

Supplementary Information.

Field-dependent specific heat of the canonical underdoped cuprate superconductor YBa2Cu4O8

Jeffery L. Tallon¹ and John W. Loram²

¹Robinson Research Institute, and MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand. jeff.tallon@vuw.ac.nz

²Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, United Kingdom.

Figure S1 (a) typical x-ray diffaction pattern for the YBa₂Cu₄O₈ polycrystalline samples showing essentially single-phase composition (Co-K α radiation). (b) SEM micrograph of the surface of a sample pellet. The white bar indicates 10 μ m scale.

Figure S2. Black symbols: T_c versus hole concentration for $Y_{0.8}Ca_{0.2}Ba_2Cu_3O_{7-\delta}$ for 0, 2, 4 and 6% planar Zn concentration¹. Red stars: T_c values for YBa₂Cu₄O₈ for 0, 2 and 4 % planar Zn concentration (this work).

Figure S3. Black symbols: T_c versus planar Zn concentration¹ for Y_{0.8}Ca_{0.2}Ba₂Cu₃O₇₋₈. Solid curves and symbols: overdoped. Dashed curves and open symbols: underdoped. Red stars: T_c versus planar Zn concentration for YBa₂Cu₄O₈ (this work).

Comparison of ⁸⁹Y Knight shift with electronic entropy

The ⁸⁹Y Knight shift, ⁸⁹K_s, for YBa₂Cu₃O_{6+x} is reported by Alloul *et al.*² To convert to entropy units we must first convert to the spin susceptibility, χ_s . This was done by Alloul by comparing the temperature dependence of ⁸⁹K_s with that of the bulk magnetic susceptibility, χ_m . We use this relationship. The comparison of the *T*-dependent components is robust, however, each of ⁸⁹K_s and χ_m has an additive constant that must be identified if a comparison of absolute values is to be undertaken. For ⁸⁹K_s this additive constant is the chemical shift, ⁸⁹ σ , which is evaluated by Alloul as ranging from -200 ppm for *x* = 0.41 to -370 ppm for *x* = 1. In contrast Takigawa *et al.*³ evaluate ⁸⁹ σ as -152 ± 10 ppm independent of *x*. Our analysis below is consistent with this value, independent of *x*. This is the value that we also used⁴ for ⁸⁹ σ in YBa₂Cu₄O₈. For χ_m , the additive constant, χ_0 , comprises a diamagnetic term and a van Vleck term ($\chi_0 = \chi_{dia} + \chi_{vv}$) estimated by Alloul as $\chi_{dia} = -2.65 \times 10^{-7}$ emu/g and $\chi_{vv} = 1.95 \times 10^{-7}$ emu/g, i.e. $\chi_0 = -0.7 \times 10^{-7}$ emu/g.

In view of the uncertainty of these *T*-independent parts we simply convert ⁸⁹K_s to χ_m using Allouls' Fig. 4 and multiply by a_W , as plotted in Fig. S4, for comparison with *S/T* for YBa₂Cu₃O_{6+x}. The $a_W\chi_m$ values for each *x* value were then displaced vertically (by an additive constant) to coincide with the entropy data. The first thing to note is that the *T*-variation of the susceptibility and entropy data for each specific value of *x* are in excellent agreement. Now if we take the value of this additive constant and work back to the chemical shift σ_0 we obtain values that vary quite narrowly between –130 and –150 ppm, very consistent with Takigawa³. This baseline uncertainty of ± 10 ppm corresponds to ± 0.04 mJ/g.at.K² in Fig. S4 and is rather small.

Figure S4. Data points: spin susceptibility for $YBa_2Cu_3O_{6+x}$ from the ⁸⁹Y Knight shift (reported by Alloul²) multiplied by the Wilson ratio in order to express in entropy units. *x* values are annotated. Solid curves: electronic entropy divided by *T* as reported by Loram *et al.*^{5,6}

Figure S5. A reproduction of Fig. 7 but with bulk susceptibility data, $a_W\chi_sT$, (green dashed curve) overlayed on top of the entropy data, S(T), (red solid curve). In Fig. 7 the susceptibility data was hidden by the entropy data. Here it is evident that the two agree closely over the entire temperature range.

References:

- Tallon, J. L., Bernhard, C., Williams, G. V. M. & Loram, J. W. Zn-induced T_c Reduction in High-T_c Superconductors: Scattering in the Presence of a Pseudogap. *Phys. Rev. Lett.* **79**, 5294-5297 (1997).
- 2. Alloul, H., Ohno, T. & Mendels, P. ⁸⁹Y NMR evidence for a Fermi-liquid behavior in YBa₂Cu₃O_{6+x}. *Phys. Rev. Lett.* **63**, 1700-1703 (1989).
- 3. Takigawa, M., Hults, W. L. & Smith, J. L. Phys. Rev. Lett. 71, 2650-2653 (1993).

- 4. Williams, G. V. M., Tallon, J. L., Meinhold, R. & Jánossy, A. ⁸⁹Y NMR study of the effect of Zn substitution on the spin dynamics of YBa₂Cu₄O₈. *Phys. Rev. B* **51** 16503-16506 (1995).
- 5. Loram, J. W., Mirza, K. A., Wade, J. M., Cooper, J. R. & Liang, W. Y. The Electronic Specific Heat of Cuprate Superconductors. *Physica C* **235-240**, 134-137 (1994).
- Loram, J. W., Mirza, K. A. & Cooper, J. R. Properties of the superconducting condensate and normal-state pseudogap in high-T_c superconductors derived from the electronic specific heat. *IRC in Superconductivity Research Review Cambridge University* (1998).