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Major events such as the COVID-19 pandemic, Olympic Games, and G20 Summit bring about supplier disruption risks and
challenges to supply chain management. To help deal with these risks, a virtual dual-sourcing production-inventory system can be
deployed. In this paper, we study such a system which consists of a raw material supplier, a manufacturer, and a virtual dual-
sourcing contingency supplier. The manufacturer needs to determine the production, procurement, and inventory plan of raw
materials. When its supplier is interrupted, the manufacturer may need to adjust the production and inventory plan and work with
the contingency supplier. We develop a system dynamics method to simulate the operations in this production-inventory system
to identify the approximately optimal order-up-to-level inventory policies. We find that the virtual dual production-inventory
strategy can be the optimal contingency policy to deal with supplier dynamic disruption risks. Furthermore, for disruption risk
with low frequency and long duration, the manufacturer should increase the safety inventory level before the disruption.

Otherwise, it should increase the safety inventory level in every cycle.

1. Introduction

As the COVID-19 pandemic of 2020 continues to unfold,
lockdowns of countries and cities have caused severe dis-
ruptions in various supply chains such as healthcare and food
supply chains [1]. This led to supply disruption for essential
products such as food, medical testing kits, and PPEs [2]. In
these supply chains, a recovery and resiliency plan should be
considered for supply-side disruptions. Moreover, large-scale
urban events such as G20 and Summer Olympics games can
cause supply disruption risks to firms’ normal operations
including raw material procurement, production, and dis-
tribution [3]. To deal with these disruption risks, firms often
build extra inventory or maintain backup suppliers.

Also, unpredictable supply disruptions such as natural or
manmade disasters and accidents can severely impact supply
chains. For example, on March 17, 2000, a lightning caused a

factory fire at a plant of Royal Philips Electronics Company
located in New Mexico, USA. This led radio frequency chips
supply disruption to its two customers, Nokia and Ericsson.
After that fire, Nokia promptly worked with its backup
suppliers and recovered from this major disruption. However,
Ericsson failed to find a new chip supplier. As a result,
Ericsson shut down its cell phone business for several months
and lost its market share to Nokia. This resulted in a loss of up
to $400 million in sales and subsequent withdrawal from the
mobile phone market [4]. Similar incidents happened to
Japanese automobile companies such as Toyota and Honda.
In March 2011, after the earthquake and tsunami in Japan, the
production and supply of automobile parts in Japan was
severely disrupted. This resulted in vast loss to these auto-
mobile companies in terms of both profit and reputation [5].

Contrast with unpredictable natural or manmade di-
sasters, large-scale urban activities such as Olympic Games
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and G20 summit are to a large extent predictable. When
these activities take place, firms can know when there will be
traffic control or government regulations on logistic routes.
More predictable risks can also occur due to natural events
such as hurricanes. For these risks, historical data are usually
available so that we can describe various characteristics
including probability, length, and severity level [6-9]. When
supply faces more predictable disruption risk, there is a
repeated dynamic disruption process from normal supply
state to supply disruption and back to normal supply state.
This is called dynamic supply disruption where the prob-
ability of such risk may be known. To deal with these risks, a
firm traditionally can adopt two contingency strategies:
holding extra inventory or initiating a backup supplier.
Several efficient contingency strategies have been employed
in business practice to mitigate the risk from such dynamic
supply disruption. For example, Delphi implemented an
efficient hybrid contingency strategy in its supply chains
during the 2008 Olympic Games in Beijing [3]. Under this
strategy, some core technology was transferred to a Virtual
Dual Production-Inventory System (VDPIS) and a trade-oft
was reached between safety inventory and virtual dual
sourcing to address this risk of dynamic disruption. In this
way, Delphi kept its supply chains lean while minimizing
supplier disruption risks.

However, in Delphi’s hybrid contingency strategy, there
are several operational questions remaining to be answered.
What is the best “order-up-level” inventory policy when a
firm is informed about the start time and duration of a major
event? How much safety inventory should the firm hold?
When should the firm transfer its core technology to its
VDPIS? How would the transfer delay of its core technology
to VDPIS affect its performance?

To answer these questions, this study models a virtual
dual-sourcing production-inventory system under predict-
able and repeated dynamic disruption risks. This system
consists of a raw material supplier, a manufacturer, and a
virtual dual-sourcing contingency supplier. The manufac-
turer needs to determine its production, procurement, and
inventory plan. When its supplier is interrupted, the
manufacturer may need to adjust its plan and work with the
contingency supplier. Different from earlier studies, this
study considered a scenario of dynamic supply disruption
where the start time and duration of a supply disruption and
the consequent core technology transfer are interacted with
the manufacturer’s “order-up-level” inventory polices.
Hence, first, our research contributes to the literature on
supply chain disruption management by incorporating all
these issues simultaneously. Second, we build a system
dynamics model to simulate this disrupted supply chain and
obtain an approximately optimal order-up-to level inventory
policy. Our main research findings are as follows. First, we
show that the virtual dual production-inventory strategy can
be the optimal contingency policy to deal with supplier
dynamic disruption risks. Second, for disruption risk with
low frequency and long duration, it is optimal for the
manufacturer to increase the safety inventory level before
the disruption. Otherwise, it is optimal to increase the safety
inventory level in every cycle. Third, with sensitivity analysis,
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we obtain several managerial implications on how compa-
nies mitigate the risks from dynamic supply disruptions due
to a relatively predictable event.

