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1. Supplementary Methods 

Given a well-known source dataset with clustering labels, the proposed method improves the 

clustering of an unlabeled target dataset by transferring knowledge from source to target data 

via Non-Negative Matrix Factorization (NMF)1,2. The modified target dataset can then be 

provided to any kind of clustering algorithm. In this work we are using SC33 as an example. 

The following sections describe the exemplary clustering algorithm, SC3, in more detail and 

present a visualization of the baseline methods that the transfer learning approach is compared 

to. 

 

1.1. SC3: Consensus clustering of single-cell RNA-seq data  

SC33 is a well-known unsupervised clustering algorithm for scRNA-Seq data. The basic steps 

of the SC3 algorithm are shown in Supplementary Figure S1. Given an expression matrix, 

SC3 first applies a gene filter and log-transforms the data. Then, three cell distance matrices 

are calculated using Euclidean, Pearson and Spearman metrics, respectively. The three 

distance matrices are transformed by applying both PCA and Laplacian graph Eigen 

decomposition. Subsequently, k-means clustering is performed on the first d eigenvectors of 

the resulting six matrices where d comes from a predefined range of values. The clustering 

results are now combined by applying the Cluster-based Similarity Partitioning Algorithm 

(CSPA)4 to compute a consensus matrix. Hierarchical clustering is finally used to cluster the 

resulting matrix into k clusters.   

 

 

 

 

 

 

 

 

 

Supplementary Figure S1: The SC3 framework for consensus clustering (Kiselev 2017). 
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1.2. Baseline methods 

For assessing the quality of our unsupervised transfer learning solution, we are interested in 

investigating the clustering accuracy of our method on a target dataset compared to two 

competitor methods. As baseline methods we implement the original SC3 clustering method 

on the target dataset alone (TargetCluster) and on the concatenated dataset of source and 

target (ConcatenateCluster). For a detailed description and a visualization of the baseline 

methods see Supplementary Figure S2. 

 

 

Supplementary Figure S2: Visualization of the three competitor methods of the paper. A TargetCluster. 

Clustering is applied to the target dataset alone. B ConcatenateCluster. Source dataset and target dataset are 

combined into one large dataset via simple concatenation before clustering the new dataset as a whole. 

Performance measures (i.e. accuracy) is calculated on the target dataset only, since it is the  main focus of interest 

for clustering. C TransferCluster. The proposed method of knowledge transfer is applied to the target dataset 

learning from a large labeled source dataset. The resulting, modified target dataset is then provided to the 

clustering procedure. 
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2. Simulation study on generated single-cell RNA-Seq data 

2.1. Pre-processing 

The pre-processing steps were not applied to the generated datasets, because the generation 

process did not produce any unfavourable genes or cells. 

2.2. Parameter selection 

For each overlap setting (described in the Method Section of the main text) 100 datasets of 

1000 source cells and 800 target cells were generated. The datasets consisted of simulated 

count data of 10.000 genes. All three competitor methods were applied to down sampled 

target datasets where for each repetition 10, 25, 50, 100, 200, 400, 600 and 800 were 

randomly selected from the complete target dataset.  

The generated datasets where used to determine performance changes induced by varying the free 

parameters of the method and identify optimal settings which were assumed to be good choices 

for the application of the proposed method to real datasets. Here, we present the chosen values of 

the free parameters of the TransferCluster method which were mostly used for the investigation of 

the Tasic5 and Hockley6 data. Please refer to Supplementary Section 3.2. and 4.2. for more 

details on the parameter selection for those datasets.  

There are a number of parameters in the NMF step of the method that need specification. In 

the controlled environment of the generated datasets the elastic net parameters were chosen to 

be α = 10.0 and λ = 0.75 and the maximum number of iterations until convergence up to a 

relative error of 0.001 was set to 4000. The range of mixture parameters θ to be put in the 

KTA score selection process was [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].  

