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1 PREFACE 

This thesis is the result of my own work and includes nothing which is the 

outcome of work done in collaboration except as declared in the preface and 

specified in the text. It is not substantially the same as any work that has already 

been submitted before for any degree or other qualification except as declared in 

the preface and specified in the text. This thesis does not exceed the prescribed 

limit of 60,000 words as specified by the degree committee of the Faculties of 

Clinical Medicine and Clinical Veterinary Medicine. 
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2 SUMMARY  

ANATOMICAL AND FUNCTIONAL ORGANIZATION OF  

DOMAIN-GENERAL BRAIN REGIONS 

MOATAZ IBRAHIM MOHAMED ASSEM 

 

How does complex brain activity organize thought and behaviour? Theoretical proposals 

have long emphasized that intelligent behaviour must be supported by a flexible control 

system. Numerous brain imaging studies identified a domain-general or “multiple-demand” 

(MD) brain system co-activated accompanying many tasks and is hypothesised to play a 

central role in cognitive control. However, the limited spatial localization provided by 

traditional imaging methods precluded a consensus regarding its anatomy and physiology. 

To address these limitations, the experiments in chapters 2 and 3 capitalize on novel multi-

modal magnetic resonance imaging (MRI) methods developed by the Human Connectome 

Project. Chapter 2 delineated nine cortical MD patches per hemisphere and subdivided 

them into 10 regions forming a core of most strongly activated and functionally 

interconnected regions, surrounded by a penumbra of 17 additional regions. MD activations 

were also identified in specific subcortical and cerebellar regions. Chapter 3 investigated 

the relation between the newly defined MD regions and previously identified sensory-

biased cortical regions. Contrasting auditory and visual low working memory demands 

revealed the strongest sensory-biases are localized just outside of MD regions. And 

additional working memory demands revealed MD activations showed no sensory biases. 

Chapter 4 used human electrophysiological recordings from the lateral frontal cortex to 

functionally map cognitive control regions during awake neurosurgeries. By contrasting a 

hard vs easy cognitive demand, spectral analysis revealed localized power increases in the 

gamma range (>30 Hz) that overlap with a canonical mask of the fronto-parietal control 

network. These findings contrast with spatially non-specific power decreases in the beta 

range (12-30 Hz). Thus, using similar task difficulty manipulations, electrophysiology and 

MRI functional signals converged on localizing lateral frontal regions related to cognitive 

control and support their clinical potential for intraoperative mapping of cognitive control. 

All together, the distributed anatomical organization, mosaic functional preferences, and 

strong functional interconnectivity of MD regions, suggest a skeleton for integrating and 

organizing the diverse components of cognitive operations. The precise anatomical 

delineation of MD regions provides the groundwork for refined analyses of their functions. 
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1 CHAPTER 1 

 

INTRODUCTION: A BRAIN SYSTEM FOR 

ASSEMBLING COGNITIVE STRUCTURES 

What is the brain basis of human intelligence? A working definition of human 

intelligence is the ability to solve novel and complex problems like solving 

algebra, building a house, playing football, cooking and writing stories. What is 

common among these examples is how each complex activity consists of 

fragments of thought and behaviour, carefully organized or structured according 

to the organism’s needs. How then does the human central nervous system 

support such complex behaviour? Scientific evidence has divided the human 

brain into multiple biological systems serving, for example, vision, movement, 

language and homeostasis (Kandel et al. 2013). If all of these different systems 

worked independently, we would not be able to conceive of any form of 

organized thought or behaviour. Over the past century, neuroscience research 

has made several long strides in understanding how each system works. And we 

are just beginning to understand how they work together and the consequences 

of a breakdown in their communication. 

This thesis investigates a brain system that has previously been proposed 

to play a critical role in coordinating complex brain activity. Over the past 20 

years it has been referred to as the task-positive, cognitive control, domain-

general, fronto-parietal, attention, executive control or Multiple-demand (MD) 

system (Cole and Schneider 2007; Duncan 2010; Petersen and Posner 2012; 

Fedorenko et al. 2013; Di and Biswal 2014; Hugdahl et al. 2015; Marek and 
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Dosenbach 2018). During my medical training a surgeon once taught us that if 

there are numerous surgery names to solve one problem it probably means that 

none of these approaches are fully addressing the problem. Each of the previous 

labels for this brain system stem from different theoretical frameworks about 

how brain operations are organized. And each theoretical account drags behind it 

a set of incomplete experimental evidence due to limitations in the technologies 

used in human neuroscience research. My PhD training coincided with major 

advancements in non-invasive brain imaging based on Magnetic Resonance 

Imaging (MRI) methods developed by the international team of the Human 

Connectome Project (HCP) (Glasser, Smith, et al. 2016). In this thesis I 

capitalize on these MRI advancements to reveal novel findings about the 

anatomical and functional organization of this brain system. Further, using 

unique electrophysiological data from invasive neurosurgeries in human 

patients, the thesis also reveals novel electrophysiological properties that should 

constrain the potential neural mechanisms operating in this brain system. These 

findings, I argue, offer a common ground for reconciling the different theoretical 

frameworks and experimental findings and pave a path forward for accumulating 

experimental knowledge about the system’s fundamental operations. 

Critically, I hope this thesis emphasises the fact that to understand any 

single brain function one needs a map of its components, how they are connected 

and their functional properties. Even in simple neural circuits consisting of a 

handful of neurons, it is impossible to infer the circuit’s anatomical structure 

from just measuring changes in the circuit’s output to a varying input. This is 

due to the potential existence of parallel pathways that can give rise to identical 

observations (Marder 2015). Yet, discovering the anatomical connectome is only 

the first step because different combinations of the physiological properties of its 

neurons can give rise to several mechanisms that can identically account for the 

observed data (Marder 2015). This thesis manages to uncover bits of both the 

anatomical and functional organization of a complex system in the adult human 

brain. While much remains unknown, it opens an important door for a new phase 

of understanding how complex brain activity is organized. 

In the first part of this chapter, I review a recent theoretical proposal 

(Duncan 2013; Duncan et al. 2020) about how human behaviour during complex 

tasks can be reconceptualised around a core process of building computational or 
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cognitive structures that guide intelligent behaviour. Then I review existing 

experimental evidence for a brain system supporting such a process, surveying 

brain lesions, non-invasive brain imaging and invasive electrophysiological 

studies. I then discuss how traditional brain imaging methodologies have held 

back progress in understanding the system’s operations and introduce the novel 

HCP brain imaging techniques and their potential to transform our understanding 

of brain macroscale organization. I finally describe the remaining structure of 

this thesis. 

Before starting, the ubiquity of the complex term “cognition” in this thesis 

necessitates giving it an operational definition. In non-biological studies, 

cognition is used to refer to the mind, mental operations, thoughts or knowledge. 

Planning your day is cognition. Remembering yesterday’s events is cognition. In 

biological studies, cognitive signals are defined as physiological signals that are 

difficult to interpret or directly relate to experimental variables such as a 

stimulus or an action. Neural spikes during a temporary period of remembering 

recent information are cognitive signals. In my use of the word cognition 

throughout this thesis, I lean towards defining it using Alan Newell’s analogy 

(Newell 1973): 

  

“The problem of determining what control system is used by the human is 

analogous to determining what machine language is used by a computer, given that you 

can never see any written code, but only the outputs of running programs.”  

 

So the terms “cognition” or “cognitive” in this thesis can be thought of as 

referring to the unreadable scripts guiding human behaviour. 

1.1 The theory: assembling cognitive structures  

Complex systems like the brain force us to divide any explanation of its 

functions into multiple levels. On its own, the substantial complexity of 

neurobiology makes it considerably difficult to comprehend the functions of 

biological systems from the bottom up. Theoretical frameworks, or top-down 

views, are thus essential guides through the biological jungle (Marr and Poggio 
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1977). Much of our theoretical frameworks about brain function were developed 

based on studying animal and human behaviour. And as empirical 

neurobiological findings are discovered, theories are pruned, edited or replaced 

by better ones. 

Students of animal and human behaviour have long documented that, 

despite its seemingly complex nature, behaviour can be fragmented into simpler 

pieces. For example, some of fish or bird behaviour has been described through 

fixed action patterns, also known as the innate-release mechanisms (IRMs), 

which are hard wired programs, or sequence of behaviours, triggered by internal 

or external stimuli (Tinbergen 1951; Lorenz 1970). On the contrary, human 

thoughts and behaviours are hardly fixed, yet still breakable into fragments 

(Miller et al. 1960; Luria 1966). Writing a novel is one example of how infinite 

creativity results from different combinations of specific finger and hand 

movements, vocabulary, grammatical rules and memories. These same 

behavioural fragments can be used to guide cooking a meal. And one can flip 

back and forth between writing and cooking. Thus, this conception of 

behavioural fragments demands from them to be organized through some form 

of a plan or a program (Miller et al. 1960; Luria 1966; Newell 1990). 

Importantly, any complex system capable of flexible behaviour must be 

equipped with an equally flexible set of heuristic programs, or meta-plans, 

capable of assembling new programs to support its flexibility (Miller et al. 1960; 

Luria 1966; Newell 1990). For example, our ability to solve the following 

arithmetic problem (985 + 632 x 3) is highly unlikely to be based on selecting 

the correct answer from an infinitely large storage of all possible answers of all 

possible arithmetic combinations. This would be a very inefficient way to learn 

and solve problems. Instead specific addition and multiplication rules are applied 

to solve the problem. This reasoning can be extended to almost all aspects of 

human behaviour, sparing the automated reflexes. For example, speech is the 

product of putting together words in an appropriate structure based on syntactic 

and grammatical rules (and social rules when the situation is more complex). 

Thus, rules, heuristic programs or meta-plans are fundamental components of 

flexible behaviour. 
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 A heuristic program: segment and integrate 

What heuristic programs, then, support human flexibility in solving complex 

problems? When it comes to finding patterns in human behaviour, a fundamental 

finding is that performance on almost all kinds of cognitive abilities tend to 

positively correlate with each other (Spearman 1927). Put in other words, good 

performance on any task tends to predict similarly good performance on almost 

any other task. This finding has been termed the positive manifold (Spearman 

1904). The simplest, and still the most powerful, model to explain these 

correlations suggests that all cognitive abilities share a common general factor 

(g) (Spearman 1904, 1927). More interestingly, novel and complex problems 

were found to be the best predictors of performance on a diverse range of other 

tasks. Performance on such problems has been labelled fluid intelligence and 

Raven’s Progressive Matrices are one example of these tasks (Raven 1982). 

Could it be that matrix tests are measuring a fundamental component of human 

behaviour, a heuristic program, which is equally important for all other tasks? 

In classical symbolic artificial intelligence (AI) systems, numerous 

heuristic programs were developed for problem solving. But those most 

ubiquitous and powerful converged on a common strategy: decomposing a 

problem into simpler solvable fragments. For example, Newell, Simon and Shaw 

designed a heuristic program that was capable of solving problems in logic, 

chess and trigonometry. The heuristic was called the “means-ends analysis”, 

which solves a problem in a sequence of sub-problems (Newell 1990). It went 

something like this: (1) Search if this problem can be solved using a currently 

existing program (2) If not, search if this problem can be transformed in a way 

that reduces the difference between the current state and the desired state and 

apply it (3) Repeat step 1. With each loop, the problem is gradually decomposed 

and becomes easier to solve. This general strategy of decomposing a problem – 

in a sense creating a goal-subgoal hierarchy - has been successfully employed to 

solve numerous complex problems from navigating mazes (Sacerdoti 1974) to 

planning everyday errands (Hayesroth and Hayesroth 1979). It has also been 

recently highlighted as a major potential missing architecture to allow modern 

deep learning AI systems to generalize their successes to new tasks (Russin et al. 

2020). 
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Could a similar heuristic – segmenting a problem into a sequence of sub-

problems – support human problem solving abilities as well? A recent 

experiment investigated this using two versions of the matrix problems (Duncan 

et al. 2017). In the first version, the matrix problem was simplified to zone in on 

the ability to segment (Figure 1.1a). To minimize any confounds related to 

working memory (the temporary capacity to store and manipulate information) 

participants drew their answers in the response box as they solved each step of 

the matrix. Despite the simplicity of this format, participants with low fluid 

intelligence scores (measured using an independent test) performed poorly 

(Figure 1.1c, blue dots). In the second version, the same matrix problems were 

pre-segmented i.e. participants were now required to solve just one sub-problem 

at a time (Figure 1.1b). This time, all participants performed well (Figure 1.1c, 

red dots). Thus segmentation must be a core strategy for human complex 

problem solving. 

But this story is incomplete without recognizing the other face of the 

segmentation coin: integration. Think about Newell’s means-end analysis 

program solving one step in a chess game, for example, deciding on the best 

move to protect the king. This goal must be linked with the rules of the game, 

the current arrangement of the pieces on the board, the values of each piece, all 

embedded within an overall structure of goals (in this case it was a five goal 

program with king safety as the first goal). Thus the step exists as rules, pieces, 

values all linked through an algorithm or a computational structure. In other 

words, the step existed as “arrays of memory that can be manipulated by 

computations that do not depend on the specific content stored there” (Russin et 

al. 2020). Similarly, consider what it would take to solve just one step in the 

matrix problem (Figure 1.1a): there is the feature (e.g. an arrow), comparing it 

with other features, in other boxes, and the overall concept of solving a matrix 

problem, all integrated in a cognitive structure (Duncan 2013, 2020).  

Thus, this process of assembling a computational or cognitive structure – 

through segmentation and integration, henceforth referred to as attentional 

integration [after (Duncan et al. 2020)] - underscores a fundamental operation in 

problem solving. Beyond solving matrix problems, attentional integration 

plausibly plays a core role in all aspects of human behaviour. For example, think 

about someone wanting to travel to Japan. This high-level goal cannot directly 
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control what the person would do with their right hand. Instead, the goal is 

broken into a series of hierarchical sub-goals of flying, buying a plane ticket, 

accessing a website, moving a mouse. The problem space now is much 

constrained and the latter sub-goal is capable of controlling the hand movement 

(Figure 1.2). In the following section, the different theoretical frameworks on 

cognitive control are assessed from the point of view of the attentional 

integration process. 

 

Figure 1.1 (a) Example of a typical simplified matrix problem. Participants were asked to 

complete the empty box by “making it look right”. One strategy, for example, would be to 

identify the features that changed between both columns in the top row, and use this 

knowledge to fill in the missing box in the bottom row. Answers were to be drawn in the 

allocated response box, where a horizontal line was drawn as a common core to simplify 

solving the problem (b) The same matrix problem now segmented into the three separate 

steps required to solve the problem (c) Scatter plot of each subject’s fluid intelligence 

score vs their performance on the typical (blue) and segmented (red) matrix problems. 

Note how performance improved markedly on the segmented problems. 
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Figure 1.2 The attentional integration heuristic illustrated through an example task of 

booking a flight ticket to travel to Japan. (a) In this task, the complex problem is 

segmented it into a series of steps (step 1: set goal to travel to japan; step n: use a 

computer to book the ticket online). With each step solved, the task becomes 

progressively simpler to solve. Attention to each step means integrating its relevant 

components into a computational or a cognitive structure  (b) A detailed illustration of 

each step’s cognitive structure: Here only the relevant components are bound together 

into a computational sequence. Arrows towards horizontal line suggest inputs to the 

structure, arrows away suggest outputs of the computational sequence. 
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 Theoretical accounts of cognitive control 

Numerous models were proposed to account for how cognition is organized and 

controlled. The different frameworks, while on their own addressing important 

aspects of cognition, are often hard to reconcile into a unified account. In this 

section, some of the relevant cognitive control models are assessed through the 

eyes of assembling cognitive structures. The intention is not to provide a detailed 

unified theory of cognitive control but to offer a broad lens through which the 

different models can be viewed. 

One of the most common accounts of cognitive control emphasises its 

hierarchical nature (Lashley K.S. 1951; Miller et al. 1960; Newell 1990; Cooper 

and Shallice 2006; Badre 2008). In the previously mentioned example of 

travelling to Japan, the complex problem was divided into a hierarchy of goals 

and sub-goals. In classical hierarchical models, routine actions like finger 

tapping are conceptualized as lower-level units at the bottom of the hierarchy 

(Cooper and Shallice 2000). This is because finger tapping can be used flexibly 

in different behaviours such as clicking on a mouse, typing on a keyboard etc… 

However, some investigators argued that purely hierarchical representations 

were not capable of dealing with quasi-hierarchical structures (Botvinick and 

Plaut 2004). To borrow from the previous example on finger tapping, how 

should a hierarchical model represent the finger tapping routine if it is to be used 

multiple times at different steps if it is only represented at the lowest levels? 

Botvinick and Plaut (2004) demonstrated that a recurrent neural network with 

one layer was capable of solving this problem, not using hierarchical modelling, 

but through distributed representation of the task sequences in the network units. 

An obvious limitation to their account is that such a connectionist model would 

lack the flexibility needed for novel planning or problem solving. Specific 

hierarchical solutions were proposed to solve such a problem (Cooper and 

Shallice 2006). However, the concept of a cognitive structure offers a simpler 

and a more flexible solution. As shown in Figure 1.2, a cognitive structure is 

created for each level (step). And each cognitive structure is capable of 

recruiting the relevant components (finger tapping) flexibly without relegating 

certain components to lower levels. From this point of view, any routine or 

cognitive operation can be utilized flexibly for any step of solving the problem. 
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Another influential cognitive control model that is tightly linked to fluid 

intelligence is working memory (WM) (Baddeley and Hitch 1974; Baddeley 

2012). The WM model first proposed by Baddley and Hitch offered an account 

of two memory systems for the temporary storage of information, namely 

phonological and visual memory (Baddeley and Hitch 1974), overseen by a 

central executive. Some proposals promoted the capacity of these storage 

systems (WM capacity) as a core component in cognitive control (Engle 2002). 

However, as shown in the previous section, such accounts would fail to explain 

the poor performance on the simplified matrix problems (Figure 1.1) (Duncan et 

al. 2017). Similar accounts of WM maintenance and resistance to distraction 

(Kane and Engle 2002), can be considered as useful properties of a cognitive 

structure but not a heuristic program capable of assembling one. 

Several proposals were put forward to understand the central executive or 

cognitive control in terms of focused, divided or selective attention (Norman and 

Shallice 1986; Duncan et al. 1997; Baddeley 2012). For example, Norman and 

Shallice (1986) viewed human behaviour to be guided by competing automatic 

processes and when they conflict, a set of controllers would use attention to 

favour or bias some automatic processes over others. Not surprisingly, 

distraction to attention leads to significant drops in problem solving performance 

(Robbins et al. 1996). But is attention itself a program? There is a subtle 

difference between conceiving of attention as a method to select vs the process 

that decides what information to select. If attention is to be viewed as a program, 

then current models of attentional control have fallen short on explaining the 

control part. More appropriately, accounts of attentional (or top-down) bias fit as 

a property of a heuristic program. From the point of view of attentional 

integration, attention is the cognitive structure with its different elements linked. 

A different kind of model fractionates cognitive control into processes 

such as set shifting, updating and inhibition (Miyake et al. 2000; Friedman and 

Miyake 2017). It seems reasonable to consider such processes as fundamental 

programs required for controlling behaviour. For example, any flexible system 

would require a method to update its content or inhibit an unwanted automated 

action initiated by an environmental trigger. However, on their own, how far can 

such simple programs be used to explain the diversity of human behaviour? 

These proposals are broadly similar in spirit to factorial fractionations of the g 



 
23 Chapter 1 

factor (Thomson 1939). In Thomson’s model, correlations in performance 

between diverse tasks are conceived as fractionated specialized programs that 

are shared between tasks. These fractionations raise a critical question about the 

processes organizing them. A common explanation put forward is that complex 

behaviour is an “emergent property” of these interacting factors (Courtney 2004; 

Postle 2006). According to this view, in complex systems, when internal biases 

are coupled with external inputs, complex behaviour “emerges”. A property that 

is larger than the smaller pieces of the system. However, “emergence” does little 

to explain or predict useful properties in a complex system. Upon closer scrutiny 

it is possible to conceive of all these fractionated processes as different programs 

utilized by a heuristic program assembling the different steps of a behaviour. 

This would provide another way to interpret why these fractionations still highly 

correlate with each other. In fact, such a conception predicts that more 

fractionations could be found as long as the tests that heavily load on the 

relevant program are used for behavioural assessment. 

Before moving to the next section on neurobiology, a common criticism to 

the presented “assembly of cognitive structures” framework is that behaviour is 

too complex to be accounted for by one process. An interesting analogy put 

forward compares the quest to find a core process behind g factor to the quest of 

finding a single explanation for physical fitness (Kievit et al. 2012). Loosely 

defined, physical fitness obviously depends on the efficient performance of 

several biological systems (cardiovascular, musculo-skeletal, respiratory, 

metabolic etc…). Thus it seems unlikely that it could be accounted for by a 

single process. This analogy is important because it certainly highlights that the 

success of a heuristic program in assembling a cognitive structure will also 

depend on the integrity of its components such as long-term memory systems, 

the systems processing online inputs or motor output etc…. A deficit in any one 

of these will affect the overall cognitive structure. However, the analogy with 

physical fitness is subtly misplaced because the program for a physical activity is 

fixed: a muscle contracts, needs more blood oxygen, the heart pumps more 

blood, oxygen is exchanged through the lungs etc… From this point of view a 

“physical fitness g” is the fixed sequence of events just described. A calf muscle 

will not pump blood or exchange oxygen with the environment. However, the 

thoughts and behaviours produced by the brain are essentially infinite and a 
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fixed program cannot account for such flexibility. Thus, some programs must 

have an inherent flexibility and be heuristic in nature. It remains an open 

question whether more heuristic programs could account for other aspects of 

human behaviour. 

In summary, heuristic programs are essential building blocks for flexible 

behaviour of complex systems like the brain. A process of attentional integration 

accounting for solving complex problems in a series of cognitive structures was 

reviewed and compared to existing models of cognitive control. The next section 

explores the experiments that are starting to reveal the neurobiological 

mechanisms that could account for such a process. 

1.2 The neurobiology: a Multiple-demand brain 

system 

Where and how could cognitive structures be assembled by the brain? The 

limitations of any single neuroscience methodology force a complementary 

approach combining insights from different methodologies. This section 

explores findings from patients with brain damage, non-invasive brain imaging 

of healthy adult humans and invasive electrophysiology studies in human 

patients and non-human primates (NHPs). 

 Insights from patients with brain damage 

Candidate regions for the assembly of cognitive structures are ones which if 

damaged would be associated with widespread disorganization in behaviour. 

Early studies highlighted that damage to the frontal lobes rendered patients 

incapable of performing simple tasks which consisted of a sequence of actions 

(Luria 1966; Duncan 1986; Shallice and Burgess 1991). For example, when a 

frontal lobe patient was asked to prepare a meal, the steps necessary for its 

preparation were preserved (e.g. slicing, pouring etc…) but their order was 

disturbed, suggesting a deficit in making a plan for the separate actions 

(Schwartz et al. 1991). Modern brain imaging methods have allowed 
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neuropsychology studies, the enterprise of detailed examination of patients with 

brain damage, to provide a crisper picture of brain regions associated with 

disorganized behaviour. First, not all frontal lobe regions cause the same 

behavioural deficits (Glascher et al. 2012; Warren et al. 2014; Woolgar et al. 

2018). Second, quantitative assessments of behaviour link poor executive 

functions and fluid intelligence scores to a distributed set of localized frontal and 

parietal regions: around premotor cortex, middle frontal gyrus, dorso-medial 

prefrontal cortex (PFC), the intra-parietal sulcus and its surroundings and the 

insular cortex (Glascher et al. 2010, 2012, Woolgar et al. 2010, 2018; Warren et 

al. 2014). 

Studies assessing the effect of subcortical or cerebellar damage on 

executive functions are less common. A recent study associated lesions in the 

medio-dorsal thalamus with deficits in executive functions (Hwang et al. 2020). 

Cerebellar lesions were also associated with executive functions disturbances; 

however, a quantitative assessment of anatomical locations of such lesions is 

currently lacking (Gottwald 2004; Schweizer et al. 2008). 

Thus evidence points to a distributed set of fronto-parietal, subcortical and 

cerebellar regions as likely candidates for a brain system for assembling 

cognitive structures. However, a critical neuroanatomist might object to these 

conclusions. Their main concern would be that the typical patients involved in 

the previous studies suffer from extensive, rather than localized, damage and this 

raises several confounds. First, cortical damage is likely to extend beyond the 

cortical mantle into the underlying white matter tracts which do not necessarily 

carry local information. In other words, the location of the damage might disrupt 

the transfer of information between distant areas which might be the ones related 

to the cognitive operation of interest. Unfortunately lesion studies rarely take 

into account the contribution of white matter damage on the observed 

behavioural deficits, partly because a clear characterization of white matter tracts 

is lacking in MRI scans and is not routinely incorporated into the 

neuropsychology analysis pipelines. One recent study assessed the contribution 

of every brain voxel on g deficits and the voxels with the largest effects where 

localized in the white matter the authors characterized to belong to the superior 

longitudinal, arcuate and uncinate fasciculi (Glascher et al. 2010). These tracts 

connect major frontal, parietal and temporal regions, significantly blurring the 
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resolution needed to make meaningful conclusions. That said, this study 

confirms that g depends on communication between widely distributed brain 

regions. The second concern relates to the finer grained resolution of damage to 

the cortical mantle. Cyto-architectural, electrophysiological and functional MRI 

(fMRI) studies of the cortex divide frontal and parietal association areas into 

numerous neighbouring areas, with sharp functional boundaries (Van Essen and 

Glasser 2018). Lesions, especially due to vascular incidents like stroke, are 

especially large and might engulf multiple functionally distinct regions. Thus 

typical lesion studies might only be able to broadly point to large territories of 

interest. But a finer-grained spatial resolution is needed for a tighter grasp on the 

possible brain regions related to the assembly of cognitive structures. The 

following section digs deeper to reveal a crisper picture of the relevant 

functional territories. 

 Insights from functional MRI 

1.2.2.1 A primer on functional MRI 

Since its introduction as a tool to the fields of psychology and neuroscience 

around 25 years ago, functional MRI (fMRI) has played a major role in 

advancing our understanding about the diverse properties of different brain 

regions. FMRI is presently the only method available for non-invasively 

measuring whole brain activity with an inherent spatial resolution of around 3-5 

mm (Turner 2002). Before delving into the insights it has provided us, it is worth 

clarifying the type of brain signals it measures and how it relates to neural 

activity. Its premise is built on indirectly measuring neurophysiological 

properties through their effect on blood flow. Blood oxygen level dependent 

(BOLD) is the most common signal measured with fMRI. An over simplified 

account of BOLD is that an increase in local physiological activity (excitatory, 

inhibitory or non-neural in origin) will lead to vasodilation of local arterioles 

followed by a rush of oxygenated blood to meet the metabolic demands. This 

rush of oxygenated blood sweeps away deoxygenated blood which leads to an 

increase in the strength of the signal measured (Buxton et al. 1998). Critically, 

the relation between neural activity and vascular effects, neuro-vascular 
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coupling, is complex and not completely understood (Logothetis 2008; Drew et 

al. 2020). That said, several studies converge on a decent overlap between 

simultaneous measures of neural activity, recorded invasively in animals or 

humans, and the BOLD signal. Local increases in neural spiking rate in primary 

sensory or motor regions were correlated with increases in BOLD signal. But 

there is also evidence that BOLD signal correlates better with local field 

potentials (LFPs), the voltage changes due to all ionic movements within a local 

area (Logothetis et al. 2001; Nir et al. 2007; Logothetis 2008; Engell et al. 2012; 

Hermes et al. 2012). Further, BOLD fMRI is capable of identifying the somato-

topic organization of the somato-sensory cortex and retinotopic organization of 

the visual cortex (Glasser, Coalson, et al. 2016). In a further demonstration of its 

neuroanatomical precision, an epileptic patient with implanted invasive 

electrodes, first underwent a fMRI scan to identify brain regions that selectively 

increase their BOLD activity in response to faces in the fusiform cortex. After 

the patient was implanted with electrodes along the fusiform cortex, sending 

electrical stimuli through the contacts that overlapped with fMRI activated 

regions, but not the contacts nearby, disrupted the patient’s perception of faces 

(Parvizi et al. 2012). These results thus demonstrate that fMRI is capable of 

providing insights into the functional organization of the brain. An important 

limitation to keep in mind, besides that BOLD fMRI is an indirect measure of 

neural activity, is its slow temporal resolution. Vascular changes occur in the 

order of seconds (peaking at around 5-7 seconds after an impulse response) 

while neurophysiological activities rapidly change within a few milliseconds 

(Logothetis 2008; Drew et al. 2020). 

