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Abstract

Background: Despite advances in the care of women and their babies in the past century, an estimated 1.7
million babies are born still each year throughout the world. A robust method to estimate a pregnant
woman’s individualized risk of late-pregnancy stillbirth is needed to inform decision-making around the timing
of birth to reduce the risk of stillbirth from 35 weeks of gestation in Australia, a high-resource setting.

Methods: This is a protocol for a cross-sectional study of all late-pregnancy births in Australia (2005–2015)
from 35 weeks of gestation including 5188 stillbirths among 3.1 million births at an estimated rate of 1.7
stillbirths per 1000 births. A multivariable logistic regression model will be developed in line with current
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)
guidelines to estimate the gestation-specific probability of stillbirth with prediction intervals. Candidate
predictors were identified from systematic reviews and clinical consultation and will be described through
univariable regression analysis. To generate a final model, elimination by backward stepwise multivariable
logistic regression will be performed. The model will be internally validated using bootstrapping with 1000
repetitions and externally validated using a temporally unique dataset. Overall model performance will be
assessed with R2, calibration, and discrimination. Calibration will be reported using a calibration plot with 95%
confidence intervals (α = 0.05). Discrimination will be measured by the C-statistic and area underneath the
receiver-operator curves. Clinical usefulness will be reported as positive and negative predictive values, and a
decision curve analysis will be considered.
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Discussion: A robust method to predict a pregnant woman’s individualized risk of late-pregnancy stillbirth is
needed to inform timely, appropriate care to reduce stillbirth. Among existing prediction models designed for
obstetric use, few have been subject to internal and external validation and many fail to meet recommended
reporting standards. In developing a risk prediction model for late-gestation stillbirth with both providers and
pregnant women in mind, we endeavor to develop a validated model for clinical use in Australia that meets
current reporting standards.
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Background
Prevention of stillbirth remains one of the greatest chal-
lenges in modern maternity care. Globally, one in every
137 pregnancies that reach 20 weeks’ gestation will result
in a stillborn child [1, 2]. Despite advances in the care of
women and their babies in the past century, an esti-
mated 1.7 million babies die before birth each year
throughout the world [3]. The 2016 Lancet Ending Pre-
ventable Stillbirths series highlighted differences in rates
of late stillbirth (≥ 28 weeks) between high-income coun-
tries ranging from 1.7 per 1000 to 8.8 per 1000 births
[4]. Australia is a high-income country where over 2000
families each year—six families each day—have a still-
birth, and there has been no improvement in stillbirth
rates among late pregnancy stillbirths for over 20 years
[5, 6]. Among women who were born elsewhere [7, 8],
women with lower socioeconomic status [9], and women
who identify as Aboriginal and Torres Strait Islander
[10], the risk of stillbirth is higher [4, 11]. Failure to
identify and appropriately care for women with risk fac-
tors for stillbirth contributes to 20–50% of preventable
stillbirths, which has the potential to avoid 400 stillbirths
each year for Australian families [12–14].
Detecting women at risk for stillbirth is challenging. In

the absence of a tool to assess a pregnant woman’s indi-
vidualized risk of late-pregnancy stillbirth, we rely on
generalized, population-level information. Awareness of
risk factors that increase the risk of stillbirth at or near
term is a necessary first step in improving care and to
ultimately reduce the number of stillbirths. Despite a
high proportion of unexplained stillbirths between 39
and 41 weeks of gestation, many women who have a
stillbirth have one or more risk factors that are often
unrecognized [15].
Around 38 weeks of gestation, the risk of stillbirth in-

creases overall and varies by maternal and clinical char-
acteristics while the decision on whether to intervene
becomes more challenging [5, 10, 16, 17]. The balance
between benefit and harm is complicated by potentially
avoiding a stillbirth at the risk of neonatal morbidity
[18]. A robust prediction model to assess a woman’s in-
dividualized risk of late-pregnancy stillbirth has the po-
tential to alleviate some interventional uncertainty by
informing antenatal care and decision-making around
the timing of birth.
A key limitation of developing a late-gestation still-

