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Abstract—Massive machine type communications (mMTC) is of mMTC include a massive number of devices, small-sized
one of the three major scenarios of the fifth generation (5G)@m-  packets, sporadic transmission (the number of active dsvic
munication system, and raises new challenges for the devplment 465 not exceed 10% of the total number of potential devices

of new radio access technology. Unlike human type communi- . - . . L
cations (HTC), mMTC is typically characterised by a massive even in busy time [3, 4]), uplink-dominated transmissian |

number of devices, small-sized packets, low or no mobilitjow ©OF N0 mobility, and low energy consumption [5, 6]. However,
energy consumption and sporadic transmission, which requés the legacy 4-step grant-based random access procedure for
novel solutions. In this paper, we propose the 2-step random [ ong-Term Evolution (LTE) is designed to support human
access with early data transmission (2-step-EDT) framewdr To type communication (HTC), which has the very different

solve the optimization problem proposed in the framework, ve I . o, .
introduce an algorithm, namely, Backward Sparsity Adaptive characteristics such as high user velocities, large-gpaelets

which jointly conducts the sparsity level estimation, actie device step access procedure is not appropriate for the mMTC, as the
detection, channel estimation and data recovery in two phas. excessive number of control packets will cause low spectral
Specifically, in the first phase, BSAMP-CP conducts the spaity  efficiency, redundant handshaking procedures will causela

level estimation in a backward manner exploiting the data leagth lat d fi d limited b f
diversity information. In the second phase, BSAMP-CP jointy atency and energy consumpton, and a limited number o

conducts activity detection, channel estimation and dataacovery, orthogonal preambles per _Ce” will cause a I.arge n.umber of
taking the joint sparsity information of pilot and data symbols, collisions. Therefore, to satisfy mMTC scenario requiratse
the error checking information and the modulation constelation it calls for a radical redesign of the Media Access Control

information into account. Furthermore, we provide a theoretical MAC) laver access procedure and advanced phvsical (PHY
analysis on the convergence of the proposed BSAMP-CP in the I(ayer )Solliltions P phy ( )

noiseless case and the rationale for the improvement yieldeby ) L
exploiting data length diversity. Simulation results demmstrate To support massive connectivity in the mMTC, four poten-
the superiority of the proposed solution in comparison to ober tial methods are introduced in [7], including back-off mech

existing methods. anism design, access class barring, separate Random Access
I ndex Terms—Massive machine-type communication, compres- Channel (RACH) resources and dynamic allocation of RACH
sive sensing, random access, massive connectivity resources. However, these methods still do not solve thie-pro

lem of low spectral efficiency caused by excessive signaling
overhead. To combat the problem of massive connectivity
overload and redundant handshaking, activity detectiath an
HE requirements of the fifth generation (5G) communicatata recovery are jointly conducted in code division midtip
tion system for IMT-2020 include the support of diversaccess (CDMA) systems via the use of compressive sensing
scenarios, services and applications, where massive nechiCS) reconstruction algorithms [8-15]. Such algorithms in
type communications (mMMTC), together with ultra-reliablelude Orthogonal Matching Pursuit (OMP) [16, 17] , Group
low-latency communication (URLLC) and enhanced mobil®rthogonal Matching Pursuit (GOMP) [18] and Approximate
broadband (eMBB), are three typical 5G usage scenariof. WiMlessage Passing (AMP) [19]. CS Multi-User Detection (CS-
the rise of the Internet of things (loTs), which is the maiMUD) [8] does not require the access reservation procedure
service supported by mMTC, more and more objects aroundeded in the 4-step RACH, and achieves user detection
us will be interconnected to form a smart world [1]. It isaccuracy close to MUD with known activity. In [14, 15, 20],
confirmed that the number of connected devices has exceedathods are proposed that exploit additional informatiorhs
the number of people on earth [2]. Typical characteristies channel decoding information and modulation infornmatio
to improve the performance. However, the above methods all
. H|a$ )éfi-ao'cw? ICheQ g”? tBOBAi,__a’eJ‘_’Vi”t‘ the UStf"‘te KBey__'LaboCr?]ti?];y %make the assumption of known Channel State Information
(Caérrers%cl)(r:ldir?gn author wgiec);ien;e”el?r?\anl:a\?vggﬂ@Qj%e_{.ﬂf”mg' (Csl), without considering channel estimation. More picadt
Jun Fang is with the National Key Laboratory of Science arghfielogy on  solutions take the channel estimation and system design int