1.2.2.2 Co-activations to multiple task demands 

How might fMRI help to find the brain regions related to the assembly of 

cognitive structures? One obvious approach is to scan participants while they 

perform a novel and complex problem, like the Raven matrices. Such 

experiments revealed localized regions in bilateral lateral PFC, parietal and 

occipito-temporal regions (Figure 1.3a) (Prabhakaran et al. 1997; Duncan 

2000). 
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If indeed activations during fluid intelligence tasks reflect a core 

mechanism common in all behaviour, another obvious litmus test is to 

investigate the spatial distribution of activations common to many other 

cognitive tasks. An early meta-analysis highlighted activation foci from diverse 

tasks (perceptual difficulty, working memory, response conflict, task novelty, 

verbal episodic memory retrieval) clustered in specific regions along the lateral 

and medial PFC (Duncan and Owen 2000). In the 20 years that followed, 

thousands of fMRI studies have identified a similar pattern of co-activated 

regions along similar frontal and also parietal regions. These tasks included 

working memory (Gray et al. 2003; Owen et al. 2005; Chein et al. 2011; 

Fedorenko et al. 2013; Engelhardt et al. 2019), task switching (Yeung 2006; 

Vallesi et al. 2015; Engelhardt et al. 2019), response inhibition (Wager et al. 

2005; Hampshire et al. 2010; Dodds et al. 2011), selective attention (Corbetta et 

al. 1998; Gitelman et al. 1999; LaBar et al. 1999), episodic memory retrieval 

(Nyberg et al. 2003; Wagner et al. 2005), verb generation (Dosenbach et al. 

2006; Tremblay and Gracco 2006), language control (Hervais-Adelman et al. 

2015; Jackson 2020), math (Amalric and Dehaene 2016, 2017), theory of mind 

(Koster-Hale and Saxe 2011), learning a new task (Niv et al. 2015) and many 

more (Hugdahl et al. 2015). A reasonable summary from this overwhelming 

number and diversity of tasks is that contrasting almost any type of complex 

cognitive demand with a simpler demand was bound to illuminate some sort of 

fronto-parietal activations. 

To investigate whether these activations were really overlapping and not 

just nearby activations that are blurred together, a conjunction of activations 

from 7 different hard vs easy cognitive demands found overlapping fronto-

parietal regions at the single voxel level (Fedorenko et al. 2013). This study 

helped sharpen the spatial locations of these co-activations: along anterior and 

middle frontal gyrus, premotor cortex, anterior insula, anterior cingulate, 

intraparietal sulcus and occipito-temporal regions (Figure 1.3b). This set of 

regions, henceforth, will be referred to as the Multiple-demand (MD) system 

[after (Duncan 2010, 2013)] reflecting their co-activation by multiple cognitive 

demands. MD activity is not limited to the cortex only. Subcortical and 

cerebellar MD activity have long been recognized but less frequently 

investigated. For example, the Fedorenko et al study noted caudate, thalamic and 
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cerebellar hotspots (Fedorenko et al. 2013). Invasive animal studies have long 

implicated subcortical regions in cognitive control [e.g. (Halassa and Kastner 

2017)]. However, the lack of a careful characterization of MD subcortical 

activations has held back progress in this field. 

Taken together, thousands of fMRI studies converge on a specific set of 

cortico-subcortical MD regions that co-activate across a diverse set of cognitive 

demands. 

 

 

 

  

Figure 1.3 (a) Left hemisphere activation t-map associated with a standard test of 

fluid intelligence (similar to Duncan et al 2000). Similar activity is also seen on the 

right.  Unpublished data, N = 252, threshold t > 11. (b) MD pattern (beta activations) 

obtained by averaging activations across 7 hard vs easy contrasts. Bilateral activity 

was similar hence here activations have been averaged across hemispheres and 

projected onto the left.  Adapted from Fedorenko (2013). 
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1.2.2.1 Functional and structural connectivity 

An important question is whether, despite strong and replicable co-activations, 

MD regions should be conceived of as a functional network? To investigate this, 

the field turned to analysing resting-state fMRI (rfMRI) data. This involves 

measuring time-series correlations between different brain regions during a 

“resting” period (i.e. lying silently in the scanner performing no active task). 

Such studies converged on a similar set of fronto-parietal regions characterized 

by stronger time-series correlations with each other more than with other cortical 

regions (Cole and Schneider 2007; Dosenbach et al. 2007; Power et al. 2011; 

Yeo et al. 2011a). This set is commonly known as the fronto-parietal network 

(FPN) and includes subcortical and cerebellar components (Buckner et al. 2011; 

Ji et al. 2019). However, careful comparison of the spatial overlap between 

rfMRI FPN and task fMRI MD activations is currently lacking (see chapter 2). 

A limitation of rfMRI findings is that they neither provide direct evidence 

of connectivity between MD regions nor do they provide information on the 

directionality of the connections. Yet understanding the structural connectome is 

vital for a clearer understanding of the MD system’s architecture. Invasive tracer 

injections in NHPs remain the “gold standard” for structural connectome studies. 

A recent tour-de-force series of studies mapping areal connections in monkeys 

revealed that cortical connections are much more dense (~70% of all possible 

connections do exist) than previous estimates (~45%) (Markov et al. 2013). This 

high-density architecture is inconsistent with current graph theoretical small-

world conceptions which emphasise path lengths as a critical feature of the 

connectome. However, in high density connectomes, path lengths are already 

pre-determined by the connection density. Instead, the critical feature of the 

network is related to connection weight strengths, with a special emphasis on 

weak connections (Markov et al. 2013). Further probing feedforward vs 

feedback connections, the studies revealed a dual cortical counter-stream 

architecture across cortical layers (Markov et al. 2013). Put simply, two pairs of 

feedforward and feedback streams were discovered, one pair running in 

superficial cortical layers and the other pair in deeper layers. These findings 

were synthesised to propose a new hierarchical “bow-tie” cortical architecture 

which predicts the existence of a highly densely connected cortical core (~92%) 
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through which both feedforward and feedback connections pass (Markov et al. 

2013) (Figure 1.4).  

These findings are broadly consistent with proposals of a “global 

workspace” for information transformation and exchange (Dehaene et al. 1998). 

Further, in line with the proposal in this chapter, a cortical core is considered an 

essential ingredient for a complex system to be able to assemble flexible 

cognitive structures. Critically, the predicted cortical core consists of distributed 

cortical areas across frontal, parietal and temporal cortices. That said, cross-

species comparisons are a work in progress (Mars et al. 2018) as well as non-

invasive tractography using diffusion MRI in humans which remains limited 

(Van Essen et al. 2014). The structural connectome of MD regions remains one 

of the most important challenges for a proper understanding of the system’s 

architecture and function. 

 

 

Figure 1.4 A bow-tie representation of the graph of 29x29 cortical areas. The dense core is 

shown in the middle. The left wing mostly sends feedforward signals, while the right wing 

sends feedback signals. From Markov et al 2013. 
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1.2.2.2 Control signals and functional preferences 

A complementary approach when searching for regions related to cognitive 

structures is to look for specific control-related signals. The findings from this 

approach have ranged from finding uniform signals across MD regions or 

differential signals fractionating MD regions into subsystems. However, such 

functional dissociations are often interpreted in modular conceptions, leaving 

open questions regarding the accuracy of their spatial distribution and co-

localization with other signals. This section explores some of these control 

signals and their relation to the MD activation pattern. 

An important control signal is related to the assembly of cognitive 

structures. This could be triggered, for example, by starting a new task. This is 

also referred to as configuring a task set. Experiments have commonly probed 

this by isolating signals related to presenting a task cue. Traditionally, cue 

activations were found to especially activate dorsal portions of frontal and 

parietal MD regions, which were separately grouped into a dorsal attention 

network (DAN) (Corbetta and Shulman 2002). However, better powered fMRI 

studies showed that cue activations extend beyond DAN and overlap with all 

major MD regions including the insula and anterior frontal regions (Dosenbach 

et al. 2006). DAN was also proposed as the source of top-down attentional 

signals (Corbetta and Shulman 2002). Again, this formulation is inconsistent 

with studies showing that top-down attention engages all MD regions (Corbetta 

et al. 1998; Barch et al. 2013). Another control signal is related to updating the 

task set or cognitive structure. In one study, new task rules were introduced 

every 10 seconds, which corresponded with phasic responses of MD regions 

(Dumontheil et al. 2011), suggesting a role for MD regions in updating the 

ongoing cognitive structure. 

Task completion is another important event that should be associated with 

disassembly of a cognitive structure or the assembly of a new one (the theory 

predicts that a cognitive structure should always be in operation) (Miller et al. 

1960). This has traditionally been investigated through tasks that involve target 

detection. Indeed, the moment of target detection elicits strong activity across 

MD regions (Hampshire et al. 2008) which could be linked to strong attentional 

demands of target detection (Duncan 1980). Studies have also explicitly probed 
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signals related to event boundaries, such as finishing subtasks or whole tasks 

(Farooqui et al. 2012; Wen et al. 2020). For example, a recent study scanned 

participants while they completed a series of steps towards a final goal (e.g. 

cooking). As participants progressed through the task, MD activity ramped up, 

and the completion of every step (like chopping or boiling) elicited strong MD 

phasic responses (Wen et al. 2020). 

An influential cognitive control model proposed the existence of at least 

two systems: a lateral fronto-parietal system (FPN) related to moment-to-

moment processing of task requirements and a cingulo-opercular system (CON) 

related to task set maintenance (Dosenbach et al. 2006, 2008). The spatial 

overlap between these proposed systems and the MD system until recently has 

not been directly investigated (see chapter 2). However, it is clear that this 

conception refuses to recognize grouping insular or medial PFC components 

together with lateral fronto-parietal components into one system. Critically, this 

division was based on failing to find sustained activity in fronto-parietal regions 

during task execution. Instead, the most prominent fronto-parietal signals were 

transient ones related to task cues and error trials. However, these results conflict 

with overwhelming evidence that lateral fronto-parietal regions, as well as 

medial PFC and insular regions, sustain their activity during various cognitive 

demands (Dumontheil et al. 2011; Soreq et al. 2019; Wen et al. 2020). More 

recent finer-grained studies based on rfMRI suggest that separate regions within 

insular and medial PFC belong to FPN and CON networks, as will be discussed 

in more detail in chapter 2 (Yeo et al. 2011a; Ji et al. 2019; Assem et al. 2020). 

These findings leave the question open regarding the functional role of the CON. 

In summary, MD regions show a diversity of control signals related to the 

assembly of cognitive structures. That said, the blurry spatial resolution of most 

fMRI studies (see below Neuroimaging 2.0) has held back consensus on whether 

functional dissociations (Hampshire et al. 2012; Lorenz et al. 2018) overlap with 

MD regions or reflect nearby non-MD regions. 

1.2.2.3 Adaptive activation patterns 

Another expected property from cognitive structures is flexibility: as behavioural 

needs change, the ongoing control structure adapts by binding contents that are 



 
34 Chapter 1 

relevant to current purposes. Delving deeper into fine-grained activation patterns 

indeed revealed that MD patterns dynamically change to reflect current 

behaviourally-relevant content such as stimulus features, rules, goals, actions 

etc… (Woolgar et al. 2011; Erez and Duncan 2015; Shashidhara et al. 2020; 

Wen et al. 2020). For example, a recent experiment asked participants to solve a 

hierarchical task such as making a stew. During the task, participants had to 

choose a pre-learned order of steps (e.g. making a stew: take food from fridge, 

wash vegetables etc…). The study revealed that MD activation patterns reliably 

represented the step information, thus reflecting MD involvement in representing 

online-task information (Wen et al. 2020). And a recent review of multi-variate 

pattern analysis studies across the whole brain over the past 20 years highlighted 

that MD activation patterns represent the most diverse types of task features 

(Woolgar et al. 2016). 

A common finding with MD activation patterns is that as task difficulty 

increases, the behavioural context is more easily decodable from MD activation 

patterns (Woolgar et al. 2011, 2015; Etzel et al. 2020). One explanation suggests 

this reflects a sharpening of the representation of task information, which 

facilitates its readout by downstream neurons. However, most previous 

experiments probed MD patterns on a block-by-block basis (i.e. averaging 

activity over several trials). In an interesting task switching experiment tracking 

trial-by-trial activation patterns, it was found that MD context representation was 

weaker on the initial switch trials (Qiao et al. 2017) then later recovered to 

reflect the new task rules. Further, the weakness of MD context representations 

correlated with longer switch reaction-times. While this might seem counter-

intuitive, the moment of a switch trial requires re-assembling a different 

cognitive structure for the new context. This aligns well with univariate evidence 

of weaker MD activity at the moment of target detection in participants with low 

fluid intelligence (Tschentscher et al. 2017).  

These findings collectively suggest that the strength of MD activations and 

the sharpness of their representations reflects the fidelity of the formed cognitive 

structure. 

 Insights from electrophysiology 
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Electrophysiological data are vital to understand the rapid temporal dynamics 

hidden behind the slow fMRI signal as well as to bring insight into neural 

mechanisms underlying the assembly of cognitive structures. As discussed in the 

previous section, an important property of cognitive structures is to be able to 

flexibly represent changing task content. The fine-grained fMRI activation 

patterns in MD regions showed such a property. Similar observations were made 

from recording neural spikes from MD regions in humans. For example, a recent 

study showed that firing rates in dorso-medial PFC represent information about 

which task a person was performing (a memory recall vs categorization) 

(Minxha et al. 2020). Interestingly, on a trial-by-trial basis, the moment of 

switching from one task to another was associated with inability to decode task 

information. This finding aligns well with the fMRI study tracking trial-by-trial 

MD patterns discussed in the previous section (Qiao et al. 2017). These two 

findings provide converging evidence of a process reflecting a reconfiguration of 

the on-going cognitive structure.  

Not only do MD firing patterns change across tasks but within task phases. 

Numerous recordings from potentially homologous MD regions in NHPs show 

that correlations between neural firing patterns between task steps can reflect the 

hierarchical structure of the task (Sigala et al. 2008). Importantly, such 

correlations are generally weak and often orthogonal. For example, a recent 

study has shown that neural firing patterns in lateral frontal and parietal putative 

MD regions during choice and feedback phases of a complex task were 

orthogonal (Figure 1.5a) (Kadohisa et al. 2020). 

But what neural ingredient might support these observations? Studies 

characterize neurons in these putative MD regions with non-linear conjunctions 

of task events (Mante et al. 2013; Rigotti et al. 2013; Stokes et al. 2013; Naya et 

al. 2017). This property was termed “mixed selectivity” and while neurons with 

such properties have been observed across several brain regions such as 

hippocampus and amygdala (McKenzie et al. 2014; Saez et al. 2015), they are 

especially abundant in higher association areas. For example, Figure 1.5b shows 

the responses of a neuron in ventro-lateral PFC of a NHP to the same stimulus 

during different contexts (cue 1 and 2). Clearly the neuron is responding to a 

specific stimulus but only during cue 1 (top).  
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How might mixed selectivity and adaptive dynamics play a role in binding 

the relevant behavioural content? One proposed mechanism from a 

computational perspective states that mixed-selectivity neurons increase the 

“dimensionality” of the possible conjunctions between the task events. In other 

words, randomly connected neurons will allow a greater potential for different 

signals to mix (Fusi et al. 2016). These “high dimensional” representations can 

then be easily read out if downstream neurons are conceived as linear classifiers. 

Another proposed mechanism is that the initial activity state of putative MD 

neurons will route an incoming input through a context-dependent trajectory 

towards a decision activity state (Figure 1.5c) (Stokes et al. 2013). This suggests 

that the initial activity state reflected a structure binding the target input with the 

behavioural decision. Importantly, in this study there was no anatomical 

differentiation between the neurons coding for the context, input stimulus or 

decision. These findings suggest potential mechanisms through which mixed-

selectivity neural properties can build flexible cognitive structures.    

Collectively, electrophysiological studies are beginning to find structure in 

the complex and adaptive dynamics that characterize responses in putative MD 

regions. It is important to note again that without information about the 

underlying structural connectome of the recorded circuits, countless mechanisms 

could account for the observed recordings (Marder 2015). Like fMRI studies, 

invasive electrophysiology studies usually report findings in the form of broad 

anatomical terms such as “the vicinity of the arcuate sulcus”. As numerous 

studies in both humans and NHPs have shown, the cytoarchitectural, functional 

and connectivity features of these regions are anything but homogenous (Van 

Essen and Glasser 2018). One of the rare studies that recorded neural firing rates 

across much of the monkey cortex simultaneously, during a simple delayed-

matching task, confirmed widely different neural dynamics in nearby patches of 

the cortex (Dotson et al. 2018). These details become increasingly important 

with the growing trend of analysing signals from populations of neurons or 

“population dynamics” (Vyas et al. 2020). What a group of electrodes is reading 

out from a cortical patch could reflect artifactual dynamics if the downstream 

neural connections are not reading out information in the same way. For 

example, the frontal eye field (FEF), a popular region to record from, was found 

to consist of overlapping yet functionally distinct populations of neurons, one 



 
37 Chapter 1 

active during saccades and the other involved in covert shifts of attention 

(Thompson et al. 2005; Schafer and Moore 2007). An experiment blind to these 

distinct populations, yet grouping their responses in a “population code” might 

lead to false conclusions. Thus, it is imperative to improve our understanding of 

the anatomical and functional properties and consider accurate cross-species 

mapping techniques. 

 

 

Figure 1.5 (a) Pearson correlation of population firing rates during feedback (FB) and 

choice (CH) periods. Recording areas in each monkey are shown on the right. Adapted 

from Kadohisa et al 2020. (b) Responses of an example ventro-lateral PFC neuron to the 
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same stimulus (stimulus 3) preceded by cue 1 (top) and cue 2 (bottom). Note that the neuron 

responds to a conjunction of the stimulus and the cue. Adapted from Naya et al 2017 (c) A 

schematic of the observed trajectories. Each rule is matched to a target stimulus (e.g. rule 

1 for stimulus 1) and each rule will guide its corresponding stimulus to the relevant 

behavioural decision (Go or no-go). From Stokes et al 2013. 

1.3 Neuroimaging 2.0 

Thousands of brain imaging studies over the past two decades have helped 

identify major functional territories of the brain such as the MD pattern. Most of 

these studies, however, have followed a traditional pipeline that has significantly 

held back progress in finer spatial localization in brain function by as much as 

65% from what could be achieved using state-of-the-art approaches (Coalson et 

al. 2018) Figure 1.6a. Such traditional pipelines use low-quality scans and 

volumetric based processing which do not conform to brain geometry. For brain 

alignment, the go to approach is to match a subject’s brain to a template scan 

[such as the Montreal Neurological Institute (MNI)]. This matching or 

normalization process is heavily based on using cortical folds as guiding 

features. However, empirical evidence shows that cortical folds are highly 

variable across individuals, even across twins, and especially in higher 

association areas (Glasser, Smith, et al. 2016). This is compounded by the fact 

that the MNI template is approximately 37% larger than the average human 

brain leading to biologically unrealistic distortions and blurring of signal 

(Glasser, Smith, et al. 2016). Prior to statistical analysis, functional images are 

further blurred using unconstrained volumetric smoothing which leads to mixing 

signals between regions close in 3D Euclidean space but far in 2D geodesic 

space (e.g. at opposing sides of a sulcus). In cases of excessive smoothing (e.g. 8 

mm FWHM, a common smoothing value in studies), brain anatomy is 

completely distorted (Figure 1.6b). And statistical thresholds for functional 

images are based on arbitrary cut-offs that do not necessarily align with known 

underlying neurobiological features. Region of interest (ROI) analysis often 

defines cortical areas as homogenous spheres of arbitrary sizes. These 

limitations and others are extremely important to recognize as they make it 
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exceedingly difficult to localize brain functions and relate it to the underlying 

neurobiology. 

 

Figure 1.6 (a) A comparison of alignment of a representative sample of cortical areas 

across subjects between the novel HCP approach (cortical surface) and traditional 

volumetric approach (surrounding insets). The cortical areas were defined for each 

individual on the surface using HCP pipelines based on neurobiologically grounded 

multi-modal MRI criteria (Glasser et al 2016). Areas were then transformed back to 

each individual’s volumetric space and re-aligned using a traditional volumetric 

pipeline. Note how the probability cortical areas overlaps across subjects after 

volumetric alignment is much worse than after HCP areal feature based alignment (b) A 

demonstration of how unconstrained volumetric smoothing distorts cortical anatomy, 

mixes signals across sulci and from white matter. Both figures from Coalson et al 2018. 
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 To address these limitations, the Human Connectome Project (HCP) has 

developed a neuroimaging approach based on seven core tenets: “(i) collect 

multimodal imaging data from many subjects; (ii) acquire data at high spatial 

and temporal resolution; (iii) preprocess data to minimize distortions, blurring 

and temporal artifacts; (iv) represent data using the natural geometry of cortical 

and subcortical structures; (v) accurately align corresponding brain areas 

across subjects and studies; (vi) analyze data using neurobiologically accurate 

brain parcellations; and (vii) share published data via user-friendly databases.” 

(Glasser, Smith, et al. 2016). These advances are detailed extensively elsewhere 

(Glasser et al. 2013; Uǧurbil et al. 2013; Glasser, Smith, et al. 2016; Van Essen 

and Glasser 2018) and will be expanded upon throughout the thesis wherever 

relevant. 

Here I would like to highlight one important advancement related to the 

surface-based alignment of cortical regions based on cortical areal features. 

Since cortical folds proved to be unreliable landmarks for brain alignment, the 

HCP turned to more reliable cortical features such as myelin maps and areal 

patches defined based on resting state functional connectivity. This approach 

was dubbed multi-modal surface matching (MSM) (Robinson et al. 2014, 2018). 

Figure 1.7a demonstrates an earlier version of MSM (Robinson et al. 2014) on 

task fMRI activation clusters using each modality separately for alignment 

(cortical folds, myelin, resting-state). Importantly, a frontal hotspot that was not 

apparent using MSMsulc (folding-based) alignment is now maximally 

highlighted using MSM resting-state alignment. Figure 1.7b,c demonstrates the 

results from a newer version of MSM that was capable of using multiple 

modalities for alignment (MSMAll). Again the results demonstrate superiority 

over traditional folding based approaches. 

Collectively, the new HCP approach opens the door for a new phase in the 

field of neuroimaging that is bound to reveal novel findings for neuroanatomical 

localization of brain functions.  
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Figure 1.7 (a) Comparison of different MSM surface alignment methods on task fMRI 

cluster size (z-statistic maps) (FS: free surfer, SulcLo: sulcal features with low 

constraints, SulcHi: sulcal features with high constraints, Myelin: using myelin maps 

calculated as the T2w/T1w ratio, RSN: resting-state networks). Note the frontal hotspot 

(yellow arrow) which becomes more visible as more reliable and granular areal features 

are used for alignment. Adapted from Robinson et al 2014. (b) Comparing results (z-

statistic maps) of a newer version of the MSM algorithm between MSMSulc and two 

algorithms for MSMAll. Note crisper and stronger activations in MSMAll over 

MSMSulc (boxes and circles). (c) Bar chart quantifying % improvement task fMRI 

cluster sizes across HCP task categories using different alignment algorithms over and 

above the standard freesurfer algorithm. (b) and (c) adapted from Robinson et al 2018. 
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1.4 Thesis structure 

Armed with the state-of-the-art HCP neuroimaging methods, chapter 2 looks at 

the conjunction of activations related to three cognitive demands across a cohort 

of hundreds of HCP subjects. The aim of the project was to improve the 

anatomical and functional description of MD regions based on the HCP methods 

and in relation to a ground breaking recent multi-modal parcellation of the 

human cerebral cortex (Glasser, Coalson, et al. 2016). Chapter 3 investigates one 

example of putative MD functional dissociations highlighted in the literature. 

Specifically, this chapter investigates sensory-modality preferences of the MD 

system using matched auditory and visual versions of a working memory task. 

Chapter 4 attempts to map MD regions using electrophysiological data acquired 

by electrocorticography from human patients undergoing awake neurosurgeries. 

This aim of this experiment is to find links between findings from fMRI and 

electrophysiology as well as identify a potentially useful signal for expanding 

clinical intraoperative mapping into the domain of cognitive control. Chapter 5 

discusses how the results from the three experiments cast the MD system in a 

new light. Future directions with HCP-style experiments will also be discuss.



 

 

 

  



 

 

2 CHAPTER 2 

 

A DOMAIN-GENERAL COGNITIVE CORE 

DEFINED IN A MULTIMODALLY 

PARCELLATED HUMAN CORTEX 

2.1 Introduction 

Thought and behaviour can be conceptualized as complex cognitive structures 

within which simpler steps are combined to achieve an overall goal (Miller et al. 

1960; Luria 1966; Newell 1990). Each step or cognitive episode involves a rich 

combination of relevant external and internal inputs, computations, and outputs, 

assembled into the appropriate relations as dictated by current needs. Theoretical 

proposals have long emphasized that any system capable of such behaviour must 

be equipped with a flexible control structure that can appropriately select, 

modify and assemble each cognitive step on demand (Norman and Shallice 

1986; Duncan et al. 1997; Dehaene et al. 1998; Baddeley 2000; Duncan 2001, 

2013; Miller and Cohen 2001; Rigotti 2010). 

In line with a system’s role in organizing complex cognition, selective 

damage to specific regions in the frontal and parietal cortex is associated with 

disorganized behaviour (Milner 1963; Luria 1966; Norman and Shallice 1986), 

including significant losses in fluid intelligence (Duncan et al. 1995; Glascher et 



 
45 Chapter 2 

al. 2010; Roca et al. 2010; Woolgar et al. 2010, 2018; Warren et al. 2014). 

Numerous functional neuroimaging studies converge on a similar set of frontal 

and parietal regions that are co-activated when performing a diverse range of 

cognitively demanding tasks, including selective attention, working memory, 

task switching, response inhibition, conflict monitoring, novel problem solving 

and many more (Duncan and Owen 2000; Dosenbach et al. 2006; Cole and 

Schneider 2007; Fedorenko et al. 2013; Hugdahl et al. 2015). We refer to this 

network as the multiple-demand (MD) system, reflecting their co-recruitment by 

multiple task demands (Duncan 2010, 2013; Fedorenko et al. 2013). MD 

activation is commonly reported in lateral and dorsomedial prefrontal cortex, in 

the anterior insula, and within and surrounding the intraparietal sulcus, with an 

accompanying activation often reported near the occipito-temporal junction.  

Fine-grained activation patterns in MD regions encode many kinds of task-

relevant information, including stimulus features, goals, actions, rules and 

rewards, suggestive of flexible representations shaped by current cognitive 

requirements (for a recent comprehensive review see (Woolgar et al. 2016)). 

Consistent with these data from human studies, single-cell studies of putative 

MD regions in the alert macaque monkey show dynamic, flexible, densely-

distributed encoding of information relevant to a current task (Duncan 2001; 

Miller and Cohen 2001) in which single neurons often show “mixed selectivity”, 

or nonlinear response to conjunctions of multiple task features (Miller and 

Cohen 2001; Sigala et al. 2008; Rigotti et al. 2013; Stokes et al. 2013; Fusi et al. 

