that:

E[Cj(θ̃2)] > E[Cj(θ̃1)] ∀j.

Pro�t is increasing and concave in price if p∗j ∈ [0, 1
2γ], which is true for any realisation of

θ. The above inequality implies that expected prices are lower in the case where each w̃ij is

distributed according to the mean preserving contraction θ̃2. Intuitively, this result is driven by

the fact that high realisations of an observation probability w̃ij result in a disproportionately

low price compared to low realisations of w̃ij .

Furthermore, as observation probabilities are independent of each other, if they have a

distribution of θ̃2 it results in a higher probability that two or more sellers are prominent for

a large number (or all) of the consumer segments. We refer the case where there is relatively

intense competition between a subset of the sellers on the network as one in which competition

is concentrated. There being a-higher-than-average probability that two sellers compete with

one another drives their own prices down, which propagates across the network. The e�ect of
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concentrated competition is depicted in Figure 5.

Figure 5: The prominence of X and Y results in concentrated competition between the two
sellers.

Let ΛD(υ) denote the degenerate distribution where wij = υ < 1 for each i, j with probability

1. Theorem 1 implies the following result:

Proposition 2. For any symmetric, continuous distribution Λ 6= ΛD(υ) with mean υ and

corresponding probability vector, θ̃, E[πP (θD)] > E[πP (θ̃)].

From the platform owner's perspective, ΛD(υ) is the optimal probability distribution of all

symmetric, continuous distributions with mean υ. Such a probability distribution yields a

bipartite, Erdos-Renyi graph with nodes m,n and link probability υ.

However, the corresponding probability vector, θD, generated in the case where each ob-

servation probability is equal to υ results in there being some positive probability of states

in which each segment observes a large proportion of or all of the sellers in the network. For

example, the complete network is realised with probability vmn > 0 when the probability

vector is θD.
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A positive probability of the realisation of high-competition states are costly to the platform

because they increase the sum of the edges emanating from most if not all sellers. As a result,

these states have a relatively large e�ect on the centrality of each seller in the competition

graph GS . It follows that the platform owner would prefer to avoid placing any probability of

the realisation of such outcomes.

7 The centralised search environment

Consumer surplus

We �rst characterise the networks that maximise consumer surplus. De�ne the expected

consumer surplus of consumer segment i for a given equilibrium price vector p∗ and demand

vector x∗
i is as follows:

E[CSi(x
∗
i ;p
∗)] =

1

2

∑
τ

θτ [

m∑
j=1

µij(Gτ )x∗ij(Gτ )(γj +

m∑
k=1

µik(Gτ )
c

b
(p∗k − γk)− p∗j )].

De�ne CS(x∗;p∗) :=
∑

iCSi(x
∗
i ;p
∗), where x∗ is an m × n matrix whose ijth component is

x∗ij(p
∗). As I−λRS is diagonally dominant by (A1), it is clear from the above expression that

the expected value of each CSi(x
∗
i ;p
∗) is falling in p∗. It is also straightforward to show that

expected consumer surplus, ceteris paribus, is increasing in the expected number of connections

in G a buyer has. Clearly then, CS is a function of θ and can be written CS(θ). De�ne Gc

as the complete graph, in which each consumer segment observes each seller. Let θc denote

the probability vector in which the complete graph Gc is yielded with probability θc = 1. The

following proposition holds:

Proposition 3. For any probability vector θ 6= θc, E[CS(θc)] > E[CS(θ)].

The centrality of each agent is at its maximum for a given number of buyers and sellers when

the network is complete. Intuitively, when the network is complete, each buyer is competed
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for by each seller. A complete network maximises competition, which reduces the equilibrium

price level of each seller. This result is consistent with Bimpikis, Ehsani and Ilkiliç (2018),

who �nd that a complete network maximises consumer welfare in Cournot setting if buyers'

demand functions are homogeneous.2

Hence, despite the fact that in a Cournot model the sellers' actions are strategic substitutes,

while in a Bertrand setting they are strategic complements, the driving logic in both cases is

that competition reduces prices and a complete network maximises competition.

Pro�t maximising graphs and hidden products

Consider �rst the case where c = 0. If c is zero, then that each seller's product is not

a substitute for the other goods in the market, which implies that each interaction e�ect

parameter linking the two sellers in GS is equal to zero for any θ. The following Proposition

then holds:

Proposition 4. Suppose c = 0. For any probability vector θ 6= θc, E[πP (θc)] > E[πP (θ)].

When goods are non-substitutable, sellers are not in competition with one another. Prices

are therefore set at the monopoly level. The platform owner then always has an incentive to

increase the probability that the complete network is realised, as such a network is always

more pro�table than any graph in which at least one segment does not observe at least one

seller. It follows that the complete network maximises seller pro�t, which in turn maximises

the platform owner's pro�t.

However, despite the assumption here that demand from each consumer segment is strictly

2 Strictly, the model of Bimpikis, Ehsani and Ilkiliç (2018) is one where �rms compete for �markets� rather

than consumers. They �nd that if markets are of the same size, which would be equivalent to homogeneous

buyers in this model.
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positive for any good they observe, the complete network does not necessarily maximise the

platform's pro�t. The platform owner has an incentive to reduce the probability that sellers

are observed in order to increase prices. In decreasing observation probabilities, the platform

owner potentially (assuming a is su�ciently large) reduces demand. In order to maximise

pro�t then, the platform owner must choose a network structure that maximises the expected

number of sellers each consumer segment observes while accounting for the constraint that

increasing observability decreases prices.

Proposition 5 formalises the above intuition:

Proposition 5. For all γ, there exists a c̄ ∈ R+ such that if c > c̄ then in any solution to the

platform owner's maximisation problem, θ∗, θ∗c < 1.

Proposition 5 highlights the platform owner's trade-o� with respect to network design. Increas-

ing the probability that each of the seller's is observed increases pro�ts as sales are increasing

in the probability that each buyer observes each seller. At the same time, increasing sales in-

creases competition, reducing prices. If goods are su�ciently substitutable, then the platform

owner is willing to forgo some potential sales in order to increase prices.

Pro�t-maximing graphs with no vertical di�erentiation

Supposem ≥ 2 and γj = γ for all j. We consider a probability vector θ generates a competition

graph in which Ci(θ) > Cj(θ) for at least one i, j pair and show that such a probability vector

can never be a solution to the platform owner's maximisation problem.

We consider the following reallocation of probabilities. Let Cj(θ) be (jointly one of) the

smallest component(s) of the vectorC(θ)1m. Take a graphG which is realised with probability

θG > 0 when the probability vector is θ. De�ne Gjk as a graph which is the result of performing

a neighbourhood switch between two sellers j and k in G, such that for any i where Eij ∈ G

and Eik /∈ G, Eij /∈ Gjk and vice versa. Such a switch is depicted in Figure 6.
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Figure 6: A neighbourhood switch between sellers X and Y.

De�ne a vector θjk where the probability that the graph Gjk is realised is equal to θG, the

probability that the graph G was realised in the probability vector θ. Now de�ne another

probability vector, θ̂j , as follows:

θ̂j := (1 − (m− 1)ε)θ +
∑
k

εθjk,

where ε ∈ R+ is arbitrarily small.

We show that πP (θ̂j) > πP (θ) when Cj(θ) > Ck(θ). To see this, we consider the e�ect

of a single neighbourhood switch between j and k where Ck(θ) > Cj(θ), holding the prices of

sellers other than j and k constant.

Such a switch between j and k results in an increase in k's centrality and a decrease in

j. However, as a result of the fact that c̃ij is convex in βi for all j 6= i and because Ci(θ) is

convex in c̃ij , the decrease in j's centrality must be larger than the increase in k's centrality.

This in turn implies that k's price falls less than j's price increases.

