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Abstract 

Background:  Upon engagement of the T-cell receptor (TCR), the Src-family protein tyrosine kinase p56Lck phos‑
phorylates components of the TCR (e.g. the TCRζ chains), thereby initiating T-cell activation. The enzymatic activity 
of Lck is primarily regulated via reversible and dynamic phosphorylation of two tyrosine residues, Y394 and Y505. Lck 
possesses an additional highly conserved tyrosine Y192, located within the SH2 domain, whose role in T-cell activation 
is not fully understood.

Methods:  Knock-in mice expressing a phospho-mimetic (Y192E) form of Lck were generated. Cellular and biochemi‑
cal characterization was performed to elucidate the function of Y192 in primary T cells. HEK 293T and Jurkat T cells 
were used for in vitro studies.

Results:  Co-immunoprecipitation studies and biochemical analyses using T cells from LckY192E knock-in mice 
revealed a diminished binding of LckY192E to CD45 and a concomitant hyperphosphorylation of Y505, thus corroborat‑
ing previous data obtained in Jurkat T cells. Surprisingly however, in vitro kinase assays showed that LckY192E possesses 
a normal enzymatic activity in human and murine T cells. FLIM/FRET measurements employing an LckY192E biosensor 
further indicated that the steady state conformation of the LckY192E mutant is similar to Lckwt. These data suggest that 
Y192 might regulate Lck functions also independently from the Lck/CD45-association. Indeed, when LckY192E was 
expressed in CD45−/−/Csk−/− non-T cells (HEK 293T cells), phosphorylation of Y505 was similar to Lckwt, but LckY192E 
still failed to optimally phosphorylate and activate the Lck downstream substrate ZAP70. Furthermore, LckY19E was 
recruited less to CD3 after TCR stimulation.

Conclusions:  Taken together, phosphorylation of Y192 regulates Lck functions in T cells at least twofold, by prevent‑
ing Lck association to CD45 and by modulating ligand-induced recruitment of Lck to the TCR.
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Introduction
Lck, a member of the Src-family of tyrosine kinases, is 
primarily expressed in thymocytes and mature T cells [1, 
2]. Lck initiates signaling events downstream of the TCR 
by phosphorylating tyrosine residues within the immu-
noreceptor tyrosine-based activation motifs (ITAMs) 
of the T cell receptor (TCR), which are present in the 
cytosolic tails of the TCR-associated CD3 and ζ chains 
(recently reviewed in [3]). ITAM phosphorylation by 
Lck is followed by recruitment of the Syk-family kinase 
ZAP70 to the activated TCR-complex. Upon subsequent 
phosphorylation and activation by Lck, ZAP70 further 
propagates TCR signaling by phosphorylating the trans-
membrane adapter protein linker for activation of T cells 
(LAT). The phosphorylation of LAT on multiple tyrosine 
residues allows the assembly of a central signalosome, 
which finally activates a number of intracellular signaling 
pathways leading to transcriptional activation and T-cell 
responses [4].

During the past decades, the importance of Lck in 
T-cell biology has become evident from a number of 
studies using both Lck-knockout mice and Lck-deficient 
T-cell lines. Lck−/− mice display a marked thymic atro-
phy with 10% of normal cellularity [5, 6] and studies 
using an Lck-deficient Jurkat T-cell variant (J.Cam1.6) 
showed that induction of tyrosine phosphorylation and 
Ca2+ flux are strongly impaired upon TCR stimulation 
[7]. The signaling function of Lck in primary peripheral 
T cells has been elegantly assessed in transgenic mice in 
which the expression of Lck can be inducibly regulated 
[8]. These approaches have shown that peripheral Lck−/− 
T cells are impaired in initiating proximal TCR signaling 
and display attenuated phosphorylation of TCRζ, ZAP70, 
LAT, PLC-γ1 as well as altered Ca2+ mobilization [9]. 
These signaling defects correlate with a reduced CD3-
mediated proliferation and CD69 upregulation [9, 10].

The kinase activity of Lck is tightly controlled by dif-
ferent regulatory elements among which two well-
characterized tyrosine residues, Y394 located in the 
activation loop within the kinase domain and Y505 at 
the C-terminus, as well as the SH2 and SH3 domains are 
of major importance [1, 11–15]. The currently accepted 
model proposes that Lck dynamically switches between 
a closed/inactive and an open/active conformation. Inac-
tivation of Lck occurs upon intramolecular interactions 
between phosphorylated inhibitory Y505 and the SH2 
domain and between the SH3 domain and a proline-rich 

region located within the SH2-catalytic domain linker 
[12]. Together these intramolecular interactions stabilize 
the closed and inactive conformation of Lck. Dephos-
phorylation of Y505 by the tyrosine phosphatase CD45 
releases the closed conformation and induces the open/
active conformation of Lck, which further requires the 
phosphorylation of Y394 [14, 16–18].

More recently, the view on Lck regulation has been 
expanded by new observations suggesting that Lck can 
adopt at least 4 different forms within T cells. Thus, in 
addition to the closed/inactive and the open/active form, 
a so called “primed” form, which is not phosphorylated 
on either Y394 or Y505, and a Y394/Y505-doubly phos-
phorylated form have been identified in primary human 
T cells and in T-cell lines [19]. Despite the fact that T 
cells express all four different forms of Lck, it has been 
proposed that the pool of constitutively active Lck (phos-
phorylated on Y394 alone or doubly phosphorylated on 
Y394 and Y505) is sufficient to initiate TCR signaling 
without additional dynamic changes in the conforma-
tions of Lck upon TCR stimulation [19, 20]. However, 
using an Lck biosensor combined with FLIM/FRET 
analyses, we have more recently shown that (1) a small 
fraction of Lck (about 20%) is de novo activated upon 
TCR stimulation and (2) that the TCR-mediated open-
ing/de novo activation of Lck is required for initiation of 
TCR-mediated signaling processes [18, 21]. In addition, 
we found that, despite being in an open conformation, 
the non-phosphorylated and primed form of Lck is not 
catalytically active. This observation implied that de novo 
phosphorylation of Y394 is mandatory for the initiation 
of TCR signaling [18], an assumption that has meanwhile 
been corroborated by independent investigations [17].

In addition to Y394 and Y505, a third highly con-
served regulatory tyrosine Y192, lying within the SH2 
domain (Fig. 1a, b), has been proposed to regulate the 
signaling function of Lck. The SH2 domain of Lck is 
one of the crucial regulatory elements as it is not only 
involved in the intra-molecular interaction with phos-
phorylated Y505 but also in a number of inter-molec-
ular interactions including ZAP70 [22], Shp1 [23], and 
TSAd [24], all of which are assumed to be important 
regulators of Lck. It has been suggested that phospho-
rylation of Y192 may regulate Lck and TCR signaling 
by altering the ligand specificity of the SH2 domain [24, 
25]. Recent studies have proposed a model in which 
phosphorylation of Y192 by ZAP70 triggers a negative 

Major findings:  Our data change the current view on the function of Y192 and suggest that Y192 also regulates Lck 
activity in a manner independent of Y505 phosphorylation.
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feedback loop [26] that involves the protein tyrosine 
phosphatase CD45 [27]. The failure of pY192 to inter-
act with CD45 leads to hyperphosphorylation of Y505, 
thereby inducing an inactivation of Lck and impaired 
TCR signaling. This model was primarily based on data 
that were obtained in an Lck-deficient variant of the 
Jurkat T-cell line (J.Lck) [27]. Currently, it is unclear 
whether a similar mechanism also operates in primary 
T cells.