2016; Naya et al. 2017). We and others have proposed that MD regions lie at the 

heart of cognitive integration, selecting diverse components of cognitive 

operations across multiple brain systems and binding them together into 

appropriate roles and relations (Cole and Schneider, 2007; Duncan 2010, 2013; 

Miller and Cohen 2001; Fusi et al. 2016). Indeed, the MD activation pattern is 

frequently revealed by studies either employing a task with integrative demands 

(Prabhakaran et al. 2000) or studies employing a theory-blind search for brain 

regions with integrative properties, most commonly through indices of 

connectivity with other brain regions (Power et al. 2013; Shine et al. 2016; 

Gordon et al. 2018).  

While MD activation has been reported since the early days of human 

brain imaging (Duncan and Owen 2000), a consensus is lacking over five core 
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questions. (i) What is the precise extent and topography of MD regions in human 

cortex and their relation to other immediately adjacent regions that have very 

different functional properties (e.g. see Fedorenko et al. 2012)? (ii) What is the 

degree of functional differentiation within the MD network? There are many 

rival proposals and little agreement across studies (Champod and Petrides, 2010; 

Dosenbach et al., 2007; Hampshire et al., 2012; Lorenz et al., 2018; Yeo et al., 

2015). (iii) What is the precise relationship to “canonical” resting-state fMRI 

(rfMRI) brain networks revealed by various ways of grouping regions based on 

the strength of their time-series correlations? A “fronto-parietal network” (FPN) 

shows strong anatomical similarity with MD activations (Power et al. 2011; Yeo 

et al. 2011a; Blank et al. 2014; Laumann et al. 2015; Ji et al. 2019), but a finer 

examination of its overlap with MD activations and relations with other 

networks is currently lacking. (iv) What are the links – long suspected but rarely 

examined in detail – with accompanying MD activation in regions of the basal 

ganglia, thalamus and cerebellum (Buckner et al. 2011; Choi et al. 2016; Halassa 

and Kastner 2017)? (v) What are the correspondences with putative cortical MD 

regions identified in other primates (Ford et al. 2009; Mitchell et al. 2016; 

Premereur et al. 2018)?  

Our understanding of these and other aspects of MD function will surely 

benefit from improved anatomical localization. MD activation has often been 

described in terms of large, loosely-defined regions such as “dorsolateral 

prefrontal cortex” that also include regions having very different functional 

responses and sharp transition boundaries (Glasser, Coalson, et al. 2016). 

Traditional fMRI analysis methods typically use non-optimal inter-subject 

registration and apply substantial smoothing, both of which blur across 

functional boundaries. While problems of this sort may be offset by individual-

subject region of interest (ROI) methods, for many questions consensus ROIs are 

lacking, limiting comparison and integration of results across studies. 

To address these issues, we turned to the large-scale data and novel 

analysis approach of the Human Connectome Project (HCP). To improve 

delineation of functional regions, HCP analyses used high quality multimodal 

MRI features (cortical thickness, myelin content, rfMRI connectivity, task fMRI 

activation), along with surface-based analysis methods (Glasser et al. 2013; 

Glasser, Smith, et al. 2016; Coalson et al. 2018) and new areal-feature-based 
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registration algorithms (Robinson et al. 2014, 2018). Here we relate MD 

activation to the state-of-the-art multi-modal HCP parcellation of human cortex 

into 360 regions (180 per hemisphere), in which areal delineations were derived 

using overlapping multi-modal criteria, and areas were named to reflect 

correspondences with the neuroanatomical literature. 

We analysed data from 449 HCP subjects, each having a defined 

individual-specific cortical parcellation. Our analysis was based on three suitable 

fMRI task contrasts available in the HCP data: working memory 2-back versus 

0-back (WM 2bk>0bk), hard versus easy relational reasoning (Relational H>E), 

and math versus story (Math>Story). The first two are standard hard>easy 

contrasts as commonly used to define MD activation (Duncan and Owen, 2000; 

Fedorenko et al., 2013; e.g. for n-back MD activation: Gray et al., 2003; Owen et 

al., 2005; e.g. for reasoning MD activation: Duncan, 2000; Watson and 

Chatterjee, 2012). Math>Story was added because previous results show a 

strong MD-like activation pattern associated with arithmetic processing (Amalric 

and Dehaene 2016, 2017). For working memory and relational reasoning, stimuli 

were visual, whereas for Math>Story, stimuli were auditory. The other four HCP 

tasks lacked typical MD contrasts and were not used. Combining data from the 3 

task contrasts, we determined which areas show MD properties and examined 

their functional profiles, patterns of resting state connectivity, and relations to 

subcortical structures.  

Our results reveal an extended, largely symmetrical MD network of 27 

cortical areas, distributed across frontal, parietal and temporal lobes. We divide 

this extended MD system into a core of 10 regions most strongly activated and 

strongly interconnected, plus a surrounding penumbra, and we relate this 

functional division to canonical resting state networks also derived from HCP 

data (Ji et al. 2019). Across the extended MD system, activation profiles for our 

3 task contrasts suggest a picture of substantial commonality, modulated by 

modest but highly significant functional differentiations. MD activation, and 

strong functional connectivity with the cortical MD core, are also identified in 

several subcortical regions. Our results define a highly specific, widely 

distributed and functionally interconnected MD system, which we propose forms 

an integrating core for complex thought and behaviour. 
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2.2 Materials and Methods 

 Subjects 

The analysed dataset consisted of 449 healthy volunteers from the Human 

Connectome Project (HCP) S500 release. Subjects were recruited from the 

Missouri Twin Registry (186 males, 263 females), with age ranges 22-25 

(n=69), 26-30 (n=208), 31-35 (n= 169), and 36+ (n=3). Informed consent was 

obtained from each subject as approved by the institutional Review Board at 

Washington University at St. Louis. 

 Image Acquisition 

MRI acquisition protocols have been previously described (Glasser et al. 2013; 

Smith et al. 2013; Uǧurbil et al. 2013). All 449 subjects underwent the following 

scans: structural (at least one T1w MPRAGE and one 3D T2w SPACE scan at 

0.7 mm isotropic resolution), rfMRI (4 runs X 15 minutes), and task fMRI (7 

tasks, 46.6 minutes total). Images were acquired using a customized 3T Siemens 

‘Connectom’ scanner having a 100mT/m SC72 gradient insert and using a 

standard Siemens 32-channel RF receive head coil. Whole brain rfMRI and task 

fMRI data were acquired using identical multi-band EPI sequence parameters of 

2 mm isotropic resolution with a TR=720 ms. Spin echo phase reversed images 

were acquired during the fMRI scanning sessions to enable accurate cross-modal 

registrations of the T2w and fMRI images to the T1w image in each subject 

(standard dual gradient echo fieldmaps were acquired to correct T1w and T2w 

images for readout distortion). Additionally, the spin echo field maps acquired 

during the fMRI session (with matched geometry and echo spacing to the 

gradient echo fMRI data) were used to compute a more accurate fMRI bias field 

correction and to segment regions of gradient echo signal loss. 

 Task Paradigms 

Each subject performed 7 tasks in the scanner over two sessions. In the current 

study we analyzed data from 3 tasks: working memory (performed in session 1), 
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math/language and relational reasoning (performed in session 2). Subjects 

performed 2 runs of each task. The following task details are adapted from Barch 

et al. (2013) on HCP fMRI tasks. 

Working Memory: Each run consisted of 8 task blocks (10 trials of 2.5 s 

each, for 25 s) and 4 fixation blocks (15 s each). Within each run, 4 blocks used 

a 2-back working memory task (respond ‘target’ whenever the current stimulus 

was the same as the one two back) and the other 4 used a 0-back working 

memory task (a target cue was presented at the start of each block, and a ‘target’ 

response was required to any presentation of that stimulus during the block). A 

2.5 s cue indicated the task type (and target for 0-back) at the start of the block. 

On each trial, the stimulus was presented for 2 s, followed by a 500 ms ITI. In 

each block there were 2 targets, and (in the case of the 2-back task) 2–3 non-

target lures (repeated items in the wrong n-back position, either 1-back or 3-

back). Stimuli consisted of pictures of faces, places, tools and body parts; within 

each run, the 4 different stimulus types were presented in separate blocks. 

Subjects had to respond to non-targets using a middle finger press and to targets 

using an index finger press. 

Math/language: Each run consisted of 4 blocks of a math task interleaved 

with 4 blocks of a story task. The lengths of the blocks varied (average of 

approximately 30 s), but the task was designed so that the math task blocks 

matched the length of the story task blocks, with some additional math trials at 

the end of the task to complete the 3.8 min run as needed. The math task 

required subjects to complete addition and subtraction problems, auditorily 

presented. Each trial had a problem of the form “X + Y =” or “X – Y =”, 

followed by two choices. The subjects pushed a button to select either the first or 

the second answer. Problems were adapted to maintain a similar level of 

difficulty across subjects. The story blocks presented subjects with brief auditory 

stories (5–9 sentences) adapted from Aesop's fables, followed by a 2-alternative 

forced choice question that asked the subjects about the topic of the story. The 

example provided in the original Binder paper (p. 1466) is “For example, after a 

story about an eagle that saves a man who had done him a favor, subjects were 

asked, ‘That was about revenge or reciprocity?’”. For more details on the task, 

see (Binder et al. 2011). 
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Relational Reasoning: Stimuli were drawn from a set of 6 different shapes 

filled with 1 of 6 different textures. In the hard condition, subjects were 

presented with 2 pairs of objects, with one pair at the top of the screen and the 

other pair at the bottom of the screen. They were told that they should first 

decide what dimension(s) differed across the top pair of objects (shape or 

texture) and then they should decide whether the bottom pair of objects also 

differed along the same dimension(s) (e.g., if the top pair differs only in shape, 

does the bottom pair also differ only in shape?). In the easy condition, subjects 

were shown two objects at the top of the screen and one object at the bottom of 

the screen, and a word in the middle of the screen (either “shape” or “texture”). 

They were told to decide whether the bottom object matched either of the top 

two objects on that dimension (e.g., if the word is “shape”, is the bottom object 

the same shape as either of the top two objects?). Subjects responded with their 

right hand, pressing one of two buttons on a handheld button box, to indicate 

their response (“yes” or “no”). For the hard condition, stimuli were presented for 

3500 ms, with a 500 ms ITI, with four trials per block. In the easy condition, 

stimuli were presented for 2800 ms, with a 400 ms ITI, with 5 trials per block. 

Each type of block (hard or easy) lasted a total of 18 s. In each of the two runs of 

this task, there were 3 hard blocks, 3 easy blocks and 3 16 s fixation blocks. 

 Data preprocessing 

Data were preprocessed using the HCP’s minimal preprocessing pipelines 

(Glasser et al. 2013). Briefly, for each subject, structural images (T1w and T2w) 

were corrected for spatial distortions. FreeSurfer v5.3 was used for accurate 

extraction of cortical surfaces and segmentation of subcortical structures. To 

align subcortical structures across subjects, structural images were registered 

using non-linear volume registration to Montreal Neurological Institute (MNI) 

space. 

Functional images (rest and task) were corrected for spatial distortions, 

motion corrected, and mapped from volume to surface space using ribbon-

constrained volume to surface mapping. Subcortical data were also projected to 

the set of extracted subcortical structure voxels and combined with the surface 

data to form the standard CIFTI grayordinates space. Data were smoothed by a 
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2mm FWHM kernel in the grayordinate space that avoids mixing data across 

gyral banks for surface data and avoids mixing areal borders for subcortical data. 

Rest and task fMRI data were additionally identically cleaned up for spatially 

specific noise using spatial ICA+FIX (Salimi-Khorshidi et al. 2014) and global 

structured noise using temporal ICA (Glasser et al. 2018). 

For accurate cross-subject registration of cortical surfaces, a multi-modal 

surface matching (MSM) algorithm (Robinson et al. 2014) was used to optimize 

the alignment of cortical areas based on features from different modalities. 

MSMSulc (‘sulc’: cortical folds average convexity) was used to initialize 

MSMAll, which then utilized myelin, resting state network (RSN) and rfMRI 

visuotopic maps. Myelin maps were computed using the ratio of T1w/T2w 

images (Glasser and Van Essen 2011; Glasser et al. 2014). Individual subject 

RSN maps were calculated using a weighted regression method (Glasser, 

Coalson, et al. 2016).  

 HCP multi-modal parcellation and areal classifier 

The HCP multi-modal parcellation map (MMP) 1.0 (Glasser, Coalson, et al. 

2016) was first created using a semi-automated approach utilizing the group 

average maps of multiple modalities (cortical thickness, myelin, resting state 

functional connectivity, and task activations). For each modality, the gradient 

was computed as the 1st spatial derivative along the cortical surface; ridges were 

local regions with the highest value and thus the most sudden change in a 

feature. Overlapping gradient ridges across modalities were used to draw 

putative areal borders with manual initialization and algorithmic refinement. 

Defined areas were reviewed by neuroanatomists, compared whenever possible 

to previously identified areas in the literature, and labelled. This resulted in 

defining 180 areas per hemisphere. A multi-modal areal classifier was then used 

for automated definition of areas in each subject using the multi-modal feature 

maps. The classifier was trained, tested and validated on independent groups of 

subjects from the same 449 cohort used in this study (Glasser, Coalson, et al. 

2016). 
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 Task fMRI analysis 

Task fMRI analysis steps are detailed in Barch et al. (2013). Briefly, 

autocorrelation was estimated using FSL’s FILM on the surface. Activation 

estimates were computed for the preprocessed functional time series from each 

run using a general linear model (GLM) implemented in FSL’s FILM (Woolrich 

et al. 2001). For the working memory task, 8 regressors were used - one for each 

type of stimulus in each of the N-back conditions. Each predictor covered the 

period from the onset of the cue to the offset of the final trial (27.5 s). For the 

math task, 2 regressors were used. The math regressor covered the duration of a 

set of math questions designed to roughly match the duration of the story blocks. 

The story regressor covered the variable duration of a short story, question, and 

response period (~30 s). For the relational reasoning task, two regressors were 

used, each covering the duration of 18 s composed of four trials for the hard 

condition and five trials for the easy condition. In each case, linear contrasts of 

these predictors were computed to estimate effects of interest: WM 2bk>0bk, 

Relational H>E, and Math>Story. 

All regressors were convolved with a canonical hemodynamic response 

function and its temporal derivative. The time series and the GLM design were 

temporally filtered with a Gaussian-weighted linear highpass filter with a cutoff 

of 200 seconds. Finally, the time series was prewhitened within FILM to correct 

for autocorrelations in the fMRI data. Surface-based autocorrelation estimate 

smoothing was incorporated into FSL's FILM at a sigma of 5mm. Fixed-effects 

analyses were conducted using FSL’s FEAT to estimate the average effects 

across runs within each subject. 

For further analysis of effect sizes, beta ‘cope’ maps were generated using 

custom built MATLAB scripts after moving the data from the CIFTI file format 

to the MATLAB workspace and after correction of the intensity bias field with 

an improved method (Glasser et al 2016a). Activation estimates on cortical 

surface vertices were averaged across vertices that shared the same areal label in 

a given subject. Unless mentioned otherwise, parametric statistical tests (one-

sample and paired sample t-tests) were used. 
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 rfMRI Functional connectivity analysis 

For each subject, a ‘parcellated’ functional connectivity (FC) map was computed 

by averaging the time series across cortical vertices that shared the same areal 

label and correlating the average time series, giving a 360x360 cortical FC 

matrix for each subject. 

For comparison of connection types (Figure 3b, Figure 4b), connectivities 

for each subject were simply averaged across each group of areas following r-to-

z transformation. 1-r was used as the distance measure for the multi-dimensional 

scaling analysis (MATLAB function cmdscale). 

Subcortical analysis was based on the group average dense FC maps for a 

split-half division of the subjects (210P and 210V; the parcellation and 

validation groups used in Glasser, Coalson, et al. 2016). For each subcortical 

voxel, an average connectivity to the cortical MD core was obtained by first 

calculating FC with each core area (after averaging across each area’s vertices), 

and then averaging these connectivities following r-to-z transformation. A 

permutation testing approach (100,000 permutations) was used to identify 

significant voxels by building a null distribution for each voxel based on its FC 

estimate to sets of 10 randomly selected cortical areas across both hemispheres. 

A voxel was determined as significantly connected to the MD system when its 

FC estimate was in the top 97.5th percentile. 

Data availability. Data used for generating each of the imaging-based 

figures are available on the BALSA database 

(https://balsa.wustl.edu/study/B4nkg). Selecting the URL at the end of each 

figure will link to a BALSA page that allows downloading of a scene file plus 

associated data files; opening the scene file in Connectome Workbench will 

recapitulate the exact configuration of data and annotations as displayed in the 

figure. 

  

https://balsa.wustl.edu/study/B4nkg
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2.3 Results 

 Cortical organization of the MD system at the 

group level  

For an initial overview of the MD activation pattern, we calculated a group 

average MD map by averaging the group average beta maps of the 3 task 

contrasts and overlaying the resulting combined map on the HCP MMP 1.0 

parcellation areal borders (see Figure 2.1 for each contrast separately). Group 

average maps were generated by aligning each subject’s multi-modal maps using 

areal-feature-based surface registration (MSMAll, Robinson et al 2014; 2018). 

MSMAll registration is initialized by cortical folding patterns and then uses 

myelin and connectivity features to significantly improve the alignment of areas 

across subjects (Coalson et al. 2018), thus allowing us to identify cortical areas 

most strongly overlapping with MD activations. 

The resulting overview is shown on left and right inflated cortical surfaces 

in Figure 2.2a, and on a cortical flat map of the left hemisphere in Figure 2.2b. 

The results highlight 9 patches of activation distributed across the cortical sheet. 

On the lateral frontal surface are four clearly distinct patches that show strong 

bilateral symmetry, with surrounding inactive regions: a dorsal region (patch 1), 

a premotor region (patch 2), a mid-frontal region (patch 3) and a frontal pole 

region (patch 4). Patch 5 is delineated in and surrounding the anterior insula. 

Tight bands of MD activation are also identifiable in dorsomedial frontal cortex 

(patch 6), along the depths of the intraparietal sulcus spreading up to the gyral 

surface (patch 7), and in dorsomedial parietal cortex (patch 8). The MD region 

often reported near the occipito-temporal border is also evident in posterior 

temporal cortex (patch 9). The right hemisphere view in Figure 2.2a identifies 

cortical areas showing the strongest MD activations. 

For comparison, Figure 1c shows a previous MD group-average 

volumetric map generated from the conjunction of 7 hard>easy task contrasts 

(Fedorenko et al. 2013). Though the two maps are broadly similar, this 

comparison highlights the improved definition obtained with the HCP data and 

surface-based and areal-feature-based registration methods. Even based on these 
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average data, the improved co-registration of the HCP data allows clearer 

delineation of functional regions, as predicted by Coalson et al., 2018. Rather 

than broad, fuzzy swaths of MD activation, these data provide evidence for a 

more tightly localized, though anatomically distributed network of MD regions. 
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Figure 2.1 Contrast maps for each task. Activation values are beta estimates. Data 

available at https://balsa.wustl.edu/zp9XZ 

https://balsa.wustl.edu/zp9XZ
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Figure 2.2 (a) Average of the 3 HCP group average task contrasts (WM 2bk>0bk, Relational 

H>E, Math>Story). Values are beta estimates. Black contours correspond to the HCP multi-modal 

parcellation MMP_1.0 (210V) areal borders. Numbers on the left hemisphere correspond to 

visually separable patches of activity distributed across the cortex. (b) The same activity of the 

left hemisphere projected on a flattened cortical sheet. Numbers correspond to the same patches 

labelled in (a). (c) Volumetric MD map from Fedorenko et al. (2013) computed by averaging 7 

hard>easy task contrasts (2mm smoothed) displayed on a volume rendering of lateral surface 

(above) and medial slice (below) of the MNI template. Values are t-statistics. Data available at 

http://balsa.wustl.edu/lL9nj 

http://balsa.wustl.edu/lL9nj
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 Definition of extended and core MD regions using 

subject-specific cortical parcellation 

For our primary analysis, each subject’s cerebral cortex was parcellated into 360 

regions (180 per hemisphere) corresponding to the HCP Multi-Modal 

Parcellation (MMP) 1.0. Parcellation used an automated classifier to define the 

borders of each area based on learned features from multiple MRI modalities, 

including cortical thickness, myelin content, rfMRI connectivity and task fMRI 

activations (see section 2.2.5). Subject-specific parcellation ensured that task 

and rest fMRI signals extracted from the defined areas would respect individual 

differences in their sizes, shapes and locations even in the case of subjects 

having atypical topologic arrangements. We averaged beta values across vertices 

within each area, yielding one value per area per subject. For each of our 3 

behavioral contrasts, we identified areas with a significant positive difference 

across the group of 449 subjects (p<0.05, Bonferroni corrected for 180 areas). 

Given largely bilateral activation (Figure 2.2), to improve signal-to-noise ratio 

(SNR) and statistical power we averaged areal activations across hemispheres. 

The conjunction of significant areas across the 3 contrasts revealed a set of 

twenty-seven areas, which we refer to as the extended MD system (Figure 2.3a; 

note that average activations from the two hemispheres are projected onto the 

left). The distribution of the areas closely matches the activations observed in 

Figure 2.2a and has broad similarity to previous characterizations of MD 

activation but with substantially improved anatomical precision and several 

novel findings. 

On the dorsal lateral frontal surface, we identify area i6-8 which is 

immediately anterior to area FEF (a common assignment for activations in this 

region). i6-8 is a newly defined area in the HCP MMP1.0, in the transitional 

region between classical BA6 and BA8. Localization of MD activation in i6-8, 

rather than FEF, suggests distinctness from activations driven simply by eye 

movements in complex tasks. In the HCP MMP1.0, FEF is clearly defined as a 

distinct area from i6-8 based on several criteria including its location as a 

moderately myelinated patch just anterior to the eye-related portion of the motor 
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cortex and its strong functional connectivity with the LIP/VIP visual complex 

and the premotor eye field area (PEF) (Glasser et al., 2016). 

Near the frontal pole, we identify area a9-46v as a strongly active MD 

region, separated from the posterior region p9-46v. This separation confirms 

prior indications of a distinct anterior MD frontal region (see Figure 2.2c). Both 

a9-46v and p9-46v areas overlap with area 9-46v as delineated cyto-

architectonically by Petrides and Pandya (1999) but here are separated into 

anterior and posterior portions by intervening areas 46 and IFSa that differ in 

their myelin and functional connectivity profiles (Glasser et al., 2016). Posterior 

to p9-46v is a further focus of activation in IFJp, with weaker activation in the 

surrounding regions 8C and 6r. 

In the anterior insula, we identify AVI and an adjacent region of the frontal 

operculum, FOP5. AVI overlaps with superior portions of the architectonic area 

Iai of Öngür et al., 2003 (see Glasser et al., 2016). Previous work has attempted 

to distinguish activation in the anterior insula from the adjacent frontal 

operculum, with the peak often near the junction of the two (Amiez et al. 2016). 

In our data, AVI is the more strongly activated. 

While previous characterizations of parietal MD activation have focused 

on the intraparietal sulcus broadly, our results reveal a more detailed picture, 

with strongest MD activation in intraparietal sulcus areas IP1 and IP2, bordered 

by relatively weaker MD areas dorsally (AIP, LIPd, MIP) and ventrally (PFm, 

PGs). In dorso-medial parietal cortex, there have been previous indications of an 

additional MD region (see Figure 2.2c). Here we robustly assign this mainly to 

area POS2, a newly defined MMP1.0 area that differs from its neighbors in all 

major multi-modal criteria.  

On the lateral surface of the temporal lobe we identify two further MD 

areas, TE1m and TE1p. In many previous studies, fronto-parietal MD activation 

has been accompanied by a roughly similar region of activity in temporo-

occipital cortex (e.g. Fedorenko et al., 2013). In many cases, a reasonable 

interpretation would be higher visual activation, reflecting the visual materials of 

most imaging studies. In the current study, however, the arithmetic task was 

acoustically presented, whereas the other two contrasts were visual, suggesting a 

genuine MD region.  
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In Figure 2.2a, the dorso-medial frontal activation spans the border 

between 8BM/SCEF. In the individual-subject analysis, however, SCEF was not 

significantly activated across all 3 contrasts. We thus investigated whether the 

activation indeed spans the border between the two areas. For each subject-

specific areal definition, we divided each of the two areas into 10 equal segments 

along their anterior to posterior extent. Figure 2.3a shows that activation in this 

region starts to build up midway along SCEF, peaks at the border and is 

sustained throughout 8BM. We then tested whether each segment would survive 

as an extended MD region on its own. Indeed, all 8BM segments (except for the 

one most anterior segment on the left hemisphere) survived, whereas only the 

anterior 2 segments of SCEF were statistically significant (Figure 2.3a; see 

Figure 2.4 for further independent evidence of heterogeneity around the 

8BM/SCEF border). Based on these results, for subsequent analyses we 

combined the statistically significant segments of 8BM and SCEF into a single 

‘area’ labelled 8BM/SCEF. 

To evaluate the reliability of our results, we identified extended MD 

regions after splitting our subjects into two independent groups constructed to 

avoid shared family membership (210P and 210V, the parcellation and 

validation groups, respectively, used to create the HCP MMP1.0 in Glasser et 

al., 2016). Using similar criteria as for Figure 2.3a (i.e., conjunction of 3 

positive contrasts across the group of 210 subjects, each contrast p<0.05 

Bonferroni corrected for 180 areas), we identified 24 out of 27 regions in the 

210P group (missing regions: 6r, AIP, FOP5) and 25 regions in the 210V group 

(missing regions: a47r, AIP). No additional regions were identified in either 

group. Thus for the remainder of the analysis, we retained the full set of 27 

regions based on the complete data set. 

To delineate more precisely the most active areas within the extended MD 

system, for each contrast we identified areas with activation stronger than the 

mean across the full set of 27 regions (one sample t-test, p<0.05, Bonferroni 

correction for the 27 extended MD areas). Seven areas were significant in all 

three contrasts: i6-8, p9-46v, a9-46v, combined 8BM/SCEF area, AVI, IP2 and 

IP1. Three more areas were significant in two of the three contrasts (Figure 

2.3b): IFJp (relational reasoning and math), 8C and PFm (working memory and 
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relational reasoning). We refer to this group of 10 areas as the core MD system, 

with remaining areas of the extended MD system termed the MD penumbra. 

Though our main analysis used individual-specific cortical parcellations, 

we wondered how well results would replicate using just the group-average 

parcellation. For most areas, previous work shows that the areal-fraction of 

individually defined parcels captured by group-defined borders reaches 60%-

70% (Coalson et al. 2018). To investigate this question, we repeated our analysis 

using the HCP_MMP1.0 group average parcellation. As expected, using group-

defined regions, we identified the same set of 27 MD regions, plus 4 more (areas 

44, IFJa, 9-46d, 7Pm). While individual-specific parcellations likely provide the 

best available areal delineation, for many purposes the group-defined cortical 

parcellation may be sufficient. 

Overall, these results identify an extended set of domain-general MD 

regions. Using HCP data and analysis allowed the identification of several novel 

MD areas and improved localization of previously reported ones. In the 

following sections, we further explore the functional properties of the 27 core 

and penumbra regions. 
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Figure 2.3 (a) The extended MD system: conjunction of significant areas across 3 functional 

contrasts. Areal colours reflect average beta values across the 3 contrasts analysed in relation to 

subject-specific parcellations. Data are averaged across hemispheres, and for illustration projected 

here onto the left lateral and medial surfaces (top) and an anterior view of frontal pole parcels 

(bottom left). Box (bottom right) displays pattern of activity in regions SCEF (posterior) and 8BM 

(anterior), divided into posterior to anterior segments in relation to subject-specific parcellations. 

