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The dissipation rate of a scalar variance is related to mean heat release rate in turbulent

combustion. Mixture fraction is the scalar of interest for non-premixed combustion and

a reaction progress variable is relevant for premixed combustion. A great deal of work is

conducted in past studies to understand the spectra of passive scalar transport in turbulent

flows. A very brief summary of these studies to bring out salient characteristics of passive

scalar spectrum is given first. Then, the classical analysis of reactive scalar spectrum is

revisited in the lights of recent understanding gained through analyzing the scalar spec-

trum deduced from direct numerical simulation data of both non-premixed and premixed

combustion. The analysis shows that the reactive scalar spectral density in premixed com-

bustion has a dependence on Karlovitz and Damköhler numbers, which comes through the

mean scalar dissipation rate appearing in the spectral expression. In premixed combustion,

the relevant scale for the scalar dissipation rate is shown to be of the order of the chemical

length scale and the dissipation rate is not influenced by the scales in the inertial-convective

range unlike for the passive scalar dissipation rate. The scalar fluctuations produced near

the chemical scales cascade exponentially to larger scales. These observations imply that

the passive scalar models cannot be extended to premixed combustion.
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I. INTRODUCTION

The mixing of fuel and air in non-premixed turbulent combustion plays vital role in sustaining

the combustion processes and the rate of this mixing is influenced by turbulence, molecular dif-

fusion and also combustion itself. The influence of combustion comes through thermal expansion

effects on turbulence and turbulence-chemistry interaction. Both turbulence and combustion are

multiscale phenomena and hence one can expect a cross-scale influence of one another. However,

Bilger1 pointed out that the mixing rate at small scales directly influences combustion by deducing

that the instantaneous reaction rate per unit volume for species i is given by ω̇i = −Nξ d2Yi/dξ 2,

where ξ is a chemically conserved scalar, known as mixture fraction. The mass fraction of species

i is Yi and the small-scale mixing rate is denoted by Nξ and is defined as Nξ =D (∇ξ ·∇ξ ), where

D is the molecular diffusivity which is taken to be the same for all the species involved in the com-

bustion process. This small scale mixing rate, Nξ , is commonly known as the scalar dissipation

rate of the mixture fraction. Bilger2 showed that the combustion and associated heat release ef-

fects are local in non-premixed combustion and thus the theories and models developed for passive

scalar transport in non-reacting turbulence can be employed for non-premixed combustion.

The central role of small-scale mixing in turbulent premixed combustion was shown by Bray.3,4

The rate of this mixing between hot and cold mixtures is signified by the scalar dissipation rate of

reaction progress variable, c, which may be defined using either a scalar mass fraction or tempera-

ture. Also, the reaction progress variable is not a conserved or passive scalar like ξ and its dissipa-

tion rate is defined as Nc =Dc (∇c ·∇c). Hereafter, we shall drop the subscript for D and interpret

it in the context of the scalar under consideration. The scalar dissipation rate is not only influenced

by turbulence but also by combustion, molecular diffusion and the interactions among these phys-

ical processes.5–7 Hence, the theory and modeling of passive scalar transport in turbulence cannot

be extended directly to premixed combustion and this shall be further asserted through the scalar

spectrum analysis discussed in the next section. Also, the heat release in premixed combustion

affects the kinematic relationship between the turbulence and scalar fields.8–11 The scalar gradient

vector aligns with the most extensive principal strain rate in premixed combustion when the heat

release effects overwhelms turbulent straining whereas it aligns with the most compressive prin-

cipal strain rate in non-premixed combustion12 and for passive scalar transport.13–15 This possible

change in the alignment brings leading order effects to the scalar mixing (scalar dissipation rate)

physics and its modeling.16,17
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Typically, the scalar dissipation rate of a passive scalar such as mixture fraction is estimated

using a linear relaxation model written as Ñξ ≃Cξ σ 2
ξ /τt , where the ∼ represents density weighted

average for Reynolds-Averaged-Navier-Stokes (RANS) calculations or density weighted filtered

value for a large eddy simulation (LES). The symbols σ 2
ξ and τt represent variance of ξ and turbu-

lence timescale respectively. This model introduced first by Corrsin18 is valid when the molecular

diffusion is smaller than the turbulent dispersion of scalar concentration.19 This condition is satis-

fied in many reacting and non-reacting turbulent flows and thus, the above linear relaxation model

is commonly used for RANS calculations. Also, it can be extended to subgrid dissipation rate in