Communications, University of Electronic Science and Tedbgy of China, gccount [21_25] where the activity detection and channel
Chengdu, China. !

lan J. Wassell is with the Computer Laboratory, UniversityCambridge, estimation are jointly impleme_nt_ed, and then data feCOi&?fy
Cambridge, U.K. conducted. However, most existing methods [21-25] explici
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Fig. 1. Different access and data transmission procedurenfdTC: (a) the traditional 4-step procedure in LTE, (b) thet@p procedure and (c) the
2-step-EDT procedure.

or implicitly (as defined in the numerical experiments) assu which considers multiple source of information includirnge t
the number of active devices is known, and [21-24] also fgdint sparse property of the pilot and data symbols, the data
to consider the close connection between i) activity daiect modulating constellation, error checking at the decodeat an
and channel estimation and, ii) data recovery. the data length diversity of different devices, and theretigy

In this paper, we propose a novel grant-free CS bastite BSAMP-CP algorithm to solve the proposed optimization
solution for mMTC that improves the access success ratiooblem. In Section IV we conduct a theoretical analysisef t
and the throughput of the system. The contributions can benvergence of the proposed algorithm in the noiseless case
summarized as follows: and the rationale behind the improvement given by explgitin

. To improve the access success ratio and the throughf@fa length diversity. Numerical experiments are provitied
of the system, we propose the 2-step with early daggction V, and cpnclusmns are given in Section VI.
transmission (2-step-EDT) framework which considers Throughout this paper, upper-case and lower-case letters
the structural properties of the signal and the charaeterfi€note scalars. Boldface upper-case and boldface loveer-ca
tics of the communication system, including data lengt§tters denote matrices and vectors, respectively. Cafligc
diversity of multiple devices, the joint sparsity of pilotUPPer-case letters denote sef. 5 and Az, denote the
and data symbols, the error checking mechanism and féP-matrixes ofA that consist of the columns and rows
modulation constellation projecting mechanism. corresponding to vector-indices in s8f respectivelyA.. a.»)

« To solve the proposed optimization problem in the framé@nd A(a:.;) denote the sub-matrix oA that consist of the
work, we propose an algorithm called Backward SparsiP!Umns and rows corresponding to vector-indices frotm b.
Adaptive Matching Pursuit with Checking and Projectingf:‘e union operation of sets is given bydiag (-) is a function
(BSAMP-CP), which conducts the sparsity level estima{hat_returns a square dlag(_)nal_ matrix with the elements of
tion, active device detection, channel estimation and d4f#¢ input vector on the main diagonal, or returns a column
recovery in two phases. Specifically, in the first phas¥€ctor consisting of main diagonal elements of the input
the BSAMP-CP conducts the sparsity level estimation #fluare matrixmaxid (x, §) outputsS indices corresponding
a backward manner exploiting the data length diversit S largest magnitude elements in the vectar card (-)
information. In the second phase, the BSAMP-CP jointiQutputs the cardinality of the input seE{-} denotes the
conducts the activity detection, channel estimation affPectation andr{-} denotes the trace of the input matrix.
data recovery taking into account the joint sparsity irffinally, the set of r_eal and complex numbers are d.enoted
formation of pilot and data symbols, the error checkinBy R and C, respectively. The Moore-Penrose pseudoinverse
information and the modulation constellation informatior@nd the Hermitian matrix oA are denoted byA" and A",

« We provide a theoretical analysis of the convergence EFSPectively.
the proposed BSAMP-CP in the noiseless case and the® table summarizing the necessary technical notation can
rationale behind the improvement given by exploitin§® find in Table I.
data length diversity.