Grey bar indicates 8BM/SCEF border. Orange indicates segments that are part of the extended 

MD system when activity from both hemispheres is combined (i.e. segments with activity 

significantly above zero in all 3 behavioural contrasts). Red indicates one additional segment that 

survives as part of the extended MD system when activity from each hemisphere is tested 

separately. (b) The core MD system: areas with activity estimates that were significantly higher 

than the mean activity of all extended MD areas in all 3 contrasts (yellow) and 2 out of 3 contrasts 

(orange). Data available at http://balsa.wustl.edu/qNLq8 

http://balsa.wustl.edu/qNLq8


 
63 Chapter 2 

 

 

  

Figure 2.4 8BM/SCEF border. (a) Group average responses (beta values) for two HCP 

contrasts across the 8BM/SCEF border, Reward>fix and Theory of Mind (TOM)>fix, 

showing a similar pattern of build up within SCEF reaching a peak near the 8BM/SCEF 

border. (b) Functional connectivity maps for seeds (210V map, left hemisphere) along an 

antero-posterior gradient for the left 8BM/SCEF areas. Arrows mark the seed related to 

each column’s maps. Note how the seed in row 4 is in SCEF near the 8BM/SCEF border 

and still shows an MD like connectivity pattern, especially the strong connectivity to i6-8. 

More posterior seeds in SCEF show a markedly different pattern with strong connectivity 

to FEF. Colour scale is Pearson correlation (r). Data available at 

https://balsa.wustl.edu/X5q36  

https://balsa.wustl.edu/X5q36
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 Functional connectivity of the multiple-demand 

cortex and its relation to resting-state networks 

To investigate functional connectivity (FC) patterns within the MD network and 

in relation to the rest of the brain, a FC matrix for each subject was calculated 

(180x180 areas per hemisphere; full correlation of spatial ICA+FIX and 

temporal ICA-cleaned time series; see section 2.2.7). In this analysis, we 

retained the original 8BM and SCEF parcellation, considering 8BM as core and 

SCEF as penumbra. 

Figure 2.5a shows the group average connectivity matrix for the extended 

MD system, separated into core and penumbra. Despite their wide spatial 

separation, core MD areas show stronger functional connectivity with each other 

than with the penumbra. To test the robustness of these patterns, for each subject 

we calculated mean FC values for 6 different groups of cortical connections and 

compared them using multiple paired sample t-tests (Figure 2.5b; see section 

2.2.7). In both hemispheres, FC between core MD regions was significantly 

stronger than both their connectivity with the penumbra (left t(448)= 93.1, right 

t(448)= 79.4), and the internal penumbra connectivity (left t(448)= 79.4, right 

t(448)= 66.3). For both core and penumbra MD areas, mean FC with non-MD 

cortical areas was near zero. 

We next investigated the spatial similarity between the MD network 

defined from our conjunction of 3 task contrasts and canonical fMRI resting 

state networks. For this purpose, we utilized the recent Cole-Anticevic Brain 

Network Parcellation (CAB-NP), which analysed resting state data from 337 

HCP subjects and identified network communities across HCP MMP1.0 areas (Ji 

et al. 2019). A comparison of the extended MD and the CAB-NP (Figure 2.6a) 

indicates points of both convergence and divergence. Most strikingly, all 10 core 

MD areas are within the fronto-parietal network (FPN), (Figure 2.6a, top left). 

In contrast, penumbra MD areas are scattered among four networks: several in 

the FPN (yellow, 8 on the left and 10 on the right), 4 in the cingulo-opercular 

network (CON, purple), 3 in the dorsal attention network (DAN, green) and 

several in the default mode network (DMN, red; 3 on the left and 1 on the right) 

(Figure 2.6a, top right). Importantly, examination of the whole CAB-NP FPN 
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network (total 28 areas right, 22 left) shows most but not all areas within the MD 

core or penumbra (right FPN: 10 core, 10 penumbra, 8 non-MD; left FPN: 10 

core, 8 penumbra, 4 non-MD) (Figure 2.6a, bottom).  

To emphasize the central role of core MD, we again compared different 

connectivity subgroups (Figure 2.6b; paired sample t-tests, p<0.05, Bonferroni 

corrected). Within the FPN, we found that core MD regions have significantly 

stronger FC with other FPN regions (core-core vs core-penumbra: left 

t(448)=53.3, right t(448)=46.8; and core-core vs core-non-MD FPN regions: left 

t(448)=75.1, right t(448)=84.2). Also within the FPN, core-penumbra FC is 

stronger than core-non-MD FC (left t(448)=47.1, right t(448)=73.0). We also 

found higher FC between core MD regions, all within FPN, and penumbra vs 

non-MD regions within each of DAN, CON and DMN (DAN (left t(448)=47.6, 

right t(448)=41.0), CON (left t(448)=41.1, right t(448)=40.5) and DMN (left 

t(448)=70.1, right t(448)=80.4) (Figure 2.6b). 

Many previous studies have separated cognitive control regions into two 

distinct networks: fronto-parietal (dorso-lateral frontal and intra-parietal sulcus 

regions) and cingulo-opercular (insular, dorsomedial frontal and anterior lateral 

frontal regions) (Crittenden et al., 2016; Dosenbach et al., 2008, 2006; 

Dosenbach et al., 2007; Yeo et al., 2011). We wondered whether our extended 

MD network would show a similar separation. Multi-dimensional scaling of 

connectivities between extended MD regions showed core MD regions centrally 

clustered together (Figure 2.7; see section 2.2.7) with no strong trend for a 

distinct CON among these core regions. Instead, matching their network 

assignments in CAB-NP, the results suggest a relatively distinct CON cluster 

including dorsomedial frontal region SCEF and insular region FOP5, These 

results suggest that the main cingulo-opercular network is distinct from core MD 

regions, with the two networks in close anatomical proximity.  

In summary, while these results show substantial overlap between MD and 

FPN – especially for the MD core – there are additional organizational aspects 

revealed by the FC analysis. Connectivity is especially strong between regions 

within the extended MD system, and strongest between core regions within the 

canonical FPN. Strong functional connectivity, especially for the core, suggests 

a suitable architecture for widespread integration of distributed brain states. 
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Connectivity delineating the MD network can also be revealed by recent 

work using temporal ICA (tICA), which generates components that are 

temporally independent (Glasser et al., 2019, 2018; see also Van Essen and 

Glasser, 2018). By correlating our group average MD map (Figure 2.2a) with 

the tICA components from (Glasser et al. 2018), we identified at least one rest 

and one task tICA component having strong spatial similarity to the group 

average MD map (whole brain absolute Pearson correlation r= 0.74 and 0.76 

respectively; Figure 2.8).  

 

  

Figure 2.5 Functional connectivity (FC) of the MD system. (a) FC (Pearson correlation) 

across the MD system. Regions of the extended MD system are separated into core and 

penumbra, with regions within each set ordered by mean activation (beta) across our 3 

functional contrasts. Note the strength of core MD connectivity (lower left box) vs 

penumbra connectivity (upper right box). (b) Statistical comparison (paired sample t-test) 

between different groups of cortical connections. Lines highlight a statistically significant 

difference (p<0.05, Bonferroni corrected for 30 comparisons). Data available at 

http://balsa.wustl.edu/jjL1x 

http://balsa.wustl.edu/jjL1x
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Figure 2.6  MD system and resting state networks (a) Resting state network assignments 

from the Cole-Anticevic Brain-wide Network Parcellation (CAB-NP; Ji et al., 2019) for 

the core (top left) and penumbra (top right) MD areas, compared to the whole CAB-NP 

fronto-parietal network (bottom left). (b) Statistical comparison (paired sample t-test) of 

cortical connection types for each CAB-NP network. Data available at 

http://balsa.wustl.edu/wNGV6 

http://balsa.wustl.edu/wNGV6
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Figure 2.7 Multi-dimensional scaling plot of the connectivities between extended MD 

regions. Axis units are arbitrary. Data available at http://balsa.wustl.edu/jjL1x 

http://balsa.wustl.edu/jjL1x
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Figure 2.8 MD and temporal ICA. Most correlated temporal ICA components (arbitrary 

units) (from Glasser et al., 2018) with MD average map (beta estimates). Top: rest tICA 

component 12. Bottom: task tICA component 4. The borders of extended MD regions are 

coloured in green. Data available at https://balsa.wustl.edu/87P3x  and 

https://balsa.wustl.edu/Klv5g 

https://balsa.wustl.edu/87P3x
https://balsa.wustl.edu/Klv5g
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 Task profiles across the multiple-demand cortex 

By definition, every MD area showed a significant positive result in each of our 

3 behavioural contrasts. Across areas, nevertheless, we examined the relative 

preferences for one contrast over another. To evaluate this quantitatively, Figure 

2.9a shows the mean response of each area (averaged across hemispheres) for 

each contrast. Predominantly, the picture is one of consistency. For nearly all 

areas, activation was strongest for the Math>Story contrast, and weakest for 

Relational H>E contrast. Against this general background, however, there was 

also differentiation between profiles, with varying patterns of peaks and troughs. 

To test the robustness of these patterns, we compared activation profiles in 

the two independent groups of subjects (210P and 210V). As shown in Figure 

2.9b, the activation profile for each contrast is almost identical for the two 

groups. Figure 2.9c quantifies this by correlating activation profiles (in Figure 

2.9b) for the two subject groups. Very high correlations on the diagonal (r > 

0.98) highlight how the precise pattern of activation for a given contrast is very 

stable when averaged over many individuals. Off-diagonal correlations are much 

lower (r=~0.5-0.6). A closely similar pattern was seen when extended MD 

regions were defined in the 210P subgroup, and correlations computed between 

two halves of the 210V subgroup (diagonals r>0.94, off-diagonals r=0.25-0.60). 

Although all tasks engage all MD areas, there remains considerable and highly 

consistent inter-areal diversity in precise activation patterns. 

To illustrate this inter-areal diversity between the three contrasts, we 

plotted the normalized profile for each contrast (line plots in Figure 2.9d). For 

each contrast and each subject, we z-scored activations across MD regions, then 

averaged the z-scores across subjects. For each region, bar heights (Figure 2.9d, 

bottom) show the standard deviation of these normalized z-scores across tasks, 

separately calculated for each subject and then averaged over subjects. Bars were 

also coloured to highlight the relative task preferences (see Figure 2.9e, where 

the same colours are projected onto the cortical surface).  

The results reveal a diversity of relative task preferences across the 

extended MD network. Relative preference for relational reasoning (green) 

occurs in a cluster of anterior frontal areas inferior to the core region a9-46v, as 

well as in 8C. Dorsal frontal regions (e.g. i6-8 and s6-8) show relative preference 
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for working memory, whereas dorsal parietal regions (AIP/LIPd/MIP, and 

POS2) show relative preference for math. Other relative preferences occur 

across most regions.  

Task preferences were also present across hemispheres (Figure 2.10). 

Most MD regions showed stronger activations in the right hemisphere for both 

working memory and math contrasts, with more variable results for relational 

reasoning. Across both hemispheres, however, almost all contrasts were positive, 

in line with a pattern of largely bilateral MD activation. 

Despite relative consistency across the entire extended MD network – with 

the strongest activation for Math>Story, and weakest for relational reasoning – 

there is also clear evidence of relative functional specialization, with each area 

showing modest but consistent relative preference for one contrast over another. 

 

 

Figure 2.9 (next page) Task profiles across the MD system. (a) Raw activation 

estimates (betas) for each contrast. Areas are sorted from left to right according to the 

strength of their MD response (average across the 3 contrasts). Error bars represent 

SEM. Core MD areal labels are colored in orange (survived in all 3 contrasts) and red 

(survived in 2 out of 3 contrasts). (b) Task profiles for two independent groups of 

subjects (210P and 210V). (c) Correlation of task profiles between groups. (d) 

Normalized task profiles across the MD system as line plots. Bar heights represent 

between-task standard deviation, separately calculated for each subject and averaged 

over subjects. Bar colors indicate relative preferences between tasks. Color wheel 

indicates red for working memory (WM), green for relational reasoning (Rel), and blue 

for math. Intermediate colors show mixed preferences. Brighter and darker colors 

reflect stronger and weaker MD activation, respectively. (e) Cortical projection of the 

RGB color weighted normalized task profiles. Data available at 

http://balsa.wustl.edu/4m747 

http://balsa.wustl.edu/4m747
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 Multiple-demand regions during weak cognitive 

demands 

A potential limitation of our main analysis is that we might have missed MD 

regions that are already active even in easy task conditions, and therefore absent 

in our task contrasts. To investigate this, we examined the group average maps 

for weak cognitive demands compared against periods during which subjects 

visually fixated on a cross hair in the middle of the screen. We used the 0bk WM 

versus fixation contrast (0bk>fix) and easy relational reasoning versus fixation 

Figure 2.10 Extended MD for each hemisphere. Group average responses for the MD 

areas of both hemispheres (beta estimates). First row: average of the 3 HCP contrasts. 

Second row: Working memory. Third row: Relational reasoning. Fourth row: Math>story. 

Error bars are SEMs. 
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contrast (Relational E>fix) (Figure 2.11). The Math task did not include any 

fixation periods and was thus excluded from this analysis.  

As expected, the activated regions overlap substantially with the extended 

MD network, but also include visuo-motor regions as predicted when contrasting 

task with fixation. In comparison to our previous group MD map (Figure 2.2), 

however, there are shifts in the easy vs fixation maps. Dorso-lateral frontal 

activation shows a posterior shift, with strong activation near the intersection of 

FEF, 6a and i6-8 areal borders. Premotor frontal activation is strongest around 

IFJp, spreading towards the premotor eye field (PEF) area dorsally and inferior 

frontal sulcus regions (IFJa and IFSa) ventrally. Frontal pole activation peaks 

within penumbra region p47r and also weakly engages area 9-46d in addition to 

previously identified adjacent MD regions. Dorso-medial frontal activation is 

strongest within the anterior half of SCEF, spreading anteriorly into 8BM. 

Lateral parietal activations are strongest around penumbra regions AIP, LIPd 

and MIP and the adjacent LIPv. Dorso-medial parietal activation overlaps with 

7Pm sparing POS2. All previously mentioned regions as well as all core MD 

regions (except for PFm) were significantly activated in both 0bk>fix and 

Relational E>fix contrasts (p<0.05; Bonferroni corrected for 180 regions after 

averaging across hemispheres). 

The comparison with fixation-only periods limits the interpretation of 

activation in the above highlighted regions, as visuo-motor related activation 

presumably dominates the pattern. For example, activation in FEF and PEF may 

largely reflect eye movements, especially in the relational task. Tentatively, 

however, these results suggest that our main task contrasts may miss additional 

MD regions, extending from those identified in the main analysis, but with 

strong activation even in the easier version of each task. 
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Figure 2.11 Group average beta estimates maps for the WM 0bk>fix contrast (upper) 

and Relational E>fix contrast (lower). The borders of extended MD regions are colored 

in green. Data available at http://balsa.wustl.edu/mDkgN 

 

  

http://balsa.wustl.edu/mDkgN
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 Subcortical and cerebellar components of the 

multiple-demand system 

To identify subcortical and cerebellar components of the MD system we used the 

same 3 behavioural contrasts used for cortical areas. FreeSurfer’s standard 

segmentation of 19 subcortical/cerebellar structures (left and right caudate, 

putamen, globus pallidus, thalamus, cerebellum, hippocampus, amygdala, 

ventral diencephalon, nucleus accumbens; plus whole brainstem) was carried out 

separately for every subject (see section 2.2.4), thus avoiding mixing signals 

from nearby structures or white matter. For each structure, we first identified 

significantly activated voxels for each contrast separately (one sample t-test, 

FDR corrected for each structure separately, p<0.05, Bonferroni corrected for 19 

structures) and then identified the conjunction of significant voxels across the 

three contrasts. We analyzed the P210 and V210 groups separately. This 

revealed activation regions bilaterally mainly in the caudate nucleus and 

cerebellum. Caudate activation was in a circumscribed region in the head, which 

was modestly replicable between 210V and 210P groups (r=0.37, Dice=0.60 

across all caudate voxels) (Figure 2.12a, left panel). Cerebellar activations, 

mapped to a cerebellar surface model (Diedrichsen and Zotow 2015) and 

displayed on a cerebellar flatmap, included separate medial and lateral portions 

of crus I and II (on dorsal and ventral lateral surface). The pattern was largely 

symmetrical across hemispheres and was strongly replicable across both groups 

(r=0.88, Dice=0.88) (Figure 2.12a, right panel).  

The analysis showed no significant regions in the thalamus, putamen or 

globus pallidus (Figure 2.12a). Interestingly, larger bilateral portions of the 

thalamus (anterior dorso-medial), putamen (dorso-anterior/mid portion) and 

globus pallidus (dorso-anterior portion) were significantly activated in only two 

contrasts (working memory and math) and were deactivated in the relational 

reasoning contrast (Figure 2.13). 

In a separate analysis using resting state data, we aimed to identify the 

subcortical and cerebellar voxels showing significant functional connectivity 

with the cortical core MD areas. For this analysis we used the group average 

dense FC matrix for each group (see section 2.2.7). Figure 2.12b shows the 
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statistically significant subcortical/cerebellar voxels (FDR corrected, p<0.05, 

Bonferroni corrected for 19 structures). The patterns were highly replicable 

(caudate r=0.84, Dice=0.94; cerebellum r=0.97, Dice=0.93) and follow closely 

the task-identified regions in the caudate nucleus and cerebellum bilaterally. In 

addition, FC analysis identified significant voxels in bilateral portions of the 

thalamus (anterior dorso-medial) and putamen (dorso-anterior/mid portion), 

similar to the regions activated in the working memory and math contrasts 

(Figure 2.13). We also note that a similar overlapping thalamic region is 

activated in the Relational E>fix contrast (Figure 2.13). 

We also compared the MD cerebellar regions with the fronto-parietal 

network (FPN) identified by resting state data from two studies: Buckner et al. 

2011 (7 networks parcellation results from 1000 subjects) and CAB-NP (Ji et al., 

2019; results from 339 HCP subjects). Figure 2.12c illustrates the strong 

similarity between the FPNs from both studies and the cerebellar MD hotspots in 

crus I and II (Dice=0.62-0.70). 

Next we measured the similarity between the task and rest identified 

subcortical and cerebellar MD regions (after conjunction of 210P and 210V 

maps). With the exception of the left caudate, task and rest fMRI data showed 

modest overlap (left caudate r=0.01, Dice=0.07; right caudate r=0.18, 

Dice=0.26; left cerebellum r=0.65, Dice=0.68; right cerebellum r=0.60, 

Dice=0.62). Thus, together, task and rest fMRI data converge on identifying 

subcortical, especially caudate, and cerebellar regions related to the cortical MD 

core. 

Figure 2.12 (next page) Subcortical and cerebellar MD components. (a) Left: 

Conjunction of significant voxels across the three tasks for the 210P (top) and 

210V (bottom). Right: Cerebellar activity is displayed on a flat cerebellum with 

lines representing anatomical borders (Diedrichsen and Zotow 2015). Data 

available at http://balsa.wustl.edu/Z4NXp (b) Left: Subcortical voxels with 

significant connections to the cortical core MD areas. Right: Cerebellar MD 

connectivity displayed on a flat map. Data available at 

http://balsa.wustl.edu/VjwZg (c) FPN from Buckner et al. (2011) (left) and Ji et 

al. (2019) (right). Data available at http://balsa.wustl.edu/3g7wv 

http://balsa.wustl.edu/Z4NXp
http://balsa.wustl.edu/VjwZg
http://balsa.wustl.edu/3g7wv


 
78 Chapter 2 

 

  



 
79 Chapter 2 

 

  

Figure 2.13 Top left: Subcortical voxels with significant connections to the cortical core 

MD areas. All other panels: Group average activity for each task contrast. Arrows 

highlights that the thalamic hotspot in the top row panels is also activated in the 

Relational E>fix contrast (bottom left). Data available at https://balsa.wustl.edu/Nw1MK  

 

https://balsa.wustl.edu/Nw1MK
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2.4 Discussion  

Thousands of brain imaging studies have identified regions of frontal and 

parietal activation crossing multiple cognitive demands. In this study, we used 

HCP’s high quality multimodal MRI data and improved brain registration 

methods to demonstrate that diverse cognitive tasks from different sensory 

modalities engage widely distributed but tightly delineated foci of multiple-

demand (MD) activation (Figure 2.2a). The network of twenty-seven extended 

MD areas is organized into nine larger patches (Figure 2.2a, b): three distributed 

in an anterior-posterior chain running along the lateral frontal surface, a fourth in 

and above the anterior insula, a fifth on the most dorsal part of the lateral frontal 

surface, a sixth on the dorsomedial frontal surface, a seventh within and 

surrounding the intraparietal sulcus, an eighth in the dorsomedial parietal cortex, 

and a ninth in posterior temporal cortex. Within these larger patches, we 

identified a set of core areas, characterized by their strong activation and FC-

based interconnectivity, surrounded by a penumbra having relatively weaker 

activations and interconnectivity. We also identified localized MD regions in the 

caudate nucleus and cerebellum that share strong connectivity with the cortical 

core MD. These data provide strong evidence for the existence of highly specific 

MD regions in the human brain. The improved anatomical precision offered by 

the HCP methods revealed novel findings regarding the anatomical and 

functional organization of the MD network, as well as the functional 

connectivity of its components.  

Why should the brain contain this precise network of MD regions, co-

activated during many cognitive activities? Within the extended MD system, we 

propose that the core regions, most strongly active and interconnected lie at the 

heart of information integration and exchange mediating cognitive operations. 

Surrounding penumbra regions, with their connectivity into multiple cortical 

networks, feed diverse information into and out of the core. Across the entire 

MD system, co-activation reflects rapid information integration and exchange, 

while modest functional preferences reflect differential connectivity and 

information access. Together, these properties allow MD regions, with 

associated subcortical regions, to build integrated cognitive structures suited to 
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current behavioural requirements. These proposals are developed and extended 

in the following sections. 

 Broad anatomical distribution and relative 

functional preferences 

Similar activation patterns crossing many cognitive domains, roughly 

corresponding to our current MD findings, has been documented in a large body 

of previous work. At the same time, there have been many suggestions of 

functional differentiation between MD-like regions, albeit with little consensus 

emerging across studies (Dosenbach et al. 2007; Champod and Petrides 2010; 

Hampshire et al. 2012; Yeo et al. 2015; Lorenz et al. 2018). Our fine-grained 

anatomical findings illustrate the challenges in interpreting studies that are based 

on traditional neuroimaging analyses. For example, when coarsely-analysed data 

suggest functional dissociation between MD-like regions, the dissociation might 

concern penumbra or core MD regions, or even nearby non-MD regions that are 

more task specific. (See Figure 2.1 for task specific activations for each of the 3 

contrasts extending beyond MD parcels; also see Coalson et al. 2018 for a 

quantification of the uncertainties involved in mapping between volumetric 

activations and surface activations.) The finer-grained anatomy of the current 

study helps clarify issues of functional differentiation within the MD system. On 

one side is strong evidence for a network of co-activated MD regions, broadly 

distributed across the cortex. On the other is strong evidence for relative 

functional differentiation, often somewhat corresponding to previous proposals 

in the literature. Below we summarize concrete functional questions that are 

clarified by the present data. 

Much prior work (see Figure 2.2b) has suggested MD-like activation in 

the posterior dorsal prefrontal cortex, in a region close to the FEF. Though a 

reasonable interpretation might be increased eye movements in more demanding 

conditions, we show that the main focus of MD activation is localized anterior 

and dorsal to the FEF, including regions i6-8 (core) and s6-8. These results 

strongly suggest that MD activation is distinct from activations driven simply by 

eye movements in complex tasks. Our results match an early demonstration of 
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working memory activation immediately anterior to FEF (Courtney 1998); in our 

data, the strong MD response of i6-8 and s6-8 is supplemented by relative 

preference for the working memory contrast (see Figure 2.9d).  

Near the frontal pole, we localized MD activation in one core region (a9-

46v) and 5 surrounding penumbra regions. There has been much debate 

concerning an anterior-posterior gradient of activation on the lateral frontal 

surface. On the one hand, many tasks produce activation near to the frontal pole, 

suggesting an MD-like pattern (Ramnani and Owen 2004). On the other hand, 

many studies suggest selective activation in this region, for example associated 

with abstract reasoning (Bunge 2004; Christoff et al. 2009) or hierarchically-

organized cognitive control (Badre 2008; Badre and Nee 2018). Our results 

indicate that a9-46v is almost as strongly co-activated as more posterior core 

regions, arguing against a simple gradient of activation. Its adjacent penumbra 

regions (a47r, p47r) also show clear MD activation but with relative functional 

preference for the abstract relational reasoning task, matching previous reports 

of reasoning activation in this region.  

The combined 8BM/SCEF MD area on the medial frontal surface showed 

the least functional preference (Figure 2.9d). Our findings show MD activation 

rising to and peaking at the border between 8BM and SCEF, with similar 

patterns also visible in other task contrasts and fine-grained analysis of 

functional connectivity (Figure 2.4). In our group-average map, hints of peak 

task activation near areal borders can also be seen at the borders of 8C/IFJp and 

POS2/7Pm (Figure 2.2a). Though detailed analysis of these functional 

transitions is beyond our scope here, it is possible that here too MD activation 

peaks near areal borders. Borders between these areas were defined using robust 

multiple overlapping functional, architectural and/or topological criteria 

(Glasser, Coalson, et al. 2016). Thus, we speculate that our data may reflect 

close interaction between areas sharing a common border, reflecting the general 

principle of spatial proximity between brain regions that are in close 

communication. 

Previously, many studies have reported a band of occipito-temporal 

activation accompanying activation of fronto-parietal MD regions (see Figure 

2.2b). As most tasks used in these studies were visual, a plausible interpretation 

might be top-down input into higher visual areas.  In our data we identified two 
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penumbra regions, TE1m and TE1p, in posterior temporal cortex. Since these 

regions were activated by the auditory as well as the visual contrasts, the 

interpretation of top-down input into higher visual areas is less plausible. The 

location of these regions midway between higher visual areas, auditory areas and 

language and semantic areas (Pobric et al. 2007; Visser et al. 2010; Fedorenko et 

al. 2011) suggests a genuine MD region, situated to integrate higher visual, 

auditory and semantic/language processing. Similar to previous findings in 

Broca’s area (see Fedorenko et al., 2012), these data highlight an MD area with 

close proximity to language regions. 

Previous studies employing math tasks identify an MD-like pattern that is 

commonly interpreted as a domain-specific “math network” (Amalric and 

Dehaene 2017). Our results show that the math contrast engages all extended 

MD regions, but with relative preferences among dorsal parietal areas (AIP, 

LIPd, MIP; and POS2 on the medial surface) and dorsal frontal region IFJp. We 

note that in our data, math preferences are potentially confounded with auditory 

preferences (Michalka et al. 2015). 

Our selected task contrasts might have led us to miss MD regions that were 

already active in the easier tasks. Indeed, comparison of easy tasks with fixation 

suggested extension of MD activation into adjacent regions, including FEF, PEF, 

9-46d, 7Pm and LIPv. Evidence that even easy tasks produce strong activation in 

posterior regions of the lateral frontal cortex fits a number of previous reports 

(Badre 2008; Crittenden and Duncan 2014; Shashidhara et al. 2019). At present, 

the limited number of suitable contrasts in the HCP data and the difficulty of 

interpreting contrasts with fixation preclude strong conclusions on these 

additional putative MD regions. For example, while activation of FEF and PEF 

might simply reflect eye movements, this interpretation could be incomplete 

given that one easy task (0bk) used only stimuli placed in the center of the visual 

field. Future studies utilizing HCP methods and examining a broader range of 

task contrasts should provide clearer answers. 