LES with dynamic procedure20 to estimate the model constant, Cξ , with an understanding that σ 2
ξ

and τt implying the subgrid variance and turbulence timescale respectively. The inadequacy of

this model for premixed combustion was demonstrated in past studies for RANS7,21 and LES22–25

calculations. This is because of the strong influence of combustion effects on turbulence, scalar-

turbulence interaction and their feedback on combustion.

A reasonable way to include these close coupling into the modelling of the scalar dissipation

rate is to deduce a model through careful analysis of the transport equation for Nc. Furthermore,

the scalar dissipation rate is required in almost all of combustion modeling approaches in one form

or another. For example, the mean or filtered scalar dissipation rate is required for eddy breakup

model and the approaches like conditional moment closure26 and transported joint scalar PDF27–31

(probability density function) require conditional dissipation rate. The flame surface density is

also known to be related to the conditional dissipation rate.32 Professor O′Brien has made seminal

contributions to the topic of scalar mixing in turbulent flows with and without chemical reactions,

specifically in the views of PDF approach. Hence, we think that it is appropriate to revisit the

problem of scalar mixing in turbulent reacting flows to bring together recent understandings and

developments.

The aim, here, is not to do an exhaustive and broader review but to revisit the classical ideas

put forward by O′Brien, Corrsin and others for passive and reactive scalar spectra, and thereby

the scalar dissipation rate, in combusting flows of engineering interest. This is conducted specif-

ically in the light of recent findings on the scalar mixing physics in reactive flows. This paper is

organised as follows. The scalar spectra are discussed in the next section. The scalar dissipation

rate appearing in the scalar spectrum needs to be modeled which is discussed in Section III. Some

new interpretation of reactive scalar spectrum is discussed in Section IV and the conclusions are

summarised in the final section.

3



II. SCALAR AND ITS DISSIPATION SPECTRA

The spectral density, Eq (k, t), of scalar fluctuation contains many important characteristics of

the scalar field, q, representing either the mixture fraction or reaction progress variable. The

integral of this spectral density over all the possible wavenumbers, k, yields the scalar variance,

σ 2
q which is given by the two-point correlation function Rq (r = 0). For variable density flows, this

correlation function is defined as33

Rq (r) =
[ρ(x)q′′(x)q′′(x+ r))+ρ(x+ r)q′′(x+ r)q′′(x))]

2ρ
,

where q′′ is the fluctuation of q over its density weighted mean, q̃, and ρ is the local fluid density.

The spectral density is given by

Eq (k, t) =

∫ ∞

−∞
Φq(k, t)δ (|k|− k) dk, (1)

where Φq is the spatial Fourier transform of Rq and k is the wavenumber vector. The spectral

density obeys the following equation when the scalar and turbulence fields are homogeneous18,25,34

∂Eq

∂ t
= T (k, t)−2Dk2Eq +2F

(
̂̇ωq

)
, (2)

where F

(
̂̇ωq

)
is the spectral density of the reaction related terms appearing in the transport

equation for σ 2
q = Rq(0) (see equation 3.40 of Kolla et al.33) The term T = −∂

[
s(k, t)Eq

]
/∂k is

the spectral transfer of scalar fluctuations from one wavenumber to another. The quantity sEq is

the spectral flux across a wavenumber k.

