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Summary

Essays on Tree-based Methods for Prediction and Causal Inference

Eoghan Patrick O’Neill

The first chapter of this thesis contains an application of causal forests to a residential electricity smart

meter trial dataset. Household specific estimates are obtained for the effect of a Time-of-Use pricing scheme

on peak demand. The most and least responsive households differ across education, age, employment status,

and past electricity consumption. The results suggest that past consumption information is more useful than

pre-trial survey information, which includes building characteristics, household characteristics, and responses

to appliance usage questions.

The second chapter explores new variations of Bayesian tree-based machine learning algorithms. Bayesian

Additive Regression Trees (BART) (Chipman et al. 2010) and Bayesian Causal Forests (BCF) (Hahn et al.

2020) are state-of-the-art machine learning methods for prediction and causal inference. A number of existing

implementations of BART make use of Markov Chain Monte Carlo algorithms, which can be computationally

expensive when applied to high-dimensional datasets, do not always perform well in terms of mixing of chains,

and have limited parallelizability.

The second chapter introduces four variations of BART that do not rely on MCMC:

1. An improved implementation of the existing method BART-BMA (Hernandez et al. 2018), which av-

erages over sum-of-tree models found by a model search algorithm, performs well on high-dimensional

datasets, and produces more interpretable output than other BART implementations because the out-

put includes a comparatively small number of sum-of-tree models. Improvements are made to the model

search algorithm, calculation of predictions, and credible intervals.

2. A treatment effect estimation algorithm that combines the model structure of BCF with the implemen-

tation of BART-BMA (BCF-BMA). This method successfully accounts for confounding on observables

using the BCF parameterization, while retaining the parsimonious model selection approach of BART-

BMA.

3. A simple alternative BART implementation algorithm that uses importance sampling of models (BART-

IS). This approach contrasts with existing MCMC and model-search based approaches in that BART-IS

makes fast data-independent draws of many sum-of-tree models. The advantages of this approach are

that it is straightforward to implement, fast, and trivially parallelizable.

4. Bayesian Causal Forests using Importance Sampling (BCF-IS). This is a combination of the BCF model

framework with the BART-IS implementation. BART-IS and BCF-IS exhibit comparable performance

to BART-MCMC and BCF across a large number of simulated datasets.

The second chapter also includes some illustrative applications. The methods are extendable to multiple

treatments, multivariate outcomes, and panel data methods.

The third chapter of this thesis describes how the methods introduced in the second chapter can be

generalized from regression and treatment effect estimation for continuous outcomes, to a range of models

with various link functions and outcome variables. As examples of how to apply the general approach,

Logit-BART-BMA and Logit-BART-IS are introduced with illustrative applications.
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Chapter 1

Causal Forest Estimation of Heterogeneous

Household Response to Time-Of-Use

Electricity Pricing Schemes

Abstract

We examine the household-specific effects of the introduction of Time-of-Use (tou) electricity pricing schemes.

Using a causal forest (Wager & Athey 2018, Athey et al. 2019), we consider the association between past

consumption and survey variables, and the effect of tou pricing on household electricity demand. We

compare averages of variables across quartiles of estimated demand response. Households that are younger,

more educated, and that consume more electricity, are predicted to respond more to a new pricing scheme.

In addition, variable importance measures suggest that some aspects of past consumption information may

be more useful than survey information in producing these estimates.1

1.1 Introduction

If a policymaker believes the impacts of a particular policy are heterogeneous in a given population, then it

is helpful to describe the distribution of household-specific effects of the policy. The critical question is: does

the policymaker know ex ante which characteristics of individuals are driving the differences in the impact

of the policy?

Researchers often describe subpopulations that are of interest a priori, and which can be defined by a

known combination of covariates. However, increasingly researchers have many covariates at their disposal

and it may not be clear which covariates should be used to categorise heterogeneity, nor what functional form

best describes the association between these covariates and treatment effects.

The introduction of an electricity pricing scheme is an example of a policy with heterogeneous effects.

Consumers in different socioeconomic groups and with distinct historical intra-day load profiles and be-

havioural characteristics, may respond differently to the introduction of tariffs that charge different prices

for electricity at different times of the day. Customers who can (cannot) adapt their consumption profile to

tou tariffs will accrue a benefit (cost). Those who consume electricity at more expensive peak periods, and

who are unable to change their consumption patterns, could end up paying significantly more.

In assessing whether demographic variables are informative in terms of the impact of tou tariffs on load

profiles, the Customer-Led Network Revolution project (Sidebotham 2015) noted

.. a relatively consistent average demand profile across the different demographic groups, with

much higher variability within groups than between them. This high variability is seen both in

1This chapter is co-authored with Dr. Melvyn Weeks.
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total consumption and in peak demand.

In addition, the question of which demographic variables are important when considering the impact of

energy policies ignores the fact that many of these variables should be considered together, in a multiplicative

fashion. One reason for this finding might be that it is the (unknown) combination of income, household

size, education, and daily usage patterns that describes a particularly responsive or unresponsive group.

In this paper we consider the household-specific effects on customers following the introduction of a

Time-of-Use (tou) pricing scheme where the price per kWh of electricity usage depends on the time of

consumption. The pricing scheme is enabled by smart meters, which records consumption every half-hour.

Using machine learning methods, we describe the association between the effect of tou pricing schemes on

household electricity demand and a range of variables that are observable before the introduction of the new

pricing schemes.

We apply a recently developed method, known as a causal forest, which aggregates over estimates from

causal trees (Athey & Imbens 2016, Wager & Athey 2018, Athey et al. 2019). This method searches across

covariates for good predictors of heterogeneous treatment effects. A causal tree provides an interpretable

description of heterogeneity, and causal forests can be used to obtain individual-specific estimates of treatment

effects. Heterogeneous effects are described by Conditional Average Treatment Effect (cate) estimates,

which are the expected effects of a treatment for individuals in subpopulations defined by covariates. We

characterize the most and least responsive households by applying the methods described by Chernozhukov,

Demirer, Duflo & Fernandez-Val (2017).

Given that policy makers are often interested in the factors underlying a given prediction, it is desirable

to gain some insight to which variables in the large set of covariates are most often selected. A key challenge

follows from that fact that partitions generated by tree-based methods are sensitive to subsampling, whereas

the use of an ensemble method such as causal forests produces more stable, but less interpretable estimates.

To address this problem we utilise variable importance measures to consider which variables are chosen

most often by the causal forest algorithm. However, in the estimation of variable importance it is important

to account for the impact of the varying information content across continuous versus discrete random

variables. In particular, tree based methods can be biased towards continuous variables, given the presence of

more potential splitting points. We address this issue by including permutation-based tests for our variable

importance results. This is particularly important for this analysis given that many of our demographic

variables are either binary or categorical.

In section 1.2 we first describe the potential outcomes framework and conditional average treatment

effects, then describe causal trees and causal forests. We describe the variable importance measures and

outline how we will apply the methods of Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) to describe

heterogeneity between the most and least demand responsive households. In section 1.3, we introduce the

application to electricity smart meter data, and review existing literature. In section 1.4, we present the

results. Section 1.5 concludes.

1.2 Methods for Estimation of Heterogeneous Treatment Effects

The estimand is defined using the potential outcomes framework introduced by Neyman (1923) and developed

by Rubin (1974). Let Xi be a vector of covariates for individual i. Suppose that there is one treatment group

of interest. Yi(1) (Yi(0)) denotes the potential outcome if individual i is allocated to the treatment (control)

2



group. The causal effect of a treatment on individual i is therefore Yi(1)− Yi(0). The fundamental problem

of causal inference is that we do not observe the causal effect for any i (Holland 1986).

The estimand that we consider is the Conditional Average Treatment Effect (cate), also referred to as

the Individual Treatment Effect (ite)

τ(x) = E[Yi(1)− Yi(0)|Xi = x]. (1.1)

Whereas the ate can be estimated by a difference in means ȳt− ȳc, where ȳt (ȳc) is the mean of the outcome

variable for the treated (control) group, the cate can be thought of as a subpopulation average treatment

effect.2 3 The cate is identified under unconfoundedness, i.e. Yi(1), Yi(0) ⊥ Ti|Xi , and overlap, i.e.

0 < Pr(Ti = 1|Xi = x) < 1 ∀ x, where Ti denotes the treatment indicator variable.

A cate estimate can be obtained from a linear model by including interactions between the treatment

indicators and the conditioning variable(s) of interest. The inclusion of interaction terms in a linear model

is a common technique for exploring the heterogeneity of treatment effects in areas ranging from biomedical

science to the social sciences.4

It is possible to search for heterogeneity in treatment effects simply by separately estimating cates using

many possible conditioning variables and repeatedly estimating the standard linear regression model, and

conducting tests of multiple hypotheses. However, a clear problem is false discovery and the need to adjust

significance levels for multiple hypothesis testing which can limit the power of a test to find heterogeneity.

A number of alternative machine learning methods allow the researcher to explore more complex forms of

heterogeneity. Recent methods for ite estimation include lasso (Imai et al. 2013, Weisberg & Pontes 2015,

Tian et al. 2014), bart (Hill 2011, Hahn et al. 2017, Logan et al. 2019), other tree-based methods (Powers

et al. 2017, Oprescu et al. 2018, Lu et al. 2018, Lechner 2019), the R-learner (Nie & Wager 2017b), neural

networks (Shalit et al. 2017, Farrell et al. 2018, Atan et al. 2018, Shi et al. 2019), Generalized Adversarial

Networks (Yoon et al. 2018), and many more.

In this study we are interested in allowing for many possibly nonlinear interactions between covariates.

Forest methods perform well in capturing nonlinear interactions. Furthermore, causal forests perform rea-

sonably well relative to other methods and have known asymptotic properties (Knaus et al. 2018, Alaa &

Van Der Schaar 2019, Athey et al. 2019). Therefore we apply the causal forest method for ite estimation.

Regression and Causal Trees

Causal forests (Wager & Athey 2018, Athey et al. 2019) average the predictions of many causal trees (Athey &

Imbens 2016). Causal trees are decision trees for treatment effect estimation, and can be viewed as a variation

on standard regression trees, with a different splitting criterion, and different terminal node estimates.

A single regression tree is constructed as follows (Friedman et al. 2009, Breiman et al. 1984). Suppose

there are p covariates and N observations. The objective is to partition the covariate space X into M

mutually exclusive regions R1, ..., RM , where the outcome for an individual with covariate vector x in region

Rm is estimated as the mean of the outcomes for training observations in leaf Rm. The following algorithm

2In instances where we condition on x being in some subset of the covariate space, i.e. x ∈ A ⊂ X, and τA = E[Yi(1)−Yi(0)|x ∈
A], we also refer to this as the cate (with suitably re-defined covariates).

3Another estimand is the average treatment effect conditional upon observed covariates τ̄ = 1
N

∑N
i=1 τ(xi) =

1
N

∑N
i=1 E[Yi(1) − Yi(0)|Xi = xi]. Imbens & Rubin (2015) refer to this as the conditional average treatment effect, but we

shall use the above definition of the cate.
4A description of the application of linear regression methods for the purpose of estimating treatment effects in randomized

experiments can be found in Athey & Imbens (2017).
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is used to apply binary splits of the data:

Let Xj be a splitting variable and s be a split point. Define R1(j, s) = {X|Xj ≤ s} and R2(j, s) =

{X|Xj > s}.5 The algorithm selects the pair (j, s) that solves:

min
j,s

 ∑
xi∈R1(j,s)

(yi − ȳ1(j, s))2 +
∑

xi∈R2(j,s)

(yi − ȳ2(j, s))2

 (1.2)

where ȳ1(j, s) and ȳ2(j, s) are the mean outcomes in R1(j, s) and R2(j, s) respectively. When the data has

been split into two regions, the same process is applied separately to each region. Then the process is repeated

on each of the four resulting regions, and so on.

Trees can be fully grown, or grown up to a stopping rule, or a penalty term can be included in the

splitting criterion that penalizes the tree size (Friedman et al. 2009). Causal tree (Athey & Imbens 2016) leaf

estimates are differences in means between treated and untreated observations, and the splitting criterion is

different to (1.2) because the goal is to minimize the expected mean square error of these treatment effect

estimates.

Athey & Imbens (2016) also note that estimates produced by standard regression tree algorithms are

biased because the same data is used for tree construction and for estimating the terminal node means.

Athey & Imbens (2016) therefore suggest separating the training data into two independent subsamples,

one for construction of the tree, and one for estimation of the terminal node means. This so-called honest

estimation ensures unbiased estimates.

Random and Causal Forests

The prediction of a random forest (Friedman et al. 2009) is the average of many (B) unpruned regression

trees. Each tree, Tb (b indexing the bootstrap samples), is produced using a bootstrap sample of size N

without replacement from the training data. At each split in the tree, the algorithm uses a random subset of

the set of all covariates as potential splitting variables. Each tree is fully grown up to a minimum leaf size.

The prediction for an individual with a vector of covariates x is then 1
B

∑B
b=1 Tb(x), where Tb(x) is the

estimate produced by tree b. The trees are not independent because two bootstrap samples can have some

common observations, and therefore the correlation between trees limits the benefits of averaging. However,

this correlation is reduced through the random selection of the input variables.

Similar aggregations over causal trees, known as causal forests, can improve the accuracy of treatment

effect estimates. Wager & Athey (2018) outline the properties of causal forests and show that, under certain

assumptions, the predictions from causal forests are asymptotically normal and centred on the true treatment

effect for each individual. Recent applications of causal forests can be found in articles by Davis & Heller

(2017a,b) and Bertrand et al. (2017).

Athey et al. (2019) introduce a generalization of random forests which can be viewed as an adaptive

kernel method. This generalized random forest (grf) framework can be used for estimation of a variety

of models, including treatment effect estimation. The causal forest method introduced by Wager & Athey

(2018) is almost equivalent to the grf implementation of a causal forest without centering. grf involves

an approximate, gradient-based loss criterion, and orthogonalizes the outcome treatment variables from

estimates produced by separate forests before fitting the causal forest.

5If a splitting variable is categorical with q unordered values, then we can consider all 2q−1− 1 possible splits of the q values
into two groups, or we can use binary variables for each category.
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Variable Importance

A general issue which applies to standard regression trees and random forests is the trade-off between in-

terpretability and stability. A single causal tree splits the data into relatively few leaves. The results are

easy to interpret given that a simple tree diagram allows the researcher to quickly identify the subgroup to

which any household belongs by following a set of decision rules. Breiman (2001) and Strobl (2008) note that

single trees can be unstable with small changes in the training data resulting in a very different model (tree).

However, although stable forests generate better predictive performance, the interpretability of a single tree

is lost when we move to an ensemble method, such as a causal forest.

Across the many trees within a forest, it is not immediately clear what covariates most strongly influence

the final estimates, and how different covariates interact. Variable importance measures describe which vari-

ables are chosen most often by the causal forest algorithm. However, in the estimation of variable importance

it is important to account for the impact of the varying information content across continuous versus discrete

random variables. In particular, tree based methods can be biased towards continuous variables, given the

presence of more potential splitting points. We address this issue by including permutation-based tests for

our variable importance results.

We apply the default variable importance measure for the command causal forest in the R package grf.

This variable importance measure is based upon a count of the proportion of splits on the variable of interest

up to a depth of 4, with a depth-specific weighting.6

imp(xj) =

∑4
k=1

[ ∑
all trees number depth k splits on xj∑
all trees total number depth k splits

]
k−2

∑4
k=1 k

−2
(1.3)

Permutation Test for Causal Forest Variable Importance

Following the method of Altmann et al. (2010) for random forests,7 and Bleich et al. (2014) for BART,

we compute “p-values” for the variable importances. The adjusted importance measures are referred to as

“p-values” but do not truly have the properties of p-values for a test of the null hypothesis of conditional

independence. Therefore these measures can be viewed as corrected variable importances (which take lower

values for more important variables), but should not be considered as reflective of rigorous hypothesis testing

(Nembrini 2019). The calculation of “p-values” involves permuting the dependent variable 1000 times and

obtaining variable importances for all variables from 1000 causal forests fitted separately using the 1000

permutations as dependent variables. The variable importances are also obtained from a causal forest using

the original, unpermuted dependent variable. Then, using the “local” test described by Bleich et al. (2014), we

obtain a “p-value” for each variable by finding the proportion of the 1000 causal forests for which the variable

had a greater variable importance measure than that obtained from the causal forest with the unpermuted

dependent variable.

If the splits in trees spuriously occur (in the sense that variables might not be as important, or strongly

associated with the outcome, as suggested by the number of splits) more often on continuous variables and

variables with more categories, then this should also occur when the dependent variable is permuted. In this

6Variable importances for categorical variables are the sum of the variable importances of binary variables. The parameters
we set for the causal forest command are: 15000 trees, bootstrap samples of half the data, one third of covariates randomly
drawn as potential splitting variables, and minimum node size of 5.

7Altmann et al. (2010) show that “p-values” based on permutation of the dependent variable can address the issues of bias
towards variables with more categories, and masking of the importance of groups of highly correlated variables.
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instance, the “p-value” should be unaffected unless the extent of the over-selection of variables for splitting

is also dependent on the true importance of the variables. We investigate this issue in further detail in

Appendix A, which contains a simple simulation study of this permutation based variable importance test.

The simulations suggest that the “p-values” are potentially unaffected by the bias of variable splitting towards

variables with more possible splitting points.

Nembrini (2019) investigates the properties of permutation based variable importance tests for random

forests, and notes the limitations of permutation of the dependent variable as a method for hypothesis

testing. The “p-values” obtained from the permutation-based “test” should be viewed as corrected importance

measures, rather than interpreted as actual p-values for a hypothesis test.

Testing and Describing Treatment Effect Heterogeneity

In the results section we provide point ite estimates with confidence intervals obtained using the methods

described by Athey et al. (2019). However, we are also interested in describing heterogeneity through features

of the treatment effect function τ(x) (Equation 1.1), which requires a different approach to inference (Cher-

nozhukov, Demirer, Duflo & Fernandez-Val 2017) involving repeatedly obtaining two random subsamples,

and training a causal forest on one subsample, and performing a statistical test of interest on the other sub-

sample. A sample split allows for valid inference conditional on the subsample of data used for constructing

the causal forest, and repeated sample splitting is used in accounting for the uncertainty induced by the

random sampling. This requires the training of many causal forests, in contrast to the requirement of a single

causal forest for valid ite prediction intervals.

We apply the methods of Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) to first test for the

presence of heterogeneity, and then characterize the association between covariates and demand response.

This approach, summarized below, involves repeated data splitting to avoid overfitting and to achieve validity.

Let Y be the outcome variable, D be the treatment indicator variable, and Z be all other covariates. We

split the data in half into a main sample DataM and auxiliary sample DataA 1000 times. For each split we

train a causal forest on DataA and also a regression forest on the untreated observations in DataA. Then

we obtain treatment effect estimates, S(Z) by applying the trained causal forest to DataM , and we obtain

baseline outcome estimates, B(Z) by applying the trained regression forest to DataM .8 This will result in

1000 sets of parameter estimates that can be used for valid inference on the parameters. See below for a

description of the parameters of interest, and see Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) for

a description of the inference methods. This approach accounts for estimation uncertainty conditional on

the auxiliary sample and splitting uncertainty induced by random partitioning of the data into main and

auxiliary samples. (Chernozhukov, Demirer, Duflo & Fernandez-Val 2017).

First, we test for heterogeneity using the Best Linear Predictor (blp) of the cate (Chernozhukov, Demirer,

Duflo & Fernandez-Val 2017). We obtain the following estimated model by weighted OLS:

Yi = α̂0 + α̂1B(Zi) + β̂1(Di − p(Zi)) + β̂2(Di − p(Zi))(S(Zi)− S(Z)) + ε̂i (1.4)

where the weights are {p̂(Z)(1 − p̂(Z))}−1 and S(Z) = |M |−1
∑
i∈M S(Zi). For the randomized controlled

trial dataset used in this paper, we set p̂(Z) equal to the sample proportion of treated individuals.

The parameter β2 reflects the extent to which the estimated treatment effect is a proxy for the true

treatment effect function (1.1). Rejection of the null hypothesis β2 = 0 implies that there is heterogeneity

8B(Z) is included to improve efficiency. Inference would still be valid if we removed B(Z) from equations 1.4 and 1.5.
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and S(Z) is a relevant predictor. Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) outline how to

perform valid inference on β2. For each of the 1000 data splits into main and auxiliary samples, we keep the

estimates β̂1, β̂2, and upper and lower bounds of 95% confidence intervals. The medians of the β̂1 and β̂2 are

the final β1 and β2 estimates. Similarly, medians of upper and lower bounds define the confidence intervals.9

The confidence level of the final interval is 90%, and accounts for splitting uncertainty.

We use the estimated treatment effects S(Z) to divide the main sample into groups G1 to G4, where G1

is the 25% of the data that has the lowest (i.e. most negative) treatment effect estimates and G4 has the

highest treatment effect estimates. Sorted Group Average Treatment Effect (gate) estimates (Chernozhukov,

Demirer, Duflo & Fernandez-Val 2017) are obtained from the following estimated model:

Yi = α̂0 + α̂1B(Zi) +

K∑
k=1

γ̂kI(Gk) + ε̂i (1.5)

where I(Gk) = 1 if individual i is in group Gk and 0 otherwise. The weights are the same as in equation 1.4.

Inference on γk and the difference γ4 − γ1 is made using the same approach as for β2 in (1.4).

Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) also outline how to perform valid inference on the

average of any function of the outcome and pre-trial covariates, g(Y,Z), within group Gk, and differences

in these averages between groups G1 and G4. This is referred to as Classification Analysis (clan) and we

utilise this method to test for differences in the outcome and pre-trial covariates between the most and least

affected 25%.

In summary, the methods of Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) allow us to test for

the existence of heterogeneity; test the relevance of our ite estimates; and to characterise heterogeneity in

the treatment effects by describing the most and least affected individuals.

1.3 Heterogeneity of Household Electricity Demand Response

tou tariffs are becoming more implementable through the roll-out of smart metering technology. The sub-

sequent increase in the availability of large amounts of past electricity consumption data allows for more

household specific targeting of electricity pricing and other demand stimuli. Furthermore, in a world where

energy suppliers rely increasingly on renewables which are intermittent in nature, measures to reduce peak

demand are required as part of the need to balance supply and demand. Understanding heterogeneity in

household responses to tou pricing is of interest to both regulators and retailers.

The British energy regulator, Ofgem (2013), is interested in the impact of new pricing schemes upon

vulnerable and low income customers. Faruqui et al. (2010) postulate that two potentially offsetting forces

influence how we expect low-income customers to be impacted differently by new electricity pricing schemes.

First, lower income customers can have a greater proportion of their demand in off-peak hours, and therefore

can benefit from tou pricing without adjusting their daily demand profile. Second, we might not expect

these customers to shift and reduce load as much as other customers because they have lower usage levels in

general and less discretionary usage. Faruqui et al. (2010) confirm these hypotheses using US data, and find

that low income customers change their electricity usage less than higher income customers.

Counter to some of this evidence, studies by Lower Carbon London (Schofield et al. 2014) and Fron-

9The final upper bound is the lower median of the 1000 upper bounds, and the final lower bound is the upper median of the
1000 lower bounds. The final estimates of β1 and β2 are mid-points of lower and upper medians of β̂1 and β̂2 (Chernozhukov,
Demirer, Duflo & Fernandez-Val 2017).
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tier Economics and Sustainability First (DECC 2012) have noted the generally low associations between

demographic variables and demand response, and in particular, the lack of evidence pertaining to differing

responses of low-income and vulnerable customers. One possible reason for this is that individuals most

affected by energy policies might be identified through the interaction of a number of variables. For example,

the Centre for Sustainable Energy produced a report (Preston et al. 2013) which used interactions of vari-

ables to define the groups of households predicted to face the largest increase in household bills as a result

of changes in energy policy.

In this study we examine the importance of variables constructed from historic load profiles. Relatively

few studies have conditioned upon past usage data when estimating treatment effects of electricity pricing

schemes. Some recent examples include a study using US data by Harding & Lamarche (2016), who split

the sample into low, medium, and high usage customers. The results suggest that high usage customers

decrease peak usage to a greater extent, which is expected because these customers have more reducible

usage. However, surprisingly low-income customers appear to increase consumption in off-peak time periods.

The authors note that this substantial load-shifting by low-income customers demonstrates the difficulty in

anticipating the impact of new pricing schemes for some customer segments. A number of recent studies

have used past electricity usage data for the estimation of household-specific treatment effects. Bollinger

& Hartmann (2015) condition upon the empirical distribution of past electricity usage and consider how

a utility can gain from targeting based upon ite estimates. Balandat (2016) estimates ites by comparing

predictions of electricity usage under control group allocation to realised usage under treatment allocation

during the trial period.

Data

The dataset used in this project is from the Electricity Smart Metering Customer Behavioural Trial conducted

by the Irish Commission for Energy Regulation (CER 2011). The cer note that this is “one of the largest and

most statistically robust smart metering behavioural trials conducted internationally to date” (CER 2011).

The dataset consists of half hourly residential electricity demand observations for 4225 households over 536

days. The benchmark period began on 14th July 2009 and ended on 31st December 2009. Households

were then randomly allocated to either a control group or various tou Pricing Schemes and Demand Side

Management stimuli from 1st January 2010 to 31st December 2010.

All households were charged the normal Electric Ireland tariff of 14.1 cents per kWh during the benchmark

period. During the trial period the control group remained on the tariff of 14.1 cents per kWh while the test

group were allocated to tariffs a, b, c, or d.10 The tariffs a to d were structured as shown in Table 1.1, and

are graphed in Figure 1.1a.

Households in the test group were also allocated to one of the following Demand Side Management (dsm)

stimuli: Bi-monthly detailed Bill; Monthly detailed bill; Bi-monthly detailed bill and In-Home Display (ihd);

Bi-monthly detailed bill and Overall Load Reduction (olr) incentive.

The identification of ates depends upon unconfoundedness and overlap. The cer took a number of steps

to ensure that the samples for treatment groups were representative and did not exhibit notable biases. A

stratified random sampling framework was used with phased recruitment. Non-respondents and attriters were

surveyed and adjustments were made accordingly. Those who opted in were compared to the national profile.

The full dataset contains 4225 households, with 768 households in the control group and 233 households

10There was also a Weekend tariff group, which we exclude from this study.
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(a) Trial period tou tariffs

(b) Pre-trial average half-hourly demand for two households

Figure 1.1: Prices and examples of demand profiles
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Table 1.1: tou Tariff details

TOU Tariffs Night Day Peak
(cents per kWh) 23.00-08.00 08.00-17.00 every day 17.00-19.00 Mon-Fri

19.00-23.00 every day Excluding holidays
17.00-19.00 weekends
and holidays

Tariff A 12.00 14.00 20.00
Tariff B 11.00 13.50 26.00
Tariff C 10.00 13.00 32.00
Tariff D 9.00 12.50 38.00

facing the combination of tariff c and ihd stimulus, which will be the treatment group of interest in this

study.

Figure 1.1b gives an example of average half hourly usage on weekdays before the trial period for house-

holds with similar survey responses. The two households both have four people in a 3 bedroom semi-detached

house, in which the chief earner is an employee and lower middle class with 3rd level education. Both house-

holds also typically have one person at home during the day, own their home, have timed oil heating, and

have a similar stock of appliances. This figure shows that even households that are similar across multiple

characteristics do not necessarily have the same patterns of demand use. Therefore these type of survey

variables are of limited use in describing demand heterogeneity.11

1.4 Results

The outcome variable is average half-hourly peak time electricity consumption during the trial period (mea-

sured in kWh), excluding weekends. We restrict attention to Tariff c in combination with the In-Home

Display (ihd). The ihd stimulus is of greater interest than the other information stimuli, and tariff c has a

high ratio of peak to off-peak prices and more observations than any other tariff combined with the ihd.12

The standard ate estimates for the tariff c with ihd range from -0.073 to -0.092 kWh for an average

peak half hour, depending on the set of controls.13 Mean half-hourly peak consumption for the control group

during the trial period (one full year) was 0.799 kWh, and mean peak consumption for all households during

the pre-trial period (half a year) was 0.828 kWh. Therefore these treatment effects are of the order of 10%

of peak consumption.

Below we present two estimates of single causal trees as an example of the instability of single tree estimates

and small sample size. Causal forest Individual Treatment Effect (ite) estimates are then plotted with

confidence intervals and summarized in density plots. We also apply the methods described by Chernozhukov,

Demirer, Duflo & Fernandez-Val (2017) to test the hypothesis β2 = 0 in equation (1.4), and confirm that

there is heterogeneity of treatment effects and that Causal forest Individual Treatment Effect (ite) estimates

are relevant predictors of the true ites. We test the association between Causal forest Individual Treatment

Effect (ite) estimates and a set of pre-trial variables using the approach of Chernozhukov, Demirer, Duflo

& Fernandez-Val (2017). Finally, variable importance measures are presented in order to consider which

variables are the strongest determinants of the structure of the trees in the forest.

11We make use of pre-trial survey data, but we cautiously avoid using post-trial survey information. Prest (2017) applies a
causal tree method to this data, but the estimates are potentially biased by conditioning on post-trial survey information. Our
methods also differ from those of Prest (2017) in that we use a causal forest.

12343 households were allocated to Tariff C with the IHD. Only 126 households were allocated to tariff D with the IHD.
13These results are obtained by linear regression of average peak usage on the treatment indicator.
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Causal Trees

Figures 1.2a and 1.2b show estimated causal trees.14 The set of potential splitting variables is given in Table

1.2.15

Table 1.2: Potential splitting variables for Causal Trees and Causal Forest

Name of variable

Survey variables (categorical)
Age of respondent Sex of respondent
Class of chief income earner Regular internet use
Employment status of chief income earner Other reg. internet users
Number of bedrooms Education of chief earner
Type of home Electric central heating
Alone or other occupants Electric plugin heating
Own or rent the home Central water heating
Number of electric cookers - number Immersion water heating
Internet access Instant water heating
Approximate age of home Number of washing machines
Lack money for heating Number of tumble dryers
Number of dishwashers Number of instant electric showers
No. showers elec. pumped from hot tank Type of cooker
Number of plug-in convector heaters Number of freezers
Number of water pumps or electric wells Number of immersion water heaters
Number of small TVs Number of big TVs
Number of desktop PCs Number of laptop PCs
Number of games consoles Has an energy rating
Proportion of energy saving lightbulbs Prop. double glazed windows
Lagging jacket Attic insulation
External walls insulated

Electricity usage variables (continuous)
Mean usage Min. usage
Variance of usage Max. usage
Mean peak usage Mean nonpeak usage
Variance of peak usage Variance of nonpeak usage
Mean night usage Mean daytime usage
Variance of night usage Variance of daytime usage
Mean usage - weekdays Mean peak usage - weekdays
Variance of usage - weekdays Var. peak usage - weekdays
Mean night usage - weekdays Mean daytime usage - weekdays
Variance of night usage - weekdays Var. daytime usage - weekdays
Mean daily maximum usage Mean usage - weekends
Mean daily minimum usage Variance of usage - weekends
Mean of half-hour coefficients of variation Mean usage - each month (July-Dec)
Avg. night usage/ avg. daily usage Var. of usage - each month (July-Dec)
Avg. lunchtime usage/ Avg. daily usage Mean usage - each half-hour
Mean night usage - weekends Mean daytime usage - weekends
Variance of night usage - weekends Var. daytime usage - weekends

The only difference in estimation of the two trees is the seed for random number generation.16 The

diagrams contain 90% confidence intervals.

14The trees were obtained using the R package causalTree.
15The trees are “honest”, i.e. separate data is used for obtaining splitting points and for obtaining terminal node estimates.

Half of the data is used for creating the splits in the tree, and half is used for honest estimation. The minimum number of
treatment and control observations required for a leaf split is set to ten.

16The seed determines the subsampling of the data into splitting and estimation data, and subsampling for cross-validation.

11



 

 

 

 

 

 

 

 

   

 

 

 

 

 

  

 

 

 

 

-0.09

72% 

No TV greater than 21 inches? No 

-0.084

83% 

-0.086

100% 

Respondent older than 56 years or refused? Has a TV less than 21 inches? 

Pre-trial minimum half-hourly peak 

electricity consumption ≥0.0025 kWh ? 

Pre-trial average 15:00-15:30 electricity consumption <1.3 kWh? 

Pre-trial minimum half-hourly peak 

electricity consumption <1.3 kWh ? 

Pre-trial variance of h-h weekend and 

holiday electricity ≥0.26 ? 

-0.018

34% 

Has an electric cooker? 

 
0.0093

4% 

-0.036

11% 

-0.24

14% 

-0.15

7% 

0.017

10% 

0.012

17% 

-0.058

17% 

Yes 

Difference in Means, Trial Period (TOU demand 

minus flat price demand) (kWh per half-hour) 

Proportion of Data in Subgroup 

(-0.251, -0.005) 

 

Yes 

No 

No 

No 

Yes 

90% Confidence Intervals 

-0.086

65% 

-0.13

17% 

-0.1

13% 

-0.2

7% 

-0.19

18% 

Yes 

(-0.249, 0.178) (-0.397, -0.089) 

 

(-0.251, 0.270) (-0.278, 0.075) 

 

(-0.117, 0.142) (-0.129, 0.163) (-0.361, -0.033) (-0.354, 0.048) 

-0.15

31% 

Yes NoYes No

Yes 
No Yes 

No 

(a) Single Tree Example 1

 

 

 

 

 

 

 

 

   

 

 

 

 

 

  

 

 

 

Pre-trial average 02:30-03:00 

electricity consumption <0.23 kWh? 

Stand-alone freezer? 

Pre-trial average 08:30-09:00 

electricity consumption <0.26 kWh? 

-0.13

20% 

-0.057

100% 

Pre-trial average 08:30-09:00 electricity 

consumption ≥ 0.38 kWh ? 

-0.037

54% 

-0.08

46% 

Pre-trial min. h-h elec. ≥ 0.006 kWh? 

-0.017 

24% 

-0.18

17% 

0.088

7% 

-0.045

16% 

-0.27

9% 

Yes No 

Difference in Means, Trial Period (TOU demand 

minus flat price demand) (kWh per half-hour) 

Proportion of Data in Subgroup 

(-0.325, -0.045) (-0.163, 0.339) (-0.185, 0.094) (-0.402, -0.138) (-0.203, 0.177) 

0.1

10% 

-0.1

11% 

-0.032 

22% 

-0.13 

25% 

Pre-trial variance of h-h weekday 

night elec. cons. ≥ 0.052 kWh? 

 

(-0.211, 0.011) (-0.082, 0.287) 

Yes 

Yes Yes Yes 

No 

No No No 

No Yes 

90% Confidence Intervals 

(-0.271, 0.017) 

-0.013

10% 

Pre-trial variance of h-h peak 

elec. at weekends ≥0.4 kWh ? 

No Yes 

-0.033 

30% 

(b) Single Tree Example 2 - Different seed

12



It can be immediately observed from these trees that the partition of the data generated by the causal

tree algorithm is sensitive to the input data. This can be viewed as partly a sample size issue. Sample size,

in combination with sample splitting for honest estimation, also has implications for statistical significance.

There were 500 observations used for splitting, and 501 observations for estimation of treatment effects. The

causal tree output contains few subgroups with significantly non-zero treatment effects at the 5% level. In

contrast, cate estimates obtained from a low-variance method, such as a linear model interacting treatment

with different levels of education and including control variables, can result in multiple groups with significant

effects.