2.3. Distribution of cell counts 

After generating 100 datasets with 1.800 cells and 10.000 genes the overall number of reads 

for each cell was counted. Each cell has a median count of 215,500 reads. The corresponding 

histogram is shown in Supplementary Figure S3. 
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Supplementary Figure S3: Histogram of cell counts of generated datasets. 100 datasets with 1.800 cells and 

10.000 genes were generated and the overall number of reads for each cell was counted. 

 

2.4. Results and mixture parameter selection via KTA scores 

The mixture parameter θ dictates how much the newly constructed target dataset should be 

influenced by the information of the source dataset. See the Methods Section of the main text 

for a detailed description of the parameter selection procedure of θ. It is automatically chosen 

via an unsupervised assessment of the clustering quality through Kernel Target Alignment 

(KTA) scores7 which measure the similarity of kernels.  The whole transfer learning and 

clustering procedure (steps 1 – 4 in the Methods Section of the main text) is applied with a 

number of values for θ within a pre-specified range and the KTA scores between the linear 

kernel of the mixed dataset 𝑋𝑡𝑟𝑔
𝑛𝑒𝑤 (not its original version 𝑋𝑡𝑟𝑔) over the cells and the linear 

kernel of the predicted labels are calculated. The scores give an indication on how well the 

predicted labels are represented in the mixed dataset and thus show how well the clustering 

procedure performs for the corresponding parameter value. The parameter value yielding the 

optimal KTA score is chosen as the parameter for the final clustering computation and can 

give an indication on the transferability between source and target data. Low values mean 



6 
 

source and target do not match very well (i.e. low transferability) and high values hint at high 

similarities (i.e. high transferability).  

The simulation study on generated scRNA-Seq data was used to investigate the performance 

of this parameter selection procedure. 

Supplementary Figure S4 gives insight into the procedure within TransferCluster that 

automatically selects the mixture parameter θ based on KTA scores. The first row of 

performance plots shows the original results on the generated datasets which can also be 

found in the main text of the article. 

The second row presents the results of TransferCluster for a number of fixed mixture 

parameter values θ. The investigation of the mixture parameter θ of the proposed method for 

various levels of overlapping cluster structures in source and target data showed that it has to 

be chosen carefully. Zero mixture corresponds to not modifying the target dataset at all, i.e. 

not transferring any knowledge from the source dataset (equals TargetCluster). Depending on 

the overlap in the clustering structures of source and target data, increasing the mixture 

parameter might improve the performance up to a certain point and then decrease when there 

is an incomplete overlap. A high overlap makes the use of high mixture values necessary. If 

there is low or no overlap, one needs to use low values or avoid using the method.  

The third row shows how the mixture parameter θ influences both the supervised performance 

measure ARI and its unsupervised counterpart, the KTA score, for an exemplary target 

sample size of 100 cells (other sample sizes show similar results). For each overlap setting, 

we investigate how changing the mixture parameter influences performance measured via 

supervised (ARI) and unsupervised accuracy measures (linear KTA). It can be seen, that the 

curves of the two metrics have very similar shapes for all three overlap settings and most 

importantly have maxima at the same or at least very close parameter values of θ. This 

supports the theory that KTA scores are good choice for selecting the mixture parameter θ 

based on the arguments of the maxima of KTA scores.  
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Supplementary Figure S4: Simulation study results of the transfer learning method on generated datasets and 

investigation of the mixture parameter selection process. A Main results of the three competitor methods (as seen 

in Figure 2 of the main text) for three different settings of overlap in the cluster structures of source and target 

data: Complete, incomplete and no overlap. B Results of the baseline methods and TransferCluster for a number 

of fixed mixture parameter values θ. The complete range of θ values was [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0]. Not all are shown for greater clarity. C Influence of the mixture parameter θ on both the supervised 

performance measure ARI and its unsupervised counterpart, the KTA score for an exemplary target sample size 

of 100 cells (other sample sizes show similar results).  

