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Abstract 
 
Cytokines activate or inhibit immune cell behaviour and are thus integral to all immune responses. IL-1α and IL-1β 
are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive 
immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of 
infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative 
mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic 
processes that maintain a physiological state. This review focuses on the uncommon, yet arguably more interesting 
biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report 
how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive 
disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear 
that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for 
health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions 
of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of 
human health.  
 
 
Part 1 - IL-1 is activated by proteolysis. 
 

IL-1α and IL-1β are the most studied members of the IL-1 superfamily, and although both ligate the same 
receptor (IL-1R1), and therefore induce identical downstream signalling, activation pathways of the two cytokines 
differ. Both IL-1α and IL-1β are expressed as proforms that require proteolytic processing for maximum cytokine 
activity (1), with removal of the N-terminus (N-term) leading to unmasking of key residues and/or a conformational 
change that enables the signature C-terminal beta-trefoil motif to interact with the receptor. The study of IL-1 
activation has historically focused on processing of IL-1β by caspase-1 (casp-1) (2) and IL-1α by calpain (3). However, 
as summarised in Figure 1A, pro-IL-1 processing and activation can be mediated by caspases other than casp-1 and 
a range of other tissue and/or cell-type specific proteases. Together, this allows IL-1 activation to be controlled in 
specialised environments across the body (1). This review focuses on alternative modes of IL-1 activation and the 
more unconventional effects IL-1 can have in health and disease. 
 
IL-1 activation via canonical NLRP3 inflammasomes:  

Typical IL-1β activation is mediated by casp-1 cleavage after inflammasome formation. Activation of 
inflammasomes is extensively reviewed elsewhere (1,4). Briefly, inflammasomes are intracellular multiprotein 
complexes that assemble in response to bacteria, viruses, fungi, insoluble aggregates, and environmental factors 
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(5). The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is the best studied and unique 
in its ability to form in response to a wide range of stimuli. Canonical activation occurs after the sensing of factors 
by NLRP3, causing assembly of NLRP3, ASC and casp-1 into a complex that results in the activation of casp-1. Active 
casp-1 cleaves pro-IL-1β and pro-IL-18 to active cytokines and cleaves Gasdermin D (GSDMD) to a form able to 
generate pores in the plasma membrane, both releasing cytokines and inducing pyroptotic cell death (6,7). 
Furthermore, IL-1α is also able to be released from cells via gasdermin D pores (8), but it is unclear if proteolytic 
processing of pro-IL-1α is required prior to release. 
  
Non-canonical activation of NLRP3 inflammasomes: 

Non-canonical inflammasome activation typically occurs in response to intracellular bacteria or internalised 
LPS. Depending on the cell type, non-canonical activation of inflammasomes occurs via a one- or two-step process. 
Macrophages require two-steps, with an initial engagement of a pathogen recognition receptor by pathogen-
associated molecular patterns (PAMPs) (e.g. via LPS binding to toll-like receptor 4 (TLR4)) leading to NF-κB-mediated 
upregulation of inflammasome components (e.g. NLRP3 and pro-casp-1) and type I interferon (IFN) signalling-
mediated upregulation of pro-casp-4, -5 (in humans) or casp-11 (in mice). In the second step, these non-canonical 
caspases bind to intracellular LPS via the Lipid A domain, leading to their activation (9–11) and the subsequent 
cleavage of GSDMD. The now active N-term of GSDMD forms pores in the plasma membrane, to drive pyroptosis, 
and in turn triggers NLRP3 inflammasome activation (4,12). In the event of infection with cytosol-invading bacteria 
such as Salmonella typhimurium or Shigella flexneri, where the Lipid A moiety is not accessible, interferon-induced 
guanylate-binding proteins (GBPs) are critical for LPS recognition and activation of non-canonical caspases, due to 
their association with the vacuole containing the phagocytosed pathogen. The GBPs coating the vacuole either 
recruit the caspase to the vacuole to create a platform for LPS detection and casp-4 activation (13), or mediate 
vacuolar rupture that exposes LPS to the cytosol (14). GBP1 initiates the formation of the platform, followed by 
GBP2, GBP4 and GBP3, eventually controlling casp-4 recruitment and activation (15). In contrast, non-canonical 
inflammasome activation in human monocytes occurs in a single step, with internalised free LPS directly activating 
ready-made casp-4/5 (16), negating the need for IFN signalling.   

Recent developments identified an alternative pathway of non-canonical inflammasome activation involving 
caspase-8 (casp-8). Casp-8 is best known for transmitting pro-apoptotic signals downstream of death receptor 
signalling during extrinsic apoptosis (17). However, casp-8 is also able to promote both the upregulation of pro-IL-
1β and its activation by direct processing at the same site targeted by casp-1 (18,19). This occurs in dendritic cells 
(DCs) exposed to fungi, with Dectin-1 signalling causing formation of a non-canonical casp-8 inflammasome that 
upregulates and matures IL-1β (20). Similarly, bacterial infection inside macrophages also induces casp-8-
dependent IL-1β secretion (21,22). However, as casp-8 can also mediate casp-1 activation (21,22), it is likely that 
pro-IL-1β is processed by both casp-1 and casp-8. Stimulation of DCs and macrophages with cellular stressors (e.g. 
chemotherapeutics) also causes direct cleavage of pro-IL-1β by casp-8, and casp-8-mediated NLRP3 inflammasome 
activation (23). However, casp-8 can also induce IL-1β maturation completely independent of casp-1. In DCs where 
casp-1 proteolytic activity is inhibited by casp-1 mutation, resulting in no GSDMD activation or pyroptosis, casp-8 
is recruited to the NLRP3 inflammasome, which enhances casp-8 activity and drives IL-1β release, albeit in a delayed 
fashion due to either reduced processing or release (24). Casp-8 can also mediate IL-1β release completely 
independent of the NLRP3 inflammasome after engagement of DC Fas with Fas ligand (FasL) on invariant natural 
killer (NK) T cells (25). Finally, casp-8 can mediate an alternative form of NLRP3-dependent cell death coined 
incomplete pyroptosis, which is driven by gasdermin E pores in the absence of casp-1/11 (26). Although activation 
of these non-canonical pathways is often accompanied by pyroptosis and IL-1α release via GSDMD (4) or GSDME 
(26) pores, the exact mechanism for IL-1α release remains unclear.  
 