« To demonstrate the superiority of the proposed BSAMP- [l. BACKGROUND

CP, we conduct various numerical experiments presentye consider a typical uplink mMTC scenario where the
and compared with some other existing methods. ~ mMTC devices communicate with a Base Station (BS) in a s-

The rest of this paper is organized as follows. In Section ithgle cell. The device performs access on the Physical Rando
we introduce different random access procedures. In Sectidsccess Channel (PRACH) that consists of several Resource
Il we first provide the proposed 2-step-EDT frameworkBlocks (RB). We clarify the access and data transmission



TABLE |
TECHNICAL NOTATION

Symbol Description

work Temporary ldentifier (RA-RNTI) indicating the time-
frequency resource in which the preamble is detected, the
timing advance (TA) command, the backoff parameter and

N Number of total devices the Temporary Cell Radio Network Temporary Identifier (TC-
K Number of active devices y S Yy A
S Estimated number of active devices / Estimated sparsigl lev ~ RNTI) for further communication between the device and BS.
k :\rﬂlde_x of deV'CeBk:th---tht 4 oilot Svmbol If the device does not receive the RAR within the timing
w Masdimum mambat of tranemittod Hata Sss;n;bglz window, the access is considered to be failed and the device
ng Number of pilot symbols transmitted by devieeng <mnyp turns on the preamble retransmission after a random backoff
ng Number of data symbols transmitted by devicen] < ng time.
m Length of spreading code . .
s(®) True sparsity level of the lagtcolumns of the matrixX In step 3, E_lfter the de\_llce _su_cces_sfully re_ce|ves the R_AR
i One pilot symbol of devicek and synchronizes the uplink timing, it transmits a schexdyli
Ok Zero symbol, indicating inactivity or “no symbol” transrsien request and its User ID. If multiple devices choose the same
A" Modulation alphabet of device preamble in step 1, the transmission of their User ID will
Ag Transmitted symbol set of the deviée A5 = (A® U O)™d lide due to th iated with th
S Symbol alphabet of spreading code collide due to the same resource associated wi e same
T Set of detected active devices preamble.
T iitot\t‘;teg‘cc}:?:; ;22 Lﬂg‘%isegzggsgr%"c‘i'ggréo the devideses In step 4, if the BS can decode the User ID sent in step
- Pilot vector of devicek, py, € ({py.} U O)"» 3, it broadcasts the User ID. Only the device that detects its
d; Data vector of device:, dj, € Af = (AF U O)"d own User ID is regarded as a successful access. Unsuccessful
X, g"Ot aé‘_d data:j Symbto's Off ge"_gg X, =S[PlvdZ]T devices will back off for a random period of time before
Sk preading coae vector ol aevi S € m .
v Received signal matrix restarting the access procedure.
S Spreading code matrix / Sensing matr&= [s1,...,sn]
A Activity of all devices, A = diag([a1,...,an])
H Channel coefficients of all device¥] = diag(|h1,...,hnN])
P Pilot matrix, P = [p1,...,pn]" B. 2-Step Procedure

i — T
B gﬁ;? ;T]Ztr(;);tlz r;{jl[g)l(,\}..:, Etllvjq anxn]” = [P. D] The 4-step procedure has several drawbacks. Most spectrum
Xp Xp=AHP ' ’ resources are used for signaling, while the actual data is
Xp Xp=AHD negligible in many applications of mMTC. It also leads to
X X = AHV = [Xp, Xp]

high energy consumption and large latency due to the maeiltipl
rounds of signaling. To overcome these drawbacks, the®-ste
access procedure is discussed in the 2-Step RACH WI of 3GPP
R{ANZ [27]. The high level idea of the 2-step procedure is

combine the uplink step 1 and step 3 of the legacy 4-

p procedure into one step, namely step A, and combine

e downlink step 2 and step 4 of the 4-step procedure into
he other step, namely step B, as shown in Fig. 1 (b). In more
detail, message A consists of a preamble-like signal rederr
to as the access request and the User ID. Message B consists
A. 4-Step Procedure in LTE of contention resolution and resource allocation for data.