For a passive scalar like mixture fraction, the reaction rate is zero and thus Eq. (2) becomes

∂
[
sEξ

]
/∂k = −2Dk2Eξ for a stationary state and the right-hand-side of this expression com-

ing from the molecular diffusive flux in r space is expected to contribute for large wavenum-

bers. Hence, this expression simplifies further for wavenumbers in the inertial-convective range,

yielding Eξ ∼ s−1 and s(k) is obtained through physical consideration. This has been done in

past studies for Schmidt numbers (defined as Sc = ν/D , where ν is the kinematic viscosity) of

the order one, larger and smaller than unity.35–39 The results of these studies are summarised in

Fig. 1 and it is important to note that the above deduction is valid only for the intertial-convective

and viscous-convective ranges of wavenumbers marked in this figure.40 These past studies sug-

gested that s ∼ ε1/3k5/3 and k
√

ε/ν for the inertial-convective and the viscous-convective ranges

respectively, where ε is the dissipation rate of the turbulent kinetic energy, K. Hence, the well-

known behaviours k−5/3 and k−1 are observed for the inertial-convective and viscous-convective
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ranges,35–38 which were also verified through direct numerical simulations (DNSs).40,41 However,

for the inertial-diffusive range, where the viscous effects are negligible but the diffusive effects are

important, the spectral balance is ∂
[
sEξ

]
/∂k = −2Dk2Eξ . By using the expression for s in the

inertial-convective range in this spectral balance, one can deduce that

Eξ = Aξ ε−1/3k−5/3 exp

[
−3A1

2

(
k

koc

)4/3
]
, (3)

where Aξ is a constant which is evaluated using the dissipation rate of the scalar variance,

χξ = 2ρD (∇ξ ′′ ·∇ξ ′′)/ρ = 2D
∫

k2Eξ dk and this gives Aξ = 2χξ/3 for the inertial-convective

range.18,37 The factor 2/3 is known as the Obukhov-Corrsin constant. For k ≫ koc (viscous-

diffusive range), there is an exponential decrease of Eξ from k−5/3 with a portion showing k−17/3

behaviour.34 The wavenumber corresponding to the Obukhov-Corrsin length scale is denoted us-

ing koc =
(
ε/D3

)1/4
and is related to the Kolmogorov wavenumber, kk, through koc = kk Sc3/4.

Chemically reacting turbulent flows with Sc ≪ 1 are rare for terrestrial conditions and appli-

cations. Although there are practical applications such as mixing of two liquids with chemical

reactions satisfying Sc ≫ 1 condition, we limit ourselves to the case of Sc ∼ O(1) by considering

engineering and technological applications involving gaseous flows.

FIG. 1. Schematic of stationary passive scalar spectrum, Eξ , for three limiting cases.40 Adopted with

permission from the book Ten chapters in turbulence 2012. Copyright 2012 Cambridge University Press.

The assumption of homogeneous flow used while writing Eq. (2) can be questioned for re-

acting flows, specifically for premixed combustion. However, the shapes of velocity and scalar
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spectra computed using DNS data of non-premixed42 and premixed33 flames (involving one-step

and multi-step chemical kinetics) suggest that it may be reasonable to make this approximation to

deduce further insights into the spectral behaviour of scalar fluctuations in reacting flows. Also,

velocity and scalar dissipation spectra deduced using DNS data of premixed flames lend support

for this view.43. Hence, we shall use Eq. (2) for further analysis here. However, one must be

cautious in interpreting and applying the results and insights discussed in this paper and the above

conditions should be borne in mind.