IL-1α activation by proteolysis: 

The historic view is that IL-1α does not require proteolytic cleavage for full activity. However, these 
conclusions were drawn from studies that did not directly compare the activity of pro- and cleaved IL-1α (27), or 
used recombinant forms of IL-1α that were likely denatured during the purification process (i.e. by using HPLC) (28). 
Further work has shown that mature IL-1α has much higher cytokine activity than pro-IL-1α (29–31), with the 
calpain cleaved form having a ~50-fold higher affinity for IL-1R1 than the pro-form (30). In addition, cleavage of 
pro-IL-1α is regulated by its binding to a cytosolic form of the decoy receptor IL-1R2, which prevents calpain 
cleavage. However, after inflammasome activation casp-1 cleaves IL-1R2, which releases pro-IL-1α and allows 
calpain cleavage to the mature form (30). 

Pro-IL-1α can also be cleaved by granzyme B (a cytotoxic T and NK cell protease), neutrophil elastase and 
mast-cell chymase, which confers bioactivity similar to calpain and up to a ~10-fold increase in activity over pro-IL-



1α (29). This was found to be important in persistent inflammatory lung conditions such as cystic fibrosis, as patient 
bronchoalveolar lavage fluids could process IL-1α to a mature form. Interestingly, neutrophil elastase and mast cell 
chymase can also cleave IL-1β, IL-18, and IL-33 (32–34), perhaps revealing historic processes that could activate the 
ancestral IL-1 ligand before gene duplications formed the IL-1 family (35). 

Thrombin, the key protease of coagulation, is also able to directly cleave and activate pro-IL-1α (36).  Pro-IL-
1α is cleaved by thrombin at a (K)PRS motif that is highly conserved across disparate mammalian species, suggesting 
functional importance. IL-1α cytokine activity after cleavage by either thrombin or calpain is equivalent, suggesting 
that removal of the N-term is critical for IL-1α activity, as is seen for IL-1β. The co-localisation of tissue factor (TF) 
(a thrombin activator) and pro-IL-1α in the epidermis means that following injury thrombin generated during 
haemostasis can rapidly activate IL-1α, leading to inflammation and recruitment of immune cells that can safeguard 
against potential infection.  

In addition to responding to intracellular LPS, casp-5 and -11 can also directly process and activate IL-1α (31). 
Again, pro-IL-1α cleavage occurs at an Asp residue that is highly conserved between different species, and this 
processing partially controls the release of mature IL-1α from macrophages after both canonical and non-canonical 
inflammasome activation (31). Importantly, CASP5 expression is increased in senescent human fibroblasts, and 
release of IL-1α, which drives the senescence-associated secretory phenotype (SASP), and SASP factors (e.g. IL-6/8, 
monocyte chemoattractant protein-1 ) is reduced without casp-5 (31). Furthermore, in an in vivo model of 
hepatocyte senescence, reducing casp-11 in senescent cells leads to their accumulation, which is caused by a 
reduced SASP failing to recruit immune cells. Together this suggests that casp-5/11 plays a key role in regulating IL-
1α activation and release in both myeloid and senescent cells. 

All the proteases described above cleave pro-IL-1α within the same target region located between the N-
term propiece and the C-term cytokine domain. Together, this means that cleavage of IL-1α by any protease results 
in an active cytokine that only differs by a few amino acids and has comparable biologically activity. IL-1α activation 
can therefore be affected in a broad range of scenarios, allowing it to act as a versatile universal danger signal.   
 
 
Part 2 - IL-1 production and responses by specific cell types. 
 
 IL-1 was historically studied under many names, including leukocyte endogenous mediator, 
haematopoietin 1, endogenous pyrogen, lymphocyte activating factor, catabolin and osteoclast activating factor 
(37) - underscoring the pleiotropic effects of this widely expressed cytokine. In multi-cellular organisms cells exist 
in specialised niches that require distinct environmental cues to maintain homeostasis and functionality, much of 
which is controlled by soluble signalling factors such as cytokines and growth factors. IL-1 is active at very low 
concentrations, is tightly regulated and has important roles that extend beyond typical inflammation. Cell type-
specific examples of both IL-1 production and response are discussed in this section.  
 
IL-1 performs key roles in controlling innate immune cell function: 
 IL-1 signalling is vital for effective innate immunity, with most innate immune cells able to produce IL-1 and 
almost all mesenchymal/tissue cells able to respond to it (38). Innate responses typically occur after sensing of 
DAMPs or PAMPs by tissue resident immune cells (e.g. macrophages), which leads to upregulation of pro-IL-1α/β 
and other cytokines (e.g. TNFα). If the insult is severe enough, leaked factors such as ATP drive inflammasome 
activation and large scale release of mature IL-1α/β. Importantly, as pro-IL-1α is constitutively expressed by many 
tissue cells, necrosis can release fully active IL-1α that may instigate a low level responses able to resolve an insult 
before full inflammasome activation and potential collateral tissue damage. IL-1-mediated processes important for 
innate responses include cytokine secretion, upregulation of adhesion, MHC and/or co-stimulatory molecules and 
induction of vascular leakage, ultimately leading to the recruitment, activation and instruction of immune cells (39).  
 
Neutrophils.  

Neutrophils are the most abundant white blood cell in the circulation. They are rapidly recruited to sites of 
injury or infection where they phagocytose microbes and undergo degranulation to release bactericidal reactive 
oxygen species and proteases (40). Because of a short life span (~23-38h), neutrophils require continuous 
replacement and robust mechanisms to control circulating numbers (41). Granulopoiesis and release of mature 
neutrophils from the bone marrow can be driven by IL-17 from Th17 cells (42), via granulocyte-colony stimulating 
factor. As Th17 differentiation is regulated by IL-1 (43) and Th17 cells produce IL-17 after exposure to IL-1 and IL-
23, this gives IL-1 an indirect role in granulopoiesis (Figure 1B) (44,45). More generally, infection and inflammation 



trigger neutrophilia via IL-1-induced proliferation of hematopoietic stem cells, a process known as emergency 
granulopoiesis (46).  

IL-1 does not directly recruit neutrophils (47), rather it causes recruitment to sites of inflammation by 
upregulating neutrophil chemoattractants such as CXC- and CCL- chemokines in other cell types (48). For example, 
IL-1-dependent production of the chemokine IL-8 (CXCL8) occurs in endothelial cells (49), fibroblasts, and 
keratinocytes (50).  IL-1 can also induce production of neutrophil chemotactic lipids including leukotriene B4  (51) 
and platelet activating factor (52). Recruitment of mature neutrophils to sites of infection or injury can also be 
driven by Th17 cell IL-17, which induces release of the neutrophil chemokines CXCL1, CXCL2, CXCL5, and CXCL8 
from local endothelial and epithelial cells (53). Th17 cells also directly recruit neutrophils by production of CXCL8 
(54). After administration of hydrocarbon oils to the peritoneal cavity, locally released IL-1α drives production of 
CXCL5 that recruits neutrophils (55). 