The structure of the rest of this paper is described as
follows. The related literature is reviewed in Section 2. The
model is formulated and described in Section 3. In Section 4,
we build and describe the system dynamics simulation
model. Next, in Section 5, we present the simulation and
sensitivity analysis results. In Section 6, we discuss the results
and their managerial insights. Finally, in Section 7, we
summarize the paper and present potential future research
avenues.

2. Literature Review

Our research relates to the research streams of production
and distribution planning, disruption management, and
dynamic supply disruption, which are reviewed below.

2.1. Production and Distribution Planning. To deal with
supply or demand uncertainties, Lalmazloumian et al. [10]
classified the sources of uncertainty into the three categories
of supply, manufacturing, and demand. Successful supply
chain management requires an integrated and coordinated
planning among different stages such as production and
distribution. Several researchers and practitioners have fo-
cused on dual-channel supply chains during the last decade.
For example, Huang et al. [11] analysed centralized and
decentralized production and pricing decisions in a two-
echelon dual-channel supply chain model under demand
disruption. Panda et al. [12] examined pricing and shipment
policies in a dual-channel supply chain for products with
decreasing unit cost. Yan et al. [13] developed a two-period
game-theoretic model to investigate the effect of product
durability on dual-channel operations. Their analysis
revealed the effects of product compatibility on the suc-
cessful operation of dual-channel supply chain and product
distribution strategy. The latest research on dual-channel
supply chain extends to different areas including product
distribution strategy [14], quality improvement [15], price
and delivery-time dependent stochastic demand [16], carbon
emissions tax, and demand uncertainty [16]. Although there
are a few articles in the literature on dual-channel supply
chains, few of them have considered the effect of dynamic
supply disruption.

2.2. Disruption Management. Supply risk is defined as “the
probability of an incident associated with inbound supply
from individual supplier failures or the supply market oc-
curring, in which its outcomes result in the inability of the
purchasing firm to meet customer demand or cause threats
to customer life and safety” [17]. Paul et al. [18] define supply
chain risk management (SCRM) as “the management of
supply chain risks through coordination or collaboration
among the supply chain partners so as to ensure profitability
and continuity.” Craighead et al. [19] develop a qualitative
model relating supply chain design characteristics to miti-
gation capabilities and propose several propositions to be
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tested quantitatively. Gaonkar and Viswanadham [20]
propose a conceptual framework that classify various supply
chain risks and various approaches that can be used to deal
with those risks. To mitigate the disruption risk, safety in-
ventory and flexible capacity are considered traditional
approaches to ensure the smooth operations during supply
disruptions. To achieve operational recovery after capacity
damage due to major disruption, some studies argue for
capacity flexibility to buffer supply chain disruption risk. For
example, Bao and Ji [21] propose an analysis framework to
disruption management, but they focus mainly on supply
chain capacity. Paul and Rahman [22] develop a quantitative
and simulation model for managing sudden supply delay
with fuzzy demand and safety stock that affect the retailers’
economic order quantity model. They find that safety stock
plays an important role in recovery from sudden supply
delays, and there is a trade-off between backorder and lost
sales costs in the recovery plan. When demand is stochastic,
optimal inventory policy is the key to manage safety stock
[23, 24].

However, with decreasing product life cycle and/or in-
creasing product variety, safety inventory may lead to high
inventory cost. This is because that the use of a sole supplier
can reduce cost but can cause problems under demand
variations and disruptions. Billington et al. [25] describe
how HP used its manufacturing facilities in Washington
State and Singapore to produce printers. HP used the
Singapore plant to meet the base demand and use the
Washington State plant to meet the above base demand.
Such a flexible supply base is beneficial when disruptions
occur. Therefore, using backup suppliers can increase supply
chain flexibility. To mitigate supply chain disruption risks,
Baghalian et al. [26] propose robust supply chain network
design where a firm implements strategic inventory or
flexible supply base [27]. Paul et al. [28] considered real-time
disruption management for a two-stage batch production-
inventory system with reliability considerations. In their
system, the production may be disrupted, for a given period
of time, either at one or both stages, and a recovery plan in
real time for a single occurrence of disruption and multiple
disruptions at either stage was developed. Later, Paul et al.
[29] considered a three-stage supply chain network, with
multiple manufacturing plants, distribution centers, and
retailers, and developed a quantitative model for disruption
mitigation in a supply chain. Furthermore, Paul et al. [30]
considered another scenario on sudden transportation
disruptions in supply chains under delivery delay and
quantity loss, which is very like the condition in our study.
They developed a model to generate a recovery plan after a
sudden disruption occurrence, helping supply chain man-
agers minimize the negative impacts of the disruption.