As a result of the additional fact that pro�ts are increasing and concave in prices below the

monopoly price (which is implied by (A1)), it follows that the proposed switch will result in

an increase in the total pro�ts the platform receives from j and k. The same logic applies for

any seller Cl(θ) > Cj(θ) and if Cl(θ) = Cj(θ), then the proposed reallocation has no direct

e�ect on prices.
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Now, consider the additional second-order e�ect of prices changing as a result of each

neighbourhood switch. A change in j and k centrality a�ects the centrality of every other

seller in the network, which also a�ects prices and demand. Recall that the centrality of a

seller i in GS , as per Bonacich (1972), can be written as follows:

Ci(θ) = 1 +
∑
i 6=j

c̃ijCj(θ).

As the centrality of j is (weakly) less than every other seller, and the decrease in the centrality

of k associated with a neighbourhood switch with j is (again, weakly) larger than the increase

in j's centrality implies that the spillover e�ects associated a change from θ to θ̂j are pro�t

increasing. Hence, the second-order e�ect of the proposed set of neighbourhood switches is

positive. Theorem 2 summarises these results:

Theorem 2. Suppose γj = γ for all j and m ≥ 2. Any solution, θ∗, to the platform owner's

maximisation problem, induces a seller-only graph GS(θ∗) such that Cj(θ
∗) = Ck(θ

∗) for all

j, k pairs.

The optimal seller-only graph structure is one in which each seller is as central as every other

seller. If this is not the case, then the platform owner can always �nd a marginal re-allocation

that increases the expected number of consumer segments observing the higher priced seller

and increases prices across the network.

Theorem 2 does not fully characterise the optimal solution to the platform owner's problem.

Instead, it provides a condition under which a graph GS is the result of the platform owner's

maximisation problem. However, it is possible to use the result in Theorem 2 to map the

optimal set of competition graphs onto a. Again noting that Ci(θ) = 1 +
∑

i 6=j c̃ijCj(θ) the

Theorem implies the following corollary:

Corollary 2. Suppose γj = γ for all j. Any solution, θ∗, to the platform owner's maximisation

problem, induces a seller-only graph GS(θ∗) such that
∑

i 6=j c̃ij = c̃ ∈ R+.

For any solution to the platform owner's optimisation problem, it must be that the sum of the
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links a seller i has to every other seller must be equal to the same sum for another seller j. If

this does not hold, it cannot be that the centralities of the sellers are equal.

De�ne σiy(G) as the number of buyers for which seller i faces competition from exactly

y ∈ {0, 1...,m− 1} sellers in the graph G. Then we can write
∑

i 6=j c̃ij(θ) as follows:

∑
i 6=j

c̃ij(θ) =
c
∑

y

∑
τ θτσiy(τ)y

aβi
.

Recall that βi is the expected number of consumer segments that observe i. Hence,
∑

i 6=j c̃ij(θ)

is equal to the expected average number of competitors i faces. Corollary 2 therefore implies

that in any solution to the platform owner's maximisation problem, the average number of

competitors each seller faces when active (i.e. when they are observed by at least one consumer

segment) is the same for each seller.

Let ϕi(G) denote the number of sellers consumer segment i observes in the graph G.

Corollary 2 also pins down the average number of sellers buyers observe in the optimal solution,

which is simply a
c c̃(θ

∗) + 1 := ϕ̂(θ∗). We can show that each consumer segment's number

of observations should be centered closely around this average in any optimal solution, as

Theorem 3 makes clear:

Theorem 3. Suppose γj = γ for all j. For any solution to the platform owner's problem, θ∗,

it must be the case that if θ∗G > 0 for some graph G then ϕi(G) = bϕ̂(θ∗)c or ϕi(G) = dϕ̂(θ∗)e

for all i.

A network G in which a consumer segment i observes ϕ̂(θ∗) + k (where k > 1) sellers has

a disproportionately negative e�ect on pro�ts compared with the otherwise identical network

G
′
in which i observes ϕ̂(θ∗)−k sellers. The reason for this is that in G each of the ϕ̂(θ∗) +k

sellers competes with ϕ̂(θ∗) + k − 1 other sellers. Hence, the sum of links generated by i's

observation in any network is convex in the number of sellers observed.

The above analysis suggests that a graph (or weighted average of two graphs) in which i
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observes the average number of sellers is more pro�table than a weighted mix of graphs G and

G
′
. In the proof of Theorem 3, we show that in the case where there is probability of graphs

such as G and G
′
being generated, it is always possible to �nd a reallocation of probabilities

such that (a) consumer segment i (and every other consumer segment) observes the same

number of sellers in expectation and (b) prices increase.

Note that Theorems 2 and 3 do not show there is generally a unique vector θ∗ that solves

the platform owner's maximisation problem. As consumer preferences and sellers are identical

in this set up, for any solution, θ∗1, where θ
∗
c 6= 1, there exists a vector, θ∗2, where the expected

number of sellers segments observe is the same, and prices are the same as in θ∗1. This implies

that πP (θ∗1) = πP (θ∗2).

However, we can show that while generally there is not a unique solution to the plat-

form owner's problem, the following Proposition implies that there is a unique price vector

associated with any solution to the platform owner's problem:

Proposition 6. Suppose γj = γ for all j. For any two solutions, θ∗1 and θ∗2,to the platform

owner's maximisation problem, it must be the case that p∗(θ∗1) = p∗(θ∗2).

We show in the proof of Proposition 6 that when preferences and seller prices are identical,

the platform owner's maximisation problem amounts to choosing the overall expected number

of sellers observed by consumer segments. We show that there is a unique solution to this

problem, which in turn implies that the price vector for any solution to the original pro�t

maximisation problem must generate the same price vector as another solution to that problem.

The previous discussion implies that in any optimal solution to the platform owner's prob-

lem θ∗:

� Seller prices are all equal to some price p∗;

� sellers either face bϕ̂(θ∗)c−1 or dϕ̂(θ∗)e−1 competitors for any graph G where θ∗G > 0;

� the probability that j encounters dϕ̂(θ∗)e − 1 competitors is the same for all j.
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The platform owner maximises aggregate pro�t by ensuring that segments observe a �xed

number of sellers that is tightly constrained around a mean determined by innate demand for

the sellers' good and how substitutable those goods are.

8 Vertical di�erentiation

In the previous section, we considered the case in which goods are horizontally di�erentiated,

but are of the same quality. We now consider the case where products may di�er in quality,

which in the model corresponds to the case where γj > γk for at least one pair of sellers j and

k.

To illustrate the e�ect of vertical di�erentiation on optimal network design, we �rst examine

the case where the platform owner sets an optimal graph structure θ∗ and there is a marginal

increase in the quality of a single good j. Let γ denote a m×1 vector of seller qualities. Then

the following Proposition holds:

Proposition 7. Consider any optimal probability vector θ∗(γ). The following statements

hold: (i)
∂βj(θ

∗;γ)
∂γj

≥ 0 with the inequality strict if θ∗ 6= θc; (ii)
∂βi(θ

∗;γ)
∂γj

≤ 0 ∀i 6= j; and (iii)

∂ϕ̂(θ∗;γ)
∂γj

≤ 0 with the inequality strict if θ∗ 6= θc.

If the quality of j's product increases, then the platform owner has an incentive to increase

the probability that j is observed, assuming that j is not observed with probability 1. This is

because j's demand is increasing in γj for a given p(θ∗).

At the same time, an increase in γj leads to a reduction in the demand for the products of

sellers directly competing with j. Hence, if a seller i competes with j in a graph realised with

positive probability in the vector θ∗, then the platform owner has an incentive to reduce the

probability that i is observed in order to reduce the interaction between i and j. Reducing the

total probability that i is observed has the e�ect of increasing i's price and demand, increasing

pro�ts.
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The fact that i's demand is falling in γj implies the platform owner has an incentive to

reduce the total number of sellers who compete with j. As the probability that j is observed

increases, this implies that the expected number of sellers that consumer segments observe

decreases in the case where θ∗ 6= θc. When θ∗ = θc, then it is possible that substitutability

is su�ciently low such that the complete network being realised with probability 1 is still

optimal even with the increase in γj .