The above instability can be addressed by the use of a causal forest. The instability of the output (i.e.

sensitivity to the random separation of the data into splitting and estimation subsamples) is less of a problem

when aggregation of predictions occurs over a large number of honest causal trees.

Causal Forest

We fitted a causal forest to the dataset containing a set of control households and households allocated to

tariff c and the ihd stimulus (1001 households).17 Each individual honest tree is fitted using a bootstrap

sample consisting of half of the data, with half of this sample used for splitting and half used for estimation.18

The number of individual trees fitted is 15000.19 For each tree in the forest, a random subsample of one third

of the set of covariates are used as potential splitting variables. 20 The minimum number of leaf observations

is set to the default of five.

First, we applied the blp test of Chernozhukov, Demirer, Duflo & Fernandez-Val (2017) to test for

heterogeneity, as outlined in the methods section. The results are presented in Table 1.3. The test strongly

rejects the null hypothesis that β2 = 0, suggesting that there is heterogeneity in demand response and the

causal forest ite estimate is a relevant predictor, i.e. the ite estimates have a non-zero coefficient when

interacted with the treatment indicator variable. A comparison with the results obtained from other machine

learning methods in Table 1.3 suggests that the casual forest ite estimates are more relevant linear predictors

of the true ites than the estimates produced by the other methods.

Table 1.4 provides a further description of demand response heterogeneity. The average peak demand

reduction per half-hour is -0.150kWh for the 25% of households that reduce demand the most, while average

demand reduction is not significantly nonzero for the 25% least responsive households.

Tables 1.5 and 1.6 suggest that our estimates provide a reasonable characterisation of heterogeneity.21 In

Table 1.5 we test for differences in averages of pre-trial electricity consumption variables between the 25%

of households with the highest and lowest demand response. Unsurprisingly, the most responsive households

consume significantly more, and have significantly more variable consumption than the least responsive

households. Table 1.5 contains tests for differences in averages of binary survey variables. For example, we

can observe that for the first quartile of treatment effects, i.e. the quartile of most responsive households,

40.5% of households have a respondent with third level education.

17The causal forest algorithm was implemented using the R package grf.
18Bertrand et al. (2017) also use these sizes of bootstrap samples and training and estimation subsamples. Wager & Athey

(2018) divide bootstrap samples in half for honest estimation.
19This is somewhat arbitrary, and between the values of 10000 and 25000 used by Bertrand et al. (2017) and Davis & Heller

(2017b).
20The choice of one third of the total number of covariates is commonly used for random forests.
21For some variables of interest, particularly binary variables with few non-zero values, confidence interval could not be obtained

because for some sample splits there was not sufficient variation within quartiles for a confidence interval to be calculated.
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Table 1.3: Best Linear Predictor of Average Half-hourly Peak Demand (kWh)

Causal Forest
ATE(β1) HET(β2)

-0.095 1.620
(-0.128, -0.062) (0.636, 2.600)

Elastic Net Boosted Tree
ATE(β1) HET(β2) ATE(β1) HET(β2)

-0.010 0.486 -0.098 0.189
(-0.135, -0.067) (0.214, 0.762) (-0.131, -0.064) (-0.081, 0.463)

Neural Network Random Forest
ATE(β1) HET(β2) ATE(β1) HET(β2)

-0.093 0.035 -0.097 0.364
(-0.131, -0.056) (-0.124, 0.195) (-0.129, -0.065) (0.026, 0.707)

Medians over 1000 splits. 90% confidence interval in parenthesis

The ML methods were implemented in R using the package caret and method names glmnet, gbm, pcaNNet, and rf.

HET(β2) = The heterogeneity predictor loading parameter. This is the coefficient of the interaction of the demeaned
ITE estimates and the treatment indicator in equation 1.4. β2 6= 0 indicates heterogeneity of treatment effects.

Table 1.4: Group Average Treatment Effects (GATEs) for most and least peak demand responsive households

Variable 25% most responsive 25% least responsive Difference

Half-hourly peak
consumption (kWh)

-0.150 -0.046 0.105

(-0.202, -0.098) (-0.097, 0.006) (0.028, 0.181)
Medians over 1000 splits. 90% confidence interval in parenthesis
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For the vast majority of covariates, we observe associations between the covariates and quantiles of

individual effects that we would expect a priori. The most responsive households (i.e. Quartile 1) generally use

more electricity, are more educated, younger, higher social class, and have more appliances. This particular

result is in agreement with the observation made by Di Cosmo et al. (2014), using the same data, that more

educated households are generally more responsive.22

Tables A.1, A.2, and A.3 in Appendix A.2 demonstrate that demographic groups that are more likely to

contain vulnerable customers (CSE 2012), namely lower class and retired households, together with house-

holds for which the respondent was over 65 years old, contain a greater proportion of less responsive house-

holds. While this may be largely due to the fact that these groups have less reducible peak usage, this

difference in demand response for vulnerable and non-vulnerable groups could be relevant to regulation of

potential consumer targeting. The patterns of heterogeneity observed in both Tables 1.5 and 1.6 are mostly

maintained when the forest is fitted using only electricity consumption data.23

Table 1.5: Classification Analysis (CLAN): Pre-trial electricity consumption variable averages for most and
least peak demand responsive households

Variable
25% most
responsive

25% least
responsive

Difference

Avg. pre-trial half-hourly usage (kWh) 0.804 0.229 0.574
(0.771, 0.835) (0.216, 0.242) (0.540, 0.609)

Avg. pre-trial peak half-hourly usage (kWh) 1.412 0.344 1.068
(1.358, 1.467) (0.321, 0.367) (1.009, 1.127)

Var. of pre-trial half-hourly usage (kWh) 0.779 0.109 0.669
(0.722, 0.833) (0.097, 0.121) (0.613, 0.725)

Var. pre-trial peak half-hourly usage (kWh) 1.307 0.168 1.139
(1.215, 1.402) (0.146, 0.190) (1.042, 1.236)

Max half-hour elec. con. (kWh) 7.688 3.828 3.862
(7.414, 7.960) (3.601, 4.055) (3.508, 4.217)

Min half-hour elec. cons. (kWh) 0.037 0.013 0.025
(0.028, 0.047) (0.010, 0.016) (0.014, 0.035)

Mean daily max (kWh) 3.607 1.295 2.309
(3.489, 3.723) (1.212, 1.377) (2.168, 2.451)

Mean daily min (kWh) 0.149 0.042 0.107
(0.133, 0.165) (0.037, 0.048) (0.090, 0.123)

22Our focus on peak demand response is also justified by the observation by Di Cosmo & O’Hora (2017) that households
“reduced consumption rather than shifting consumption from peak”.

23The results for causal forests fitted using only survey variables or only usage variables are not included in this article, but
are available from the authors on request.
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Table 1.6: Classification Analysis (CLAN): Survey variable averages for most and least peak demand respon-
sive households

Variable
25% most
responsive

25% least
responsive

Difference

Male 0.516 0.488 0.020
(0.427, 0.604) (0.399, 0.577) (-0.144, 0.105)

Internet access 0.873 0.424 0.457
(0.814, 0.932) (0.336, 0.512) (0.359, 0.559)

Electric central heating 0.032 0.048 -0.016
(0.010, 0.086) (-0.033, 0.064)

Water immersion 0.635 0.424 0.211
(0.550, 0.720) (0.336, 0.512) (0.089, 0.333)

Water centrally heated 0.159 0.112 0.047
(0.094, 0.223) (0.056, 0.168) (-0.041, 0.128)

Went without heat from lack of money 0.048 0.040 0.000
(0.010, 0.085) (0.005, 0.075) (-0.053, 0.048)

Lagging jacket on hot water 0.857 0.776 0.081
(0.795, 0.919) (0.702, 0.850) (-0.017, 0.177)

Third level education 0.405 0.288 0.125
(0.318, 0.492) (0.208, 0.368) (0.005, 0.241)

Employee 0.563 0.328 0.235
(0.476, 0.651) (0.245, 0.411) (0.114, 0.355)

Apartment 0 0.048 -0.048
(0.010, 0.086) (-0.086, -0.01)

Instantaneous water heater 0.008 0.024 -0.016

Plug-in electric heater 0.032 0.024 0.008
(-0.047, 0.033)

Note: For some binary variables with few non-zero values, confidence interval could not be obtained because for some sample
splits there was not sufficient variation within quartiles for a confidence interval to be calculated.
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Figure 1.3: Density plots of causal forest household estimates fitted using different sets of variables

To demonstrate this, Figure 1.3 presents a density plot comparing the distributions of the ite estimates

obtained by fitting causal forests with different sets of potential conditioning variables. One forest was fitted

using both survey and usage variables, one forest was fitted using only usage variables, and one forest was

fitted using only survey variables. This suggests that electricity consumption data contains information

related to survey data information that can characterise heterogeneous groups of demand response. This

issue may be relevant to firms or policymakers who wish to understand which information to collect in order

to predict demand response.

The results suggest that the usage variables exert a greater influence on the causal forest estimates.

Furthermore, the density plot suggests potential bimodality in the distribution of individual effects. However,

although it is most plausible that past usage variables are more informative than survey variables, we also

note the possibility that these results are driven by the bias of variable selection towards continuous variables,

which have more potential splitting points. This issue can be addressed by discretizing each continuous usage

variable, for example, into indicator variables defined by quantiles.

Figure 1.4 shows ites with confidence intervals ordered by size of estimated effect.24 None of the individual

estimates are significantly positive. This accords with economic intuition.

24Confidence intervals are produced by the causal forest command of the r package grf (Wager & Athey 2018). Each level of
a categorical survey variable is represented by a separate binary potential splitting variable because the package currently does
not support finding optimal splits of multiple categories.
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Figure 1.4: 90% Confidence Intervals for ITEs ordered by size of ITE estimate

Variable Importance

In this section we present the results for variable importance utilising the methods outlined in Section 1.2.

The variable importance measure is a depth-weighted average of the number of splits on the variable of

interest.25 For the second method we also carry out a permutation-based test, as outlined in Section 1.2.

Columns (1) and (2) of Table 1.7 give the variable names and values for the variable importance measure.

The variables are ordered by importance, with larger values indicating greater importance. The importances

are scaled such that the most important variable has variable importance equal to 100.

The results indicate that the trees most often split on electricity usage, and specifically variables that

indicate the level and variance of weekday electricity consumption. The most important survey variables are

number of laptop PCs, number of freezers, and employment status. These variables are likely to be correlated

with income and level of electricity usage.

As noted in Section 1.2, given the bias of variable importance measures in favour of variables with more

splitting points (Strobl 2008), we implement an alternative permutation-based measure of variable importance

which is able to address this issue (Altmann et al. 2010). Column (3) shows the “p-value” permutation-

based measures for the grf variable importances. These measures are referred to as “p-values” because

the permutation-based approach is influenced by existing approaches to conditional independence testing.

However, these measures do not have the properties of valid p-values of a test of conditional independence

between the treatment effect and covariate of interest. See Nembrini (2019) for further discussion of this issue.

The variables with lower “p-values” are interpreted as more important in the sense that they are selected

more often by the causal forest algorithm when the outcome is the true outcome and not noise (or a permuted

outcome). Therefore this measure should be less biased towards values with more potential splitting points,

which can be spuriously selected more often by the algorithm, even when none of the covariates can predict

the outcome.

The “p-values” confirm the pattern of results observed in column (2) in so far as the past consump-

tion information variables that obtain the highest variable importances also obtain the lowest “p-values”,

indicating that the high proportion of causal forest splits based on these variables were not only the result

25This is the default measure in the R package grf.
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of spurious selection of these variables resulting from the greater number of potential splitting points for

continuous variables than for categorical variables. On the other hand, a few of the most important survey

variables were also confirmed to be important according to the “‘p-value” measure. For example number of

laptop PCs and number of freezers have “p-values” of 0.1 and 0.06 respectively. Furthermore, some of the

past electricity consumption information variables were relatively unimportant according to the “p-value”

measure, such as mean daily min. usage and mean lunchtime / mean day usage, with values of 0.72 and 0.92

respectively. Nonetheless, the overall pattern is that the most important variables across both measures are

past electricity consumption information variables while most of the least important variables across both

measures are categorical survey variables.
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Variable name Variable importance “p-value” Variable name Variable importance “p-value”
electric plugin heating 0 0.09 mean 14:00-14:30 usage 12.23 0.79
water instantly heated 0 0 mean usage - weekdays 12.9 0.1
unheated, lack of money 0 0.38 var. night usage - weekends 12.95 0.99
number of washing machines 0.02 0.47 mean daytime usage - weekends 13 0.14
electric central heating 0.22 0.9 mean night / mean day usage 13.07 1
prop. double glazed windows 0.25 1 mean 21:30-22:00 usage 13.07 0.73
number of electric cookers 0.46 1 mean 22:30-23:00 usage 13.28 0.9
number of immersion heaters 0.54 1 var. night usage - weekdays 13.35 1
number of dishwashers 0.58 1 mean 13:00-13:30 usage 13.72 0.84
type of cooker 0.84 1 mean 06:30-07:00 usage 14.14 0.98
number of tumble dryers 0.85 1 mean daytime usage - weekdays 14.87 0.16
water centrally heated 1.06 1 mean 14:30-15:00 usage 15.23 0.71
regular internet user 1.07 1 mean usage - weekends 15.3 0.07
sex of respondent 1.23 1 var. daytime usage - weekdays 15.36 0.4
own or rent home 1.24 1 mean 19:00-19:30 usage 15.36 0.61
no. of elec. convector heaters 1.33 1 mean 21:00-21:30 usage 15.49 0.49
water pumped from elec. well 1.58 0.99 mean 07:30-08:00 usage 15.96 1
attic insulated 1.79 1 mean h-h coef. of variation 16.6 1
number of instant elec. showers 2.03 1 var. nonpeak usage - weekdays 16.64 0.26
external walls insulated 2.06 1 mean 23:00-23:30 usage 16.76 0.85
other internet users 2.07 0.49 number of freezers 17 0.06
water immersion 2.22 0.98 variance nonpeak usage 17.12 0.12
number of small TVs 2.35 1 mean 00:00-00:30 usage 17.39 0.84
number of hot tank elec. showers 2.36 0.97 number of laptop PCs 17.48 0.1
age of home 2.92 1 variance daytime usage 18.06 0.16
number of games consoles 2.94 0.89 mean 10:00-10:30 usage 19.76 0.51
education 3.44 1 mean 20:00-20:30 usage 19.93 0.12
lagging jacket 3.45 0.44 variance of usage 20.1 0.05
has an energy rating 3.46 0.44 mean daily min. usage 20.72 0.72
age of respondent 3.91 1 mean 23:30-00:00 usage 21.12 0.68
prop. elec. saving lightbulbs 4.74 1 mean 18:00-18:30 usage 21.29 0.25
number of bedrooms 4.87 0.98 var. usage - weekends 21.41 0.13
lives alone 5.17 0.69 mean 18:30-19:00 usage 21.82 0.19
mean 06:00-06:30 usage 5.61 1 mean 19:30-20:00 usage 22.01 0.17
mean 02:30-03:00 usage 5.66 1 var. usage - weekdays 22.11 0.05
type of home 5.78 0.97 var. daytime usage - weekends 22.85 0.1
mean 04:00-04:30 usage 6.03 1 mean 16:00-16:30 usage 22.86 0.46
mean 12:00-12:30 usage 6.1 1 mean 09:00-09:30 usage 23.05 0.58
internet access 6.35 0.12 mean November peak usage 24.88 0.15
mean 03:00-03:30 usage 6.44 1 min. half-hourly usage 25.8 0.72
mean 03:30-04:00 usage 6.68 1 mean 16:30-17:00 usage 26.02 0.51
mean 05:00-05:30 usage 6.73 1 var. November peak usage 26.19 0.39
mean night usage 6.76 0.99 max. half-hourly usage 26.96 0.67
mean 04:30-05:00 usage 7.12 1 mean lunchtime / mean day usage 27.47 0.92
number of big TVs 7.42 0.68 mean 15:30-16:00 usage 29.14 0.18
mean 11:00-11:30 usage 7.5 1 mean daily max. usage 29.39 0.06
mean night usage - weekends 7.53 0.99 mean 15:00-15:30 usage 30.3 0.13
mean 05:30-06:00 usage 7.87 1 mean 08:00-08:30 usage 30.85 0.48
mean 11:30-12:00 usage 8.22 1 mean 20:30-21:00 usage 31.45 0.04
mean 00:30-01:00 usage 8.48 1 var. December peak usage 38.92 0.2
social class 8.95 0.64 mean 09:30-10:00 usage 39.05 0.13
mean 01:30-02:00 usage 9.02 0.99 mean 08:30-09:00 usage 39.44 0.21
number of desktop PCs 9.11 0.12 mean peak usage - weekdays 42.61 0
mean 12:30-13:00 usage 9.36 1 mean peak usage 44.2 0
mean night usage - weekdays 9.38 0.96 variance peak usage 44.65 0.01
mean 13:30-14:00 usage 9.83 0.99 var. peak usage - weekdays 47.83 0.03
mean 01:00-01:30 usage 10.31 0.98 mean July peak usage 49.55 0.08
mean nonpeak usage - weekdays 10.31 0.3 mean September peak usage 49.96 0.03
variance night usage 10.47 1 mean 17:00-17:30 usage 57.62 0.02
mean 02:00-02:30 usage 10.78 0.94 mean December peak usage 62.11 0
mean 10:30-11:00 usage 10.86 0.99 var. September peak usage 66.87 0.03
employment 11.22 0.4 var. July peak usage 68.34 0.1
mean nonpeak usage 11.66 0.17 mean August peak usage 68.73 0
mean of usage 11.86 0.1 mean 17:30-18:00 usage 69.41 0
mean 07:00-07:30 usage 11.9 1 var. August peak usage 74.89 0.01
mean 22:00-22:30 usage 11.96 0.85 mean October peak usage 76.14 0
mean daytime usage 12.2 0.19 var. October peak usage 100 0

Survey variables are in italics. The “p-values” are permutation based importance measures (motivated by
permutation-based testing methods) and are not valid p-values for hypothesis tests.

Table 1.7: Variable importance results
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1.5 Conclusion

In this article we have examined heterogeneity of demand response following the introduction of time-of-use

electricity pricing. Variable importance measures, adjusted for differences in information content across past

usage and demographic variables, suggest that the causal forest algorithm favours the use of certain functions

of past electricity consumption rather than survey information to describe heterogeneity. Tables 1.6 to A.3

reveal notable patterns of heterogeneity across unimportant survey variables. For example, the causal forest

results suggest that younger, more educated households that consume more electricity exhibit greater demand

response to new pricing schemes. In this respect, although survey variables can be less informative than

detailed electricity consumption information in terms of selection in the causal forest algorithm, they can

also be correlated with important past consumption information.
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Chapter 2

State-of-the-BART: Simple Bayesian Tree

Algorithms for Prediction and Causal

Inference

Abstract

Bayesian Additive Regression Trees (BART) (Chipman et al. 2010) and Bayesian Causal Forests (BCF)

(Hahn et al. 2020) are state-of-the-art machine learning algorithms for prediction and treatment effect esti-

mation. These methods involve averaging predictions from sum-of-tree models, typically drawn using Markov

Chain Monte Carlo (MCMC) methods.

This paper introduces conceptually and computationally simple alternatives to MCMC implementations

of BART. A new importance sampling based implementation of BART (BART-IS) builds on the ideas

of Hernández et al. (2018) and Quadrianto & Ghahramani (2014). BART-IS samples models from a data

independent model prior. This paper also contains an extension to average and individual treatment effect

estimation, BCF-IS.

In addition, this paper describes Bayesian Causal Forests using Bayesian Model Averaging (BCF-BMA),

an implementation of BCF (Hahn et al. 2020) that extends an improved implementation of BART-BMA

(Hernández et al. 2018) to treatment effect estimation. 1

Three applications are included in this paper: 1. The treatment effect estimation methods introduced

in this chapter and existing methods are compared using a Time-of-Use electricity pricing trial dataset. 2.

BART-BMA and BART-IS are applied to inflation forecasting. 3. BART-BMA and BART-IS are used to

identify determinants of economic growth.

2.1 Introduction

Prediction and treatment effect estimation are key tasks for policy makers (Kleinberg et al. 2015). Economists

are increasingly applying machine learning methods for treatment effect estimation (Wager & Athey 2018,

Athey & Imbens 2015, Athey 2018).

BART and BCF are Bayesian machine learning methods for prediction and treatment effect estimation

(Chipman et al. 2010, Hahn et al. 2020). In this paper, a set of new implementation algorithms are introduced

for these methods. BART and BCF can be interpreted as model averages of Bayesian linear regressions with

the sets of covariates equal to binary variables indicating if observations fall in terminal nodes of decision

trees. The covariates are defined by decision tree structures, and a prior on the tree structures defines a prior

1R packages implemented in C++ for the methods described in this paper are available at https://github.com/EoghanONeill
. Many thanks are due to Belinda Hernandez and Andrew Parnell for providing the original BART-BMA code and providing
useful feedback on improvements to the algorithm.
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on the space of models. This interpretation of BART provides a link to the existing econometric literature

on Bayesian Model Averaging of linear models (Steel 2017, Fernandez et al. 2001a,b, Brock & Durlauf 2001).

The key contributions of this paper are:

1. An new implementation of BART-BMA (Hernández et al. 2018) with improvements to the model

search algorithm, and calculations of model probabilities and prediction intervals. 2

2. Bayesian Causal Forests using Bayesian Model Averaging (BCF-BMA). This method accounts for

confounding on observables using the BCF parameterization of BART (Hahn et al. 2020), while retaining

the parsimonious model selection approach of BART-BMA.

3. Simple importance sampling based implementations of BART and BCF (referred to in this paper as

BART-IS and BCF-IS), following the approach for single classification trees described by Quadrianto

& Ghahramani (2014). This approach provides a link between BART and the implementation of BMA

of linear models used by Sala-i Martin et al. (2004), and also shares some similarities with extremely

randomized trees (Geurts et al. 2006).

The algorithms presented in this paper provide two contrasting approaches to the implementation of

BART and BCF. The BMA implementations involve a deterministic greedy model search that finds suitable

splitting points and grows trees to add to sum-of-tree models. The IS implementations involve data indepen-

dent random draws of models. In some applications, both approaches yield similar results to existing MCMC

based implementations. MCMC-based methods can be limited by factors such as poor mixing of chains and

lack of parallelizability. 3 Therefore this paper explores the viability of alternatives to MCMC implementa-

tions of BART. The algorithms introduced in this paper provide alternatives options to the implementation

of BART that may be suited to particular datasets or computational constraints. A further motivation for

this paper is the generalizability of the new implementations beyond models for continuous outcomes (see

third chapter).

These methods are conceptually simple, in that conjugate priors give a tractable closed form for the

predictive distribution (e.g. of the Average Treatment Effect). The appeal of BART-IS and BCF-IS is that

they are straightforward to implement and very parallelizable. The output of BCF-BMA contains relatively

few sum-of-trees models. Under the default settings, each model include five trees describing the treatment

effect function and each tree contains at most five splits. Therefore the output is more interpretable than

that of standard MCMC implementations, which usually draw thousands of models, each of which contains

a sum of a hundred or more trees.

The range of different implementation methods for BART is analogous to the range of possible imple-

mentations for BMA of linear models (Hoeting et al. 1999). BART-BMA and BCF-BMA follow the Occam’s

2BART-BMA applies a greedy model search algorithm to find trees to append to sum-of-tree models, and keeps a small
number of models with highest posterior probability. The search for trees is based on residuals calculated from models found
in previous rounds of the model search algorithm. The new version of the algorithm calculates residuals after re-estimating the
whole sum-of-tree model in each round, whereas the old version fits a single tree to the residuals and adds this to a previously
estimated model in a manner similar to boosting. Other improvements include bug fixes and a different method for calculation
of credible intervals. Furthermore the new implementation is entirely deterministic. The original implementation by Hernández
et al. (2018) and standard MCMC implementations of BART rely on random sampling.

3Hill et al. (2020) note that “Posterior computation has improved since the initial implementation of BART, but room
for further improvement remains. Most BART implementations can handle hundreds of covariates and tens of thousands of
observations, although mixing of the MCMC algorithm tends to degrade as either the sample size or dimension gets larger.
Scaling to larger data sets (both in terms of the number of observations and the number of predictors) would naturally be quite
useful. In all likelihood this will be more than an engineering exercise, and more efficient algorithms for posterior inference will
be necessary.”
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window approach (Madigan & Raftery 1994, Volinsky et al. 1997). Standard BART-MCMC is similar to

Stochastic Search Variable Selection (George & McCulloch 1995) and Markov Chain Monte Carlo Model

Composition.4 BART-IS and BCF-IS are similar to importance sampling of linear models (Clyde et al. 1996,

Stewart 1987, Sala-i Martin et al. 2004).5 6

Early examples of Bayesian Model Averaging of tree-based models include examples of single tree models

for classification (Buntine 1992, Kwok & Carter 1990). An importance sampling based approach for single

classification trees is described by Quadrianto & Ghahramani (2014). Table 2.1 places the methods introduced

in this paper in the existing Bayesian Tree literature.

Single Tree Sum-of-Trees Sum-of-Trees
Regression/Classification Regression Treatment Effects

MCMC
Chipman et al. (1998)
Bayesian regression tree

Chipman et al. (2010)
BART

Hahn et al. (2017)
BCF

BMA Buntine (1991)
Hernandez et al. (2018)
BART-BMA

BCF-BMA

Importance
sampler

Quadrianto and Ghahramani
(2015)
safe-Bayesian-RF

BART-IS BCF-IS

The methods introduced in this paper are in blue text.

Table 2.1: Summary of Bayesian tree algorithms.

This paper includes a comparison of methods across simulated datasets. The BMA and IS implementa-

tions give comparable results to MCMC-based implementations of BART and BCF. We also illustrate the

applicability of the algorithms to:

1. Treatment effect estimation, using a Time-of-Use electricity pricing trial dataset (CER 2011)

2. Forecasting, using an inflation time series dataset (Garcia et al. 2017)

3. Variable selection, using a growth determinant dataset (Sala-i Martin et al. 2004).

The remainder of this paper is structured as follows: section 2.2 provides a review of BART and BART-

BMA, section 2.3 describes some improvements to BART-BMA and outlines how BART-BMA is applicable

to treatment effect estimation, section 2.4 introduces BART-IS, section 2.5 provides a comparison of BART-

MCMC, BART-BMA, and BART-IS using simulated data, 2.6 introduces BCF-BMA and BCF-IS and com-

4An implementation of BART fully analogous to Markov Chain Monte Carlo Model Composition (Madigan et al. 1995,
Raftery et al. 1997) is possible, and has been implemented for single tree models (Chipman et al. 1998). This approach would
differ from standard BART-MCMC in that it involves marginalization of the variance of the error term. This approach is not
implemented in this paper, although future work may compare the performance of this approach to the methods introduced in
this paper. Boatman et al. (2020) apply this approach in the context of combining primary source and supplementary source
data for causal effect estimation.

5An interesting topic for future research is Bayesian Adaptive Sampling (BAS) of BART Models (Clyde et al. 2011). BAS
involves sampling without replacement and possibly adjusting sampling probabilities by predicting the marginal likelihood of
unsampled models. While BAS has been applied to sampling of linear models, further research is required for application of
this approach to tree-based models. This hypothetical alternative approach to BART (BART-BAS) is not to be confused with
standard BAS which uses a binary tree structure to represent the model space of standard linear regression models. It is also
distinct from the existing literature that applies BART-MCMC to guide adaptive sampling of linear models (Yu et al. 2010,
2012, Yu & Li 2020).

6In the context of sampling/estimation of parameters in a single model, it has been observed (e.g. Chopin et al. (2017))
that sophisticated methods such as MCMC do not notably outperform importance sampling on some datasets. However, the
viability of simple importance sampling of models in the context of BMA has not been thoroughly studied beyond the work of
Clyde et al. (1996), Stewart (1987), Sala-i Martin et al. (2004), Quadrianto & Ghahramani (2014) and Clyde et al. (2011).

24



pares the performance of these methods and existing methods on a range of simulated datasets, section 2.7

includes three example applications of the methods introduced in this paper, and 2.8 concludes the paper.

2.2 Review of BART and BART-BMA

This section describes the BART model (Chipman et al. 2010), reviews BART implementations, summarizes

applications of BART, and describes BART-BMA (Hernández et al. 2018).

2.2.1 Overview of BART

Description of Model and Priors

Suppose there are n observations, and the n × p matrix of explanatory variables, X, has ith row xi =

[xi1, ..., xip]. Following the notation of Chipman et al. (2010), let T binary tree consisting of a set of interior

node decision rules and a set of terminal nodes, and let M = {µ1, ..., µb} denote a set of parameter values

associated with each of the b terminal nodes of T . The decision rules are binary splits of the predictor space

of the form {x ∈ A} vs {x /∈ A} where A is a subset of the range of x. These are typically of the form

{xis ≤ c} vs {xis > c} for continuous xs (s ∈ {1, ..., p}). Each observation’s xi value is associated with a

single terminal node of T by the sequence of decision rules from top to bottom, and is then assigned the µ

value associated with this terminal node. For a given T and M , we use g(xi;T,M) to denote the function

which assigns a µ ∈M to xi. This gives the single tree model Y ∼ g(xi;T,M) + ε , ε ∼ N(0, σ2) (Chipman

et al. 1998).

For the standard BART model, the outcome is determined by a sum of trees,

Yi =

m∑
j=1

g(xi;Tj ,Mj) + εi

where g(xi;Tj ,Mj) is the output of a decision tree. Tj refers to decision tree j = 1, ...,m, where m is the

total number of trees in the model. Mj are the terminal node parameters of Tj , and εi
i.i.d∼ N(0, σ2).

Prior independence is assumed across trees Tj and across terminal node means Mj = (µ1j ...µbjj) (where

1, ..., bj indexes the terminal nodes of tree j). The form of the prior used by Chipman et al. (2010) is:

p(M1, ...,Mm, T1, ..., Tm, σ) ∝

∏
j

[∏
k

p(µkj |Tj)

]
p(Tj)

 p(σ)

In standard BART, µkj |Tj
i.i.d∼ N(0, σ2

0) where σ0 = 0.5
e
√
m

and e is a user-specified hyper-parameter.

Chipman et al. (2010) set a regularization prior on the tree size and shape p(Tj) to discourage any one tree

from having undue influence over the sum of trees. The probability that a given node within a tree Tj is split

into two child nodes is α(1 + dh)−β , where dh is the depth of (internal) node h and α and β are parameters

which determine the size and shape of Tj respectively. There are also priors on the splitting variables and

splitting points in each tree. Chipman et al. (2010) use a uniform prior on available splitting variables, and

a uniform prior on the discrete set of available splitting variables. Chipman et al. (2010) assume that the

model precision σ−2 has a conjugate prior distribution σ−2 ∼ Ga( v2 ,
vλ
2 ) with degrees of freedom v and scale

λ.
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BART predictions are averages from sum-of-tree models of the form described above. Therefore model

uncertainty is taken into account and there are two levels of regularization. Firstly, greater prior probability

is placed on models with shallower trees with fewer splitting points. Secondly, over-fitting is further avoided

through the prior on the terminal node parameters µkj , as in standard Bayesian linear regression.7

Existing BART Implementations

Samples can be taken from the posterior distribution p((T1,M1), ..., (Tm,Mm), σ|y) by a Bayesian backfitting

MCMC algorithm. This algorithm is a Gibbs or Metropolis Hastings sampler, involving m successive draws

from (Tj ,Mj)|T(j),M(j), σ, y for j = 1, ...,m [where T(j),M(j) are the trees and parameters for all trees except

the jth tree] followed by a draw of σ from the full conditional σ|T1, ..., Tm,M1, ...,Mm, y.

A set of draws induces the sum of trees function f∗(.) =
∑m
j=1 g(. ;T ∗j ,M

∗
j ). After burn-in, the sequence

of f∗ draws, f∗1 , ..., f
∗
Q may be regarded as an approximate, dependent sample of size Q from p(f |y). To

estimate the unknown function f(x),8 a natural choice is 1
Q

∑Q
q=1 f

∗
q (x), which approximates E(f(x)|y).

Prediction intervals can be obtained from quantiles of the draws f∗q (x).

A number of papers describe faster BART implementation algorithms and improved sampling methods,

including parallelized BART (Pratola et al. 2014), particle Gibbs algorithms (Lakshminarayanan et al. 2015),

more efficient Metropolis-Hastings proposals (Pratola et al. 2016), Consensus Monte Carlo (Scott et al. 2016),

a likelihood-inflated sampling algorithm (Entezari et al. 2018), and Accelerated BART (X-BART, which uses

a stochastic hill climbing algorithm as a greedy stochastic approximation to MCMC) (He et al. 2018). An

alternative to the MCMC BART implementation is Approximate Bayesian Computation Bayesian Forests

(Liu et al. 2018), which has been shown to be consistent for variable selection under certain conditions.

BART-BMA (Hernández et al. 2018), in contrast to other BART implementations, does not involve

MCMC methods. A greedy model search algorithm adds trees to sum-of-tree models by first restricting the

set of potential splitting points using a changepoint detection algorithm, and only keeping sum-of-tree models

with posterior model probabilities within a distance, known as Occam’a window (Madigan & Raftery 1994),

of the highest probability model currently in the set of selected models. 9 See sections 2.2.2 and 2.3 for more

details.

BART Theory

Recent papers have discussed the asymptotic properties of BART. Posterior concentration rates are derived

by Rockova & van der Pas (2017), Linero & Yang (2017) and Rocková & Saha (2018). Castillo & Rockova

(2019) obtain uncertainty quantification results. Asymptotic properties of variable selection are derived

by Liu et al. (2018). Asymptotic results for estimating ITEs using Bayesian methods more generally are

described by Alaa & van der Schaar (2018).

Review of Extensions and Applications of BART

BART has been extended to a wide range of applications (Hill et al. 2020, Yao et al. 2018). Starling et al.

(2018) describe a BART method for functional data analysis that parameterizes each tree’s terminal nodes

7Careful calibration of these priors can play an important role
8Yi =

∑m
j=1 f(xi) + εi ≈

∑m
j=1 g(xi;Tj ,Mj) + εi

9In the original implementation of BART-BMA, a Gibbs sampler was used for constructing prediction intervals. In the
improved implementation, we obtain intervals from a closed form for the model averaged posterior predictive distribution.
Therefore BART-BMA provides an implementation of BART that does not require any random number generation
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with smooth functions of a target covariate. Another smooth variant of BART is BART with “soft” decision

trees (Linero & Yang 2017).

Some variations on the BART priors have been suggested for variable selection, including a Dirichlet

hyperprior on the probability that a variable is used for a split (Linero 2018) and spike and tree priors

(Rockova & van der Pas 2017, Liu et al. 2018). An overlapping group Dirichlet hyperprior has been applied

to splitting probabilities for a dataset in which the variables have an overlapping group structure (Du &

Linero 2019). A prior for interaction detection has been proposed by Du & Linero (2018).

BART can be applied to data without i.i.d normally distributed error terms. Heteroscedastic BART

models the error as a product of trees (Pratola et al. 2017), and fully nonparametric BART (George et al.

2018) models the error using a Dirichlet process mixture.

BART has been adapted for different outcome variables, including Bayesian quantile additive regression

trees (Kindo, Wang, Hanson & Peña 2016), Multiclass Bayesian Additive Classification Trees (Kindo et al.