To study the function of Y192 in  vivo, we generated 
LckY192F and LckY192E knock-in mice. In line with Court-
ney et al., we here show that primary murine peripheral 
T cells expressing the LckY192E mutant display a strong 
hyperphosphorylation on Y505 and an altered asso-
ciation between LckY192E and CD45 [27]. In addition, 
LckY192E expressing T cells are impaired in TCR-medi-
ated signaling and CD3-mediated proliferation. Surpris-
ingly however, in  vitro kinase assays revealed that the 
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Fig. 1  LckY192 is inducibly phosphorylated upon TCR stimulation in splenic murine T cells. a Cartoon showing the structure of Lck including 
the regulatory domains and tyrosine phosphorylation sites. b Lck-Y192 is conserved among Src-family kinases. The amino acid sequences of 
representative human Src-family kinases are shown. c Murine splenic T cells were stimulated with a CD3 antibody immobilized on microbeads 
for the indicated periods of time. Co-stimulation occurred with either CD4 or CD28 antibodies. Subsequently, cells were lysed and immunoblot 
analyses were carried out using a pY192-phosphospecific antibody to monitor phosphorylation dynamics of Y192. The efficiency of T-cell activation 
was measured using phospho-Zap70 and phospho-Erk1/2 antibodies, respectively. Equal protein loading was verified using a β-actin antibody. 
PhosphoY192 signals from splenic T cells stimulated with CD3 alone (n = 5) (d), CD3/CD4 (n = 4) (e), or CD3/CD28 (n = 3) (f) were normalized 
to β-actin and quantified. For the densiometric analysis the median of the Western blot bands were taken. Mean values ± SEM of the indicated 
experiments are shown
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LckY192E-mutant possesses the same enzymatic activity 
as wild type Lck (Lckwt). In line with this, FLIM/FRET 
measurements showed that under steady state condi-
tions, namely in the absence of TCR-mediated stimuli, 
the conformation of the LckY192E mutant is comparable 
to Lckwt. In order to elucidate whether Y192 might regu-
late Lck function independently of the phosphorylation 
of Y505, LckY192E was expressed in two different vari-
ants of HEK 293T cells expressing or not the TCR-CD3 
complex. These cells lack CD45 and Csk expression and 
LckY192E did not show hyperphosphorylation of Y505. 
Still, LckY192E even in these cells was unable to fully phos-
phorylate and activate ZAP70. Recently, it was shown 
that recruitment of Lck to the ligand-bound TCR pro-
motes its phosphorylation thereby locally increasing Lck 
activity [28]. Proximity ligation assays (PLA) showed that 
the recruitment of the LckY192E mutant to the TCR was 
attenuated upon TCR stimulation. This suggests that the 
conformational change of Lck, that is required to initiate 
membrane proximal signaling in T cells, is attenuated in 
cells expressing LckY192E.

In summary, while our data to a large extent corroborate 
previous findings made in Jurkat T cells, they challenge 
the view that impaired signaling in T cells expressing 
LckY192E is exclusively due to altered enzymatic activity of 
Lck mediated by loss of Lck/CD45 interactions.

Material and methods
Antibodies and reagents

1	 FACS antibodies

Antibody Clone Company

CD4 FITC GK 1.5 Biolegend, BD Bioscience

CD8 PE 53-6.7 Biolegend, BD Bioscience

CD3 APC 145-2C11 BD Bioscience

B220 FITC RA3-6B2 BD Bioscience

2.	 Western blot antibodies

Antibody Clone/Lot Company

Lck 3A5 Santa Cruz

Lck 06-583 Merck Millipore, upstate

pLck-Y505 2751P Cell Signaling Technology

pSrc 416 2101S Cell Signaling Technology

ZAP70 1E7.2 Santa Cruz

pZAP70 2701S Cell Signaling Technology

PLCγ 05-163 Merck Millipore

Antibody Clone/Lot Company

pPLCγ 2821S Cell Signaling Technology

Lat 11B.12 Santa Cruz

pLat 3584S Cell Signaling Technology

pTyr 4G10 –

β-actin A5441 Sigma

pLck Y192 LS-C199194-50 Biozol

p-p44/42 MAPK 
(T202/204)

9101S Cell Signaling Technology

3.	 ELISA antibodies

Antibody Clone/Lot Company

CD45 30-F11 Biolegend

Anti-mouse-AP A9316 Sigma Aldrich

4.	 Stimulation antibodies

Antibody Clone Company

CD3ε UCHT1 Ebioscience, Biolegend

CD3ε biotin 145-2C11 Ebioscience, BD Pharmingen, 
Biolegend

Idiotypic TCR​ C305 –

CD4 GK 1.5 BD

CD4 RM4-5 Biolegend

CD28 37.51 Biolegend

Experimental models
Cells
Cells were maintained at 37 °C with 5% CO2. JE6 (human 
leukemic T-cell line) were cultured in RPMI 1640 
(Roswell Park Memorial Institute) supplemented with 
10% FBS (fetal bovine serum) and 1% penicillin/strep-
tomycin. For this study, JE6 and the Lck-deficient T-cell 
lines (J.Lck, [27]) were used. HEK 293T cells (human 
embryonic kidney 293T cells) were cultured in DMEM 
(Dulbecco’s modified Eagle’s medium) with 10% FBS 
and 1% penicillin/streptomycin. To generate and main-
tain stable cell lines, the antibiotic puromycin was added 
to the supplemented medium. The CRISPR/Cas Lck 
deficient Jurkat T cell line (J.Lck) was kindley provided 
by Prof. Dr. Arthur Weis (University of Calfornia). Dr. 
John James (University Warwick) provided the HEK 
293T + TCR/CD3 cells [17, 29].
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Plasmids
In this study the following plasmids were used:

Vector Supplier Transfected cell lines

pEF-Lck-IRES-GFP Vectorbuilder J.Lck

PB pEF-Lck_CMV-GFP/Puro Vectorbuilder HEK293T,HEK293T-TCR​

pEF-TqLckV-2 [18] J.Lck

pMyc- ZAP70 [30] HEK293T, HEK293T-TCR​

pEF_hyPBase Vectorbuilder HEK293T, HEK293T-TCR​

pHR-Lck* vector [17] HEK293T-TCR​

PB pEF-Lck_T2A_GFP Vectorbuilder J.Lck

PB_pEF-Lck-biosensor (5th 
generation)