We show an example of the e�ect of an increase in γj in Figure 7.

Figure 7: As γX increases, the platform owner increases the probability that the graph on
the right-hand side is realised increases and reduces the probability that the graph on the
left-hand side is realised decreases.

Now, consider the more general case where each γj can di�er from one another. To generate a

distribution of quality vectors, suppose that each γ̃j ∼ Φ, where Φ is a symmetric and bounded

probability distribution, such that the realisation of γ̃j 's value, γj > 0 and E[γ̃j ] = γ̄ for all j.

Suppose that the platform owner sets the vector θ after the realisation of γ.

Let γ̃ denote the random quality vector associated with the case where each γ̃j ∼ Φi.

Suppose that if γ̃j ∼ Φ1 it is bounded such that γ̃j ∼ [γL, γH ]. Now de�ne Φ2 such that when

γ̃j ∼ Φ2, γ̃j can be decomposed in the following way:

γ̃j = γ̃
′
j + εj ,

where γ̃
′
j ∼ Φ1 and εj is distributed symmetrically with mean 0 and is bounded such that
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εj ∼ [εL, εH ]. We examine the ex-ante (i.e prior to the realisation of γ̃) pro�ts and expected

number of sellers observed by each segment when qualities are have a distribution of Φi in the

following theorem:

Theorem 4. i) For any value of c, E[πP (θ∗)|γ̃ ∼ Φ2] ≥ E[πP (θ∗)|γ̃ ∼ Φ1] and ii) ∃cT ∈

R+such that if c ≤ cT , E[ϕ̂(θ∗)|γ̃ ∼ Φ1] ≥ E[ϕ̂(θ∗)|γ̃ ∼ Φ2] and if c > cT , E[ϕ̂(θ∗)|γ̃ ∼ Φ2] >

E[ϕ̂(θ∗)|γ̃ ∼ Φ1].

To illustrate the results in Theorem 4, we consider a more limited case where under Φ1 each

γ̃j = γ̄ with probability 1. Consider �rst the claim relating to pro�t. If c is su�ciently small

(e.g. equal to zero), then in expectation the optimal probability vector for either distribution

will be such that θ∗c = 1. In this case, expected pro�t is the same under both distributions.

However, in the case where the platform owner restricts the number of sellers consumers

observe, they are able to bias consumer observation towards high-quality products. In the case

where Φ1 results in each seller having the same quality with probability 1, this is clearly not

possible, whereas the mean-preserving spread Φ2 generates some high-quality and low-quality

players in expectation. Thus, when c is su�ciently high, E[πP (θ∗)|γ̃ ∼ Φ2] > E[πP (θ∗)|γ̃ ∼ Φ1]

due to consumers being more likely to observe high-quality sellers. We depict this result in

Figure 8.

Figure 8: The expected pro�t when γ̃ ∼ Φ2 is weakly larger than γ̃ ∼ Φ1 for all c. E[πi,H ]
is the expected pro�t associated with the seller with the highest quality being a monopolist
when the distribution is Φi.
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Now consider the second result in Theorem 4. As c increases, the number of sellers observed by

consumers reduces for either distribution of qualities. However, the expected loss of a segment

observing fewer sellers to platform pro�t is increasing more slowly in the case where is no

vertical di�erentiation. The reason for this is that as c becomes large, the expected quality of

a seller that the platform owner is marginally willing to exclude in the case where quality is

dispersed becomes greater than the mean quality level, γ̄.

The platform owner is less willing to exclude such high-quality sellers from being observed.

Hence, when c is su�ciently large, the optimal number of sellers a segment observes is, in

expectation, greater for the vertically di�erentiated case compared to the case where product

quality is the same. This is shown in Figure 9.

Figure 9: Dark blue line denotes the case where γ̃ ∼ Φ2, light blue where γ̃ ∼ Φ1.

9 Discussion

When a platform owner's revenue is a proportion of the pro�ts of sellers on their platform, they

have an incentive to reduce the probability that buyers observe sellers. While ensuring that a

consumer segment observes a seller increases sales, it produces a cost because it reduces prices

through increased competition. If product substitutability is su�ciently high, the platform
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owner reduces observability to maintain high prices, reducing consumer welfare.

The result that platform owners have an incentive to reduce the number of sellers observed

by consumers is consistent with the observed behaviour of online platforms. A number of

empirical studies (Ringer and Skiera, 2016 and Kim, Albuquerque and Bronnenberg, 2010)

highlight that consumers on online platforms only observe a small subset of the total products

on o�er. Anecdotal evidence suggests that searching for products with a large number of

results on platforms like Amazon.com does not return the entirety of the products relevant to

that search.3

Our results explain some other observed behaviour of real-world platforms. Almost all large

platforms that link buyer-sellers use a search environment that displays a consistent number

of results to each consumer segment. Theorem 3 explains the observed structure of the search

process on real-world platforms. Consumers, at least by default, observe a relatively small

number of sellers for any given search, with more results shown on pages they have to click

through to observe. Empirical evidence (Baye et al, 2009, Smith and Brynjolfsson, 2001 and

Baye et al 2015) suggests that relatively few consumers click onto the second page of search

results, and as such constructing the search process in this way yields a competition structure

similar to the one predicted by Theorem 3.

Given di�erences in technical ability and ability to process information online, it might

be expected that di�erent segments were displayed a di�erent numbers of sellers, something

that does not appear to happen on most platforms. Our results show that one reason why

platforms may show a consistent number of sellers to all consumer segments is that doing so

minimises the level of competition for a given number of consumer-seller links, maximising

prices.

Proposition 7 gives an account of the incentives platforms have in the case where there

is a high-quality product in the market. The platform owner has an incentive to increase

3For example, searching the words �economics textbooks� into Amazon generates 20 pages of results, far
fewer than the 60,000+ results that the platform claims to have available.
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the probability that this seller is observed, which is consistent with platforms highlighting

particular products. Perhaps less obviously, our model shows that highlighting such products

increases competition, and thus incentivises the platform owner to reduce the number of sellers

observed in expectation.

While platforms tend to be quite consistent in displaying a �xed subset of sellers to con-

sumers, the number of sellers shown di�ers from platform to platform. Our analysis shows

that the extent to which high-quality products should be showcased, the number of results

displayed and the probability that a given seller is observed more generally depends on both

the substitutability of products on the platform and the variation in quality.

Our analysis allows us to characterise the optimal number of sellers displayed by di�erent

types of platforms, as shown in Figure 10.

Figure 10: The optimal number of sellers on a platform depends on the market(s) they operate
in. Bold text indicates an example market that has the relevant characteristics.

The optimal number of sellers in the market depends on both substitutability and variance

in quality. As substitutability increases, the number of sellers in all markets reduce, but the
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reduction is less fast in the case where quality variance is high.

When substitutability is high, we �nd that platforms where products are less di�erentiated

by quality will display relatively fewer sellers, as not showing high-quality products at all times

loses less revenue than in markets where quality is highly dispersed. When substitutability

is low, more quality dispersion implies that higher quality products will be displayed more,

increasing the platform owner's incentive to reduce the probability that these products will be

observed.

Useful future empirical work would examine the extent to which real-world platforms act in

the manner predicted in the model. It would be particularly worthwhile analysing in detail the

extent to which platforms from di�erent sectors highlight particular products and the number

of products displayed by the platform.

There are a few of potentially important issues left unaddressed by our analysis. We

have assumed that marginal costs are zero. If sellers are heterogeneous with respect to their

marginal cost, then the platform owner may have an incentive to increase the prominence

of low cost sellers in the network at the expense of sellers with higher marginal costs. This

would imply that some form of paid prominence could be pro�t maximising from the platform

owner's perspective, as Armstrong and Zhou (2011) point out.