A 

B 

C 
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3. Analysis of Tasic data 

3.1. Pre-processing 

Before pre-processing, the original Tasic5 dataset contained 1679 cells and 24057 genes. The 

parameters of the pre-processing filters described in the Method Section of the main text 

were set to xgenes =2000, xexpression =2, xcells = 94 after inspection of the expression histogram in 

Supplementary Figure S5. After removing 21 cells containing fewer than 2000 genes with 

expression > 2 and 14510 genes with expression < 2 or > 2 in at least 94% of cells, the dataset 

contained expression levels of 9547 genes in 1658 cells. The expression matrix was log-

transformed after adding a pseudo-count of 1. 

 

Supplementary Figure S5: Histogram of all expression values in the Tasic dataset. For 24056 genes and 

1679 cells there a total of 40390024 gene expression values. 27596688 of those equal zero. x- and y-axes are 

cropped. The location of the frequency minimum after the zero-inflation at 0.5 implies to choose 2 as an 

expression cut-off value for pre-processing. 
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3.2. Parameter selection 

The Tasic dataset was randomly split into a set of 1000 source cells and 650 target cells 100 

times. The methods were applied to down sampled target datasets where for each repetition 

25, 50, 100, 200, 400 and 650 were randomly selected from the complete target dataset. The 

number of clusters to be found by the different clustering methods was k = 18, which was the 

number of cell types identified in the original publication.  

The free parameters in the NMF step of the method were chosen according to the best results 

in the controlled environment of the generated datasets, i.e. α = 10.0 and λ = 0.75 and the 

maximum number of iterations until convergence up to a relative error of 0.001 was set to 

4000. The range of mixture parameters θ to be put in the KTA score selection process was 

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. 

 

A number of adjustments had to be made when the data-driven clustering labels of the 

original publication were used for the source data (Supplementary Table S2) and not the 

generated NMF labels. After careful investigation of the Tasic data with the labels from the 

original publication (main text Figure C and D) it was proven to be best to avoid having very 

high mixture parameters. Consequently, the range of mixture parameters θ to be put in the 

KTA score selection process was [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. The parameters of the NMF 

were set to α = 1.0 and λ = 1.0 in this case, indicating that a strong L1 regularization is 

favourable. 

 

3.3. Ground truth cluster memberships 

The transfer learning approach and its baselines were investigated under two different 

conditions. Firstly, we assumed that no ground truth labels were available and generated 

labels for 18 cell clusters via NMF clustering1,2 on the whole dataset (Supplementary Table 

S1). As it is based on the totality of the data we interpret this clustering as a ground truth 

clustering and apply our method and the baseline algorithms to a subset of the dataset, to see 

how each method performs relative to this definition of ground truth when not all of the data 

is available. For the source dataset those labels are put into the TransferCluster procedure. For 

the validation of all methods the target labels are used for measuring accuracy.  

 

Supplementary Table S1: Ground truth cluster memberships for Tasic data generated via NMF clustering 

Cell type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Counts 67 34 193 42 225 41 129 39 32 125 79 249 107 33 66 33 143 21 
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Secondly, we use the data-driven clustering labels provided in the original paper and take 

those as the ground truth labels. Specifically, we use a cut-off point in the provided clustering 

hierarchy that results in 18 clusters (Supplementary Table S2). Given those alternative 

ground truth labels, we once again run TargetCluster, ConcatenateCluster and TransferCluster 

on the Tasic data. 

 

Supplementary Table S2: Ground truth cluster memberships for Tasic data from original publication  

 

  

 Non-neuronal cells Glutamatergic cells GABAergic cells 

Cell type Endothelial Glia SMC L2 L2/3 L4 L5 L5a L5b L6 L6a L6b Ndnf Igtp             Pvalb Sncg Sst Vip 

Counts 14 125 15 21 95 275 24 119 59 33 103 35 79 10 275 9 202 186 
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4. Analysis of Hockley and Usoskin data 

4.1. Pre-processing 

Before pre-processing, the original Hockley6 dataset contained 314 cells and 45513 genes. 