Since the mass fraction of a reactive scalar, Yi, in non-premixed combustion can be expressed as

a liner function of mixture fraction, if all the molecular diffusivities are the same and the chemical

timescale is very much shorter than a typical turbulent timescale, one can see that Yi spectra are

directly related to the mixture fraction spectrum. However, combustion introduces an additional

length scale, which can be of the order of Kolmogorov scale or thinner. Hence, the reactive scalar

spectra, despite its direct relation to the mixture fraction spectra, may not collapse together if one

employs the diffusive scale such as Obukhov-Corrsin length scale which is commonly used for

passive scalar spectrum.42 Perhaps, the appropriate scale to use for the diffusive-reactive range,

k ≫ koc, may be the reaction zone thickness which can be defined44 as δr ≃
√

2D∆Z/χξ , where

∆Z is the mixture fraction space thickness over which the heat release rate drops to 10% of its

maximum. This kind of scaling is yet to be explored to study the scalar spectra in non-premixed

combustion. However, Knaus and Pantano42 showed that the Kolmogorov scaling holds well for

the inertial-convective range if one uses density weighted quantities for the scaling.

The classical works by Corrsin18, O′Brien45 and Pao34 showed the influence of first-order

chemical reaction on the scalar spectrum under dilute conditions (heat release effects are small).

Furthermore, Pao showed34 the need for the numerical solutions when introducing reversible reac-

tion and, series and parallel reactions in the analysis but those reactions did not change the spectral

characteristics. In the following analysis, we shall revisit those analyses in the light of recent un-

derstandings of reactive scalar spectra deduced using DNS data of premixed combustion with

realistic finite rate chemical reactions (multi-step chemical kinetics) and large heat release rates.

These DNS studies showed that the pressure-dilation work, denoted by p′∇ ·u′′, played leading

order role for the turbulent kinetic energy budget in premixed flames.46,47 Thus, the velocity spec-

trum depicted the due influence of this effect at the wavenumber corresponding to a laminar flame

thickness along with a corresponding influence in scalar spectra also.33 However, the shape of the

spectrum, specifically for wavenumbers sufficiently smaller than the wavenumber corresponding
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to the laminar flame scale (chemical length scale), remained similar to those observed in constant

density flows.

For a reaction F +νO → (1+ν)P, where ν is the oxidiser mass per unit mass of fuel, with a

reaction rate expression Ω̇F = −Kr[F][O], one can write Ω̇F = −[F]/τc for fuel-lean combustion

systems and τc is a chemical timescale for the reaction and [F] is the molar density of the species F .

Hence, approximating the combustion reaction as a first-order reaction (with respect to the species

of interest) is acceptable although its overall order is two. Even if one considers the Arrhenius

rate expression for Kr then the exponential term involving temperature or τc can be estimated for

the temperature, T , corresponding to the maximum reaction rate (or heat release rate). If one

considers the full exponential dependence on temperature for Kr then one must consider the cross-

correlation between F and T and the corresponding spectra under the above approximation for

the reaction rate, otherwise the cross-correlations of F-O, F-T and O-T , and their spectra must

be included in the analysis. If one considers a multi-step chemical kinetics then additional cross-

correlations among scalars will arise as demonstrated by Pao.34 These additional cross-spectra

and the exponential non-linear term for temperature will severely limit the analytical treatment to

deduce further understanding of reactive scalar spectra. Also, it is common to express reaction

rate per unit volume using a reaction progress or a regress variable in premixed combustion. Thus,

the subscript F used in the discussion below implies the reaction regress variable, which takes 1

in the unburnt mixture and 0 in the burnt mixture. This variable is related to the progress variable

through c = 1−F . With the above points noted, the spectral density of the reaction related term

becomes F ( ̂̇ωF) =−EF/τc. Now, Eq. (2) gives

dsEF

dk
=−2Dk2EF −2

EF

τc
(4)

for the stationary spectral density of F . It is to be noted that the dissipation contribution is also

included along with the reaction related term since the coupling between reaction rate and molec-

ular diffusion is strong in premixed combustion. We have s ∼ ε1/3k5/3 for the case of our interest

and thus one gets

EF(k) = Bε−1/3k−5/3 exp

[
−3A2

2

(
k

koc

)4/3

+3A2

(
k

koc

)−2/3(
kch

koc

)2
]
, (5)