More broadly, the framework here could be used to examine the e�ect of entry, exit and

mergers have in di�erent parts of networked markets. For example, the Bonacich centrality

vector is informative of which sellers impose the most competition on the network. A regulator

or central wishing to maintain low prices would pay particular attention to such a player when

performing merger control or which �rms to bail out during recessions.

10 Conclusion

We analyse the case where consumers only observe a subset of sellers on a platform, which can

be thought of as a bipartite observation network. The probability that an observation network

is realised is determined either by nature or by the owner of the platform. Prices are set prior
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to the realisation of the network, but the realisation probabilities are common knowledge.

We �nd there is a unique, interior pure strategy equilibrium where each seller's price is

falling in their Bonacich centrality in a sellers-only network that is strategically equivalent to

the original bipartite network. The more central a player in this �competition� network, the

more competition they face, and the lower their price.

Using the characterisation of equilibrium, it is possible to see how changes in network

structure a�ect prices. In the decentralised search case, where observation probabilities are

independent and set by nature, we �nd that a type of symmetric mean-preserving spread of

some distribution of observation probabilities decreases pro�ts compared to the case where

probabilities are distributed according to the original distribution.

Due to the feedback e�ect inherent to actions determined by the sellers' Bonacich cen-

tralities in the network, a seller being more likely to be prominent results in an increase in

competition that is larger than the corresponding decrease in competition associated with

a reduction in prominence. Prominent sellers are more likely in the case where observation

probabilities are more dispersed, and such sellers disproportionately increase competition, de-

creasing prices.

At the same time, our analysis of the decentralised case draws attention to the dispro-

portionately large cost to platform pro�ts associated with there being a positive probability

that high competition states, in which consumers observe most or all sellers, are realised.

This observation shapes the platform owner's incentives in the case where they can choose the

observation network.

Turning to the centralised search case, at a high level we �nd that while consumer surplus is

maximised in the case where the complete network is realised with probability 1, the platform

owner has an incentive to �hide� products from consumers if substitutability is large enough.

We �nd that in the case where there is no vertical di�erentiation, the optimal seller graph

is one in which each seller has the same centrality. We show that this implies that in any
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pro�t-maximising observation probability vector, the expected number of sellers observed by

consumers is as close to the average number of sellers observed across all possible networks.

This minimises competition for a given number of expected buyer-seller links, increasing prof-

its.

When products are vertically di�erentiated, the platform owner has an incentive to in-

crease the probability that sellers of higher quality are observed. This increases the e�ective

competition faced by other sellers in the network, which reduces prices. To reduce the signi�-

cance of this e�ect, the platform owner has an incentive to reduce the total number of sellers

observed by consumers.

If seller quality is random, the platform owner prefers a mean-preserving spread of some

distribution of quality over the original distribution. The reason for this is that the platform

owner can generate more pro�t by biasing observation towards high-quality sellers. If products

are not that substitutable, then the platform hides more sellers when quality dispersion is high,

as doing so alleviates the competition e�ect discussed above. When product substitutability

is high, fewer products are visible in either case, and the platform is less willing to hide

the highest quality products when quality dispersion is high, leading to more products being

optimally observed in expectation.

As platforms have an incentive to reduce competition in order to increase prices, our

analysis suggests that competition authorities would be well-advised to take seriously attempts

by platforms to control intra-platform competition. Regulation, insofar as it has been directed

at online platforms, has tended to focus on competition between platforms. As online platforms

become more established and dominant, this kind of competition becomes less relevant, and

the incentives to increase prices by tweaking search algorithms or the use of private information

will become increasingly important.
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11 Appendix

The demand function

We show that the linear demand curve for the game Γ(θ) is a simpli�ed form of the one

generated by the following demand system. Let yi denote i's demand for a numeraire good.

Suppose that i has the following quasi-linear, quadratic utility function:

ui(xi) =

m∑
j=1

γjxij −
m∑
j=1

κx2
ij −

m∑
j=1

xij(

m∑
k=1

ρxik) + yi

where κ, ρ ∈ R+. Suppose that each buyer has an income of l. Assuming l is su�ciently large

and a > ā, then demand for each product is positive. De�ne the m×m matrix κ as follows:

κ =

1 ρ ... ρ

ρ
. . . ρ

...

... ρ
. . .

...

ρ . . . ρ 1

Then, as discussed in Amir, Erikson and Jin (2015), the demand vector xi can be written:

xi = κ−1(γ − p).

Hence, for any consumer segment i and any seller j, the intercept term of the i's demand for

j's product is some constant, a, multiplied by γ and their own price sensitivity term is also

equal to a.

Proof of Proposition 1

First, note that assumption (A1) guarantees that: (a) α̃j(θ) > 0 ∀j and (b) [I − λRS(θ)] is

positive de�nite for all θ. To see the former claim, recall that:
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αj(θ) :=
∑
i

∑
τ

θτ [µij(Gτ )(aγj − c
∑
k

µik(Gτ )γk)].

As βi > 0, it follows that αj(θ) > 0, which implies that α̃j(θ) > 0. As cγk > 0, then for a

given vector γ, and given values for the parameters c and a, αj(θ) is lowest when θ = θc,

where θc denotes the probability vector where θc = 1, where θc is the probability that the

complete bipartite graph Gc is realised. It is also clear that when θ = θc, αl(θc) < αj(θ)

∀i 6= l. When (A1) holds, αl(θc) > 0, which implies α̃l(θ) > 0 for all θ.

Now note that when (A1) holds, it must be the case that a > n(m−1)c, as
∑
j 6=l γj
γl

≥ m−1.

This immediately implies that the I − λRS(θc) is positive de�nite, as it is strictly diagonally

dominant. Let σij(θ) denote the ijth component of I−λRS(θ). The following trivially holds:

|
∑
j 6=i

σij(θc)| ≥ |
∑
j 6=i

σij(θ)| ∀i,θ 6= θc.

Hence, if the matrix I−λRS(θc) is diagonally dominant, then for any θ, the matrix I−λRS(θ)

is also diagonally dominant.

The �rst result that α̃j(θ) > 0 ∀j guarantees that there exists a price, p′l, such that

xil(p;θc) > 0. Since consumer segments have identical preferences, this holds for all i, and

hence at any optimal solution it must be the case that: (a) p∗j (θ) > 0 ∀j and (b) xil(p∗;θ) > 0.

It can be readily shown that the �rst-order condition (and therefore the resulting optimi-

sation problem) for the payo� vector associated with the payo� described in (1) is equivalent

to the �rst-order condition of the payo� vector associated with the original payo� function.

The �rst-order condition of the payo� vector with individual components described in (1) is

as follows:

α̃ = [I − λRS(θ)]p(θ).

As the matrix I − λRS(θ) is positive de�nite, it is non-singular and the above �rst-order

condition has a solution, which is denoted p∗(θ). Rearranging this �rst-order condition leads
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to the expression in Proposition 1.

The �rst-order condition above yields a unique, interior solution. As shown above, (A1)

guarantees that pj = 0 cannot be a solution for any seller j's maximisation problem, as there

exists a pj such that xij(p;θ) > 0. Hence, there exists a ε > 0 such that pj = ε generates a

strictly positive level of demand xij > 0. This would yield a strictly positive level of pro�t,

which implies that j would have an incentive to deviate at the proposed equilibrium.

Proof of Corollary 1

Note that
1
2
αj
βj

= 1
2γ in this setting and de�ne γ as a m× 1 vector whose jth element is equal

to γj . Then the right-hand side of the expression in Proposition 1 can be rewritten as follows:

Cα(θ) =
1

2

∞∑
k=0

RkS(θ)γ −
∞∑
k=1

RkS̄(θ)γ

thus:

Cα(GS , λ) =
1

2
γ +

1

2
γT

∞∑
k=0

RkS(θ)−
∞∑
k=0

RkS(θ)γ

Cα(GS , λ) =
1

2
γ − 1

2
γT

∞∑
k=0

RkS(θ),

which implies:

Cα(θ) =
1

2
γ − 1

2
γTC(θ).