The parameters of the pre-processing filters described in the Method Section of the main text 

were set to xgenes =2000, xexpression =1, xcells = 94 after inspection of the expression histogram in 

Supplementary Figure S6. No cells contained fewer than 2000 genes with expression > 1 

and 35862 genes with expression < 1 or > 1 in at least 94% of cells were removed. The 

dataset now contained expression levels of 9651 genes in 314 cells. The expression matrix 

was log-transformed after adding a pseudo-count of 1. 

 

Supplementary Figure S6: Histogram of all expression values in the Hockley dataset. For 45513 genes and 

314 cells there a total of 14291082 gene expression values. 10181090 of those equal zero. x- and y-axes are 

cropped. The location of the frequency minimum after the zero-inflation at 0.25 implies to choose 1 as an 

expression cut-off value for pre-processing. 
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Before pre-processing, the original Usoskin8 dataset contained 622 cells and 20191 genes. 

The parameters of the pre-processing filters described in the Method Section of the main text 

were set to xgenes =2000, xexpression =1, xcells = 94 after inspection of the expression histogram in 

Supplementary Figure S7. After removing 121 cells that contained fewer than 2000 genes 

with expression > 1 and 10911 genes with expression < 1 or > 1 in at least 94% of cells, the 

dataset now contained expression levels of 9280 genes in 501 cells. The expression matrix 

was log-transformed after adding a pseudo-count of 1. 

 

Supplementary Figure S7: Histogram of all expression values in the Usoskin dataset. For 20191 genes and 

622 cells there a total of 12558802 gene expression values. 10368845 of those equal zero. x- and y-axes are 

cropped. The location of the frequency minimum after the zero-inflation at 0.25 implies to choose 1 as an 

expression cut-off value for pre-processing. 

Both ConcatenateCluster and TransferCluster can only be applied when the set of genes in 

source and target are identical. Using only the subset of 4402 genes that appear in both source 

and target data the target dataset now contains 4402 genes and 314 cells and the source 

dataset contains 4402 genes and 501 cells. 
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4.2. Parameter selection 

The free parameters in the NMF step of the method were chosen according to the best results 

in the controlled environment of the generated datasets, i.e. α = 10.0 and λ = 0.75 and the 

maximum number of iterations until convergence up to a relative error of 0.001 was set to 

4000. The number of clusters to be put into the different clustering methods was k = 7, which 

was the number of cell types identified in the original Hockley publication.  

The mixture parameter θ is again selected automatically via the KTA score selection process 

(See Methods Section in the main paper). In Supplementary Figure S8 we present the KTA 

scores for a range of θ between 0 (meaning no mixture, i.e. no transfer learning) and 1 

(meaning full mixture) and note that high θ values are to be avoided and taking lower θ is to 

be preferred. The maximal KTA score is obtained for θ = 0.7 which is the value that is 

consequently chosen by the automatic procedure. These findings indicate that the proposed 

transfer learning method was able to identify relatedness but also differences in the two 

datasets by automatically choosing a mixture parameter that lies in the middle of the range of 

possible values of θ. This is in accordance with the fact that the source and target datasets are 

completely independent, but biologically related, datasets, collected at different times and 

places. 

 

Supplementary Figure S8: Influence of the mixture parameter θ on the unsupervised performance measure - 

the KTA score - for the Hockley target dataset and the Usoskin source dataset. The automatic mixture parameter 

selection process chooses the argument of the maximum of this curve, which is 0.7. 
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4.3. Source cluster memberships 

As with the Tasic dataset we first analyzed the Hockley data pretending no reliable source 

labels for the Usoskin dataset were available and generated them via NMF Clustering. We 

assumed a complete overlap between the cell types in source and target data and chose the 

number of clusters to be k = 7 for the source label generation. See Supplementary Table S3 

for the corresponding cell counts of each cluster.  