IL-1 also drives calcium-dependent degranulation of neutrophils (56), with the exteriorised proteases (e.g. 
cathepsin G, elastase, and proteinase 3) subsequently able to cleave and activate multiple IL-1 family members (e.g. 
IL-1α, IL-1β, IL-33, IL-36) (57,58). Indeed, it has been suggested that neutrophil proteases may be more effective at 
processing IL-1 family members than directly killing microbes (58), suggesting the ancestral purpose of these 
proteases was to activate cytokines. Proteinase 3 can also process IL-1β inside neutrophils lacking NF-κB signalling 
(59), which could serve as a host defence mechanism against pathogens able to evade NF-κB dependent innate 
immunity (60). Activated neutrophils release a meshwork of chromatin and proteases that form extracellular fibers, 
known as neutrophil extracellular traps (NETs), which trap and kill bacteria (61). Formation of NETs often leads to 
a lytic form of cell death called NETosis, but NETs can be released without cell death, known as vital NETosis (62). 
Interestingly, NET extrusion and NETosis are dependent on GSDMD pore formation that occurs during non-
canonical inflammasome activation by intracellular LPS or bacteria (63,64). NET formation also occurs in response 
to exogenous IL-1 (65,66). In atherosclerotic plaques, cholesterol efflux-driven NLRP3 inflammasome activation in 
myeloid cells induces subsequent IL-1R1-dependent neutrophil accumulation and NET formation (67). Conversely, 
NET formation can also elicit IL-1 signalling, with the NET-associated proteases elastase and cathepsin G able to 
cleave and activate IL-1α (68,69). Indeed, in diabetic wounds NET overproduction triggers macrophage NLRP3 
inflammasome activation and IL-1β release, which sustains inflammation and impairs healing (70).  

Finally, myelopoiesis following myocardial infarction is driven by neutrophil-derived IL-1β. Neutrophils 
recruited to the infarcted tissue release the alarmins S100A8 and S100A9 that bind to TLR4 on naïve neutrophils 
and induce NLRP3 inflammasome-dependent IL-1β secretion, which subsequently drives IL-1R1-dependent 
granulopoiesis in the bone marrow (71). Together, IL-1 signalling is either directly or indirectly capable of inducing 
neutrophil production, recruitment, degranulation, and NETosis. In turn, neutrophil proteases are able to activate 
IL-1 family members, which could act as a means to rapidly amplify inflammation at sites of injury or infection.  
 
Macrophages. 

The main functions of a macrophage are to phagocytose cell debris and foreign bodies and release cytokines 
that orchestrate immune responses. Phagocytosis is fundamental for host defence, as it combines microbial killing 
with innate immune activation and the presentation of antigens to T cells. Macrophage phagosome maturation 
depends on progressive acidification, which activates pH-dependent proteases (e.g. cathepsins) that degrade the 
contents (72). Interestingly, mechanisms for macrophage cytokine release and phagocytosis overlap, with gram-
positive bacteria within phagosomes inducing NLRP3 inflammasome activation. This leads to active casp-1 
accumulation on phagosomes, where it controls acidification via the NADPH oxidase NOX2 (73,74). To evade 
digestion in the phagosome, Staphylococcus aureus has evolved a mechanism that allows it to sequester 
mitochondria away from phagosomes, thereby preventing mitochondrial reactive oxygen species generation, local 
casp-1 activation, and subsequent phagosome acidification (75).  

Macrophages can produce IL-1 in a variety of ways, as detailed above. However, macrophages appear unique 
in their ability to present IL-1α on the cell surface (Figure 1C) (76,77). Cell surface (csIL-1α) is induced de-novo after 
TLR ligation and associates with the membrane via IL-1R2 and a glycosylphosphatidylinositol (GPI)-anchored 
protein, with trafficking to the membrane specifically inhibited by IFNγ (77). Because csIL-1α is the less active pro-
form tethered via the N-term (77), it is both activated and released after cleavage, for example by thrombin, (36) 
permitting wider ranging effects. However, in contrast to the general literature, macrophages are in fact very poor 
responders to IL-1 (Unpublished observations MC lab), due to very low expression of IL-1R1. Furthermore, because 
IL-33 causes macrophage activation and differentiation and IL-33 signalling via ST2 needs IL-1 receptor accessory 
protein (IL-1AcP) as a co-receptor (78,79), this signalling complex likely sequesters IL-1AcP away from any IL-1R1, 
further reducing the potential for IL-1 signalling. 



Macrophages change phenotype in response to the microenvironment, typically becoming polarized to M1 
(classically activated) or M2 (alternatively activated) subtypes. NLRP3 and IL-1β expression is reduced in M2 cells 
(80), and inhibition of NLRP3 inflammasome activation drives M2 polarization (81,82). In keeping with this, NLRP3 
inflammasome activation in Treponema pallidum infected macrophages induces M1 polarization and IL-1β release 
(83). In contrast, NLRP3 activation can also cause M2 polarization via upregulation of IL-4 in an inflammasome-
independent process (84). Together, although NLRP3-controlled M1/M2 polarization is clearly important, the exact 
picture is yet to be elucidated.  
 
Platelets.  
 Platelets are key for haemostasis in response to vascular injury, but also form pathogenic thrombi. 
Activated platelets change shape, aggregate, degranulate, and upregulate receptors (85), but also release bioactive 
molecules that cause inflammation and modulate immune responses. Activation of platelets increases cell surface 
IL-1α (86,87), which can be cleaved and released from the surface by thrombin (36). During stroke or brain injury, 
IL-1α released from activated platelets is important for driving cerebrovascular inflammation via activation of the 
brain endothelium, which enhances adhesion molecule and CXCL1 expression (Figure 1D) (88). Platelet 
microparticle-associated IL-1β also promotes platelet-neutrophil aggregation in injured lung microvasculature 
during sickle cell disease (89). Additionally, platelets are able to license NLRP3 inflammasome activation and IL-1 
production in innate immune cells, particularly monocytes. This licensing is via an unknown soluble platelet factor, 
independent of contact, and is not IL-1 or an inflammasome component (90). Platelets also express IL-1R1, and 
treatment with exogenous IL-1β can activate platelets and enhance adhesion to substrates (91). Platelets can also 
respond to the IL-1β they release in an autocrine signalling loop after LPS stimulation (92).  
 Platelet count and thrombopoiesis are both tightly regulated. Normal thrombopoiesis occurs after 
thrombopoietin induces caspase activation in megakaryocytes, causing compartmentalised apoptosis and pro-
platelet formation (93,94). However, emergency thrombopoiesis also occurs after acute platelet loss, with IL-1α 
signalling causing alternative platelet production via megakaryocyte rupture (95). Indeed, mice with thrombin-
resistant pro-IL-1α do not rapidly recover platelet count after platelet depletion, suggesting thrombin activation of 
IL-1α is the critical mechanism for this form of emergency thrombopoiesis (36). Platelets are at the interplay of 
haemostasis and inflammation and together it is clear that their role in host defence goes much deeper than their 
ability to cross link fibrin during haemostasis. 
 