Proof of Theorem 1

First, note that the expected price of each seller can be written as follows:

E[p(θ,γ)] = γ − 1

2
E[C(θ)]γ.
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Recall that w̃
′′
ij = w̃

′
ij + εij , where εij is a symmetric random variable. Recall also that:

C(θ)1 =
∞∑
k=0

RkS1.

It follows then that E[C(θ̃1)] is an increasing function of E[w̃
′′
ij ]. This in turn implies that

E[C(θ̃2)] is a increasing function of E[εkij ] for each k ≥ 1 for some i, j pair. Noting that εij

is symmetric by de�nition, it must be the case that E[εkij ] = 0 when k is odd. Furthermore,

E[εkij ] > 0 when k is even.

As each element of the set of random variables {εij} is independent of every other element

of that set, it then follows that E[εyijε
z
lk] = 0 for all y, z ≥ 1 where either i 6= l or j 6= k.

Hence, by the de�nition of w̃
′′
ij ,E[C(θ̃2)] is simply a weakly increasing function of both E[εkij ]

and E[(w̃
′
ij)

k] for each k ≥ 1 for all i, j pairs. Given that w̃
′′
ij = w̃

′
ij + εij , it then follows that:

E[Cj(θ̃2)] > E[Cj(θ̃1)] ∀j.

The above result immediately implies the claim that E[pj(θ̃1)] > E[pj(θ̃2)].

Now consider the ex-ante pro�t function of a seller j :

E[πj(θ̃2)] = E[pj(θ̃2)αj ]− bE[βjp2
j (θ̃2)] + E[

m∑
k=1

ĉjkpj(θ̃2)pk(θ̃2)].

Just for the sake of argument, we �rst assume that the parameters αj , βj , and each ĉjk

are independent of the price vector p. As E[w̃
′
ij ] = E[w̃ij ] and each element of set {w̃ij} is

independent of every other element of that set, it follows that the expectation pro�t generated

by observation probabilities with distribution Λ2 would be lower than Λ1. The reason for this

is that: (a) E[pj(θ̃2)] < E[pj(θ̃1)] and (b) (A1) implies that a ≥ (m − 1)c, which in turn

implies pro�t is concave in pj . Hence, even if E[pj(θ̃2)] = E[pj(θ̃1)], the following inequality:
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E[pj(θ̃2)]E[αj ]−bE[βj ]E[p2
j (θ̃2)]+E[C(θ̃2)] < E[pj(θ̃1)]E[αj ]−bE[βj ]E[p2

j (θ̃1)]+E[C(θ̃1)], (2)

would still hold because var(εij) > 0.

However, the parameters αj , βj and each ĉjk are not independent of the realisation of

each random observation probability as they are a function of w̃ij Expected demand in this

environment can be written:

E[x̃ij(p
∗)] = w̃ij(aγ − apj + c

∑
j 6=k

wik(pk − γ))

Hence, it follows that:

cov(x̃ij(p
∗),p∗) < 0,

which holds both because (A1) implies that demand conditional on i observing j is falling in

price and because cov(w̃
′′
ij ,p

∗) < 0. Furthermore, |cov(w̃
′′
ij ,p

∗)| > |cov(w̃
′
ij ,p

∗)|. A combina-

tion of this fact and the inequality in (2) then implies:

E[πj(θ̃2)] > E[πj(θ̃1)].

for all c > 0.

Proof of Proposition 2

The proof follows almost immediately from that in Theorem 1; in fact it is just a restatement

of that Theorem when Λ1 = ΛD.

Proof of Proposition 3

Recalling that C(θ)1 =
∑∞

k=0R
k
S(θ)1 and the expression for the equilibrium price vector, it

is clear that the complete network maximises the centrality of each node in G, which then
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minimises the price vector p for a given m. At the same time, as (A1) holds, xij > 0, for each

consumer i and seller j in a complete network, which implies that, holding price constant, i's

expected consumer surplus is maximised where θc = 1. Hence, consumer surplus is maximises

when θ = θc.

Proof of Proposition 4

When c = 0, p∗j = 1
2γ for all θ and all j. As (A1) holds, it follows that for any θ where θc < 1,

there always exists a reallocation that reduces the probability that some other graph Gi is

realised and increases the probability that Gc is realised that increases aggregate demand. As

equilibrium prices remain the same in this case, it follows such a reallocation is pro�t increases,

and hence the result holds.

Proof of Proposition 5

Consider the case where θc = 1 and let G denote a graph which is de�ned as follows:

Gc − Eij = G

for some buyer i and the seller for whom γj is the smallest component in the vector γ. Let

θ1 = θG − θc and p∗k(θc) = p∗k. By the envelope theorem (Milgrom and Segal, 2002):

∂πP
∂θ1
|θc=1 = −ap∗j (γ − p∗j + 2

∑
k 6=j

c(p∗k − γ)) +
∑
i

∑
k 6=i

cp∗i
∂p∗k
∂θ1

.

As (p∗k − γ) < 0, it follows that:

∂2πP
∂θ1∂c

|θc=1 > 0.

Hence, there exists a c̄ such that if c > c̄, then ∂πP
∂θ1
|θc=1 > 0.

Proof of Theorem 2

To verify the claims in the main text, we �rst examine the e�ect of the change from θ to θ̂jk,
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which we de�ne as follows:

θ̂jk := (1 − ε)θ + εθjk,

on the sum of the pro�ts of j and k, holding pi i 6= j, k �xed. Note that in this case, the sum

of these pro�ts can be written:

E[πj(θ) + πk(θ)] =
∑
j,k

[pi(θ)(αi − bβipi(θ) +
∑
l 6=i

ĉilpl(θ))].

As shown in the main text the following inequality holds:

pj(θ) + pk(θ) < pj(θ̂jk) + pk(θ̂jk).

Hence:

ĉjkpk(θ)) + ĉkjpj(θ)) < ĉjkpk(θ̂jk)) + ĉkjpj(θ̂jk)).

Furthermore, given that pj(θ) < pk(θ), and that
∑

j,k pi(θ)(αi − aβipi(θ)) is increasing and

concave in pi ∈ [0, 1
2γ], it follows that the e�ect of the change from θ to θ̂jk on the sum of

the pro�ts of j and k, holding pi i 6= j, k �xed is an increase in platform pro�ts. This then

then implies that the direct e�ect of a change in probability vector from change from θ to θ̂j

(i.e. where the proposed set of neighbourhood switches takes place between j and every other

seller in the network).

We now turn the second order e�ects of a the proposed reallocation when m > 2. By

second-order e�ects, we refer to the e�ect of the proposed set of neighbourhood switches

between j and every k 6= i has on i's pro�ts. Formally, we compare:

∑
i

πi((1 − (m− 2)ε)θ +
∑
k 6=j

εθjk − εθji)
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with the sum of pro�ts generated by θ,
∑

i πi(θ). De�ne:

∆Ci := Ci((1 − (m− 2)ε)θ +
∑
k 6=j

εθjk − εθji)− Ci(θ)

Recall that:

Ci(θ) = 1 +
m∑
l=1

c̃ilCl(θ).

Two observations follow the above expression. First, as the direct e�ect of each neighbourhood

switch between j and k increases j's centrality less than it decreases k's, it follows that∑
i ∆Ci(θ) > 0. Furthermore, it must also be the case that if Ci(θ) ≥ Cl(θ) then |∆Ci(θ)| ≥

|∆Cl(θ)|, i, l 6= j.

The two above facts imply that the sum of second-order prices changes is positive and

that the prices of more central sellers increase more than the prices of less central players.

Again, as πP (θ) is concave and increasing in pi ∈ [0, 1
2γ] for all i, it follows that the sum of

the second-order e�ects of a switch from θ to θ̂j are pro�t increasing.

The above analysis then jointly implies that πP (θ̂j) > πP (θ). This implies the result: for

any vector in which there exists a pair of sellers j and k such that Cj(θ) > Ck(θ), there is

always a series of neighhbourhood switches that increases pro�ts. Hence, any solution to the

platform owner's maximisation problem must be such that Cj(θ) = Ck(θ) for all j, k pairs.