In line with much current thinking, relative functional specializations 

might suggest that different MD regions are specialized for different cognitive 

operations. Though this interpretation is reasonable, it leaves open the question 

of why these regions are active in such a diversity of tasks, how they 

communicate and coordinate their activities, why their representations show 



 
84 Chapter 2 

such flexibility, and why they have such consistently strong functional 

connectivity. Instead of strong functional specialization, we suggest that 

distributed MD regions serve to combine and relate the multiple components of 

cognitive operations. While data from macaques show that putative MD regions 

share many anatomical connections (Hampson et al. 2006; Mitchell et al. 2016), 

each also has its own unique fingerprint of connections to and from other brain 

regions (Petrides and Pandya 1999; Markov et al. 2014). Thus the wide 

distribution and diverse connections of MD regions likely provides the necessary 

anatomical skeleton for access to different kinds of information from different 

brain systems. Different tasks, emphasizing different kinds of information, then 

lead to quantitatively different patterns of activation across the MD system. At 

the same time, rich interconnections between MD regions allow information to 

be rapidly exchanged and integrated. 

While core MD regions were more consistently strongly activated than 

penumbra MD across the current 3 tasks, the core/penumbra distinction is likely 

more graded than absolute. Indeed, some penumbra MD, in some tasks, show 

equally strong or stronger activations when compared to core MD (Figure 2.9). 

Our proposal suggests that the activation strength of any one MD region is 

guided by its unique local and distributed connectivity as well as by the specific 

integrative demands of the ongoing task. Accordingly, strong penumbra MD 

activations likely reflect more specialized demands. This is because of penumbra 

MD’s weaker interconnectivity and their membership to different, more 

specialized RSNs (Figure 2.6). Strong core MD activations, on the other hand, 

likely reflect more diverse integrative demands, owing to core MD’s anatomical 

distribution and stronger interconnectivity. Thus, contrasts with strong and 

diverse integrative demands, like our current 3 contrasts, will tend to highlight 

stronger core MD activations. Individual demanding contrasts are more likely to 

highlight strong activations in specific penumbra MD regions. These ideas are 

discussed in further detail in chapter 5. 

To extend the present results, a wider range of task contrasts would be 

valuable. Though the 3 contrasts used here are already quite diverse, a wider 

range of contrasts could establish boundary conditions on MD recruitment, and 

add more detailed understanding of relative functional preferences. One open 

question concerns strong manipulations of cognitive demand that produce little 
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MD activation. Most conspicuously, some studies (e.g. Han and Marois 2014; 

Wen et al. 2018) – though certainly not all (e.g. Jiang and Kanwisher 2003; 

Crittenden and Duncan 2014) – suggest little MD activation for demanding 

visual discriminations limited by the quality of sensory data. Though we would 

contend that any task requires integration of its components, we might speculate 

that integration demands do not limit performance in simple sensory tasks. Such 

exceptions to the MD pattern remain an important topic for future work.  

 MD cortex and resting state networks 

In this study we identified the extended MD system using a conjunction of three 

task contrasts. Using MD regions identified from task data, we proceeded to 

demonstrate strong within-network functional connectivity at rest. As expected, 

our analysis of resting state data shows much convergence with canonical 

functional networks derived from the same data (Ji et al. 2019), but we also 

found additional fine-grained structure. MD core regions constitute a subset of 

areas within the canonical FPN that are distinguished by especially strong 

mutual connectivity. This strong connectivity includes widely separated areas. In 

contrast to the MD core, penumbra regions are distributed across four canonical 

networks. Again, compared to other regions within those networks, they are 

distinguished by especially strong connectivity with the MD core. These results 

support the picture of MD regions as a strong communication skeleton, with 

penumbra regions in particular drawing together information from several 

distinct large-scale networks. 

In some prior work (Dosenbach et al. 2006, 2007, 2008), insula, 

dorsomedial frontal and anterior lateral frontal regions have been combined into 

a CON network, separate from other control regions forming the FPN. In line 

with CAB-NP, our precise delineation suggest a slightly different picture, with 

specific regions of anterior insula (AVI), dorsomedial frontal (8BM) and anterior 

lateral frontal cortex (a9-46v) included in the MD core, and closely adjacent 

regions included in a separate CON. 

Our conclusions are reminiscent of extensive recent work using network 

science approaches (e.g., graph theory) to identify putative cortical 

communication hubs (Sporns 2014; Petersen and Sporns 2015; Bassett and 
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Sporns 2017; Bertolero et al. 2018). In this graph theoretic approach, hubs are 

defined by broad connectivity and/or spatial proximity with multiple cortical 

networks. Typically they include a set of regions resembling the current MD 

system, but also others including the temporo-parietal junction, extensive 

regions of the mid- and posterior cingulate and more (Power et al. 2013; Gordon 

et al. 2018). These connectional findings are broadly consistent with our 

proposal that MD regions act as an integrative skeleton for cognitive activity, but 

they leave open the question of precise relations between the MD pattern, 

defined with converging task contrasts, and the definition of hubs based solely 

on functional connectivity. Because hubs are defined by connectivity with 

multiple cortical networks, their identification depends on the granularity with 

which these networks are separated and by other factors, including the threshold 

used to define network ‘edges’ and by potential methodological biases that are 

commonly overlooked, such as regional differences in receive coil sensitivity 

that may impact FC values. Such limitations do not apply to definition of MD 

regions based on converging task contrasts. Further work may help to contrast 

the functional role of MD regions relative to hubs defined by connectivity but 

not showing robust activation across multiple diverse tasks. 

 Subcortical and cerebellar MD regions 

We found MD activation and strong functional connectivity with the cortical 

MD core in the head of the caudate nucleus. In nonhuman primates, the anterior 

portion of the caudate receives projections from all prefrontal regions (Averbeck 

et al. 2014). Tracer studies have established that the dorso-lateral prefrontal, 

dorso-medial prefrontal and parietal cortices, in addition to strong mutual 

interconnections, also share converging projections to the caudate, mainly 

targeting its head (Kemp and Powell 1970; Alexander et al. 1986; Yeterian and 

Pandya 1991; Middleton and Strick 2000; Haber 2003; Hampson et al. 2006; 

Choi et al. 2016). Within the striatum, overlap in the projection zones of nearby 

cortical areas may in part be mediated by interdigitating dendrites and axons that 

cross functional boundaries (Haber 2003; Averbeck et al. 2014). These 

anatomical findings are consistent with the identified MD activations in the head 

of the caudate and strongly support its putative role in information integration. 
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We also identified distributed MD regions in the cerebellum. Tracer 

studies identify polysynaptic connections between the prefrontal cortex and the 

lateral portions of crus I and II as well as vermal lobules VII and IX (Bostan et 

al. 2013), largely overlapping with our MD cerebellar regions. In addition, 

previous studies have implicated similar cerebellar regions in several aspects of 

complex cognitive activity (King et al. 2019) as well as encoding task-relevant 

information (Balsters et al. 2013). Importantly, MD cerebellar regions do not 

overlap with motor-related regions (Diedrichsen and Zotow 2015). Not 

surprisingly, there is strong overlap between the cerebellar regions identified 

here using converging task contrasts and strong connectivity with the MD 

cortical core, and the FPN-related cerebellar network defined in previous studies 

(Buckner et al. 2011; Ji et al. 2019). Importantly, the cerebellar MD regions 

were identified by connectivity with the more spatially restricted cortical MD 

core in comparison with the cortical FPN, further suggesting a central role for 

the cortical MD core. 

Based on resting state connectivity, we also identified putative MD regions 

in the anterior portion of the thalamus. The connectivity-identified thalamic 

regions are in line with numerous studies reporting strong anatomical and 

functional connectivity between thalamic nuclei (especially medio-dorsal 

portions) and fronto-parietal cortex (Haber 2003; Halassa and Kastner 2017). A 

similar thalamic region was also identified by the conjunction of working 

memory and math contrasts; for relational reasoning, however, this thalamic 

region was already active in the contrast of easy task vs rest, with no further 

increase in the harder task version. 

Further work at higher field MRI strength (e.g., 7T) may help clarify the 

role of these and other subcortical regions associated with the cortical MD 

system. Meanwhile, in agreement with known anatomy, our data suggest 

extensive cortical-subcortical interaction in control of complex cognitive 

activity. 

 A precisely-localized neural system supporting 

complex cognition 
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For continued progress in understanding brain functional organization, a basic 

step is delineation of an accepted set of component regions. In the case of MD 

activation, progress has been slow because we lack such a precise definition, 

leading to many thousands of studies showing similar activation patterns, but 

little agreement over questions such as functional similarity/differentiation. 

Based on the HCP multi-modal parcellation, our work defines a precise network 

of core MD regions and their surrounding penumbra, and establishes a pattern of 

widespread co-recruitment, relative functional differentiation, and strong 

functional connectivity. 

These properties support a central role for the MD system in supporting 

complex cognition. The richness of even a simple cognitive event, and the 

precise relations that must be established between its different components, call 

for a widely-connected system, able to access any kind of cognitive content. 

Owing to their differential anatomical and functional connections, different MD 

regions may be preferentially recruited as different cognitive contents are 

accessed. However, strong interconnection between MD regions likely allows 

different information to become quickly integrated and exchanged, leading to a 

dominant pattern of co-activation. Extensive MD connections with other regions 

also suggest a broad role in coordinating brain activity in service of the task at 

hand. This proposal conforms with the finding that the MD system, among 

different brain networks, is the most striking in changing its global brain 

connectivity during different task states (Cole et al. 2013). 



 



 

3 CHAPTER 3 

 

VISUAL AND AUDITORY PREFERENCES 

OF DOMAIN-GENERAL BRAIN REGIONS 

3.1 Introduction 

The previous chapter identified domain-general or Multiple-demand (MD) 

regions that co-activate in association with different cognitive tasks. Against this 

co-activation background, however, the results also provided the strongest 

evidence yet of functional preferences or biases (i.e. stronger/weaker activations) 

for specific tasks (or task components). Mapping the anatomical organization of 

these functional preferences and uncovering their underlying causes is critical 

for understanding how MD regions can coordinate whole-brain activity. 

Chapters 1 and 2 proposed that differential MD anatomical connections underlie 

these preferences. But the lack of a consensus map of functional preferences 

remains a barrier to properly validate this proposal. One of the most basic 

preferences, yet still unclear, concerns MD sensory modality biases. A system 

concerned with coordinating whole brain activity is expected to communicate 

with different sensory areas. Indeed MD regions share anatomical connections 

with and respond to stimuli from different sensory areas (Markov et al. 2014; 

Noyce et al. 2017). But many details remain unclear. For example, are sensory 

connections unequal in density? Perhaps to help a division of labour in which 

some MD regions are more responsive to one modality over another? Could MD 



 
91 Chapter 3 

multi-sensory responses be an artefact of finer grained neighbouring modality-

selective regions (Michalka et al. 2015)? Or do all MD regions respond equally 

to all sensory modalities? This chapter attempts to answer some of these 

questions by using the Human Connectome Project (HCP) multi-modal MRI 

protocols to scrutinize with unprecedented anatomical resolution MD visual vs 

auditory preferences during a working memory task. 

 MD regions: multimodal or unimodal? 

Numerous human fMRI studies provide evidence that overlapping regions 

within frontal, parietal and temporal cortices are activated during tasks presented 

through visual, auditory or tactile modalities (Downar et al. 2000; Szameitat et 

al. 2002; Piazza et al. 2006; Vohn et al. 2007; Tombu et al. 2011; Braga et al. 

2013; Noyce et al. 2017; Assem et al. 2020; Diachek et al. 2020). For example, 

chapter 2 demonstrated that all MD regions responded to the visual tasks 

(working memory, reasoning) and to the auditory task (math). These results 

align with the generally accepted view of association cortices as convergence 

zones for anatomical projections from primary and secondary sensory regions 

(Pandya and Yeterian 1985; Mesulam 1998). Accordingly, studies in non-human 

primates (NHPs) have shown that neurons in putative homologous MD regions 

respond to more than one modality (Watanabe 1992; Fuster et al. 2000; Miller 

and Cohen 2001; Romanski 2007; Stein and Stanford 2008; Gu et al. 2016). 

Against this background of multi-modal responses, however, there is 

evidence for sensory specializations within association cortices. For example, 

anatomical and physiological studies identified distinct frontal regions receiving 

afferents from auditory and visual areas [see (Romanski 2007) for a review]. 

Single cell studies also identify frontal neurons that selectively respond to 

auditory, visual or somatosensory stimuli (Azuma and Suzuki 1984; Romanski 

2007). In line with these findings, studies using resting-state fMRI (rfMRI) 

connectivity have also stratified association cortices based on their differential 

connectivity with primary auditory and visual areas (Michalka et al. 2015; 

Mayer et al. 2016; Braga et al. 2017; Tobyne et al. 2017). In one study, rfMRI 

and structural connectivity suggested a spatially coarse dorsal (visual) to ventral 

(auditory) gradient across fronto-parietal regions (Braga et al. 2017). Another 
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study used HCP’s rfMRI data (with brains aligned using multi-modal MRI 

features; MSMAll) to show that frontal regions spatially overlapping with MD 

cortex share strong connectivity with posterior-visual regions, strongly 

suggesting that MD frontal regions are visually biased (Tobyne et al. 2017).  

One account to reconcile multi-sensory and sensory-selective results is that 

some or all MD regions have relative rather than absolute sensory preferences 

for one or more modalities. But the evidence for this is mixed. On the one hand, 

a number of fMRI studies that contrasted visual vs auditory versions of a 

cognitive task (usually tapping executive functions) failed to find modality 

preferences across all (Piazza et al. 2006; Kirschen et al. 2010) or some MD 

cortex (Lewis et al. 2000; Braga et al. 2013). On the other hand, since the early 

days of neuroimaging (Bushara et al. 1999), several studies have identified 

sensory biases within MD regions. One study contrasted a visual vs auditory 

Stroop-like task and identified a caudal (auditory) to rostral (visual) gradient 

throughout lateral, medial frontal and medial parietal cortices (Mayer et al. 

2016). Another study contrasted a visual vs auditory attention task and identified 

two distinct (i.e. modality biased) fronto-parieto-temporal networks (Braga et al. 

2013). In more posterior lateral frontal regions, Michalka et al. (2015) contrasted 

visual and auditory attention tasks and identified four interdigitated sensory-

biased regions; two visual-biased regions along the superior and inferior 

precentral sulcus interleaved with two auditory-biased regions, one in between 

the visual regions and another antero-ventral to the inferior visual region. To 

estimate the overlap of these sensory-biased regions with the HCP multi-modal 

parcellation (Glasser, Coalson, et al. 2016), Tobyne et al. (2017) applied a 

surface transformation approach and estimated they overlap with FEF (visual), 

55b (auditory), PEF (visual) and IFJa (auditory) all of which are, interestingly, 

just outside frontal MD regions (see Figure 3.2a). It is important to note, 

though, that these sensory biases were relative and not absolute i.e these regions 

did respond to both the visual and auditory modalities but each region was 

biased to respond more strongly to one modality over the other (Michalka et al. 

2015; Noyce et al. 2017; Lefco et al. 2020). That said, the inherent inaccuracies 

in transforming ROIs across surfaces (Coalson et al. 2018) leaves the question 

open on an accurate delineation of MD sensory preferences. Further, recent 

indications suggest more anterior and widespread visual and auditory biases and 
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their spatial extent is yet to be clearly delineated (Tobyne et al. 2017; Lefco et al. 

2020).  

Outside of the cerebral cortex, the evidence for sensory biased responses is 

also mixed. Single cell studies in animals identify both multisensory and sensory 

selective neurons in the basal ganglia and the thalamus (Nagy et al. 2005; 

Klemen and Chambers 2012). Some fMRI studies have failed to find subcortical 

modality preferences (Bushara et al. 1999; Mayer et al. 2016). While in the 

cerebellum, evidence for selective visual and auditory responses was reported in 

Cruses I and II where MD cerebellar regions where previously identified 

(Petacchi et al. 2005; Kirschen et al. 2010).  

 The current study 

While the previous studies provide some evidence for both sides of the story (i.e. 

multi-modal as well as sensory-biased responses), it is clear that their anatomical 

delineations are far from complete. An important observation from recent studies 

is that traditional imaging approaches will miss out on strong evidence of 

sensory-biased regions (Noyce et al. 2017; Lefco et al. 2020). Such traditional 

approaches rely on suboptimal brain alignment procedures (i.e. using sulci only) 

which fail to capture individual differences in areal topographies (different sizes 

and shapes) (Coalson et al. 2018). In this study, we use state-of-the-art HCP 

pipelines which utilize multi-modal MRI features (Glasser, Smith, et al. 2016; 

Robinson et al. 2018) for sharper brain alignment to compare anatomical 

distribution of our identified extended MD system (Figure 3.2a) and sensory 

biases, previously identified in the literature, by contrasting a visual and an 

auditory version of a working memory task, each with two levels of difficulty, 

performed by the same set of subjects. 

3.2 Methods 

 Subjects 
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Thirty-seven subjects participated in this study (age=25.9±4.7, 23 females, all 

right-handed). Originally fifty subjects were scanned over two sessions; thirteen 

subjects were excluded either due to incomplete runs from both sessions (n=5), 

excessive head movement during scanning (n=4), technical problems during 

scanning (n=2) or during analysis (n=2). All participants had normal or corrected 

vision (using MRI compatible glasses). Informed consent was obtained from 

each subject and the study was approved by the Cambridge Psychology 

Research Ethics Committee. 

 Task Paradigms 

Each subject performed five tasks in the scanner over two sessions. The current 

study used data from two tasks: visual n-back (session 1), auditory n-back 

(session 2). Each n-back task was performed for four runs, and each run 

consisted of four 1-back (easy) and four 3-back blocks (hard). Each task block 

(30 s) started with a cue (4 s) followed by 12 trials (24 s, 2 s each) and ended 

with a blank screen (2 s) as an inter-block interval. Task blocks were paired 

(easy followed by hard, or hard followed by easy) and the order was 

counterbalanced across runs and subjects. A fixation block (16 s) followed every 

two paired task blocks. In the visual session, each run consisted of 36 blocks: 8 

visual n-back blocks, 12 fixation blocks, 8 blocks for each for two other visual 

tasks. In the auditory session, each run consisted of 8 auditory n-back and 4 

fixation blocks. In the auditory session, n-back runs were alternated with runs of 

another visual task not analysed here. 

Each trial lasted for 2 s. The visual stimulus was presented for 1500 ms 

(auditory stimuli had a median duration of 1250 ms and ranged between 1250-

1520 ms), followed by 500 ms (480-750 ms) of a blank screen. Responses were 

accepted at any moment throughout the trial. For the 3-back condition, subjects 

were instructed to press right for the target stimulus (i.e. current stimulus was the 

same as the one 3 steps back), and left for all non-target presentations. Similarly, 

for the 1-back condition, subjects were instructed to press right for the target 

stimulus (i.e. current stimulus was an exact repetition of the immediate previous 

stimulus) and press left for all non-target stimuli. In each block there were 1-2 

targets, and in the case of the 3-back task 2-4 non-target lures (repeated items in 
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the wrong n-back position, either 2-back or 4-back). For the visual n-back, 

stimuli consisted of pictures of faces and houses. Face stimuli were selected 

from the Developmental Emotional Faces Stimulus Set (Meuwissen et al. 2017). 

Faces were either males or females, children or adults, making a happy or sad 

face (Figure 3.1). House stimuli were pictures of houses or churches, old or 

new, from inside or outside. There were 32 faces and houses each, 

counterbalanced across each of the three categories within it. These categories 

were necessary for other visual tasks during the session and have no bearing 

here. Auditory n-back stimuli consisted of animate (e.g. a human’s cough, a 

lion’s roar) and inanimate (e.g. a musical instrument, a bell ringing) sounds. 

There were 9 animate and inanimate sounds each. Each stimulus type was 

presented in a separate block and all stimulus features were counterbalanced 

across blocks and runs. Subjects were encouraged to use their right hand and 

respond to targets using a middle finger press and to non-targets using an index 

finger press but this was not enforced and several subjects found it more 

comfortable to use both hands for responses responding with index fingers or 

thumbs. 
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Figure 3.1 Task paradigms. Illustration of a stimulus sequence from each n-back task. 

Each trial lasted for 2 s during which participants pressed left for every non-target 

stimulus and right for a target stimulus. 
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 Image Acquisition 

Images were acquired using a 3T Siemens Prisma scanner with a 32-channel RF 

receive head coil. MRI CCF acquisition protocols for HCP Young Adult cohort 

were used (package date 2016.07.14; 

https://protocols.humanconnectome.org/CCF/). These protocols are substantially 

similar to those described in the methods section of chapter 2 and in previous 

studies (Glasser et al. 2013; Smith et al. 2013; Uǧurbil et al. 2013) but do differ 

in some regards; All subjects underwent the following scans over two sessions: 

structural (at least one T1w MPRAGE and one 3D T2w SPACE scan at 0.8-mm 

isotropic resolution), rest fMRI (2 runs × 15 min), and task fMRI (5 tasks, 4 runs 

each, approx. 100 min total). Whole-brain rest fMRI and task fMRI data were 

acquired using identical multi-band (factor 8) EPI sequence parameters of 2-mm 

isotropic resolution (TR = 800 ms, TE=37 ms). Both rest and task EPI runs were 

acquired in pairs of reversed phase-encoding directions (AP/PA). Spin echo 

phase reversed images (AP/PA) were acquired during the structural and 

functional (after every 2 functional runs) scanning sessions to (1) correct T1w 

and T2w images for readout distortion, (2) enable accurate cross-modal 

registrations of the T2w and fMRI images to the T1w image in each subject, (3) 

compute a more accurate fMRI bias field correction and (4) segment regions of 

gradient echo signal loss. 

 Data preprocessing 

Data preprocessing was also substantially similar to the HCP’s minimal 

preprocessing pipelines (Glasser et al. 2013) detailed previously in the methods 

section of chapter 2. Differences are noted here. HCP pipelines versions 3.27.0 

and 4.0.0 were used (https://github.com/Washington-University/HCPpipelines). 

Briefly, for each subject, structural images (T1w and T2w) were used for 

extraction of cortical surfaces and segmentation of subcortical structures. 

Functional images (rest and task) were mapped from volume to surface space 

and combined with subcortical data in volume to form the standard CIFTI 

grayordinates space. Data were smoothed by a 2mm FWHM kernel in the 
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grayordinate space that avoids mixing data across gyral banks for surface data 

and avoids mixing areal borders for subcortical data.  

Rest and task fMRI data were additionally identically cleaned up for 

spatially specific noise using spatial ICA+FIX (Salimi-Khorshidi et al. 2014). To 

improve its performance, ICA+FIX was applied separately to each of the 

following concatenated runs: rest-state runs (2x15 mins), visual runs from 

session one (4x15 mins), auditory runs (4x5 mins). An improved FIX classifier 

was used (privately provided by M. Glasser and HCP team) for more accurate 

classification of noise components in task fMRI datasets. After manual checking 

of ICA+FIX outputs for 10 subjects, a threshold of 50 was determined for 

“good” vs “bad” signal classification. In contrast to chapter 2, global structured 

noise was not removed using temporal ICA as the scripts have not been made 

public yet due to ongoing optimizations. 

For accurate cross-subject registration of cortical surfaces, MSMAll (i.e. 

“sulc” (cortical folds average convexity), myelin, resting-state network and 

rfMRI visuotopic maps) were used to optimize the alignment of cortical areas 

(Robinson et al. 2014). In this study, 30 mins of resting state were used (cf. ~1 

hour for chapter 2 dataset). 

 Task fMRI analysis 

Task fMRI analysis steps are detailed in Barch et al. (2013) and are similar to 

those mentioned in chapter 2. Briefly, autocorrelation was estimated using FSL’s 

FILM on the surface (default parameters in HCP’s task fMRI analysis scripts 

were used). Activation estimates were computed for the preprocessed functional 

time series from each run using a general linear model (GLM) implemented in 

FSL’s FILM (Woolrich et al. 2001).  

For each of the n-back tasks, 4 regressors were used (2 stimulus category x 

2 task difficulty). Each predictor covered the period from the onset of the cue to 

the offset of the final trial (28 sec). All regressors were convolved with a 

canonical hemodynamic response function and its temporal derivative. The time 

series and the GLM design were temporally filtered with a Gaussian-weighted 

linear highpass filter with a cutoff of 200 seconds. Finally, the time series was 

prewhitened within FILM to correct for autocorrelations in the fMRI data. 
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Surface-based autocorrelation estimate smoothing was incorporated into FSL's 

FILM at a sigma of 5mm. Fixed-effects analyses were conducted using FSL’s 

FEAT to estimate the average effects across runs within each subject. 

For further analysis of effect sizes, beta ‘cope’ maps were generated using 

custom built MATLAB scripts after moving the data from the CIFTI file format 

to the MATLAB workspace. Unless mentioned otherwise, parametric statistical 

tests were used. 

For parcellating the cerebral cortex, the group-average HCP multi-modal 

parcellation (MMP1.0) was used (Glasser, Coalson, et al. 2016) as the 

individual-specific areal classifier has still not been made public. Values of 

vertices sharing the same areal label were averaged together to obtain a single 

value for each area.  

For subcortical and cerebellar analysis, an MD mask covering regions of 

the caudate, thalamus and cerebellum was used. In chapter 2, two versions of the 

subcortical/cerebellar MD masks were defined: One based on a conjunction of 

task activations and one based on rfMRI connectivity with cortical MD core. In 

this study, the mask based on rfMRI was utilized because (1) it includes putative 

thalamic MD regions that are not included in the task-based mask (2) task and 

rest fMRI masks show substantial overlap in the remaining caudate and 

cerebellar regions. 

3.3 Results 

 Behavioural performance 

Performance on target trials showed that participants were more accurate on the 

visual than the auditory task during both the easy and hard conditions (Table 

3.1). Though note that there was no significant visual vs auditory difference for 

the drop in target detection between the easy and hard versions. As expected, 

performance on non-target trials was much better than target trials though with a 

similar visual vs auditory trend. Also, as expected, performance on the easy 

condition was better and faster than the hard condition for both visual and 

auditory tasks [with an exception for reaction time (RT) of auditory non-targets]. 
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It is worth noting that reaction times between visual and auditory conditions 

were not compared as the auditory stimulus takes a longer time to be presented. 

 

Table 3.1 behavioural performance on the visual (V) and auditory (A) n-back tasks for 

target and non-target trials. p<0.05 are in bold. 

  
 

Accuracy (%) 
V>A 

t36 (p) 

RT (s) 

visual auditory visual auditory 

Targets    

easy 92.5 

±9.2 

86.2 

±12 
3.2 

(0.003) 

0.62 

±0.08 

1.3 

±0.1 

hard 78.8 

±10.6 

67.2 

±13.7 
4.3 

(0.0001) 
0.82 

±0.1 

1.39 

±0.14 

hard>easy 

t36 (p) 
-6.6 

(1.1x10-7) 
-7.3 

(1.3x10-8) 
1.6 
(0.1) 

13.8 
(6.5x10-16) 

3.1 
(0.004) 

Non-Targets    

easy 98.4 

±2 

97.9 

±2.4 
1.2 
(0.2) 

0.61 

±0.1 

1.29 

±0.1 

hard 94.5 

±3.2 

89.6 

±5.5 
5.3 

(5.5x10-6) 
0.75 

±0.12 

1.3 

±0.1 

hard>easy  

t36 (p) 

-8.1 
(1.1x10-9) 

-9.3 
(3.6x10-11) 

5.0 
(1.4x10-5) 

11.4 
(1.6x10-13) 

0.5 
(0.6) 
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 No sensory preferences across MD cortex during 

hard cognitive demands 

We first sought to investigate sensory biases with the hard>easy contrast. This is 

because, as demonstrated in chapter 2, this contrast is commonly associated with 

strong MD activations.  For an initial overview, we examined the group average 

activations for each modality separately. Figure 3.2 b, c show the resulting 

overview. As expected, both visual and auditory hard>easy activations show 

substantial overlap with extended MD regions (green borders). Unexpected, 

though, is the striking similarity between the visual and auditory hard>easy 

contrasts (correlation between both maps’ cortical vertices r=0.96). This 

similarity was not an artefact of averaging activations across subjects as it was 

also evident in individual subject activation maps (average r=0.71, range 0.43-

0.82). 