IL-1 is vital for adaptive immunity: 

An appreciation of the effects of IL-1 on the adaptive immune system dates to the 1970s, when IL-1 was 
originally named lymphocyte activating factor) to account for its lymphoproliferative activity (96–98). Indeed, T cell 
expansion under the influence of IL-1 is demonstrated for a variety of T helper (Th) cell subsets such as Th1 (99,100), 
Th2 (100,101) and Th17 (100), in a process that is antigen and/or T cell receptor (TCR)-dependent. These 
observations are partly explained by a pro-survival role of IL-1 on the cells (100); however, other studies show no 
pro-survival effects of IL-1 on CD4 T cells (102). Similar observations were noted with Granzyme B+ CD8+ T cells, 
where IL-1 regulates expansion and effector function (103).  IL-1 also drives Th cell differentiation, in particular 
Th17, but also synergises with TNF to enable IL-12-driven Th1 differentiation (99). Th17 lineage commitment in 
both human (104,105) and mouse systems (43) is conferred by IL-1-driven upregulation of the transcription factor 
Rorc (106). Production of signature cytokines by the majority of CD4 effector T cells is also augmented by other IL-
1 family members (e.g. IL-18, IL-33 and IL-36), with Th9 (107,108) and Th17 (106) cells directly responding to IL-1, 
which bypasses the requirement for TCR engagement and CD28 co-stimulation (100). Indeed, the tri-fold effects of 
IL-1 on T cell proliferation, differentiation and cytokine secretion in the absence of TCR stimulation is suggestive of 
the negative effects dysregulated IL-1 might have on adaptive immunity (as summarised in Figure 2A). This is further 
compounded by the inability of Tregs to effectively suppress IL-1-driven T cell proliferation and cytokine production 
(102). Thus, IL-1-driven activation of effector T cells with reduced Treg suppression could breach tolerance and 
drive autoimmunity. 

 
Direct effects of IL-1 on T cells. 

It is not totally clear whether the effects of IL-1 on T cells are direct or indirect. Direct regulation implies 
expression of IL-1 receptor 1 (IL-1R1) on T cells, and although some evidence supports this it is not currently 
conclusive. Competitive binding experiments using radiolabelled IL-1 demonstrates that Th2 cells, but not Th1, bind 
IL-1 (109), which is supported by flow cytometry for IL-1R1 expression on murine Th2 cells (110). However, 
circulating human Th17 precursor cells (CCR6+ CD161+ CD4+) do not express Il1r1 mRNA (111), and a subset of Th2 
cells with the ability to express IL-17 (CRTH2+ CD4+) contain very low levels of IL-1R1 protein (112). In contrast, 



bona fide Th17 cells show clear Il1r1 transcription (43) and expression of functional IL-1R1 on the cell surface (106). 
Furthermore, the presence of IL-1R1 on naive or memory CD4 T cells isolated from human blood determines Th17 
fate and subsequent secretion of IL-17, with or without TCR triggering (113). Importantly, formation of an active IL-
1 signalling complex requires IL-1R accessory protein (IL-1RAcP), and therefore the expression pattern of this co-
receptor in conjunction with IL-1R1 is required to determine which T cells respond to IL-1 (114,115).  CD4 and CD8 
T cells express cell surface IL-1RAcP, with higher abundance on regulatory CD4+ CD127low CD25hi cells that also 
express high levels of forkhead box P3 (FoxP3) (116). IL-1RAcP is also stably expressed on Th2 cells, where it acts as 
a co-receptor for ST2 that mediates T helper type 2 reactions in response to IL-33 (117,118), suggesting that Th2 
cells would respond to IL-1 if IL-1R1 is co-expressed. 

T follicular helper (Tfh) cells also express IL-1R1 transcript and protein, and functionally respond to IL-1 (119), 
suggesting they must also express IL-1RAcP. Tfh cells provide growth and differentiation signals (i.e. IL-4, IL-21 and 
ICOS) to germinal centre (GC) B cells, which drives affinity maturation, somatic hypermutation and long-lived 
humoral immunity (Figure 2B) (120–122). Indeed, administration of IL-1β during immunisation substitutes for 
adjuvant-induced Tfh expansion and cytokine release (specifically IL-4 and IL-21). Moreover, IL-1β augments 
adjuvant-driven immunisation by enhancing antigen-specific antibody production. In contrast, IL-1RA (Anakinra) 
inhibits these responses, showing the importance of IL-1 signalling in Tfh cells (119). The need for IL-1 for a 
productive GC and antibody response after immunisation suggests that driving IL-1-dependent Tfh-mediated B cell 
activation might be beneficial for enhancing vaccine efficacy, either by direct IL-1 administration or by using agents 
that induce IL-1 (e.g. alum) (123). However, GC activation has to be tightly regulated, because loss of control could 
breach B cell tolerance and allow self-reactive clones to escape the GC, ultimately causing systemic autoimmune 
disease (124,125). 

Tregs maintain immune homeostasis by suppressing unwanted immune responses via multiple mechanisms 
(126,127), including regulation of IL-1 availability via expression of IL-1 antagonists. Within the GC, Treg subtypes 
can restrain humoral responses by inhibiting secretion of the B cell activating cytokines IL-4 and IL-21 from activated 
Tfh (128,129). T follicular regulatory (Tfr) cells in particular express high levels of IL-1R2 and IL-1RA, which 
suppresses IL-1-driven GC activation by inhibiting Tfh activation and secretion of IL-4 and IL-21 (119). Thus, in cases 
of IL-1-mediated GC dysregulation, IL-1 antagonists may be useful in controlling these responses and restoring 
protective immunity. However, non-physiological upregulation of IL-1R2 represents a maladaptive mechanism 
utilised by Tregs infiltrating colorectal, non-small cell lung or breast cancers that are more aggressive with poor 
prognosis (130,131). Supported by evidence showing that DC-derived IL-1β-dependent priming of CD8+ T cells 
augments their tumoricidal properties and that Nlrp3-/- or Casp-1-/- DCs sub-optimally prime T cells (132), these data 
suggest that IL-1 depletion from the tumour microenvironment could confer immunosuppression and poor tumour 
control, and thus IL-1R2 expression on intra-tumoural Tregs could be utilised as a prognostic marker. 
 