To manage risk and disruption in production-inventory
and supply chain systems, Paul et al. [18] presented a lit-
erature review and developed a disruption recovery model
for an imperfect single-stage production-inventory system.
The system may unexpectedly face either a single disruption
or a mix of multiple dependent and/or independent dis-
ruptions, and it formulated a mathematical model for
rescheduling the production plan, after the occurrence of a

single disruption, which maximizes the total profit during
the recovery time window. To manage disruption in an
imperfect production-inventory system, Paul et al. [18]
developed a disruption recovery model for the system which
may unexpectedly face either a single disruption or a mix of
multiple dependent and/or independent disruptions and
formulated a mathematical model for rescheduling the
production plan, after the occurrence of disruption. More
recently, Paul and Chowdhury [2] developed a recovery
model relating to a revised production plan to deal with the
challenge for the manufacturers of high-demand and most
essential items during the global pandemic of COVID-19. In
this situation, the demand of the essential products increases
expressively and the supply of the raw materials decreases
considerably with a constraint of production capacity. These
dual disruptions impact the production process suddenly,
and the process can collapse without immediate and nec-
essary actions. They used a mathematical modeling approach
to develop a production recovery model for a high-demand
and essential item during the COVID-19 and analysed the
properties of the recovery plan.

2.3. Dynamic Supply Disruption. To mitigate supply dis-
ruption risk, Sawik [31] considered dual-source procure-
ment strategy. In this virtual dual-sourcing strategy, when a
firm’s supplier experiences a disruption, the firm can
transfer its key design information to a qualified backup
supplier during the disruption. Fujimoto and Park [32]
argued that when the concentration of suppliers’ production
technology is relatively high, it will be difficult for manu-
facturers to find backup suppliers for emergency procure-
ment after a supply disruption. When the transfer of core
technology of products is high, a virtual subcontractor can
deal with the supply disruption. Thus, virtual dual-source
procurement can be effective. Zhang et al. [3] proposed a
comprehensive emergency management framework where
two contingency strategies of robust inventory control and
virtual dual sourcing are integrated. More recently, Zhang
et al. [33] studied the contingency polices and operations for
supply chain disruptions under changing demand. Although
this study integrated safety inventory control and core
technology transfer to VDPIS tactically and operationally, it
is limited to a scenario of single supply disruption. There-
fore, there is a research need to study dynamic supply
disruptions. On the contrary, the existing literature on
supply disruption risks typically assume a single supplier and
optimize inventory as an emergency strategy for supply
disruption risk, where the long-term average inventory cost
is the main criterion [34, 35]. Due to the complexity of this
hybrid emergency strategy, it is usually difficult to obtain
closed-form solutions. To help this challenge, Forrester [36]
proposed system dynamics to simulate complex systems.
Hu and Li [37] applied system dynamics to production
planning of products with short life cycle. However, they
omit the issue of supply chain disruption. This is another gap
we aim to address in this research.

Motivated by the business practice and related academic
research discussed so far, this article models a virtual dual



sourcing inventory system under dynamic supply disrup-
tions considering safety inventories. The decision variables
we considered include the “order-up-to-level” inventory,
product inventory at the emergency subcontractor, planned
production quantity, and product delivery quantity. Our
models are complex, but by jointly considering these dif-
ferent issues, they can provide improvements over existing
models in the literature.

In short, our study makes several contributions to the
literature. First, we developed a hybrid emergency strategy to
integrate safety inventory control and virtual dual-source
procurement to optimize the safety inventory level and the
time delay for the core technology to be transferred to
VDPIS. Second, we employed system dynamics to simulate a
complex VDPIS under dynamic supply disruptions. This can
avoid the problem of unable to obtain closed-form optimal
solutions to such a complex system. Third, our results reveal
the interactions among the “order-up-level” inventory po-
lices, the duration and start time of supply disruptions, and
the core technology transfer to VDPIS. Overall, this study
provides managerial insights on how to mitigate the risks
from dynamic supply disruptions due to a major event.

3. Model Description and Formulation

3.1. Model Description. In this paper, we model a virtual
dual-source production inventory system consisting of a
raw material supplier, a manufacturer, and an emergency
subcontractor that can provide alternative supply in the
event of supply disruption. Figure 1 illustrates the system,
which is a supply chain network with multiple echelons.
When confronted with dynamic supply disruption, the
manufacturer can initiate a virtual production through a
subcontractor or backup supplier and transfer the product
core technology to the subcontractor. When supply dis-
ruption is over, the manufacturer will return to normal
operations. In short, this system adopts a hybrid emergency
strategy combining inventory control with virtual dual-
source procurement.

The manufacturer needs to determine the quantity of
raw materials, the production plan, and the inventory level.
When a dynamic supply disruption occurs, the manufac-
turer initiates an emergency production and inventory plan.
Here, the dynamic supply disruption means the supply of
raw materials, components, and finish products is disrupted
during a large-scale event at observable period and recovers
once the event is over. And the cycle may repeat itself in the
future. In other words, a disruption cycle lasts from when the
system transforms from the normal supply state to supply
disruption state and when it recovers back to the normal
supply state.

We assume that the observable duration of the dynamic
supply disruption is n periods. We use x; to indicate the
supply status. When x; = 0, the supply of raw materials or
products is normal. When x; = 1, the supply of raw materials
or products is disrupted. Similarly, we use y; to indicate the
order delivery status. When y; = 0, it means that an order is
normally delivered. When y; = 1, it means that an order
delivery is disrupted.
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FIGURE 1: The virtual dual-source production inventory system.