Proof of Theorem 3

Consider a proposed pro�t-maximising vector θ in which (a) Cj(θ) = Ck(θ) for all j, k pairs

and (b) It is true for at least one segment i that ϕi(τ) ≤ bϕ̂(θ)c or ϕi(τ) ≥ dϕ̂(θ)e, with at

least one of the inequalities strict, in at least one graph τ realised with probability θτ > 0.We

also rule out that ϕi(τ) = 0 for any seller i in any graph τ realised with probability θτ > 0, as

this clearly suboptimal.

As each seller and segment is identical in such a graph (prices and preferences are the

same across segments and all sellers), it is possible to construct the following probability
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vector, which yields the same pro�ts as θ. Take a graph τ generated with probability θτ > 0.

As before, let τjk denote the graph generated by a neighbourhood switch between two sellers

j and k being performed on the graph τ . The number of potential switches between i, j ∈ S

and k, l ∈ B is m!
2!(m−2)! + n!

n!(n−2)! := X.

Let θ̄ denote the following probability vector. Suppose θτ > 0. Then the probability that

τ is realised in θ̄ is θτ
X+1 , which is also equal to the realisation probability of each τij for i, j ∈ S

where i 6= j and each τkl for k, l ∈ B, where k 6= l. As Cj(θ) = Ck(θ) and consumers have

identical preferences, πP (θ̄) = πP (θ). The transformation makes it possible to show that θ is

not a solution to the platform owner's pro�t maximisation problem

We consider �rst the case where in θ,there exists a graph τ where ϕi(τ) < bϕ̂(θ)c and a

graph τ
′
in which ϕj(τ

′
) > dϕ̂(θ)e, where i and j may not be the same segment, and then

consider afterwards the case where one of these inequalities is not strict.

Under this assumption, when the probability vector is θ̄, there is a strictly positive prob-

ability that a graph τH will be realised, where ϕi(τH) > dϕ̂(θ)e and i observes a set of sellers

SH . There is also a strictly positive probability that a graph, τH,L, is realised, where τH,L is

�paired� with τH in the sense that i observes a set of sellers SH,L ⊂ SH and ϕi(τH,L) < bϕ̂(θ∗)c.

Let ϕ̄i = θ̄Hϕi(τH) + θ̄Lϕi(τH,L),

Suppose τ
′
H is a graph identical to τH except that i observes a set of sellers S

′
H ⊂ SH , such

that ϕi(τ
′
H) = dϕ̄ie. This is ensured by deleting the edge between i and j, Eij , for at least

one seller j where Eij ∈ τH . Let τ
′′
H be a graph identical to τ

′
H except that i observes a set

of sellers S
′′
H ⊆ S

′
H ⊂ SH , such that ϕi(τ

′
H) = bϕ̄ic, by deleting at most one edge between i

and k where Eik ∈ τ
′
H . Note that if ϕ̄ is an integer, then τ

′
H and τ

′′
H are identical, otherwise

S
′′
H ⊂ S

′
H ⊂ SH .

Similarly, de�ne τ
′
H,L as a graph identical to τH,L except that i observes the set of sellers

S
′
H , such that ϕi(τ

′
H,L) = dϕ̄ie. This is ensured by adding an edge between i and j, Eij , for at

least one seller j where Eij /∈ τ . τ
′′
H,L is constructed in an analogous way to τ

′′
H , and hence i
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observes a set of sellers S
′′
H ⊆ S

′
H ⊂ SH .

Let the constant η > 0 be such that it solves the expression ηdϕ̄ie + (1 − η)bϕ̄ic = ϕ̄i.

We de�ne the probability vector θ̄
′
in the following way. θ̄

′
i = θ̄i for all graphs except the

probability that τH and its pair τH,L, θ̄
′
H and θ̄

′
L, are realised is zero. Instead, ηθ̄

′

H′
+ (1 −

η)θ̄
′

H′′
= θ̄H and ηθ̄

′

L′
+ (1− η)θ̄

′

L′′
= θ̄L where θ̄

′

H′
represents the probability that the graph

τ
′
H is realised in the probability vector θ̄

′
.

It is clear that each segment in expectation observes the same number of sellers in both θ̄
′

and θ̄. If there is a di�erence in pro�t between the two, it is driven by di�erences in prices.

Suppose that j ∈ S
′′
H . If it is also the case that k ∈ S

′′
H then c̃jk(θ̄

′
) = c̃jk(θ̄). However,

by construction, S
′′
H ⊆ S

′
H ⊂ SH and there exists a l ∈ SH but l /∈ S

′′
H . It follows that

c̃jl(θ̄
′
) < c̃jl(θ̄). This implies that:

∑
c̃jl(θ̄

′
) < c̃jl(θ̄)

for at least one j, l pair. It follows that the centrality of j and l are lower in θ̄
′
than in θ̄. This

implies that prices are higher across the network in θ̄
′
than in θ̄, which in turn implies that

πP (θ̄
′
) > πP (θ̄).

Now consider the case in which there is a positive probability that a graph τ
′
where

ϕi(τ
′
) > dϕ̂(θ)e is realised when the probability vector is θ, but there is no graph with

positive realisation probability where ϕj(τ) < bϕ̂(θ)c. Given that ϕ̂(θ) is the number of sellers

observed in expectation, it must be the case that ϕj(τ) = bϕ̂(θ)c for at least one j and τ pair.

It follows that if the graph τ
′
is paired with a graph in which i observes exactly bϕ̂(θ)c sellers

in the way described above, the vector θ̄
′
will still be more pro�table for the platform owner

than θ.

Suppose there exists a graph τ where ϕi(τ) < bϕ̂(θ)c, but for no graph generated with

positive probability by the vector θ is it the case that ϕj(τ
′
) > dϕ̂(θ)e for any j, τ

′
pair.

Mathematically, for this to hold it must be the case that ϕ̂(θ) is not an integer and that
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ϕj(τ
′
) = dϕ̂(θ)e and θτ ′ > 0 for at least one j, τ

′
pair.

If ϕi(τH) = dϕ̂(θ)e and ϕi(τH,L) < bϕ̂(θ∗)c, then the preceding analysis implies that

S
′′
H ⊂ S

′
H ⊂ SH . Hence, by the same logic as the case where both original inequalities were

strict, it must be true that θ̄
′
will still be more pro�table for the platform owner than θ,even

in the case where no segment observes more than dϕ̂(θ)e sellers.

Proof of Proposition 6

As Theorem 2 shows pi(θ
∗) = pj(θ

∗) for all i, j. When the latter holds, the platform owner's

pro�t function can be stated:

πP (θ∗) =
∑
j

pj(θ
∗)αj(θ

∗)− aβj(θ∗)p2
j (θ

∗) +
∑
k 6=j

ĉjk(θ
∗)p2

k(θ
∗).

As every segment is identical in terms of preferences and prices are equal, it is possible to

restate the above pro�t function as follows:

π̂P (ϕ̂) = nbϕ̂(γp̂(ϕ̂)− ϕ̂p̂2(ϕ̂))− nϕ̂c(ϕ̂− 1)[γ − p̂2(ϕ̂)],

where p̂(ϕ̂) is the highest price level that pertains when the average number of sellers observed

is ϕ̂, which is the result of each segment observing either bϕ̂(θ∗)c or dϕ̂(θ)e sellers in any

graph realised with positive probability.