Indirect effects of IL-1 on T cells via dendritic cell activation. 

In addition to the direct effects of IL-1 on T cells, their function can also be indirectly influenced by 
interaction with IL-1-primed DCs (Figure 2C). Both IL-1α or IL-1β-pulsed DCs enhance T cell-dependent cytokine 
secretion from CD4 and CD8 T cells, with IFN-γ secretion being consistently augmented (133–135). Although IL-1 is 
not as strong an inducer of DC maturation as LPS, it still potently upregulates activation markers (e.g. CD40, CD80 
and CD83) and induces secretion of pro-inflammatory mediators (e.g. CXCL8 and CXCL12) (133). In contrast, IL-1β 
induces minimal secretion of the major polarising cytokine IL-12p70, but in combination with CD40L both 
expression of Il12b and release of IL-12p70 is increased (134,136). In addition, antigen endocytosis, which is 
diminished during DC maturation, is decreased by IL-1β to a similar degree as LPS (137). What is clear is that the 
role of IL-1 on adaptive immunity is multifaceted and cannot be summarised in a single conclusion. A multitude of 
normal immune responses depend on IL-1 signalling, including T cell proliferation, expansion and differentiation, 
as well as humoral responses to T cell-dependent antigens. Moreover, IL-1 synergises with CD40L to potentiate 
activation and maturation of DCs, and the subsequent adaptive immune response. Together, these processes are 
critical for host defence, and dysregulation of the equilibrium leads to either an ineffective adaptive reaction or an 
overwrought maladaptive response that drives autoimmune pathology.  
 
IL-1 is important for maintenance of epithelial barriers:  
 Epithelial cells form a highly specialized physical barrier against the external environment, and thus are 
exposed to a myriad of PAMPs, damage-associated molecular patterns (DAMPs), and other environmental factors 
that induce inflammation. Although inflammasomes are primarily studied in myeloid cells they are also essential 
for barrier defence in non-myeloid cells, including specialised epithelial cells. Indeed, IL-1 is constitutively expressed 



in many epithelial cells, where it helps defend against pathogens and injury (Figure 1E) (138). However, loss of 
control can lead to inappropriate activation, chronic inflammation and disease (139). 
 
Keratinocytes. 
 Keratinocytes secrete pro-IL-1α that can be processed by thrombin activated during haemostasis after 
wounding. This connection between the coagulation and immune systems allows rapid IL-1α activation and 
immune cell recruitment that can safeguard against potential infection after breach of the epidermal barrier (36). 
In response to UVB irradiation (140) or analogs of viral double stranded RNA (141) keratinocytes activate the NLRP3 
inflammasome and secrete IL-1β. The IL-1 released from keratinocytes after viral infection induces expression of 
anti-viral interferon-stimulated genes in local fibroblasts and endothelial cells. However, this is not observed in 
mouse models, suggesting human skin has an alternative IL-1-driven anti-viral system to prevent viruses that can 
evade detection by pattern recognition receptors (142).  
 
Gastrointestinal epithelium. 
 The gastrointestinal tract epithelium is highly specialized throughout its length and must respond 
appropriately to its local environment to maintain homeostasis. In the stomach, IL-1-mediated reduction of gastric 
acid production (143–145) and prostaglandin synthesis (146) by parietal epithelial cells inhibits neutrophil 
infiltration, which protects the gastric lining from non-steroidal anti-inflammatory drug-induced gastropathy (146) 
and ulceration (147). In the duodenum, IL-1 signalling causes epithelial goblet cells to increase mucus secretion 
(148,149), and IL-1 can also confer protection to disrupted mucosal layers during Helicobacter pylori infection (150). 
In contrast, elevated IL-1 signalling can also contribute to gut epithelium dysfunction by increasing tight junction 
permeability (151,152) and inhibiting effective absorption (153–155). Finally, IL-1 signalling in colonic epithelial cells 
plays a direct pro-tumorigenic role by regulating the early proliferation and survival of colorectal cancer cells, 
independent of inflammation (156).  
 
Respiratory epithelium. 

The respiratory epithelium comprises basal, ciliated, and secretory epithelial cells responsible for 
homeostatic regulation of lung fluid, clearance of inhaled agents, recruitment of immune cells, and regulation of 
airway smooth muscle function (157). Epithelial IL-1 signalling regulates mucin secretion and airway surface liquid 
metabolism, resulting in enhanced mucociliary clearance during inflammation (158). In cystic fibrosis, where CFTR-
mediated fluid secretion is impaired, IL-1 drives secretion of epithelial mucin, but not fluid, causing mucus 
hyperconcentration (159). IL-1 and TNFα also promote the regeneration of alveolar epithelial cells by stimulating 
proliferation of type 2 epithelial progenitor cells (160). Indeed, IL-1 and TNFα released during influenza infection 
promotes repair of damaged alveoli (161). 
 
Endothelial cells. 

Endothelial cells are critical for blood vessel formation, coagulation, regulation of vascular tone, and 
inflammation (162). Heme from ruptured red blood cells can activate the NLRP3 inflammasome and cause IL-1β 
release from endothelial cells, and thus inflammation can occur in response to sterile haemolysis (163). Endothelial 
cells activated by IL-1 express TF on their surface, which initiates the coagulation cascade (69,164,165). IL-1 also 
causes endothelial cells to reduce tight junction integrity (166–168) and increase expression of adhesion molecules, 
such as ICAM (169) and PECAM1 (170), facilitating diapedesis of leukocytes. In contrast, IL-1 reduces transcellular 
diapedesis through endothelial cells (167). Finally, IL-1 also acts as a potent proangiogenic signal via endothelial 
cell-derived vascular endothelial growth factor (VEGF) (171). For example, during tumorigenesis, IL-1 from recruited 
myeloid cells causes endothelial cells to upregulate VEGF and other proangiogenic factors, which promotes an 
inflammatory microenvironment that supports tumour angiogenesis (172,173). In these models IL-1 inhibition 
restricted tumour growth and angiogenesis (174). Together, IL-1 signalling is essential to many specialised epithelial 
cell processes and is vital for effective barrier defence, however dysregulation can lead to excessive inflammation 
and tumorigenesis. 
 