3.2. Model Formulation. All the indices, parameters, and
decision variables involved are summarized as follows. The
corresponding variables are denoted with superscripts
i=0,1,...,n

3.2.1. Indices

(i) i denotes the periods, i =0,1,...,n.

(ii) j denotes the supply disruption numbers,
j=1,2,...,]. It denotes the numbers of supply
disruptions from the normal supply state to supply
disruption state then back to the normal state.

(iii) k denotes the duration of supply disruption,
k=12,...,K.

(iv) m denotes times of supply disruption in the event’s
horizon, m = 1,2, ..., M.

3.2.2. Deterministic Parameters

(i) h,: holding cost of the raw materials
(ii) C,, : unit manufacturing cost of the manufacturer

(iii) h,,: holding cost of the finished products of the
manufacturer

iv) C¢: unit manufacturing cost of the emergenc
S g gency
subcontractor

(v) p: unit penalty cost for product shortage
(vi) : the unit sale price of the product

3.2.3. Uncertain Parameters

(i) T,,: expected inventory adjustment time. It denotes
the time duration it takes for the manufacturer to
change from the existing inventory to “order-up-
to-level” inventory.

(ii) T'p: production cycle of the manufacturer.

(iii) T,: time delay (days) for core product technology
to transfer to the emergency subcontractor.

(iv) Tg: production cycle (weekly) of the emergency
subcontractor.

(v) d;: demand rate (weekly) at periodi,i=0,1,...,n.

(vi) di: forecasted demand rate (weekly) at period i,
i=0,1,...,n
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(vii) v;: lost sales rate (weekly) due to supply disruption
at period i,i=0,1,...,n.

3.2.4. Decision Variables
(i) IR;: raw materials’ inventory of the manufacturer
at period i,i=0,1,...,n

(ii) IM;: product inventory at the manufacturer at
period i,i=0,1,...,n

(iii) OUL;: “order-up-to-level” inventory at period

i,i=0,1,...,n
(iv) IS;: product inventory of the emergency subcon-
tractor at period i,i=0,1,...,n

(v) Qg: the quantity to order from the emergency
subcontractor

(vi) wi": the quantity of production planned at the
manufacturer atperiodi, i =0,1,...,n

(vii) wi: the quantity of product planned at the emer-
gency subcontractor at period i, i=0,1,...,n

(viii) g/": the delivery quantity of product from the
manufacture at period i, i =0,1,...,n

(ix) g: the delivery quantity of product from the
emergency subcontractor at periodi,i =0, 1,...,n

3.2.5. The Objective Function. The total inventory of finished
products held by the manufacturer in period i is I; = IM; +
IS;, which is equal to the inventory at the manufacturer plus
the inventory at the emergency subcontractor. Thus, I; = 0
when y; = 0 indicates that the manufacturer normally de-
livers according to market orders. When a supply disruption
occurs for a long time, the supply status of the raw materials
will change from normal to disruption. This leads to the
disruption in the manufacturer’s product delivery. The
cumulative market share loss rate of the manufacturer in
time ¢ is

Vn:a.

M=

2
n
yi+b-<2yi> +c, (1)
i j=0
where the term ) | y; represents the cumulative loss rate of
the product delivery disruption at period ¢, a is the con-
version coefficient of this loss rate, the term (}"_, y,)’
represents the cumulative market loss rate caused by fre-
quent disruptions, b is the coefficient between this cumu-
lative market loss rate and the market loss caused by the
number of disruptions, and ¢ denotes the error coeficient of
market loss caused by the disruption between the two cases.
When the manufacturer’s product delivery is disrupted, the
more disruptions occur in the limited market capacity, the
higher the market loss rate is.

It is assumed that the market demand at time i follows
the normal distribution with mean d; and standard deviation
;. For simplicity, suppose the information’s delay period is
3. It means that the manufacturer’s product delivery status
undergoes a process from the normal state to disruption
state and thereafter from the recovery state to normal state.

Il
(=]

Thus, the information’s delay is a period of 3. In this period,
the market demand of the product in the lead time of de-
livery is as follows:

dy =d,, (2)

(difl _dill):|, (3)

+
! 3

i—

d :[d!

L= [di,—1+ ((di_é - dil—l)/3)]. (4)

1

In (2), the forecast rate at initial period (i = 0) (weekly) is
equal to the demand rate at that period. In (4), L is the lead
time of manufacture’s delivery, which depends on the
forecast rate at period i (weekly) and demand rate at that
period. Thus, the manufacturer’s “order-up-to-level” in-
ventory is

OUL; = d; +ss, (5)

where the safety inventory ss for the manufacturer to cope
with supply uncertainties is related to the expected turnover
service level CSL of their customers. That is,
s = F;1(CSL) x 0;, where o, = VLo;. Moreover, we assume
that the start-up cost of a virtual production line contract
between the manufacturer and the virtual emergency pro-
duction supplier is B(f3). This means that the manufacturer
is willing to pay for risk prevention in advance for possible
disruptions, which is a function of sales § during the entire
observation period:

B(ﬁ)=ﬁ-E<r‘i(q?"+qf)>) (6)

i=0

where r is the unit sale price of the product and Y, (" +
q;) is the sum of the delivery quantity of product from the
manufacture at period i and the delivery quantity of product
from the emergency subcontractor at period i. Hence, E(r -
Yio(q" +¢q)) means the expectation of the product unit
sale price.