Recall that when γj = γ for all j :

p∗i = γ(1− 1

2
Ci(GS(θ), λ)).

We can rewrite i's centrality as Ĉi(ϕ̂) as the lowest centrality that pertains when the average

number of sellers observed is ϕ̂. The second derivative of the expression p̂2(ϕ̂) can be written:

∂2p̂2(ϕ̂)

∂2ϕ̂
= γ2(−Ĉ ′′i (ϕ̂) +

1

2
(Ĉ
′
i(ϕ̂)Ĉ

′
i(ϕ̂) + Ĉ

′′
i (ϕ̂)Ĉi(ϕ̂)).
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(A1) implies immediately that 1 > 1
2 Ĉi(ϕ̂), which in turn implies that:

∂2p̂2(ϕ̂)

∂2ϕ̂
> 0,

as Ĉ
′′
i (ϕ̂) < 0 and Ĉ

′
i(ϕ̂) > 0. It follows that:

∂2π̂P (ϕ̂)

∂2ϕ̂
< 0.

The above inequality shows that π̂P (ϕ̂) is concave in ϕ̂. Restating the platform owner's

maximisation problem as follows:

maxϕ̂π̂P (ϕ̂)

subject to the constraint that ϕ̂ ≤ m. The preceding analysis then implies that there exists a

ϕ̂∗ ≤ m which solves the following �rst order condition:

∂π̂P (ϕ̂∗)

∂ϕ̂
= 0

it uniquely solves the platform's maximisation problem. Otherwise ϕ̂∗ = m is the constrained

optimum to the platform owner's problem. Either way, there exists a unique ϕ̂ that is the

solution to the maximisation problem, which immediately implies the result.

Proof of Proposition 7

Let β(θ) denote the m× 1 vector whose ith element is βi(θ). One way of stating the platform

owner's maximisation problem is as follows:

maxβπP (β(θ)),

subject to the constraints that:
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θi ≥ 0 ∀i,

and:

βi = βi(θ
∗) ∀i.

For any optimum of the platform owner's problem, it must be the case that:

∂πP (β(θ∗))

∂βi(θ
∗)

∂βi(θ
∗)

∂θ
= 0 ∀i.

If this equality did not hold, then the platform owner would prefer to change the θ∗ such

that seller i is observed more or less depending on the above expression's sign. Denote the

�rst-order conditions of the platform owner's maximisation problem as follows:

πβi :=
∂πP (θ∗; γj , γ)

∂βi(θ
∗)

= 0.

To understand how πi changes due to an increase in γj , we �rst consider a case where ϕ̂(θ∗)

is an integer. In this case, it possible for the platform owner to increase the probability that

j is observed without increasing j′s centrality. This holds because it is possible because the

following result holds: ∑
k 6=j

c̃jk(θ) =
c
∑

y

∑
τ θτσjy(τ)y

bβj
.

In the case where y is equal for all realisable outcomes (which is true when ϕ̂(θ∗) is an integer)

increasing βj has the e�ect of also increasing
∑

τ θτσjy(τ)y by exactly the same amount, which

implies that
∑

k 6=j c̃jk(θ) remains the same. The same also holds for every other seller: as βj

increases, βi weakly decreases, but
∑

τ θτσiy(τ)y decreases by the same proportion.
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However, recall that:

p∗(θ) = γ − 1

2
C(GS(θ), λ)γ

This implies that ∂pi
∂βj

< 0 when βj ∈ [0, n], with the inequality strict for one seller. As βj

increases, the number of paths than begin at i and end at j increases of length l ≥ 1 weakly

increases, with the increase becoming strict as βj → n. As the centrality measure is weighted

towards shorter paths, it follows that it must be the case that ∂2pi
∂2βj

≤ 0 for all i 6= j.

Now consider the case where ϕ̂(θ∗) is not an integer. In this case, increasing βj leads to

an increase in the sum of seller centralities. If βj increases such that j is relatively more likely

to compete with bϕ̂(θ∗)c − 1 sellers, then directly this increases the relative probability that

at least one other seller, i, will compete with dϕ̂(θ)e− 1 other sellers, increasing i's centrality.

If βj increases such that the relatively likelihood seller j will compete with bϕ̂(θ∗)c − 1

sellers remains unchanged, this still increases at least one seller's centrality. The reason for

this is that as fewer sellers are observed in low competition states in general, which, by the

pigeonhole principle, implies that the relatively likelihood that the relative probability of at

least one other seller competing with dϕ̂(θ)e − 1 other sellers.

It is possible that βj increases such that the relatively likelihood seller j will compete with

dϕ̂(θ)e − 1 increases. However, doing so will necessarily increase j's centrality, and by the

proof of Theorem 2 this increase will necessarily result in an increase in to j′s centrality which

is larger than the sum of the total decreases in other seller's centralities.

Given that πP (θ) is concave and increasing in pi ∈ [0, 1
2γ] for all i, it follows that whether

ϕ̂(θ∗) is an integer or not, it must be the case that ∂2πP (β(θ))
∂2βi

≤ 0 for all i. Furthermore, as

αi is weakly decreasing in γj for i 6= j and αj is strictly increasing in γj , it is clear that:

∂πβi
∂γj

≤ 0 ∀i 6= j

and:
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∂πβj
∂γj

> 0.

Let H denote the Hessian of the platform owner's maximisation problem:

H =


πβ1β1 ... πβ1βm
...

...
...

πβmβ1 ... πβmβm

 .

By the implicit function theorem:


∂πβ1
∂γj

...

∂πβm
∂γj

 = −H


∂β1(θ∗)
∂γj

...

∂βm(θ∗)
∂γj

 .

This then implies that:

∂βj(θ
∗)

∂γj
≥ 0.

and:

∂βi(θ
∗)

∂γj
≤ 0.

This result immediately implies statements (i) and (ii) in Proposition 7.

To see that (iii) holds, �rst assume that ϕ̂(θ∗) is not an integer. Let θ∗τ > 0 be the

probability of the realisation of a graph τ in which segment i observes dϕ̂(θ∗)e sellers, including

j and θ∗τ ′ be the probability of the realisation of a graph τ
′
identical to τ except that i observes

bϕ̂(θ∗)c sellers, also including j. De�ne θ
′
τ := θτ − θτ ′ and:

πθ′τ
:=

∂πP (θ∗; γj , γ)

∂θ′τ
= 0.

This holds as otherwise it a reallocation such that increasing either θτ or θτ ′ would be pro�t
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increasing and θ∗ would not be optimal. As ∂2Ci(θ)
∂2c̃jk

> 0 for all i, j, k, it follows that:

πθ′τ θ
′
τ
< 0.

Furthermore, as j is observed by the same number of segments in both τ and τ
′
, it follows

that:

πθ′τγj
< 0.

Then, by the implicit function theorem:

∂θ
′
τ

∂γj
= −

πθ′τ θ
′
τ

πθ′τγj
< 0,

which immediately implies that ∂ϕ̂(θ)
∂γj

< 0, as ϕi(τ) > ϕi(τ
′
).

Now consider the case where ϕ̂(θ) is an integer, then de�ne τ
′′
as an identical graph to τ

that i observes ϕ̂(θ∗)− 1 sellers, including j. Exactly the same proof applies with θ
′′
τ in place

of θ
′
τ if:

πθ′′τ
:=

∂πP (θ∗; γj , γ)

∂θ′′τ
= 0,

which must hold when ϕ̂(θ∗) < m. If πθ′′τ
< 0, then θ∗ would not have been optimal because

it would have been pro�t increasing to put some positive probability on τ
′′
being realised. If

πθ′′τ
> 0, then it follows that there would be an incentive to put some probability mass on i

observing ϕ̂(θ∗) + 1 sellers. Hence, ∂θ
′′
τ

∂γj
< 0 in this case,

However, if ϕ̂(θ∗) = m, such a reallocation would not be possible, and hence πθ′′τ
> 0

could be consistent with optimality as the complete network would be a corner solution.

Hence, ∂θ
′
τ

∂γj
≤ 0.
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Proof of Theorem 4

First note that, by the envelope theorem, the following result holds:

∂E[πP (θ)|Φ = Φi]

∂γj
= E[p∗j (θ)(

∂αj(θ)

∂γj
)+

∑
i

∑
k

ĉikp
∗
i (θ)

∂p∗k(θ)

∂γj
−
∑
k

ĉjkp
∗
k(θ)(

∂p∗j (θ)

∂γj
)|Φ = Φi].