To quantify hard>easy activations across the 28 extended MD regions 

(here SCEF and 8BM were considered as separate regions), for each region we 

averaged the beta estimates for all vertices and performed a one-sample t-test 

across subjects against a mean of zero. For this analysis, we have also probed 

hard>easy activations across the 4 regions estimated to overlap with the inter-

digitated sensory-biased frontal regions [visual-biased: FEF, PEF, auditory-

biased: 55b and IFJa (Tobyne et al. 2017)]. As expected from chapter 2, all 

extended MD regions were significantly activated in at least one hemisphere 

(23/28 on both hemispheres) during both the visual and auditory hard>easy 

contrasts (Figure 3.3; p<0.05, Bonferroni corrected for n=64 regions). Extended 

MD activations in the right hemisphere were slightly stronger than the left 

hemisphere, replicating the findings of the visual n-back task in chapter 2. 

Sensory-biased regions (FEF, 55b, PEF, IFJa) were significantly activated for 

both the visual and auditory tasks in at least one hemisphere (Figure 3.3; 

p<0.05, Bonferroni corrected for n=64 regions), except for 55b which showed a 

trending significance for the visual contrast (uncorrected p=0.001). These results 

confirm recent indications that sensory biases in regions neighbouring the MD 

system are relative and not absolute (Noyce et al. 2017).  
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Next to investigate MD sensory preferences, we subtracted the group 

average activations for the auditory hard>easy contrast from the visual 

hard>easy contrast. The resulting overview in Figure 3.4a showed little to no 

sensory preferences throughout the extended MD regions and no signs of inter-

digitated sensory-biased regions apart from a potentially small auditory biased 

region in an anterior ventral frontal region (IFSa). To statistically investigate any 

sensory preferences within those regions, for each subject we subtracted the 

visual hard>easy map from the auditory hard>easy map and extracted a single 

value for each region by averaging across its vertices. A one-sample t-test across 

subjects, for each region, again failed to find any significant sensory preferences 

for extended MD regions or the potentially sensory biased regions (i.e. FEF, 55b, 

PEF and IFJa) on either hemispheres (as this was an exploratory test, Bonferonni 

correction was performed for all cortical parcels n=360; Figure 3.4b). We did, 

however, find a significant auditory preference for IFSa, which is a much more 

anterior than previously reported frontal auditory biased regions (Tobyne et al. 

2017) and lies in between two MD regions p9-46v (caudal) and p47r (rostral).  

To uncover potential finer grained regions with sensory preferences, we 

repeated the one-sample t-test on each cortical vertex (FDR corrected p<0.05). 

This analysis again failed to identify any contiguous sets of significant vertices 

within extended MD regions (Figure 3.4c). Confirming the previous results, we 

identified a bilateral set of auditory preferring vertices overlapping with IFSa 

(Figure 3.4c). Further, we identified several small sets of significant vertices 

that overlap with early auditory regions (e.g. A4 and A5) and visual extrastriate 

regions (e.g. V5), each showing preferences to their corresponding sensory 

modality (Figure 3.4c). 

Taken together, these results failed to find any evidence for MD sensory 

biases during high cognitive demands (hard>easy). This contrast also failed to 

identify previously reported interdigitated pattern of sensory-biased regions in 

the frontal cortex. The results, however, did identify a novel anterior ventral 

frontal region (IFSa) with a relative preference for the auditory modality. 
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Figure 3.2 (above) Group average hard>easy n-back activation maps. (a) Core 

(yellow) and penumbra (red) MD regions labels. Blue parcels are Tobyne et al 2018 

estimate of HCP_MMP 1.0 regions that overlap with sensory biases identified in 

Michalka et al 2015 (b) visual n-back and (c) auditory n-back hard>easy contrasts. 

Activation values are beta estimates. Black contours correspond to the HCP_MMP 1.0 

areal borders and green contours correspond to extended MD areal borders. Grey 

arrows highlight some of the remarkably similar activation topographies between the 

visual and auditory contrasts. 

 

 

Figure 3.3 Hard>easy contrast activations. (top) right and (bottom) left hemisphere 

activations (beta estimates) for each of the visual (orange) and auditory (blue) n-back 

hard>easy contrasts. Error bars represent SEM. Extended MD regions labels are 

coloured in green (core MD in dark green and bold, penumbra MD in light green). The 

four regions in black labels correspond to Tobyne et al (2017) estimated sensory-biased 

regions. Asterisks denote p<0.05 bonferroni corrected for n=64 regions.  
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Figure 3.4 Hard>easy visual vs hard>easy auditory preferences. (a) Raw beta 

activations of the left hemisphere for this contrast. Extended MD regions are 

surrounded by green borders (b) Bar heights represent average activations for each 

region across subjects. Error bars represent SEM. Asterisks denote p<0.05 bonferroni 

corrected for n=360 regions. Positive values mean a visual preference, while negative 

values mean an auditory preference. Regions are sorted according to their sensory 

preferences in Figure 3.5. Light colored bars represent regions of the right hemisphere. 

Extended MD regions labels are coloured in green (core MD in dark bold green, 

penumbra MD in light green). (c) Significant vertices with sensory preferences (FDR 

corrected p<0.05). 

 Cortical MD sensory preferences revealed during 

easy cognitive demands 

 

Why did the hard>easy contrast fail to replicate sensory biases, robustly 

identified in previous studies, across much of the frontal and parietal cortices 

(Michalka et al. 2015; Noyce et al. 2017; Tobyne et al. 2017)? In an attempt to 

reproduce these sensory-biased regions, we sought to investigate visual and 

auditory activations for the easy>fix contrast. One possibility could be that the 

hard>easy contrast overlooked sensory-biased regions that are already strongly 

engaged during the easy task. For an initial inspection, we subtracted the group 

average auditory easy>fix contrast from the visual easy>fix contrast. The 

resulting overview in Figure 3.5a revealed several hotspots with prominent 

sensory preferences. To test the statistical significance of these preferences, we 

repeated the same analysis mentioned in the previous section using the easy>fix 

contrast. For each subject we subtracted the visual easy>fix map from the 

auditory easy>fix map then we performed a one sample t-test, across subjects for 

each region (after averaging across each region’s vertices, p<0.05, Bonferroni 

corrected n= 360; Figure 3.5b) and for each vertex (FDR corrected p<0.05; 

Figure 3.5c). 

On the lateral frontal surface, the results replicated the interdigitated 

pattern of visual vs auditory biases though with a crisper anatomical delineation. 

In line with Noyce et al.’s estimation, FEF and PEF showed relative visual 

preferences. In between FEF and PEF, a small posterior region within 55b 
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showed a significant auditory preference (Figure 3.5a, c) which is stronger in 

the right hemisphere (Figure 3.5b). Further anterior, PEF’s visual preference 

extended towards IFJp and IFJa. Within IFJa, we found that its dorsal segment 

had a visual preference, while its ventral segment had an auditory preference. 

This division was more prominent on the left hemisphere (Figure 3.5a, c). 

Because of this sensory division, IFJa as a region shows no overall sensory 

preferences (Figure 3.5b). Further anteriorly, we identified two more 

interdigitating regions: IFSp with a relative visual preference, confirming 

previous indications of a new anterior visually-biased region (Lefco et al. 2020). 

More anteriorly, IFSa had an auditory preference replicating our hard>easy 

findings in the previous section. Even more anteriorly near the frontal pole, we 

identify a visual preferring hotspot mostly overlapping with p47r (penumbra 

MD), just ventral to core MD region a9-46v. It is worth pointing out how all the 

previously mentioned sensory-biased regions surround core MD regions (Figure 

3.5a, c).  

Interestingly, almost all MD regions showed significant relative visual-

preferences (Figure 3.5). For core MD, IFJp is the most visually biased and a9-

46v is the least. In penumbra MD, LIPd showed the strongest visual preferences. 

Around left anterior insula, FOP5 had the strongest auditory preferences, 

adjoining AVI (core MD) which had a visual preference. Both 6r and SCEF 

showed no overall preferences likely due to the antagonistic finer grained visual 

and auditory biases (Figure 3.5). 

As observed in the hard>easy analysis, early auditory and visual regions 

showed sensory biases though here they were more prominent and more 

spatially extensive. (Figure 3.5a, c). Within visual regions, foveal/central 

patches had strong visual preferences while patches related to peripheral visual 

field had auditory preferences (Figure 3.5a, c). These results could be thought to 

reflect that attention to auditory stimuli suppresses foveal vision but it might also 

suggest a functional role for peripheral visual regions in auditory processing. 

One more finding is worth mentioning, on the medial parietal surface, we 

identified a novel non-MD small auditory preferring region overlapping with 

area PCV. 

In summary, most MD regions had relative visual preferences. These 

visual preferences cannot be explained by task difficulty because behavioural 
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data suggested the auditory task was more challenging, thus on the contrary, the 

auditory task should have engaged MD regions more strongly than the visual 

task. We further delineated six interdigitated visual and auditory biased regions 

on the lateral frontal surface, two of which exist further anterior to previous 

reports. Previously it was not clear whether these regions overlapped with MD 

regions. Here we show that they are located right outside the borders of core MD 

regions. Importantly, these results demonstrate that MD sensory preferences do 

not scale with cognitive demand, but likely reach a ceiling level (at least as 

measured by fMRI) during easy cognitive demands. 
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Figure 3.5 Easy>fix visual vs easy>fix auditory preferences. (a) Raw beta activations 

of the left hemisphere for this contrast. Extended MD regions are surrounded by green 

borders (b) Bar heights represent average activations for each region across subjects. 

All details are the same as in Fig 3.4b (c) Significant vertices with sensory preferences 

(FDR corrected p<0.05). 

 Sub-cortical and cerebellar MD sensory 

preferences 

 

In this section, we investigated whether MD sensory preferences extend outside 

the cerebral cortex. In chapter 2, MD regions were identified in the head of the 

caudate and in localized cerebellar regions (mainly cruses I and II). Their 

definition was based on a conjunction of co-activation during diverse cognitive 

tasks and strong functional connectivity with the cortical core MD. A further 

putative anterior thalamic MD region was also identified, though in this case, it 

was based only on its strong functional connectivity with cortical core MD.  

First we sought to confirm that the previously identified MD regions 

(bilateral caudate, thalamus and cerebellum; green borders in Figure 3.6b; see 

Methods section) were activated during each of the visual and auditory 

hard>easy contrasts. For each region, we obtained a single estimate for the 

hard>easy activations (by averaging across all MD voxels within a region) and 

performed a one-sample t-test across subjects. This test indeed confirmed that all 

bilateral caudate, thalamic and cerebellar MD regions were significantly 

activated (p<0.05, Bonferroni corrected for 6 regions; Figure 3.6a). 

Next to unveil regions with statistically significant sensory preferences, we 

repeated the cortical analysis detailed above (i.e. for each subject we subtracted 

the visual map from the auditory map, once using the hard>easy contrast and 

once using the easy>fix contrast). First, we focused on the previously identified 

MD regions. For each MD region we obtained a single visual vs auditory value 

per subject then we performed a one-sample t-test across subjects. For the visual 

hard>easy minus auditory hard>easy contrast, none of the MD regions showed 

any sensory preferences (p>0.05, Bonferroni corrected for 6 structures; Figure 
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3.6a), similar to the absent cortical MD sensory preferences for the hard>easy 

contrast. Meanwhile, the visual easy>fix minus auditory easy>fix revealed visual 

preferences in MD cerebellar regions bilaterally and the right MD thalamic 

region (p<0.05, Bonferroni corrected for 6 structures; Figure 3.6b). Left MD 

thalamic and bilateral MD caudate regions failed to show any sensory 

preferences. These results again broadly align with the predominantly visual 

cortical MD preferences in the easy>fix contrast. 

To also explore sensory preferences outside of MD regions (and any finer 

grained preferences within MD regions), we performed a one-sample t-test on 

each voxel (p<0.01, FDR corrected). For the visual hard>easy vs auditory 

hard>easy contrast, we failed to identify any interpretable contiguous set of 

voxels with sensory preferences either subcortically or in the cerebellum (not 

shown in figure). In contrast, for the visual easy>fix vs auditory easy>fix 

contrast, we identified a cluster of voxels in the posterior thalamus overlapping 

with the lateral geniculate nucleus (LGN) with visual preferences (Figure 3.6b). 

We also identified a smaller set of voxels with auditory preferences immediately 

medial to LGN, the expected location of the medial geniculate nucleus (not 

shown in figure) which is the relay station for the auditory pathway. In 

cerebellum, as expected, large clusters of voxels within MD borders in cruses I 

and II (medial and lateral hotspots) showed visual preferences. Medially, outside 

MD borders the visual preferences extended both dorsally (into lobule VI) and 

ventrally (into lobule VIIb), in line with previous studies identifying visual 

retinotopic responses in these regions (van Es et al. 2019). Laterally, there is 

some evidence that MD borders are surrounded by clusters of voxels with 

auditory preferences both ventrally (VI) and dorsally (VIIb). 

On the whole, these subcortical and cerebellar results mirror the cortical 

MD sensory preferences. During high cognitive demands (i.e. hard>easy), no 

significant sensory preferences were identified, while during easy cognitive 

demands (easy>fix), MD regions in the right thalamus and cerebellum showed 

relative visual preferences. 
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Figure 3.6 Subcortical and cerebellar MD sensory preferences. (a) Raw hard>easy 

beta activations for the visual and auditory tasks. Error bars are SEM. Asterisks denote 

significant hard>easy activations (p<0.05; Bonferroni corrected n=6 regions). n.s. 

denotes non-significant differences between visual hard>easy and auditory hard>easy 

(p<0.05; Bonferroni corrected n=6 regions). (b) Significant voxels with sensory 

preferences for the visual easy>fix vs auditory easy>fix contrast (FDR corrected 

p<0.05). Left: subcortical regions. Middle: Cerebellar significant voxels are displayed 

on a flat cerebellum with lines representing anatomical borders. Right: Sensory 

preferences of subcortical and cerebellar MD regions (delineated by the green contours 

in left and middle)   
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3.4 Discussion 

Previous brain imaging studies painted a mixed picture about the 

generality/selectivity of sensory-modality responses in association cortices. This 

study utilised HCP’s state-of-the-art multi-modal brain imaging methods to 

accurately delineate the anatomical and functional organisation of visual vs 

auditory preferences during a working memory task across the whole brain. The 

same subjects were scanned over two sessions, performing a visual n-back task 

in one and an auditory n-back task in the other (each with an easy and a hard 

version). Although MD regions are activated by both auditory and visual tasks, 

during low/easy cognitive demands, almost all cortical, subcortical and 

cerebellar MD regions showed relative (rather than absolute) visual preferences. 

The results also replicated, with a crisper anatomical delineation, a previously 

reported set of interdigitated visual and auditory biased regions on the lateral 

frontal surface but localize them just outside core MD regions. The results 

further identified several novel sensory biases throughout the brain. Importantly, 

as cognitive demand/task difficulty increased, sensory preferences were dwarfed 

by demand related activations. In other words, MD regions showed no sensory 

preferences with additional cognitive demands. We discuss how these new 

findings potentially reconcile many of the previous conflicting results. We 

further propose a neural circuit model that predicts load-dependent domain-

general and domain-specific responses within MD regions. Further, these results 

demonstrate the remarkable anatomical precision and replicability of the new 

HCP pipelines (Figure 3.2). 

 Cognitive load-dependent sensory preferences in 

MD regions 

A striking finding is how, in most MD regions (cortical, subcortical and 

cerebellar), visual responses were stronger than auditory ones during the easy 

cognitive demand (easy>fix; Figure 3.5, Figure 3.6). This is despite the 

auditory task being harder, suggesting it should have elicited stronger MD 

activations. The visual biases were more pronounced in penumbra MD (e.g. 
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LIPd) than in core MD regions, with the exception of IFJp (core MD) which 

showed strong visual biases. Importantly, a recent fMRI study showed that MD 

insular and anterior cingulate regions did not show any sensory biases (Noyce et 

al. 2017). Here we show a clear visual preference for 8BM (cingulate) and AVI 

(insular) regions. Subcortically, only the right MD thalamus showed a visual 

preference. Cerebellar MD regions mirrored cortical MD and showed a 

dominant visual preference. It is worth emphasising, however, that all MD 

sensory preferences are relative and not absolute. MD regions showed clear 

responses to both auditory and visual tasks (Figure 3.3, Figure 3.6a).  

An exception for MD visual preferences is peri-insular area FOP5 

(penumbra MD) which had relative auditory preferences, while its adjoining 

AVI (core MD) had relative visual preferences. This observation fits with the 

broader literature on insular involvement in auditory, language and speech 

processing (Bamiou et al. 2003; Remedios et al. 2009). A recent invasive 

electrophysiology study in humans in the left hemisphere separated anterior 

opercular from anterior insular activity during a reading task with opercular 

electrodes responding more strongly (Woolnough et al. 2019). Interestingly, in 

our study auditory preferences were located within FOP5 on the left hemisphere 

but it was shifted more dorsally outside of the peri-insular region (area 45) on 

the right hemisphere. This matches findings from a recent fMRI study that found 

articulation-related responses within the left MD anterior insula but not on the 

right hemisphere (Basilakos et al. 2018). Our study extends these findings by 

delineating these preferences between a penumbra and a core MD region. 

Subcortical (caudate, thalamus) and cerebellar MD regions did not show any 

auditory biases. 

The visual bias for MD regions aligns with a previous rfMRI connectivity 

study which found that posterior visual regions showed stronger connections 

(than auditory regions) with frontal patches that broadly overlap with MD areas 

(Tobyne et al. 2017). Some previous task fMRI studies did highlight visual 

preference for fronto-parietal activations (Braga et al. 2013; Mayer et al. 2016), 

though with a coarser spatial resolution. The underlying mechanisms for this 

visual bias remain unclear. One possibility could be richer MD connections with 

visual than auditory regions but systematic studies directly comparing visual and 

auditory systems are lacking (Markov et al. 2014; Donahue et al. 2016).  
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During high cognitive demand (hard>easy), a different picture emerged: 

visual and auditory MD activations were remarkably similar with no apparent 

modality preferences (Figure 3.2, Figure 3.4). These results suggest that 

modality-specific responses constitute a part, but not all, of the variance in MD 

responses and could account for previous mixed results in the literature as 

discussed in the introduction.  

How is it possible to observe modality preferences at one cognitive load 

but not the other within the same MD region? One possible neural circuit model 

is illustrated in Figure 3.7 that attempts to reconcile the three main findings 

from this study: (1) MD regions respond to both visual and auditory stimuli (2) 

Most MD regions show a stronger response during the visual task (3) MD 

sensory biases are absent during the hard>easy contrast. One can start by 

considering a putative MD region with a heterogeneous arrangement of visually- 

and auditory-sensitive neurons interspersed with a larger number of neurons with 

more complex responses related to cognitive-operations. Similar arrangements 

have already been observed during audio-visual tasks from invasive studies in 

NHPs (Watanabe 1992). This arrangement obviously predicts an MD response 

to both auditory and visual modalities. Critically, however, assuming the visual 

and auditory cognitive demands are equal, the response strength of modality-

selective neurons will determine the sensory-preference of this MD region. 

While “strength” of a response is likely determined by complex physiological 

processes (e.g. duration of response or population dynamics), here we consider 

the simplest case which is the number of modality-sensitive neurons. If our 

model MD region has more visual than auditory-selective neurons, then an 

equally demanding task should elicit stronger visual than auditory responses 

(Figure 3.7a). Cognitive-operation neurons will undoubtedly also contribute to 

this response. During low task demands, activity in these neurons might reflect 

specific processes operating on information communicated by the modality-

specific neurons. (Figure 3.7a). As task (integrative) demands increase, more 

cognitive-operation neurons are expected to be recruited, much of which might 

reflect mixed selectivity properties, because of the requirements for more 

complex conjunctions that modality-specific neurons likely cannot support (e.g. 

binding more items in working memory, linking them to more response rules 

and temporal information, previous knowledge etc…). Thus, during an increased 



 
116 Chapter 3 

cognitive demand, most of the MD region’s increased response could be 

attributed to non-modality specific integrative demands (Figure 3.7b). Thus, 

contrasting high vs low cognitive demands activation, will only highlight the 

increased recruitment in mixed-selectivity neurons (i.e. integrative demands) 

without detecting any sensory preferences (Figure 3.7c) just like the hard>easy 

contrast failed to reveal MD sensory preferences (Figure 3.4). 

One more point is worth noting. While MD visual preferences were 

stronger in the right hemisphere (Figure 3.5), this likely reflects the right 

hemispheric dominance for the n-back task. Language studies, for example, have 

shown that MD visual and auditory responses are stronger in the left hemisphere 

(Diachek et al. 2020). 
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Figure 3.7 A neural model for load-dependent sensory preferences in a putative 

MD region. (a)  Top: Responses of individual neurons (small circles) during a low 

demand task (easy>baseline). Interspersed in the region are neurons with selective 

responses to visual stimuli (solid red), auditory stimuli (solid blue) and cognitive-

operation related neurons (solid grey). Here visual neurons are larger in number than 

auditory neurons (see Discussion). Neurons with no responses are depicted as hollow 

circles. Bottom: A bar plot of the average neural responses and variance contributed by 

the different neuron types. During a visual task, visual selective and cognitive-operation 

neurons are the main contributors while during an auditory task, auditory selective 

neurons replace the visual selective neurons. Note how auditory neural responses are 

weaker than visual ones due to their lower number. (b) As task demand increases, 

visual/auditory selective neural responses increase only slightly while most of the 

increased response variance is due to increased recruitment of mixed-selective neurons. 

(c) Subtracting (a) from (c) will mainly highlight the increased recruitment of 

cognitive-operation neurons. If this recruitment was similar across the visual and 

auditory tasks, their hard>easy overall responses will look very similar as shown in the 

bar plot. 
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 Sensory biases surrounding core MD regions 

The current study clearly delineates MD regions from nearby regions with 

generally stronger and more mixed sensory biases (Figure 3.5). On the lateral 

frontal surface, we confirm previous evidence that inter-digitated auditory and 

visual regions lie immediately outside MD regions (Michalka et al. 2015; 

Tobyne et al. 2017). One exception is core MD region IFJp which seems to 

constitute one of the visually-biased interdigitated regions, especially in the right 

hemisphere (Figure 3.5). We found that these interdigitations also extend much 

more anteriorly than previously thought. Specifically, we identified an anterior 

frontal auditory preferring hotspot within IFSa which was the only exception for 

a sensory-biased region to survive the hard>easy contrast. This matches sporadic 

reports of anterior frontal regions with an auditory preference (Bushara et al. 

1999; Mayer et al. 2016). These findings suggest IFSa might play an important 

role for cognitively demanding auditory stimuli. Near the frontal pole we also 

identify a visually preferring hotspot mostly overlapping with p47r (penumbra 

MD). 

The sharper anatomical delineation in our study separates one of the inter-

digitated regions (IFJa) into a ventral auditory preferring region and a dorsal 

visual preferring region. This ventral/dorsal division extends along further 

anterior regions. Relatedly, on the medial frontal surface a caudal-rostral 

division was visible in SCEF, with its posterior preferring the auditory task 

while its anterior portion preferred the visual task, further supporting the 

functional dissociation previously observed across SCEF (Chapter 2). These 

ventral/dorsal and caudal/rostral divisions broadly align with previous rfMRI 

connectivity indications of a spatially coarse ventral/caudal (auditory) to 

dorsal/rostral (visual) gradient (Braga et al. 2017). 

Two more findings are worth noting. The first regards area PCV, on the 

medial parietal surface, which we identified as a novel non-MD small auditory 

preferring region. A recent HCP rfMRI study found that PCV forms a part of a 

novel “posterior multi-modal network” that includes regions around the 

temporo-parietal junction close to language and theory of mind activations (Ji et 

al. 2019). Second, in early visual regions (V1, V2, V3), peripheral visual regions 

showed a strong preference for the auditory task while foveal/central regions 
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were predominantly visual preferring. This aligns with previous fMRI reports 

showing strong engagement of peripheral visual regions during auditory tasks 

(Cate et al. 2009) and aligns with anatomical evidence of direct connections 

between the primary auditory region and peripheral V1 regions (Falchier et al. 

2002; Cappe and Barone 2005). This further supports a potential role for 

peripheral visual regions in auditory processing. 

An interesting observation is how some of the previously noted regions 

with the strongest sensory biases (FEF, PEF, IFJa, IFSp, IFSa, p47r, posterior 

SCEF, LIPd) surround core MD regions, raising a question about their role in 

communicating with the MD core. We have previously identified some of them 

(e.g. p47r and LIPd) as penumbra MD but it is clear that the rest of these regions 

are also activated by multiple tasks (e.g. during the easy>fix contrasts in chapter 

2) and are multi-sensory as the current study shows [see also (Noyce et al. 

2017)]. These regions are characterized by their strong initial engagement during 

easy cognitive demands as well as their membership of different resting-state 

networks [chapter 2; (Ji et al. 2019; Assem et al. 2020)]. Depending on task 

demands, their activations “spread” into the nearby core MD regions suggesting 

they might be important communication points between their affiliated networks 

and MD core. 

These findings also have implications for fMRI studies implementing 

multivariate analysis methods comparing audio-visual stimuli as multivariate 

differences might be reflecting strong local univariate differences between these 

modalities.  

Finally, it is important to note that because the visual and auditory stimuli 

in our tasks are not well-matched, the relative sensory biases identified using the 

easy>fix contrast could reflect stimulus specific processing instead of modality 

preferences. For example, it has been previously argued that frontal visual-

biased regions are more sensitive to spatial demands while auditory-biased 

regions are sensitive to temporal demands (Michalka et al. 2015). While our 

matched cognitive demand (n-back) minimizes the likelihood of this 

interpretation, the temporal structure of the auditory stimuli could be a driving 

factor for auditory-biases. Thus, the novel sensory-biases we identified remain to 

be replicated using better matched visual and auditory stimuli. That said, our 

replication of sensory-biased regions, identified in previous studies based on 
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different tasks and task-free rfMRI (Tobyne et al. 2017), attest to the fitness of 

this contrast. 

In summary, this study demonstrated that MD regions show relative rather 

than absolute sensory preferences with almost all MD regions having a visual 

bias. The sharper anatomical delineation of this study places the strongest 

sensory biases in regions surrounding the core MD regions suggesting multiple 

entry points for sensory information into the MD core. This anatomical 

arrangement might thus provide MD regions with broader integrative abilities to 

suit relevant task demands. 



 



 

4 CHAPTER 4 

 

INTRAOPERATIVE FUNCTIONAL 

MAPPING OF CONTROL-RELATED 

REGIONS USING 

ELECTROCORTICOGRAPHY 

4.1 Introduction 

The previous chapters investigated the anatomical and functional organization of 

multiple-demand (MD) brain regions using fMRI. In this chapter I explore their 

organisation using electrophysiological data acquired by placing electrodes on 

the brain surface, an approach called electrocorticography (ECoG), from human 

patients undergoing awake neurosurgeries. There are two important motivations 

for this study. First, it helps to bridge the worlds of fMRI and electrophysiology. 

Little is known about MD electrophysiology, especially in humans. Their rapid 

and adaptive neural dynamics uncovered by invasive animal studies (Stokes et 

al. 2013) are hidden behind the temporally slow fMRI signal (Logothetis 2008; 

Dubois et al. 2015). Further, our interpretation of fMRI signals can improve by 

relating it to its underlying electrophysiological processes (Logothetis 2012).  