To support mMMTC, LTE uses the 4-step random access pro-Time alignment is performed in the step 1 and step 2 of
cedure (as shown in Fig. 1 (a)). Before the access procedule legacy 4-step procedure, while in the 2-step procedure,
the BS broadcasts the required parameters for the devides measurement of TA would require sophisticated estimati
such as the window size of Random Access Response (RARgthods. This difficulty can be eased in some scenarios. For
the maximum number of retransmissions, the set of PRAGEample, i) in very small cells, the TA can be ignored; ii) in
resources for preamble transmission and the power rampiheg stationary scenario, devices can obtain their TA valimes
step in each retransmission. Then the 4-step random acda@sssystem configuration in the initialization stage.
procedure is performed. Another issue raised in the 2-step procedure is resource

In step 1, a device initiates access by randomly choosing gifocation for the transmission of User IDs in step A. In the
orthogonal preamble from the preamble group assigned to §gacy 4-step procedure, step 1 provides information on the
serving cell. If two or more devices simultaneously trartsméccess requests and the required resource for the traimmiss
different preambles, the BS can decode the access requdestsf@ser IDs can be allocated precisely in step 2. However, in
these devices. However, more than one device can possifpli 2-step procedure, resource allocation for the trarssomis
choose the same preamble and transmit in the same PRAgHJser IDs needs to be determined in advance. One solution
resource, which causes an access collision and necessitgf€o allocate an orthogonal resource to each preamble éor th
further contention resolution processes. transmission of User IDs.

In step 2, the BS transmits the RAR on the downlink \oreover, contention resolution and resource allocatan f
resource. The RAR contains the Random Access Radio Ngkta are carried by message B and the traditional backoff and
retransmission mechanism used in the 4-step procedure can
also be applied in the 2-step procedure.

procedure into three types as shown in Fig. 1: (a) the taditi

4-step procedure in LTE [26], (b) the 2-step procedure th
is discussed in the 2-step Random Access Channel (RAC té
Work Item (WI) of the 3rd Generation Partnership Projeci
(3GPP) Radio Access Network 2 (RAN2) [27] and (c) thet
2-step-EDT procedure.

1The 3GPP is a standards organization which develops pristémomobile
telephony.



n}, (n} < n,) repeated (for reliable channel estimation perfor-
mance) pilot symbols in vectas, € ({px}UO)"», wheren,,
denotes the maximum number of transmitted pilot symbols,
pr denotes one pilot symbol of device, and O = {0}
denotes the zero symbol indicating inactivity or “no synibol
transmission In the same frame the devicalso transmits
nd (nd < ny) data symbols in vectad,, € Af = (A*UO)"4,
whereny denotes the maximum number of transmitted data
symbols,A* denotes the modulation alphabet of devicand
accordingly.A% describes transmitted symbol set of the device
k. Each symbol inp, and d; is spread by the spreading
code of the device:, i.e., s} € S™ (nym, > K) and

Fig. 2. A typical mMTC scenario with the 2-step-EDT accesscpdure. g4 ma .
The active devices are transmitting different lengths afrfe that consist of Sk € S, respectlvely, whereS represents the symbOI

pilot and data, and inactive devices remain sleep. alphabet of spreading code.
In the 2-step-EDT procedure using CS-MUD, activity de-

tection and channel estimation are jointly conducted, aed t
C. 2-Step-EDT Procedure and CS-MUD the BS performs data recovery [21]. The received pilot digna

at the BS,ypiior € C™™», is given by
One feature of mMMTC is the low data rate and the small

packet size, and this allows the access and transmission
procedures to be further simplified. Considering the size of Ypilot
data packet is small, the high level idea of the 2-step-EDT
procedure is to combine step A of the 2-step proceduféere the activity of devicé is denoted byu, € {0,1}, hy

and the data transmission step into one step, as shownranese_rr]ts the narrow band channel coefficient of dekice
Fig. 1 (c), that further reduces data transmission latemay a5, = [si ..., sh']T € S"»™» denotesn, repeated spreading
power consumption, and improving the spectral efficiencgode forn, repeated pilot symbol® = [p;s7, ..., pnsh] €
Furthermore, random access is mainly used when performiRgr™»*", diagonal matrixA = diag([as, .. .,ay]) € RV *N
initial access, where the connection between the device dignotes activity of all deviced = [h,...,hy]" € CN¥, h =