3.3. Model Formulation. Under dynamic supply disruptions,
there are three scenarios that affect the weekly production
and the product delivery amount from the manufacturer to
the emergency subcontractor, as described below. Note that,
for simplicity, we assume a period to be a week.

(1) In the normal delivery state, y; = 0, and the man-
ufacturer’s weekly production and delivery is

w" = OUL, - IM,,

" (7)
q!" = Min (IM,, d,).

(2) In the state of delivery disruption, y; = 1, and the

manufacturer turns to the emergency subcontractor.

In practice, when a supply disruption does not affect

production yet, the management may be unaware of



it. Therefore, the emergency strategy of the sub-
contractor may lag. After several cycle lags, the
managers may decide whether to initiate emergency
production. Therefore, the model assumes that, in
the case of simultaneous delivery and supply dis-
ruptions, the production at the emergency subcon-
tractor will be initiated. The weekly production
volume and delivery volume from the emergency
subcontractor are

w} = Min[Qg, OUL, - IS;],

o (8)
q; = Min(IS;, d;).

(3) Suppose at any time ¢ + 1, when x! = 1 and x{*! =0,
the manufacturer restores from disruption to resume
normal product. Hence, the production at the
emergency subcontractor will be stopped. The
manufacturer’s inventory will also resume normal

n(q)q;,B) = E{

n
i=0

D=2 (' B) - ) (4" 0.B)

n
i=0

By maximizing the manufacturer’s profit (10) and
minimizing long-term profit-loss risk (11), the optimal
“order-to-level” inventory OUL; of the system and other
decision variables such as the quantity to order from the
emergency subcontractor Qg, product inventory at the
emergency subcontractor IS;, the quantity of production
planned at the manufacturer wi", the quantity of product
planned at the emergency subcontractor wf, the delivery
quantity of product from the manufacture at period q", and
the delivery quantity of product from the emergency sub-
contractor qf can be obtained.

4. Simulation

Due to the complexity of our dynamic optimization model, it is
difficult to obtain a closed-form solution. Therefore, we adopt
Forrester’s system dynamic theory to simulate our VDPIS in
these scenarios. We employ VENSIM PLE software package to
simulate our system to obtain approximately optimal solutions
in these scenarios. The system dynamics model is illustrated in
Figure 2. In our simulation model, there are several suppliers
(1=1,2,...,L) to supply raw materials to the manufacturer (or
OEM) or the subcontractor (or back-up supplier) to produce
their products and then distribute them to different customers
d, in different periods. This market demand d; is an aggregate of
all demand in one period. It follows the normal distribution
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delivery. At this time, the inventory at the emergency
subcontractor is only used to supplement the current
part of the bill of arrears until it is exhausted. We call
it the recovery process after the disruption. In the
recovery process, the production volume and de-
livery volume from the manufacturer and the
emergency subcontractor are

w!" = OUL; - IM; - wj,

w; = Min[Qj, OUL, - 1S,], o)
q; = Min(IMi,d;),

q; = Min[(d; - g"), IS;].

Considering the three scenarios, we can build the fol-
lowing optimization model for the virtual dual production-
inventory system to maximize the total long-term profit and
minimize the profit-loss risk:

{’" (@" +q;) _[(hr'IRi + G W]+ € W]+ By - (IMiy = q)") he, - (IS = ;)" + p(d; — g]" _Q?)+]} +B(p) }’

(10)

(11)

with mean d; and standard deviation ¢;. When the manu-
facturer’s supply is disrupted, the manufacturer will transfer its
core technology to the subcontractor and implement the so-
called virtual dual-source procurement from the subcontractor
and deliver the products to customers via OEM DC. In OEM
DG, the safety inventory depends on market demands, product
capabilities of the manufacturer and the subcontractor, and the
mode of disruption (disruptive times m and disruptive duration
k). Before starting the dynamic system simulation, inputs
should be collected from suppliers, subcontractor, DC, and
customers. We consider order delivery status, inventory, and
the manufacturer’s long-term profit of as state variables. We
treat the manufacturer inventory sequence and the emergency
supplier inventory sequence as the mainstream structures. We
treat the supplier’s supply flow, market demand loss, and long-
term profit as the co-flow structure. Our objective is to max-
imize the total long-term profit and minimize the profit-loss
risk. In the end, we will obtain the outputs including the
production planning, OUL inventory, profit, and risk.

Next, we will describe the simulations in detail. In the
dynamic system simulation, we use the following function to
input the disruption state as a pulse function into the dynamic
model to reflect the dynamic disruption of suppliers:
PULSETRAIN (initial time, k, 50, n). IM; in the theoretical
model is manufacturer inventory in the dynamic model.
“Manufacturer’s weekly production volume” is equivalent to
“manufacturer’s production forecast” in the system dynamics
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FIGURE 2: The system dynamics simulation model on dynamic supply disruption.

model. And “Safety Inventory Level” is equivalent to “Order-
up-to-Level” (OUL).