Vectorbuilder J.Lck

Site‑directed mutagenesis
To mutate the Lck tyrosine (Y) 192 to glutamic acid (E), 
the Agilent Quick Change II XL (Agilent) system was 
used according to the manufacturer’s instructions. The 
mutation was inserted into the plasmids mentioned 
above. The Lck Y192E primers were designed using the 
tools from Agilent and synthesized by Biomers. The fol-
lowing primers were used:

Lck Y192E fw 5′ gga caa cgg tgg ctt cga gat ctc ccc tcg aat cac 3′

Lck Y192E rev 5′ gtg att cga ggg gag atc tcg aag cca ccg ttg tcc 3′

Cell transfections
DNA electroporation of Jurkat T-cell lines was performed 
using the Gene Pulser II System (BIORAD) as previously 
described [30]. For the FLIM/FRET measurements, cells 
were cultured in RPMI 1640 without phenol red (Gibco). 
HEK 293T and HEK 293T–TCR/CD3 cells were trans-
fected as described in [30].

Generation of stable cell lines
To generate stable cell lines, the PiggyBac transpo-
son system was used (Vectorbuilder, [31]). HEK 293T 
cells were transfected with 1  µg of a Piggy bac plasmid 
(PB pEF-Lck_CMV-GFP/Puro) and 0.6 μg of a hyperac-
tive transposase (pEF_hyPBase) as described above. The 
transfected cells were cultured in DMEM medium sup-
plemented with 10% FBS, 1% pennicillin/streptomycin 
and 0.5  μg/ml puromycin (Gibco) s a selection marker. 
Jurkat T cells were electroporated with one of the Piggy 
bac plasmids (PB pEF-Lck_T2A_GFP, PB pEF-Lck-bio-
sensor) and a hyperactive transposase (pEF_hyPBase) as 
described above. Transfected Jurkat T cells were sorted 
with the Aria Cell Sorter 3 (BD Bioscience) and after-
wards maintained in RPMI supplemented with 10% FBS, 
1% pennicillin/streptomycin and 0.1% Ciprobay.

Mice
Mice were kept in a pathogen-free facility at the Medi-
cal Campus of the  University of  Magdeburg according 
to the German animal law. Lck knock-in mice (LckY192E, 
LckY192F) were generated by Prof. Marco Herold and 
Dr. Andrew Kueh (WEHI, Melbourne) using CRISPR/
Cas technology. The obtained heterozygous mice were 
backcrossed to a C57BL/6JRJ (Janvier Labs) genetic 
background.

The animals were genotyped by PCR and sequencing 
using the following primers (Biomers):

Lck Y192 fw 5′ tcagggtccttttccctgtc 3′

Lck Y192 rev 5′ ctgaaggggaatgaaagacg 3′

The sequencing was performed by Dr. Denny Schanze 
(Institute of Human Genetics, University of Magdeburg).

Isolation of murine lymphatic organs and immune cells
Cells from thymus, spleen, and lymph nodes were iso-
lated using a 70  µm cell strainer (Falcon). Splenic T 
cells were isolated using a pan T-cell isolation kit and 
AutoMACS separator from Miltenyi Biotech.

Stimulation and lysis of cells
2.5*106 to 5*106 murine thymocytes and splenic T cells 
were stimulated with 5–10 µg/ml biotinylated 145-2C11 
(Biolegend) followed by cross-linking with 20  µg/ml 
neutravidin at 37 °C. Alternatively, cells were stimulated 
with biotinylated CD3ε Ab immobilized on superavidin-
coated microbeads (Bang Laboratories Inc) as previously 
described [32]. Costimulation occurred via biotinylated 
CD3/CD28 (Biolegend) or CD3/CD4 (Biolegend) immo-
bilized on superavidin-coated microbeads. 1*106 Jurkat 
T cells were stimulated with anti-idiotypic TCR anti-
body (C305). Cells were lysed in 1% LM (an N-dodecyl 
b-maltoside), 1% NP-40, 1 mM phenylmethylsulfonyl flu-
oride, 10 mM NaF, 10 mM EDTA, 50 mM Tris–HCl (pH 
7.5), and 150 mM NaCl.

Immunoblotting
Samples were assayed using SDS-PAGE. Proteins were 
transferred (semi-dry) on a polyvinylidene difluoride 
membrane (Amersham). Membranes were blocked 
in 5% milk and incubated with primary antibodies in 
5% milk or 5% BSA for 1  h. Secondary antibodies cou-
pled with a fluorophore (LI-COR) or horseradish phos-
phates (Dianova) were diluted in 5% milk. To detect the 
protein signals on the membranes, an Odyssey infrared 
imager (LI-COR) and ECL (Amershan) were used. The 
densiometric analyses of the blots were performed with 
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the image software Image Studio (LI-COR). The total 
median values of densiometric analysis were used for 
quantifications.

Immunoprecipitation and in vitro kinase assay
Lck was immunoprecipitated using a polyclonal anti-
body (06–583; Merck Millipore) and Protein A Agarose 
beads (Santa Cruz Biotechnology) for 2 h at 4 °C as pre-
viously described [21]. To remove unspecific bindings, 
the immunoprecipitates were washed in washing buffer 
(1% LM, 1% NP-40, 50  mM Tris–HCl, 165  mM NaCl, 
NaF and 1% PMSF) five times and were divided in two 
parts. One part (50%) of the samples was assayed for 
Lck expression using immunoblotting. The rest of the 
immunoprecipitates was assayed for in vitro kinase activ-
ity. Briefly, samples were resuspended in kinase buffer 
(20 mM Tris–HCl (pH 7.5), 100 mM ATP, 10 µCi of 32P-
ATP) and incubated for 20  min at 30  °C. The immuno-
precipitates were washed four times in washing buffer 
(20 mM Tris–HCl (pH 7.5), 20 mM EDTA, 150 mM) and 
the kinase activity of Lck was investigated using SDS-
PAGE and autoradiography.