2013), BART methods for multinomial outcomes (Agarwal et al. 2014, Kindo, Wang & Peña 2016), loglinear

BART (Murray 2017), random intercept BART (Tan et al. 2016), BART for survival analysis (Bonato et al.

2010, Sparapani et al. 2016), BART for competing risks models (Sparapani et al. 2019), and BART modelling

of recurrent events (Sparapani et al. 2018). A general framework for extending BART to different tasks is

described by Tan & Roy (2019).

BART can also be applied to data with multiple outcomes. Chakraborty (2016) applies BART to Seem-

ingly Unrelated Regression, and Linero et al. (2019) describe shared Bayesian Forests. BART has been used

for the imputation of missing data (Xu et al. 2016, Tan et al. 2018) and the modelling of missing data in

longitudinal studies (Zhou et al. 2019).

BART has been applied to treatment effect estimation (Hill 2011, Green & Kern 2012, Taddy et al. 2015,

Henderson et al. 2017). Data analysis competitions (Dorie et al. 2019, Hahn et al. 2019, Carvalho et al. 2019)

have shown that BART is among the most accurate treatment effect estimation methods. Hahn et al. (2020)

introduce Bayesian Causal Forests (BCF), a BART based method for treatment effect estimation that allows

the prior regularization of the treatment effect estimate to be specified separately to the prior regularization

of the rest of the model for the outcome.

Hahn et al. (2020) also note that standard BART treatment effect estimates can be improved by including

the propensity score as a potential splitting variable. Santos & Lopes (2018) study the performance of this

approach on sparse data using the Dirichlet hyperprior described by Linero (2018). BCF has been extended

to Instrumental Variable estimation of treatment effects by Bargagli-Stoffi et al. (2019). Deshpande et al.

(2020) extend BCF to a linear varying coefficient framework (VC-BART), and demonstrate theoretical near-

optimality and derive posterior concentration rates in settings with independent and correlated errors.

2.2.2 Overview of BART-BMA

BART-BMA (Hernández et al. 2018) applies the same priors as standard BART (section 2.2.1), except the

variance of the terminal node parameters is proportional to the variance of the error term, µij |T, σ ∼ N(0, σ
2

a ),

as suggested by Chipman et al. (1998).10 Integration of the likelihood with respect to the µ parameters and

σ results in a closed form expression proportional to the marginal likelihood.

10Moran et al. (2018) argue against the use conjugate priors in Bayesian linear regression. However, this issue will not be
discussed in further detail in this paper. Nonetheless, it is worth noting that the methods introduced in this paper can be
improved further by careful calibration of the a parameter, e.g. by cross-validation.
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The marginal likelihood can be derived as follows. Let Y = (Y1, ..., Yn) be the outcome vector. For a

given sum of trees model T , the likelihood of Y is:

Y |T ,M1, ...,Mm, σ
−2 ∼ N(

m∑
j=1

JjMj , σ
2I)

where Jj (which depends on the original matrix of covariates X) is an n × bj binary matrix whose (i, k)

element denotes the inclusion of observation i = 1, ..., n in terminal node k = 1, ..., bj of tree j.

Let W = [J1...Jm] be an n× b matrix , where b =
∑m
j=1 bj , and let µ = (MT

1 ...M
T
m)T be a vector of size

b of terminal nodes assigned to trees T1, ..., Tm. We can then write Wµ =
∑m
j=1 JjMj , 11 and therefore

Y |µ, σ−2 ∼ N(Wµ, σ2I)

which, with µ ∼ N(0, σ
2

a Ib), where Ib is a b× b identity matrix, implies that the marginal likelihood is given

by a multivariate student distribution with ν degrees of freedom12

p(Y ) =
Γ(ν+n

2 )(λv)
ν+n

2

Γ( v2 )v
n
2 π

n
2 λ

n
2 ( 1

a )
b
2 det (aIb +WTW )

1
2

[
λv + Y TY − Y TW (aIb +WTW )−1WTY

]− ν+n2
Anything that does not depend on W or b will cancel out when calculating the model weights, therefore

it is only necessary to calculate:

∝ 1

( 1
a )

b
2 det (aIb +WTW )

1
2

[
λv + Y TY − Y TW (aIb +WTW )−1WTY

]− ν+n2
and the log marginal likelihood is proportional to b

2 log(a)− 1
2 log(det(M))−ν+n

2 log(λv+Y TY−Y TWM−1WTY )

where M = aIb +WTW .

A deterministic model search algorithm first reduces the set of potential splitting variables by a change-

point detection algorithm, and then recursively adds splits to trees that are potentially to be appended to

models in the set of currently selected sum of tree models. After a set of single tree models are selected,

changepoints in the residuals are used as potential splitting variables for constructing the next set of trees

to potentially append to the selected models.13 Then a new set of residuals is constructed for the new set of

sum-of-two-tree models, changepoints are detected, and trees are appended to create a set of sum-of-three-tree

models, and so on.

The set of models to be averaged over are those with posterior probability within some distance of the

highest probability model found by the model search algorithm. i.e. For all proposed models, T`, indexed by

`, the algorithm obtains

p(Y |T`, X)p(T`) ∝ p(T`|Y,X) =
p(Y |T`, X)p(T`)

p(y)

11Wµ =
∑m
j=1 JjMj is analogous to Xβ in standard linear regression notation.

12Each sum-of-tree model is a ridge regression with each covariate being a dummy variable for a terminal node. Y ∼
MV STv(0, λ(In + 1

a
WWT )

13In the original paper, Hernández et al. (2018) construct residuals by subtracting from the outcomes the sum of single tree
model predictions (for each tree in the sum-of-tree model). In this paper we present the results of an improved algorithm that
calculates the residuals by subtracting from the outcome the posterior mean of the whole sum-of-tree model. i.e. correlations
across trees and the whole set of parameters for all trees influence the predictions.
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And keeps the models such that

arg max
`′

(log(p(T`′ |Y,X)))− log(p(T`|Y,X)) ≤ log(o)

where o is Occam’s window,14 and the minimum is over the set of all proposed models.

The original BART-BMA algorithm derived prediction intervals by Gibbs sampling from full conditionals

for the model parameters for each selected model. However, the posterior predictive distributions for the

selected models are multivariate t-distributions, as the models are Bayesian linear regressions with covariates

equal to indicator variables for terminal node parameters. Therefore posterior distributions and credible

intervals can be obtained without random number generation (see section 2.3 for further details).

2.3 Improved BART-BMA Algorithm

2.3.1 Summary of Improvements

The BART-BMA algorithm searches for trees to add to sum-of-tree models. The set of potential splitting

points to be used in searching for a tree is restricted by applying a grid search algorithm or Pruned Exact

Linear Time changepoint detection algorithm to the residuals (Killick et al. 2012, Hernández et al. 2018). 15

16 The improved implementation differs in the calculation of residuals.

First, the residual from a sum-of-tree model currently in Occam’s window is obtained, then the grid

search approach considers a fixed number of equally spaced splitting points for each covariate, and orders

the potential splitting points by squared error of the predictions of the residual resulting from a binary split.

A percentage of splitting points, set by the user, are kept for constructing trees. The original BART-BMA

algorithm approximated the residuals of each sum-of-tree model by subtracting single tree predictions each

time a tree was appended to the model. The new implementation introduced in this chapter uses residuals

from the full sum-of-tree models instead of an approximation.

A notable difference between the original implementation and the new implementation is that the original

algorithm estimated the parameters of a new tree by fitting a single tree to the residuals of an existing model.

The original implementation therefore does not take account of correlations across trees, nor penalize the

contribution of previously added trees to model complexity. 17 The new approach appends a potential tree to

the model and re-estimates the entire model. In this sense, the new implementation adjusts the BART-BMA

model search in a manner analogous to how methods such as LPBoost adjust AdaBoost by re-estimating

coefficients at each step, e.g. by backfitting or linear programming (Freund & Schapire 1995, Freund et al.

1996, Demiriz et al. 2002). This approach is particularly useful for the extension to BCF-BMA, because the

parameters of interest are the terminal node parameters of treatment effect trees, and orthogonalization from

control trees plays an important role.

Other improvements include bug fixes and more precise calculations of the marginal likelihood and prior.18

14o can be set arbitrarily or by cross-validation. Computational constraints may also affect the choice of o.
15In the first round of the algorithm, when single tree models are created, the changepoint detection algorithm is applied to

the outcomes.
16For details on how the PELT algorithm is used in BART-BMA, see Hernández et al. (2018),
17This is not an issue for the finally chosen models, given that a Gibbs sampler is used for the final estimates in the original

implementation, however, it does have implications for the residuals used in the model search algorithm.
18The R package bartBMA, available on CRAN, is based on this improved implementation. Options are included for alternative

tree priors described by Quadrianto & Ghahramani (2014) and Rockova & van der Pas (2017). Many parameters options are
included that can be used to adjust the model search algorithm. For example, the set of potential splitting points can be updated
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The new implementation avoids the use of a Gibbs sampler for calculation of prediction intervals by using the

standard closed form of the posterior predictive distribution. While this is not necessary for BART-BMA,

it avoids potential issues regarding convergence of the sampler and is particularly useful for BART-IS and

BCF-IS, for which a much larger number of models are averaged. For a given sum-of-tree model the posterior

distribution for the vector of terminal node parameters is

µ|Y, T ∼MV Stν+n

(
M−1WTY ,

1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]M−1

)
where M = aIb +WTW .19 The posterior distribution of Wµ = f(x) (for in-sample estimates) is:

Wµ|Y, T ∼MV Stν+n

(
WM−1WTY ,

1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]WM−1WT

)
The posterior predictive (out-of-sample) distribution for a sum-of-tree model is:

Ỹ |Y,W, W̃ , Tµ, Tτ ∼MV Stν+n

(
W̃M−1WTY,

1

ν + n
[νλ+ Y TY − Y TWM−1WTY ](Iñ + W̃M−1W̃T )

)
where the tilde notation indicates numbers or random variables relating to out-of-sample data.

Therefore, unconditional on the model, the posterior predictive distribution for BART-BMA is a posterior

model probability weighted mixture of multivariate t-distributions. For pointwise prediction intervals, we

only need to obtain the marginal posterior (predictive) distribution, which is (for each model) a univariate

t-distribution with location and scale. Then the marginal mixture distribution has a closed form PDF,

and a CDF that can be evaluated by numerical integration methods. Prediction intervals can therefore

be constructed by obtaining the quantiles of the (marginal) mixture distribution’s CDF by a root finding

algorithm (e.g. bisection).20 This approach is also used to obtain prediction intervals for BART-IS and

BCF-IS, which involve averaging of a much larger set of predictive distributions.

A number of areas for further research are outlined in appendix B.1. These include methods for setting

the regularization parameter a, further improvements to computational methods, testing of alternative priors,

and an implementation involving OLS estimation and model weights based on squared errors as in Bayesian

Averaging of Classical Estimators Sala-i Martin et al. (2004).

The spike and tree prior (Rockova & van der Pas 2017) can also be applied to the space of sum-of-tree

models instead of the standard BART prior. Details for this prior are included in appendix B.5.

2.3.2 BART-BMA for Treatment Effect Estimation

This subsection outlines how BART-BMA can be applied to treatment effect estimation in an approach

similar to that described by Hill (2011), but using the conjugate priors of BART-BMA to obtain a closed

form posterior distribution for Individual Treatment Effects (ites) and the Conditional Average Treatment

Effect (cate).

Following the approach of Hill (2011), let the BART-BMA ITE estimate be defined as τ̂(x) = f̂1(x) −

after each split is added to a tree, or the same set of points can be used in constructing an entire tree.
19An alternative would be to draw {µ(q), σ2(q)}Qq=1 from µ(q) ∼ MVN(M−1WTY, σ2(q)M−1) and σ2(q) ∼

Γ−1
(
ν+n
2
, νλ

2
+ 1

2
[Y TY − Y TWM−1WTY ]

)
20It is also possible to directly sample from the mixture of multivariate t-distributions and obtain pointwise quantiles, or to

separately sample from a mixture of univariate t-distributions for each individual in the out-of-sample data.
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f̂0(x), where f̂(x) is obtained from fitting a BART-BMA regression of the outcome on the covariate and

treatment (i.e. include the treatment indicator as a covariate). f̂1(x) (f̂0(x)) is the estimate obtained for

covariate vector x when the treatment status is set to 1 (0).

Let W1µ = f1(x), and W0µ = f0(x) , where W1 is the W matrix obtained if all Z values are reset to 1

(and similarly W0 is obtained by setting Z = 0). Note that some splits can be on Z, and this determines

how W changes with Z.

Consider the posterior predictive distribution of the ite for a given sum-of-trees model.

ITE = f1(x)− f0(x) = W1µ−W0µ = (W1 −W0)µ

Let Wdiff = W1 −W0 Then the in-sample posterior distribution of the vector of ITEs for all individuals (in

the sample) is:

Wdiffµ|Y, T ∼ MV Stν+n

(
WdiffM

−1WTY,
1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]WdiffM

−1WT
diff

)
21 The in-sample posterior distribution of the CATE, 1

n

∑n
i=1 τ(x), is:

1

n
1TWdiffµ|Y, T ∼

MV Stν+n

(
1

n
1TWdiffM

−1WTY,
1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]

1

n
1TWdiffM

−1WT
diff

1

n
1

)
1 is a vector of ones of length n. 22

The distribution for the Conditional Average Treatment Effect on the Treated (CATT) can be obtained by

replacing 1
n1T with 1

ntreated
zT and the Conditional Average Treatment Effect on the Not Treated (CATNT)

distribution can be obtained using 1
ncontrol

(1− z)T .

2.4 BART-IS

This section presents BART-IS, which extends the importance sampling approach described by Quadrianto

& Ghahramani (2014) from single classification trees to sums of regression trees by utilising the conjugate

priors of BART-BMA.

Importance sampling of Bayesian linear regression models involves constructing weights by dividing the

prior model probability by the model sampling probability. Therefore the model prior and importance sampler

probabilities do not need to be calculated when the models are sampled from the prior. This approach is

used by Quadrianto & Ghahramani (2014) in safe-Bayesian Random Forests for classification, and by Sala-i

Martin et al. (2004) in their implementation of BMA of linear regressions. For completeness, we provide the

option of using different samplers and priors in the safeBart package.23

21For out-of-sample ITEs, let W̃diff = W̃1 − W̃0. Then W̃diffµ|Y, T ∼
MV Stν+n

(
W̃diffM

−1WTY, 1
ν+n

[νλ+ Y TY − Y TWM−1WTY ]W̃diffM
−1W̃T

diff

)
. Note that the error term does not

enter f1(x)− f0(x) and therefore there is no Iñ term in the variance of the out-of-sample posterior distribution.
22The out-of-sample posterior distribution of the CATE is: 1

ñ
1̃T W̃diffµ|Y, T ∼

MV Stν+n
(

1
ñ
1̃T W̃diffM

−1WTY, 1
ν+n

[νλ+ Y TY − Y TWM−1WTY ] 1
ñ
1̃T W̃diffM

−1W̃T
diff

1
ñ
1̃
)

where 1̃ is a vector of ones

of length ñ.
23The package is publicly available at https://github.com/EoghanONeill/safeBart .
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Bayesian Model Averaging tends towards one model as the number of observations tends to infinity.

However, when the model space does not contain the true model, more accurate predictions can be obtained

from Bayesian Model Combination, which tends towards a combination of models. Quadrianto & Ghahramani

(2014) apply a standard model combination approach by raising the model likelihoods to a power. This makes

the approach “safe” in the sense that it does not tend towards one possibly wrong model. The option of

raising the likelihood to a power is provided in the safeBart package. However, for a fair comparison of BART

implementations, the likelihood is not raised to a power in the results presented in this paper.

Preprocessing involves a probability integral transformation of each covariate, with the distribution equal

to the empirical cumulative distribution function. The BART-IS algorithm randomly samples all trees in

each sum-of-tree model from the independent tree prior, and calculates the marginal likelihood and predictions

for each sum-of-tree model. The likelihoods can be raised to a power for a safe-Bayesian approach. The final

predictions are a marginal-likelihood weighted average.

The BART-IS algorithm is generalizable in the sense that the prior tree model distribution can be

replaced by any prior on partitions of the covariate space. The partitions do not need to be representable in

binary tree structures. Provided it is possible to (quickly) draw partitions and construct indicator variables

for sets in the partitions, this approach is applicable. Then, for a drawn model, any conjugate Bayesian linear

regression priors can be applied given a set of indicator variables as covariates.

BART-IS is applicable to ITE estimation using the distributions outlined in 2.3.2.24 In principle, BART-

IS can also be applied to data with multiple outcomes by applying standard conjugate priors for Bayesian

multivariate linear regression. This approach is outlined in appendix B.3. Table 2.2 extends a table from He

et al. (2019) to provide a comparison between the methods discussed in this chapter and other tree-based

methods.

2.4.1 Description of the BART-IS Algorithm

1. Sample sets of trees from a prior. The prior can be the standard BART prior (Chipman et al. 2010), the

prior described by Quadrianto & Ghahramani (2014), or the spike-and-tree prior (Rockova & van der

Pas 2017).

2. Obtain the model predictions. If computational speed is desired, particularly for a large number of

samples, or for models with many trees, a fast ridge regression algorithm can be applied for model

predictions.

3. Obtain model weights. This can optionally involve raising the marginal likelihood to a power, as

described by Quadrianto & Ghahramani (2014).25 If importance sampling is not from the prior, then

the likelihood is multiplied by the ratio of the prior model probability to the importance sampler model

probability. 26

4. Obtain the predictive distribution, which is a mixture of multivariate t-distributions. See section 2.3.

24This approach to ITE estimation is available in the safeBart package available at https://github.com/EoghanONeill/safeBart
.

25This is because it is possible that none of the set of models is the true model, but BMA tends towards placing all the weight
on one model. In practice a Bayesian Model Combination approach, such as the power likelihood approach, might be more
accurate.

26Alternatively, the construction of weights from residuals instead of the marginal likelihood may also increase computational
speed.
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It is possible to quickly sample from the prior described by Quadrianto & Ghahramani (2014) and the

standard BART prior (Chipman et al. 2010). Appendix B.5.2 contains an outline of how to sample from a

spike and tree prior.

CART ERT RF XGB XBART BART- BART- BART-
MCMC BMA IS

Deterministic Yes No No No No No Yes No

Data
independent
model draws

No Yes No No No No No Yes

Parallelizable No Yes Yes limited limited limited limited Yes

Sequential fitting No No No Yes Yes Yes Yes No

Recursion Yes Sampling Yes Yes Yes No Yes Sampling

Leaf parameters
optimized optimized optimized optimized integrate integrate integrate out, integrate out,
with with with with out at split, out at split, sampling sampling
splits splits splits splits sample sample unnecessary unnecessary

Criteria Likelihood Likelihood Likelihood Likelihood
Marginal Marginal Marginal Marginal
Likelihood Likelihood Likelihood Likelihood

Table 2.2: Comparison of tree-based machine learning algorithms.
CART = Classification and Regression Trees (Breiman et al. 1984), ERT = Extremely Randomized Trees
(Geurts et al. 2006), RF = Random Forests (Breiman 2001), XGB = Gradient Boosted Trees (Breiman 1997,
Friedman 2001), XBART = Accelerated Bayesian Additive Regression Trees (He et al. 2019, 2018).

2.5 Results for BART-BMA and BART-IS

This section contains the results from the application of the improved BART-BMA algorithm and BART-IS

to the data generating process used by Chipman et al. (2010) and Hernández et al. (2018). Section 2.5.1

presents the results for high-dimensional data and section 2.5.2 presents the results for low-dimensional data.

2.5.1 High-Dimensional Data

Figure 2.1 presents the results obtained by applying the following methods to to the commonly used simula-

tions introduced by Friedman et al. (1991): BART-BMA with the standard BART model prior, BART-BMA

with the spike and tree prior,27 BART-IS, BART with 1000 and 10,000 MCMC draws, Dirichlet BART with

1000 and 10,000 MCMC draws, and Random Forests. 28

The outcome depends on 5 uniformly distributed predictor variables x1, x2, ..., x5:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

27The BART-BMA results presented here are for BART-BMA with the gridpoint method for changepoint detection. Another
option is the Pruned Exact Linear Time algorithm (Killick et al. 2012). The results presented here are for BART-BMA with
no within-tree updating of potential split points. Another option is to update potential splitting points after a split is added to
each tree.

28BART-IS was implemented with 1,000,000 draws of sum-of-tree models each containing 30 trees. Each of the 10,000 BART
and DART sum-of-tree models contained 200 trees. Many more draws were made for BART-IS because trivially parallelizable
data-independent draws can be made much faster than MCMC draws. Furthermore data independent draws of models can
potentially be made offline before any data is obtained.

33



where ε ∼ N (0, 1). Variables x6, ...., xp are uniformly distributed. The number of observations is 500. I

considered 5 different values of p, the number of covariates: p = (100, 1000, 5000, 10000, 15000). The RMSE

were obtained using fivefold cross-validation. The default parameter values were used for RF, BART, and

Dirichlet BART (DART).29

The results for the new variations of BART-BMA compare favourably to the results obtained for the

original implementation (Hernández et al. 2018), which gives RMSE between 2.9 and 3. 30 BART-BMA

with the grid-search changepoint detection algorithm and standard priors has RMSE which does not appear

to deteriorate as the number of variables increases. BART-BMA variations that update the set of potential

splitting points within the construction of individual trees exhibit deteriorating performance as the number

of variables is increased.31

BART and Dirichlet BART under default parameter settings do not perform very well when the number

of variables is increased to 5000. However, the default implementation of BART and DART includes only

1000 draws from the posterior with 100 burn-in draws. Figure 2.1 demonstrates that BART and DART

exhibit much better performance in high dimensional data when the number of MCMC samples is increased

to 10,000. 32 The superior performance of DART is perhaps unsurprising given that DART involves a

sparsity-inducing hyperprior on the probabilities of splitting variables. Therefore the fairer comparison

is arguably between BART-MCMC and BART-BMA, and the results confirm that BART-BMA delivers

results comparable to BART, as intended. However, BART-BMA performs very well in terms of variable

selection, and an alternative explanation, particularly given the better performance of BART-MCMC in low-

dimensional data, is that the small number of trees used by default in BART-BMA and BART-IS within

sum-of-tree models is insufficient to model the complex functional form in this particular example.33 It is

possible that BART-BMA and BART-IS would produce better results for higher numbers of trees. 34

BART can be used for variable selection (Linero 2018, Bleich et al. 2014). The Brier scores for the BART,

DART, and BART-BMA posterior variable inclusion probabilities (PIP) are given in table 2.3. 35 The Brier

score is defined as 1
P

∑P
p=1(Ip − PIPp)2 where p indexes the covariates, Ip = 1 for truly important variables

x1, ..., x5 and Ip = 0 otherwise. The results suggest that BART-BMA outperforms BART and DART in

terms of variable selection. The spike-and-tree prior outperforms the standard BART prior.

Prediction intervals obtained directly from the closed form for the point-wise predictive distributions were

obtained for the Friedman data simulations, and the results for 95% prediction intervals are presented for

BART-BMA, BART, and DART in tables 2.4 and 2.5. BART-BMA gives more precise prediction intervals

than BART and DART. BART-IS intervals have comparable coverage to BART-MCMC and DART-MCMC,

although the intervals for DART and BART are notably narrower for low dimensional simulations. 36

29Random Forest was implemented using the R package ranger. BART was implemented using the wbart function in the R
package BART. DART was implemented using the wbart function in the R package BART with the following parameter setting
sparsity = TRUE.

30See original paper by Hernández et al. (2018). The RMSEs for the old BART-BMA implementation in figure 2.1 are
approximate readings from the corresponding table in the original paper.

31The results for BART-BMA with updating of splitting points within the construction of trees are not included in Figure
2.1.

32A comparison of computational times is included in appendix B.2.
33Chipman et al. (2010) noted the trade-off between the predictive accuracy of models containing a few hundred trees, and

the impressive variable importance results from sum-of-tree-models containing 5, 10 or 20 trees.
34Preliminary results (not included in this paper) indicate that BART-IS produces more accurate results when the number of

trees is set to a few hundred, even if a smaller number of models is sampled. However, for this to be computationally inexpensive
this would require implementation of fast ridge regression or Bayesian linear regression, possibly with approximations, for each
sum-of-tree model.

35The results in table 2.3 are for BART and DART with 10,000 draws.
36Also, the BART and DART results might improve with more MCMC draws as this would allow for convergence of the
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Figure 2.1: RMSEs for High-dimensional Friedman Data Simulations

Number of
Variables

Old BART-BMA New BART-BMA New BART-BMA
Standard Spike-and-tree BART DART

100 NA 2.000× 10−3 3.560× 10−32 7.005× 10−1 3.161× 10−3

1000 3.26× 10−3 4.000× 10−4 1.350× 10−31 3.974× 10−2 7.210× 10−5

5000 6.55× 10−4 2.000× 10−4 2.700× 10−32 3.236× 10−3 1.513× 10−4

10000 3.28× 10−4 1.000× 10−4 1.350× 10−32 1.150× 10−3 1.448× 10−4

15000 2.18× 10−4 8.000× 10−5 9.000× 10−33 6.648× 10−4 1.120× 10−4

Table 2.3: Brier Scores for Friedman data simulations

2.5.2 Low-Dimensional Data

Figure 2.2 presents the results for the Friedman simulations described in section 2.5.1, with the number

of covariates, p equal to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The RMSE was averaged across five

simulations for each value of p.

BART and DART outperform other methods in terms of RMSE. It can be observed that the predictions of

RF, BART, and BART-IS become less accurate as the number of covariates increases. However, it is likely that

the accuracy of these methods when applied to high dimensional data would improve with a greater number

of draws of models. It is unsurprising that the RMSE of BART-IS predictions degrades as the dimensionality

of the data increases. Importance sampling is known to suffer from the curse of dimensionality.37

Markov Chain, and more accurate estimation of quantiles of the posterior distribution. The chosen number of MCMC draws
for BART and DART is 10,000. For each draw of a sum-of-tree model, 10 draws of the additive error term, ε were made from a
normal distribution. It is likely that more accurate intervals could be obtained with a greater number of draws of the error.

37The model space is very high-dimensional and further research is required in order to establish the effective (i.e. equivalent
to exact model posterior) sample size corresponding to draws from the importance sampler.
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Number of
Variables

BART DART Old BART-BMA New BART-BMA New BART-BMA BART-IS
Standard Spike and tree

100 95.0 94.4 NA 95.4 94.6 97.4
1000 97.4 96.8 94.4 95.8 94.6 97.4
5000 97.0 97.0 93.8 95.4 94.6 95.4

10000 97.6 98.4 94.0 94.8 94.6 97.6
15000 98.8 98.2 94.0 94.8 94.6 94.0

Table 2.4: Average 95% prediction interval coverage for Friedman data simulations

Number of
Variables

BART DART Old BART-BMA New BART-BMA New BART-BMA BART-IS
Standard Spike and tree

100 6.74 4.77 NA 9.62 10.11 12.65
1000 9.24 5.07 11.69 9.61 10.24 15.81
5000 10.70 6.00 11.67 9.64 10.24 16.10

10000 12.11 8.15 11.66 9.61 10.24 16.61
15000 12.89 10.13 11.68 9.61 10.24 16.39

Table 2.5: Average 95% prediction interval width for Friedman data simulations

Figure 2.2: RMSEs for Low-dimensional Friedman Data Simulations
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2.6 BCF-BMA and BCF-IS

This section introduces a combination of the BCF parameterization of BART for treatment effect estimation

(Hahn et al. 2020) and the BART-BMA model search implementation of BART (Hernández et al. 2018).
38 Section 2.6.1 reviews BCF, section 2.6.2 describes the BCF-BMA model, and section 2.6.3 outlines the

BCF-BMA algorithm.39 Bayesian Causal Forests using Importance Sampling (BCF-IS) is briefly described

in section 2.6.4. Finally results are presented for ITE estimation on simulated data, giving a comparison

between BCF-BMA, BART-BMA, BART-IS, BCF-IS and existing state-of-the-art methods BCF, BART,

and causal forests (Wager & Athey 2018, Athey et al. 2019).

2.6.1 BCF

BCF controls for confounding by including the estimated propensity score as a splitting variable, and allows

the treatment effect function to be regularized separately to the rest of the model.

BCF Summary

Hill (2011) proposed the use of BART to estimate treatment effects by including the treatment variable Z

in the set of splitting variables, and estimating the model Yi = f(xi, Zi) + εi, ε ∼ N(0, σ2). The treatment

effect can be expressed as τ(xi) = f(xi, 1)− f(xi, 0) . If an individual has a vector of covariates x, then the

difference in predictions for (X = x, Z = 1), and (X = x, Z = 0) is the estimated treatment effect. 40

However, the implications of the prior on f(x, z) for the induced prior on τ are difficult to understand,

and the induced prior on τ will vary with the number of covariates. Furthermore, the estimates can be

biased in the presence of confounding. Hahn et al. (2020) propose an alternative approach, and elaborate

on an issue referred to as “Regularization Induced Confounding” (Hahn et al. 2018). Regularization priors

tend to adversely bias treatment effect estimates by over-shrinking control variable regression coefficients. In

the presence of confounding, the finite sample bias of the treatment effect estimator will be influenced by

the prior regularization, and it is desirable to directly control regularization of the treatment effect function.

This emphasis on separately regularizing the prognostic effect and treatment effect functions is related to

other methods, including double machine learning (Belloni et al. 2014, Chernozhukov, Chetverikov, Demirer,

Duflo, Hansen, Newey, Robins et al. 2017, Yang et al. 2015).

Confounding can be mitigated by including the estimated propensity score as a potential splitting variable

(Hahn et al. 2020). Hahn et al. (2020) propose a re-parameterization that allows for an independent prior to

be placed on τ and also include the estimated propensity score, π̂i, as a potential splitting variable.

f(xi, zi) = µ(xi, π̂i) + τ(xi)zi

where µ(xi, π̂i) and τ(xi) are both sums of trees.

Different BART parameters (e.g. the number of trees, depth penalty, splitting probability, scale of terminal

node outputs) are used for the sums of trees denoted by µ(xi) and τ(xi), and τ(xi) priors are set such that

it is more strongly regularized than µ(xi).

38The R package for BCF-BMA is publicly available at https://github.com/EoghanONeill/bcfbma .
39See appendix B.6 for more details on the BCF-BMA algorithm.
40Another common approach is to separately fit a model on observations for which zi = 1, and on observations for which

zi = 0, and let τ̂i be the difference in the predictions of these two models.
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Hahn et al. (2020) demonstrate that BCF can perform well in simulations in terms of MSE of individual

treatment effect estimates relative to: BART (Hill 2011), including the propensity score estimates in standard

BART, fitting BART separately to treated and control groups, and causal forests (Wager & Athey 2018, Athey

et al. 2019).

BCF Priors

Chipman et al. (2010) assume that the model precision σ−2 has a conjugate prior distribution σ−2 ∼
Ga( v2 ,

vλ
2 ) with degrees of freedom v and scale λ. The same prior is used for the model precision in BCF.

The probability of a single tree structure is p(Tj) =
∏bj−1
h=1 α(1 + dh)−β

∏bj
k=1(1− α(1 + dk)−β), where h

indexes the internal nodes of the tree Tj , and k indexes the terminal nodes. Different splitting probabilities

are applied to µ(x) and τ(x) trees. In particular, α = 0.95 and β = 2 for µ(x) trees, and α = 0.25 and β = 3

for τ(x) trees. This regularizes the treatment effect function to a greater extent than the rest of the model.41

2.6.2 Outline of BCF-BMA

BCF (Hahn et al. 2020) is an average of models of the form f(xi, zi) = µ(xi, π̂i) + τ(xi)zi, where µ(xi, π̂i)

and τ(xi) are separate sum of tree models.42 Let Tµj and Tτj denote trees in µ(xi, π̂i) and τ(xi) respectively,

and let Mµj and Mτj denote the terminal node parameters for Tµj and Tτj respectively. The BCF prior can

be written as:

p(Mµ1, ...,Mµmµ , Tµ1, ..., Tµmµ ,Mτ1, ...,Mτmτ , Tτ1, ..., Tτmτ , σ)

∝

∏
j

∏
i

p(µij |Tµj)p(Tµj)

∏
j

∏
i

p(τij |Tτj)p(Tτj)

 p(σ)

For BCF-BMA, I suggest placing the prior µij |Tµ, σ ∼ N(0, σ
2

aµ
) and τij |Tτ , σ ∼ N(0, σ

2

aτ
). These priors are

somewhat different to those proposed by Hahn et al. (2020) who place different priors on the scales of µij

and τij . Different scales are directly specified through the choice of aµ and aτ . The BCF-BMA prior, like

the BART-BMA prior, provides a closed form for the marginal likelihood and a multivariate t-distribution

for posterior predictions.

BCF-BMA Marginal Likelihood

Let Z = (Z1, ..., Zn) be the treatment indicator variable. Let Jµj and Jτj be matrices denoting inclusion

of observations in terminal nodes of tree j in µ(x) and τ(x) respectively. The BCF-BMA likelihood can be

written as:

Y |Tµ,MµTτ ,Mτ , σ
−2 ∼ N

(

mµ∑
j=1

JµjMµj) +Diag(Z)(

mτ∑
j=1

JτjMτj), σ
2I


Now, let Wµ = [Jµ1...Jµmµ ] be an n × bµ matrix, where bµ =

∑mµ
j=1 bµj , and let µ = [MT

µ1...M
T
µmµ ]T be

an bµ × 1 vector. Similarly let Wτ = [Jτ1...Jτmτ ] be an n × bτ matrix, where bτ =
∑mτ
j=1 bτj , and let

41Hahn et al. (2020) also suggest simply including the estimated propensity score as a potential splitting variable in standard
BART, and then using the approach introduced by Hill (2011). Therefore, later in this section, there is a similar comparison
between BCF-BMA and standard BART-BMA with the estimated propensity score included as a potential splitting variable.

42The BCF-BMA package allows for the inclusion of zero, one, or more than one set of propensity score estimates as potential
splitting variables in the µ(x) function.
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τ = [MT
τ1...M

T
τmτ ]T be an bτ × 1 vector. Then we can write

Y |µ, τ , σ−2 ∼ N
(
Wµµ+Diag(Z)Wττ , σ

2I
)

Now let WBCF = [Wµ (Diag(Z)Wτ )] be an n × (bµ + bτ ) matrix, and let θ = [µT τT ]T be a (bµ + bτ ) × 1

matrix. Then Y |θ, σ2 ∼ N(WBCFθ , σ
2I), and the BCF-BMA marginal likelihood is:

p(Y |X, Tµ, Tτ ) =

∫ ∫
p(Y |θ, σ−2)p(O)p(σ−2)dOdσ−2

The first bµ elements of θ have independent prior distributions µ ∼ N(0, σ
2

aµ
), and the last bτ elements of

θ also have independent normal priors, with different variance, τ ∼ N(0, σ
2

aτ
) . This implies that θ|σ−2 ∼

N(0, σ2A−1) where A =

(
aµIbµ 0

0 aτIbτ

)
is a diagonal matrix with the first bµ diagonal elements equal to

aµ, and the next bτ diagonal elements equal to aτ .