Second, ECoG is a clinically useful tool for mapping the function of brain 

regions during tumour surgeries as it assists neurosurgeons to minimize the loss 

of healthy tissue and preserve brain function (Bertani et al. 2009). This is 
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important as the recovery of patients with certain brain tumours, such as Low 

Grade Glioma (LGG), improves as the tumour resection zone becomes larger 

(Sanai et al. 2010). However, this poses a challenge for neurosurgeons who need 

to delicately balance between maximising the resection zone and preserving 

healthy brain tissue. The risks become compounded with tumours like LGG 

which preferentially emerge in association cortices (Mandal et al. 2020) rich in 

MD regions. Previous work has informed us that damage to MD regions (e.g. 

from stroke) is detrimental to the organisation of behaviour and is associated 

with significant losses in broad measures of intelligence (Roca et al. 2010; 

Woolgar et al. 2018). Coupled with individual variability in the size and location 

of functional brain regions (Glasser, Coalson, et al. 2016; Fedorenko and Blank 

2020; Shashidhara et al. 2020), intraoperative functional mapping approaches 

were developed to assist neurosurgeons in navigating the brain functional 

territories (Sagar et al. 2019). 

The study in this chapter investigates whether electrophysiological signals 

recorded from the lateral surface of the frontal lobe can identify localized 

control-related regions similar to the frontal MD activations observed in fMRI. 

The approach of this study is to use a task difficulty manipulation similar to that 

used in fMRI studies, i.e. by contrasting a cognitively demanding task with an 

easier version of the task. The spatial distribution of spectral analysis will then 

be compared to a canonical fMRI fronto-parietal network. Overlap between both 

will provide converging evidence from electrophysiology and fMRI for the 

existence of localized control-related regions in the frontal lobe. The identified 

signal can then be further explored for its clinical potential to extend functional 

mapping in neurosurgeries to the domain of cognitive control. 

 Direct electrical stimulation for functional 

mapping 

The most popular mapping approach used in standard clinical care is direct 

electrical stimulation (DES) (Szelényi et al. 2010; Sagar et al. 2019). Typically, 

during an awake craniotomy, the patient is asked to perform a behavioural task 

relevant to the brain region the neurosurgeon is interested in. A probe then 
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delivers short electrical pulses to the underlying brain region under the 

assumption that it will temporarily disrupt its function (Szelényi et al. 2010). For 

example, if the brain tumour is next to a region of the motor cortex suspected to 

be involved in hand movement, the patient is asked to move their hand while the 

suspected region is stimulated. Disrupted hand movement is taken as a causal 

sign of the involvement of that region in hand movement. This level of high 

spatial accuracy offered by DES has earned it a place as part of standard clinical 

care and it is commonly applied for mapping the somatotopic organisation of the 

motor cortices (Suess et al. 2006) as well as language regions in the temporal 

and frontal cortices (Ojemann et al. 1989). Extensions are developed for other 

functions, for example to map the fusiform face areas (Parvizi et al. 2012), and 

higher cognitive functions (Birba et al. 2017) but are not yet established as a 

standard in clinical practise. That said, DES is a time-consuming process during 

a time-sensitive surgery; the probe (around 1 cm in diameter) is used to 

sequentially map small sections of a cortical patch tens of times the size of the 

probe and sometimes multiple stimulation trials of the same section are needed. 

DES could also induce seizures due to neuronal after discharges, and if the 

seizures are frequent, it could cut the mapping procedure short (Szelényi et al. 

2010). Further, a lack of understanding of how stimulation affects processing in 

a cortical area makes it difficult to interpret its results, especially for higher 

cognitive functions (Borchers et al. 2012). DES effects have also been found to 

spread for a few centimetres beyond the stimulated area (Blume et al. 2004; 

Matsumoto et al. 2004). Thus, stimulation of a functionally irrelevant area might 

cause behavioural disruptions overestimating and/or underestimating 

functionally critical cortex (Crone et al. 2006). Despite these limitations, and in 

the absence of other established tools, stimulation remains widely regarded as 

the gold standard for functional mapping. 

 ECoG for functional mapping 

ECoG involves placing electrodes on the cortical (pial) surface to detect 

electrophysiological signals assumed to be related to the behavioural task the 

patient is performing. These signals could then either be exclusively used to 

guide the tumour resection or, more frequently, combined with DES to constrain 
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the mapping region (Crone et al. 2006). ECoG measures local field potentials 

(LFPs), the voltage changes resulting from all ionic movements in the 

extracellular medium (Wang 2010; Buzsáki et al. 2012). LFPs are complex 

signals, consisting of both irregular (non-oscillatory) and rhythmic (oscillatory) 

components across a broad range of frequencies (Miller et al. 2009; Wang 2010; 

Buzsáki et al. 2012). One LFP component popular for functional mapping is 

signal in the high frequency range (gamma; >30 Hz). Gamma’s spatial precision 

aligns well with established functional anatomy (Crone et al. 2006; Lachaux et 

al. 2012). For example, increases in gamma power (energy or amplitude of 

voltage fluctuations) can accurately map the motor somatotopic organization 

(Miller et al. 2007; Vansteensel et al. 2013), can localize the FFA when seeing 

faces (Parvizi et al. 2012), and can map language areas in the temporal lobe 

(Miller et al. 2011). The spatial specificity of gamma is also supported by non-

invasive brain imaging studies finding a decent overlap between gamma 

responses and fMRI activations, especially in early sensory and motor regions 

(Logothetis et al. 2001; Nir et al. 2007; Engell et al. 2012; Hermes et al. 2012). 

The temporal resolution of gamma signals has also proved fruitful for tracking 

the timing of cognitive processes. For example, the onset of gamma activity in 

primary sensory and motor areas aligns well with the onset of stimuli or 

movement initiation, respectively (Crone et al. 2006; Lachaux et al. 2012). In 

language studies, gamma dynamics were also shown to track consecutive stages 

involved in word production (Pei et al. 2011). These properties make gamma 

signals an attractive general index of local cortical activity for functional 

mapping (Crone et al. 2006).  

It is still unclear, however, how gamma properties change across brain 

areas with different cytoarchitectures, connections, and functions (Lachaux et al. 

2012). This poses a challenge for their use to understand functional anatomy. 

Gamma is not a homogenous band and consists of at least two subcomponents: a 

low gamma band (LG; ~30-70 Hz) and a high gamma band (HG; >70 Hz) (Ray, 

Crone, et al. 2008; Ray and Maunsell 2011; Buzsáki and Wang 2012). While 

most of the previous results implicate both components, HG findings have been 

more robust across cortical regions and studies (Crone et al. 2006; Lachaux et al. 

2012). The high spatial fidelity of gamma signals is likely due to the low-pass 

filtering properties of cortical dendrites, which restrict the spread of high 
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frequency signals, thus linking their detection to local processes (Buzsáki and 

Wang 2012). Further, gamma signals have been found to correlate with local 

spiking activity (Ray, Crone, et al. 2008; Ray and Maunsell 2011; Buzsáki and 

Wang 2012), suggesting an oscillatory process to synchronize the firing rates of 

local populations of neurons (Engel et al. 2001; Fries 2015). On the opposite end 

of synchronized origins, gamma signals were found to be associated with 

asynchronous firing rates and post-synaptic currents (Miller et al. 2009; Wang 

2010; Buzsáki and Wang 2012). Different physiological origins of gamma 

signals could thus reflect different processes across cortical areas. 

To better understand the role of gamma signals in different cortical areas, 

it is important to consider its accompanying lower frequency LFP components 

(<30 Hz). Increases in gamma power are usually associated with decreases in 

power of lower frequencies (Podvalny et al. 2015). Functional mapping studies 

have long demonstrated that, compared to gamma band, low frequency signals 

are less spatially and temporally specific (Crone et al. 2006; Lachaux et al. 

2012). For example, in a motor mapping study, high gamma activity was able to 

separate regions related to hand movement from mouth movement. In contrast, 

beta band (12-30 Hz) was less spatially specific (Miller et al. 2010). Recent 

results, however, show that cortical areas can exhibit low frequency decreases at 

distinct frequencies or not exhibit any low frequency decreases in association 

with gamma increases (Fellner et al. 2019). Thus, combining information about 

high and low frequency modulations could be utilized as a spectral fingerprint 

for areal mapping (Siegel et al. 2012). More generally, lower frequency 

dynamics have been related to spatially distributed large-scale cortical networks 

(Betzel et al. 2019). In summary, despite unclear physiological origins, the 

spatial and temporal specificity of gamma signals have facilitated their growing 

use for mapping cortical regions.  

 ECoG for mapping MD regions 

So far, I have discussed mapping studies utilizing cognitive tasks with overt 

behaviour (e.g. speech or movement). But how can ECoG map MD functions? 

To briefly recap relevant information from earlier chapters, MD regions refer to 

a set of cortical areas distributed in frontal, parietal and temporal lobes. A 
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functional signature of MD regions arises from increased cognitive demand, 

with thousands of fMRI studies showing increases in MD activations with 

increased task difficulty across many types of cognitive domains. MD regions 

are strongly interconnected (as indexed by correlation of their timeseries), 

forming a core part of the canonical resting-state fronto-parietal network (FPN) 

(Duncan 2010, 2013; Fedorenko et al. 2013; Assem et al. 2020; Shashidhara et 

al. 2020). 

Much of our understanding of the electrophysiological properties of MD 

regions comes from invasive animal and human studies based on concepts of 

cognitive or executive control. Cognitive control is an umbrella term for 

processes such as selective attention, working memory, set shifting, response 

inhibition, conflict monitoring, problem solving, and goal-directed behaviour 

(Rabbitt 2004; Diamond 2013). Brain imaging studies have long associated 

executive control tasks with MD co-activations (Duncan 2010, 2013; Fedorenko 

et al. 2013; Assem et al. 2020; Shashidhara et al. 2020). In this section I review 

the main MD related electrophysiological findings that are relevant for using 

ECoG as a functional mapping approach. 

Since their discovery, increases in gamma power have been thought to 

reflect a heightened attentive state (Bouyer et al. 1981). Attended stimuli, 

whether in early sensory or fronto-parietal regions, will elicit stronger gamma 

responses than unattended stimuli (Fries 2001; Ray, Niebur, et al. 2008; 

Szczepanski et al. 2014; Helfrich and Knight 2016). Frontal gamma responses 

are also stronger for unpredicted vs predicted events (Crone et al. 2006; 

Dürschmid et al. 2016). In working memory (WM) tasks, increases in WM load 

lead to parametric increases in frontal gamma power (Howard 2003). Gamma 

increases are also sustained during WM delay periods (Howard 2003; Mainy et 

al. 2007). Sustained gamma responses were also observed in lateral frontal 

regions in eight tasks that varied in difficulty and sensory modality (Haller et al. 

2018). However, recent analysis at the single trial level argues sustained 

responses are artifactual due to averaging multiple trials with discrete gamma 

bursts (Miller et al. 2018). Increases in task demands as indexed by more 

abstract rules have also been associated with frontal gamma increases (Voytek et 

al. 2015). Fronto-parietal gamma responses have generally been interpreted to 

reflect control or top-down signals. For example, in a visual WM task, enhanced 
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gamma responses in frontal eye field (FEF) temporally precedes those in visual 

area V4, suggesting that a top-down attention signal leads to enhanced gamma 

synchrony (Gregoriou et al. 2009). Collectively, these results show that gamma 

increases in fronto-parietal regions are observed during a broad range of 

executive tasks. 

Cognitive control tasks are also associated with power modulations in 

lower frequency bands. For example, improved synchrony in the beta band (12-

30 Hz), compared to pre-trial baseline period, was observed between frontal and 

parietal areas in delayed matched-to-sample and guided search tasks (Buschman 

and Miller 2007; Saalmann et al. 2007). In contrast, beta power increases were 

detected in the right inferior frontal gyrus when a habitual motor response was 

inhibited during a stop-signal task (Swann et al. 2009). In selective attention 

tasks, alpha band activity (8-12 Hz) decreases in power in the hemisphere 

contralateral to the attended hemifield (Helfrich and Knight 2016; Sadaghiani 

and Kleinschmidt 2016). In a switching task, fronto-parietal regions were 

synchronized in the theta band (4-8 Hz) and this was interpreted to reflect a 

preparatory state (Phillips et al. 2014). Theta power increases with WM load 

(Meltzer et al. 2008) and systematically tracks the duration of WM delay periods 

(Raghavachari et al. 2001). Clearly this sample of studies demonstrates that in 

fronto-parietal cortices, power modulations in lower frequencies are complex 

and reflect more than the straightforward decreases in power accompanying 

gamma increases seen in early cortical regions (Crone et al. 2006; Lachaux et al. 

2012). 

One framework to understand how high and low frequencies interact for 

the implementation of cognitive control considers the laminar structure of the 

cortex. High frequency modulations are prominent in superficial layers while 

lower frequencies dominate in deeper ones (Wang 2010; Bastos et al. 2018). 

Feedforward bottom-up signals are carried through the superficial layers by 

gamma, and feedback top-down signals are carried through deeper layers by low 

frequencies (Buschman and Miller 2007; Wang 2010; Miller et al. 2018). A 

complementary framework considers a hierarchical relationship between low 

and high frequency bands where the phase of the lower frequencies controls the 

precise timing of high frequency power modulations. This coupling between 

gamma and lower frequencies has been observed in cognitive control tasks. For 
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example, demand related increases in gamma power in the frontal cortex were 

accompanied by enhanced theta synchrony (Voytek et al. 2015). In another 

study, delta (1-4 Hz)/theta and gamma coupling predicted reaction times in an 

attention task on a trial by trial basis (Szczepanski et al. 2014).  

Finally, it is worth noting that a common limitation for most of the above-

mentioned studies is that recording locations are assigned broad labels such as 

pre-frontal cortex. As explained in chapter 1, such association cortices are rich in 

functionally heterogenous regions including MD regions. This limits comparison 

and integration of results across studies. Nevertheless, these results consistently 

highlight that cognitive control tasks are associated with gamma increases across 

broad frontal and parietal regions. 

 The current study 

This study used ECoG during awake craniotomies to identify an 

electrophysiological signature related to MD regions as a first step towards its 

potential use for clinical functional mapping. The patients involved in this study 

were undergoing surgery for LGG tumours. In conventional ECoG studies 

involving epilepsy patients, electrodes are implanted for a few days/weeks to 

localize epileptic foci and experimental testing occurs during this period. 

Electrodes locations in such studies are determined based on pure clinical 

considerations. In contrast, the electrodes in the current study were temporarily 

placed for a short duration during the surgery and their locations were chosen 

based on research considerations (limited by the craniotomy). 

The approach to localize frontal control-related regions in this study was 

motivated by fMRI studies of MD regions which contrasts brain activity of a 

difficult task with an easier version. The tasks in this study were an easy 

counting task (from 1 to 20) and a harder version requiring alternate counting 

between letters and numbers (1 a 2 b 3 c….20). The hard task shares some 

features with the Trail task which is commonly used to assess executive 

functions as part of standard neuropsychological assessment. The tasks were 

designed to be easily administered in an intraoperative setting but also as 

matched as possible across cognitive components (i.e., counting), presentation 

form (verbal instructions), and response modality (verbal response). The 
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expected outcome from this difficulty manipulation is that it will be associated 

with localized increases in gamma power. This stems from evidence that 

cognitively demanding tasks elicit localized fMRI BOLD increases and the 

previously discussed decent spatial correlation between BOLD and localized 

gamma signals. 

4.2 Methods 

 Patient recruitment 

Out of twenty-one patients who underwent awake craniotomies (at the 

Department of Neurosurgery at Addenbrooke’s hospital, Cambridge, UK), 

thirteen participated in this study (age range 22-56; 6 males; see TABLE 4.1 for 

patient demographics). The other eight patients were excluded either due to 

technical difficulties or inability to perform the tasks during the surgery. Patients 

were recruited from the same pool of glioma patients that are normally evaluated 

for awake neurosurgeries by the adult neuro-oncology multidisciplinary team at 

Addenbrooke’s hospital (Cambridge, UK). All study procedures were approved 

by the East of England - Cambridge Central Research Ethics Committee (REC 

reference 16/EE/0151). Patients gave informed consent to participate and were 

aware that the research will not benefit themselves but that it also would not 

impact their clinical care before, during or after surgery. 

 Experimental procedures 

All patients were familiarized with the tasks during standard pre-operative clinic 

visits. During the surgery, the testing was performed after the patient has been 

awakened and prior to tumour resection (except for one patient where the 

experiment was performed after partial resection due to clinical considerations). 

Figure 4.1a,b illustrate the intraoperative setup and cognitive tasks. During the 

awake craniotomy, patients performed one baseline task and two cognitive tasks. 

For the baseline task, the patients were asked to stay calm and remain silent for a 

period of 2-3 mins (rest). All personnel in the surgical theatre were asked to limit 
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their conversations to minimize disruptions. The baseline task was immediately 

followed by alternating trials of two tasks: counting forward (1 to 20; easy) and 

alternate counting and reciting the alphabet (1, a, 2, b, 3, c, up to 20; hard). Task 

onsets were cued either verbally by the experimenter saying “start now” or by an 

audio bleep. The task was stopped when the patient finished counting or after 

around 1 minute if the patient needed more time during the hard task. Each task 

condition was repeated for 2-5 trials (median for both = 4 trials) based on each 

patient’s ability and time constraints during the surgery. Easy trials took on 

average 20.1±7.4s, while hard trials were longer 29.4±9.4s. Most patients were 

instructed to alternate between the easy and hard conditions, though on a few 

occasions some easy/hard trials were performed in succession (in some cases 

this could highlight some perseverative behaviour from the patients). Only 

correctly performed trials (i.e. no errors in forward or alternate counting) were 

included in the analysis (e.g. a failed hard trial that was excluded: 1, a, 2, b, 3, b, 

4, b, 5, b, 6, b…). 

 MRI acquisition 

MRI data were acquired pre-operatively using a Siemens Magnetom Prisma-fit 3 

Tesla MRI scanner and 16-channel receive-only head coil (Siemens AG, 

Erlangen, Germany). Structural anatomic images were acquired using a T1-

weighted (T1w) MPRAGE sequence (FOV 256 mm x 240 mm x 176 mm; voxel 

size 1 mm isotropic; TR 2300 ms; TE 2.98 ms; flip angle 9 degrees). 

 Electrode mapping 

The extent of craniotomy of all patients was determined by clinical 

considerations to allow for the tumour resection. Based on the craniotomy size, 

one to three electrode strips were placed on the cortical surface in regions judged 

by the neurosurgeon to be healthy. Strips placed on the tumour or outside of the 

frontal and motor cortices were excluded from this study. Each strip was 

composed of four electrodes. Two types of strips were used with electrode 

diameter either 5 mm (MS04R-IP10X-0JH, Ad-Tech, Medical Instruments 
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corporation, WI, USA) or 3 mm (CORTAC 2111-04-081, PMT Corporation, 

MN, USA). For both strip types, electrodes spacing was 10 mm centre to centre. 

Electrode locations were determined either using (1) an automated method 

with a probe linked to a stereotactic neuronavigation system (StealthStation® 

S7® System, Medtronic, Inc, 24 Louisville, CO, USA) or (2) a semi-manual 

“Grid method” using intraoperative photographs and a grid-like delineation of 

cortical sulci and gyri. Most electrodes (51/79) were localised using the 

automated method but due to occasional technical limitations, 28 electrodes 

were localized using the Grid method. Both methods are illustrated in Figure 

4.1c and are detailed below.  

(1) Stereotactic neuronavigation: A hand-held probe was placed at the 

centre of each electrode, automatically registering its physical coordinates, using 

the neuronavigation system, to the subject’s native high resolution preoperative 

T1w scan. In some cases, coordinate data were available for only two or three 

out of the four electrodes in each strip. This was due to either time constraints 

during the surgery or because an electrode was located underneath the skull, not 

allowing the placement of the probe on it. Each subject’s native T1w scan was 

linearly co-registered with the MNI template volume at 2 mm resolution using 

FLIRT as implemented in the FSL using 12 degrees of freedom (full set affine 

transformation) and the correlation ratio cost function. The resulting native-to-

MNI transformation matrix was then used to convert electrodes native 

coordinates to MNI coordinates.  

(2) The Grid method: This follows the method described in (Havas et al. 

2015) and (Ojemann et al. 1989). (a) Visible major sulci were delineated from 

the intraoperative photographs: precentral sulcus, sylvian fissure, inferior and 

superior frontal sulci. Spaces between these sulci were populated by vertical 

lines (1.5 cm apart) to create a grid-like structure (b) A grid was created in the 

same way on a template cortical reconstruction of the MNI volumetric map 

(reconstructed using the HCP structural preprocessing pipeline 4.0.0; 

https://github.com/Washington-University/HCPpipelines) (c) MNI coordinates 

for each electrode were extracted by manually marking its approximate location 

on the template cortical grid while it was visualized using the Connectome 

Workbench v1.4.2 (https://www.humanconnectome.org/software/get-

connectome-workbench). As the template cortical reconstruction is co-registered 

https://github.com/Washington-University/HCPpipelines
https://www.humanconnectome.org/software/get-connectome-workbench
https://www.humanconnectome.org/software/get-connectome-workbench
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with its MNI volumetric version, it facilitated the automatic transformation of 

any point marked on the surface back to its MNI volumetric coordinates. 

Electrode displacements due to brain shifts (caused by pressure changes 

related to craniotomy) were compensated by back-projecting onto the cortical 

surface along the local norm vector (Hermes et al. 2010) as implemented in the 

fieldtrip (v20160629) protocol for human intracranial data (Stolk et al. 2018). 

Electrode activations were projected on the template cortical surface using a 

weighted sphere method with 10 mm surface smoothing as implemented in 

fieldtrip. 

 Electrophysiological data acquisition and analysis 

Data were recorded using a 32-channel amplifier (Medtronic Xomed, 

Jacksonville, FS, USA) sampled at 10 KHz. Potential sources of electrical noise 

such microscope, patient warming blanket, and IV pumps were identified and 

repositioned to avoid signal contamination. The data were recorded via 

dedicated channels on the acquisition system and two Butterworth online filters 

were applied: a high-pass filter at 1 Hz and a low-pass filter at 1500 Hz. A 

ground needle electrode was connected to the deltoid muscle and the electrodes 

were referenced to a mid-frontal (Fz) spiral scalp EEG electrode. 

Data were analysed offline using EEGLAB (v13.6.5b) and custom 

MATLAB scripts. The data were downsampled to 2 kHz then re-referenced 

using a bipolar scheme to detect any changes with the highest spatial resolution 

as well as to avoid contamination of high frequency signals by scalp muscle 

artifacts detected by the Fz electrode. The last electrode on the strip was 

excluded from the following analysis i.e. for a four-electrode strip, electrode 

pairs 1-2, 2-3 and 3-4 were used and assigned to electrode positions 1, 2 and 3, 

respectively. The location of electrode 4 was discarded. Thus out of the original 

79 electrodes, re-referenced data from 59 was used for further analysis (Figure 

4.1; 55 left, 24 right, 32 MFG, 39 IFG, 8 on motor cortex). 

A notch filter was applied at 50 Hz and its harmonics to remove line noise. 

Notch filtering was also applied at 79 Hz and its harmonics to remove additional 

noise observed in the data, probably due to equipment in the surgical theatre. 

Data were then bandpass filtered into 6 classical frequency bands (delta:1-4, 
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theta: 4-8, alpha: 8-12, beta: 12-30, low gamma (LG): 30-70, high gamma (HG): 

70-250). Power of the timeseries was obtained by squaring the absolute 

amplitude envelope of the Hilbert transformed data.  

Data were then segmented into separate conditions and trials. Because trial 

onset and offset markers were manually recorded, 2s from the beginning and end 

of the rest trial and 1 s from each task trial were excluded to account for human 

reaction time related error. For the hard trials (alternate numbers/letters), a 

further 3s from the beginning of each trial was excluded to discard the initial 

easy phase of this task (1, a, 2, b, 3, c, 4, d). One power value for each task was 

obtained by concatenating data across trials of that task. To compare power 

across conditions (i.e. hard>easy or easy>rest) the power ratio between two 

conditions was calculated (i.e. simple division of power in condition 1 vs power 

of condition 2).  

For each electrode, a permutation testing approach was used to statistically 

compare power across conditions. All task trials from both conditions were 

concatenated serially to form a loop: the end of the last trial from condition 1 

was concatenated to the beginning of the first trial from condition 2. And the end 

of the last trial of condition 2 was concatenated to the beginning of the first trial 

of condition 1. Thus the concatenated trials from both conditions formed a 

“circular loop”. Trial onset/offset markers were then shifted using a random 

jitter, allowing them to “rotate” along the data loop. This rotation approach was 

used to generate surrogate data while preserving trial lengths and the temporal 

correlations in the data. After each rotation, we computed the mean power (for 

each condition) and power ratio (across conditions) based on the new trial 

markers. This process was repeated 100,000 times to create a surrogate 

distribution against which two-tailed statistical significance could be calculated 

(percentile ranks 97.5 and 2.5) for each electrode.  

To relate electrode locations with control-related regions identified by 

fMRI studies, a canonical resting-state fronto-parietal network (FPN) volumetric 

mask was used (Yeo et al. 2011b). The volumetric mask was resampled to 2mm 

MNI space (then binarised to include any voxel with a non-zero probability) to 

match the original resolution of electrode localization using the grid method. 

Ideally, the electrodes localization and comparison with fMRI data would have 
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utilized a surface based approach. However, the presence of cortical lesions (i.e. 

the tumour) prevented accurate cortical surface extraction. 

 

 

Table 4.1 Patient demographics 

Patient Age Gender 
Tumour  

hemisphere location 

1 24 Male Left Frontal 

2 25 Male Left Frontal 

3 41 Female Left Frontal 

4 26 Male Left Temporal 

5 55 Female Left Frontal 

6 22 Female Right Frontal 

7 29 Male Right Frontal 

8 38 Female Right Frontal 

9 29 Male Left Frontal 

10 33 Female Left Temporal 

11 27 Female Left Temporal 

12 56 Female Left Temporal 

13 27 Male Left Frontal 
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Figure 4.1 Intraoperative setup and electrode localization. (a) Intraoperative setup: 

Patient is awake while performing the cognitive tasks and the electrophysiological 

signals are simultaneously recorded (b) Cognitive tasks: one rest task and two verbal 

tasks. (c) Two approaches for electrode localisation: Left: a probe linked to a 

neuronavigation system co-registered with the patient’s native T1w scan Right: an 

example of localising a strip of electrodes (white dotted box) using the grid method. 

The major anatomical sulci (coloured) are identified on both the intraoperative 

photograph and the template brain: precentral sulcus (PCS, blue), inferior frontal sulcus 

(IFS, pink), superior frontal sulcus (SFS, pink, not visible for this patient), and the 

sylvian fissure (yellow). To form the grid, parallel lines (black) spaced 1.5 cm were 

added starting from the PCS. (d) Left: Electrodes distribution (shown: n=59 after 

bipolar referencing, original n=79) for each patient (13 in total) in a separate colour 

Right: hemispheric distribution of electrodes. 
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4.3 Results 

 Frequency specific power modulations associated 

with cognitive demand 

To identify contacts sensitive to increased cognitive demand, we calculated the 

percentage signal change for the hard>easy contrast (power_hard/power_easy – 

1*100) in each frequency band separately. Significant power changes (p<0.05, 

uncorrected; see section 4.2.54.2.5 above) in the HG and LG bands were 

predominantly increases [HG 45.8% (27 out of all 59 electrodes), LG 22% 

(13/59)] while fewer electrodes showed power decreases [HG 5.1% (3/59), LG 

13.6% (8/59)] (Figure 4.2a). In contrast, the beta band was dominated by power 

decreases [55.9% (33/59)] with only one electrode showing a significant power 

increase (1.7%) (Figure 4.2a). Next, we assessed the spatial overlap across 

frequency bands. Most electrodes showing significant LG increases also showed 

HG increases [92.3% (12/13)]. Further, electrodes showing HG and LG 

increases were highly likely to show beta decreases [HG 85.1% (23/27), LG 

76.9% (10/13)]. However, these results could simply reflect that almost all the 

significant electrodes in the beta band showed power decreases. A follow up 

correlation analysis showed a decent spatial correspondence between electrodes 

showing HG increases and beta decreases (r=0.64, p<0.0001). However, there 

was weaker spatial correlation between electrodes showing LG increases and 

beta decreases (r=0.32, p=0.005). Thus, consistent with previous reports 

(Lachaux et al. 2012), power increases in HG band, but interestingly not the LG 

band, co-occurred with power decreases in the beta band (Figure 4.2a, right). 