Based on observations and experiments from the pro-
duction of car dashboards in an automobile assembly factory,
we collected data related to supply disruptions due to the 2008
Olympic Games in Beijing. The data include order delivery
status, manufacturer inventory, emergency production supplier
inventory, and the manufacturer’s long-term profit, which are
state variables. Based on the historical demand of the dashboard
product, it is assumed that the weekly demand follows the
normal distribution d ~ N (80, 20?), where the standard de-
viation is o¢=20 |units and the sales forecast
dy, = INTEGER (SMOOTH (week demand, 3)). We set a =
0.01 and b=0.0015 in (1). Other parameters are set to
h, = 0$/unit, n=252, C,, =4$/unit, h,, = 0.2$/unit,
h, = 0.8%/unit, C, = 6$/unit, p = 0.8%/unit, Qp = 240units,
B =0.01,r = 20$/unit, T,,, = 3units, T, = 3 units, T = 1 unit,
and v, = 0 unit. In addition, in the absence of disruption, we set
the manufacturer’s safety inventory as ss; = 170 units and the
emergency supplier’s initial inventory as IS, = 0 unit. Here,
suppose that the manufacturer employs a strategy of JIT or VMI
to its suppliers. Thus, we set /i, = 0$/unit. When starting a
simulation, we set the initial time = 10 (weeks), the termination
time=52 (weeks), and the duration step=1 (week). After
providing all parameter values into our dynamic simulation
model, we can obtain results on safety inventory, long-term
profit, and profit-loss risk under each of the three scenarios of
disruption mode. We also find the impacts of delaying core
technology transfer and multicycle inventory control policies on
safety inventory and the long-term profit.

5. Results and Sensitivity Analysis

5.1. Safety Inventory Policies. The optimal safety inventory
ss* can be obtained by the optimal “order-up-to-level” in-
ventory OUL?, as shown in (5). To analyse the optimal safety
inventory polices, we set the three scenarios of dynamic
disruption modes as follows:

(1) Disruption mode A ((m, k) = (20, 3)): it means that
the system is disrupted 20 times in one cycle and lasts
3 cycles due to one major event

(2) Disruption mode B ((m, k) = (3,20)): it means that
the system is disrupted 3 times in one cycle and lasts
20 cycles due to one major event

(3) Disruption mode C ((m, k) = (7,10)): it means that
the system is disrupted 7 times in one cycle and lasts
10 cycles due to one major event

We set three models according to the times of supply
disruption m and the duration of supply disruption k
from 3 to 20. Among the three models, mode A has
longest times of supply disruption but shortest duration
of supply disruption, mode B has its opposite, and mode
C has a medium time of supply disruption durations
between A and B. These settings can help figure out which
is more impactful on the safety inventory between the
times of supply disruption and the duration of supply
disruption.

To mitigate the risks from these disruption modes, we
suppose that there are three safety inventory policies:

(1) To hold safety inventory level ss* as a normal supply
case

(2) Toincrease the safety inventory level to 2.0ss* in each
cycle with the limit of the manufacturer’s production
capacity

(3) To increase the safety inventory level to 2.5ss* before
the start of supply disruption

The three scenarios above are based on our observations
from industry practices [3, 33]. Running our dynamic
system simulations, we obtain the manufacturer’s long-term
profit under different disruption modes and safety inventory
polices, as shown in Figure 3.

As can be seen from Figure 3, the manufacturer’s long—
term profit under the disruption mode A is highest at the 31



safety inventory policy (vs. the 1°* and 2"?). Thus, the
manufacturer should choose to hold safety inventory close
to 2.5ss* under dynamic disruptions with high frequency
but short duration. This may occur for large-scale urban
activities. Furthermore, the manufacturer should hold its
safety inventory before the start of supply disruption. On
the contrary, when dynamic disruptions occur at low
frequency but long duration (disruption mode B), the
manufacturer’s long-term profit is highest under the
second safety inventory policy. It means that the manu-
facturer should hold safety inventory closer to 2.0ss*
under dynamic disruptions with low frequency but long
duration. This may occur due to natural disasters. Fur-
thermore, it is better for the manufacturer to adopt the
multicycle inventory control polices than holding emer-
gency safety inventory in advance. Under the disruption
mode C with medium frequency but duration, the
manufacturer’s long-term profit is the lowest among the
three. This rarely happens. However, if it does, the
manufacturer should setup its inventory according a
special multicycle inventory control policy. Moreover, in
reality, major events such as large-scale urban activities
are associated with disruptions of high frequency and
short duration. The government usually informs firms in
advance about when to open and close public infra-
structure such as roads and ports. This helps manufac-
turers anticipate the disruption mode in advance and plan
accordingly.

5.2. Multicycle Inventory Control Policies. For the case of
multicycle disruption, for simplicity, we consider two
scenarios.

Scenario 1 (Mode A): (m,k) = (20,3). It means that the
system is disrupted 20 periods in one cycle and lasts 3 cycles
due to one major event.

Scenario 2 (Mode B): (m,k) = (3,20). It means that the
system is disrupted 3 periods in one cycle and lasts 20 cycles
due to one major event.

In our system dynamics simulation under these two
scenarios, we optimize the virtual dual-source purchasing
inventory under the multicycle inventory control strategy.
We are able to obtain the system’s operational performance
such as Initiate Emergency Inventory, Consumed Time of
Emergency Supplier Inventory, Inventory Cost/Total Cost of
Emergency Supplier, Average Order Delivered Rate, Market
Loss Rate, and Manufacturer’s Long-term Profits, which are
summarized in Table 1.