Therefore Y |σ−2 ∼ wbcf ε2 + ε1, where ε1 ∼ N(0, σ2I) and ε2 ∼ N(0, σ2A−1). This implies that

Y |σ−2 ∼ N(0, σ2(In +WA−1WT )) and therefore marginalization over σ gives

Y ∼MV Stν
(
0, λ(In +WA−1WT )

)
p(Y ) =

1

(det(A))
− 1

2 det(In +WA−1WT )
1
2

[
λν + Y TY − Y TW (A+WTW )WTY

]− ν+n2
And the log of this expression is the log marginal likelihood:

bµ
2

log(aµ) +
bτ
2

log(aτ )− 1

2
log(det(M))− ν + n

2
log
(
λν + Y TY − Y TWM−1WTY

)
where M = A+WTW .

BCF-BMA Posterior ITE Distribution

Let V = [0n×bµ Wτ ], where 0n×bµ is a matrix of zeros of dimensions equal to those of Wµ. The posterior

distribution of τ(x) is:

V θ | Y, Tµ, Tτ ∼ MV Stν+n

(
VM−1WTY,

1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]VM−1V T

)
where M = A+WTW . For out of sample predictions, replace V with Ṽ = [0ñ×bµ W̃τ ].

BCF-BMA CATE Posterior Distribution

The posterior distribution of τ(x) given in the previous subsection is the posterior distribution of what is often

referred to as the Individual Treatment Effect (ITE). However, τ(x) can also be referred to as the Conditional

Average Treatment Effect (CATE) Function. In this paper, the term CATE refers to the expectation of the

average of the ITEs, i.e. 1
n

∑n
i=1 τ(x).
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The posterior distribution of 1
n

∑n
i=1 τ(x) for a given model in BCF-BMA is:

1

n
1TV θ | Y, Tµ, Tτ ∼

MV Stν+n

(
1

n
1TVM−1WTY ,

1

ν + n
[νλ+ Y TY − Y TWM−1WTY ]

1

n
1TVM−1V T

1

n
1

)
where M = A+WTW and 1 is a vector of 1s of length n. Note that this is a univariate t-distribution with

location and scale. For out of sample predictions, replace V with Ṽ = [0ñ×bµ W̃τ ] and replace 1
n1 with 1

ñ 1̃,

where 1̃ is a vector of 1s of length ñ.

2.6.3 Description of the BCF-BMA Algorithm

The BCF-BMA model search algorithm is similar to the improved BART-BMA algorithm, except in each

round either µ(x) trees or τ(x) trees can be appended to existing models.43 The model selection criterion is

the posterior model probability. In constructing τ(x) trees to be potentially appended to the model, potential

splitting points are selected from a changepoint detection algorithm applied to treated observations only. 44

Pseudocode for the BCF-BMA algorithm is given in Appendix B.6.

2.6.4 BCF-IS

The BCF-IS algorithm is the algorithm outlined in section 2.4.1, with some adjustments. The µ(x) trees and

τ(x) trees are drawn from separate priors. The marginal likelihood is the same as that described in section

2.6.2. The BCF-IS algorithm is intended for estimation of treatment effects, not the outcome.

The default model prior for BCF-IS is the standard BART prior, and different priors can be applied

to µ(x) trees and τ(x) trees as described for BCF-BMA. Similarly, for the prior described by Quadrianto

& Ghahramani (2014), different splitting probabilities can be specified for µ(x) trees and τ(x) trees. For

the Spike and Tree prior (Rockova & van der Pas 2017), different prior parameters can be specified for the

Poisson distribution for the number of terminal nodes, and different hyperparameters can be specified for the

beta hyperprior distribution on the variable inclusion probabilities.

2.6.5 BCF-BMA and BCF-IS Results for Simulated Datasets

Simulation from bcf R Package

This section contains a comparison of BCF-BMA and standard BCF (Hahn et al. 2020) using a simulation

example from the bcf package in R.

The simulated dataset contains n observations of p standard normally distributed covariates x1, ..., xp.

The outcome is set equal to

Y = µ(x) + τ(x)T + ε

where ε ∼ N (0, σ) and σ = max(µ(xi) + τ(xi)π(xi))−min(µ(xi) + τ(xi)π(xi)).

µ(x) = −I{x1 > x2}+ I{x1 < x2}
43An option is also provided in the BCF-BMA package for adding a mu tree, then a tau tree, and then a mu tree, and so on

in an alternating sequence.
44Another option, provided in the R package bcfbma available at https://github.com/EoghanONeill/bcfbma, is to apply the

changepoint detection algorithm to Horowitz-Thompson transformed residuals
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Figure 2.3: Example results for BCF and BCF-BMA. True ITE on x-axis, estimated ITE on y-axis.

where I is an indicator function. Let the probability of treatment be π(x) = Φ(µ(x)). i.e. there is confounding.

The treatment variable is Z. Let the treatment effect function be

τ(x) = 0.5I{x3 > −0.75}+ 0.25I{x3 > 0}+ 0.25I{x3 > 0.75}

Suppose the propensity score estimates are exact, i.e. the true propensities are known π̂(x) = π(x).

The results for one simulation of the data generating process outlined above with n = 250 and p = 3 are

included in Figure 2.3. It can be observed that BCF and BCF-BMA yield similar predictions. BCF-BMA

has the added advantage that the output contains a small number of models, and each model (under the

default settings) contains only 5 µ(x) trees and 5 τ(x) trees, each of which contains a small number of splits.45

Therefore it is possible to directly observe the important splitting variables and splitting points from the tree

structures in the output of the algorithm.

Simulations used by Hahn et al. (2020)

Hahn et al. (2020) simulate the following eight data generating processes, corresponding to the various

combinations of three two-level settings: homogeneous versus heterogeneous treatment effects, a linear versus

nonlinear conditional expectation function, and two different sample sizes (n = 250 and n = 500).

Five variables comprise x; the first three are continuous, drawn as standard normal random variables, the

fourth is a dichotomous variable and the fifth is unordered categorical, taking three levels (denoted 1,2,3).

The treatment effect is either τ(x) = 3 (i.e. homogenous) or τ(x) = 1 + 2x2x5 (i.e. heterogeneous). The

prognostic function is either µ(x) = 1 + g(x4) + x1x3 (linear) or µ(x) = −6 + g(x4) + 6|x3 − 1| (nonlinear)

45The maximum number of splits under the default settings for BCF-BMA is 5 per tree.
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where g(1) = 2, g(2) = −1, and g(3) = −4, and the propensity function is

π(xi) = 0.8Φ(3µ(xi)/s− 0.5x1) + 0.05 + ui/10

where s is the standard deviation of µ taken over the observed sample and ui ∼ Uniform(0, 1). The variance

of the additive Gaussian error term is set equal to 1.

Comparisons with other methods are made in tables 2.6 to 2.9 in terms of RMSE, coverage, and interval

length for Average Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE) estimates.

Tables 2.6 to 2.9 contain results for n = 250. The set of methods includes: BCF,46 BCF-BMA without

updates of potential splitting variables within trees (BCF-BMA 1), BCF-BMA with updates of potential

splitting variables within trees (BCF-BMA 2), BART-BMA 47, BART,48 BCF-IS,49, BART-IS, 50 and

standard causal forests (Athey et al. 2019, Wager & Athey 2018). 51

For all methods except causal forest, the propensity score is estimated using the function pbart in the R

package BART.

ATE ITE
RMSE coverage length RMSE coverage length

BCF 0.24 0.86 0.86 0.45 0.97 1.99
BCF-BMA 1 0.40 0.69 0.99 0.58 0.78 1.22
BCF-BMA 2 0.22 0.92 0.92 0.34 0.90 1.06
BART-BMA 0.30 0.84 1.04 0.51 0.86 1.64
BART 0.23 0.87 0.83 0.37 0.97 1.74
BCF-IS 0.27 0.90 1.00 0.34 0.98 1.74
BART-IS 0.29 0.88 1.03 0.35 0.97 1.62
CF 0.41 0.67 1.08 0.53 0.78 1.35

Table 2.6: Hahn et al. (2018) simulations, τ(x) = 3, µ(x) = 1 + g(x4) + x1x3, n = 250, 200 replications.

ATE ITE
RMSE coverage length RMSE coverage length

BCF 0.19 0.95 0.85 0.50 0.96 1.91
BCF-BMA 1 0.24 0.98 1.33 0.78 0.86 1.86
BCF-BMA 2 0.25 0.98 1.31 0.73 0.87 1.79
BART-BMA 0.45 0.72 1.38 1.10 0.81 2.17
BART 0.19 0.94 0.88 0.43 0.98 2.20
BCF-IS 0.24 0.98 1.35 0.39 0.99 2.34
BART-IS 0.19 0.99 1.38 0.39 1.00 2.90
CF 0.60 0.49 1.26 0.67 0.66 1.57

Table 2.7: Hahn et al. (2018) simulations, τ(x) = 3, µ(x) = −6 + g(x4) + 6|x3− 1|, n = 250, 200 replications.

46Implemented with the R package bcf with default parameter values.
47See section 2.3.2
48Implemented with the R package BART with default parameter values.
49Implemented with 100,000 draws of models from the importance sampler. Each model contains 50 µ(x) trees and 25 τ(x)

trees.
50Implemented with 100,000 draws of models from the importance sampler, each model includes 30 trees, with the propensity

score and treatment included as potential splitting variables. See section 2.3.2 for details on the posterior distributions for
individual models.

51Causal forests are estimated using the R package grf and 4000 trees.
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ATE ITE
RMSE coverage length RMSE coverage length

BCF 0.27 0.81 0.92 0.92 0.90 2.79
BCF-BMA 1 0.44 0.62 1.03 1.29 0.45 1.49
BCF-BMA 2 0.29 0.77 0.90 1.09 0.55 1.36
BART-BMA 0.46 0.61 1.05 1.35 0.42 1.40
BART 0.29 0.80 0.90 1.01 0.82 2.21
BCF-IS 0.34 0.81 1.08 1.15 0.75 2.31
BART-IS 0.29 0.88 1.09 1.12 0.82 2.70
CF 0.45 0.72 1.21 1.25 0.57 1.75

Table 2.8: Hahn et al. (2018) simulations, τ(x) = 1+2x2x5, µ(x) = 1+g(x4)+x1x3, n = 250, 200 replications.

ATE ITE
RMSE coverage length RMSE coverage length

BCF 0.22 0.92 0.93 1.03 0.88 2.81
BCF-BMA 1 0.29 0.93 1.36 1.35 0.59 2.09
BCF-BMA 2 0.29 0.92 1.30 1.29 0.63 2.00
BART-BMA 0.48 0.61 1.01 1.59 0.41 1.30
BART 0.22 0.91 0.94 0.91 0.89 2.69
BCF-IS 0.27 0.97 1.41 1.26 0.79 2.73
BART-IS 0.22 1.00 1.42 1.17 0.88 3.37
CF 0.66 0.54 1.38 1.32 0.57 2.00

Table 2.9: Hahn et al. (2018) simulations, τ(x) = 1 + 2x2x5, µ(x) = −6 + g(x4) + 6|x3 − 1|, n = 250, 200
replications.

The results for these simulations suggest that standard BART generally outperforms the other methods

in terms of RMSE, followed by BCF, although BART-IS and BCF-IS are competitive with BART and BCF

for some DGPs, and generally outperform standard causal forests.52 In some cases the coverage of credible

intervals is better for the new algorithms described in this paper than for BART or BCF, although it should

be noted that the 100% or nearly 100% coverage observed, for example in Table 2.9 is not desirable, and the

prediction intervals for the new methods are notably wider than those of BART and BCF.

The RMSE of ITE estimates for simulations with heterogeneous treatment effects is worse for BCF-

BMA than for BART and BCF. This is expected because the default setting for BCF-BMA are 5 µ(x) trees,

and 5 τ(x) trees, each of which has a maximum of 5 splits. Therefore the estimates are less heterogeneous

than those produced by BART and BCF with many trees. However, the relatively small set of simpler

models averaged by BCF-BMA is more interpretable and still performs reasonably well, particularly for

ATE estimation.

Data Challenge Datasets

The annual Atlantic Causal Inference Conference (ACIC) has run a data analysis competition for treatment

effect estimation methods. BART and BCF have performed well in this competition (Dorie et al. 2019, Hahn

et al. 2019).

Table 2.10 presents a comparison between BCF, BCF-IS, BART-IS, BART, and CF applied to the

52The performance of BART-IS and BCF-IS improves with the number of samples drawn. There is therefore a trade-off
between computational time and accuracy, although this is less of an issue when the draws are parallelized across many threads.
The extent to which the results would improve with a greater number of draws is a potential topic for future research.
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publicly available data from the 2019 ACIC Data Challenge.53 The results are restricted to the 1200 datasets

in the low-dimensional category with less than 1000 observations and a continuous dependent variable.54

In all cases the estimates and intervals are produced for 1
N

∑N
i=1 τ(xi), and the RMSE and coverage are

calculated using the true population ATE.

ATE
RMSE coverage length

BCF 0.18 0.88 0.67
BCF-IS 0.17 0.91 0.69
BART-IS 0.19 0.95 0.93
BART 0.23 0.93 0.99
CF 0.22 0.93 1.01

Table 2.10: Results for ACIC Data Challenge low-dimensional datasets with less than 1000 observations and
a continuous dependent variable.

BCF-IS attains the lowest RMSE, but the results for BCF and BART-IS are similar. BART-IS achieves

the most accurate coverage of prediction intervals.

2.7 Applications

This section includes three applications of the methods introduced in this chapter. First, the usefulness of the

methods in treatment effect estimation is demonstrated on an electricity Time-of-Use pricing trial dataset.

The second application is a demonstration of how the methods introduced in this chapter can be generically

used in direct forecasting of inflation. The third example is an application of variable importance measures

for identifying determinants of economic growth.55

2.7.1 Time-of-Use Electricity Pricing Trial

This subsection revisits the application introduced in chapter 1 of this thesis. The data is from the Electricity

Smart Metering Customer Behavioural Trial conducted by the Irish Commission for Energy Regulation (CER

2011). The dataset consists of half hourly residential electricity demand observations for 4225 households over

536 days. The benchmark period began on 14th July 2009 and ended on 31st December 2009. Households

were then randomly allocated to either a control group or various tou Pricing Schemes and Demand Side

Management stimuli from 1st January 2010 to 31st December 2010. See the first chapter of this thesis for

further details.

This subsection presents results for the application of ITE estimation methods to a subset of the data

containing control households and households allocated to tariff c and the ihd stimulus (1001 households

in total). All households were charged a tariff of 14.1 cents per kWh (c/kWh) during the benchmark (pre-

treatment) period. The control group paid 14.1 c/kWh for all half-hours during the trial period. The

treatment group paid 10 c/kWh from 11pm to 8am, 32 c/kWh at the peak hours of 5pm-7pm on weekdays,

53Results are not presented for BCF-BMA or BART-BMA, because the current implementations can require a large quantity
of RAM, and this can lead to errors/crashes.

54The current implementations of BART-IS and BCF-IS are slow when applied to datasets with many observations. The
methods presented in this chapter are designed for data with a continuous dependent variable. See chapter 3 of this thesis for
the results for ACIC 2019 datasets with binary outcomes.

55This topic has received much attention in the econometric literature on BMA of linear models (Steel 2017, Sala-i Martin
et al. 2004, Fernandez et al. 2001a, Doppelhofer & Weeks 2009, Eicher et al. 2011).
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and 13 c/kWh at all other half-hours including weekends. The outcome variable of interest is average half-

hourly peak demand over the whole trial period (in kWh per half-hour). Covariates include pre-treatment

consumption information and responses to a survey. See Chapter 1 for a full list of variables.

The methods compared are: Causal forest,56 BART-MCMC, 57, BART-BMA, BCF-BMA, BART-IS,

BCF-IS, and the following three linear models:

A model only including a treatment dummy variable

peaki = β0 + β1TOUi + εi (2.1)

where peaki is average trial period half-hourly consumption and TOUi is a dummy variable equal to one if

the household is in the TOU group and zero otherwise.

A model including a pre-trial consumption control variables.58

peaki = β0+β1TOUi+β2pre trial avg peaki+β3pre trial var peaki+β4pre trial avgi+β5pre trial avg off peaki+εi

(2.2)

where pre trial avg peak is average half-hourly peak consumption during the pre-treatment period, pre trial var peaki

is the sample variance of half-hourly peak consumption during the pre-treatment period, pre trial avgi is

average pre-trial consumption across all half-hours, and pre trial avg off peaki is average pre-trial con-

sumption across off-peak daytime hours.

A model including an interaction between treatment and pre-trial average peak consumption

peaki = β0 + β1TOUi + β2pre trial peaki + β3TOUi ∗ pre trial peaki + εi (2.3)

A key difficulty in assessing the performance of Individual Treatment Effect estimation methods on real-

world datasets is the fact that the ground truth is never known. The true treatment effect for an individual,

Yi(1) − Yi(0) can never be observed. This is known as the “fundamental problem of causal inference”.

If the true treatment effect, τ(x) were observable, then a suitable measure of accuracy of ITE estimation

methods would be the MSE, i.e. 1
N

∑N
i=1(τ̂(x)− τ(x))2, which is also known as the Precision of Estimating

Heterogeneous Effects (PEHE) (Hill 2011).

A number of approaches have been suggested for estimation of the accuracy of ITE estimation methods

(Schuler et al. 2018, Saito & Yasui 2019, Alaa & Van Der Schaar 2019). Schuler et al. (2018) review the

literature and find that the ̂τ − riskR measure proposed by Nie & Wager (2017a) most consistently selects

the highest performing model. Therefore the ̂τ − riskR measure will be used to compare the performance of

treatment effect estimation methods on the TOU pricing trial dataset. The ̂τ − riskR measure is defined as:

̂τ − riskR =
1

|V|

|V|∑
i∈V

((yi − m̆(xi))− (Ti − p̆(xi))τ̂(xi))
2

where V denotes the validation dataset, m̆(xi) is an estimate of E[Y |X] obtained by regressing Y on X

without using the treatment T ,59 and p̆(xi) is the estimated propensity score, which in this example is simply

set equal to the proportion of households allocated to the treatment group because treatment is randomized.

56The causal forest algorithm was implemented using the R package grf.
57Standard BART is implemented using the R package BART
58Note that treatment is randomized and therefore orthogonality between TOUi and pretrialpeaki ensures that this does not

bias the treatment effect estimates.
59In this example, m̆(xi) is estimated by gradient-boosted trees using the xgbTree option in the R package caret.
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Table 2.11 presents the results from the application of the ̂τ − riskR measure to the CER electricity trial

data with tenfold cross validation. For each validation fold, the ITE estimation algorithms are trained on the

other nine folds and ̂τ − riskR measure is calculated using the validation fold. The final result is the average

across all ten validation folds. It can be observed from table 2.11 that BCF-IS minimizes τ -risk and other

measures do not perform notably better than a linear model without controls. However, these results should

be interpreted with caution given the limitations of methods for assessing the accuracy of ITE estimation

methods.

Method τ -risk
CF 0.0021
BART 0.0016
BART-IS 0.0011
BCF-IS 0.0007
BART-BMA 0.0021
BCF-BMA 0.0034
LM 0.0013
LM with controls 0.0019
LM with interaction 0.0025

Table 2.11: Tau-risk measure of accuracy of ITE estimates applied to CER electricity trial data with tenfold
cross-validation.

Table 2.12 presents sample correlations of ITE estimates. BART-IS did not detect any heterogeneity in

treatment effects, and therefore correlations are unavailable for the BART-IS estimates.60 LM refers to the

linear model with interactions, (equation 2.3). The results form the causal forest, BART-BMA, and linear

model are highly correlated. Somewhat surprisingly, BCF-IS and BCF-BMA are not highly correlated with

the linear model.

CF BART BCF BART-IS BCF-IS BART-BMA BCF-BMA LM
CF 1

BART 0.81 1
BCF 0.77 0.59 1

BART-IS NA NA NA 1
BCF-IS 0.33 0.31 0.19 NA 1

BART-BMA 0.86 0.66 0.69 NA 0.23 1
BCF-BMA 0.51 0.42 0.39 NA 0.23 0.37 1

LM 0.93 0.72 0.75 NA 0.3 0.88 0.36 1

Table 2.12: Correlations of ITE estimates for CER data

Figure 2.4 plots ITE estimates on the y-axis and pre-treatment average peak electricity consumption on

the x-axis. The estimated treatment effect function from the linear model with an interaction (equation

2.3) is given by the black line. Note that the linear model does not give the true treatment effect function,

although it is expected that the treatment effect increases in magnitude nearly linearly with the level of

consumption as the amount of reducible consumption is a key determinant of a household’s ability to make

energy savings. Tree-based methods may be limited in their ability to capture this smooth association

between past consumption and demand response. Nonetheless, figure 2.4 shows that all methods produce

estimates that are associated to an extent with past peak consumption. The standard causal forest produces

60The fact that homogeneity of treatment effects in this dataset was strongly rejected in chapter 1 of this thesis suggests that
BART-IS has some limitations, at least when applied to some datasets.
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Figure 2.4: ITE estimates (kWh) for CER data (y-axis) against pre-trial average half-hourly peak consump-
tion (kWh) (x-axis).

a particularly impressive near-linear association between the treatment effect and past consumption which

breaks down for households with very high past consumption. It is realistic for there to be a limit to the

demand response of households with very high levels of pre-treatment consumption because these households

are likely to have high-income and be relatively price-inelastic. This provides support for the choice of causal

forest in the first chapter of this thesis.

However, it is possible that variables other than past peak consumption are more often selected by algo-

rithms other than the standard causal forest. The causal forest does not appear to capture much heterogeneity

beyond that which can be captured by a linear model with an interaction. The high level of heterogeneity,

which increases with pre-trial peak consumption for BART-based methods is also arguably to be expected

from this data. The lower τ − risk score for BART and BCF-IS may reflect the ability of these methods to

find other drivers of heterogeneity of demand response.

The standard BCF produces some very unrealistic estimates, with some households estimated to increase

their peak consumption, and others estimated to decrease peak consumption to an implausibly large extent.61

This issue is investigated in further detail in Appendix B.7. This suggests that standard BART and the

alternative implementations introduced in this chapter are preferable to standard BCF in the application to

this dataset.

2.7.2 Inflation Forecasting

This subsection compares BART implementations, Random Forests (RF) and LASSO in a generic application

to direct forecasting of inflation data. The dataset, taken from Garcia et al. (2017), consists of monthly

inflation data from Brazil from 31 January 2003 to 31 December 2015. There are 58 covariates, which include

price indices, electricity consumption, industrial production, unemployment, income, exchange rates, interest

61A demand response of -0.2 kWh per half-hour is on the order of 20% of peak consumption.
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rates, and government fiscal statistics, and the money supply. See Garcia et al. (2017) for further details on

the dataset.

The results reported here are for BART-MCMC, BART-BMA, BART-IS, LASSO, and Random Forests

(RF) applied generically in direct forecasting to 1, 3, 6, and 12 step ahead forecasts. This is straightforward

to implement using the R package forecastML (R Core Team 2020, Redell 2020). All graphs, tables and code

for this example are adapted from an introductory example in the forecastML documentation.62

In addition, results are included for a diffusion index model (Stock & Watson 2002) with an autoregressive

component and factor lags. The model has the form:

yht+h = αh +

3∑
j=1

β′hjFt−j+1 +

3∑
j=1

γhjyt−j+1 + εht+h

where Ft−j+1 is the vector of the first three principal components of the data matrix at time period t− j+ 1,
63 64 β′hj is a vector of three coefficients for the factors in time period t − j + 1, γhj is a coefficient of the

outcome lag yt−j+1, and εht+h is the idiosyncratic disturbance. The h-step ahead forecasts are equal to

yT+h|T = α̂h +

3∑
j=1

β̂′hjF̂T−j+1 +

3∑
j=1

γ̂hjyT−j+1

where F̂T−j+1 is the vector of estimated principal components, and α̂, β̂, and γ̂ are parameter estimates.

The models for all forecast horizons (1, 3, 6, and 12 step ahead forecasts) make use of contemporaneous

values and one and two period lagged values of covariates and the dependent variable.65 Overall, there are

156 months of observations. The final 12 months (January to December 2015) are held out as test data. The

inflation time series is graphed in figure 2.5.

Within the training data, the algorithms are first assessed on three validation windows of length 12, 12,

and 9 months. The windows are April 2004 - March 2005, April 2009 - March 2010, and April 2014 to

December 2014. The validation windows are only used for LASSO parameter tuning because a key appeal

of BART and RF is that the algorithms tend to perform well without parameter tuning, and therefore the

goal is to test the performance of these algorithms without tuning. For the same reason and fair comparison

across models, the decision was made not to perform a search for the optimal choice of lags to include in the

diffusion index model. The accuracy of the algorithms on the validation data is summarized in table 2.13.

The diffusion index model (DI-AR-Lag) performs slightly worse than the other models in the validation data,

and the other models have similar accuracy.

Finally, all algorithms are retrained using all the data up to December 2014, and accuracy is assessed

on the holdout data. Figure 2.6 plots the hold-out predictions and actual observations. Table 2.14 presents

62The original example is available at https://cran.r-project.org/web/packages/forecastML/vignettes/package overview.html
(Redell 2020). I replaced the dataset with the inflation data from Garcia et al. (2017) and added BART-MCMC, BART-BMA,
and BART-IS as methods for direct forecasting.

63The data matrix used for estimating principal components does not include lags of the covariates (except in so far as the
original dataset includes lags). The lags of the principal components are constructed using the lags of the covariates. This
ensures that the same number of lags are used by all methods included in this comparison. An alternative would be to include
more lags in the initial matrix used for construction of principal components, although this would require the lags of principal
components to be constructed from higher order lags not used by te other methods. Stock & Watson (2002) observe that
forecasts based on larger “stacked” data generally perform worse than forecasts based on “unstacked” data.

64The choice of three principal components is entirely arbitrary. A search across different model specifications is not imple-
mented in this paper to ensurer a fairer comparison across methods. The results of Stock & Watson (2002) suggest that “most
of the forecast gains seem to come from using a single factor”.

65In the case of tree-based methods the contemporaneous and lagged features and outcome are are included as potential
splitting variables.
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Figure 2.5: CPI inflation time series. The data to the right of the red vertical line is held out as test data.

Model MAE MAPE MDAPE SMAPE RMSE
BART-BMA 0.19 65.64 35.20 51.41 0.22
BART-IS 0.17 45.34 29.33 43.09 0.21
BART-MCMC 0.16 38.93 26.94 40.28 0.21
LASSO 0.17 43.11 28.41 40.98 0.21
RF 0.16 42.05 26.57 39.72 0.21
DI-AR-Lag 0.20 57.17 31.79 49.59 0.24

Table 2.13: Measures of accuracy of inflation forecasts, averaged across all validation windows and forecast
horizons (1,3,6,12 step forecasts). MAE = Mean Absolute Error, MAPE = Mean Absolute Percentage Error,
MDAPE= Median Absolute Percentage Error, SMAPE = Symmetric Mean Absolute Percentage Error,
RMSE = Root Mean Squared Error

measures of accuracy for the predictions on the holdout data. LASSO performs best in terms of RMSE,

although there is no clear winner across all measures of forecast accuracy. A comparison of the ranking

of methods between Table 2.13 and Table 2.14 suggests that the relative performance of methods may be

sensitive to the size of the available training dataset. While BART-IS does not outperform LASSO or a

diffusion index model, it is encouraging to note that it outperforms BART-MCMC across all measures of

forecast accuracy in this example. These results suggest that that BART with a naive direct forecasting

approach is not particularly well suited to inflation forecasting. However, recently introduced methods such

as Bayesian Additive Vector Autoregression Trees (BAVART) (Huber & Rossini 2020) might yield better

results.
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(a) Inflation forecasts, 1 month ahead (b) Inflation forecasts, 3 months ahead

(c) Inflation forecasts, 6 months ahead (d) Inflation forecasts, 12 months ahead

Figure 2.6: Hold-out data predictions and actual observations for one-month, three-month, six-month, and
12-month ahead forecasts of CPI inflations.

Model MAPE MDAPE SMAPE RMSE
BART-BMA 58.58 79.91 0.69 2.57
BART-IS 50.43 67.64 0.61 2.29
BART-MCMC 54.47 68.73 0.63 2.36
LASSO 51.01 65.43 0.59 2.21
RF 51.83 66.20 0.60 2.25
DI-AR-L 48.33 65.80 0.61 2.27

Table 2.14: Measures of accuracy of inflation forecasts in hold-out data, averaged across all forecast horizons
(1,3,6,12 step forecasts). MAPE = Mean Absolute Percentage Error, MDAPE= Median Absolute Percentage
Error, SMAPE = Symmetric Mean Absolute Percentage Error, RMSE = Root Mean Squared Error
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2.7.3 Growth Determinants

There is an extensive literature on the application of Bayesian Model Averaging to macroeconomic datasets

for the discovery of determinants of economic growth. Early empirical studies on growth determinants include

those by Levine & Renelt (1992), Barro (1996b,a) and Sala-i Martin (1997). Examples of studies applying

Bayesian Model Averaging of linear models include those by Fernandez et al. (2001b,a), Sala-i Martin et al.

(2004), Doppelhofer & Weeks (2009), and many subsequent papers. See Steel (2017) for a comprehensive

review of the literature.

There are a small number of growth determinant studies that move beyond standard BMA of linear

models. Dobra et al. (2010) apply Gaussian Graphical Models to account for dependency between variables,

Durlauf et al. (2012), Lenkoski et al. (2014) and Karl & Lenkoski (2012) account for endogeneity of potential

growth determinants, and Doppelhofer et al. (2016) account for measurement error. Moral-Benito (2016) and

Leon-Gonzalez & Montolio (2015) accounts for endogeneity in BMA of panel models of economic growth.

Few, if any, existing papers in the growth determinant literature allow for complex nonlinearities and

interactions. We consider the usefulness of BART in selecting determinants of economic growth. The following

illustrative example does not include any attempt to take account of endogeneity.66 The dataset is from a

paper by Sala-i Martin et al. (2004) on Bayesian Averaging of Classical Estimators (BACE), which involves

an approximation to BMA of linear models. All countries with missing observations for any covariates are

removed from the dataset. The data contains 67 covariates for 88 countries. The dependent variable is the

average growth rate of GDP from 1960 to 1996. The variable names with descriptions are given in table 2.15.

66An interesting topic for future research would be how to obtain variable selection measures from BART models that account
for endogeneity.
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Description of Variable Variable Name
Absolute Latitude ABSLATIT
Air Distance to Big Cities AIRDIST
Ethnolinguistic Fractionalization AVELF
British Colony Dummy BRIT
Fraction Buddhist BUDDHA
Fraction Catholic CATH00
Civil Liberties CIV72
Colony Dummy COLONY
Fraction Confucian CONFUC
Population Density 1960 DENS60
Population Density Coastal in 1960s DENS65C
Interior Density DENS65I
Population Growth Rate 1960-90 DPOP6090
East Asian Dummy EAST
Capitalism ECORG
English Speaking Population ENGFRAC
European Dummy EUROPE
Fertility in 1960s FERTLDC1
Defence Spending Share GDE1
GDP in 1960 (log) GDPCH60L
Public Educ. Spending Share GDP, 1960s GEEREC1
Public Investment Share GGCFD3
Nominal Govt. GDP Share 1960s GOVNOM1
Government Share of GDP in 1960s GOVSH61
Gov. Consumption Share 1960s GVR61
Higher Education 1960 H60
Religion Measure HERF00
Fraction Hindus HINDU00
Investment Price IPRICE1
Latin American Dummy LAAM
Land Area LANDAREA
Landlocked Country Dummy LANDLOCK
Hydrocarbon Deposits in 1993 LHCPC
Life Expectancy in 1960 LIFE060

Description of Variable Variable Name
Frac. of Land Near Navigable Water LT100CR
Malaria Prevalence in 1960s MALFAL66
Fraction GDP in Mining MINING
Fraction Muslim MUSLIM00
Timing of Independence NEWSTATE
Oil Producing Country Dummy OIL
Openness measure 1965-74 OPENDEC1
Fraction Orthodox ORTH00
Fraction Speaking Foreign Language OTHFRAC
Primary Schooling in 1960 P60
Average Inflation 1960-90 PI6090
Square of Inflation 1960-90 SQPI6090
Political Rights PRIGHTS
Fraction Population Less than 15 POP1560
Population in 1960 POP60
Fraction Population Over 65 POP6560
Primary Exports 1970 PRIEXP70
Fraction Protestants PROT00
Real Exchange Rate Distortions RERD
Revolutions and Coups REVCOUP
African Dummy SAFRICA
Outward Orientation SCOUT
Size of Economy SIZE60
Socialist Dummy SOCIALIST
Spanish Colony SPAIN
Terms of Trade Growth in 1960s TOT1DEC1
Terms of Trade Ranking TOTIND
Fraction of Tropical Area TROPICAR
Fraction Population In Tropics TROPPOP
Fraction Spent in War 1960-90 WARTIME
War Participation 1960-90 WARTORN
Years Open 1950-94 YRSOPEN
Tropical Climate Zone ZTROPICS

Table 2.15: Names of variables in growth determinant regression

The standard measure of the importance of growth determinants in the existing literature on BMA of

growth regressions is the Posterior Inclusion Probability (PIP). The PIP is the model-probability weighted

average of an dummy variable equal to one if the variable of interest is included in the model. Let the dummy

variable γi equal 1 if variable xi is included in a model. Let the model space be denoted by M, and let j

index the set of models. Then the PIP can be written as

PIPi = p(i|y) =
∑
∀j∈M

1(γi = 1|y,Mj)p(Mj |y)

Posterior Inclusion Probabilities can be calculated for BART-MCMC,67 BART-IS, and BART-BMA by set-

ting γi = 1 if any splitting rules in any trees in the sum-of-tree model are based on variable xi. Alternatively,

67In this example, BART-MCMC is implemented with 5 trees per model for comparability of PIPs and variable importance.
Chipman et al. (2010) recommend a small number of trees (5, 10, or 20) for obtaining variable importance measures because
this results in more parsimonious models that make use of fewer splitting variables.
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variable importance can be assessed using a model weighted average of the fraction of splitting rules based

on the variable of interest. This alternative measure is simply referred to as “variable importance” in this

paper.

Table 2.16 gives the posterior inclusion probability results for BART based methods and the original

BACE results obtained by Sala-i Martin et al. (2004). A number of key variables receive the highest PIP and

variable importance across all three BART implementations. Therefore, this is an example of an economic

application for which the methods introduced in this paper are viable alternatives to BART-MCMC for

identifying important variables. Some key variables have a relatively high PIP across all methods, such as

the East Asia dummy variable and fraction Confucian. However, there are some notable differences in PIPs

across methods. For example, BART-IS and BART-MCMC do not place a high PIP on GDP in 1960 or

enrolment in primary education in 1960, while BACE and BART-BMA place high PIP on these variables.