To further evaluate whether gamma power modulations were more 

localized than beta modulations, we compared (unpaired t-test) the Euclidean 

distances between all pairs of electrodes showing significant increases for HG 

and LG vs those showing significant decreases in beta (HG vs beta t=-7.8, 

p=1.5x10-14, LG vs beta t=-2.24, p=0.03). These results confirmed that HG and 

LG increases were spatially localized in anterior frontal regions while beta 

power decreases were more spatially distributed (Figure 4.2a). 
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Are the spatially localized HG and LG increases specific for cognitive 

demand increases (hard>easy) or could a weak demand elicit similar results? To 

answer this, we explored power modulations for the easy>rest contrast. Few 

electrodes with significant power increases for easy>rest contrast also showed 

significant increases for the hard>easy contrast (HG 31.8% (7/22), LG 8.3% 

(1/12)) (Figure 4.2b). In other words, the two contrasts engage mostly non-

overlapping sets of electrodes. Critically, easy>rest gamma increases were 

shifted posteriorly to hard>easy increases (Figure 4.2b; Wilcoxon rank sum test 

comparing hard>easy vs easy>rest y-coordinates (anterior-posterior axis) for 

electrodes with significant power increases: HG p=0.02, LG p=0.07). These 

results are consistent with fMRI studies showing an anterior-posterior demand 

gradient across frontal control regions (Badre and Nee 2018; Shashidhara et al. 

2019; Assem et al. 2020). 

For completeness, Figure 4.3 shows that the remaining lower frequency 

bands (delta, theta, alpha) showed a similar picture to the beta band, with 

predominantly power decreases though with a patchier spatial arrangement. 

Overall, these results show that the common finding of better spatial specificity 

for higher vs lower frequencies extends into lateral prefrontal cortex. 

Taken together, these results show that, along the lateral frontal cortex, 

increases in cognitive demand are associated with (1) a spatially localized 

increase in high frequency power and (2) a spatially distributed decrease in low 

frequency power. Further, a shift from an easy to a difficult cognitive demand 

was tracked by a corresponding posterior to anterior shift in high frequency 

power increases. 
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Figure 4.2 Cognitive demand related power modulations. (a) Power modulations for 

the hard>easy contrast. Top: Electrodes with significant (p<0.05, uncorrected) power 

increases (red), decreases (blue) and non-significant changes (white). Bottom: 

Projection of all electrodes’ (white dots) unthresholded average power change on the 

template’s surface. Power for each electrode (white dots; including electrodes with non-

significant power changes) was spatially smoothed by 10 mm and the value at each 

surface vertex is the average of the overlapping powers. (b) Left: Surface projection of 

power modulations for the easy>rest contrast. Note how the anterior cluster of HG and 

LG power increases in (a) is now weaker and shifted posteriorly. Right: Box plots of 

significant electrodes’ y-coordinate. Middle black line: mean, lighter box limits (95% 

CI), darker box limits (1 SD). Top black line: p<0.05 using Wilcoxon rank sum test. 
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Figure 4.3 Cognitive demand related power modulations in lower frequency bands. 

Power modulations for the hard>easy contrast. Electrodes with significant (p<0.05, 

uncorrected) power increases (red), decreases (blue) and non-significant changes 

(white). 

 High frequency power increases overlap with 

fMRI-defined fronto-parietal network 

The results so far have highlighted a localized group of electrodes with increases 

in gamma power surrounded by dorsal and posterior electrodes that show little to 

no power modulations (Figure 4.2a). This spatial pattern is reminiscent of fMRI 

studies identifying localized frontal control-related patches. Here we predicted 

that a task difficulty manipulation would produce spatially overlapping gamma 

increases (in ECoG) and BOLD increases (in fMRI). To this end, we used a 

canonical mask of the control-related FPN as defined from fMRI (see section 

4.2.5). 

First, we identified the electrodes that overlap with the FPN (Figure 4.4a). 

Then we found that, for the hard>easy contrast, electrodes showing significant 

HG power increases were more likely to be located within the FPN (63.6% of all 

electrodes within the mask: 21/33) than outside of it (23.1% 6/26) (Figure 4.4b). 

LG increases showed a similar trend [27.3% (9/33) vs 15.4% (4/23)]. In contrast, 

electrodes showing significant beta power decreases had equal probabilities of 
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being located within and outside the FPN [57.6% (19/33) vs 53.8% (14/26)], 

further confirming the spatially distributed nature of beta decreases. 

In a complementary analysis, electrodes within the FPN showed 

significantly stronger HG and LG power increases compared to those outside of 

the FPN (Figure 4.4c; HG t57=2.8, p=0.0036, LG t57=2.9, p=0.0026, p-values 

are one-tailed due to our directional prediction of gamma increases). Again, 

there was no significant difference between FPN and non-FPN electrodes for 

beta power decreases (t57=1.1, p=0.14, one tailed) nor for any of the lower 

frequency bands (ps>0.05, uncorrected). 

A limitation of the previous analysis is that most effects could be driven by 

a subset of subjects. To address this, we selected 9 out of the 13 patients who 

each had electrodes overlapping with both FPN and non-FPN regions to perform 

a within-subjects analysis. Despite the low number of subjects available for this 

analysis, the results again showed that within the same patient, FPN electrodes 

showed statistically stronger LG power increases compared to non-FPN 

electrodes (Wilcoxon signed rank test; p=0.02, one tailed). However, differences 

for HG and beta powers were non-significant though trending (both ps=0.08, one 

tailed).  

Collectively, these results suggest that power increases in high frequency 

bands related to increased cognitive demand are likely to co-localize with the 

fMRI-identified FPN. Excitingly, results from two different modalities (ECoG 

and fMRI) show converging parcellation evidence for a localized region within 

the lateral frontal lobe related to cognitive control. 
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Figure 4.4 Power changes overlap with FPN. (a) Electrodes coloured based on their 

overlap with a canonical fMRI FPN mask (Yeo et al. 2011b) (b) Percentage of 

significant electrodes out of all electrodes contained within each mask (FPN and non-

FPN). Darker colours (below zero) refer to percentage of electrodes showing power 

decreases. (c) Bar plots comparing powers of all electrodes within each mask for each 

frequency band. Top black lines: p<0.05. (d) A within-subjects comparison of power 

changes between masks. Each dot represents average power within a mask for one 

patient. Top black line: p<0.05 for a Wilcoxon signed rank test. 
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4.4 Discussion 

Thousands of fMRI studies document increased co-activations of fronto-parietal 

regions during cognitively demanding tasks. However, little is known about their 

corresponding electrophysiological markers, especially from invasive human 

studies. In this unique dataset, LFP signals were recorded from the lateral frontal 

surface from human patients undergoing awake craniotomies for tumour 

resections. The results revealed a circumscribed frontal region that shows 

increases in HG and LG powers during a cognitively demanding 

counting/switching task. Localised gamma increases were accompanied by 

spatially broad beta power decreases. Regions showing gamma increases 

overlapped with a canonical mask of the fMRI defined FPN, linking increased 

fMRI activations with increased gamma power in the FPN.  

 Lateral frontal cortex parcellation using 

converging evidence from ECoG and fMRI 

 

There is a consensus from previous electrophysiology studies that gamma power 

increases in frontal regions are associated with multiple executive processes. 

However, invasive human studies rarely systematically assessed the anatomical 

distribution of gamma increases, with most studies reporting isolated findings in 

individual electrodes (Lachaux et al. 2012; Helfrich and Knight 2016). The 

current study demonstrates that a circumscribed region along the lateral frontal 

surface robustly shows increases in gamma power during an executive task. 

Although some previous studies have reported different reliabilities and putative 

physiological origins for HG and LG (Crone et al. 2006; Ray and Maunsell 

2011; Buzsáki and Wang 2012; Lachaux et al. 2012), here both bands were 

broadly in agreement. 

Excitingly, gamma increases co-localized with a canonical mask of the 

FPN derived from independent resting-state fMRI data. Previous studies have 

linked localized gamma increases with corresponding fMRI activations in early 

cortical regions (Nir et al. 2007; Engell et al. 2012; Hermes et al. 2012). 
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Accordingly, gamma increases were generally interpreted to reflect localized 

task-relevant processing. The current results extend these reports to the domain 

of cognitive control in frontal regions and suggest a link between increased 

fMRI fronto-parietal activations during demanding executive tasks and increases 

in gamma power. More generally, task difficulty manipulations provide 

converging evidence from ECoG and fMRI modalities for control-related 

parcellation of the lateral frontal cortex.  

These findings open the door for extending clinical functional mapping to 

the domain of cognitive control. This is a matter of importance because damage 

to control regions is associated with disorganized behaviour (Woolgar et al. 

2010) and poorer recovery from neurosurgeries (Romero-Garcia et al. 2019). 

Current mapping approaches to assess executive regions are limited. On the one 

hand, DES is useful for mapping motor and language functions. However, on its 

own, DES effects in higher association are much more difficult to interpret. On 

the other hand, ECoG could provide a complementary approach to DES. 

However, ECoG studies investigating cognitive control usually employ complex 

computer-based tasks that would not be suitable in a surgical setting. Here we 

employed a simple behavioural manipulation based on task difficulty. The 

behavioural task was well tolerated by most patients and the whole experiment 

was performed in under 10 minutes (including time for electrodes placement). 

Further, the detected gamma signals are characterized by spatial specificity of a 

few mm. For example, near-by electrodes on the same strip can show differential 

gamma responses. This level of neuroanatomical precision is vital for guiding 

neurosurgeons during tumour excision. 

Two further findings from this study are worth noting. First, beta (and 

lower frequencies) showed spatially broad decreases in power which were not 

confined to the FPN. It is important to note that these results are not necessarily 

inconsistent with findings of improved synchronization in lower frequency 

bands between fronto-parietal regions during executive tasks e.g. (Voytek et al. 

2015), since power and synchrony modulations could change independently. 

One framework to relate gamma increases and beta decreases is to think of them 

as two faces of the same process (e.g. a rotated power spectrum around a middle 

range frequency) (Helfrich and Knight 2016). Recent evidence, however, argues 

against this simple interpretation, showing that depending on the cortical region, 
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increases in high gamma power are not necessarily accompanied by decreases in 

low frequency power (Fellner et al. 2019). In line with this, the current results 

also showed that beta decreases were more spatially broad and were not 

necessarily accompanied by gamma increases. Another framework proposes a 

hybrid spiking-synaptic plasticity WM model, in which bursts of spikes (gamma 

increases) in superficial layers serve to encode and maintain WM content, while 

beta, which is assumed to have an inhibitory role, is suppressed in deeper layers 

to allow superficial gamma bursts (Lundqvist et al. 2011; Miller et al. 2018). 

Again such a model fails to predict regions with beta decreases without gamma 

increases. It is plausible, though, that due to neuronal architectures acting as low 

pass filters (Buzsáki et al. 2012) they allowed distant spread of beta modulations 

to regions which are not engaged in the task and thus showed no gamma 

increases. Pending further experimental and theoretical studies, these results 

provide an important constraint for theoretical models of executive processes. 

A second intriguing finding concerns the posterior shifts of gamma 

increases for the easy>rest contrast which are also consistent with fMRI studies 

showing an anterior-posterior cognitive demand gradient across the lateral 

frontal surface (Badre and Nee 2018; Shashidhara et al. 2019; Assem et al. 

2020). The results also suggest that FPN mainly picks up areas modulated by a 

hard>easy contrast. Chapters 2 and 3 made similar observations, with easy>fix 

activations mainly highlighting penumbra regions that did not necessarily belong 

to the FPN. That said, it is important to note that the easy>rest contrast is less 

controlled for confounds (e.g. easy condition includes speech while the patient 

remains silent during the rest condition). Hence, posterior gamma increases 

might also reflect language related processing. 

 Future directions 

This study presents the first step towards scaling up this approach for future 

functional mapping studies. The results demonstrated here used a group-level 

approach. However, individual functional localization is vital for guiding 

neurosurgeries. This could be achieved using larger and denser electrode grids 

per patient. 
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While the study aimed to detect an index of cognitive control processing, 

only one type of cognitive demand was manipulated. A conjunction of activity 

across several tasks is more likely to zero in on core MD regions. This might 

require modifying existing paradigms to more surgical theatre friendly versions. 

One such task could be contrasting verb generation with repeating nouns.  

While the analysis performed here was offline, the pipeline was developed 

with an online testing approach in mind, for example, through optimizing several 

steps for speedy execution of the scripts. More work is needed to assess the 

number of trials necessary to detect a statistically reliable increase in gamma 

power. One approach could involve using the current data to train a statistical 

model which could then be used for setting appropriate statistical thresholds 

during online data analysis. Further, only amplitude modulations were 

investigated in this study. Investigating synchrony (i.e. phase changes) within 

and across frequency bands (as well as phase-amplitude coupling) could reveal 

unique markers of FPN dynamics during task execution. Another exciting step is 

to investigate synchrony between electrodes during the baseline period and its 

correspondence with fMRI based resting-state networks, which could lead to 

new insights into the neurophysiological basis of large scale cortical networks. 

Finally, integrating ECoG with DES and pre-operative multi-modal brain 

imaging opens up a new exciting phase for comprehensive surgical planning 

(Hart et al. 2020).
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DISCUSSION: TOWARDS A PRECISE 

ANATOMY OF DOMAIN-GENERAL BRAIN 

REGIONS 

 

Progress in understanding the role of domain-general or Multiple-demand (MD) 

brain regions in cognitive control has been hampered by the lack of precise 

knowledge of their anatomical and functional organization. This was partly due 

to the blurry spatial localization provided by traditional brain imaging 

approaches (Coalson et al. 2018). To reveal a crisper delineation of the MD 

system’s anatomy and functional properties, the experiments in chapters 2 and 3 

capitalized on novel fMRI methods developed by the HCP. The HCP approach 

utilizes precise surface-based geometric models of the cortex and areal-feature 

based surface alignment algorithms that utilize neurobiologically grounded 

multimodal MRI features (Robinson et al. 2014, 2018; Glasser, Coalson, et al. 

2016; Glasser, Smith, et al. 2016). 

In chapter 2, using hundreds of subjects from the HCP dataset and a 

conjunction of working memory, math and reasoning behavioural contrasts 

revealed 9 widely distributed cortical MD patches per hemisphere. For the most 

accurate anatomical delineation the study used an areal classifier capable of 
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identifying individual specific cortical areas, based on a recent state-of-the-art 

multimodal cortical parcellation (Glasser, Coalson, et al. 2016), which 

subdivided the 9 patches into an MD core of 10 regions that are most strongly 

co-activated and functionally interconnected, surrounded by an MD penumbra of 

17 additional regions. For the first time, this study allowed a detailed comparison 

between the MD co-activation pattern and canonical resting-state networks. Core 

MD was found to constitute a portion of the fronto-parietal network (FPN) with 

the MD penumbra distributed across FPN, dorsal-attention (DAN), cingulo-

opercular (CON), default-mode (DMN) networks. The study is also the first to 

examine in detail MD activations outside of the cerebral cortex. MD hotspots 

were identified in the head of the caudate and cerebellar regions (crus I and II) 

with a putative MD region in the anterior thalamus. Reconciling a 20 year 

debate, MD activations showed relative rather than absolute functional 

preferences against a strong background of co-recruitment. 

The study in chapter 3 investigated one debated account of MD functional 

preferences: sensory-modality biases. The study compared matched auditory and 

visual versions of a working memory task. Comparing easy versions of each task 

modality revealed strong sensory biases across all MD regions with a 

predominantly visual preference. Interestingly, regions with the strongest biases 

(visual or auditory) were located just outside core MD regions. Comparing the 

difficult vs easy version for each task modality separately highlighted a strong 

co-recruitment of MD regions. Importantly, comparing sensory-biases related to 

this increase in cognitive demand found that MD regions no longer showed 

sensory-modality biases, reflecting joint demand of each task modality on the 

domain-general MD resources. Similar patterns were observed in subcortical and 

cerebellar MD regions. Excitingly, this study reconciled several conflicting 

findings in the literature regarding sensory biases in frontal regions 

demonstrating the great potential of the precise neuroanatomical localization 

offered by HCP protocols.  

A common way to illuminate MD regions in fMRI studies is to compare 

brain scans during a hard vs an easy version of a cognitive task. Chapter 4 

investigated a similar approach to map out MD regions using 

electrophysiological data. The data were acquired from electrodes placed on the 

lateral frontal surface of human patients undergoing awake neurosurgeries. The 
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aim is to identify an electrophysiological signal related to MD regions that can 

be used to guide neurosurgeons during tumour resections. By comparing a 

difficult task (alternating between counting and alphabet) vs an easy task (simple 

counting), spectral analysis showed that power increases in the higher frequency 

range (>70 Hz) revealed a circumscribed frontal region, which overlaps with 

frontal control regions revealed by fMRI. By contrast, power modulations in the 

lower frequency range (<30 Hz) were broadly distributed and spatially non-

specific. These findings present the first step for the potential use of this protocol 

for extending the process of functional mapping in neurosurgeries to the domain 

of cognitive control. Importantly, these results provide converging evidence 

from fMRI and electrophysiology for localized frontal regions related to 

cognitive control. 

Taken together, the distributed anatomical organization, mosaic functional 

preferences, and strong interconnectivity, suggest MD regions are well 

positioned to integrate and assemble the diverse components of cognitive 

operations. In this chapter I further explore the implications of this crisper 

anatomical delineation, discuss some intriguing findings and future directions. 

5.1 A co-activation and functional preferences 

model 

The experiments in chapters 2 and 3 demonstrated that co-activation is a central 

feature of MD regions. All MD areas were statistically activated during 

cognitively demanding tasks. However, the results also revealed statistical 

differences between activations of different tasks. How should these two 

observations be interpreted? Traditionally, statistically low powered and blurry 

fMRI studies have biased interpretations towards modular conceptualizations of 

high cognitive functions like inhibition, monitoring, working memory etc…. 

However, better powered and crisper studies like the current ones suggest that 

these functional specializations are relative and statistical, not absolute. 

An interpretative model is illustrated in Figure 5.1a. The distributed 

arrangement of MD regions in the brain suggests each MD region is 
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differentially connected to its local surrounding, in line with recent evidence 

from monkeys that ~70% of connections to a brain region are local (Markov et 

al. 2013). The strong MD inter-connectivity suggests a basis for integration of 

information. Diverse tasks with different behavioural needs will lead to the 

preferential engagement of the relevant MD regions, giving rise to statistical 

functional preferences. And the rapid communication between MD regions 

suggests an explanation for their co-activation. At a finer grained level Figure 

5.1b, this model predicts a zoo of neural responses in any MD region. Specific 

information being fed into an MD region predicts the existence of neurons with 

specialized responses. However, as MD regions are hypothesised to be hubs for 

information integration and exchange, neurons with mixed responses are 

expected to be more abundant. Overall, the present results and model offer a 

basis for reconciling domain-specific and domain-general accounts of fronto-

parietal activations. This model would greatly benefit from data on the structural 

connectivity of MD regions, which will be critical to begin to understand their 

dynamic activity. 
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Figure 5.1 (a) Each MD region (coloured circles) has local access to different 
information and brain operations (illustrated with black bidirectional arrows) 
suggesting a basis for relative functional preferences. Strong connectivity 
between MD regions allows rapid exchange and integration of information 
between MD regions suggesting a basis for coactivation. (b) The local and 
distributed connectivity of MD regions give rise to a rich and diverse range of 
neural responses from selective responses to mixed-selectivity responses. 

5.2 MD areal heterogeneity and resting state 

networks 

A recurring observation across the fMRI activation maps in chapters 2 and 3 is 

the spatial heterogeneity of MD activations. For example, chapter 2 briefly 

touched upon the activations at the border between two medial PFC parcels 
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SCEF and 8BM. Here I take a closer look at heterogeneity in this region. Figure 

5.2a, b zooms in on activations for the easy>fix contrast for each of the 

relational reasoning and working memory tasks used in chapter 2. It is clear that 

the peak of the activation is initially located in SCEF and is spatially similar in 

both tasks. Figure 5.2e, f shows the hard>easy contrast, where each task elicited 

different spatial activations within 8BM. More striking examples of 

heterogeneity within 8BM were also noted from a new set of tasks we acquired 

using HCP protocols. For example, using task switching and stop signal 

paradigms, the easy>fix contrast again shows activations starting in SCEF 

(Figure 5.2c, d, unpublished data). However, hard>easy contrast for each of 

those tasks shows a remarkably different spatial engagement of 8BM (Figure 

5.2g, h, unpublished data). 

An interesting next question is what guides these spatially different 

profiles of activations? As mentioned previously (section 5.1), differential MD 

local connections likely give rise to functional preferences. A closer look at 

resting-state connectivity highlights that 8BM, a core MD region and part of the 

canonical FPN, is surrounded by regions with different connectivity profiles 

(reflected in their membership of different canonical networks). The proposed 

mechanism that follows from these observations is that, depending on the task, 

the distribution of spatial activation within an MD region might be constrained 

by the canonical rfMRI networks most engaged by the task. This could explain 

why resting-state connectivity patterns are capable of predicting task-specific 

activations (Tavor et al. 2016; Ito et al. 2020). 

A related observation from recent literature on resting-state networks 

(RSNs) highlights finer-grained subdivisions of canonical resting-state networks 

based on connectivity preferences with other networks. For example, a recent 

study subdivided the DMN based on differential connectivity with control and 

language/social networks (Gordon et al. 2020). The DMN subdivision related to 

the FPN network is remarkably similar in topography to areas lying in between 

core MD regions and nearby DMN regions. These observations suggest another 

mechanism underlying the relative functional preferences observed in MD 

regions. 

 



 
154 Chapter 5 

 

 

5.3 MD beyond executive function tasks 

A core proposal regarding the MD system is that its cognitive control operations 

are of central importance to all complex thought and behaviour. So far the MD 

system has almost exclusively been investigated using so-called executive tasks 

like working memory, inhibition, switching etc… However, a big knowledge 

gap exists regarding MD involvement during more diverse cognitive tasks such 

as emotional regulation, motor control, theory of mind (TOM), language 

comprehension and production to name a few. Most such tasks focus on 

investigating functionally related specialized modules like TOM or motor 

networks, with sporadic mentions of “frontal activations” usually attributed to 

increased cognitive demands (Koster-Hale and Saxe 2011; Kikkert et al. 2016). 

Though one recent line of work, using subject specific MD functional localizers, 

Figure 5.2 Univariate activations of the medial PFC. Only positive betas are shown, 

warmer colours mean stronger activations. Black lines represent borders of the 

HCP_MMP1.0. (top row) easy>fix contrasts, (bottom row) hard>easy  contrasts. Tasks are 

(a) n-back 0>fix [HCP] (b) Relational easy>fix [HCP] (c) blocks of switching based on 1 

rule>fix [unpublished data] (d) different blocks of switching based on 1 rule>fix 

[unpublished data] (e) n-back 2>0 [HCP] (f) Relational hard>easy [HCP] (g) switch hard 

(2-rules)>easy (1-rule) [unpublished data] (h) blocks with stop trials>blocks with no stop 

trials [unpublished data]. Note pink arrow highlighting a central region in 8BM which is 

selectively not activated by this contrast. This region is functionally connected with lateral 

temporal parcel TE1p (personal observations) (j) RSNs based on CAB-NP (Ji et al 2019). 
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argues strongly against the involvement of MD regions in passive language 

comprehension [(Diachek et al. 2020) but see (Hervais-Adelman et al. 2015)]. 

Hence an important new frontier for understanding the wider role of the 

MD system with other brain networks is to investigate its engagement during a 

wider range of tasks. Very likely, the blurred spatial resolution of traditional 

fMRI studies has missed out on characterizing MD involvement in these tasks. 

Through a set of exciting new HCP-style experiments, I plan on investigating the 

engagement of MD regions in a diverse set of non-traditional tasks e.g. theory of 

mind, language, with a focus on presenting stimuli through multiple sensory 

modalities and diversifying outputs (e.g. through verbal responses). These sets of 

experiments will also be important to investigate the proposed mechanism of 

differential spatial engagement of MD regions based on the engaged RSN. 

The experiments in this thesis provide some of the strongest evidence in 

the literature for the existence of small but significant relative functional 

preferences. To “force out” more significant MD functional preferences aimed at 

generating new insights into the different roles of MD regions, I plan on 

examining MD behaviour during naturalistic problem solving tasks such as 

video games. Naturalistic tasks with their diverse cognitive demands might be 

better suited for teasing out novel dynamics and functional patterns in the brain. 

5.4 A new frontier: subcortical and cerebellar 

MD regions 

For long MD engagement beyond the cortex has been ignored. The studies in 

chapters 2 and 3 are among the few that systematically investigated subcortical 

and cerebellar MD regions across both task and rest fMRI, and many details 

remain unknown. For example in chapter 2, functional connectivity, but not task 

co-activation, highlighted the anterior thalamus as a putative MD region. During 

easy cognitive demands, task fMRI was shown to engage more middle/posterior 

thalamic regions. However, on increasing cognitive demands the anterior 

thalamus was engaged in 2 out of 3 tasks. This could reflect similar cortical 

observations mentioned above regarding spatially specific spread of activations 
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from penumbra to core. To investigate these finer-grained details, I plan on 

utilizing ultra-high magnetic fields such as of 7-Tesla. 

The subcortex remains a largely uncharted territory in human neuroscience 

(Forstmann et al. 2016). Recent studies are starting to unravel the functional 

links between deep nuclei and cortical RSNs. For example, activity in the 

subthalamic nucleus was found to correlate with medial PFC activations during 

multiple alternative choice decision making (Keuken et al. 2015). The habenula 

was found to be functionally linked to the cortical CON (Ely et al. 2019). 

Multiple cortical RSNs were found to converge within overlapping thalamic 

regions (Greene et al. 2020). An anatomical tracing study intriguingly 

highlighted that the claustrum is the strongest subcortical structure projecting to 

the cortex (Markov et al. 2011). In the cerebellum, a recent study highlighted its 

rich task-related functional activations (King et al. 2019). These observations 

and many others are yet to be synthesised into preliminary view of how cortico-

subcortico-cerebellar dynamics could support human intelligent behaviour. 

These non-cortical structures have been studied extensively in animal models. 

Thus, a better characterization of subcortical and cerebellar functional properties 

in humans, coupled with improved cross-species mapping (Balsters et al. 2020) 

is bound to provide a valuable link to mechanistic insights from the rich animal 

literature.  

5.5 Relating electrophysiology to the MD pattern 

As highlighted before, a critical limitation for human electrophysiology studies 

is the poor neuroanatomical localization of their findings. The finer-grained 

discoveries through fMRI demand new electrophysiological studies with wider 

coverage of cortical areas to investigate the neuronal dynamics behind the 

different activation topographies. For human ECoG studies, a step forward 

would be to utilize MSMSulc/Myelin (or MSMAll if functional data exist) to 

relate cortical electrodes with the HCP_MMP1.0. In chapter 4 this was not 

possible because the tumour prevented the correct extraction of the cortical 

surface. In more conventional ECoG studies, investigating epileptic patients, 

multiple structural and functional scans can be acquired from the same patient 
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and preprocessed using MSM approaches. This promises a better resolution for 

linking electrophysiological findings with fMRI findings. 

5.6 Conclusion 

For continued progress in understanding the brain basis of intelligence, the 

present work defines a precise set of MD regions, providing the groundwork for 

detailed functional analyses, cross-reference between studies, and identification 

of cross-species homologs. This holds promise for a new and more productive 

phase in study of this core brain network.
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