It can be seen from Table 1 that, in the disruption mode
of short disruption time and high frequency, it is necessary
to transfer the production core technology to the emergency
production supplier. The inventory emergency strategy
should be waiting for recovery. When the disruption time is
long and the frequency is low, the long-term profit of the
manufacturer can be increased by up to 25% by initiating the
emergency supplier (vs. the strategy of waiting for recovery).
In the case of 3, 20], the use of the emergency supplier is 48
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FiGure 3: The impact of dynamic disruption modes and safety
inventory policies on the long-term profit.

weeks, which is shorter than the disruption duration of the
whole cycle (60 weeks). This indicates that the imple-
mentation of emergency strategy is delayed for a certain
time.

Furthermore, we can draw the following management
insights. If there are frequent disruptions caused by regu-
latory measures such as short-term temporary power cuts,
the manufacturer can adopt the emergency inventory
strategy of waiting for recovery. If the supply is interrupted
for a long time due to large-scale activities or events, the
manufacturer should start the emergency production in-
ventory strategy.

5.3. Transfer Delay of Core Technologies. Assuming that the
delay of the production core technology transfer is T, =
{1,3,5,8} and the dynamic disruption is (m, k) = (6, 15).
Employing dynamic simulations, we find that the core
technology transfer delay does impact the emergency sup-
plier inventory (product delivery) and firm profit. Figure 4
illustrates how the delivered quantity from the emergency
supplier g;varies when the dynamic disruption occurs.

Figure 4 shows that the longer the core technology
transfer delay, the more quantity to be delivered from the
emergency supplier’s factory. This is because that the delay
will prolong the inventory use cycle of the emergency
supplier. This would increase the inventory holding cost and
decrease the long-term profit of the manufacturer, as shown
in Figure 5.

Based on these results above, we can conclude that the
manufacturer can manage their emergency inventory and
transfer their product core technology delay according to the
supply disruptive duration k and the times m. For dynamic
disruptions with higher frequency, managers should transfer
the production core technology to the emergency supplier to
decrease the delivered quantity (or inventory).

5.4. Risks of Long-Term Profit Loss. To estimate the risks of
the manufacturer’s long-term profit under dynamic supply
disruptions, we conducted a sensitivity analysis in terms of
the durations and the start times of supply disruptions.
Under the dynamic supply disruption portfolio (m, k), we
obtain three-dimensional surfaces, as illustrated in Figure 6.
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TaBLE 1: Operational performance of the virtual dual-source
purchasing inventory system.

Mode m IES? CT-EI IC/TC ADR (%) MRL (%) MLP
0,00 0 X 0 0 91.0 030 291,003
(20,1) 60 X 0 0% 85.5 320 271,612
(3,200 60 3 48  35% 895 1.80 251,529
(3,200 60 X 0 0% 734 9.10 201,177

Note: ES=emergency supplier; El=initiate emergency inventory; CT-
El = consumed time of emergency supplier inventory; IC/TC = inventory
cost/total cost of emergency supplier; ADR =average order delivered rate;
MLR = market loss rate; MLP = manufacturer’s long-term profits.
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FIGURE 4: The impact of core production technology transfer delay
on the emergency inventory.
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FIGUure 5: The impact of transfer core technology delay on the
manufacturer’s long-term profit.

In Figure 6, we can see that when m remains fixed and k
increases, the manufacturer’s long-term profit loss risk will
increase. This implies that the manufacturer will be willing to
adopt virtual production contracts to reduce the risk.
Therefore, the manufacturer should transfer the production
core technology to the emergency supplier earlier when a
supply disruption lasts longer.

Moreover, when k is fixed at a small value, the reduction
of the manufacturer’s long-term profit loss risk changes
insignificantly with the increase of dynamic supply dis-
ruptive times m. This means that the manufacturer is un-
willing to pay more for virtual production. Therefore, the
long-term profit loss is more sensitive to k than m. This
finding suggests that when anticipating a long-duration
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FIGURE 6: Sensitivity of the manufacturer’s profit loss risks to the
duration and times of supply disruptions.

supply disruption, the manufacturer transfers the core
technology to the emergency supplier. In short, an emer-
gency strategy of virtual dual sourcing is the key to succeed
under dynamic supply disruption.

6. Discussion and Managerial Insights

In Section 5, we first study safety inventory under the three
disruption modes (A, B, and C). Our result shows that,
under dynamic disruptions with high frequency but short
duration (disruption mode A), the manufacturer should
hold its safety inventory at a level closer to 2.5ss* before the
start of supply disruption to maximize the long-term profit
and minimize the profit-loss risk. Under dynamic dis-
ruptions occurring at low frequency but long duration
(disruption mode B), the manufacturer should hold safety
inventory at level of closer to 2.0ss*. Finally, under dis-
ruption mode C with medium frequency and duration, the
manufacturer’s long-term profit is the lowest among the
three. In practice, disruption mode B occurs due to natural
disasters, disruption mode C rarely happens, and disrup-
tion mode A may occur for large-scale urban activities.
Furthermore, under disruption mode A, our results indi-
cate that the government should inform firms in advance
about when to open and close public infrastructure such as
roads and ports. This helps manufacturers plan
accordingly.