ELISA/CD45 phosphatase assay
To assess CD45/Lck interaction in thymocytes, an ELISA 
and phosphates assay were used and modified from 
Schraven et al. [33]. Nunc 96 well plates (Thermo Fisher 
Scientific) were coated with mouse CD45 antibody (30 
F-11, Biolegend) in PBS (1:100) overnight. For each con-
trol and condition 6 wells were used. Between all steps, 
the plates were washed with PBS + 1% BSA. The coated 
wells were blocked with PBS + 10% BSA for 1 h. Isolated 
thymocytes were lysed for 20  min at 4  °C with a buffer 
containing 1% Brij 58, 150 mM NaCl, 150 mM Tris–HCl, 
1% PMSF, 1%, Protease Inhibitor mix (Merck) and were 
added to the plates to immunoprecipitate CD45 at 4  °C 
overnight. 10% of the lysates were used for Western blot-
ting analysis to assess total Lck expression with a mon-
oclonal antibody (Lck, 3A5, Santa Cruz). All six CD45 
immunoprecipitates were washed four times with wash-
ing buffer (1% Brij 58, 165 mM NaCl, 50 mM Tris–HCl, 
1% PMSF). To verify the immunoprecipitation of CD45, 
three of the six wells of each condition were treated 
with 2.5  mM pNPP substrate (New England Biolabs) in 
50 mM Hepes; 100 mM KCl, 19 mM DTT, 0,1% Triton 
X100 and CD45 phosphatase activity was measured after 
4–10 h with a Tecan Safire reader and the Tecan Magel-
lan software (Tecan lifesciences). To analyze CD45/Lck 
interaction, the 3 remaining CD45 immunoprecipitates 
were incubated with an Lck (1:1000) antibody diluted 
in PBS + BSA for 1 h and anti-mouse (1:30,000) coupled 
with alkaline phosphatase (Sigma Aldrich). The substrate 
(MAB tech) was added and the samples were measured 

with the Tecan Safire reader at 15, 30, 60 and 120  min. 
To analyze the interaction between CD45 and Lck, the 
amount of the Lck expression in the input lysates was 
analyzed densiometrically with Image Studio (LI-Cor). 
The ratio between the OD values of CD45-associated Lck 
and the Lck input assessed by densitometrical analyses 
was used to quantify CD45/Lck association. The phos-
phatase assay was used to verify that the CD45 immuno-
precipitaiton was successful.

FACS measurements
Cell suspensions from thymus, spleen and lymph nodes 
were prepared. The antibodies (BD Bioscience or Bio-
legend) were diluted 1:100 in PBS and for each staining 
and added to the cells (1*106 cells/sample). Samples were 
measured with the BD Fortessa I (3 Lasers) and the BD 
Calibur using the  BD FACSDiva Software and BD Cell-
Quest  (BD Bioscience). The data were analyzed using 
FlowJo software (BD Bioscience).

Calcium flux
Isolated splenic T cells were loaded with Indo-1 (Thermo 
Fisher Scientific) for 45 min at 37 °C in RPMI 1640 with-
out phenol red (Gibco) and were washed with RPMI 
without phenol red for 45 min at 37 °C. Stimulation was 
induced by the addition of CD3ε (145-2C11; Biolegend) 
and CD4 (GK1.5; BD Bioscience) antibodies followed by 
neutravidin cross-linking. As a positive control, ionomy-
cin (10 mg/ml Sigma-Aldrich) was added 8 min after Ab 
stimulation. Calcium influx was measured with a LSR I 
analyzer (BD Bioscience) as described in [21] using a 
325 nm laser line of a helium cadmium laser. The emis-
sion wavelength ranges from 390 to 420 nm and from 500 
to 520 nm were detected and the ratio of the two emis-
sion intensities was calculated and analyzed with FlowJo 
(BD Bioscience).

Proliferation
Splenic T cells (50 000 cells/well) were cultured in RPMI 
1640 medium (supplemented with 10% FCS, antibiotics, 
2-ME) in 96-well plates (Costar) in the presence of plate-
bound CD3ε antibody (1  μg, 145-2C11; BD Biosciences 
or Biolegend) or PMA/Ionomycin as a positive control. 
After 72 h the cultured cells were labeled with 1 μCi [3H] 
thymidine per well during the last 8 h.

Uncaging of Lck by illumination
The experiments to photocage Lck to quantify the kinase 
phosphorylation kinetics were performed essentially as 
described in [17]. Briefly, the Y192E mutation was first 
introduced into the pHR-Lck* vector, which also has 
Lck K273 mutated to the UAG stop codon and is fused 
to eGFP. pHR-Lck* was then transfected into HEK 293T 
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cells expressing the complete TCR complex, along with 
ZAP70 and the plasmids required for the incorporation 
of photo-caged Lysine (pc-Lys) into the active site. After 
48  h, transfected cells were resuspended and uncaged 
by global UV illumination to initiate Lck kinase activ-
ity, measured by the phosphorylation of ZAP70 at Y319. 
Flash-freezing was used to rapidly quench the reaction 
at defined time points and the intensity of ZAP70 phos-
phorylation was quantified by Western blot analysis. 
The experiment was repeated three times to quantify the 
kinase activity of LckY192E compared to Lckwt and LckY394 
controls.

Localization studies/fluorescence microscopy
J.Lck transfected with either Lckwt or LckY192E were 
washed two times and were resuspended in PBS. 3*104 
cells per condition were used on the microscope slide 
(Marienfeld Gmbh). The cells on the slide were fixed in 
1% PFA and 0,025% glutaraldehyde for 15 min. The per-
meabilization of the cell membrane was performed with 
0.2% Triton X100 for 10 min and the cells were blocked 
in 1% BSA for 30 min. Staining was performed with a 1:50 
diluted Lck antibody (clone 3A5) (Santa Cruz) for one 
hour. As a secondary antibody, a goat anti-mouse con-
jugated with an Alexa  Fluor647 was used. The pictures 
were captured with a SP8 confocal microscope (Leica).

FLIM/FRET measurements
To study the conformation of the LckY192E mutant, a 
previously described Lck biosensor was used [18]. Lck-
deficient Jurkat T cells (J.Lck) were transfected with 
mTurquoise as a negative FRET control and the different 
Lck-biosensor mutants. The FRET signal was analyzed 
via the fluorescence mean lifetime as described in [18, 21, 
34]. To study conformational dynamics upon TCR stimu-
lation, J.Lck stably expressing a modified Lck biosensor 
(5th generation) were used. In this newly modified Lck 
biosensor, an optimized FRET donor mTurquoise is posi-
tioned in front of the SH3 domain and does not contain 
any linker region between the fluorophores and the Lck 
backbone. Changing the position of mTurquoise resulted 
in a more pronounced conformational change upon 
stimulation. The experiment setup and the analysis work-
flow were performed as described in [18]. The arithme-
tic mean of all the cells was calculated using GraphPad 
Prism.

PLA
Each sample of 0.9*105 cells was starved and rested on 
diagnostic microscope slides (Thermo Fisher Scientific) 
at 37 °C for 1 h. Cells were treated with the anti-idiotypic 
TCR antibody C305 (1:50) or with 1  mM  pervanadate 
(PerV) for 5 min at 37 °C. Cells were then fixed with 2% 

PFA for 15 min at room temperature, permeabilized with 
0.5% saponin for 30 min and blocked. Blocked cells were 
stained according to the manufacturer’s instructions 
with the Duolink kit (Olink Bioscience). The antibodies 
used were goat CD3ε (1:600, EB12592, Everest Biotech) 
and mouse Lck (1:200, 3A5, Cell Signaling). Nuclei were 
stained with DAPI (Roth). Images were taken at 60× 
magnification with a confocal microscope (Nikon C2) 
and analyzed with BlobFinder. The PLA conditions were 
set to ensure that the total number of blobs per image 
analyzed was kept under 103 to provide accurate count-
ing of the number of blobs per cell as previously sug-
gested by the developers of BlobFinder.