where kch = (Dτc)
−1/2

is the wavenumber corresponding to the chemical length scale, which is the

Zeldovich thickness. It is also worth noting that kch/koc = Ka−1/2Sc−3/4, where Ka = (kk/kch)
2
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is the Karlovitz number. The dimensional constant B can be evaluated to be B = χF/(3I) using

the identity χF = 2D
∫

k2EF dk, where I is given by the integral

I =

∫ ∞

xl

x exp

[−3A2

2
x2 +

3A2

xKa

]
dx, (6)

with x = (k/koc)
2/3

. Hence, EF given in Eq. (5) becomes

EF(k) = AF χFε−1/3k−5/3 exp

[
−3A2

2Sc

(
k

kk

)4/3

+
3A2

KaSc

(
k

kk

)−2/3
]
, (7)

with AF = 1/(3I), which is expected to be of the order one. One observes that when Ka becomes

very large (passive scalar situation) the passive scalar spectrum, Eξ , given earlier for Sc = 1 is

recovered. It is understood that the statistical quantities appearing in Eq. (7) are density weighted

averages. We shall discuss the need to have the lower limit as xl rather than as zero after studying

the characteristics of EF .

FIG. 2. Typical variation of normalised EF with k/kk in log-log scale. The solid line is for non-reactive case

(Ka → ∞) and the other three lines are for specific Ka values given above and Sc = A2 = 1.

Figure 2 shows variation of EF(k) normalised using the quantities premultiplying the exponen-

tial function in Eq. (7) (also known as the compensated spectrum when AF is excluded from the

denominator) with k/kk, where kk is the Kolmogorov wavenumber. Hence, one shall see a flat

line for k/kk ≪ 1 when there are no effects of molecular diffusion or combustion as shown by

the solid line in Fig. 2. The diffusion effects are seen for k/kk ≥ 1 as expected for Sc = 1. Any
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deviation from this solid line is because of the exponential term arising from combustion and its

effect on the scalar fluctuations at a scale 100 times larger than the Kolmogorov scale is felt quite

strongly for the Ka values considered here when Sc and A2 are unity. This influence diminishes

when k/kk ≥ 0.3 for Ka = 10 and the combustion effects are felt even at a scale which is nearly

1/6th of the Kolmogorov scale for Ka = 1. This effect is extended up to k/kk ≃ 15 for the smallest

Ka considered here. These Ka values are chosen to be representative of wrinkled and corrugated

flamelets, and thin reaction zones regimes of turbulent premixed combustion.48 The collapse of

these three curves into a single curve depends on how the dissipation rate, χF , depends on Ka and

also the Damköhler number, Da, defined as the ratio of large-scale turbulence timescale to τc. This

turbulence timescale is given by τt =
∫

E(k) dk/
(
2ν

∫
k2E(k) dk

)
=K/ε , where E is the turbulent

kinetic energy spectrum. Furthermore, the integral I may depend on Ka and thus one can expect

AF to have some dependence on Ka. Since this integral is related to the density weighted mean

scalar dissipation rate, one needs to understand the leading order processes influencing the scalar

dissipation rate in turbulent premixed combustion before discussing Ka dependency of AF . This

discussion is provided in Section IV.

It is also noted that the scalar dissipation spectrum is related to the scalar spectrum through

DF(k) = 2Dk2EF(k) and the above comments on EF will carry forward to DF also. It has been

shown in recent studies that χF has dependence on Da and Ka and these studies are reviewed

briefly in the next section to bring out the key aspects in them to further understand the reactive

scalar spectrum behaviour in premixed combustion. Also, it clear from the foregoing discussion

that the statistical quantities such as the scalar dissipation rate in turbulent premixed combustion

cannot be modeled by simply extending the passive scalar models because the combustion effects

on the scalar fluctuation are felt strongly on a wide range of scales, and is driven by chemical

reactions which are small scale phenomena. Indeed, this point will become clearer in Section IV.