birth risk prediction model for clinical use is the lack of
high-quality data from a complete population. With re-
cent quality improvements for population-level data in
Australia, it is now possible to leverage population-based
data to develop, internally validate, and externally valid-
ate a model to predict potentially preventable and rare
pregnancy outcomes [19]. Therefore, the objective of
this study is to develop and validate a prognostic model
for late-pregnancy stillbirth risk that is designed to in-
form decision-making around the timing of birth.
Methods
Aim
We endeavor to develop multivariable logistic regression
prediction models to estimate the risk of late-pregnancy
stillbirth from 35 weeks of gestation using a national
dataset of all births in Australia (2005–2015) to ultim-
ately inform decision-making around the timing of birth
for women who reside in Australia.
Study design
This is a protocol for a cross-sectional study using
the total population of singleton term gestation births
in Australia (2005–2015) derived from the National
Perinatal Data Collection (NPDC) (1998–2015) [11,
20]. The dataset includes 5188 stillbirths among 3.1
million births at an estimated rate of 1.7 stillbirths
per 1000 births [11]. Multiple pregnancies, congenital
abnormalities, and babies missing gestational age in-
formation will be excluded. A congenital abnormality
is defined as a stillbirth classified as code 0100 “Con-
genital Abnormality” using the Perinatal Society of
Australia and New Zealand (PSANZ) Perinatal Death
Classification System [21]. A completed Compliance
with Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis
(TRIPOD) checklist is available in supplementary ma-
terials (Supplementary Table 1).
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Sample size
To ensure the development of a robust prediction model
for each week gestation from 35 weeks, sample size cal-
culations recommended by Riley et al. are provided for
stillbirth as a binary outcome to (B1) estimate overall
outcome proportion with precision, (B2) target a small
mean absolute prediction error, (B3) target a shrinkage
factor of 0.9, and (B4) target small optimism of 0.05 in
the apparent R2 [22]. Based on these criteria, the popula-
tion derived from the NPDC is expected to be sufficient
and is detailed below.
Stata 16.0 procedure pmsampsize was used for criteria

B1, B3, and B4 where anticipated R2 value is 0.003 with
a maximum of 25 parameters (candidate risk factors),
and the overall proportion of stillbirth is 0.0017 and de-
rived from the estimated stillbirth rate of 1.7 stillbirths
per 1000 births in our study population [22, 23]:

pmsampsize; type bð Þ rsquared 0:003ð Þ parameters 25ð Þp

This indicates that at least 74,875 births are required,
corresponding to 128 events (where the prevalence of
stillbirth is 0.0017) and events per candidate predictor
parameter of 5.09.
For criteria B2, we applied the mean absolute predic-

tion error (MAPE) formula at a value of 0.050 for the
anticipated outcome proportion (0.0017) and 25 candi-
date predictor parameters. This indicated a required
total of 92 participants in the development dataset at a
MAPE of 0.05 or 494 participants at a MAPE of 0.02.

Data source
All births with gestational age information from 35
weeks of gestation in Australia (2005–2015) will be in-
cluded. Data will be made available via the AIHW Ma-
ternal and Perinatal Health Unit. Further information on
available data items and reporting can be found in the
supplementary materials (Supplementary Table 2). The
NPDC is a national population-based cross-sectional
collection of data for all pregnancies and births
Table 1 All births in Australia from 35 weeks of gestation, 2005–201

Jurisdiction Total (n) Stillbirths (n)

NSW 1,021,491 1758

VIC 716,145 1161

QLD 645,416 1087

WA 336,532 517

SA 209,873 320

TAS 64,418 112

ACT 61,751 138

NT 40,723 95

Overall 3096349 5188
valence 0:0017ð Þ

established in 1991 [24]. All births from the 6 states and
2 territories of Australia are reported as part of the
NPDC and include Queensland (QLD), New South
Wales (NSW), Australian Capital Territory (ACT),
Victoria (VIC), South Australia (SA), Tasmania (TAS),
Western Australia (WA), and Northern Territory (NT)
(Table 1). Perinatal data are collected for each birth in
each state and territory, usually by midwives and other
birth attendants [11]. The data is collated by the relevant
state or territory health department and a standard de-
identified extract is provided to the AIHW on an annual
basis to form the NPDC [11]. Stillbirths in Australia are
defined by the PSANZ as fetal deaths from gestational
age of at least 20 weeks or birthweight of at least 400 g,
except in Victoria and Western Australia, where births
are included if gestational age is at least 20 weeks or, if
gestation is unknown, birthweight is at least 400 g [11,
21].