Statistics
Statistical analyses were performed using GraphPad 
Prism software. Unless otherwise indicated, statistical 
significance was determined between groups using an 
unpaired Student’s t-test. The minimum acceptable level 
of significance was P < 0.05.

Results
Kinetics of LckY192 phosphorylation upon TCR stimulation 
in primary murine T cells
In Jurkat T  cells, it has previously been shown that 
LckY192 is constitutively phosphorylated and that TCR 
stimulation induces a rapid increase in the Y192 phos-
phorylation [25, 26, 35–37]. Since the phosphoryla-
tion status of LckY192 in primary T cells is unknown, 
we monitored the dynamics of Y192 phosphorylation 
upon T-cell activation in splenic murine T cells using a 
phospho-Y192 specific antibody. As shown in Fig. 1c, d, 
splenic T cells display a constitutive phosphorylation on 
Y192, which increases upon TCR stimulation. Compared 
to CD3-stimulation alone, co-stimulation via either the 
CD4 or CD28 co-receptors further augments the phos-
phorylation of Y192 (Fig. 1c, e, f ). Hence, in contrast to 
Y394 (and Y505), whose phosphorylation status does 
not change upon TCR/CD3-stimulation alone [19, 21], 
the phosphorylation status of Y192 appears to be regu-
lated by both the TCR/CD3-complex and by corecep-
tors and costimulatory molecules such as CD4 or CD28, 
respectively. In addition, the augmented phosphorylation 
of Y192 upon T-cell activation suggests that dynamic 
changes in the phosphorylation status of Y192 may influ-
ence the function and/or activity of Lck, thereby regulat-
ing TCR-mediated signaling processes in thymocytes and 
peripheral T cells.

Defective T‑cell development in LckY192E mice
To assess the function of Y192 in vivo, we generated non-
phosphorylatable LckY192F and phosphomimetic LckY192E 
knock-in lines using the CRISPR/Cas9 technology. We 
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first investigated T-cell development in the two different 
mouse strains. Flow cytometry analysis revealed that the 
distribution of the main thymic T-cell subsets (as defined 
by the expression of CD4 and CD8) of LckY192F mice were 
comparable to that of Lckwt controls (Additional file  1: 
Fig. S1A, B), thus indicating that T-cell development is 
not affected by the LckY192F mutation. In agreement with 
the normal T-cell development, also peripheral T cells 
were unaffected in LckY192F mice (Additional file  1: Fig. 
S1C). Similarly, CD3-mediated global tyrosine-phospho-
rylation was unaltered in LckY192F splenic T cells (Addi-
tional file  1: Fig. S1D). Collectively, the analyses of the 
LckY192F knock-in animals corroborate previous findings 
made by Courtney et al. in Jurkat T cells [26].

In striking contrast to LckY192F mice, the LckY192E mice 
displayed a strong decrease in total thymocyte numbers 
(Fig.  2a) and severe alterations in the distribution of 
thymic subsets (Fig.  2b, c). Consistent with the thymic 
defect, total T-cell numbers as well as the numbers of 
both CD4+ and CD8+ peripheral T cells were strongly 
decreased in the spleen and lymph nodes of LckY192E ani-
mals (Fig.  2d). In particular, the fraction of both naïve 
CD44lowCD4+ and CD44lowCD8+ T-cell subsets were 
reduced in the lymph nodes of LckY192E mice, whereas 
the fractions of antigen-experienced and memory-like 
(defined as CD44high) T cells remained unchanged or 
slightly increased (Additional file  1: Fig. S2A). Interest-
ingly, CD3 expression was reduced in both CD4+ and 
CD8+ LckY192E T cells (Additional file  1: Fig. S2B), thus 
suggesting that only thymocytes expressing low TCR lev-
els are positively selected in the LckY192E knock-in mice. 
Conversely to T cells, the number of B cells was largely 
unaffected (Fig S2C). Thus, the developmental defect 
observed in the thymus results in strongly reduced num-
bers of naïve T-lymphocytes in the periphery of LckY192E 
mice. Collectively, our data demonstrate that Y192 plays 
an important function in the regulation of thymic devel-
opment and hence in the generation of mature T cells.

Impaired response to TCR stimulation in LckY192E T cells
We next investigated the signaling phenotype of the 
peripheral T cells obtained from LckY192E animals. As 
shown in Fig. 3a–c, peripheral LckY192E T cells displayed 
strongly impaired TCR-mediated signaling at both the 
proximal and distal levels. Besides a failure in TCR-
mediated induction of global tyrosine phosphorylation 
(Fig.  3a), phosphorylation and activation of important 
signaling molecules (Fig.  3b) and induction of calcium 
influx (Fig.  3c), we also observed that T cells express-
ing LckY192E did not efficiently proliferate in response to 
CD3 stimulation (Fig. 3d). Hence, peripheral T cells car-
rying the LckY192E mutation appear to be largely signal-
ing incompetent. We corroborated the findings made in 

primary murine LckY192E T cells in Jurkat T cells stably 
expressing the LckY192E mutant. Indeed, Lck-deficient 
J.Lck cells reconstituted with LckY192E showed impaired 
TCR-induced global tyrosine phosphorylation and 
reduced phosphorylation of ZAP70 (Additional file 1: Fig. 
S3A) despite the fact that CD3 expression was compara-
ble (Additional file 1: Fig. S3B) and Lck expression even 
considerably higher than in J.Lck cells expressing Lckwt 
(Additional file 1: Fig. S3A). Together these data indicate 
that peripheral murine T lymphocytes and Jurkat T cells 
expressing LckY192E are largely signaling incompetent, in 
agreement with a previous report [27].

LckY192E from primary murine T cells displays 
hyperphosphorylation on Y505 and diminished binding 
to CD45
It had been suggested that the inability of LckY192E to 
initiate TCR signaling is mediated via an altered asso-
ciation between the Lck mutant and the protein tyros-
ine phosphatase CD45 [27]. In the proposed model, loss 
of LckY192E/CD45 interaction causes a hyperphospho-
rylation of Y505 that inactivates Lck, thereby abrogat-
ing TCR-mediated signaling. We assessed the tyrosine 
phosphorylation status of LckY192E in T cells obtained 
from LckY192E knock-in mice using phosphospecific anti-
bodies directed at the two regulatory tyrosine residues, 
Y394 and Y505. Figure 4a shows that, similar to Jurkat T 
cells expressing the LckY192E mutant ([27] and Fig. 5a), T 
cells of LckY192E animals display a strong hyperphospho-
rylation of the negative regulatory tyrosine residue Y505 
and a lower phosphorylation of Y394 compared to cells 
expressing Lckwt. Furthermore, analysis of CD45 immu-
noprecipitations obtained from Lckwt and LckY192E thy-
mocytes revealed that also in primary cells the LckY192E 
mutant shows a strongly reduced capability to associate 
with CD45 (Fig.  4b–e). Hence, the data obtained from 
LckY192E expressing murine T cells are in line with previ-
ous findings in the Jurkat T-cell line [27].