 
Part 3 - Alternative roles of IL-1 in health and disease. 
 
 Immune responses are necessary for the maintenance of homeostasis; for example, to maintain an 
environment that is inhospitable for invading pathogens (e.g. mucous membranes), or in contrast, training the 



immune system to tolerate bacteria (e.g. gut microbiota). However, balance is everything, with loss of homeostasis 
leading to chronic inflammation and/or inappropriate adaptive immunity, which both exacerbates existing disease 
and drives emergence of new pathology. IL-1 signalling is central to many immune responses, and thus blocking IL-
1 therapeutically is important in a wide spectrum of diseases (175). This section focuses on some of the more 
unconventional effects of IL-1 in health and disease. 
 
IL-1 signalling is important during wounding and thrombosis: 
 Skin wounding occurs when the epidermal barrier is disrupted by cutting, excessive force, chemicals, or 
extreme temperature. Wounding triggers a series of events critical to the healing process: haemostasis, 
inflammation, proliferation, and remodelling (176). Initially, haemostasis is activated after vessel wall injury to allow 
local thrombus formation that stymies blood loss (177). Subsequent inflammation at the wound site is integral for 
removal of damaged tissue and recruitment of immune cells that coordinate repair (176). 
 Epidermal IL-1α colocalises with TF, a potent thrombin activator. Thus, epidermal injury results in 
generation of active thrombin, which cleaves and activates pro-IL-1α (36). Indeed, genetically modified mice with 
thrombin-resistant pro-IL-1α recruit fewer neutrophils and macrophages to the granulation tissue under the wound 
and show delayed healing (36). Furthermore, excisional wounds in Nlrp3-/- and Casp1-/- mice contain less IL-1β and 
TNFα, recruit fewer neutrophils and macrophages, and also show delayed healing that can be partially rescued by 
addition of exogenous IL-1β (178). In keeping with this, application of the NLRP3 activator ATP accelerates wound 
closure in wild type mice (179). Staphylococcus aureus infection of wounds upregulates keratinocyte IL-1 that drives 
neutrophil recruitment via IL-1R1 signalling (180), while NLRP3 activation is also seen after sterile burn injuries, 
with Nlrp3-/- mice showing reduced macrophage infiltration and impaired healing after chemical burns (181). In 
contrast, excessive IL-1 can lead to chronic non-resolving wounds (Figure 1F). For example, sustained NLRP3 
activation and elevated IL-1β is found in non-healing diabetic wounds (182), with inflammasome inhibition 
improving healing via increased angiogenesis and reduced inflammatory macrophages (182,183). Additionally, 
excessive neutrophil NETs cause NLRP3-dependent IL-1β release from macrophages (70), with NET digestion 
reducing inflammasome activation and macrophage infiltration, leading to diabetic wound healing (70). IL-1 
signalling also promotes fibrosis in the wound, with IL-1 inhibition reducing scarring and improving healing in deep 
tissue (184) and diabetic wounds (185). Together, this shows that while IL-1 signalling in the wound is necessary for 
effective wound healing, it must be tightly regulated to prevent pathological chronic inflammation and/or scarring. 
 Haemostasis is essential to prevent injury-related blood loss; however pathological thrombosis occurs 
when anticoagulant mechanisms are unable to limit excessive activation of the haemostatic pathway, leading to 
vessel occlusion and downstream ischaemia. Excessive IL-1 signalling can cause thrombosis (Figure 1F), with the 
CANTOS study finding that IL-1β inhibition with Canakinumab reduces secondary atherothrombotic events in 
patients with residual inflammatory risk, which was likely due to modulation of procoagulant factors and reduced 
leukocyte recruitment to the plaque (186). Additionally, increased NLRP3-dependent IL-1β maturation and venous 
thrombosis is seen in mice deficient for the vasculoprotective enzyme CD39, which is reversed by IL-1 inhibition 
(187). Thrombosis relies on the interplay between blood cells, plasma proteins and the vessel wall. Neutrophils 
drive thrombosis by producing TF and NETs, which act as scaffolds for thrombus stabilization (188,189), which can 
induce coagulopathy during sepsis (190), acute respiratory distress syndrome (ARDS) (191), and coronary artery 
thrombosis (192). ST-elevation myocardial infarction (STEMI) patients with elevated inflammatory markers (e.g. 
hsCRP) have increased circulating IL-1β and NET-associated TF, while mouse models of thrombosis have reduced 
NET-associated TF and delayed thrombotic occlusion when IL-1β is blocked (193). Similarly, IL-1β or NLRP3 
inhibition attenuates NET-associated thrombosis in mouse models of breast cancer, supporting IL-1β as the driver 
of this mechanism (194). Additionally, as NET-associated proteases can activate IL-1, this can also promote IL-1R1-
dependent TF expression on the endothelial cell surface (69). Macrophages can also release TF after inflammasome 
activation by bacteria during sepsis, with GSDMD-dependent pyroptosis and pore formation allowing 
externalisation of TF that triggers systemic coagulation and lethality (195,196). Overall, wounding is a complex 
mechanism that requires rapid, tightly controlled, haemostasis and inflammation for effective healing. IL-1 is widely 
expressed in the epidermis and the vessel wall and can be activated by many proteases, and is therefore integral 
to the wounding response. 

  
Innate immune training can be mediated by IL-1:  

Trained immunity refers to a response in innate immune cells after encountering a pathogen that is more 
adaptive-like and confers a degree of protection against secondary exposure to an un-related infection (197). 
Establishment of trained immunity is mostly driven by epigenetic remodelling and metabolic changes that occur 
after the first exposure (198,199). Because the epigenetic imprinting is locus-specific and allows access to 



transcription factors, it can alter cell identity and prime specific functions. Similarly, changes in cell metabolism also 
establish new cell functions (199). However, cell metabolism can affect epigenetic reprogramming that further 
alters the cells metabolic status, and thus these processes are inter-dependent. IL-1 family agonists are implicated 
in trained innate immunity, with macrophage-derived IL-18 playing a non-redundant role in training NK cells’ anti-
tumour activity via secretion of IFN-γ (200–202). Moreover, IL-1β participates in induction of trained immunity in 
response to Bacille Calmette-Guerin (BCG) vaccination, where increased IL-1β and TNFα from peripheral monocytes 
correlates with enriched histone H3K4 tri-methylation at Il6, Tnf and Tlr4 promoters after in vitro re-stimulation 
with M. tuberculosis, heat-killed S. aureus or C. albicans (203).  