Supplementary Table S3: Source cluster memberships for Usoskin data generated via NMF clustering  

 

 

Now, we used the source labels from the data driven clustering of the original Usoskin et al 

publication8. They provided labels in the form of a hierarchical clustering which was cut off at 

three different levels resulting in three different sets of source labels with different numbers of 

clusters (4,8 and 11 cell types), which are shown in Supplementary Table S4. In the main 

text of the current paper level 3 labels were used for TransferCluster. Here, we additionally 

present the results for NMF labels and level 1 and level 2 labels. 

Supplementary Table S4: Source cluster memberships for Usoskin labels form the original publication 

 NF1 NF2 NF3 NF4 NF5 NP1 NP2 NP3 PEP1 PEP2 TH 

Level 1  139 169 81 233 

Level 2 31 60 48 125 44 64 17 233 

Level 3 31 48 12 22 26 125 32 12 64 17 233 

 

4.4. Results  

4.4.1. Results for all source cluster memberships 

Supplementary Figure S9 shows the clustering results of all competitor methods on the 

Hockley dataset. TargetCluster uses only data from Hockley to assign clusters and 

ConcatenateCluster uses a concatenation of data from Hockley and Usoskin to assign clusters. 

TransferCluster uses the novel transfer learning approach with Hockley as target and Usoskin 

as source with four different sets of corresponding labels (described in Supplementary 

Section 4.3.)  

 

 

Cell type 1 2 3 4 5 6 7 

Counts 29 49 112 169 55 30 57 
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Supplementary Figure S9: t-SNE plots of the Hockley data and clustering memberships  for all methods. 

Colour refers to clustering results of the baseline methods (TargetCluster (A) and ConcatenateCluster (B)) and 

the transfer learning approach with various labels of the source data (TransferCluster with NMF labels  (C) and 

level 1 (D), 2 (E) and 3 (F) labels). Shape refers to spinal segment from which the neuron was isolated (triangle, 

TL (thoracolumbar); circle, LS (lumbosacral)). 

 

 

4.4.2. Stability analysis 

Since SC3 - the clustering method used for all approaches investigated in this paper 

(TargetCluster, ConcatenateCluster and TransferCluster) - is not deterministic and produces 

different results when solving the same clustering problem multiple times. We counted the 

number of times some specific clusters of interest were separated correctly from each other by 

the three methods when repeating the procedure 1000 times. 

Three pairs of clusters were identified to be of interest and Supplementary Table S5 shows 

the number of times each of those pairs of cell groups was separated correctly. Two 
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biologically distinct groups of cells, named mNP and mNFa cells (Main Figure 4 G Cluster 1 

and 7), were only separated 224 times when applying SC3 on the target dataset alone. Taking 

source information via the proposed transfer learning method TransferCluster with NMF or 

level 1, 2 and 3 labels into account consistently increases this number (to 469, 300, 313 and 

352, respectively). Concatenating source and target datasets and applying SC3 to the complete 

dataset (ConcatenateCluster) was seen to increase the number of times mNP and mNFa cells 

were correctly separated even further to 506. However, this came with a loss of performance 

when looking at the other two pairs of cell types that were only poorly separated with 

ConcatenateCluster. pNf cells (Main Figure 4 G Cluster 2 vs. 6) were only separated 481 

times and the pPep cells (Main Figure 4 G Cluster 4 vs. 3) only 4 times. In contrast, 

TransferCluster was able to almost perfectly separate pNF clusters independent of what labels 

were used for the source data (999, 1000, 1000, 1000 for NMF, level 1, 2 and 3 labels, 

respectively) and also has very high separation rates for the pEP cell types (984, 703, 706 and 

887 for NMF, level 1, 2 and 3 labels, respectively).  

Supplementary Table S5: Stability analysis. 

 

  

 mNP/mNFa cluster 

separation counts 

pNF cluster 

separation counts 

pPep cluster 

separation counts 

TargetCluster 224 999 984 

ConcatenateCluster 506 481 4 

TransferCluster with NMF labels  469 999 984 

TransferCluster with level 1 labels  300 1000 703 

TransferCluster with level 2 labels  313 1000 706 

TransferCluster with level 3 labels  352 1000 887 
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