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Figure S1 (a) typical x-ray diffaction pattern for the YBa2Cu4O8 polycrystalline samples 

showing essentially single-phase composition (Co-K radiation). (b) SEM micrograph of the 

surface of a sample pellet. The white bar indicates 10 m scale. 

(b) 
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Figure S2. Black symbols: Tc versus hole concentration for Y0.8Ca0.2Ba2Cu3O7- for 0, 2, 4 

and 6% planar Zn concentration1. Red stars: Tc values for YBa2Cu4O8 for 0, 2 and 4 % planar 

Zn concentration (this work). 

 

 

 

 

 
 

Figure S3. Black symbols: Tc versus planar Zn concentration1 for Y0.8Ca0.2Ba2Cu3O7-. Solid 

curves and symbols: overdoped. Dashed curves and open symbols: underdoped. Red stars: Tc 

versus planar Zn concentration for YBa2Cu4O8 (this work). 

 



Comparison of 89Y Knight shift with electronic entropy 

The 89Y Knight shift, 89Ks, for YBa2Cu3O6+x is reported by Alloul et al.2 To convert to 

entropy units we must first convert to the spin susceptibility, s. This was done by Alloul by 

comparing the temperature dependence of 89Ks with that of the bulk magnetic susceptibility, 

m. We use this relationship. The comparison of the T-dependent components is robust, 

however, each of 89Ks and m has an additive constant that must be identified if a comparison 

of absolute values is to be undertaken. For 89Ks this additive constant is the chemical shift, 
89, which is evaluated by Alloul as ranging from -200 ppm for x = 0.41 to -370 ppm for x = 

1. In contrast Takigawa et al.3 evaluate 89 as -152  10 ppm independent of x. Our analysis 

below is consistent with this value, independent of x. This is the value that we also used4 for 
89 in YBa2Cu4O8. For m, the additive constant, 0, comprises a diamagnetic term and a van 

Vleck term (0 = dia + vv) estimated by Alloul as dia = – 2.65  10-7 emu/g and vv = 1.95  

10-7 emu/g, i.e. 0 = – 0.7  10-7 emu/g. 

 In view of the uncertainty of these T-independent parts we simply convert 89Ks to m 

using Allouls’ Fig. 4 and multiply by aW, as plotted in Fig. S4, for comparison with S/T for 

YBa2Cu3O6+x. The aWm values for each x value were then displaced vertically (by an 

additive constant) to coincide with the entropy data. The first thing to note is that the T-

variation of the susceptibility and entropy data for each specific value of x are in excellent 

agreement. Now if we take the value of this additive constant and work back to the chemical 

shift 0 we obtain values that vary quite narrowly between –130 and –150 ppm, very 

consistent with Takigawa3.  This baseline uncertainty of  10 ppm corresponds to  0.04 

mJ/g.at.K2 in Fig. S4 and is rather small. 

 

 
 

 

Figure S4. Data points: spin susceptibility for YBa2Cu3O6+x from the 89Y Knight shift 

(reported by Alloul2) multiplied by the Wilson ratio in order to express in entropy units. x 

values are annotated. Solid curves: electronic entropy divided by T as reported by Loram et 

al.5,6 



 
 

Figure S5. A reproduction of Fig. 7 but with bulk susceptibility data, aWsT, (green dashed 

curve) overlayed on top of the entropy data, S(T), (red solid curve). In Fig. 7 the susceptibility 

data was hidden by the entropy data. Here it is evident that the two agree closely over the 

entire temperature range. 
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