One possible explanation for this result is that some pairs of variables are substitutes (i.e. both explain the

same underlying effect) while others are complements that have a higher probability of both being included

or excluded in the model. Therefore a thorough analysis of correlations and jointness (Doppelhofer & Weeks

2009) may explain some of these patterns. However, it is also possible that BART-based methods can find

interactions and non-linearities that are not captured by the linear model approach. Table 2.17 presents

the variable importance results for BART-BMA, BART-IS, and BART-MCMC. The pattern for variable

importances is similar to the pattern observed for PIPs.
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Variables BART BART BART BACE
BMA IS MCMC

ABSLATIT 1 0.231 0.045 0.033
AIRDIST 0 0.063 0.007 0.039
AVELF 0 0.103 0.102 0.105
BRIT 0 0.033 0.045 0.027
BUDDHA 1 0.556 0.396 0.108
CATH00 0 0.149 0.010 0.033
CIV72 0 0.023 0.010 0.029
COLONY 0 0.064 0.011 0.029
CONFUC 1 0.339 0.318 0.206
DENS60 0 0.123 0.071 0.086
DENS65C 0 0.161 0.083 0.428
DENS65I 0 0.038 0.016 0.015
DPOP6090 0 0.055 0.021 0.019
EAST 1 0.757 1.000 0.823
ECORG 0 0.078 0.110 0.015
ENGFRAC 0 0.044 0.011 0.020
EUROPE 0 0.069 0.132 0.030
FERTLDC1 0 0.071 0.029 0.031
GDE1 0 0.083 0.055 0.021
GDPCH60L 0.584 0.034 0.020 0.685
GEEREC1 1 0.039 0.304 0.021
GGCFD3 0 0.031 0.010 0.048
GOVNOM1 1 0.026 0.018 0.063
GOVSH61 0 0.045 0.031 0.036
GVR61 0 0.055 0.078 0.104
H60 1 0.242 0.023 0.061
HERF00 0 0.072 0.084 0.020
HINDU00 0 0.034 0.010 0.045
IPRICE1 1 0.168 0.230 0.774
LAAM 0 0.056 0.044 0.149
LANDAREA 0 0.065 0.021 0.016
LANDLOCK 0 0.039 0.017 0.021
LHCPC 0 0.124 0.018 0.025
LIFE060 0 0.553 0.136 0.209

Variables BART BART BART BACE
BMA IS MCMC

LT100CR 0 0.060 0.079 0.019
MALFAL66 1 0.227 0.780 0.252
MINING 0 0.057 0.007 0.124
MUSLIM00 0 0.075 0.066 0.114
NEWSTATE 0 0.063 0.020 0.019
OIL 0 0.066 0.008 0.019
OPENDEC1 0 0.054 0.016 0.076
ORTH00 0 0.042 0.003 0.015
OTHFRAC 0 0.148 0.078 0.080
P60 1 0.177 0.151 0.796
PI6090 0 0.049 0.103 0.020
SQPI6090 0 0.039 0.002 0.018
PRIGHTS 1 0.062 0.003 0.066
POP1560 0 0.049 0.027 0.041
POP60 0 0.046 0.019 0.021
POP6560 0 0.100 0.064 0.022
PRIEXP70 0 0.061 0.043 0.053
PROT00 0 0.046 0.020 0.046
RERD 1 0.082 0.078 0.082
REVCOUP 0 0.042 0.010 0.029
SAFRICA 0 0.103 0.137 0.154
SCOUT 0 0.061 0.025 0.030
SIZE60 0 0.065 0.023 0.020
SOCIALIST 0 0.155 0.005 0.020
SPAIN 0 0.064 0.036 0.123
TOT1DEC1 0 0.046 0.048 0.021
TOTIND 0 0.099 0.021 0.016
TROPICAR 0 0.232 0.454 0.563
TROPPOP 1 0.143 0.020 0.058
WARTIME 0 0.06 0.045 0.016
WARTORN 0 0.069 0.013 0.015
YRSOPEN 1 0.227 0.090 0.119
ZTROPICS 0 0.151 0.066 0.016

Table 2.16: PIPs for growth determinant regressions. BART based methods and original BACE results from
Sala-i Martin et al. (2004).
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Variables BART BART BART
BMA IS MCMC

ABSLATIT 0.095 0.024 0.010
AIRDIST 0 0.008 0.001
AVELF 0 0.014 0.017
BRIT 0 0.005 0.006
BUDDHA 0.076 0.074 0.068
CATH00 0 0.022 0.002
CIV72 0 0.003 0.001
COLONY 0 0.008 0.002
CONFUC 0.114 0.039 0.055
DENS60 0 0.021 0.011
DENS65C 0 0.03 0.013
DENS65I 0 0.005 0.003
DPOP6090 0 0.008 0.003
EAST 0.095 0.107 0.174
ECORG 0 0.010 0.002
ENGFRAC 0 0.005 0.002
EUROPE 0 0.010 0.022
FERTLDC1 0 0.010 0.005
GDE1 0 0.009 0.009
GDPCH60L 0.011 0.004 0.003
GEEREC1 0.038 0.004 0.049
GGCFD3 0 0.004 0.002
GOVNOM1 0.019 0.003 0.003
GOVSH61 0 0.006 0.005
GVR61 0 0.008 0.013
H60 0.019 0.020 0.004
HERF00 0 0.012 0.013
HINDU00 0 0.004 0.002
IPRICE1 0.057 0.022 0.036
LAAM 0 0.006 0.007
LANDAREA 0 0.009 0.004
LANDLOCK 0 0.006 0.003
LHCPC 0 0.019 0.002
LIFE060 0 0.078 0.022

Variables BART BART BART
BMA IS MCMC

LT100CR 0 0.009 0.014
MALFAL66 0.095 0.030 0.136
MINING 0 0.005 0.001
MUSLIM00 0 0.007 0.011
NEWSTATE 0 0.009 0.003
OIL 0 0.008 0.001
OPENDEC1 0 0.006 0.002
ORTH00 0 0.004 0.001
OTHFRAC 0 0.019 0.012
P60 0.095 0.025 0.023
PI6090 0 0.006 0.017
SQPI6090 0 0.005 0
PRIGHTS 0.057 0.009 0
POP1560 0 0.008 0.004
POP60 0 0.004 0.003
POP6560 0 0.014 0.010
PRIEXP70 0 0.009 0.007
PROT00 0 0.005 0.003
RERD 0.076 0.010 0.013
REVCOUP 0 0.006 0.001
SAFRICA 0 0.012 0.024
SCOUT 0 0.009 0.004
SIZE60 0 0.011 0.004
SOCIALIST 0 0.028 0.001
SPAIN 0 0.008 0.006
TOT1DEC1 0 0.007 0.007
TOTIND 0 0.010 0.003
TROPICAR 0 0.031 0.083
TROPPOP 0.057 0.020 0.003
WARTIME 0 0.006 0.007
WARTORN 0 0.010 0.002
YRSOPEN 0.095 0.018 0.014
ZTROPICS 0 0.017 0.010

Table 2.17: Variable Importances for growth determinant BART results.

2.8 Conclusion

2.8.1 Limitations of Importance Sampling of Models

Importance sampling is well known to have limitations in high-dimensional settings (Agapiou et al. 2017). In

particular, without an appropriate choice of sampler, the IS approximation can have high or infinite variance.

When there are many covariates, Bayesian Model Averaging of linear models, or of tree-based models involves

sampling from a high-dimensional model space. Therefore, simple importance sampling-based approaches

to model averaging suffer from the curse of dimensionality. In the context of linear models, methods for

addressing this issue include orthogonalization of the data matrix combined with sampling from approximate

model inclusion probabilities, sampling without replacement, and adaptive sampling (Clyde et al. 1996, 2011,
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Yu et al. 2010).68

Quadrianto & Ghahramani (2014) noted that simple importance sampling from the prior is known not

to work so well, and explain that this choice of sampling scheme is due to a trade-off between predictive

accuracy and computational time.69 Lakshminarayanan et al. (2013) similarly justify the use of a prior as a

proposal tree sampler within a MCMC algorithm.

Importance sampling schemes for BART are likely to suffer from the curse of dimensionality, and may fail

to sample models with high posterior probability. This leads to the following topics for future research. 1.

The combination of BART-IS with screening methods or adaptive sampling schemes to improve the variable-

selection properties of the algorithm, or 2. Accepting the fact that BART-IS should fail to give an accurate

representation of a posterior probability weighted average (or at least a highly variable approximation),

is there a potential explanation for the observation that BART-IS can exhibit comparable performance to

BART-MCMC on some datasets?

A few studies have combined BART with screening methods. For example, BART-BMA Hernández et al.

(2018) relies on a changepoint detection algorithm to reduce the number of potential splitting points to be

used in constructing trees. Another approach, RS-BART, combines random subspace methods with BART

by applying BART a number of times to subsamples of the set of covariates, using a data-informed sampler

for the covariates similar to Sure Independence Screening (Wang et al. 2019, Fan & Lv 2008). It is possible

to implement RS-BART with BART-IS instead of BART-MCMC, or to make use of the same data-informed

covariate sampler within the standard BART-IS algorithm.70

An area for future research is the combination of BART with adaptive sampling methods. Some initial

test results suggest that BART-IS in combination with a straightforward update of sampling probabilities

based on posterior inclusion probabilities from already sampled models can lead to improved accuracy in

moderately high dimensional datasets.71 This approach moves towards a data-informed stochastic search for

sum-of-tree models, analogous to the existing literature for linear models.

There are some similarities between adaptive forms of BART-IS and Thompson Variable Selection (TVS)

(Liu & Rockova 2020). TVS makes use of a multi-armed bandits approach that involves iteratively sampling

from a distribution of “rewards” that are used to create variable subsamples, applying BART-MCMC to the

subsample of the covariates, and using counts of covariate splits to update the reward distribution. This

approach exhibits impressive variable selection properties. Such stochastic variable selection approaches can

be used to find the Median Probability Model (MPM) rather than a true Bayesian model average, but may

yield impressive predictive performance nonetheless. It is in principle possible to replace BART-MCMC with

BART-IS in the TVS algorithm.

Liu et al. (2018) introduce Approximate Bayesian Computation Bayesian Forests (ABC-BF). The “naive”

implementation of ABC-BF is similar to BART-IS in that it involves independent sampling of tree models

from a prior. However, the main difference is that, instead of applying marginal likelihood weights (as in

BART-IS), ABC-BF simulates data from the drawn models and accepts or rejects the drawn models based

on the distance between the simulated and observed data. ABC-BF involves a spike-and-tree prior that first

samples a subset of covariates, and then the model draw is conditional on these covariates. Furthermore,

68However, similar limitations can also apply to MCMC based approaches to model averaging, and this provides some moti-
vation for development of stochastic search algorithms (Heaton & Scott 2010, Clyde & Ghosh 2012).

69Further improvements to the BART-IS code are required before a thorough comparison of computational speed against
BART-MCMC.

70Preliminary results suggest that this gives some improvement in predictive accuracy in datasets with low to moderately high
covariate dimension.

71This is essentially Bayesian Adaptive Sampling (Clyde et al. 2011), albeit sampling models with replacement.
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the naive approach is improved on by taking model draws conditional on a subsample of the data (i.e. one

BART-MCMC draw), separate to the data for the acceptance rule (conditional on the drawn covariates).

This approach is shown by Liu et al. (2018) to have desirable variable selection properties. The resulting

robust and stable Posterior Inclusion Probabilities can be used to select the Median Probability Model.72

Friedman et al. (2003, 2008) describe how a wide range of methods, including boosting, bagging, random

forests, and BMA fall into the framework of importance sampling of the parameters of weak learners.73 The

location and scale of the parameters are both important to the success of the algorithm. On the one hand it

is desirable to average over learners with parameters that give minimal predictive risk. On the other hand,

if there is insufficient variation in the parameters, each sample provides little additional information. Partial

importance sampling locates the parameter sampling distribution near the optimal values (e.g. a single

regression tree deterministically fitted to all the data). An ensemble of all strong or all weak base learners

will perform poorly. Ideally, base learners should be moderately strong and not very highly correlated. For

example, random forest increases the scale and decorrelates the learners by subsampling the training data

and randomly sampling the potential splitting variables.

The data-independent sum-of-tree model samples in BART-IS potentially have excessively high scale.

Furthermore, unlike MCMC-based algorithms, BART-IS does not sample from the posterior and therefore

the samples might not be close to the posterior mode (highest probability model). However, BMA will place

all the mass on one model as the number of observations tends to infinity, and this might not be desirable if

the “true model” is not representable as a sum of trees. This can be partly addressed in BART-IS by raising

the marginal likelihood to a power (Quadrianto & Ghahramani 2014, Grünwald 2012).74

Given the above limitations, it is perhaps worthwhile attempting to explain why BART-IS can produce

reasonably accurate predictions. One possibility is that, since BART-IS is very similar to other purely random

forest methods, it might share some of the desirable properties of these methods (Arlot & Genuer 2014).

Methods such as Perfect Ensemble Random Trees and Extremely Randomized Trees (Cutler & Zhao 2001,

Geurts et al. 2006) apply equal weights to a set of weak learners, and can exhibit impressive performance.

2.8.2 Summary and Discussion of Future Research

Many MCMC implementations of BART have been demonstrated to be effective in a variety of applications.

This paper explores potential alternatives to MCMC based BART. The BCF-BMA algorithm extends an

improved version of BART-BMA (Hernández et al. 2018), to treatment effect estimation. This paper also

describes BART-IS and BCF-IS, which, in notable contrast with BART-BMA and BCF-BMA, do not

involve a deterministic data driven model search, but instead involve simple importance sampling from a

data independent model prior.75

The BART-IS and BCF-IS sampling schemes are unlikely to be as effective as MCMC methods, despite

the marginalization of terminal node parameters. However, the simple importance sampling framework

allows for straightforward implementation of BART and testing of different priors and other variations on

the model.76

72Liu et al. (2018) also describe an ABC Forest Fit algorithm that involves, for each random sample of variables and data,
sampling predictions from an average over MCMC model draws to be used in the accept/reject step. In principle, the MCMC
algorithm could be replaced by BART-IS (applied to the sub-sampled data) in ABC Forest Fit.

73Parameters in this context include, for example, splitting variables and splitting points in trees.
74Even in finite samples, it may be desirable to reduce the weight applied to correlated models with high marginal likelihoods.
75While the BMA implementations in this paper are entirely deterministic, the IS implementations are potentially strongly

influenced by data-independent random sampling of models.
76See chapter 3 of this thesis for examples. e.g. extensions to binary outcomes.
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Interesting potential topics for further research include faster implementations of BART-IS, multivariate

BART-IS, 77 semi-parametric BART-IS, 78 and Bayesian stacking of sum-of-tree models. Another area for

future research is Bayesian Adaptive Sampling (BAS) of BART Models (Clyde et al. 2011). BAS involves

sampling without replacement and possibly adjusting sampling probabilities by predicting the marginal like-

lihood of unsampled models. While BAS has been applied to sampling of linear models, further research is

required for application of this approach to tree-based models.79. Furthermore, the potential implementation

of a safe-Bayesian approach, as suggested by Quadrianto & Ghahramani (2014) has not been fully explored

in this paper. In most examples, BART-IS places a very high posterior probability on a few models. A safe-

Bayesian approach can ensure that probability mass is not placed on one model as the number of observations

tends to infinity (Grünwald 2012).

77See appendix B.3.
78See Zeldow et al. (2019) for a description of semi-parametric BART (BART plus a linear model) and an MCMC implemen-

tation. See appendix B.4.
79This hypothetical alternative approach to BART is distinct from the existing literature that applies BART-MCMC to guide

adaptive sampling of linear models (Yu et al. 2010, 2012, Yu & Li 2020)
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Chapter 3

Generalizations of BART-BMA and BART-IS

Abstract

This chapter outlines extensions of the BART-BMA and BART-IS algorithms to more general settings,

including binary outcomes, treatment effects for binary outcomes, censored outcomes, categorical outcomes,

and count data. BART-IS and BART-BMA are readily extendable to model frameworks for which the

marginal likelihood and posterior can be efficiently calculated or approximated. The examples discussed in

this chapter make use of standard Quasi-Newton methods in combination with Laplace approximations.

As examples of how to apply the general approach, Logit-BART-BMA and Logit-BART-IS are described

and shown to be competitive with existing tree-based methods on real-world binary classification datasets. In

addition, Logit-BCF-IS (and Logit-BCF-BMA) give treatment effect estimates and intervals with accuracy

comparable to the best performing methods on simulated datasets from a data analysis challenge. As a

further example, Tobit-BART is introduced and implemented using the general BART-IS framework.

3.1 Introduction

3.1.1 BART for Generalized Linear Models

This chapter outlines how BART-BMA and BART-IS can be generalized to a variety of data settings, includ-

ing binary outcomes, censored outcomes, count data, and multinomial response data. The general approach

is applicable in settings in which a linear combination of variables can be replaced by a sum-of-tree model.

As explained in chapter 2 of this thesis, a sum-of-trees is itself a representation of a linear combination of

indicator variables for terminal nodes with coefficients equal to the terminal node mean parameters. This

approach allows for non-linearity and complex interactions between variables, while also accounting for model

uncertainty.

Recent advances in Bayesian methods have allowed for a large class of models to be approximated effi-

ciently. The methods introduced in this paper are averages over generalized linear models with the linear

combinations of covariates replaced by sums-of-trees. The approach may be applicable to a wider class of

models, but this chapter will restrict attention to generalized linear models.

While the general algorithms are not restricted to a particular approximation method, a key candidate

method that will be focused on in this chapter is Laplace approximation. Rue et al. (2009) introduce

Integrated Nested Laplace Approximations (INLA), which are applicable to latent Gaussian models. Most

structured Bayesian models take the form of latent Gaussian models, which are a special case of structured

additive regression models.

In structured additive regression models, the outcome yi is assumed to belong to an exponential family,

where the mean µi is linked to a structured additive predictor ηi through a link-function g(.), so that
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g(µi) = ηi . The structured additive predictor ηi takes the form:

ηi = α+

nf∑
j=1

f (j)(uji) +

nβ∑
k=1

βkzki + εi (3.1)

where the {f (j)(.)}’s are unknown functions of the covariates u, the {βk}’s represent the linear effects of

covariates z and the εi’s are unstructured terms. Latent Gaussian models apply a Gaussian prior to {f (j)(.)},
{βk} , and εi.

This paper will focus on averages of generalized linear models, which are of the form ηi = α+
∑nβ
k=1 βkzki.

The models being averaged over all use the same link function, and the linear combination of covariates∑nβ
k=1 βkzki (or part of the linear combination) is replaced by a linear combination of indicator variables

for inclusion in terminal nodes of sums-of-trees (as described in chapter 2).1 Models that do not involve

Gaussian priors may also be included in the general framework outlined in this paper, provided an efficient

approximation is available.

The discussion above outlines the general applicability of the approach through the use of INLA (Rue

et al. 2009). However, for simplicity of demonstration, this paper will focus on examples in which standard

Laplace approximations are feasible, and therefore further description of INLA is omitted. Furthermore, the

feasibility of generalization to a particular model depends on the computational speed of the approximation,

and performance will depend on the accuracy of the approximation and the appropriateness of the link

function.2 The limited existing literature on the combination of INLA and Bayesian Model Averaging involves

averaging over parameters in spatial econometric models (Gómez-Rubio et al. 2020, Gómez-Rubio & Rue

2018, Bivand et al. 2014, 2015). However, this literature does not discuss averaging over different sets of

(non-linear functions of) covariates.

The General BART-IS algorithm involves random, data-independent draws of sum-of-tree models, and a

marginal likelihood weighted average of these models. The General BART-BMA algorithm involves a model

search algorithm that beings by constructing single tree models, and then appends trees to these models, and

averages over the set of searched models that have highest posterior probability. The BART-BMA approach

requires construction of residuals representing the unexplained part of ηi, which are used to construct trees

to be appended to the models. However, the calculation of residuals, while straightforward in the case of

Logit, is not always possible. In this sense BART-IS is more generalizable than BART-BMA, as BART-BMA

requires model-specific adjustments to the model search algorithm.

A key requirement for this approach to be feasible is that the marginal likelihood can be efficiently

calculated and the posterior distribution has a closed form or has a very efficient sampler. This requirement

is satisfied in the case of Bayesian logistic regression with a standard Laplace approximation, which is used

in this chapter as an illustrative example. Logit-BART-BMA and Logit-BART-IS involve averaging over

models in which the binary outcome has success probability equal to the logistic function of a sum-of-tree

function.

1Models that include f(.) terms such as random effects models f(ui) = fi, dynamic models f(ut) = ft, and spatial models
f(us) = fs, may also be included in the general approach described in this chapter, but these models are not the focus of this
chapter.

2It could be argued that the link function imposes a strong assumption, and therefore a moment-condition based approach
such as Generalized Random Forests (Athey et al. 2019) or Orthogonal Random Forests (Oprescu et al. 2018) is more appropriate
in some contexts.
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3.1.2 Binary Classification Example and Literature Review

Single tree methods can readily be applied to binary outcome data. Trees in a random forest applied to binary

outcomes produce predictions between zero and one because leaf estimates are averages of binary variables.

However, sum-of-tree based methods such as BART are less directly applicable to binary outcome data

because sums-of-trees can produce predictions outside the range [0, 1] and ideally the statistical framework of

BART should account for the fact that the outcomes are binary. Therefore BART-based models for binary

outcomes (and other generalized linear models for different forms of outcome variable), rely on a choice of

link function.

Sum-of-tree models, such as AdaBoost with decision trees as weak learners, often produce excellent

results when applied to binary classification problems (Freund & Schapire 1995, Freund et al. 1996). An

early example of a sum-of-tree model for binary outcomes placed in a statistical framework is the LogitBoost

algorithm (Friedman et al. 2000). BART can be extended to binary outcome prediction by applying a probit

or logit link function to a sum-of-tree model. Chipman et al. (2010) implement Probit-BART-MCMC using

the data augmentation Markov Chain Monte Carlo approach of Albert & Chib (1993). Zhang & Härdle

(2010) independently applied Probit-BART to credit risk modelling and found that it is competitive with

other machine learning methods. Abu-Nimeh et al. (2008) also applied this approach to spam email detection.

The R package BART implements Logit-BART using a computationally intensive MCMC algorithm based

on the approach of Gramacy et al. (2012).

The performance of MCMC implementations of BART has been noted to be less impressive for binary

outcomes than for continuous outcomes (Hill et al. 2020, Carnegie et al. 2015).3 The algorithms in this paper

provide alternatives to the MCMC implementations of BART for binary outcomes.

A number of recent papers have extended the applicability of BART. Examples include BART variations

of multinomial Probit (Kindo, Wang & Peña 2016), quantile regression (Kindo, Wang, Hanson & Peña 2016),

survival analysis (Sparapani et al. 2016), recurrent event analysis (Sparapani et al. 2018), and competing

risks models (Sparapani et al. 2019). See Hill et al. (2020), Tan & Roy (2019) and Linero (2017) for review

articles.

Murray (2017) proposes new priors and a data augmentation scheme that allow for an efficient MCMC

sampler for BART-based methods outside the context of Gaussian models. The approach of Murray (2017)

(Log-linear BART) is to model the log of the regression function as a sum-of-trees and apply a generalized

inverse Gaussian prior distribution to the terminal node parameters. Log-linear BART is applicable to logistic

regression, multinomial logistic regression, and Poisson regression among other models.

This paper provides alternatives to Log-linear BART that retain the standard BART priors and do not

rely on MCMC. 4 5 A BART-BMA framework provides efficient greedy algorithms that outputs a relatively

small number of parsimonious models. A BART-IS framework is straightforward to implement and trivially

parallelizable.6 The simple BART-BMA and BART-IS approaches provide readily implementable benchmarks

for more complicated schemes such as the MCMC-based methods.

3Dorie et al. (2019) note that performance can be improved by using cross-validation to choose hyperparameters.
4While the focus of this paper is implementation algorithms, I also provide options for alternative model priors on the tree

structures, including the prior proposed by Quadrianto & Ghahramani (2014) and the spike and tree prior Rockova & van der
Pas (2017), in the R packages logitbartBMA and safeBart . Code is available at https://github.com/EoghanONeill

5The approach introduced in this paper can be combined with alternative parameter priors, e.g. different terminal node priors
and hierarchical priors, provided the marginal likelihood can be efficiently calculated and it is possible to sample efficiently from
a given sum-of-tree model (in the set of models being averaged). This possibility is a topic for future research.

6See chapter 2 of this thesis for further discussion of the usefulness of the BART-BMA and BART-IS algorithms.
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The methods discussed in this chapter are relevant to a range of economic applications. Binary classifi-

cation algorithms can be applied to propensity score estimation, and also prediction problems such as credit

default prediction and prediction of consumer purchases. Multinomial regression methods are extensively

used in modelling discrete choice problems in econometrics. The methods introduced in this chapter provide

a flexible machine learning approach that accounts for model uncertainty and potentially complex functional

forms.

The remainder of the paper is structured as follows. Section 3.2 provides a brief review of BART.

Section 3.3 outlines the general framework for extending BART-BMA and BART-IS to a wide range of

model settings. Section 3.4 describes the binary classification methods Logit-BART-IS and Logit-BART-

BMA and compares the performance of these algorithms to other methods using publicly available datasets.

Section 3.5 describes methods for treatment effect estimation with binary outcomes Logit-BCF-IS and Logit-

BCF-BMA, and compares these algorithms to other methods using data from the ACIC 2019 data challenge.

Section 3.6 discusses further model settings to which the generalized BART-BMA and BART-IS algorithms

can be applied, with Tobit-BART-IS as an illustrative example.7 Section 3.7 concludes the paper.

3.2 Review of BART and BART-BMA

In this section, we describe BART (Chipman et al. 2010), BART-BMA (Hernández et al. 2018), and an

approximate, sub-optimal approach to implementation of Probit-BART-BMA and Probit-BART-IS that can

be as a benchmark for the more principled approach introduced later in this paper.

This section repeats the overview from chapter 2, and is included for completeness so that this chapter is

self-contained.

3.2.1 Overview of BART

Description of BART Model and Priors

Suppose there are n observations, and the n × p matrix of explanatory variables, X, has ith row xi =

[xi1, ..., xip]. For the standard BART model Yi =
∑m
j=1 g(xi;Tj ,Mj) + εi, where g(xi;Tj ,Mj) is the output

of a decision tree. Tj refers to decision tree j = 1, ...,m, where m is the total number of trees in the model.

Mj are the terminal node parameters of Tj , and εi
i.i.d∼ N(0, σ2).

For BART (Chipman et al. 2010), prior independence is assumed across trees Tj and across terminal node

means Mj = (µ1j ...µbjj) (where 1, ..., bj indexes the terminal nodes of tree j). The form of the prior used by

Chipman et al. (2010) is:

p(M1, ...,Mm, T1, ..., Tm, σ) ∝

∏
j

[∏
k

p(µkj |Tj)

]
p(Tj)

 p(σ)

In standard BART, µkj |Tj
i.i.d∼ N(0, σ2

0) where σ0 = 0.5
e
√
m

and e is a user-specified hyper-parameter.

Chipman et al. (2010) set a regularization prior on the tree size and shape p(Tj) to discourage any one tree

from having undue influence over the sum of trees. The probability that a given node within a tree Tj is split

into two child nodes is α(1 + dh)−β , where dh is the depth of (internal) node h and α and β are parameters

7To the best of my knowledge, this is the first example of a Tobit-BART regardless of the implementation. An interesting
topic for future research would be an MCMC based implementation of Tobit-BART.
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which determine the size and shape of Tj respectively. Thus p(Tj) =
∏bj−1
h=1 α(1+dh)−β

∏bj
k=1(1−α(1+dk)−β),

where h indexes the internal nodes of the tree Tj , and k indexes the terminal nodes.

Chipman et al. (2010) assume that the model precision σ−2 has a conjugate prior distribution σ−2 ∼
Ga( v2 ,

vλ
2 ) with degrees of freedom v and scale λ. There are also priors on the splitting variables and splitting

points in each tree. Chipman et al. (2010) use the uniform prior on available splitting variables, and the

uniform prior on the discrete set of available splitting variables.

3.2.2 Overview of BART-BMA

BART-BMA applies the same priors as standard BART (section 3.2.1), except the variance of the terminal

node parameters is proportional to the variance of the error term, µij |T, σ ∼ N(0, σ
2

a ), as suggested by

Chipman et al. (1998).8 Integration of the likelihood with respect to the µ parameters and σ results in a

closed form expression proportional to the marginal likelihood.

The marginal likelihood can be derived as follows. Let Y = (Y1, ..., Yn) be the outcome vector. For a

given sum of trees model T , the posterior distribution of Y is:

Y |T ,M, σ−2 ∼ N(

m∑
j=1

JjMj , σ
2I)

where Jj (which depends on the original matrix of covariates X) is an n× bj binary matrix with the element

in position (i, j) indicating the inclusion of observation i = 1, ..., n in terminal node k = 1, ..., bj of tree j.

Let W = [J1...Jm] be an n× b matrix , where b =
∑m
j=1 bj and µ = (MT

1 ...M
T
m)T be a vector of size b of

terminal nodes assigned to trees T1, ..., Tm. We can then write Wµ =
∑m
j=1 JjMj , 9 and therefore

Y |µ, σ−2 ∼ N(Wµ, σ2I)

which, with µ ∼ N(0, σ
2

a Ib), where Ib is a b× b identity matrix, implies

p(Y ) = MV STv(0, λ(In +
1

a
WWT ))

=
Γ(ν+n

2 )(λv)
ν+n

2

Γ( v2 )v
n
2 π

n
2 λ

n
2 ( 1

a )
b
2 det (aIb +WTW )

1
2

[
λv + Y TY − Y TW (aIb +WTW )−1WTY

]− ν+n2

Then, noting that anything that does not depend on W or b will cancel out when calculating the model

weights, we can calculate:

∝ 1

( 1
a )

b
2 det (aIb +WTW )

1
2

[
λv + Y TY − Y TW (aIb +WTW )−1WTY

]− ν+n2
And the log of this expression is: b

2 log(a) − 1
2 log(det(M)) − ν+n

2 log(λv + Y TY − Y TWM−1WTY ) where

M = aIb +WTW .

8Moran et al. (2018) argue against the use conjugate priors in Bayesian linear regression. However, this issue will not be
discussed in further detail in this paper. Nonetheless, it is worth noting that the methods introduced in this paper can be
improved further by careful calibration of the a parameter, e.g. by cross-validation.

9Wµ =
∑m
j=1 JjMj is analogous to Xβ in standard linear regression notation.
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A deterministic model search algorithm first reduces the set of potential splitting variables by a change-

point detection algorithm, and then recursively adds splits to trees that are potentially to be appended to

models in the set of currently selected sum of tree models. After a set of single tree models are selected,

changepoints in the residuals are used as potential splitting variables for constructing the next set of trees to

potentially append to the selected models. Then a new set of residuals is constructed for the new set of sum-

of-two-tree models, changepoints are detected, and trees are appended to create a set of sum-of-three-tree

models, and so on.

The set of models to be averaged over are those with posterior probability within some distance of the

highest probability model found by the model search algorithm. i.e. For all proposed models, T`, indexed by

`, the algorithm obtains

p(Y |T`, X)p(T`) ∝ p(T`|Y,X) =
p(Y |T`, X)p(T`)

p(y)

And keeps the models such that

arg max
`′

(log(p(T`′ |Y,X)))− log(p(T`|Y,X)) ≤ log(o)

where o is Occam’s window, and the minimum is over the set of all proposed models.

3.3 Framework for Generalization of BART-BMA and BART-IS

BART-BMA and BART-IS are applicable to a wide range of model settings in which a linear combination

of covariates can be replaced by a sum-of-tree model. For example, for Logit-BART, the latent outcome can

be modelled as a sum-of-trees instead of a standard linear model.

A key requirement for the computational feasibility of this general framework is that there should exist

efficient methods for calculating the marginal likelihood and posterior predictions of the model of interest. A

closed form for the posterior distribution or an efficient method for sampling from the posterior distribution

is required for sampling any quantities of interest or producing credible intervals.

For models such as Logit and Tobit, it is possible to obtain an approximation to the marginal likelihood

by a Laplace approximation about the Maximum a Posteriori parameter estimates, which can be obtained

efficiently from a Quasi-Newton algorithm (Murphy 2012, Chib 1992). Similar approaches can be used for

other models. Recently developed methods, including Integrated Nested Laplace Approximations (Rue et al.

2009), are applicable to a wide range of models including multinomial logit, Poisson regression, and models

with hierarchical priors, e.g. mixed logit.10

Algorithm 1 and Algorithm 2 outline the general BART-BMA and BART-IS algorithms. The General

BART-BMA algorithm begins by constructing latent outcome variable values for the training data (this is

necessarily model-specific and arbitrary) and then applying a changepoint detection algorithm to obtain a

set of potential splitting rules.11 Single tree models are constructed using these splitting rules, as in standard

BART-BMA (see chapter 2), but with marginal likelihood calculations that are specific to the generalized

linear model and approximation method. Then a new set of residuals are calculated for each single-tree

model in Occam’s window, and changepoints are found for these new residuals. The new changepoints are

used to construct new trees to be appended to the existing models, creating a set of sum-of-two tree models.

10However, there is a trade-off between accuracy of approximations and computational speed. In some cases it might not
be computationally feasible to place a model in the BART-IS framework. This would require a level of experimentation with
different approximation methods.

11Changepoint detection algorithms include Pruned Exact Linear Time Killick et al. (2012) and a simple grid-search.
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Residuals are calculated for the sum-of-two tree models and a set of sum-of-three tree models are created,

and so on. The General BART-IS algorithm is essentially the same as the algorithm presented in chapter 2,

except the marginal likelihood and sampling from the mixture of posterior distributions are specific to the

generalized linear model and approximation method. The random draws of trees are the same as in chapter

2,12 and the General BART-IS is highly parallelizable as each iteration of the for-loop can be assigned to a

different processor.

A limitation of the BART-BMA approach is that it requires the calculation of residuals and application

of a changepoint detection algorithm to the residuals for the purpose of reducing the set of potential splitting

variables. For some models, the residuals are of a latent outcome, and it is not clear how to proceed. In

the case of Logit-BART-BMA, section 3.4 outlines how it is possible to make use of existing ideas for logit

boosted tree methods (Friedman et al. 2000). However, there might not exist a straightforward and effective

method for calculation of residuals for some models, and therefore the BART-IS approach, for which there

is no calculation of residuals nor data-dependent search for splitting points, is more general. For General

BART-BMA, the latent outcome is unknown for any observations in the training data, and the initialization

is entirely arbitrary and model-specific. It is not guaranteed that there exists an initialization that leads to an

effective model search for all models, and an entirely different model search algorithm without construction

of latent outcome values or residuals may be more effective.

For averages of models with multiple latent outcomes (each modelled by a sum-of-trees) per model, the

BART-BMA approach is infeasible13 and the BART-IS approach remains feasible (although a larger number

of models should be sampled). An example of such a model would be multinomial logistic regression with

different sums-of-trees for the latent utility of each alternative.14 However, the discussion in this paper will be

restricted to settings where the same underlying variables (or sum-of-trees) are used for all latent variables.

A word of caution is required here. The performance of these methods is highly dependent on the

appropriateness of the overall model specification (e.g. logit link function), the accuracy of the approximations

of the marginal likelihood and posteriors. In the case of BART-BMA, the model search algorithm might not

perform as well as for a simple linear model, and parameters such as the size of Occam’s window and

changepoint detection parameters may have to be tuned to control the trade-off between computational

feasibility and breadth of the model search. BART-IS generally requires a large number of draws of models,

and the feasibility of the approach is inversely related to the size of the model space and the computational

time required to calculate the marginal likelihood.

12The samples of models can be made “offline”, i.e. before any data is obtained, as in BART-IS and safe-Bayesian Random
Forests (Quadrianto & Ghahramani 2014).

13A form of BART-BMA with considerable changes to the model search algorithm might be possible. This is beyond the
scope of this paper.

14It is possible to share the same sum-of-tree structure, e.g. Linero et al. (2019), or sample separate sums-of-trees, e.g. Murray
(2017).
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Input: n× p matrix X

Response Y . Vector of binary, censored, categorical, or count data, or perhaps a more complicated

(e.g. multivariate) outcome.