Model development
Established characteristics and conditions associated
with an increased risk of stillbirth will be considered as
candidate predictors [16, 25–27]. The predictor selection
process is illustrated in Fig. 1. Reference group coding
will be informed by literature and existing reporting rec-
ommendations. Frequencies (%) will be presented for
categorical variables and for all missing data (further in-
formation on the handling of missing data described
below). For normally distributed continuous variables,
the mean and standard deviation will be reported. For
continuous variables demonstrating skewed distribu-
tions, median and IQR will be reported. For all continu-
ous variables, minimum and maximum will be
presented. If clinically appropriate and statistically justi-
fiable, independent continuous variables will be con-
verted to groups according to published guidelines and
recommendations [11, 28].
Univariable logistic regression models will be devel-

oped first for all gestations to explore individual prog-
nostic factors where the outcome (stillbirth) is binary
5

Livebirth (n) Stillbirth rate (per 1000)

1,019,289 1.7

714,486 1.6

643,888 1.7

335,808 1.5

209,351 1.5

64,279 1.7

61,580 2.2

40,592 2.3

3089273 1.7



Fig. 1 Selection of predictors in a study developing a multivariable logistic regression model for stillbirth
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and the prognostic factors are either continuous or cat-
egorical. Univariable models will only be used to provide
context to the final multivariable logistic regression
model. Variance inflation factor (VIF) will be performed
prior to fitting the final multivariable regression model
to identify collinearity where VIF < 4 indicates a low
correlation, VIF between 5 and 10 indicates a high cor-
relation, and VIF above 10 indicates multicollinearity
[29]. Candidate predictors demonstrating multi- or col-
linearity with VIF ≥ 5 will be reviewed through clinical
consultation to ultimately select candidate predictor for
inclusion in the final model. Backward stepwise elimin-
ation in a multivariable logistic regression model will be
applied to remove non-significant factors with p values
greater than 0.100 in line with Akaike’s information cri-
terion [30]. Finally, the risk prediction model will be
applied and fully validated for each week’s gestation
from 35 weeks (six total models: 35, 36, 37, 38, 40, and
41+ weeks).

Missing data
Missing data for predictors is most likely to result from
failed reporting for all births in specific years by jurisdic-
tions (see Supplementary Table 2 for comments on
missing data). Data-years where reporting of candidature
predictors may be excluded if missing data exceeds 5%
for the total population [31, 32].
If clinically appropriate, a “hot deck” formula for mul-

tiple imputations will be considered for predictors with
greater than 5% missing values where a substitute value
will be imputed from another dataset [32–34]. For can-
didate predictors with fewer or equal to 5% missing
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values, missing values for categorical predictors will be
treated as null or “no” and continuous predictors will be
recorded as a mean value. No births will be excluded
due to missing candidate predictor data except for those
missing gestational age information.
Validation
Final gestation-specific models will be subject to tem-
poral internal and external validation. Population char-
acteristics and performance measures will be reported
for all individual models [35]. Internal validation will be
performed using bootstrapping with 1000 repetitions
[36]. Summary stillbirth rates will be reported for the
bootstrapped sample. Final models will be externally val-
idated using data derived from study years not used for
model development [37].
Model performance
The performance of development and validation datasets
will be assessed via overall performance (R2), calibration,
discrimination, and clinical performance will be assessed
through positive predictive value (PPV) and negative
predictive value (NPV). A fixed false-positive cutoff of
10% will be used for PPV and NPV [38].
Calibration characterizes model performance in terms

of agreement between predicted (expected) risk and ob-
served risk and is reported using a calibration plot [39].
An intercept of zero and ratio of observed and expected
equal to one (O/E = 1) is defined as the best possible
calibration [40]. Calibration plots will contain 95% confi-
dence intervals to infer the degree of calibration between
observed outcomes and predictions.
Discrimination is defined as the model’s ability to dis-

tinguish stillbirths and non-stillbirths and will be mea-
sured via calculation of the C statistic and receiver
operator characteristic (ROC) curve. A ROC curve is
used to assess the performance of a categorical classifier
and is a plot of sensitivity (true positive rate) versus 1-
specificity (false positive rate) where different points on
the curve correspond to different cutoff points used to
designate positive identification/classification [41]..
Using the ROC curve, the performance of the predictors
will be further quantified by calculating the area under
the curve or AUC. The AUC score range is 0.0–1.0,
where a score of 0.5 can be equated to a “coin flip”, 0.0
is perfectly inaccurate, and 1.0 is perfectly accurate [42].
A non-parametric comparison of AUC will be performed
using the Mann-Whitney U statistic for individual gesta-
tional age models [26].
In addition to calibration and discrimination, PPV and