III. SCALAR DISSIPATION RATE MODELING

The scalar dissipation rate, χF , appearing in Eq. (7) denotes the dissipation rate of Favre vari-

ance of F , σ 2
F = ρF ′′F ′′/ρ , and it is defined as χF = 2

(
ρD∇F ′′ ·∇F ′′

)
/ρ = 2εF . A transport

equation for εF was derived by Swaminathan and Bray7 and it is written as

DρεF

Dt
= D1 −D2 +T1 +T2 +T3 +T4 (8)
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after ignoring the contributions coming from temperature dependence of D . The operator D /Dt

is the substantial derivative, the molecular diffusion and dissipation are denoted by D1 = ∇ ·
(
ρD∇εF

)
and D2 = 2ρD2 (∇ ·∇F ′′)2

respectively. The turbulent transport of the dissipation rate

is represented by T1. The effect of dilatation, when Le = 1, is represented by T2 = 2ρεF∇ ·u′′

which results from the density change across the flame front and this term generally acts as a

source term for εF evolution. The symbol Le is the Lewis number which is defined as the ratio

of thermal diffusivity to mass diffusivity. The interaction of turbulence and scalar fields denoted

by T3 has three contributions and the inner product between the fluctuating scalar gradient and

turbulent strain rate, given by T32 = −2ρD (∇F ′′ ·∇u′′ ·∇F ′′), is the most dominant term of T3.

The influence of reaction rate is represented by T4 = 2
(
D∇F ′′ ·∇ω̇ ′′

F

)
, where ω̇ ′′

F is the fluctuating

mass-based reaction rate per unit volume. An order of magnitude analysis of Eq. (8) gave

T2 +T32 +T4 −D2 ≃ 0 (9)

as the leading order balance for high Da combustion7. This was verified through DNS data anal-

yses for both high and low Da combustion and typical results are shown in Fig. 3.16 These results

are normalised using the respective laminar flame thermal thickness, δth, unburnt mixture density

ρu and laminar burning velocity SL. For fuel lean mixtures, the thermal thickness is a multiple of

Zeldovich thickness,
√

Dτc, defined earlier. The major contribution to T3 was shown to come from

the inner product term, T32.16 In non-reacting turbulent flows, the scalar gradient is known to align

with the most compressive principal strain rate,13–15 which is also the case for mixture fraction in

non-premixed combustion,12 and thus T32 acts as a source term for χξ . On the other hand, T32 acts

as a sink for χF in high Da premixed combustion because the scalar gradient aligns with the most

extensive principal strain rate8,9,11,16 and this difference cannot be ignored.

Simple models for the four terms in Eq. (9) were also proposed and verified using DNS data in

past studies.16,49,50 These models were also used to obtain an algebraic expression for εF ,17 which

was also validated using experimental data for turbulent burning velocities.51 This model can be

written as

χF = 2εF ≃ G
(2K∗

c − τC4) Da+C3

τt
= G

(2K∗
c − τC4)+C3/Da

τc
(10)

for a location with significant dissipation rate (mean reaction rate) inside the flame brush, which

would be the middle of the flame brush. The symbol G is a factor of the order one, τ is the

heat release parameter, defined as the temperature rise, Tb −Tu, across the flame front divided by

the unburnt mixture temperature, Tu, which has a value of 6 to 8 for typical combustion condi-
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FIG. 3. Variations of D1,D2,T1,T2,T3,T4 across the flame brush, C̃ = 1− F̃ . These terms are normalised

using δth/
(
ρuS2

L

)
and the results are shown for two cases (a) Da = 6.8,Ka = 0.3 and (b) 0.3, 11.16 Re-

produced from N. Chakraborty, J. W. Rogerson, and N. Swaminathan, “A-priori assessment of closures

for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation,” Phys.