Epigenetic changes after training via cytokines can be mediated by altered metabolism that leads to 
accumulation of metabolic products such as glucose, lactate (204), succinate, itaconate (205), mevalonate (206) 
and fumarate (207). In particular, the transition from oxidative phosphorylation to aerobic glycolysis is a 
determining step towards trained immunity, and is associated with H3K4me3 and H3K27Ac modifications in the 
presence of glucose, lactate (204) and mevalonate (206). Interestingly, mevalonate accumulation in patients with 
hyper IgD syndrome (HIDS) that lack mevalonate kinase is associated with increased IL-1β production by LPS-
stimulated monocytes (206). Similarly, glycolysis-driven accumulation of succinate in response to LPS induces 
macrophage IL-1β expression, which occurs via HIF-1α binding to the Il1b promoter (208).  

Trained immunity is also established at a systemic/central level after exposure of bone marrow hemopoietic 
stem and progenitor cells (HSPCs) to pathogen-derived products, such as β-glucan, BCG, or Western diet (WD) 
feeding. β-glucan induces bone marrow IL-1β production that acts on HSPCs, leading to preferential myelopoiesis 
and metabolism that favours glycolysis and cholesterol synthesis (209). BCG vaccination also causes HSPCs to skew 
toward myelopoiesis and epigenetic reprogramming of macrophages, such that they upregulate Ifng, Tnf and Il1b 
upon re-stimulation with M. tuberculosis (210). Indeed, BCG vaccination increases circulating IL-1β, which inversely 
correlates with viremia after a secondary yellow fever vaccination (211). Together, this suggests that IL-1β 
contributes to both training process and direct anti-mycobacterial response. Interestingly, diet can also drive 
trained immunity, with WD fed mice exhibiting myelopoiesis skewed towards the monocytic lineage and 
upregulation of genes associated with hematopoiesis, metabolism, immune cell differentiation and leukocyte 
activation. This WD-dependent reprogramming was long lasting (4 weeks) and was dependent on NLRP3 (212). 

However, despite beneficial effects of trained immunity on host defence, the long-lasting reprogramming of 
innate immune cells can become maladaptive and contribute to pathology. Human monocytes trained ex vivo with 
oxidised low density lipoprotein (oxLDL) or β-glucan produce pro-atherogenic cytokines and increase foam cell 
formation upon re-stimulation (213). Furthermore, chronic systemic exposure to IL-1 can lead to haematopoietic 
stem cell exhaustion that compromises blood cell homeostasis and reduces the ability to endure replicative 
challenges such as transplantation (214). Under such circumstances metabolites such as itaconate, which limits 
aerobic glycolysis and induces anti-inflammatory and anti-oxidative programmes (215–217), might be utilised to 
counteract innate training and re-instate immune tolerance (205). 

 
Autoimmunity can be driven by aberrant IL-1: 

Although IL-1 is critical for host defence, it can also contribute to autoimmune disease via its ability to amplify 
T cell responses, shift the balance for immune tolerance and its direct action on non-immune cells that induces 
inflammation and tissue damage (102,218) (Figure 2D). Indeed, each of the above mechanisms, either alone or in 
combination, underlie the pathophysiology of common autoimmune diseases. 

 
Amplification of T cell response in IL-17-producing T cells. 

IL-17-producing Th17 and γδ T cells are causal of several mouse autoimmune syndromes, such as 
experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (44,219,220). IL-17 production 
in these cell types is stimulated by IL-1, suggesting that excess IL-1 would exacerbate these conditions. Indeed, both 
Il1r1-/- and Il1a/b-/- mice are resistant to the development of EAE due to lower Th17 cell proliferation, less IL-17 and 
lower self-reactive T cell activation, leading to less autoantibodies (44,221). Similarly, IL-1 and IL-23-treated γδ T 
cells drive EAE by increased secretion of IL-17 directly into the brain milieu and by indirect augmentation of IL-17 
production by αβ T cells (219). Furthermore, IL-1 antagonists (i.e. IL-1RA and SIGIRR) delay onset and reduce 
severity of mouse EAE (221,222). Interestingly, classic drugs used to manage multiple sclerosis (MS) (i.e. IFNβ) and 
its clinical relapse (i.e. steroids) associate with increased systemic levels of IL-1RA and IL-1R2 (223–225). In addition, 
monitoring the IL-1 to IL-1RA ratio in cerebrospinal fluid and/or lesions in MS patients may predict susceptibility of 
relapse-onset MS, hinting towards the use of IL-1 as a biomarker (226). In keeping, loss of NLRP3 inflammasome 
components (i.e. NLRP3, ASC, caspases-1 or -11) confers some protection from EAE (227–230). However, 
inflammasome-independent IL-1β production has also been demonstrated as a result of trans-cellular interactions 



between effector CD4 T cells and DCs. Thus, CD4 T cell-derived TNF induces DC expression of pro-IL-1β, which is 
subsequently activated by casp-8 after T cell FasL ligation of DC Fas, leading to IL-1β release and induction of EAE 
(231). 

 
Stability of Tregs and break of self-tolerance. 

Tregs are critical for maintenance of peripheral tolerance through their ability to suppress inappropriate 
activation of effector T cells. Foxp3 is essential for the suppressive functions of Tregs, and thus its expression 
maintains physiological T cell responses. Foxp3 expression can be reduced in highly inflammatory tissue 
microenvironments, especially in the presence of IL-1 and IL-6, which can convert Tregs into effector T cells that 
produce IFN-γ and IL-17 (232–234). Indeed, this confirms observations that IL-1β reduces susceptibility of CD4 
effector/memory T cells to Treg suppression due to expansion of IFN-γ producing effector CD25+ cells (235). This is 
more pronounced in the autoimmune-prone NOD mice, where splenocyte IL-1β production is enhanced and IL-1β 
neutralisation restores Treg suppression and normalises IFN-γ secretion, altogether suggesting that breach of 
tolerance can be driven by IL-1β (235). 
 
The action of IL-1 on non-immune cells contributes to autoimmunity: 

Besides its direct immunomodulatory effects, IL-1 can also act on non-immune cells to either alter their 
function or direct them towards apoptosis, thus contributing to the progression of several autoimmune and 
metabolic syndromes. Tissue damaging effects of IL-1 have been identified in the development of Type 1 and Type 
2 Diabetes Mellitus (T1/T2DM) as well as rheumatoid arthritis (RA), while in systemic sclerosis (SSc) IL-1 has been 
shown to mediate pathological tissue remodelling. 

 
IL-1-mediated β-cell apoptosis in metabolic syndromes. 