Output: Depends on the model. e.g. predicted outcomes or probabilities, parameter estimates.

Initialize: Residuals. Details depend on the model setting, e.g. for standard BART-BMA, begin

with the vector of outcomes, and for Logit-BART-BMA begin with a transformation to the scale of

the latent outcome (ηi in equation (3.1) ). In general the residuals should be on the scale of the

(possibly latent) variable that is directly modelled by a sum-of-trees.

Initialize lowest model prob, the minimum posterior probability of all models found so far.

Initialize: L = 1, Set the list of models List ST to include a single tree model with no splits.

[Each round in the outer loop searches over possible additions of one tree to existing sum-of-tree

models. (First round begins with single tree models)]

for j ← 1 to num trees do

[For each model ` in OW from the previous round, search for trees to add] for `← 1 to L do

if count mu trees` ≤ mµ then

1. Find Good Splitting Rules.

Apply a changepoint detection algorithm to the residuals to reduce the number

of potential splitting rules. This is model-specific, and may involve first applying

some function to the residuals. See Logit-BART-BMA for an example.

2. Grow trees to append to sum-of-tree model.

Begin with a tree stump and grow trees recursively using splitting rules from step

1. Each time a split is considered, calculate the posterior model probability and

check if the model is in OW. [This requires efficient calculation of the marginal

likelihood].

Add new models to temporary list temp OW if in OW.

end

Make sum of trees models and update residuals

Reset list of models in OW List ST = temp OW .

Update lowest model prob to minimum posterior probability of models in List ST .

Set L = length(temp OW ). Reset tempOW to list of length zero.

end

end

Delete models in list ST with log posterior probability more than log(o) from lowest model prob.

The output is a model averaged prediction of an outcome/probability or parameter estimate.

Intervals can be obtained from either a closed form expression or probability-weighted sampling from

each model in OW.

Algorithm 1: BART-BMA General Algorithm
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Input: n× p matrix X

Response Y . Vector of binary, censored, categorical, or count data, or perhaps a more complicated

(e.g. multivariate) outcome.

Output: Depends on the model. e.g. predicted outcomes or probabilities, parameter estimates.

Each round in the outer loop involves drawing a model from a model sampler. This loop is trivially

parallelizable.

for m← 1 to num models do

1. Draw a model from the model sampler. This can be the sampler used by Quadrianto &

Ghahramani (2014), the BART prior, or the spike and tree prior (Rockova & van der Pas

2017).

2. Obtain the model predictions and/or parameters that summarize the (possibly approxi-

mate) posterior distribution.

3. Obtain model weights. This requires efficient calculation of the marginal likelihood. If the

model sampler is not the model prior, then multiply the marginal likelihood by the ratio

of the model prior probability to the model sampler probability. For a safe-Bayesian ap-

proach, use the marginal likelihood to the power of a number between 0 and 1 (Quadrianto

& Ghahramani 2014).

end

The output depends on the model and object of interest.

e.g. The predicted outcome or probability is a marginal likelihood weighted average of model

predictions.

Parameter distributions and credible intervals can be obtained from model weighted samples from

(possibly approximate) posterior distributions. In some cases a closed form gives an efficient

alternative.

Algorithm 2: BART-IS General Algorithm

3.4 Example of General Algorithms Applied to Binary Outcome

Data: Logit-BART-BMA and Logit-BART-IS

In this section, the general algorithms introduced in section 3.3 are applied to Logit-sum-of-tree models for

binary outcome data. First, an outline is given for a simpler benchmark approach that does not make use of

the more principled algorithm. Second, the binary outcome model and Laplace approximation method are

summarized. The Logit-BART-BMA and Logit-BART-IS algorithms are detailed as specific examples of the

general framework. Finally, the methods are applied to binary classification datasets.
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3.4.1 A Benchmark Probit Approximation for BART-BMA and BART-IS

Single tree methods can readily be applied to binary outcome data. Trees in a random forest applied to binary

outcomes produce predictions between zero and one because leaf estimates are averages of binary variables.

However, sum-of-tree based methods such as BART are less directly applicable to binary outcome data

because sums-of-trees can produce predictions outside the range [0, 1] and ideally the statistical framework

of BART should account for the fact that the outcomes are binary.

A simple extension of BART to Probit involves first converting the binary outcomes to the scale of the

latent variable, replacing observations yi = 1 with y∗i = 3.1 and replacing observations yi = 0 with y∗i = −3.1.

These latent variable values correspond to very high and very low probabilities of yi = 1. Then standard

BART-MCMC, BART-BMA, or BART-IS is applied to the data with y∗i as the dependent variable. Finally,

the normal CDF function is applied to the latent outcome predictions to obtain predicted probabilities, and

applied to the latent outcome prediction intervals to obtain prediction intervals for the probabilities. This is

the approach adopted by Hernández et al. (2018) and will be referred to in the remainder of this document

as Approximate Probit-BART-BMA.15 Similarly, this approach in combination with the BART-IS algorithm

will be referred to as Approximate Probit-BART-IS.

However, the approach outlined above does not truly apply a binary outcome model to the data. A more

rigorous approach would involve a likelihood that accounts for the probability that the actual outcome equals

to zero or one, and not begin with arbitrary values for the latent outcome. The framework outlined in section

3.3 provides one possible method for implementing the more rigorous approach.

3.4.2 Model, Priors, and Notation for Logit-BART

Throughout this chapter, the notation is chosen to be similar to that used by Hernández et al. (2018). The

prior for the terminal node parameters is µk,j |T, σ ∼ N(0, 1
a ) (where j, k denotes the jth terminal node of the

kth tree in the sum-of-tree model), and unlike in BART-BMA for continuous outcomes, there is not a separate

parameter for the variance of the error term (the variance of the error term is not separately identified).

Let W = [J1...Jm] be an n × b matrix , where b =
∑m
j=1 bj , Jj is a binary matrix of size n × bj with

the element in the ith row and jth column denoting the inclusion of observation i = 1, ..., n in terminal node

k = 1, ..., bj of tree j. Let Mj be a vector (µ1,j , ..., µbj ,j) of terminal node means for the jth tree, and let

µ = (MT
1 ...M

T
m)T be a vector of size b of terminal node means assigned to trees T1, ..., Tm. We can then

write Wµ =
∑m
j=1 JjMj . The product Wµ =

∑m
j=1 JjMj is analogous to Xβ in standard linear regression

notation. Let Wi denote the ith row of W .

The outcomes are binary, yi ∈ {0, 1}. The probability of the outcome yi = 1 is given by the logistic

function, and will be denoted by pi for convenience:

pi = Pr(yi = 1|Wi,µ) =
1

1 + e−µ
TWT

i

=
eWiµ

1 + eWiµ

where Wi denotes the ith row of W . The likelihood is: p(y|W,µ) =
∏N
i=1 p

yi
i (1−pi)1−yi .16 The log-likelihood

is
∑N
i=1[yi log pi + (1− yi) log(1− pi)] = yTWµ−

∑N
i=1 log(1 + e−Wiµ).

15The improvements to the BART-BMA algorithm described in chapter 2 of this thesis also apply to this approximate Probit-
BART implementation.

16Note that W is defined by the sum-of-tree model T . Conditioning on the model is excluded here for brevity.
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3.4.3 Laplace Approximation

The prior µ ∼ N (0, 1
aIb) and the likelihood give an intractable posterior distribution. However, a Laplace

approximation gives a normal posterior distribution for the terminal node parameters. An approximation of

the posterior can be obtained by s second order Taylor expansion about the Maximum A Posteriori (MAP)

estimate:

µ
MAP

= arg min
µ
−(log p(y|W,µ) + log p(µ))

= arg min
µ
−

[
yTWµ−

N∑
i=1

log(1 + e−Wiµ)− 1

2
b log(2π) +

1

2
b log(a)− a

2
µTµ

]
The approximate distribution is:

p(µ|y,W ) ≈ N (µ
MAP

, H−1)

where H is the Hessian matrix of the negative log posterior (evaluated at the MAP).

H = WTSW + aIb

where S = diag(pi(1−pi)) is an n×n diagonal matrix with diagonal elements determined by the probabilities

pi obtained from the logistic function. The Hessian and the gradient of the negative posterior probability can

be used to obtain an approximation of the MAP. The gradient is g = WT (p−y)+aµ where p = (p1, ..., pn)T .

The MAP can be found by Newton’s method or more efficient Quasi-Newton methods such as the limited

memory BFGS (L-BFGS) algorithm.17

When averaging over the set of sum-of-tree models T1, ..., TM , the approximate distribution of the param-

eters is:

µ|y ∼
M∑
m=1

N (µ
MAP,(m)

, H−1
(m))p(Tm|y)

where p(Tm|y) is the posterior model probability,

p(Tm|y) ∝ p(y|Tm)p(Tm)

where p(y|Tm) is the marginal likelihood, which can be approximated using the Laplace approximation, as

outlined in Appendix C.2, and p(Tm) is the prior model probability. The prior probability is the same as for

BART-BMA for continuous outcomes and straightforward to calculate or, in the case of BART-IS, it does

not need to be calculated.

The subsections below include details for estimating the posterior mean, calculating credible intervals,

and calculating the marginal likelihood.

17See appendix C.1 for the standard Newton method for finding the minimum of the negative log of the posterior distribution.
The implementations provided in the R packages safeBart and logitbartbma use L-BFGS.
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Estimation of Posterior Predictive Mean Probability

The model averaged approximate posterior for coefficients is µ|y ∼
∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y). Using

the logistic (sigmoid) function probability eWiµ

1+eWiµ
, the model averaged posterior (predictive) probability is:

p(y∗ = 1|x∗, X,y) =

M∑
m=1

(∫
e
W∗,(m)µ(m)

1 + e
W∗,(m)µ(m)

p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

)
p(Tm|y)

where y∗ is the outcome for a new observation, X is the matrix of variables in the training data, y is the

vector of outcomes in the training data, x∗ is the covariate vector for the new observation, which is input to

the sum-of-tree models to obtain row vectors for each model, W∗,(m) , m = 1, ...,M , consisting of binary

variables to indicate inclusion in terminal nodes.

The integral in the above expression for p(y∗ = 1|x∗, X,y) is intractable. Numerous approaches are

possible for estimation of predictive probabilities, and calculation of the marginal likelihood and credible

intervals.18 The example below outlines a standard Laplace approximation with the probit function (normal

CDF) used as an approximation to the logistic (sigmoid) function because this approach fast, straightforward

to implement, and can be used to benchmark other approaches. Appendix C.4 outlines simple Monte Carlo

alternatives.

Probit Approximation of Posterior Predictive Mean Probability

Machine learning methods often combine the Laplace approximation for logistic regression with a normal

CDF approximation (Spiegelhalter & Lauritzen 1990, Bishop 2006, Murphy 2012). The logistic (sigmoid)

function can be approximated by the normal CDF:

p(y∗ = 1|x∗, X,y) =

M∑
m=1

(∫
e
W∗,(m)µ(m)

1 + e
W∗,(m)µ(m)

p(µ
(m)
|OMAP,(m), H

−1
(m))dµ(m)

)
p(Tm|y)

≈
M∑
m=1

(∫
Φ(e

W∗,(m)µ(m))p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

)
p(Tm|y)

The integrals in the above expression can be rewritten as one-dimensional integrals:

p(y∗ = 1|x∗, X,y) ≈
M∑
m=1

(∫
Φ(α(m))p(α(m)|ψα,(m), σ

2
α,(m))dα(m)

)
p(Tm|y) =

M∑
m=1

Φ

 ψα,(m)√
1 + σ2

α,(m)

 p(Tm|y)

where ψα,(m) = W∗,(m)µMAP,(m)
and σ2

α,(m) = W∗,(m)H
−1
(m)W

T
∗,(m). For each model, the distribution of

α(m) = W∗,(m)µ(m)
is N (ψα,(m), σ

2
α,(m)).

Often 1 is replaced by t−2 where t2 = π
8 to give a closer approximation to the probability that would have

been obtained from the logistic function (Spiegelhalter & Lauritzen 1990, Bishop 2006, Murphy 2012):

p(y∗ = 1|x∗, X,y) ≈
M∑
m=1

Φ

 ψα,(m)√
8
π + σ2

α,(m)

 p(Tm|y)

A number of alternative approaches exist for calculating the marginal likelihood and posterior mean.

18See Chopin et al. (2017) for a discussion
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Appendix C.3 describes an approach for estimating the posterior mean that involves applying Laplace’s

method twice (Tierney & Kadane 1986). Calculation of credible intervals by root-finding or Monte Carlo

draws from the posterior is straightforward and detailed in Appendices C.5 and C.4.2.

Alternative to Probit Approximation: Gibbs Sampler for Final Inference (Laplace

Approximation for Marginal Likelihoods)

As in the original BART-BMA paper (Hernández et al. 2018), after the models are selected (or sampled in

the case of BART-IS) it is possible to use a Gibbs sampler to take draws from each model, and draw from

each model with probability equal to the posterior model probability. In the case of Logit-BART-BMA,

this can be implemented by estimating the posterior model probability using a Laplace approximation (as

outlined above), or some other method19 and then taking “exact” draws (from the true model rather than

an approximation) using a Gibbs sampler (Albert & Chib 1993). For each draw of model parameters, it is

possible to calculate the quantity of interest. e.g. e
W∗,(m)µ(m),s

1+e
W∗,(m)µ(m),s

(or differences in probabilities for treatment

effects). Then the mean and quantiles of the values across samples can be used for predictions and credible

intervals.

The Gibbs sampler described by Polson et al. (2013) is potentially well-suited to this purpose because

it is fast and uniformly ergodic (Choi et al. 2013). Polson et al. (2013) note that their sampler “opens the

door for exact Bayesian treatments of many modern-day machine-learning classification methods based on

mixtures of logits ”.

3.4.4 Logit-BART-BMA

The prior over the model space is the same as for standard BART-BMA and BART-IS.20 The Logit-BART-

BMA model search algorithm is a special case of Algorithm 1 and only differs from the standard BART-BMA

algorithm in the calculation of residuals and application of a changepoint detection algorithm to the residuals

to reduce the number of potential splitting rules. This section discusses a number of possible approaches to

the calculation of residuals and the changepoint detection algorithm for Logit-BART-BMA.

There are a few potential methods for suggesting potential splitting rules in each round of the model

search algorithm. The approach presented here is inspired by the LogitBoost algorithm (Friedman et al.

2000). Alternative approaches are detailed in Appendix C.6.

A variant of AdaBoost, LogitBoost (Friedman et al. 2000), involves fitting a base learner to be added to a

sum of models (i.e. boosted models), to which the logistic function is then applied to obtain the probability.

Each base learner minimizes the weighted sum of squares, i.e. applies weighted least squares, to the following

variable:

zi =
yi − p(xi)

p(xi)(1− p(xi))

with weights wi = p(xi)(1−p(xi)), where p(xi) is the individual-specific probability estimated in the previous

round, initialized at p(xi) = 0.5. 21

Logit BART-BMA estimates the whole logit model at each step, and therefore zi is only really relevant

19See Friel & Wyse (2012) for a review of possible methods.
20Alternative priors on the tree structures, provided in the R packages logitbartBMA and safeBart include the prior proposed

by Quadrianto & Ghahramani (2014) and the spike and tree prior Rockova & van der Pas (2017). Code is available at
https://github.com/EoghanONeill

21It is possible to apply the restriction zi ∈ [−3, 3] and also apply trimming or another method to avoid numerical instability
issues when dividing by p(xi)(1− p(xi)) when p(xi) is close to zero or one.
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to the initial stage in each round that involves applying the changepoint detection algorithm. The proposed

approach here is to apply the changepoint detection algorithm to zi with a weighted (sum of squares) cost

function with weights wi.
22

The key idea, as with AdaBoost, is that the set of changepoints used in constructing new trees to

be appended to the model, should place more weight on observations misclassified by the current model.

However, unlike AdaBoost, there is no such adjustment made in the final criterion for the acceptance of the

new trees because the entire sum-of-tree model is re-estimated when a new tree is appended to a model and

the marginal likelihood based criterion is applied to the entire model.

This adjustment to changepoint detection is also applicable to the naive approximation to Probit-BART-

BMA and Probit-BART-IS discussed in section 3.4.1. In approximate Probit-BART-BMA, it is also possible

to fit the new tree using zi as in LogitBoost. However, this is a topic for future research. 23

3.4.5 Logit-BART-IS

Logit-BART-IS is a special case of the general framework given in Algorithm 2. Algorithm 3 outlines how to

apply the efficient logit approximation methods described in section 3.4.3 in the general BART-IS framework.

Logit-BART-BMA does not involve model search, and therefore does not involve initialization of latent

outcome values or calculation of residuals.

Input: n× p matrix X

Response binary vector Y .

Output: Predictive probabilities, intervals for predictive probabilities.

Each round in the outer loop involves drawing a model from a model sampler. This loop is trivially

parallelizable.

for m← 1 to num models do

1. Draw a model from the model sampler. This can be the sampler used by Quadrianto &

Ghahramani (2014), the BART prior (Chipman et al. 2010), or the spike and tree prior

(Rockova & van der Pas 2017).

2. Obtain MAP parameter values for a Laplace approximation as outlined in section 3.4.3.

Obtain predicted probabilities as outlined in section 3.4.3.

3. Obtain model weights. The marginal likelihood is efficiently calculated as outlined in

section C.2.
end

Model averaged predictions are calculated as outlined in section 3.4.3.

Credible intervals for the model averaged distribution are obtained as outlined in Appendix C.5.

Algorithm 3: Logit BART-IS Algorithm

22The weights wi essentially account for second-order information. Other methods such as MART (Friedman & Meulman
2003) only use yi − p(xi) in the tree building step (but use second order information when estimating terminal nodes values).

23This is more applicable to the original BART-BMA implementation of Hernández et al. (2018) that estimated each new
tree separately using only residuals, and less applicable to the new BART-BMA implementation presented in chapter 2 of this
thesis which estimates the whole model at each step. In this sense the new implementation of BART-BMA is more analogous
to variations on AdaBoost algorithms that perform backfitting at each step.

72



3.4.6 Application to UCI Datasets

This section contains a comparison of Logit-BART-BMA and Logit-BART-IS against other methods using

publicly available datasets from the widely used UCI Machine Learning Repository (Dua & Graff 2017). The

chosen datasets are binary classification datasets relevant to economic applications. Table 3.1 contains a

description of the data. Missing observations are removed from all datasets. The number of variables is the

number remaining after removal of some variables (e.g. unique text strings), and transformation of some

categorical variables into multiple binary variables so that tree-based methods are applicable with available

software.

The algorithms compared are Logit-BART-IS,24 Logit-BART-BMA, Approximate Probit BART-IS,25

Approximate Probit BART-BMA, Probit-BART-MCMC, Logit-BART-MCMC,26 linear logistic regression,

and Random Forests.27 Methods are evaluated using the Brier Score and Area Under the Curve (AUC).28

The data is randomly divided into training and hold-out test data, and all methods are applied without

parameter tuning.

Tables 3.1 to 3.6 show the binary classification results for a range of training sample sizes. Across many

examples, the Logit-BART-IS and Logit-BART-BMA implementations are surprisingly competitive with the

MCMC implementations given the small number of trees in each model and relatively small number of

sampled models for BART-IS and very small number of models in Occam’s window in BART-BMA. For a

number of datasets, the more principled general framework with Laplace approximations provides a notable

improvement over the probit transformation approach described in section 3.4.1. The results demonstrate

that the general BART approach introduced in this paper produces the intended result of estimates that are

similar to those produced by MCMC BART implementations.29 Logit-BART-BMA results are only presented

for the training samples of up to 2000 observations due to the computational time required for some datasets

under default parameters.30

The similar performance of Logit-BART-MCMC and Probit-BART-MCMC is unsurprising. The fact that

there is no consistently best performing model across all sample sizes and datasets (although Probit-BART-

MCMC is the method that slightly outperforms other methods across the most datasets) indicates that all

methods produce similar estimates and the ranking of methods may be influenced by random variation in

the data and splitting into test and training data. It is possible that for some datasets, MCMC does not

deliver notable improvements over simple BMA or IS based approaches, while for other datasets there may

24Logit-BART-IS was implemented with only 5 trees per model, and a total of 20,000 sampled models. This is a small number
of draws relative to the number of models drawn for BART-IS with continuous outcomes in the second chapter of this thesis.
Each model takes more computational time than a linear model, therefore some compromise must be made on computational
speed. However, the results are surprisingly competitive with the MCMC implementations considering the small number of
samples. Therefore a topic for future research would be whether the results are more accurate with a larger set of samples,
perhaps using parallelization over a larger number of cores for computational feasibility.

25Approximate Probit BART-IS was implemented with only 10 trees per model and a total of only 1000 sampled models. The
results are surprisingly competitive given the small number of samples.

26Probit-BART-MCMC and Logit-BART-MCMC were both implemented using the R package BART with 5000 burn-in draws
and 10,000 post-burn-in draws. Each model sampled by Probit-BART-MCMC has the default number of 50 trees, and each
model sampled by Logit-BART-MCMC has the default number of trees of 200.

27Random Forests were implemented using the R package ranger and 10,000 trees. All other parameters were set to the default
values.

28The Brier score is defined as 1
N

∑N
i=1(yi− p̂i)2 where N is the number of samples in the holdout data and p̂i is the predicted

probability that yi = 1. The area under the Receiver Operating Characteristic curve is calculated using the R package ROCR.
29It is not expected that the Logit-BART-BMA or Logit-BART-IS results give notably more accurate estimates than the

MCMC based implementations as ultimately these are alternative implementations for essentially the same model framework.
30The computational requirements for the Logit-BART-BMA search algorithm are likely to be sensitive to model search

parameters, model prior parameters, and choice of changepoint detection algorithm. The optimal choice of parameters may
differ across datasets, and differ to standard BART-BMA for continuous outcomes.
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be potential for more substantial gains from MCMC.31

The results for the Census Income dataset indicate that the IS based approach does not perform as

well as the MCMC approach, and no approaches perform markedly better than standard logistic regression.

It is possible that there is a strong linear relationship between one of the covariates and the dependent

variable, and therefore the logistic regression model performs well. This may also explain the poor results

for Logit-BART-IS when applied to this dataset because an implementation that makes use of fewer trees

per sum-of-tree model is likely to be less precise at capturing linear functions of covariates.32

31See Chopin et al. (2017) for a similar discussion regarding sampling of parameters in a single logistic regression model.
32Probit-BART-MCMC was implemented with 50 trees per model, Logit-BART-MCMC was implemented with 200 trees per

model, and Logit-BART-IS and Logit-BART-BMA were implemented with 5 trees per model.
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Dataset name Description (from UCI repository) Number of
variables

Number of
Observations

Reference

Shopper Online Shoppers Purchasing Intention
Dataset Data Set.

74 12,330 Sakar et al. (2019)

Bank Marketing The data is related with direct marketing cam-
paigns (phone calls) of a Portuguese banking
institution. The classification goal is to pre-
dict if the client will subscribe a term deposit
(variable y).

51 4521 Moro et al. (2014)

Insurance This data set used in the CoIL 2000 Chal-
lenge contains information on customers of an
insurance company (caravan insurance in the
Netherlands). The data consists of 86 vari-
ables and includes product usage data and
socio-demographic data.

133 5821 Van Der Putten &
van Someren (2000)

Credit Cards Prediction of customer default in Taiwan. 33 30,000 Yeh & Lien (2009)

Credit Screening Examples represent positive and negative in-
stances of people who were and were not
granted credit by a Japanese company that
grants credit.

46 653 None

German Credit Statlog (German Credit) Data Set. This
dataset classifies people described by a set of
attributes as good or bad credit risks.

61 1000 None

Australian Credit Statlog (Australian Credit Approval) Data
Set. This file concerns credit card applica-
tions.

42 690 Quinlan (1987)

Census Income Predict whether income exceeds $50K/yr
based on census data. Extraction was done
by Barry Becker from the 1994 US Census
database.

64 30,162 training,
15,060 testing

Kohavi (1996)

Table 3.1: UCI Dataset descriptions
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UCI Binary Outcome Data Results

500 Training Observations
Shopper Bank Marketing Insurance Credit Cards

Method Brier AUC Brier AUC Brier AUC Brier AUC

Logit-BART-IS 0.079 0.903 0.081 0.865 0.057 0.661 0.145 0.751
Logit-BART-BMA 0.083∗ 0.868∗ 0.084 0.841 0.058 0.653 0.143 0.727

Approx-Probit-BART-IS 0.145 0.661 0.102 0.715 0.060 0.591 0.175 0.698
Approx-Probit-BART-BMA 0.091 0.866 0.090 0.861 0.065 0.603 0.172 0.719

Probit-BART-MCMC 0.079 0.906 0.080 0.870 0.056 0.688 0.141 0.751
Logit-BART-MCMC 0.081 0.905 0.082 0.854 0.056 0.679 0.140 0.753

Logistic Regression 0.149 0.692 0.559 0.485 0.104 0.580 0.164 0.688
RF 0.085 0.897 0.077 0.883 0.059 0.591 0.145 0.745

Holdout sample size 11,830 4021 5321 29,500
* indicates where the PELT algorithm with unweighted residuals was used for reducing the number
of splitting points.

Table 3.2: UCI Binary Classification Datasets, training sample size = 500

500 Training Observations
Credit Screening German Credit Australian Credit Census Income

Method Brier AUC Brier AUC Brier AUC Brier AUC

Logit-BART-IS 0.097 0.930 0.178 0.737 0.147 0.873 0.128 0.859
Logit-BART-BMA 0.095 0.930 0.187 0.713 0.101 0.927 0.124 0.862

Approx-Probit-BART-IS 0.210 0.811 0.188 0.736 0.224 0.749 0.155 0.768
Approx-Probit-BART-BMA 0.102 0.912 0.214 0.712 0.163 0.888 0.135 0.855

Probit-BART-MCMC 0.096 0.924 0.164 0.777 0.142 0.875 0.113 0.888
Logit-BART-MCMC 0.097 0.919 0.162 0.778 0.147 0.871 0.118 0.879

Logistic Regression 0.129 0.857 0.168 0.775 0.158 0.858 0.140 0.845
RF 0.092 0.942 0.167 0.772 0.131 0.887 0.113 0.886

Holdout sample size 153 500 190 15,060

Table 3.3: UCI Binary Classification Datasets, training sample size = 500
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1000 Training Observations
Shopper Bank Marketing Insurance Credit Cards Census Income

Method Brier AUC Brier AUC Brier AUC Brier AUC Brier AUC

Logit-BART-IS 0.077 0.915 0.080 0.849 0.055 0.751 0.140 0.756 0.123 0.864
Logit-BART-BMA 0.100 0.791 0.080 0.842 0.056 0.711 0.142 0.735 0.119 0.871

Approx-Probit-BART-IS 0.144 0.680 0.108 0.752 0.060 0.659 0.178 0.714 0.197 0.763
Approx-Probit-BART-BMA 0.088 0.898 0.085 0.846 0.060 0.635 0.182 0.692 0.118 0.888

Probit-BART-MCMC 0.078 0.909 0.075 0.879 0.054 0.744 0.141 0.751 0.106 0.899
Logit-BART-MCMC 0.079 0.908 0.077 0.874 0.055 0.733 0.140 0.754 0.109 0.895

Logistic Regression 0.160 0.749 0.080 0.848 0.078 0.583 0.150 0.706 0.220 0.641
RF 0.080 0.908 0.076 0.885 0.058 0.630 0.144 0.740 0.109 0.896

Holdout sample size 11,330 3521 4821 29,000 15,060

Table 3.4: UCI Binary Classification Datasets, training sample size = 1000

2000 Training Observations
Shopper Bank Marketing Insurance Credit Cards Census Income

Method Brier AUC Brier AUC Brier AUC Brier AUC Brier AUC

Logit-BART-IS 0.075 0.912 0.085 0.848 0.050 0.717 0.141 0.744 0.124 0.871
Logit-BART-BMA 0.097 0.793 0.076 0.860 0.052 0.722 0.140 0.739 0.116 0.879

Approx-Probit-BART-IS 0.144 0.698 0.103 0.689 0.055 0.641 0.172 0.701 0.185 0.758
Approx-Probit-BART-BMA 0.085 0.906 0.081 0.846 0.054 0.707 0.165 0.711 0.121 0.885

Probit-BART-MCMC 0.075 0.917 0.072 0.896 0.050 0.753 0.137 0.766 0.102 0.909
Logit-BART-MCMC 0.076 0.915 0.073 0.895 0.050 0.751 0.137 0.766 0.102 0.908

Logistic Regression 0.135 0.705 0.080 0.864 0.058 0.673 0.148 0.711 0.111 0.888
RF 0.076 0.917 0.072 0.899 0.052 0.718 0.140 0.764 0.104 0.905

Holdout sample size 10,330 2521 2821 28,000 15,060

Table 3.5: UCI Binary Classification Datasets, training sample size = 2000

10,000 Training Observations
Credit Cards Census Income

Method Brier AUC Brier AUC

Logit-BART-IS 0.138 0.751 0.125 0.854
Approx-Probit-BART-IS 0.171 0.682 0.193 0.711

Probit-BART-MCMC 0.135 0.776 0.098 0.914
Logit-BART-MCMC 0.136 0.778 0.100 0.912

Logistic Regression 0.144 0.721 0.105 0.902
RF 0.136 0.770 0.100 0.910

Holdout sample size 20,000 15,060

Table 3.6: UCI Binary Classification Datasets, training sample size = 10,000
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3.5 Example Application of General Algorithms to Treatment

Effect Estimation For Binary Outcomes

Subsection 3.5.1 outlines how the methods introduced in section 3.4 can be applied to treatment effect

estimation for binary outcomes. Subsection 3.5.2 outlines BMA and an alternative parameterization of

Logit-BART for treatment effect estimation. Subsection 3.5.3 compares the accuracy of these methods to

existing implementations using simulated data.

3.5.1 Treatment Effect Estimation with Logit-BART-BMA and

Logit-BART-IS

Often a policy maker is interested not only in prediction, but in the effect of the allocation of an individual

or other unit of interest to “treatment” (Kleinberg et al. 2015). The object of interest in such a scenario is

the treatment effect, which is defined as the difference in potential outcomes Yi(1)−Yi(0), where Yi(1) is the

potential outcome if individual i is allocated to treatment and Yi(0) is the potential outcome if individual i

is allocated to the control group (Neyman 1923, Rubin 1974). The fundamental problem of causal inference

is that we do not observe the causal effect for any individual, i (Holland 1986).

The estimand of interest is the Individual Treatment Effect (ite)

τ(x) = E[Yi(1)− Yi(0)|Xi = x]. (3.2)

Whereas the ate can be estimated by a difference in means ȳt− ȳc, where ȳt (ȳc) is the mean of the outcome

variable for the treated (control) group, the cate can be thought of as a subpopulation average treatment

effect.33 34 The cate is identified under unconfoundedness, i.e. Yi(1), Yi(0) ⊥ Ti|Xi , and overlap, i.e.

0 < Pr(Ti = 1|Xi = x) < 1 ∀ x, where Ti denotes the treatment indicator variable.

BART has been shown to be a highly effective method for treatment effect estimation (Hill 2011, Green

& Kern 2012, Dorie et al. 2019, Hahn et al. 2019, Wendling et al. 2018). The standard approach to treatment

effect estimation using BART is in the S-Learner framework of treatment effect meta-algorithms (Künzel

et al. 2019). The treatment variable is included as a potential splitting variable in the same way as all the

other covariates. Treatment effect estimates are obtained from the difference in predictions from the trained

model when treatment is set to 1 and set to 0, i.e. the estimates ITE is f̂(1, xi) − f̂(0, xi) where f̂ is the

prediction function obtained from an average of sum-of-tree models and the arguments are the treatment

dummy variable and all other covariates, xi. Confounding can be mitigated by including the estimated

propensity score as a potential splitting variable (Hahn et al. 2017). See the second chapter of this thesis for

further details.

Logit-BART-BMA and Logit-BART-IS can be applied to treatment effect estimation for binary outcomes

using the usual S-Learner approach. The technical details for calculation of predictions and prediction

intervals are included in appendix C.7.

33In instances where we condition on x being in some subset of the covariate space, i.e. x ∈ A ⊂ X, and τA = E[Yi(1)−Yi(0)|x ∈
A], we also refer to this as the cate (with suitably re-defined covariates).

34Another estimand is the average treatment effect conditional upon observed covariates τ̄ = 1
N

∑N
i=1 τ(xi) =

1
N

∑N
i=1 E[Yi(1) − Yi(0)|Xi = xi]. Imbens & Rubin (2015) refer to this as the conditional average treatment effect, but we

shall use the above definition of the cate.
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3.5.2 Logit-BCF-BMA and Logit-BCF-IS

Bayesian Causal Forests (BCF) is a method for treatment effect estimation (Hahn et al. 2020). See section

3.5.1 for an overview of treatment effects and the potential outcome framework. BCF is re-parameterization

of BART that allows for an independent prior to be placed on τ and also include the estimated propensity

score, π̂i, as a potential splitting variable.

f(xi, zi) = µ(xi, π̂i) + τ(xi)zi

where µ(xi, π̂i) and τ(xi) are both sums of trees. See the second chapter of this thesis for further details. This

section outlines how the general BART-BMA and BART-IS frameworks can be used to implement Bayesian

Causal Forests for binary dependent variables with a logistic function of the sum-of-tree model:

Pr(yi = 1|xi, π̂i, zi) = sig(µ(xi, π̂i) + τ(xi)zi)

where sig is a sigmoid (logistic) function. The vectors of µ and τ parameters, µ and τ have prior distributions

µ ∼ N(0, 1
aµ
Ibµ) and τ ∼ N(0, 1

aτ
Ibτ ) respectively. A similar formulation of BCF for binary outcomes is

used by Starling et al. (2020) with a Probit link function and targeted smoothing.35 Starling et al. (2020)

estimate relative risk, however the focus here will be difference in probabilities for comparability with existing

treatment effect estimation methods.

However, a limitation of this approach, relative to standard Bayesian Causal Forests for continuous

outcomes, is that the treatment effect, sig(µ(xi, π̂i) + τ(xi))− sig(µ(xi, π̂i)), depends not only on the sum-

of-trees τ(xi), but also on µ(xi, π̂i), and therefore this re-parameterization does not provide a framework in

which the regularization of the treatment effect estimates is wholly specified through the prior on τ(xi). A

similar issue has previously been noted by Starling et al. (2020) in the estimation of relative risk. Shrinkage

of τ does not imply shrinkage to homogeneous relative risk. Starling et al. (2020) refer to heterogeneity in

relative risk arising due to heterogeneity in baseline risk as structural heterogeneity. Therefore, ideally the

scale of the priors for µ and τ should be set by careful prior elicitation (Starling et al. 2020).

For Logit-BCF-BMA and Logit-BCF-IS the algorithm for obtaining the MAP and Laplace approxima-

tions is slightly different to Logit-BART-BMA and Logit-BART-IS because the µ and τ terminal nodes are

regularized by different parameters aµ and aτ respectively. The posterior mean and interval calculations are

the same as for BART-BMA and BART-IS ITEs and the CATE (means and intervals), except W tr
(m) and

W c
(m) are replaced by [W(µ,m)W(τ,m)] and [W(µ,m)0] respectively.36 37 The details for the calculation of the

MAP by standard quasi-Newton methods are given in Appendix C.8.