Fluids 20, 045106, 2008, with the permission of AIP Publishing.

tion, K∗
c /τ varying from 0.7 to 0.8 signify the contribution of T2, and τt = K/ε is the timescale

for large scale turbulence. The Damköhler number is related to Ka through Da ≃ Ka−1
√

Ret ,

where Ret is the turbulence Reynolds number. The parameters C3 = 1.5
√

Ka/
(
1+

√
Ka

)
and

C4 = 1.1(1+Ka)−0.4
have dependencies on the Karlovitz number.17 These relations arise because

the scalar gradient generation is driven by chemical reactions, turbulence, and turbulence-scalar

interaction in premixed combustion, see Eq. (9). Indeed, the functional dependencies discussed

above have come from DNS data analyses and seem to work quite well for a range of combustion
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and turbulence conditions spanning from corrugated flamelets to thin reaction zones regimes of

premixed combustion.22–24 However, some minor changes to these functional dependencies were

also reported in past studies when Le is not unity.52,53 It is also to be noted that there are alterna-

tive approaches to model the scalar dissipation rate in premixed combustion which are reviewed

by Chakraborty et al.54

IV. DISCUSSION

By substituting Eq. (10) into Eq. (7) one gets

EFτt

ÂFε−1/3k−5/3
= f1(Ka)exp

[
−3A2

2Sc

(
k

kk

)4/3

+
3A2

KaSc

(
k

kk

)−2/3
]
, (11)

or
EFτc

ÂFε−1/3k−5/3
= f2(Ka)exp

[
−3A2

2Sc

(
k

kk

)4/3

+
3A2

KaSc

(
k

kk

)−2/3
]
, (12)

where ÂF = AF G. Equation (10) suggests that f2(Ka) is
(

0.5τ +C5Ka3/2/
(
1+

√
Ka

))
and

f1(Ka) = Da f2(Ka). Now, it is becoming clear that the full scaling of scalar spectrum in tur-

bulent premixed combustion involves both turbulence and chemical scales as contemplated by

Kolla et al.33 The above scaling on Ka is based on the analysis of turbulent premixed flames of

hydrocarbon– and hydrogen–air mixtures in past studies which considered statistically 1D propa-

gating flame in spatially decaying turbulence,8,16,17,52,55 oblique flames,56–59 spherically expand-

ing flames,60,61, slot-jet flames,62 and swirling flames.63,64 These studies used both single and

multi-step chemical kinetics, and also unity and non-unity Lewis numbers. Hence, the above scal-

ing may be considered to be quite robust. However, the ranges of Da and Ka spans a narrow region

in the corrugated flamelets and thin reaction zones regimes of turbulent combustion diagram, and

hence it may be prudent to consider the above scaling as tentative because of the limited ranges of

Da and Ka values.

The constant AF in Eq. (7) involves the integral in Eq. (6) and this integral will not converge

if xl = 0 because of the 1/x in the exponent. This becomes severe for low Ka (combustion in

wrinkled flamelets regime). In his seminal analysis, Corrsin18 suggested to consider from the

‘energy-bearing’ wavenumber to the end of the inertial-convective range to evaluate the parameter

in the scalar spectrum. Furthermore, the reaction was taken to occur in the inertial-convective

range (see his Eq. 19), which is possible only if the reaction is a unimolecular reaction. Combus-
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tion reaction is generally bi-molecular and it can be approximated to be first-order with respect to

the scalar of interest as discussed in Section II.