Note that
∂αj(θ)
∂γj

is linear in γj and increasing in βj . It is also the case that
∂p∗k(θ)
∂γj

= −1
2{RS}j,k

for all k 6= j and
∂p∗j (θ)

∂γj
= 1− 1

2{RS}jj , where {RS}ij denotes the ijth component of the matrix

RS . By (A1), it follows that even in the complete network, the sum of the second and third

terms of above expression are positive and linear in γj . For small changes in γj pro�t is

approximately increasing linearly in γj . We will show the result holds in the linear case, and

then show that for larger changes in γj the result must hold.

If E[πP (θ)] were increasing and linear in γj , the following statement holds:

∑
i

E[βiγ̃i|Φ = Φj ] ≥
∑
i

E[βiγ̃i|Φ = Φk]↔ E[πP (θ)|Φ = Φj ] ≥ E[πP (θ)|Φ = Φk].

Proposition 6 indicates that βi = βi(γ̃i) where βi(.) : R→ R and β
′
i(.) ≥ 0. The following

result holds:

∑
i

E[βi(γ̃i)γ̃i|Φ = Φ2] =
∑
i

(E[βi(γ̃i)γ̃i|Φ = Φ1] + E[βi(γ̃i)εi]

It is clear that E[βi(γ̃i)εi] ≥ 0 as cov(βi(γ̃i), εi) ≥ 0 and E[εi] = 0. Hence:

∑
i

E[βi(γ̃i)γ̃i|Φ = Φ2] ≥
∑
i

E[βi(γ̃i)γ̃i|Φ = Φ1].

As stated above, E[πP (θ)] is not linear in γj . This is because j's price is linearly increasing

in γj , and hence j's pro�t is a function of γ2
j . Given that (A1) holds, ∂

2E[πP (θ)]
∂2γj

> 0 for all j,
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which in turn implies that if βi(γ̃i) = βj that pro�t under Φ2 would be larger than Φ1. This

implies that:

∑
i

E[βiγ̃i|Φ = Φ2] ≥
∑
i

E[βiγ̃i|Φ = Φ1]→ E[πP (θ)|Φ = Φj ] > E[πP (θ)|Φ = Φk]

which is the result in (i).

With regards to (ii), we consider �rst the case where c increases from 0. When c = 0,

θc = 1 for either distribution, as per Proposition 4. Let θG denote the realisation probability

of a graph, G, in which each segment observes every seller except that i does not observe

a seller k and thus observes m − 1 sellers. De�ne θτ := θc − θG. We consider the ex post

expression ∂πP (θ∗;γ)

∂θ′τ
= πθτ .

When c is su�ciently low, πθτ ≥ 0 when θ = θc, in which case the optimal solution is

θ∗ = θc. It is clear that:

∂πθτ
∂c

< 0,

∂πθτ
∂γk

< 0,

and:

∂|πθτ c|
∂γj

> 0,

for some j 6= k. Furthermore,
∂|πθτ c|
∂γj

is independent of γk, as p
∗ = γ − C(GS, λ)γ. Abusing

notation slightly, we can then write πθτ as a function of γk and γ_k, the (m − 1) × 1 vector

of quality parameters not including k, πθτ (γk,γ_k).

For any (γl,γh) = (γk,γ_k), there exists a threshold level of c, c
′
(γl,γh) such that if

c ≥ c
′
(γl,γh) then πθτ (γl,γh) ≤ 0, but if c < c

′
(γl,γh) then πθτ (γk,γ_k) > 0. Note that,
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when c = c
′
(γl,γh), πθτ (γk,γ_k) > 0 if γk > γl and γ_k ≤ γh or γk < γh and γk ≥ γl. Let

γ̂H = γH + εH and γ̂L = γL + εL, the lowest and highest possible values the quality of a seller

can take when γ̃i ∼ Φ2. As Φ2 is symmetric, it must be the case that:

Pr(γ̃j = γ̂H |Φ = Φ2) = Pr(γ̃k = γ̂L|Φ = Φ2) > Pr(γ̃j = γ̂H |Φ = Φ1) = Pr(γ̃k = γ̂L|Φ = Φ1) = 0.

Let γ̂H denote an (m− 1)× 1 vector with components all equal to γ̂H . When c = c
′
(γ̂L, γ̂H):

Pr(πθτ < 0|Φ = Φ2) > Pr(πθτ < 0|Φ = Φ1) = 0.

It follows that:

E[ϕ̂(θ∗)|c = c
′
(γ̂L, γ̂H),Φ = Φ2] < m = E[ϕ̂(θ∗)|c = c

′
(γ̂L, γ̂H),Φ = Φ1].

Suppose the largest component of γ is γh. Let Gj denote the graph in which seller h and only

h is observed by every consumer segment. Let θH denote the probability vector in which

θh = 1.

Let γs. be the largest component of the vector γ_k. De�ne Gs as a graph which is identical

to Gj but where i observes h and seller s, and let θs denote the probability that this graph is

realised. Let θd = θs − θh.

For a given quality vector γ, when c is su�ciently high, πθd < 0 when θ = θH and in this

case θ = θH is an optimal solution to the platform owner's problem. As before, it is clear

that:

∂πθd
∂c

< 0,
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∂πθd
∂γs

> 0,

and:

∂|ππθdc|
∂γk

> 0.

For a given γh, the incentive to increase θd is greatest when γs = γh. Consider the marginal

e�ect of increasing θd from 0 when θ = θH , using the envelope theorem:

∂E[πP (θ)]

∂θd
= ap∗s(θ)(γh − p∗s(θ)) + ĉsh(p∗s(θ)

∂p∗h(θ)

∂θd
− γh) + ĉhs(p

∗
h(θ)

∂p∗s(θ)

∂θd
− γh).

While
∂p∗h(θ)
∂θd

= −{RS}hsγh and ∂p∗s(θ)
∂θd

= −{RS}shγh, by (A1) the above expression is increas-

ing in γh.

The fact
∂πθd
∂c < 0 and we know there exists a values of c such that θ = θc and that

θ = θH . For a given γh, and assuming γs = γh, then there exists a c
′′
(γh) such that if γs = γh

and c ≤ c
′′
(γh),then πθd ≥ 0 and c > c

′′
(γh) then πθd < 0. The analysis above relating to

∂E[πP (θ)]
∂θd

directly implies that c
′′
(γh) is increasing in γh.

Suppose c = c
′′
(γ̂H). It follows that:

Pr(γ̃h = γ̂H |Φ = Φ2)Pr(γ̃s = γ̂H |Φ = Φ2) > Pr(γ̃h = γ̂H |Φ = Φ1)Pr(γ̃s = γ̂H |Φ = Φ1) = 0.

It follows that:

Pr(πθd < 0|Φ = Φ2) > Pr(πθd < 0|Φ = Φ1) = 0,

and thus:
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E[ϕ̂(θ∗)|c = c
′′
(γ̂H),Φ = Φ2] > 1 = E[ϕ̂(θ∗)|c = c

′′
(γ̂H),Φ = Φ1].

Now consider the function:

ϕ̂
′
(c) = E[ϕ̂(θ∗)|c,Φ = Φ2]− E[ϕ̂(θ∗)|c,Φ = Φ1].

The above analysis shows that there exists a c
′
where ϕ̂

′
(c
′
) < 0 and a c

′′
where ϕ̂

′
(c
′′
) > 0.

Furthermore, E[ϕ̂(θ∗)|c,Φ = Φi] is a continuous function, and hence ϕ̂
′
(c) is as well. Hence,

by the intermediate value theorem, there exists a cT ∈ R such that ϕ̂
′
(c̄) = 0. It follows that

if c ≤ cT , ϕ̂
′
(c) ≤ 0 and if c > cT , ϕ̂

′
(c) > 0.

61


	cover2052
	Searching for results 01122020-1