3.5.3 Application to ACIC Data Challenge

The annual Atlantic Causal Inference Conference (ACIC) has run a data analysis competition for treatment

effect estimation methods. BART and BCF have performed well in this competition (Dorie et al. 2019, Hahn

et al. 2019).

35Starling et al. (2020) implement Probit BCF using MCMC.
360 is a matrix of zeros of the same dimensions as W(τ,m)
37As in the case of BART-BMA and BART-IS, a viable alternative may be to apply a Gibbs sampler for draws from each

model in the mixture.
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Table 3.7 presents a comparison between BCF-MCMC,38, BART-MCMC,39, Causal Forests,40 Probit-

BART-MCMC,41 Probit-BART-cause,42 Logit-BART-IS,43 and Logit-BCF-IS44 applied to the publicly avail-

able data from the 2019 ACIC Data Challenge.45 The results are restricted to the 1200 datasets in the

low-dimensional category with less than 1000 observations and a binary dependent variable.46 The RMSE

and coverage are calculated using the true population ATE.

The standard Probit-BART-MCMC implementation produces the most accurate ATE estimates, however

this method involved a large number of draws and was quite slow. Logit-BCF-IS produces impressive results

given that each model contains only a small number of trees. The confidence intervals produced by Logit-

BCF-IS are much wider than those produced by other methods. This may suggest that a larger number

CATE samples is required from the mixture of 5,000 models.

ATE
Method RMSE Coverage Length
BCF-MCMC 0.0486 0.850 0.174
BART-MCMC 0.0465 0.821 0.153
CF 0.0477 0.863 0.175
Probit-BART-MCMC 0.0427 0.879 0.169
BART-cause 0.0423 0.935 0.199
Logit-BART-IS 0.0555 0.813 0.199
Logit-BCF-IS 0.0452 0.913 0.292

Table 3.7: Results for ACIC Data Challenge low-dimensional datasets with less than 1000 observations and
a binary dependent variable.

38BCF was implemented using the R package bcf function for continuous outcomes because currently the software does not
provide options for logit or probit based implementations. The number of burn-in draws was set to 2000 and the number of
post-burn-in draws aws set to 2000. Each model contained the default number of 200 µ trees and 50 τ trees. All other parameters
were set t ot he default values.

39BART-MCMC was implemented with 100 burn-in draws and 1000 post-burn-in draws. Each model contained the default
number of 200 trees. All other parameters were set to their default value.

40Causal forests were implemented with the R package grf. The number of trees was set to 4000.
41Probit-BART was implemented using the BART package in R. The number of model draws was set to the default value of

1000 post-burn-in draws with 100 burn-in draws. The number of tree in each model was set to the default number of 50, and
all other parameters were set to default values.

42BART-cause is an alternative MCMC implementation of BART for average treatment effect estimation available in the R
package bartCause. This was implemented with 4,000 post-burn-in samples, 1000 burn-in samples, and 1 separate chains. The
the rest of the parameters are set to the defaults (see the dbarts package function bart2 for more details), with 75 trees per
model.

43Logit-BART-IS was implemented with 5,000 sampled models, only 5 trees per model and 10,000 CATE samples (from the
mixture of sampled models) for calculation of CATE intervals.

44Logit-BCF-IS was implemented with 5,000 sampled models, 5 µ trees and 5 τ trees per model and 10,000 CATE samples
(from the mixture of sampled models) for calculation of CATE intervals.

45Results are not presented for BCF-BMA or BART-BMA, because the current implementations can require a large quantity
of RAM, and this can lead to errors/crashes.

46The current implementations of BART-IS and BCF-IS are slow when applied to datasets with many observations. The
methods presented in this chapter are designed for data with a binary dependent variable. See chapter 3 of this thesis for the
results for ACIC 2019 datasets with continuous outcomes.
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3.6 Example of General-BART-BMA and General-BART-IS for

Censored Outcome Data

3.6.1 Tobit BART-BMA and Tobit BART-IS

The example in this subsection is an average of Bayesian Tobit models, with variables described by sums-of-

trees. The tree structures have the standard BART prior.47 The terminal node parameters have a normal

prior distribution and there is an inverse gamma prior on the variance of the error term.48

τ2 = σ−2 ∼ Γ(
ν

2
,
νλ

2
) , µ ∼ N(0,

σ2

a
) , or µ ∼ N(0,

1

a
τ−2)

and the convenient Tobin reparameterization is (µ, τ2)→ (α = µτ, τ = (τ2)
1
2 ). This gives

α = τβ ∼ N(0,
1

a
I)

Let the covariate matrix, W be the set of binary variables indicating inclusion of observations in terminal

nodes. The standard Tobit model framework is

y∗i = rowi(W )µ+ εi , ε ∼ i.i.d. N(0, τ−2)

yi = max{y∗i , 0} , i = 1, ..., n

See appendix C.9 for details on how to implement the Tobit model using standard Laplace approximations.

Chib (1992) outlines a number of approaches for implementation of Bayesian Tobit models, including Laplace

approximations (fully exponential Laplace approximations, as outlined by Tierney & Kadane (1986)) and a

Gibbs sampler.

An average of Tobit sum-of-tree models is obtainable by application of the general BART-BMA or BART-

IS algorithms outlined in section 3.3 in combination with one of a number of potenrial Tobit approximation

methods, including:

1. Use a Laplace approximation for the marginal likelihood and posterior distributions.

2. Use a Laplace approximation for the marginal likelihood, and then apply a Gibbs sampler for each

model in the mixture. 49

A sum-of-tree Tobit model, based on gradient boosting, is used by Sigrist (2018) to predict defaults

on loans made to Small and Medium Sized enterprises. Gradient-boosted Tobit outperforms Logit, Tobit,

and a number of machine learning methods. BART can be viewed as a Bayesian alternative to gradient

boosted trees as it involves sum-of-tree models. Therefore it is desirable to investigate the performance of a

Tobit-BART implementation at predicting censored outcomes.

The example below is based on the simulations described by Sigrist (2018). The goal is prediction of

censored outcomes out-of-sample. As in Sigrist (2018), the competing methods are be Tobit and binary

47I have provided options in the safeBart package for Tobit-BART-IS with draws from the Quadrianto & Ghahramani (2014)
prior and the spike and tree prior (Rockova & van der Pas 2017).

48Chib (1992) used an uninformative prior for Bayesian Tobit. The normal prior is preferred here for the terminal nodes
because this is the prior used by standard BART, and it is desirable to regularize the terminal node parameters.

49Chib (1992) describes a Gibbs sampler for Tobit. Perhaps an alternative based on the sampler of Polson et al. (2013) is
applicable.
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classification methods logistic regression, Logit-BART-IS,50 Probit-BART-MCMC, Logit-BART-MCMC,51

and Random Forests.52 The performance measures are the Brier Score and Area Under the Curve (AUC)

for out of sample predictive probabilities of censored outcomes.

There are 30 uniformly distributed covariates, X1, ..., X30 ∼ Unif(−1, 1), the latent outcome Y ∗, and

observed outcome Y are determined by the following data generating process:

Y ∗ =

f∑
k=1

0.3(Xk)+ +

3∑
k=1

4∑
j=k+1

(XkXj)+ + ε , ε ∼ N(0, σ2
ε)

Y = min(2.84, Y ∗)

where (x)+ = max(x, 0), and σε = 0.7.53 The results are presented in Table 3.8. While Tobit-BART-IS

outperforms the other methods, the results are somewhat underwhelming. One possible explanation for this

is that the outcome should be transformed and the prior on the terminal node parameters should be carefully

calibrated so that coefficients are regularized towards zero or predictive probabilities are regularized towards

the training sample proportion of censored outcomes.54

Method Brier AUC
Tobit-BART-IS 0.046 0.776
Tobit 0.049 0.613
Logit-BART-IS 0.047 0.740
Probit-BART-MCMC 0.046 0.750
Logit-BART-MCMC 0.047 0.721
Logistic Regression 0.051 0.610
RF 0.047 0.758

Table 3.8: Results for Tobit-BART-IS simulation study.

3.7 Conclusion

3.7.1 Summary

This chapter outlines a generalization of BART to a wide range of model settings. This approach builds on the

algorithms introduced in chapter 2 and existing methods for approximate inference and calculation of model

evidence. As an example, the approach is applied to the implementation of Logit-BART. The approach is

validated by the fact that Logit-BART-IS and Logit-BART-BMA produce similar results to existing MCMC

implementations of Probit-BART and Logit-BART.

Depending on computational resources and the speed of approximate inference methods such as Laplace

approximations, the new methods may provide fast alternatives to MCMC-based approaches. The general

BART-IS algorithm is highly parallelizable.

50Logit-BART-IS and Tobit-BART-IS were implemented with 20,000 draws and 5 trees per model.
51Probit-BART-MCMC and Logit-BART-MCMC were implemented using the BART package in R using 5000 burn-in draws

and 10,000 post burn-in draws.
52Random Forests was implemented using the ranger package in R with 10,000 trees.
53The upper bound and standard deviation are those chosen by Sigrist (2018). Unlike the simulations presented by Sigrist

(2018), the simulations presented here do not involve data censoring being determined by a latent variable that has a different
error term to the error term for the observed outcome.

54One possibility would be to add an intercept to the sum-of-tree model, demean the outcome, and set a, ν and λ such that
the prior predicts observations to lie in the training data range with high probability.
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The methods outlined in this chapter have some limitations. There is no guarantee that the BART-BMA

search algorithm will be particularly effective in searching the model space, and in some Logit-BART-BMA

examples the current implementation is prohibitively slow if model search parameters are not appropriately

adjusted. The BART-IS model sampler only takes a small sample from the large model space, and does not

adapt to find models with higher posterior probability.55 Therefore it is possible that none of the sampled

models are similar to the “true” model.

Despite the potential limitations, the algorithms described in this chapter, particularly BART-IS, are

of practical use to researchers seeking a quick and dirty approach to implementation of generalizations of

BART. Simple BART-IS implementations can provide useful benchmarks for testing the accuracy of new

MCMC-based implementations of similar BART model frameworks.

3.7.2 Future Research: Multinomial Logit, Poisson Regression, and Other

Generalizations

Poisson regression and multinomial logit can be implemented with standard Laplace approximations (Madi-

gan et al. 2005, Cawley et al. 2007, Silverman et al. 2019). Integrated Nested Laplace Approximations (Rue

et al. 2009) can be used to implement a range of models including multinomial logit56 and Poisson regres-

sion (and allows for hierarchical priors, e.g. mixed logit) and provides accurate calculations of the marginal

likelihood. The general framework introduced in section 3.3 can therefore be extended to a wide variety of

settings.57

However, a key requirement is that the calculation of the marginal likelihood and posterior inference are

computationally efficient. The speed of the BART-IS or BART-BMA based implementations will depend on

the choice of methods. The construction of residuals for the changepoint detection algorithm in BART-BMA

is not straightforward for all model settings, and the arbitrary model search algorithm is not guaranteed

to perform well outside of the linear regression context for which it was originally designed. Therefore

the BART-IS framework is more generalizable and is recommended above the BART-BMA framework for

application of BART to a wider class of models.

A possible approach for multinomial logit BART is to use Integrated Nested Laplace Approximations to

calculate the marginal likelihoods, and then use a variation of the sampler described by Polson et al. (2013).
58

55However, as noted in chapter 2, a Bayesian Adaptive Sampling approach to sampling of BART models is an interesting
topic for future research (Clyde et al. 2011). However, it is not obvious how to proceed in constructing such a sampler.

56Multinomial logit is implementable using the multinomial-Poisson transform (Baker 1994).
57See Barber et al. (2016) for some general asymptotic results on the use of the marginal likelihood for model selection.
58Linderman et al. (2015) describe this sampler for multinomial logit within a larger model. Similarly multinomial-Logit-BCF-

BMA and multinomial-Logit-BCF-IS are possible extensions and these methods would produce estimates of treatment effects
on probabilities of categories.
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Appendix A

First Chapter Appendix

A.1 Simulation Study - Variable Importance Permutation Test

We present a simulation study investigating the extent to which p-values for a permutation-based variable

importance test are influenced by the bias of the variable importance measure towards continuous variables

and categorical variables with more categories. This study is designed in a similar way to that used by Strobl

(2008) for investigating the bias of random forest variable importance measures.

First, we generate the following covariates and treatment indicator: X1 ∼ N(0, 1), X2 ∼ Cat(2), X3 ∼
Cat(4), X4 ∼ Cat(10), X5 ∼ Cat(20), treatment ∼ Cat(2), where Cat(k) denotes a categorical distribution

with k categories of equal probability. Then we consider simulations of the outcome under the following three

model designs:

For design 1, none of the covariates affect the outcome, and the outcome is normally distributed: Y ∼
N(0, 1) For design 2 and 3, the dependent variable is defined in a similar way to a simulation study carried

out by Athey & Imbens (2016):

Y = η(X) +
1

2
(2× treatment− 1)× κ(X) + ε (A.1)

where ε ∼ N(0, 1) . For design 2 the functions are η(X) = 0 and κ(X) = X2, and for design 3 the functions

are η(X) = 1
2X1 +X2 and κ(X) = X2.

We simulate these designs 100 times, with 500 observations per simulation, and for each simulation we

permute the dependent variable 100 times and obtain p-values, and then present boxplots of the p-values

for each variable.1 The boxplots of variable importances obtained using the unpermuted dependent variable

are shown in Figure A.1. The boxplots for the p-values are shown in Figure A.2. The boxes give the lower

quartile, median, and upper quartiles across repeated simulations. The whiskers give the most extreme data

points that are no more than 1.5 times the interquartile range from the box. The circles denote outliers.

Note that the results in Figures A.1 and A.2 should be interpreted differently. The variable importances

in Figure A.1 are not used in a test of significance, but rather in a comparison of importance across variables.

In contrast, Figure A.2 is clearer and correctly indicates that the binary variable is significant in designs 2

and 3. This is an argument in favour of the permutation test.

Although for design 1 none of the variables affects the outcome, in Figure A.1a X1 has greater variable

importance than X2, because of the aforementioned bias towards continuous variables.

For categorical variables X3, X4, and X5, all with more categories than X2, there are two factors influ-

encing the bias of the variable importance measure. As the number of categories increases, there are more

potential splits on the variable of interest, because there is a binary variable for each category. This explains

why X3 has greater variable importance than X2 in Figure A.1a. On the other hand, considering the case

1The parameters for the causal forest are: Number of trees = 5000, bootstrap sample fraction = 0.5, number of potential
splitting variables random selected at each split = number of variables divided by 3 and rounded down, minimum node size =
5.
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of a variable with a large number of categories, X5, there will be relatively few observations allocated to any

one category, and therefore a split on one of the X5 categories is unlikely to lead to a large improvement in

the splitting criterion. Therefore the variable importance measures for X5 are small.

The p-values in Figure A.2 appear to be unaffected by these biases. In Figure A.2a, none of the variables

tend to have significant p-values, reflecting the fact that none of the variables has any influence on the

outcome.

In Figures A.2b and A.2c, X2 is correctly identified as the important variable. Although Figures A.1b

and A.1c also indicate that X2 is the most important variable, there are also misleading differences in the

importances of the other variables. However, in Figures A.2b and A.2c, the variables X1, X3, X4, and X5

tend to have similar, insignificant p-values.

(a) Design 1 var. imp. (b) Design 2 var. imp. (c) Design 3 var. imp.

Figure A.1: Boxplots of simulation study variable importances, 100 permutations, 100 iterations

(a) Design 1 p-values (b) Design 2 p-values (c) Design 3 p-values

Figure A.2: Boxplots of simulation study p-values, 100 permutations, 100 iterations
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A.2 Classification Analysis Tables

Table A.1: Classification Analysis (CLAN): Age variable averages for most and
least peak demand responsive households

Variable
25% most
responsive

25% least
responsive

Difference

18-25 0 0 0

26-35 0.095 0.080 -0.015
(0.043, 0.147) (0.032, 0.128) (-0.083, 0.058)

36-45 0.230 0.152 -0.078
(0.156, 0.305) (0.088, 0.216) (-0.178, 0.017)

46-55 0.349 0.168 -0.181
(0.265, 0.434) (0.102, 0.234) (-0.288, -0.074)

56-65 0.206 0.192 -0.014
(0.135, 0.278) (0.122, 0.262) (-0.115, 0.084)

65+ 0.103 0.392 0.289
(0.049, 0.157) (0.305, 0.479) (0.190, 0.392)

Refused 0.016 0.008 -0.008

Note: For some binary variables with few non-zero values, confidence interval
could not be obtained because for some sample splits there was not sufficient
variation within quartiles for a confidence interval to be calculated.

Table A.2: Classification Analysis (CLAN): Class variable averages for most and
least peak demand responsive households

Variable
25% most
responsive

25% least
responsive

Difference

Upper middle and middle 0.190 0.056 0.135
(0.121, 0.260) (0.057, 0.217)

Lower middle 0.294 0.216 0.070
(0.213, 0.374) (0.143, 0.289) (-0.037, 0.181)

Skilled working 0.190 0.128 0.055
(0.121, 0.260) (0.069, 0.187) (-0.032, 0.148)

Working and non-working 0.302 0.560 -0.258
(0.220, 0.383) (0.472, 0.648) (-0.377, -0.139)

Farmers 0.016 0.024 0.008

Refused 0.008 0.008 0.000

Note: For some binary variables with few non-zero values, confidence interval could not be
obtained because for some sample splits there was not sufficient variation within quartiles for a
confidence interval to be calculated.

Table A.3: Classification Analysis (CLAN): Employment variable averages for most and least peak demand
responsive households

Variable
25% most
responsive

25% least
responsive

Difference

Employee 0.0563 0.328 0.235
(0.0476, 0.0651) (0.245, 0.411) (0.113, 0.355)

Self-emp (with employees) 0.095 0.008 0.087
(0.043, 0.147) (0.032, 0.141)

Self-emp (with no employees) 0.071 0.032 0.039
(0.026, 0.117) (-0.015, 0.097)

Unemployed (seeking work) 0.048 0.072 -0.024
(0.010, 0.085) (0.026, 0.118) (-0.084, 0.035)

Unemployed (not seeking work) 0.040 0.040 -0.008
(-0.055, 0.043)

Retired 0.159 0.496 -0.337
(0.094, 0.223) (0.497, 0.585) (-0.445, -0.227)

Carer 0.024 0.008 0.008
(-0.022, 0.038)

Note: For some binary variables with few non-zero values, confidence interval could not be obtained
because for some sample splits there was not sufficient variation within quartiles for a confidence
interval to be calculated.
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Appendix B

Second Chapter Appendix

B.1 Potential Variations on BART-BMA

The closed form for the predictive distribution suggests a number of possible improvements and variations

on BART-BMA.

� The a parameter can be set by a full Bayesian approach, Empirical Bayes approach, cross-validation,

or other methods. For comparison with the original results obtained by Hernández et al. (2018), this

paper uses the arbitrary value a = 3 throughout.

� The BART-BMA predictions are a probability weighted average of ridge regressions. Methods for fast

estimation of ridge regressions can be applied for improved computational speed.

� Different priors can be applied to the terminal node parameters and the error variance. This was

discussed to an extent in the original single Bayesian tree context by Chipman et al. (1998). For

example, data-informed priors can be applied to the error variance, as outlined in the context of

standard Bayesian linear regression by Sala-i Martin et al. (2004). There is an extensive literature

concerning the use of the g-prior in Bayesian Model Averaging (Eicher et al. 2011).

� Different model weights can be applied, for example, weights can be based on in-sample sum-of-squared

errors. This was discussed to an extent by Chipman et al. (1998). For BMA of linear regressions, Sala-i

Martin et al. (2004) suggest model weights equal to p(Mj)n
−k/2SSE

n/2
j , where Mj is the model and n

is the number of observations. Another option is a BIC approximation, p(Mj)[n ln( 1
nSSEj) + k ln(n)]

. This approach may improve computational speed.

� BART-BMA outputs a relatively small number of Bayesian linear regressions. The covariates are

indicator variables for terminal nodes. In principle, any Bayesian model combination method can be

applied to the set of selected models. Bayesian Stacking (Yao et al. 2018) might give a more accurate

predictive distribution.

B.2 Comparison of Computational Times, Friedman Simulations

This appendix includes computational times for the Friedman simulations described in section 2.5.1. Table

B.1 presents the computational times in seconds. The BART-IS results are for 1,000,000 draws of models each

containing 30 trees. The BART and DART MCMC results are for 10,000 samples plus 1000 burn-in draws

of models each containing 200 trees. It can be observed that Random forests with the default number of

draws of 500 trees are much faster than BART based methods. BART-BMA is faster than other BART-based

methods, particularly for the 100 and 1000 variable simulations.1 BART-IS is slower than BART-MCMC,

1The speed of the BART-BMA algorithm can be improved further by using the Pruned Exact Linear Time (PELT) change-
point detection algorithm (Killick et al. 2012). This is particularly recommended when the number of observations is large.
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however this depends on the number of draws and the number of processors available. BART-IS with 250,000

draws would give comparable or faster results than BART-MCMC. Alternatively, if the number of processors

were scaled up from 7 to 30, BART-IS would have comparable speed to BART-MCMC.2 The slow-down of

BART-IS as the number of variables increases is surprising given that the size of the drawn models does

not change. This suggests that the random sampling of splitting variables and construction of terminal

node indicator variables slows down with the number of variables in the dataset. This may be sensitive

to the choice of model sampler. There are a number of possible approaches for speeding up BART-IS. If

the increase in computational time is only due to sampling of splitting variables from a discrete uniform

categorical distribution, then offline sampling of models removes this problem entirely.

Method BART-BMA BART-IS RF BART-MCMC DART
100 variables 3.19 870.65 0.19 218.40 226.25
1000 variables 32.66 1164.39 0.48 230.84 259.54
5000 variables 163.23 1332.77 1.62 356.64 426.96
10000 variables 337.15 1617.75 3.54 498.90 608.50
15000 variables 520.92 1754.45 6.94 626.51 814.61

Table B.1: Computational times, in seconds, for Friedman data simulations.

B.3 Multivariate BART-IS

For multivariate BART-IS, options include the use of the same tree structures for different outcomes (similar

to shared Bayesian Forests (Linero et al. 2019)), or different tree structures for each outcome (as in BART

for Seemingly Unrelated Regression (Chakraborty 2016)). 3

Let the vector of d outcomes for individual i be denoted by yi = (yi,1, ..., yi,d)
T . Then, if we impose the

same tree structure on the model for all outcomes, we have

yi =


OT1

OT2
...

OTd

 (W )Ti +


εi,1

εi,2
...

εi,d


Where O1, ..., Od are distinct terminal node coefficient vectors for each outcome, (W )i is the ith row of the

W matrix of terminal node indicator variables, and εi,j is the error for individual i, outcome j.

Alternatively, one can allow for distinct sets of tree structures for each outcome, with corresponding

matrices of terminal node indicator variables W1, ...,Wd. It is also possible for splits in each sum-of-tree

model to be constructed from different sets of potential splitting variables.

However, in simulated examples, BART with the grid-search algorithm tends to outperform BART with the PELT algorithm
in terms of accuracy of predictions.

2However, a fairer comparison would also make use of a parallelized version of BART, either using multiple chains or the
approach described by Pratola et al. (2014). Nonetheless, since BART-IS is in principle more parallelizable than BART-MCMC,
there should exist some number of processors such that BART-IS is faster than BART-MCMC.

3Code has not yet been written for Multivariate BART-IS. This appendix only outlines the idea.
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This gives the following model:

yi =



OT1 0 0 . . . 0

0 OT2 0 . . . 0

0 0 OT3
...

...
...

. . . 0

0 0 . . . 0 OTd




(W1)Ti
(W2)Ti

...

(Wd)
T
i

+


εi,1

εi,2
...

εi,d



The tree drawing process for any tree is the same as in univariate BART-IS. There exist priors that give

a closed form for the marginal likelihood and posterior predictive distribution (Minka 2000).

B.4 Importance Sampling Implementation of Semiparametric

BART

Zeldow et al. (2019) outline semiparametric BART, which is essentially an average of models, each consisting

of a sum-of-trees plus a linear model. Zeldow et al. (2019) present the approach in the context of treatment

effect estimation, but it can also be applied to prediction. It is straightforward to average over models

that are defined by the addition of a linear combination of covariates and a sums-of-trees. First, define a

set of covariates that can be included in the linear model, then define prior inclusion probabilities for these

covariates [such that the prior is independent of the prior over the sum-of-trees], and priors on the coefficients

of included covariates. The prior for coefficients should allow for conjugacy of the whole model, for example,

the prior variance of coefficients can be set equal to a scalar multiple of the variance of the error terms.

Then, for each sampled model, we sample the variables included in the linear part of the model by a set

of Bernoulli draws, and this gives a covariate matrix X. Then draw the sum-of-trees part of the model as in

standard BART-IS, which gives a matrix W and define the overall model matrix as [X W ].

The resulting models are standard Bayesian linear regressions, and the marginal likelihoods and predictive

distributions have closed forms. Importance sampling of BART plus a linear model can be viewed as a

combination of BART-IS and the implementation of BMA of Bayesian linear regressions used by Sala-i

Martin et al. (2004).

B.5 Spike-and-Tree Prior

B.5.1 Definition of Spike-and-Tree Prior

Results are presented in this paper for BART-BMA with the spike and tree prior described by Rockova

& van der Pas (2017) (as an alternative to the standard BART splitting prior). The prior is defined by

π(S|q) = 1

(pq)
for α, q, c > 0. This prior can be implemented by taking a Bernoulli draw for inclusion of each

variable, with a conjugate beta prior distribution on the splitting probability. (i.e. the number of splitting

variables can be given a beta-binomial distribution). A drawn variable is used at least once in the tree.

A Poisson prior is placed on the number of terminal nodes, π(k) =
λk0

(eλ0−1)k!
, k = 1, 2, ... for some

λ0 ∈ R. However, this should be π(k|q) and truncated from the left and to the right so that q ≤ k ≤ n− 1,

where right truncation only occurs with a date-informed prior that requires every terminal node contains at

least one observation.
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Then, given q,S, k, assign a uniform prior over valid tree topologies T = {Ωk}Kk=1 ∈ Vkc . A valid

tree topology must have some minimum number of training observations in each terminal node. The prior

probability of a valid tree is π(T |S, k) = 1
∆(Vks )

I(T ∈ Vks ) . The number of possible valid tree constructions

is S(k − 1, q)q!(n − 1)!/(n − k)!, where S(k − 1, q) is a Sterling number of the second kind. This can be

used to account for duplications of the same tree by multiple possible tree constructions in the BART-BMA

algorithm. The number of valid tree diagrams is equal to Ck−1q!S(k − 1, q)
(
n−1
k−1

)
, where Ck−1 is the k − 1th

Catalan number.

B.5.2 Sampling from the Spike-and-Tree Prior

1. Bernoulli draws on the set of included variables. Obtain a set of variables, S, with |S| = q.

2. Draw number of terminal nodes, k from a Poisson distribution truncated on the left (if we require

that the tree splits on each variable in |S| at least once) and right such that q ≤ K − 1 ≤ n, i.e.

q + 1 ≤ K ≤ n+ 1.

3. Draw a tree structure with the specified number of terminal nodes uniformly at random. This is an

efficient algorithm created by Bacher (2016). This gives a representation of the tree structure.

4a. (If using a data-independent prior) Take a standard uniform draw for each split point. Then loop

through splitting points, and adjust splitting points within the corresponding sub-tree that split on the

same variable again such that it is possible for observations to fall in any terminal node.

4b. (If using the data-dependent prior) Draw a set of splitting points from the n − 1 possible splits of

the variables. Here, the splits are splits of the n observations (i.e. still in one dimension, we haven’t

allocated splits to the variables yet. Each split “point” just specifies the number of observations that

are to the left of that split. Note that for each of these split “points” there is a possible split on each

variable).

Fill in the splits in the tree. Apply the following algorithm:

While there are split points remaining:

(a) Take the lowest remaining split point.

(b) Allocate it to the leftmost remaining internal node.

(c) Remove the split point and internal node.

5. For each internal node, randomly draw a splitting variable from S. There will be one split point on the

chosen variable that results in the number of observations to the left allocated to that split in step 5.

If we want to apply the condition that each of the |S| potential splitting variables must be used at least

once, then we can first draw from all possible variables (K − 1)− |S| times with replacement, but then

start restricting the number of possible draws, i.e. draw |S| times without replacement. Then randomly

shuffle the splitting variables among the splitting points. [An alternative would be any algorithm that

creates random (ordered) partitions of the K − 1 splitting points among the |S| splitting variables.]

B.6 BCF-BMA Algorithm

.
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Input: n× p matrix X with continuous response variable Y
Output: RMSE, Credible interval for Ŷ , after burn-in updates for σ
Initialise: Tree Response = Y scaled;
Initialise: lowest BIC, L = 1, Set of T = List ST = a tree stump
Initialise: count mu trees` = 1, count tau trees` = 1
for j ← 1 to mµ +mτ do

for `← 1 to L do
if count mu trees` ≤ mµ then

1. Find Good Splitting Rules. Run greedy search to find numcp%µ best split rules for each current
sum of trees Tµ` in T` in Occam’s window, using the partial residuals of T` as Tree response.

2. Grow greedy trees based on their partial residuals to append to current sum of trees
model Tµ`. Set new proposal tree T ∗ to stump

for H ← 1 to max tree depthµ do
for i← 1 to number of terminal nodes in T ∗ do

for d← 1 to num split rulesµ do
Grow proposal tree T ∗ using splitting rule d from list of splitting rules found in
part 1. Append T ∗ to Tµ` to make new sum of trees model T ∗` . if Sum of trees
T ∗` is in Occam’s window then

Append T ∗ to Tµ` and save new sum of trees model to temporary list
tempOW , and save new values of count mu trees := count mu trees` + 1,
and count tau trees := count tau trees` for each element of tempOW in
lists temp count mu list and temp count tau list.

end

end

end

end

end
if j ≤ count tau trees` then

1. Find Good Splitting Rules. Run greedy search to find numcp%τ best split rules for each current
sum of trees Tτ` in T` in Occam’s window, using the partial residuals of T` for treated individuals only
as Tree response.

2. Grow greedy trees based on their treated individuals’ partial residuals to append to
current sum of trees Tτ`. Set new proposal tree T ∗ to stump

for H ← 1 to max tree depthτ do
for i← 1 to number of terminal nodes in T ∗ do

for d← 1 to num split rulesτ do
Grow proposal tree T ∗ using splitting rule d from list of splitting rules found in
part 1. Append T ∗ to Tτ` to make new sum of trees model T ∗` . if Sum of trees
T ∗` is in Occam’s window then

Append T ∗ to Tτ` and add new sum of trees model to temporary list
tempOW , and save a new value of count mu trees := count mu trees`, and
count tau trees := count tau trees` + 1 for each element of tempOW in lists
temp count mu list and temp count tau list.

end

end

end

end

end
Make sum of trees models and update residuals
List of sum of trees models to grow further List ST = tempOW
List of all sum of trees models to date sum trees in OccamsWindow+ = tempOW
Lists of counts of mu trees and tau trees in all sum of tree models to date
count mu trees+ = temp count mu list , count tau trees+ = temp count tau list .

Update lowest BIC = min(sum trees in OccansWindow)
Set L = length(tempOW )
Set length(tempOW ) = 0

end
end
Get total list of L sum of trees in Occam’s window by deleting models from
sum trees in OccamsWindow list whose BIC is greater than log(o) from lowest BIC
τ̂ = Sum of weighted predictions τ̂` over all L sum of trees models in Occam’s window
For prediction intervals, obtain quantiles by a root finding algorithm (or implement a
post hoc Gibbs Sampler for each sum of trees accepted in Occam’s window)

return:
Credible intervals for τ̂ ; Sum of trees in Occam’s window;
Posterior probability of each sum of trees model.

Algorithm 4: BCF-BMA Algorithm
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Figure B.1: Example results for BCF and BCF-BMA

B.7 BCF Applied to CER Smart Meter Trial Data

Figure B.1 investigates the issue noted in section 2.7.1 concerning the unrealistic demand response estimates

produced by a standard causal forest. The ITE estimates are presented for a Bayesian Causal Forests with

2000 draws and varying numbers of µ trees and τ trees, and also for BCF with 4000 draws. It can be seen

in figure B.1 that the extent to which the algorithm produces unrealistic estimates is highly sensitive to the

number of trees and the number of draws.
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Appendix C

Third Chapter Appendix

C.1 Standard Newton-Raphson algorithm for finding the MAP

of Bayesian Logistic Regression

Require parameter value, e.g. a = 0.01

Initialize µ = 0

repeat

pi = 1
1+e−Wiµ

for i = 1, ..., n

S = diag(pi(1− pi))
g = WT (p− y) + aµ

H = WTSW + aIb

µ
new

= µ
old
−H−1g

until convergence;

Algorithm 5: Newton’s method for obtaining the mode (MAP) of the posterior approximation

C.2 Marginal Likelihood Approximation

The Laplace Approximation gives the following approximation for the marginal likelihood (using the normal-

ization constant of the multivariate Gaussian distribution)

p(y|T (m)) ≈ elog(p(µ
MAP,(m)

,y))
(2π)b

(m)/2|HMAP,(m)|−1/2

= (
1

a
)−

b(m)

2

N∏
i=1

( e
rowi(W(m))µMAP,(m)

1 + e
rowi(W(m))µMAP,(m)

)yi (
1

1 + e
rowi(W(m))µMAP,(m)

)1−yi
 |HMAP,(m)|−1/2

and the log of the marginal likelihood is approximated by:

b(m)

2
log(a) +

N∑
i=1

[
yirowi(W(m))µMAP,(m)

− log
(

1 + e
rowi(W(m))µMAP,(m)

)]
− 1

2
log(|HMAP,(m)|)

C.3 Applying Laplace’s Method Approximation Twice to

Approximate Posterior Mean Probability

Tierney & Kadane (1986) describe an approach for approximating the posterior mean of any smooth unimodal
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function of the parameters, g(θ).1 This involves the observation that the posterior mean can be approximated

by first applying Laplace’s method to find the mode of the integral in the numerator of the posterior mean

of the function.

E[g] = E[g(θ|X)] =

∫
g(θ)eL(θ)π(θ)dθ∫
eL(θ)π(θ)dθ

where L is the log likelihood function.

First, the MAP of the posterior for θ is obtained by Newton’s method. Then Laplace’s method is used

to obtain an approximation for the denominator integral.

Then this is combined with a Laplace approximation for the integral in the numerator.

Let L = log(π(θ)) + L(θ)
n and L∗ = log(g(θ)) + log(π(θ)) + L(θ)

n . Then

E[g] = E[g(θ|X)] =

∫
enL

∗
dθ∫

enLdθ

Let θ̂ = θMAP be the mode of L. Similarly let θ̂∗ be the mode of L∗. Then, taking the ratio of the two

Laplace approximations gives:

Ên[g] =

(
det(H∗−1)

det(H−1)

)1/2

exp{n(L∗(θ̂∗)− L∗(θ̂))}

where H and H∗ are the negatives of the Hessians of L and L∗ respectively (i.e. the Hessians of the negative

log likelihood). The error is of order O(n−2).

