High-dimensional regression in practice:
an empirical study of finite-sample prediction, variable selection and ranking

## Supplementary Material

Fan Wang ${ }^{1}$, Sach Mukherjee ${ }^{2}$, Sylvia Richardson ${ }^{1}$ and Steven M. Hill ${ }^{1}$

1. MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
2. German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany

## Supplementary Figures



Figure S1: Ranking (A), prediction (B) and selection (C,D) performance versus the rescaled sample size $r=n /\left(s_{0} \log \left(p-s_{0}\right)\right)$ for synthetic independence design scenarios. As Figure 1 in Main Text, but with $\mathrm{SNR}=0.5$ (instead of $\mathrm{SNR}=2$ ).


Figure S2: Ranking (A), prediction (B) and selection (C,D) performance versus the rescaled sample size $r=n /\left(s_{0} \log \left(p-s_{0}\right)\right)$ for a semisynthetic "high"-correlation design scenario. As Figure 1 in Main Text, but for a semisynthetic "high"-correlation design with SNR=2 and $s_{0}^{B}=5$.


Figure S3: Difference in performance between Dantzig and Lasso (Dantzig - Lasso) versus Lasso performance for ranking (A), prediction (B) and selection (C,D) in synthetic data scenarios. Each point plotted represents a synthetic data scenario (both independence design and correlation design scenarios are plotted). For A, C and D, negative values on the $y$-axis indicate that Lasso is outperforming Dantzig. For B, a positive value indicates the same.


Figure S4: A comparison of method performance in synthetic independence design scenarios: ranking. Each panel plots the ranking performance of one method versus the ranking performance of another method. Each data point within a panel corresponds to an independence design scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S5: A comparison of method performance in the synthetic independence design and semisynthetic "low" correlation design. Each panel shows a different metric and each data point within a panel corresponds to a specific scenario (defined by $n, p, s_{0}$ and SNR), with color indicating method.


Figure S6: A comparison of method performance in semisynthetic "low"-correlation design scenarios: ranking. Each panel plots the ranking performance of one method versus the ranking performance of another method. Each data point within a panel corresponds to a scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S7: Ranking performance (pAUC) versus $s_{0}^{B}$ (number of signals per block) for a subset of semisynthetic "high"-correlation designs. As Figure 3 in Main Text, but with $p=500$ (instead of $p=2000$ ) and all values of SNR are shown.


Figure S8: Ranking performance (pAUC) versus $\rho$ (correlation strength) for a subset of synthetic pairwise correlation designs. As Figure 4 in Main Text, but with SNR=2 and 4 (instead of SNR=1).


Figure S9: A comparison of method performance in synthetic independence design scenarios: prediction. Each panel plots the prediction performance of one method versus the prediction performance of another method. Each data point within a panel corresponds to an independence design scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S10: A comparison of method performance in semisynthetic "low"-correlation design scenarios: prediction. Each panel plots the prediction performance of one method versus the prediction performance of another method. Each data point within a panel corresponds to a scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).

$\rightarrow$ Lasso $\rightarrow$ AdaLasso $\rightarrow$ HENet $\rightarrow$ Ridge $\rightarrow$ SCAD

Figure S11: Prediction performance (RMSE) versus $s_{0}^{B}$ (number of signals per block) for a subset of semisynthetic "high"-correlation designs. As Figure 6 in Main Text, but with $p=500$ (instead of $p=2000$ ) and all values of SNR are shown.




(0)
i

$\times$ Synthetic Independence Design o Synthetic Correlation Design
~Lasso ->- HENet }~\mathrm{ Ridge }->\mathrm{ SCAD
~Lasso ->- HENet }~\mathrm{ Ridge }->\mathrm{ SCAD

Figure S12: Prediction performance (RMSE) versus $\rho$ (correlation strength) for a subset of synthetic pairwise correlation designs. As Figure 7 in Main Text, but with SNR=2 and 4 (instead of $\mathrm{SNR}=1$ ).


Figure S13: A comparison of method performance in synthetic independence design scenarios: selection - TPR. Each panel plots TPR of one method versus TPR of another method. Each data point within a panel corresponds to an independence design scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S14: A comparison of method performance in synthetic independence design scenarios: selection - PPV. Each panel plots PPV of one method versus PPV of another method. Each data point within a panel corresponds to an independence design scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S15: A comparison of method performance in semisynthetic "low"-correlation design scenarios: selection - TPR. Each panel plots TPR of one method versus TPR of another method. Each data point within a panel corresponds to a scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).


Figure S16: A comparison of method performance in semisynthetic "low"-correlation design scenarios: selection - PPV. Each panel plots PPV of one method versus PPV of another method. Each data point within a panel corresponds to a scenario with color indicating SNR and symbol representing the value of the rescaled sample size $r$ (categorized).

$\rightarrow$ Lasso $\rightarrow$ AdaLasso $\rightarrow$ HENet $\rightarrow$ SCAD $\rightarrow$ Stability

Figure S17: Selection performance (TPR and PPV) versus $s_{0}^{B}$ (number of signals per block) for a subset of semisynthetic "high"-correlation designs. As Figure 9 in Main Text, but with $p=500$ (instead of $p=2000$ ) and all values of SNR are shown.


Figure S18: Selection performance (TPR and PPV) versus $\rho$ (correlation strength) for a subset of synthetic pairwise correlation designs. As Figure 10 in Main Text, but with $\operatorname{SNR}=2$ and 4 (instead of $\mathrm{SNR}=1$ ).


Figure S19: Comparison between Toeplitz correlation and pairwise correlation designs for ranking, prediction and selection performance. As Figure 11 in Main Text, but with SNR=1 (instead of $\operatorname{SNR}=2$ ).


Figure S20: Comparison between Toeplitz correlation and pairwise correlation designs for ranking, prediction and selection performance. As Figure 11 in Main Text, but with SNR=4 (instead of $\mathrm{SNR}=2$ ).


Figure S21: Semisynthetic (TCGA ovarian cancer expression) data analysis: "low"-correlation scenario with non-Gaussian error distribution. Semisynthetic training and test datasets were generated as described in the Main Text for the "low"-correlation scenario with $n=100$, $p=1000$ and $s_{0}=10$, but with $95 \%$ of error terms drawn from $N\left(0, \sigma^{2}\right)$ and the other $5 \%$ drawn from $N\left(0,(\tau \sigma)^{2}\right)$, with $\sigma$ set such that $\mathrm{SNR}=4$ and $\tau \in\{1, \ldots, 10\} . \tau=1$ represents the standard set-up with noise drawn from a single Gaussian distribution. Ranking (A), prediction (B) and selection (C,D) performance are plotted against $\tau$. Line color indicates method and results are averages over 100 replicates.