NPV will be reported to characterize clinical usefulness.
A decision curve analysis will be considered to
characterize potential decision thresholds [43].
Discussion
Prediction models designed for obstetrics hold enor-
mous promise. However, unlike other clinical prediction
models, we do not yet understand whether their applica-
tion improves birth outcomes [44]. With many models
for adverse pregnancy outcomes being developed
through various approaches, it is inevitable that only a
minority have been subject to full internal and exter-
nal validation and many fail to meet recommended
reporting standards. By utilizing a population-based,
individual-level dataset, our study is expected to pro-
vide a sufficient sample size of singleton stillbirths
and births to develop and validate gestation-specific
prediction models that can be translated into clinical
tools or decision aids.
There have been attempts to develop risk prediction

models for stillbirth, yet none are designed to predict
stillbirth risk at- or near-term or use a population-level
data source for singleton pregnancies in a high-income
setting [45]. Among existing prediction models designed
for obstetrics, logistic regression models are widely uti-
lized [45]. Yerlikaya et al. reported a prediction model
for stillbirth with low predictive accuracy beyond the
early term period [46]. Trudell et al. reported a clinical
prediction tool for antenatal testing with the modest dis-
crimination for stillbirth at or beyond 32 weeks’ gesta-
tion that included risk factors such as maternal age,
African-American/Black race, nulliparity, body mass
index, smoking, chronic hypertension, and pre-
gestational diabetes [36]. Although there is a growing
interest in algorithmic methods such as machine learn-
ing, evidence suggests that performance is highly com-
parative to statistical modeling [47, 48]. Regarding
approaches to validation, the most commonly used
methods include split-sample, bootstrap, and cross-
validation. Bootstrapping tends to demonstrate increased
variability and split-sampling often results in unreliable
assessments of model performance. A cross-validation is
an effective approach for validating a prediction model
for low-prevalence obstetric outcomes like stillbirth due
to stability and ability to use a larger part of the study
sample for model development [42, 49]. Cross-validation
is an extension of split-sample validation that uses a lar-
ger part of the sample for model development (> 80% vs.
50%) [39]. While not the most computationally efficient
approach, the bootstrap repeated procedure is ideal and
expected to produce stable results while conserving the
complete study population for validation [22, 36, 50]. In
our proposed validation design, a temporal approach to
externally validate the model will be explored. While this
is not considered a “fully independent external valid-
ation,” it is expected to provide an additional layer of as-
sessment not yet reported for any existing stillbirth
prediction model.
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While there are numerous benefits to utilizing large
observational datasets for the development of prediction
models—particularly for rare pregnancy outcomes and
multiple pregnancies, there are certain limitations [51].
Completeness of routinely reported variables and po-
tentially relevant risk factors not captured by the
NPDC, such as maternal ethnicity, will have an im-
pact on the final model. Missing data for risk factors
used in a prediction model will be vulnerable to mis-
classification due to reporting evolution over time.
While clinical definitions have largely remained con-
sistent from 1998 to 2015, some data items for cer-
tain years have changed from voluntary to required.
The impact of these changes over time on classifica-
tion is not yet documented and will be assessed
through a supplementary sensitivity analysis. Certain
variables collected by NPDC that are not available for
release due to quality issues include maternal asthma,
type of assisted reproductive therapy, fetal growth re-
striction, and other pregnancy-specific medical condi-
tions. Environmental exposures are not currently
captured by the NPDC, and other spatial risk factors
cannot be explored due to sensitivity restrictions.
However, most key risk factors identified in literature
and informed by background clinical knowledge will
be considered and are expected to produce a full pre-
diction model for stillbirth using routinely collected
data without attempting to identify new predictors or
using biomarkers. Future studies should consider ex-
ploring the care pathway and risk management of
multiple pregnancies and unique risk factors (includ-
ing maternal pregnancy conditions).
Lastly, subsequent pregnancy outcomes depend heavily

on the outcome of previous pregnancies where each
birth is not independent of births [52–54]. An antici-
pated complication of our analysis that will impact on
the interpretation of results is the absence of a unique
identifier for mothers to account for potential clustering.
Parity will be assessed to distinguish first versus subse-
quent births [55], but the lack of independence of births
in our models will be limited. There are recommenda-
tions for the generalized estimating equation approach,
but will not be possible due to an inability to appropri-
ately cluster pregnancies according to unique mothers
[55, 56].
Using known predictors from routine population-level

data, we endeavor to develop a validated risk prediction
model for late-gestation stillbirth for clinical use in
Australia with both providers and pregnant women in
mind that meets all TRIPOD standards and recommen-
dations [57]. Such a prediction model could be used in a
narrow or broad impact analysis that explores decision
rules to reduce stillbirth by improving decision-making
around the timing of birth [43, 49].
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