Pancreatic inflammation and β-cell deregulation and loss are determining factors in the pathogenesis of both 
T1/T2DM (236,237), and IL-1 can interfere with all these processes. Pancreatic β-cells express high levels or IL-1R1 
and respond to IL-1 by upregulating inflammatory cytokines and chemokines (238,239), which in turn recruit 
macrophages (240) and T cells (241). In addition, IL-1β has direct cytotoxic effects on β-cells (242) via canonical NK-
κΒ activation and upregulation of Fas, in response to glucose, ultimately contributing to insulin resistance and 
development of T2DM (243). This IL-1β-mediated glucotoxicity is also relevant to T1DM, where islet resident 
macrophages secrete IL-1β upon stimulation with LPS and TNF (244), leading to β-cell production of cytotoxic 
molecules (e.g. inducible nitric oxide synthase) (245). In addition, β-cell apoptosis can also be triggered by IL-1β and 
IFN-γ activation of the non-canonical NK-κΒ pathway (246). Indeed, glucotoxicity and cell loss is abrogated by IL-
1RA, improving β-cell secretory function and glycaemic control (243,247). 
 
IL-1-dependent degradation of bone and cartilage in rheumatoid arthritis.  

RA is characterised by progressive destruction of the articular joints due to IL-1-dependent degradation of 
both bone and cartilage (248). BALB/c mice lacking IL-1RA spontaneously develop an inflammatory arthropathy 
that shares features with human RA, such as inflammatory cell infiltrates, fibrin clots, bone erosion, increased IL-
1β in the affected joints and autoantibodies in serum (249). IL-1 signalling in synovial cells and chondrocytes causes 
upregulation and secretion of matrix metalloproteinases that degrade cartilage (250–252). In addition, IL-1 and 
TNF, when in the presence of T cell-derived RANKL, exert pro-osteoclastogenic effects that result in bone erosion 
and further joint damage (253), suggesting that IL-1 could be a druggable target for ameliorating symptoms and 
impeding disease progression. Indeed, neutralisation of IL-1 with antibodies or natural antagonists (i.e. IL-1RA or 
IL-1R2) diminish local inflammation and protect the joint from bone erosion, which led to the approval of Anakinra 
(IL-1RA) as an effective therapeutic for management of RA (254–256). 
 
IL-1 regulates fibroblast differentiation in systemic sclerosis. 

SSc is an idiopathic autoimmune syndrome that exhibits fibrosis in the skin and other organs like the heart 
and lungs, due to fibroblast activation and deposition of extracellular matrix (257). IL-1α and IL-1β regulate IL-6 and 
PDGF-A expression on SSc fibroblasts, promoting collagen deposition and proliferation (258,259) and 
differentiation into myofibroblasts (260–262). In addition, inflammasome activation in fibroblasts leading to IL-1β 
production acts in an autocrine manner to trigger expression of mIR-155, which in turn regulates collagen 
deposition in SSc (263–265). 
 
IL-1 signalling may be important in the pathogenesis of COVID-19: 



 The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which 
has caused a global pandemic (266). Symptoms of COVID-19 range from mild to severe, with viral pneumonia 
leading to ARDS, sepsis/disseminated intravascular coagulation (DIC) and/or multi-organ failure identified as the 
major causes of death (267). A key stage of the virus lifecycle is release of newly replicated virons (268), which 
escape via the host cell’s secretory pathways or by cell lysis (269). Egress of coronaviruses depends on the 
coronavirus envelope (E) protein, which acts as a viroporin that forms pores in the plasma membrane, causing lysis 
and subsequent release of DAMPs (270–272). For example, respiratory syncytial virus-infected cells release IL-1α 
that activates neighbouring cells to promote leukocyte recruitment (273) and interferon-mediated anti-viral 
mechanisms (Figure 1G) (142). However, excessive cell lysis and DAMP release can trigger an over-the-top innate 
immune response and overt production of cytokines, known as a cytokine storm, which can spill over into the 
circulation and cause sepsis (274). Severe SARS-CoV-2 infection causes a systemic cytokine storm and ARDS, with 
accompanying thrombosis (266,275,276). IL-1 inhibition improves pathologies associated with cytokine storms, 
including sepsis and DIC (277–279), and thus maybe beneficial for treating COVID-19. Indeed, Anakinra (IL-1RA) 
appears to dampen markers of systemic inflammation and improve ARDS in COVID-19 patients. Importantly, 
Anakinra has a short half-life (3h) that allows rapid discontinuation of treatment if needed, in contrast to 
Canakinumab (half-life 26 d) (279,280). At the time of writing there were 15 registered clinical trials examining IL-1 
blockade by Anakinra for COVID-19. However, patient selection, dosing, and outcome measures are not harmonised 
between studies (281), and only 11 were randomised control trials. Finally, the multi-centre RECOVERY trial has 
recently shown that the corticosteroid dexamethasone reduces deaths by one-third in ventilated COVID-19 patients 
(282), reinforcing the use of anti-inflammatory agents. Interestingly, dexamethasone is long known to profoundly 
inhibit IL-1 production (283,284), again signifying a likely role for this apical cytokine in human health and disease. 
Together, there is existing evidence that blockade of inflammatory pathways, including IL-1, is beneficial for 
reducing symptoms of cytokine storm in COVID-19. Further clinical trials will be essential to determine the full 
extent of this benefit.   
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Figure 1: IL-1 is activated after proteolysis and has a variety of cell-specific roles that maintain homeostasis. (A) Pro-IL-1α/β is activated
after cleavage by a diverse range of proteases. Active IL-1 binds to its signalling receptor IL-1R1 and elicits downstream signalling. IL-1
signalling is inhibited by binding to soluble or cell surface decoy receptor IL-1R2, or by competition from the IL-1 receptor antagonist (IL-
1RA) for IL-1R1. (B-E) The production and response to IL-1 by specific cell types is important for the maintenance of cell function and
homeostasis. (F-G) Dysregulation of IL-1 signalling can exacerbate or drive development of disease.
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Figure 2: IL-1 influences adaptive immunity by multiple mechanisms, with dysregulation leading to disease. (A) IL-1 can shape T cell 
responses either by direct binding to T cell IL-1R1 or indirectly via IL-1-primed DCs. (B) Amplified B cell responses are driven by IL-1-
activated Tfh cells. (C) Maturation, activation and cytokine secretion by DCs is directly driven by IL-1 signalling. (D) Uncontrolled IL-1 
amplifies T cell responses and can break self-tolerance to drive autoimmunity, while its non-immunological role in tissue damage 
and remodelling can exacerbate these conditions.