Numerical analysis of the integral in Eq. (6) suggests the following. To keep AF to be of

the order one, xl must be kept as 1.26Ka−1/3 which comes out to be the solution of xl −
exp

[
−1.5x2

l −3/(xl Ka)
]
= 0, where A2 and Sc are takend to be 1 for simplicity and without

the loss of generality. This variation of xl shown in Fig. 4 suggests that kl/kk varies from 4.46 for

Ka = 0.1 to 0.06 for Ka = 500 for the integral in Eq. (6) to converge (have a finite value) and to

have AF of the order one. The values of AF depends weakly on Ka as shown in Fig. 4. If one takes

the lower limit to be 100 times larger than the Kolmogorov scale, see Fig. 2, then the integral in

Eq. (6) become so large implying that the scalar dissipation rate, χF , becomes unphysical and AF

becomes 0 for Ka below 3 and this variation of AF with Ka is also shown in Fig. 4.

FIG. 4. Variation of AF and xl with Ka. Symbols are from numerical computations and lines show the best

fits.

The choice of having xl ∼ Ka−1/3 seem to be physically meaningful and this brings out an

important point. If one translates this in terms of chemical length scale then the lower wavenumber

becomes kl/kch =
√

Ka (kl/kk) = 1.41, suggesting that the relevant largest length scale is of the

order of the chemical length scale for the dissipation field. Kolla et al.43 also suggested that a

chemical scale is the relevant scale for the dissipation rate by analysing the dissipation spectra

deduced using DNS data of premixed flames. Furthermore, the scalar fluctuations produced by the

reactions around the chemical length scale cascade exponentially to larger scales (see Eq. 11 or 12)

13



as seen in Fig. 2. The rate of this cascade is larger if the combustion is stronger (small Ka or large

Da). The length scales in the inertial-convective range and below do not influence the dissipation

rate in premixed combustion. This is also signified by the leading order balance in Eq. (9) involving

only the reaction rate related terms, except T32. Furthermore, this T32 term involves gradients

of scalar and velocity fluctuations and thus it is also related to small scales. This observation

holds on a physical basis also because the reactant mixture is homogeneous everywhere except

in reacting regions of premixed combustion and hence turbulence alone cannot produce scalar

gradients. Chemical reactions, which are small-scale phenomena, produce scalar gradients and

the turbulence either enhances or hinders this production. Hence, using the passive scalar mixing

based models for turbulent premixed combustion is questionable on physical grounds. This is also

clear from the spectral considerations discussed in this study. This observation is highly relevant

for LES of premixed combustion since SGS modeling involves small scale quantities.

V. SUMMARY AND CONCLUSION

The spectral characteristics of scalar fluctuations and their dissipation in turbulent combus-

tion is of long standing interest. The seminal work by Corrsin, O′Brien, and Pao gave useful

insights and raised many intriguing questions, for which there are no convincing answers yet.

Spectral analysis using DNS data of non-premixed combustion showed that the Kolmogorov scal-

ing worked quite well if the density weighted quantities are used in the scaling.42 The pressure

dilatation work was shown to have a due influence on the turbulent kinetic energy spectrum in

premixed combustion along with a spike appearing in scalar spectrum due to reaction rate.33 How-

ever, the full scaling of the scalar spectrum couldn’t be achieved and it may involve Kolmogorov

scale, laminar flame thickness, Karlovitz, Ka, and Damköhler, Da, numbers.

This study shows that the scalar spectrum, EF , in premixed combustion involves Karlovitz and

Damköhler numbers which are related to both chemical and turbulence scales. This is deduced

using spectral analysis following the classical work of Corrsin.18 The dependence of EF on Ka

and Da is observed to arise through the mean scalar dissipation rate. It is also shown that the

relevant scale for the dissipation rate is of the order of the chemical length scale and the dissipa-

tion rate in premixed combustion is not influenced by the scales in the inertial-convective range,

which is contrastingly different from the case of passive scalar mixing in turbulence. Also, scalar

fluctuations produced near the chemical scales cascade exponentially to larger scales. Although a

14



tentative functional dependence on Ka and Da is obtained in this study, which may hold in general,

a suitable form of this scaling to collapse the entire scalar spectral density over a broad range of

Da and Ka values is still to be found and further analysis would be helpful in that regard.
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