LckY192E kinase activity and conformation are comparable 
to Lckwt

Loss of Lck/CD45 interaction and Y505 hyperphospho-
rylation of the LckY192E mutant suggested that LckY192E 
assumes the closed and inactive conformation. We ana-
lyzed the enzymatic activity of LckY192E using a sensi-
tive in vitro kinase asssay. To this end, we prepared Lck 
immunoprecipitates from J.Lck cells expressing either 
Lckwt or LckY192E, or from both thymocytes and splenic 
T cells obtained from Lckwt or LckY192E knock-in mice. 
The immunoprecipitates were subsequently subjected to 
a classical in  vitro kinase assay followed by SDS-PAGE 
and autoradiography. Surprisingly, LckY192E showed the 
same (or even slightly increased) enzymatic activity as 
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Fig. 2  Block of T-cell development in knock-in mice expressing the phosphomimetic LckY192E mutant. a Total numbers of thymocytes obtained 
from Lckwt and LckY192E knock-in mice. b Thymic subpopulations were identified upon staining with CD4 and CD8 antibodies by flow cytometry. 
c Percentages of the thymocyte subpopulations of several experiments are shown. d Numbers of total peripheral T cells and of peripheral CD4+ 
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performed using an unpaired Student’s t test, ****p < 0.0001; ***p < 0.001
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Lckwt in both human and mouse T cells despite hyper-
phosphorylation of Y505 (Fig. 5a) and an unaltered sub-
cellular distribution (Fig.  5b). These data indicated that 
the impaired proximal signaling in T cells expressing 
LckY192E might not be exclusively due to the hyperphos-
phorylation of Y505. In line with the in vitro kinase data, 
we found that a FLIM/FRET-based LckY192E biosensor 
assumes the same conformation as Lckwt when expressed 
in Lck-deficient J.Lck cells under steady state conditions 
(Fig.  5c). Hence, despite hyperphosphorylation of Y505, 

the LckY192E mutant displays the same enzymatic activ-
ity and conformation as Lckwt. The Lck biosensor is also 
capable of monitoring de novo activation and opening 
of Lck in response to CD3-mediated signals [18, 21]. We 
thus next aimed at assessing TCR-mediated changes in 
FRET using J.Lck cells either stably expressing an Lckwt- 
or an LckY192E-biosensor. The LckY192E-biosensor showed 
weaker changes of the FRET signal upon T-cell activation 
compared to the Lckwt-biosensor (Fig.  5d), suggesting 
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that the LckY192E mutant might lack the flexibility needed 
to be properly activated upon T-cell activation.

The inability of LckY192E to activate its substrate Zap70 
is independent from the phosphorylation status of Y505
The data described in the previous section indicated that 
the signaling defects of T cells expressing the LckY192E 
mutant might not exclusively be due to altered LckY192E/
CD45 associations that induce hyperphosphorylation of 
Y505, and, consequently inactivation of Lck. To assess 
this possibility in more detail, we analyzed Lck functions 
in a cellular system that lacks the main Lck regulators, 
CD45 and Csk. To this end, we stably expressed either 
Lckwt or the LckY192E mutant in CD45−/−/Csk−/− HEK 
293T cells. Figure 6a shows that under these conditions 
the levels of Y505 phosphorylation of Lckwt and LckY192E 
were indeed comparable. Still, the LckY192E mutant was 
severely impaired in phosphorylating ZAP70 on Y319 
(Fig.  6a). On average, we found an approximately 40% 
reduction of ZAP70 phosphorylation in HEK 293T cells 

expressing LckY192E (Fig.  6c). Thus, in all tested systems 
(i.e. mouse primary T cells, Jurkat, and HEK 293T cell 
lines) LckY192E was found to be incapable of phosphoryl-
ating ZAP70. However, this appears to be independent of 
Y505 phosphorylation.

One disadvantage of the HEK 293T cells is that paren-
tal HEK cells lack expression of a functional TCR/CD3 
complex. To circumvent this problem, we made use of 
a recently described HEK 293T cell variant expressing a 
complete human TCR (HEK-TCR cells) [29]. Again, we 
generated stable transfectants expressing either Lckwt or 
the LckY192E mutant. In both transfectants we transiently 
co-expressed ZAP70. Similar to the data obtained in the 
parental non-TCR HEK cells, the phosphorylation of 
ZAP70 was strongly reduced in HEK-TCR cells express-
ing the LckY192E mutant (Fig.  6b, d) while the phospho-
rylation levels of Y505 of Lckwt and the LckY192E mutant 
were comparable (Fig. 6c). Of note, also in the HEK cell 
system the subcellular localization of LckY192E was unaf-
fected (Additional file  1: Fig. S4). Moreover, anti-CD3 
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staining of the HEK-TCR cells demonstrated identical 
plasma membrane localization of the CD3ε chain (Addi-
tional file 1: Fig. S4).

Finally, we took advantage of a photo-caged Lck in 
which the initiation of Lck enzymatic activity can be tem-
porally controlled upon illumination [17]. Photo-caged 
LckY192E and Lckwt were expressed in HEK-TCR cells 

together with ZAP70. Subsequently, the rate of ZAP70 
phosphorylation by Lck was measured upon illumination 
of the cells. In agreement with the data shown above, also 
in this system LckY192E had significantly reduced ZAP70 
phosphorylation kinetics when compared to Lckwt 
(Fig. 6e). Collectively, the data from HEK 293T cells sup-
port the idea that the defective function of LckY192E likely 
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does not exclusively result from hyperphosphorylation of 
Y505.

Altered TCR‑induced interaction between the TCR/CD3 
and LckY192E

We next aimed at assessing the relationship between 
LckY192E and the TCR/CD3 complex. We first attempted 
to analyze TCR-mediated phosphorylation of TCRζ a 
signaling event which is located upstream of ZAP70 acti-
vation. However, we failed to see a highly reproducible 
reduction of the phospho-TCRζ signal upon TCR stimu-
lation in J.Lck T cells stably re-expressing LckY192E (Addi-
tional file 1: Fig. S5).