Second, our results show that, under the disruption
mode of short disruption time and high frequency (dis-
ruption mode A), the manufacturer’s optimal policy is to
initiate the emergency supplier and the strategy of waiting
for recovery. In this condition, it is necessary for the
manufacturer to transfer the production core technology to
the emergency supplier. Under the disruption mode of long
disruption time and low frequency (disruption mode B), the
delivery time can be decreased by the use of the emergency
supplier. Therefore, we can draw the following management
insights. If there are frequent disruptions caused by regu-
latory measures such as short-term temporary power cuts,
the manufacturer can adopt the emergency inventory
strategy waiting for recovery. If the supply is interrupted for
a long time due to large-scale activities or events, the
manufacturer should start the emergency production in-
ventory strategy. This result can help the manufacturer
decide on when it should choose its emergency inventory
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strategy waiting for recovery or the emergency production
inventory strategy.

Third, we analyse the impact of core technology transfer
delay on the manufacturer’s delivery after the manufacturer
adopts the strategy of the emergency production inventory
strategy. Our result shows that the longer the core tech-
nology transfer delay is, the more the quantity to be de-
livered from the emergency supplier’s factory. Therefore, for
dynamic disruptions with higher frequency, managers
should transfer the production core technology to the
emergency supplier to decrease inventory.

Last, we analyse the impact of the disruption frequency
and duration on the manufacturer’s risks of long-term profit
loss. Our results show that when disruption frequency m
remains fixed but disruption duration k increases, the
manufacturer’s long-term profit loss risk will increase.
Hence, the manufacturer should adopt a virtual production
contact and transfer its core production technology to the
emergency supplier earlier when a supply disruption lasts
longer to reduce the risk of long-term profit loss. Moreover,
when disruption duration k is fixed at a small value, the
reduction of the manufacturer’s long-term profit loss risk
changes insignificantly with the dynamic supply disruptive
duration m. This implies when anticipating a long-duration
supply disruption, the manufacturer should transfer the core
technology to the emergency supplier as early as possible and
an emergency strategy of virtual dual sourcing is an optimal
policy to reduce the risk of long-term profit loss.

7. Conclusions and Future Research

When major urban events such as Olympic Games and G20
Summit are held in a city, they result in dynamic supply
disruptions and challenge firms’ supply chain management.
In this paper, we investigate how to deal with the dynamic
disruption risks in a production inventory system consisting
of a raw material supplier, a manufacturer, and a virtual
dual-source emergency supplier. We first study a hybrid
emergency strategy of robust “order-up-level” inventory
policy and virtual dual-sourcing production. Considering
three scenarios, we build a dynamic optimization model for
this virtual dual production-inventory system to maximize
the total long-term profit and minimize the profit loss risk.
We then use system dynamics simulation to obtain ap-
proximately optimal solutions.

By using the system dynamics simulation software of
VENSIM PL, we investigate the impacts of different dynamic
disruption models on the “order-up-level” inventory and the
impact of core production technology transfer delay on the
emergency safety inventory. We also conduct sensitivity
analysis to check how the manufacturer’s profit loss risk is
impacted by the durations and start times of supply dis-
ruptions. Our results show that the manufacturer’s long-
term profit under disruptions of high frequency but short
duration (e.g., disruptions due to large-scale urban activities)
is the highest. Hence, for such disruptions, it is optimal for
the manufacturer to increase the safety inventory level in
each disruption cycle. On the contrary, when dynamic
disruption takes place at low frequency but long duration

Complexity

(e.g., disruption due to a natural disaster), the manufac-
turer’s long-term profit is the highest under the second safety
inventory policy. In other words, for such disruptions, it is
optimal for the manufacturer to adopt the emergency
strategy of raising the safety inventory level before
disruption.

Moreover, our results show that the longer the core
production technology transfer delay is, the more the
quantity to be delivered from the emergency supplier. The
delay of technology transfer also has a greater impact on
the profit in the recovery cycle after disruption. The
disruption duration affects the profit loss risk more than
the number of disruptions. Under dynamic disruptions
with higher frequency, managers should transfer their
core technology to reduce the delivered quantity (or in-
ventory). In addition, the virtual dual-source production
inventory strategy is the optimal under dynamic dis-
ruption risk. Therefore, an emergency strategy of virtual
dual sourcing is the key to manage dynamic supply
disruptions.

In this study, based on industry observations, we
limit ourselves to three safety inventory polices
according to the three possible scenarios of supply dis-
ruptions. Future research can identify and investigate
other possible safety inventory policies. It is also
worthwhile to make our research more targeted to the
COVID-19 global pandemic. Besides, flexible capacity of
the manufacturer and emergency supplier is a promising
strategy to deal with dynamic supply disruption. Hence,
future research can be carried out on the trade-off be-
tween flexible capacity and cost under dynamic supply
disruption risks. Last but not least, in this paper, we have
conducted several numerical examples and their sensi-
tivity analysis. However, to make these results more
realistic, in future research, more numerical examples
and sensitivity analysis can be carried out relaxing one or
more assumptions in this paper.
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