This can in principle be applied to the logit model with g(µ
(m)

) = e
W∗,(m)µ(m)

1+e
W∗,(m)µ(m)

C.4 Outline of Monte Carlo Approximation for

Logit-BART-BMA and Logit-BART-IS

C.4.1 Monte Carlo Approximation of Posterior Predictive Mean Probability

Two possible Monte Carlo approximation approaches are:

1. Approximate each integral separately, and then average by the model posterior probability. i.e.

For each model, obtain a large number S of samples of µ
(m),1

, ...,µ
(m),S

from the approximate distri-

bution N (µ
MAP,(m)

, H−1
(m)) and estimate the posterior predicted probability of y∗ = 1 for model m as

1
S

∑S
s=1

e
W∗,(m)µ(m),s

1+e
W∗,(m)µ(m),s

and then the model averaged probability is:

M∑
m=1

p(Tm|y)
1

S

S∑
s=1

e
W∗,(m)µ(m),s

1 + e
W∗,(m)µ(m),s

2. Take a large number, S, of samples from the mixture of multivariate normal distributions µ|y ∼∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y) . Note that this involves sampling from each model’s normal approxima-

tion with probability p(Tm|y), and for each model the sampled vector µ has a different interpretation and

1The function is also required to be nonzero, and preferably positive, but it is possible to add a large constant or take the
negative
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can have different dimensions because the sum-of-tree structures differ across models. Then the estimate is

1

S

S∑
s=1

e
W∗,(m)µ(m),s

1 + e
W∗,(m)µ(m),s

C.4.2 Monte Carlo Approximation of Credible Intervals for Posterior

Predictive Probability

Take a large number, S, samples from the mixture of multivariate normal distributions

µ|y ∼
M∑
m=1

N (µ
MAP,(m)

, H−1
(m))p(Tm|y)

Note that this involves sampling from each model’s normal approximation with probability p(Tm|y), and

for each model the sampled vector µ has a different interpretation and can have different dimensions because

the sum-of-tree structures differ across models.

For each draw, calculate the probability e
W∗,(m)µ(m),s

1+e
W∗,(m)µ(m),s

. Then obtain the desired quantiles of the S

probabilities. e.g. For a 95% interval, find Lb and Ub such that 1
S

∑S
s=1 I

(
e
W∗,(m)µ(m),s

1+e
W∗,(m)µ(m),s

< Lb

)
= 0.025 and

1
S

∑S
s=1 I

(
e
W∗,(m)µ(m),s

1+e
W∗,(m)µ(m),s

< Ub

)
= 0.975 .

C.5 Root-finding Approximation of Credible Intervals for

Posterior Predictive Probability

Using the sigmoid (logistic) function, sig(), we require Lb such that

M∑
m=1

(∫ ∞
−∞

I
(
sig(α(m)) < Lb

)
p(α(m)|ψα,(m), σ

2
α,(m))dα(m)

)
p(Tm|y)

=

M∑
m=1

Φ

(
sig−1(Lb)− ψα,(m)

σα,(m)

)
p(Tm|y) = 0.025

A simple root finding algorithm (e.g. bisection) can be used to find c = sig−1(Lb). Then Lb is obtained

from sig(c). Similarly, for the upper bound, we require Ub such that
∑M
m=1 Φ

(
sig−1(Ub)−ψα,(m)

σα,(m)

)
p(Tm|y) =

0.975, which can be obtained by a root-finding algorithm.

C.6 Alternative methods for constructing Logit-BART-BMA

Residuals

C.6.1 Constructing Residuals using Predicted Probabilities or MAP Estimates

Three simple methods for calculation of residuals are::

� A naive approach resulting from an unedited model search algorithm using the residuals yi− P̂ r(yi = 1)

where P̂ r(yi = 1) is the estimated probability from the model. However, the tree will be appended to
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a sum-of-trees modelling the latent outcome, which is a continuous variable that is not restricted to be

between 0 and 1.

� Residuals can be calculated for the latent outcome U by beginning with Ui = 3.1 if yi = 1 and U = −3.1

if yi = 0 (or a similar number that gives a probability close to 1 or 0) and for each model obtaining

Ui−rowi(W )µ
MAP

as the residual to be used in the changepoint detection algorithm in the next round,

where rowi(W )µ
MAP

is the MAP prediction of the latent outcome y∗.

� An even less computationally burdensome approach would be to only search for potential splits before

the first round of the algorithm. This involves applying the changepoint detection algorithm to the

latent outcome U defined by Ui = 3.1 if yi = 1 and U = −3.1 if yi = 0. Then keep these potential split

points for all future rounds of the algorithm (i.e. do not apply the changepoint algorithm again).

C.6.2 Arbitrary fixed grid of splits, without residuals

The changepoint detection algorithm can be replaced by an alternative method for reducing the number of

potential splitting points.

� Propose an arbitrary deterministic grid of splitting points, possibly after applying a Probability Integral

Transform using the Empirical Distribution Function of the residuals, and proceed to use these splits

in the rest of the algorithm without applying a changepoint detection algorithm. This is likely to be

very slow, particularly for high-dimensional data, unless the set of potential splits for each variable is

severely restricted, which may compromise the ability of these methods to find models close to the true

data generating process.

� Alternatively, the grid of points for each variable can be found by first applying some other tree-based

method or search algorithm. For example, one could use standard BART-BMA or the simple Probit-

BART-BMA and save the splitting points to use in Logit-BART-BMA. 2

C.7 Technical Details for Logit-BART-BMA and Logit-BART-IS

Treatment Effect Estimation

C.7.1 Estimation of Mean of Posterior Distribution of Individual Treatment

Effects

Beginning with the Laplace approximations of posterior distributions of the terminal node coefficients outlined

in section 3.4.3,

µ
(m)
|y, Tm ∼ N (µ

MAP,(m)
, H−1

(m)), the goal is to estimate the expected difference in the the probability

y∗ = 1 for an individual with and without treatment, i.e. T∗ = 1 and T∗ = 0, conditioning on the same set

of values for other covariates x∗ in both cases. i.e. Estimate E[y∗|x∗, T∗ = 1]− E[y∗|x∗, T∗ = 0].

When treatment is a splitting variable in the sum-of-tree model, the terminal nodes that individual i is

allocated to when we set Ti = 1 can be different to the terminal nodes for Ti = 0. Therefore the variables

indicating inclusion in terminal nodes will be different in these two scenarios. Denote these two sets of

indicator variables as rowi(W
tr) and rowi(W

c) for allocation to treatment and control respectively. Then

2i.e. Save all the splits that were used or suggested in a first step BART-BMA (as if the outcome were continuous) or
approximate Probit-BART-BMA
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for a new observation, with original covariate vector x∗, we estimate the expected difference in probabilities

for row∗(W
tr) and row∗(W

c). Therefore the expected treatment effect is:

M∑
m=1

[∫ (
sig(row∗(W

tr
(m))µ(m)

)− sig(row∗(W
c
(m))µ(m)

)
)
p(µ

(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

this can also be separated into two integrals

M∑
m=1

[∫
sig(row∗(W

tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−
∫
sig(row∗(W

c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

where sig denotes the sigmoid function (i.e. logistic). We consider two possible approaches: Monte Carlo

and Probit approximation.

Monte Carlo Approximation of Expected ITE

Two possible approaches to Monte Carlo Approximation of the Expected ITE are:

1. Approximate each integral and then average by the model posterior probability. i.e. For each model, ob-

tain a large number S of samples of µ
(m),1

, ...,µ
(m),S

from the approximate distribution N (µ
MAP,(m)

, H−1
(m))

and estimate the difference in probabilities for model m. Then the model averaged difference in probabilities

(treated minus untreated) is:

M∑
m=1

p(Tm|y)
1

S

S∑
s=1

[
e
row∗(W

tr
(m))µ(m),s

1 + e
row∗(W tr

(m)
)µ

(m),s

− e
row∗(W

c
(m))µ(m),s

1 + e
row∗(W c

(m)
)µ

(m),s

]

2. Take a large number, S, samples from the mixture of multivariate normal distributions µ|y ∼∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y) . Note that this involves sampling from each model’s normal approxi-

mation with probability p(Tm|y), and for each model the sampled vector µ has a different interpretation and

can have different dimensions because the sum-of-tree structures differ across models. Then the estimate is

1

S

S∑
s=1

[
e
row∗(W

tr
(m))µ(m),s

1 + e
row∗(W tr

(m)
)µ

(m),s

− e
row∗(W

c
(m))µ(m),s

1 + e
row∗(W c

(m)
)µ

(m),s

]

Probit Approximation of Expected ITE

The sigmoid (logistic) function can be approximated by a normal CDF:

M∑
m=1

[∫
sig(row∗(W

tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−
∫
sig(row∗(W

c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

≈
M∑
m=1

[∫
Φ(row∗(W

tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−
∫

Φ(row∗(W
c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

Let ψα,(m,tr) = row∗(W
tr
(m))µMAP,(m)

and σ2
α,(m,tr) = row∗(W

tr
(m))H

−1
(m)row∗(W

tr
(m))

T and ψα,(m,c) =
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row∗(W
c
(m))µMAP,(m)

and σ2
α,(m,c) = row∗(W

c
(m))H

−1
(m)row∗(W

c
(m))

T . Then α(m,tr) = row∗(W
tr
(m))µ(m)

∼
N (ψα,(m,tr), σ

2
α,(m,tr)) and α(m,c) = row∗(W

c
(m))µ(m)

∼ N (ψα,(m,c), σ
2
α,(m,c))

Then the integrals can be rewritten as one dimensional integrals, and the expected ITE is:3

M∑
m=1

[∫
Φ(α(m,tr))p(α(m,tr)|ψα,(m,tr), σ2

α,(m,tr))dα(m,tr) −
∫

Φ(α(m,c))p(α(m,c)|ψα,(m,c), σ2
α,(m,c))dα(m,c)

]
p(Tm|y)

=

M∑
m=1

Φ

 ψα,(m,tr)√
1 + σ2

α,(m,tr)

− Φ

 ψα,(m,c)√
1 + σ2

α,(m,c)

 p(Tm|y)

Monte Carlo Approximation of ITE Intervals

Take a large number, S, of samples from the mixture of multivariate normal distributions

µ|y ∼
∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y) . Note that this involves sampling from each model’s normal ap-

proximation with probability p(Tm|y), and for each model the sampled vector µ has a different interpretation

and can have different dimensions because the sum-of-tree structures differ across models.

For each sample, s calculate the difference in probabilities under treatment and control group allocation

(i.e. for W tr
(m) and W c

(m) ), and then find the relevant quantiles.

For example, for a 95% interval, find Lb such that

1

S

S∑
s=1

I
{ e

row∗(W
tr
(m))µ(m),s

1 + e
row∗(W tr

(m)
)µ

(m),s

− e
row∗(W

c
(m))µ(m),s

1 + e
row∗(W c

(m)
)µ

(m),s

< Lb

}
= 0.025

and find Ub such that 1
S

∑S
s=1 I

{
e
row∗(Wtr

(m)
)µ

(m),s

1+e
row∗(Wtr

(m)
)µ

(m),s
− e

row∗(Wc
(m)

)µ
(m),s

1+e
row∗(Wc

(m)
)µ

(m),s
< Ub

}
= 0.975.

Monte Carlo Approximation of ITE Interval, reducing the dimension of the integral

Unlike in section C.5, the interval for the ITE does not have an obvious closed form obtainable from a Probit

approximation. However, it is still possible to reduce the dimension of the integral, such that when the

integral is approximated by Monte Carlo methods, draws can be made from univariate or bivariate normal

distributions (instead of potentially much higher dimensional draws of µ
(m)

.

The goal is to find Lb defined in the following formula

M∑
m=1

[∫ ∞
−∞

I
(
sig(α(m,tr))− sig(α(m,c)) < Lb

)
p(α(m,tr), α(m,c)|ψα,(m,tr), σ2

α,(m,tr), ψα,(m,c), σ
2
α,(m,c))dα(m,tr)dα(m,c)

]
p(Tm|y)

where the variables and parameters are defined as in section C.5. Note that (α(m,tr), α(m,tr)) has the following

bivariate normal distribution: α(m,tr)

α(m,c)

 =

row∗(W tr
(m))µ(m)

row∗(W
c
(m))µ(m)


3For closer approximations to logistic probabilities, this can be replaced by

∑M
m=1

[
Φ

(
ψα,(m,tr)√
8
π
+σ2

α,(m,tr)

)
− Φ

(
ψα,(m,c)√
8
π
+σ2

α,(m,c)

)]
p(Tm|y).
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∼ N

row∗(W tr
(m))µMAP,(m)

row∗(W
c
(m))µMAP,(m)

 ,

row∗(W tr
(m))

row∗(W
c
(m))

H−1
[
row∗(W

tr
(m))

T row∗(W
c
(m))

T
]

It is possible to take S draws from the model weighted average of bivariate normal distributions (i.e. draw

from each model’s bivariate normal distribution with probability equal to the posterior model probability),

and for each draw, s, calculate sig(α(m,tr),s)− sig(α(m,c),s) and then take obtain the desired quantiles of the

draws.

However, it is also possible to reduce the integrals to one-dimensional integrals.

Note that the conditional distribution of α(m,tr)|α(m,c) is

α(m,tr)|α(m,c) ∼

N
(
E[α(m,tr)|α(m,c)], (1− ρ2)σ2

α,(m,tr)

)
where ρ = (row∗(W

c
(m))H

−1row∗(W
tr
(m))

T

E[α(m,tr)|α(m,c)] = row∗(W
tr
(m))µMAP,(m)

+ ρ
√

σα,(m,tr)
σα,(m,c)

(α(m,c) − row∗(W c
(m))µMAP,(m)

)

Then the integral of interest can be re-written as

M∑
m=1

∫ ∞
−∞

Φ

sig−1(Lb + sig(α(m,c)))− E[α(m,tr)|α(m,c)]√
(1− ρ2)σ2

α,(m,tr)

φ(
α(m,c) − ψα,(m,c)

σα,(m,c)
)dα(m,c)

 p(Tm|y)

The sig function in the above integrals can be replaced by the normal CDF of a probit approximation if

the computation is faster.

If an entirely deterministic algorithm is desired, deterministic numerical methods can probably be used

to evaluate the univariate integrals in the above expression, however, this would have to be used in com-

bination with a root finding algorithm, and in each iteration of the algorithm the integrals will have to be

re-calculated. The integrals could probably be calculated using Monte Carlo methods, but again would have

to be recalculated for each iteration of the root finding algorithm.

Therefore, the optimal approach may be to draw from the mixture of bivariate normal distributions, and

obtain quantiles of calculated quantiles (the standard Monte Carlo approach, albeit with the dimension of

the draws reduced to 2).

C.7.2 Estimation of Mean of Posterior Distribution of Conditional Average

Treatment Effects

Now consider the Conditional Average Treatment Effect, i.e. 1
N

∑N
i=1 [E[yi|xi, Ti = 1]− E[yi|xi, Ti = 1]].

M∑
m=1

[∫
1

N

N∑
i=1

[(
sig(rowi(W

tr
(m))µ(m)

)− sig(rowi(W
c
(m))µ(m)

)
)]
p(µ

(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)
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this can also be separated into two integrals

M∑
m=1

[∫
1

N

N∑
i=1

sig(rowi(W
tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−

∫
1

N

N∑
i=1

sig(rowi(W
c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

where sig denotes the sigmoid function (i.e. logistic). Note that rowi(W
tr
(m))µ(m)

can be estimated for

i = 1, ..., N in one matrix calculation W tr
(m)µ(m)

.

Monte Carlo Approximation of Expected CATE

[This is essentially the same as for ITEs]

Two possible approaches to Monte Carlo Approximation of the Expected CATE are:

1. It is possible to approximate each integral and then average by the model posterior probability. i.e.

For each model, obtain a large number S of samples of µ
(m),1

, ...,µ
(m),S

from the approximate distribution

N (µ
MAP,(m)

, H−1
(m)) and estimate the difference in probabilities for model m .Then model averaged difference

in probabilities (treated minus untreated) is:

M∑
m=1

p(Tm|y)
1

S

S∑
s=1

1

N

N∑
i=1

[
e
rowi(W

tr
(m))µ(m),s

1 + e
rowi(W tr

(m)
)µ

(m),s

− e
rowi(W

c
(m))µ(m),s

1 + e
rowi(W c

(m)
)µ

(m),s

]

2. Take a large number, S, samples from the mixture of multivariate normal distributions µ|y ∼∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y) . Note that this involves sampling from each model’s normal approxi-

mation with probability p(Tm|y), and for each model the sampled vector µ has a different interpretation and

can have different dimensions because the sum-of-tree structures differ across models. Then the estimate is

1

S

S∑
s=1

1

N

N∑
i=1

[
e
rowi(W

tr
(m))µ(m),s

1 + e
rowi(W tr

(m)
)µ

(m),s

− e
rowi(W

c
(m))µ(m),s

1 + e
rowi(W c

(m)
)µ

(m),s

]

Probit Approximation of Expected CATE

The sigmoid (logistic) function can be approximated by a normal CDF:

M∑
m=1

1

N

N∑
i=1

[∫
sig(rowi(W

tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−∫
sig(rowi(W

c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

≈
M∑
m=1

1

N

N∑
i=1

[∫
Φ(rowi(W

tr
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

−∫
Φ(rowi(W

c
(m))µ(m)

)p(µ
(m)
|µ
MAP,(m)

, H−1
(m))dµ(m)

]
p(Tm|y)

Let ψα,i,(m,tr) = rowi(W
tr
(m))µMAP,(m)

and σ2
α,i,(m,tr) = rowi(W

tr
(m))H

−1
(m)rowi(W

tr
(m))

T and ψα,i,(m,c) =

rowi(W
c
(m))µMAP,(m)

and σ2
α,i,(m,c) = rowi(W

tr
(m))H

−1
(m)rowi(W

c
(m))

T . Then αi,(m,tr) = rowi(W
tr
(m))µ(m)

∼
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N (ψα,i,(m,tr), σ
2
α,i,(m,tr)) and αi,(m,c) = rowi(W

c
(m))µ(m)

∼ N (ψα,i,(m,c), σ
2
α,i,(m,c)) Then the integrals can be

rewritten as one dimensional integrals, and the expected ITE is:

M∑
m=1

1

N

N∑
i=1

[∫
Φ(αi,(m,tr))p(αi,(m,tr)|ψα,i,(m,tr), σ2

α,i,(m,tr))dαi,(m,tr)−∫
Φ(αi,(m,c))p(αi,(m,c)|ψα,i,(m,c), σ2

α,i,(m,c))dαi,(m,c)

]
p(Tm|y)

=

M∑
m=1

1

N

N∑
i=1

Φ

 ψα,i,(m,tr)√
1 + σ2

α,i,(m,tr)

− Φ

 ψα,i,(m,c)√
1 + σ2

α,i,(m,c)

 p(Tm|y)

This is equal to the arithmetic average of the ITE estimates.4

C.7.3 Credible Intervals for CATE Posterior Distribution

Monte Carlo Approximation of CATE Intervals

Take a large number, S, samples from the mixture of multivariate normal distributions

µ|y ∼
∑M
m=1N (µ

MAP,(m)
, H−1

(m))p(Tm|y) . Note that this involves sampling from each model’s normal ap-

proximation with probability p(Tm|y), and for each model the sampled vector µ has a different interpretation

and can have different dimensions because the sum-of-tree structures differ across models.

For each sample, s calculate the average (over i = 1, ..., N) difference in probabilities under treatment

and control group allocation (i.e. for W tr
(m) and W c

(m) ), and then find the relevant quantiles. i.e. calculate

1
N

∑N
i=1

(
e
rowi(W

tr
(m)

)µ
(m),s

1+e
rowi(W

tr
(m)

)µ
(m),s

− e
rowi(W

c
(m)

)µ
(m),s

1+e
rowi(W

c
(m)

)µ
(m),s

)
for each draw and find the quantiles.

For example, for a 95% interval, find Lb such that

1

S

S∑
s=1

I

[
1

N

N∑
i=1

(
e
rowi(W

tr
(m))µ(m),s

1 + e
rowi(W tr

(m)
)µ

(m),s

− e
rowi(W

c
(m))µ(m),s

1 + e
rowi(W c

(m)
)µ

(m),s

)
< Lb

]
= 0.025

and find Ub such that

1

S

S∑
s=1

I

[
1

N

N∑
i=1

(
e
rowi(W

tr
(m))µ(m),s

1 + e
rowi(W tr

(m)
)µ

(m),s

− e
rowi(W

c
(m))µ(m),s

1 + e
rowi(W c

(m)
)µ

(m),s

)
< Ub

]
= 0.975

Approximation of CATE Intervals, reducing the dimension of the integral

The dimension reduction can not be applied to the same extent as in the ITE case because
1
N

∑N
i=1 sig(αi,(m,tr))−sig(αi,(m,c)) depends on 2N parameters given by αi,(m,tr) and αi,(m,c)) for i = 1, ..., N .

M∑
m=1

[∫ ∞
−∞

I

(
1

N

N∑
i=1

sig(αi,(m,tr))− sig(αi,(m,c)) < Lb

)
p(α(m)|ψ(m),σ

2
(m))dα(m)

]
p(Tm|y)

4For closer approximations to logistic probabilities, this can be replaced by

=

M∑
m=1

1

N

N∑
i=1
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 ψα,i,(m,tr)√
8
π

+ σ2
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 ψα,i,(m,c)√
8
π

+ σ2
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
 p(Tm|y)
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where α(m) is a 2N×1 vector if the αi,(m,tr) and αi,(m,c)) for i = 1, ..., N and similarly ψ(m) and σ2
(m) are

vectors of the (approximate) means and variances of the elements of α(m). α(m) is multivariate normal, and

it is possible to draw from each α(m) to evaluate all M integrals by Monte Carlo, or to draw from the model

weighted mixture distribution of the α(m) (i.e. the mixture of multivariate normals). However, this may be

generally of a higher dimension than µ
(m)

, depending on the data and selected models. Furthermore, extra

calculations are required to obtain the means, variances, and covariances of the elements of α(m). Therefore

this might not be computationally more efficient.

C.8 Finding the MAP for Logit BCF

Let the vector of all terminal node parameters be denoted by θ = [µT τT ]T . The Laplace approximation

involves a second order Taylor expansion about the Maximum A Posteriori (MAP) estimate

θMAP = arg min
θ
−(log p(y|W,θ) + log p(θ))

= arg min
θ
−

[
yTWθ −

N∑
i=1

log(1 + e−Wiθ)− 0.5b log(2π) +
1

2
bµ log(aµ) +

1

2
bτ log(aτ )− aµ

2
µTµ− aτ

2
τT τ

]
(where bµ and bτ are the numbers of terminal nodes in the sums-of-trees represented by µ(x) and τ(x)

respectively) gives the approximation of the posterior:

p(θ|y,W ) ≈ N (θMAP , H
−1)

where H is the Hessian matrix of the negative log posterior (evaluated at the MAP).

H = WTSW +A

where A is a diagonal matrix with the first bµ diagonal elements equal to aµ and the final bτ elements equal to

aτ , and S = diag(pi(pi)) is an n× n diagonal matrix with diagonal elements determined by the probabilities

pi obtained from the logistic function.

The Hessian and the gradient of the negative posterior probability can be used to obtain an approximation

of the MAP. The gradient is:

g = WT (p− y) +

[
aµµ

aττ

]
where p = (p1, ..., pn)T , and µ and τ are the terminal nodes of the sums-of-trees µ(x) and τ(x) respectively.

C.9 Tobit-BART-IS Implementation Details

C.9.1 Tobit Posterior and gradients with standard semi-conjugate priors

Chib (1992) used an uninformative prior for Bayesian Tobit. However, here we use the standard BART prior

on the terminal node parameters and inverse gamma prior on the variance of the error term.
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τ2 = σ−2 ∼ Γ(
ν

2
,
νλ

2
)

µ ∼ N(0,
σ2

a
) , or µ ∼ N(0,

1

a
τ−2)

and the convenient Tobin reparameterization is (µ, τ2)→ (α = µτ, τ = (τ2)
1
2 ). This gives

α = τβ ∼ N(0,
1

a
I)

The standard Tobit model framework is

y∗i = rowi(W )µ+ εi , ε ∼ i.i.dN(0, τ−2)

yi = max{y∗i , 0} , i = 1, ..., n

The likelihood is:

`(µ, τ2) =

[∏
i∈C

1− Φ(Wiµτ)

]
(2π)−

n1
2 (τ2)

n1
2 e−τ

2‖y1−X1µ‖2/2 = `0(µ, τ2)`1(µ, τ2)

or, reparameterized, the likelihood is

`(α, τ) =

[∏
i∈C

1− Φ(Wiα)

]
(2π)−

n1
2 (τ2)

n1
2 e−‖τy1−W1α‖2/2 = `0(α, τ)`1(α, τ)

where c = {j : yj = 0, j = 1, ..., n} (i.e. the set of observations for which the outcome is zero), n1 is the

number of observations for which the outcome is nonzero, y1 is an n1 × 1 vector of nonzero outcomes, W1

is an n1 × b matrix of terminal node indicator variables corresponding to nonzero outcomes (y1). ‖.‖ is the

Euclidean norm.

The log posterior is:

L̃(µ, τ2) =
∑
i∈C

log[1− Φ(rowi(Wµτ))]− n1

2
log(2π) +

n1

2
log(τ2)− τ2

2
‖y1 −W1µ‖2

− b
2

log(2π) +
b

2
log(aτ)− aτ

2
µTµ+

ν

2
[log(2)− log(νλ)]− log

(
Γ
(ν

2

))
+
(ν

2
− 1
)

log(τ2)− τ22

νλ

the reparameterized log posterior is

L̃(α, τ) =
∑
i∈C

log[1− Φ(rowi(Wα))]− n1

2
log(2π) +

n1

2
log(τ2)− 1

2
(τy1 −W1α)T (τy1 −W1α)

− b
2

log(2π) +
b

2
log(a)− a

2
αTα+

ν

2
[log(2)− log(νλ)]− log

(
Γ
(ν

2

))
+
(ν

2
− 1
)

log(τ2)− τ22

νλ
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L̃α = −WT
0 A0 +WT

1 (τY1 −W1α)− aα

L̃τ =
n1

τ
− Y T1 (τY1 −W1α) +

2(ν2 − 1)

τ
− 4τ

νλ

And the Hessian matrix is:[
−WT

0 B0W0 −WT
1 W1 − aIb WT

1 Y1

Y T1 W1 −n1

τ2 − Y T1 Y1 −
2( ν2−1)

τ2 − 4
νλ

]

where A0 = vec(λi), B0 = diag(λi(λi −Wiα)), λi = φ(Wiα)
1−Φ(Wiα)

The negative of the gradient and the negative of the Hessian above can be used to obtain the MAP by

Newton’s algorithm (minimizing the negative of the log posterior). Algorithm 6 outline’s Newton’s method

for minimizing the negative log-likelihood

Require parameter value, e.g. a = 0.01

Initialize

[
α

τ

]
=

[
0b

1

]
, where 0b is a zero vector of length b.

repeat

λi = φ(Wiα)
1−Φ(Wiα) for i ∈ C

A0 = diag(λi)

B0 = diag(λi(λi −Wiα))

g = −

[
WT

0 A0 +WT
1 (τY1 −W1α)− aα

n1

τ − Y
T
1 (τY1 −W1α) +

2( ν2−1)

τ − 4τ
νλ

]

H = −

[
−WT

0 B0W0 −WT
1 W1 − aIb WT

1 Y1

Y T1 W1 −n1

τ2 − Y T1 Y1 −
2( ν2−1)

τ2 − 4
νλ

]
µ
new

= µ
old
−H−1g

until convergence;

Algorithm 6: Newton’s method for obtaining the mode (MAP) of the Tobit parameters

Alternatively, a quasi-Newton algorithm, such as the L-BFGS algorithm can be applied. The standard

Laplace approximation for the marginal likelihood is:

p(y|Wm, T(m)) = eL̃(αMAP ,τMAP )(2π)b/2|HMAP |−1/2

where HMAP is the Hessian matrix of the negative log likelihood evaluated at the MAP parameter values.

The log of the marginal likelihood approximation is:

log(p(y|Wm, T(m))) = L̃(αMAP , τMAP ) +
b

2
log(2π)− (

1

2
)log(|HMAP |)

A more accurate approximation can be obtained using the double Laplace approximation methods of

Tierney & Kadane (1986), as outlined by Chib (1992).
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The Laplace approximation gives a multivariate normal approximation for the posterior distribution of

the parameters: [
α

τ

]
∼ N

([
αMAP

τMAP

]
, H−1

MAP

)
and the approximate marginal posterior distribution for α is:

α ∼ N (αMAP , Hα,MAP )

where Hα,MAP = WT
0 B0W0 + WT

1 W1 + aIb is the submatrix of the Hessian of the negative log likelihood

corresponding to α evaluated at the MAP parameter values.

The posterior predictive mean probability that the outcome y? is equal to one is:

p(y? = 1|row?(W ), T(m)) =

∫
[1− Φ(row?(W )α)]p(α|row?(W ), T(m))dα

where row?(W ) is the row vector of terminal node indicator variables for the new observation. The integral

can be re-written as a one-dimensional integral by considering ψ = row?(W )α, ψMAP = row?(W )αMAP ,

and σ2
ψ = row?(W )Hα,MAP row?(W )T , which is approximately normally distributed ψ ∼ N (ψMAP , σ

2
ψ).

p(y? = 1|row?(W ), T(m)) =

∫
[1− Φ(ψ)]p(ψ|ψMAP , σ

2
ψ)dψ

= 1−
∫

Φ(ψ)p(ψ|ψMAP , σ
2
ψ)dψ = 1− Φ

(
ψMAP

1 + σ2
ψ

)
and the average over models T(1), ..., T(M) is:

p(y? = 1) = 1− 1

M

M∑
m=1

Φ

(
ψMAP,(m)

1 + σ2
ψ,(m)

)
p(T(m)|y,X)

where ψMAP,(m) and σψ,(m) are calculated using αMAP,(m) and Hα,MAP,(m), i.e. the MAP parameter values

and Hessian evaluated at the MAP values for model (m).

Intervals for the predictive probability that y? = 1 can be obtained as follows. If the lower confidence

probability is lower prob = 0.025 (i.e. for a 85% interval), then the lower bound for the predictive probability

Lb satisfies:

1

M

M∑
i=1

∫ ∞
−∞

I{1−Φ(ψ) < Lb}p(ψ|ψMAP , σ
2
ψ)dψ p(T(m)|y,X) =

1

M

M∑
i=1

∫ ∞
Φ−1(1−Lb)

p(ψ|ψMAP , σ
2
ψ)dψ p(T(m)|y,X)

= 1− 1

M

M∑
i=1

∫ Φ−1(1−Lb)

−∞
p(ψ|ψMAP , σ

2
ψ)dψ p(T(m)|y,X)

= 1− 1

M

M∑
i=1

Φ

(
Φ−1(1− Lb)− ψMAP

σψ

)
p(T(m)|y,X) = lower prob

or equivalently
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1

M

M∑
i=1

Φ

(
Φ−1(1− Lb)− ψMAP

σψ

)
p(T(m)|y,X) = 1− lower prob

and similarly the upper bound Ub is the number such that 1− 1
M

∑M
i=1 Φ

(
Φ−1(1−Ub)−ψMAP

σψ

)
p(T(m)|y,X) =

1− upper prob . Therefore Lb and Ub can be obtained by a root-finding algorithm (e.g. bisection).

Alternatively, Monte Carlo draws can be made from the mixture α ∼ 1
M

∑M
i=1N (αMAP,(m), Hα,MAP,(m))

, and for each draw the probability [1 − Φ(row?(W )α)] can be calculated. Then the mean and quantiles

across many Monte Carlo draws can be used for the predictive probability and interval for the predictive

probability.

120


	Causal Forest Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes
	Introduction
	Methods for Estimation of Heterogeneous Treatment Effects
	Heterogeneity of Household Electricity Demand Response
	Results
	Conclusion

	State-of-the-BART: Simple Bayesian Tree Algorithms for Prediction and Causal Inference
	Introduction
	Review of BART and BART-BMA
	Overview of BART
	Overview of BART-BMA

	Improved BART-BMA Algorithm
	Summary of Improvements
	BART-BMA for Treatment Effect Estimation

	BART-IS
	Description of the BART-IS Algorithm

	Results for BART-BMA and BART-IS
	High-Dimensional Data
	Low-Dimensional Data

	BCF-BMA and BCF-IS
	BCF
	Outline of BCF-BMA
	Description of the BCF-BMA Algorithm
	BCF-IS
	BCF-BMA and BCF-IS Results for Simulated Datasets

	Applications
	Time-of-Use Electricity Pricing Trial
	Inflation Forecasting
	Growth Determinants

	Conclusion
	Limitations of Importance Sampling of Models
	Summary and Discussion of Future Research


	Generalizations of BART-BMA and BART-IS
	Introduction
	BART for Generalized Linear Models
	Binary Classification Example and Literature Review

	Review of BART and BART-BMA
	Overview of BART
	Overview of BART-BMA

	Framework for Generalization of BART-BMA and BART-IS
	Example of General Algorithms Applied to Binary Outcome Data: Logit-BART-BMA and Logit-BART-IS
	A Benchmark Probit Approximation for BART-BMA and BART-IS
	Model, Priors, and Notation for Logit-BART
	Laplace Approximation
	Logit-BART-BMA
	Logit-BART-IS
	Application to UCI Datasets

	Example Application of General Algorithms to Treatment Effect Estimation For Binary Outcomes
	Treatment Effect Estimation with Logit-BART-BMA and Logit-BART-IS
	Logit-BCF-BMA and Logit-BCF-IS
	Application to ACIC Data Challenge

	Example of General-BART-BMA and General-BART-IS for Censored Outcome Data
	Tobit BART-BMA and Tobit BART-IS

	Conclusion
	Summary
	Future Research: Multinomial Logit, Poisson Regression, and Other Generalizations


	Appendices
	First Chapter Appendix
	Simulation Study - Variable Importance Permutation Test
	Classification Analysis Tables

	Second Chapter Appendix
	Potential Variations on BART-BMA
	Comparison of Computational Times, Friedman Simulations
	Multivariate BART-IS
	Importance Sampling Implementation of Semiparametric BART
	Spike-and-Tree Prior
	Definition of Spike-and-Tree Prior
	Sampling from the Spike-and-Tree Prior

	BCF-BMA Algorithm
	BCF Applied to CER Smart Meter Trial Data

	Third Chapter Appendix
	Standard Newton-Raphson algorithm for finding the MAP of Bayesian Logistic Regression
	Marginal Likelihood Approximation
	Applying Laplace's Method Approximation Twice to Approximate Posterior Mean Probability
	Outline of Monte Carlo Approximation for Logit-BART-BMA and Logit-BART-IS
	Monte Carlo Approximation of Posterior Predictive Mean Probability
	Monte Carlo Approximation of Credible Intervals for Posterior Predictive Probability

	Root-finding Approximation of Credible Intervals for Posterior Predictive Probability
	Alternative methods for constructing Logit-BART-BMA Residuals
	Constructing Residuals using Predicted Probabilities or MAP Estimates
	Arbitrary fixed grid of splits, without residuals

	Technical Details for Logit-BART-BMA and Logit-BART-IS Treatment Effect Estimation
	Estimation of Mean of Posterior Distribution of Individual Treatment Effects
	Estimation of Mean of Posterior Distribution of Conditional Average Treatment Effects
	Credible Intervals for CATE Posterior Distribution

	Finding the MAP for Logit BCF
	Tobit-BART-IS Implementation Details
	Tobit Posterior and gradients with standard semi-conjugate priors