Upon ligand engagement of the TCR/CD3, Lck binds 
to the TCR/CD3 [38]. Concomitantly, the CD3 and TCRζ 
ITAMs are exposed and phosphorylated by Lck [38, 39]. 
We used proximity ligation assays (PLA) to measure the 
proximity between Lck and CD3ε to assess the ability 
of Lckwt or LckY192E to interact with the TCR/CD3. To 
this end, stable J.Lck-transfectants re-expressing either 
Lckwt or LckY192E were left unstimulated or activated via 
the TCR/CD3 or with pervanadate as positive control. 
Subsequently CD3ε/Lck-PLA was performed. Figure  7 
shows that, compared to Lckwt, the capability of LckY192E 
to interact with the activated TCR is reduced. Thus, the 
LckY192E mutant has partially lost its ability to interact 
with the activated TCR. This in turn might decrease the 
local Lck activity needed to optimally phosphorylate the 
downstream signaling proteins such as ZAP70. Together 
these functional properties of LckY192E result in attenu-
ated TCR/CD3 signaling and a failure to initiate T-cell 
activation.

Discussion
In the present study, we show that, in addition to Y394 
and Y505, the signaling function of Lck is regulated by 
a third tyrosine residue that is located at position 192 
within the SH2 domain. In  vivo and in  vitro analyses 

of a phosphomimetic mutant Y192E of Lck (LckY192E) 
strongly suggest that phosphorylation of Y192 inhib-
its Lck functions. Indeed, LckY192E knock-in mice (but 
not LckY192F knock-in mice) display a strongly impaired 
thymic development, which is translated into a severe 
T-cell lymphopenia in the spleen and the lymph nodes of 
the LckY19E animals. Both observations resemble the situ-
ation that is found in conventional Lck-knockout animals 
[5]. In addition, peripheral murine T cells carrying the 
LckY192E mutation show a dramatically blunted TCR sign-
aling, which is paralleled by a strongly impaired T-cell 
activation and proliferation. Similarly, LckY192E was una-
ble to reconstitute TCR signaling in Lck-deficient J.Lck 
Jurkat T cells.

Our phenotypic and functional data are in line with 
and extend previous observations [27] whose key finding 
was that phosphorylation of Y192 impairs its association 
with CD45. Hence, it has been proposed that loss of the 
LckY192E/CD45 interaction results in hyperphosphoryla-
tion of Y505 (via Csk). Hyperphosphorylated Y505 would 
then bind to the internal SH2 domain of Lck, thereby 
forcing Lck to adopt the “closed” and enzymatically inac-
tive conformation. Consequently, T-cell activation would 
be blocked at the stage of TCR/CD3 phosphorylation. 
Indeed, we also observed that in murine splenic T cells as 
well as in LckY192E-reconstituted J.Lck cells the negative 
regulatory Y505 of Lck is hyperphosphorylated and that 
LckY192E has partially lost its ability to interact with the 
protein tyrosine phosphatase CD45.

Classical in vitro kinase assays are a sensitive measure 
to assess the enzymatic activity of Lck. Employing this 
technique we have recently demonstrated that 20% of all 
Lck molecules become de novo activated during T-cell 
activation and that it is this fraction of Lck that induces 
TCR-mediated signaling [21]. To directly assess the 
enzymatic activity of the LckY192E mutant, we performed 
in  vitro kinase assays of immunoprecipitated LckY192E 
using thymocytes and splenic T cells from the LckY192E 

(See figure on next page.)
Fig. 7  Y192 influences ligand-induced closed proximity between Lck and the TCR. a Technical PLA controls in J.Lck cells reconstituted with 
Lckwt stimulated with a CD3 antibody at 37 °C for 5 min. PLA was performed with both primary antibodies (left), with only the anti-Lck primary 
antibody (middle) or with only the anti-CD3ε primary antibody (right). In all cases, both secondary antibodies were used. The quantification of 
two independent experiments was analyzed using One-way ANOVA test (bar diagram). Mean values ± SEM are shown. ****p < 0.0001. b Biological 
PLA controls in Jurkat cells expressing surface TCR and Lck (left), Jurkat cells lacking Lck expression by CRISPR/Cas9 gene editing (J.Lck, middle) 
and Jurkat cells lacking CD3ε by CRISPR/Cas9 gene editing (J.CD3εKO, right). The PLA was performed between the TCR (CD3ε) and Lck at 37 °C 
in unstimulated conditions. The quantification of two independent experiments is shown (bar diagram). Statistical analysis was performed as in 
a. c In situ PLA between the TCR (CD3ε) and Lck was performed; a red fluorescent signal indicates a distance between Lck and the TCR smaller 
than 80 nm. J.Lck cells were transfected to stably express an empty vector, Lckwt or LckY192E. Cells were either left unstimulated, stimulated with 
a TCR antibody (C305) or stimulated with pervanadate at 37 °C for 5 min. Nuclei were stained with DAPI. Data of one representative experiment 
performed in technical duplicates is shown (upper bar diagram). In order to pool independently performed experiments and to normalize for Lck 
expression, the fold induction between unstimulated and stimulated samples per experiment was calculated (lower bar diagram). An unpaired 
Student’s t test on pooled data of 6–7 independent experiments was analysed. Mean values ± SEM are shown, *p < 0.1; **p < 0.01
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knock-in mice or LckY192E-reconstituted J.Lck cells. In 
contrast to the model above and despite the hyperphos-
phorylation of Y505, we observed in both experimental 
settings that the enzymatic activity of LckY192E was simi-
lar if not even slightly higher than the enzymatic activ-
ity of Lckwt. These unexpected findings prompted us to 

investigate the conformation of LckY192E employing the 
FLIM/FRET setting that we had previously used to con-
duct structure/function analyses of Lck in living cells [18, 
21]. This approach revealed that, in line with the in vitro 
kinase data, an LckY192E biosensor showed a similar 
(“open”) conformation as the Lckwt. Hence, it appears as 
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if the Y192E mutation, despite leading to hyperphospho-
rylation of Y505 and loss of the Lck/CD45 interaction, 
would neither influence Lck basal activity nor the Lck 
basal conformation.

These surprising results suggested that the severe block 
in TCR-mediated signaling in T cells expressing LckY192E 
might not exclusively be due to the hyperphosphoryla-
tion of Y505. Several groups have recently employed HEK 
293T cells to assess signal transduction mechanisms, 
including those in T cells [17, 27, 29]. HEK cells have the 
advantage that they do not express many components of 
the T-cell signaling machinery, including the immediate 
Lck regulators CD45 and Csk. Using this cellular system 
we clearly showed that the inability of LckY192E to phos-
phorylate its physiologic substrate ZAP70 is unrelated to 
the phosphorylation status of Y505. Indeed, in two dif-
ferent HEK cellular systems (expressing or not the TCR/
CD3), LckY192E was severely impaired in its ability to 
phosphorylate ZAP70 despite showing comparable levels 
of Y505 phosphorylation as Lckwt. Thus, the altered inter-
action between LckY192E and CD45 fails to fully explain 
the signaling defect that is induced by LckY192E in Jurkat 
T cells and in the LckY192E knock-in mice.

Our findings lead to the question why the LckY192E 
mutant cannot transduce signals in T cells or HEK cells 
although its enzymatic activity does not seem to be 
affected by the mutation. It has been previously suggested 
that phosphorylation of Y192 changes the specificity of 
the SH2 domain of Lck for its binding partners, Pyk2, 
Itk, SHP-1, and TSAd, which show increased binding to 
the LckY192E mutant compared to Lckwt [24]. However, 
proteomics approaches using our stable LckY192E Jurkat 
transfectants or peripheral T cells obtained from LckY192E 
mutant mice so far failed to reveal data supporting that 
Lckwt and LckY192E form different protein complexes in T 
cells (Additional file 2: Table S1). Likewise, the confocal 
analysis of both LckY192E expressing Jurkat and HEK cells 
ruled out altered subcellular localization of LckY192E.

An impaired de novo activation of LckY192E following 
TCR stimulation could be responsible for the observed 
signaling defects. Indeed, our observation that an Lck-
biosensor carrying the LckY192E mutation does not prop-
erly open in response to CD3-mediated stimuli point into 
this direction. Intriguingly, a recent report has shown 
that Lck binds to a RK-motif within CD3ε that is exposed 
upon ligand-binding to the TCR [28]. This interaction 
results in local augmentation of Lck activity, thereby pro-
moting TCR-mediated stimuli. Conversely, mutation of 
the RK-motif results in impaired T-cell activation, both 
in vitro and in vivo. It was therefore tempting to specu-
late that the LckY192E mutant has partially lost its flex-
ibility and thereby, the ability to interact with its natural 

interactions partners including CD45 and CD3ε. In line 
with this idea, PLA-experiments in J.Lck cells reconsti-
tuted with either Lckwt or LckY192E revealed an impaired 
ability of LckY192E to associate with the activated TCR.

Taken together, our data suggest that an altered Lck/
CD45 interaction is not the exclusive reason why T cells 
cannot develop in LckY192E knock-in mice. We rather pro-
pose that phosphorylation of Y192 regulates the very first 
steps of T-cell activation by at least two complementary 
mechanisms: by preventing Lck association to CD45 and 
by hindering ligand-induced recruitment of Lck to the 
TCR.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​4-020-00673​-z.

Additional file 1: Figure S1. Normal T-cell development and T-cell activa‑
tion in LckY192F knock-in mice. (A) Thymocytes from Lckwt and LckY192F 
knock-in mice were stained with CD4 and CD8 antibodies. Representa‑
tive dot plots from 3 independent experiments show the distribution of 
thymocyte subsets. Total thymocyte numbers are indicated above the 
dot plots. (B) Analysis of the distribution of thymic subpopulations from 
3 Lckwt and 3 LckY192F knock-in mice. Statistical analyses were performed 
using an unpaired Student’s t test, ns = not statistically significant. (C) 
Peripheral T cells numbers from 4 Lckwt and 4 LckY192F knock-in mice were 
calculated. (D) Splenic T cells from Lckwt and LckY192F knock-in mice were 
stimulated with a CD3 antibody. At the indicated time points after stimula‑
tion, cells were lysed and the levels of global protein tyrosine phosphoryl‑
ation and Lck expression were assessed using a pan phosphotyrosine anti‑
body (pY total) and a Lck Ab (Lck total), respectively. One representative of 
3 independent experiments is shown. Equal protein loading was verified 
using antibodies directed against β-actin. Figure S2. T-cell subsets in 
peripheral lymphoid organs from LckY192E knock-in mice. (A) Lymph node 
(LN) (left panel) and splenic cells (right panel) from Lckwt and LckY192E mice 
were isolated and stained with CD4/CD44 or CD8/CD44 antibodies and 
analyzed by flow cytometry. Subsequently, total cell numbers of CD4+/
CD44low, CD4+/CD44high, CD8+/CD44low, and CD8+/CD44high T cells were 
calculated. Each dot represents one mouse. (B) Histograms show CD3 
expression levels from lymph node (left panel) and spleen (right panel). 
The dotted line indicates LckY192E mice. One representative histogram 
from 3 independent experiments is shown. (C) Cells isolated from lymph 
nodes and spleens were stained with a B220 antibody and analyzed by 
flow cytometry to identify B cells. Subsequently, absolute cell numbers 
were calculated. Each dot represents one mouse. Statistical analyses were 
performed using an unpaired Student’s t test, ****p < 0.0001, ***p < 0.001. 
Figure S3. TCR-mediated signaling in J.Lck cells cells stably reconstituted 
with LckY192E. (A) Jurkat T cells (JE6) and Lck-deficient Jurkat cells (J.Lck) 
stably expressing an empty vector, Lckwt, or LckY192E were stimulated with 
a TCR antibody (clone: C305). After stimulation, cells were lysed and the 
levels of global protein tyrosine phosphorylation were assessed using a 
pan phosphotyrosine antibody (pY total, clone 4G10) and phosphospe‑
cific antibodies against ZAP70. Lck expression and equal protein loading 
were verified using antibodies directed against total Lck and β-actin, 
respectively. One representative of 2 independent experiments is shown. 
Lanes 5/6 versus 7/8 display Lckwt-reconstituted J.Lck cells expressing 
different amounts of Lck. (B) The histogram shows CD3 expression from 
J.Lck stably expressing Lckwt and LckY192E. Figure S4. Subcellular localiza‑
tion of LckY192E and CD3ε in HEK293T and HEK293T + TCR/CD3. (A, B) 
Fluorescence (left panel) and Brightfield (BF, right panel) pictures of HEK 
293T cells stably expressing either Lckwt (A) or LckY192E (B) were labeled 
with an Lck antibody and a secondary antibody with the fluorophore 
dylight 649. (C, D) Fluorescence (left panel) and Brightfield (BF, right panel) 
pictures of TCR/CD3+ HEK 293T cells stably expressing Lckwt (C) or LckY192E 
(D) were stained with CD3ε antibody and a secondary antibody tagged 
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with dylight 649. (E, F) TCR/CD3 + HEK 293T cells stably expressing Lckwt E) 
or LckY192E (F) were stained with a Lck antibody and a secondary antibody 
coupled with dylight 649. Figure S5. TCR/CD3-mediated phosphoryla‑
tion of CD3ζ in J.Lck cells reconstituted with Lckwt or LckY192E. Data of 
four independent experiments in which the TCR-mediated induction of 
phosphorylation of TCRζ and Y319 of Zap70 was determined. The blot 
corresponding to experiment 1 also shows intra-experimental variations 
(for Lckwt). Besides the phosphorylation of TCRζ and pY319 of Zap70 the 
expression of Lck was determined. Anti-CD3ε staining was used as loading 
control. The molecular weight markers shown on the left correspond to 
the blots of experiment 1.

Additional file 2: Table S1. Mass spec data of Lck deficient Jurkat T cells 
(J.CaM 1.6) stably expressing Lckwt and LckY192E.
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