BS is not established and so the channel is unknown to tAd, andn represents additive white Gaussian noise (AWGN).
BS. Other uses of random access, e.g., a scheduling reqdagtllce activity and channel coefficients are determineday t
where there has been no uplink transmission for some ting@rresponding elements in tHe, where zero and non-zero
and owing to changes in the surrounding environment, cHangéements indicate inactive and active devices, respégtive
estimation is still required. Here we focus on the one-shotData recovery is conducted after the activity detection
access case, e.g., initial access, with the assumptiorttteatand channel estimation. The received data signal at the BS,

@ Active Device
@ Inactive Device
EPilot

=Y apehisy +n=PAh+n=Ph+n (1)
k=1

channel states are independent in different shots. Yaata € C™a%"4 is given by
A typical method based on the 2-step-EDT procedure is CS- N
MUD that conducts the activity detection, channel estiorati Y ,,, = Zakhkskdk +N=SAHD+N=SD+N
and data recovery. In the 2-step-EDT procedure using CS- k=1
MUD, each active device transmits its pilot and data to the (2)

BS simultaneously with other active devices, as shown in F'\%here gd
2. The pilot takes the request of the preamble, the idertiidica
of the User ID (can be regarded as activity detection) and tht
channel estimation into account. Before the access proeedu . . .
begins, the pilot and the spreading sequences for panticuIaW'tr1 a known matrlxIA’ qnd a received pilot S'g.n@*”“‘)t’
devices are obtained from the system configuration broadc § am to rec_onstrucih n (1)2 Note that (1) |s_under—
by the BS, which means that this information is already kno ptermined owing to the massive number of devidés>

to the BS and is necessary for signal reconstruction and u&&t’»: Besides, there are only a few non-zero elememh. n
identification at the BS. ue to the small number of active devic&S Therefore, it

. . rns in Ivin r nstruction problem
Assume that there ar® devices in a cell and assume théu $ into solving a CS reconstruction proble

mMTC devices are active sporadically, i.e., although thenu min |hlly St |ymier — Phl} <e, 3)

ber of devices can be very large, oty (K < N) devices are h

active at each given time period. Moreover, in some mMT®@heree > 0, and||-||, denotes the,-pseudo norm. However,
applications, the active devices may have different amour{B) is an NP-hard problem. An alternative solution is to xela
of data to be transmitted, which leads to the consumptitimee non-convex,-pseudo norm by the convex norm [28].

of different amounts of spectrum resources. For exampMpreover, the indices of the non-zero elementiand non-

in intelligent buildings, different 10T devices have diffet zero rows inD are same according to the device activity.
service requirements, which in turn leads to dlﬁ‘erenttheg)f Therefore, after channel estimation, we have knowledge of
data for transmission. The deviée(k = 1, ..., N) transmits h andS? and then can reconstrull in (2) using traditional

= [s¢...s4] € SsmXN H =
ag([h1,...,hn]) € CVN, D = [dy,...,dy]" is an
x ng Matrix andS¢ = SdAH



combining (1) and (2) into one equation

: I Data bits I Data Sl}'rmbols I I Pilot Symbols I i
: - [ N
! ;—] I — Ii Y=Y msix,” + N=SHV+N=SX+N (4)
:I Encoding H Modulation I Data I I leot I: k=1
v where S = [s1,...,sn], H = diag([h1,...,hn]) €
_User | User N CN*N denotes the channel coefficients &f devices,V =
) [x1,....,xn5]" = [P,D], x;, = [p},d]]T denotes the pilot
. and data symbols of devicé, P = [pi,...,pn]", and
A D = [d;,...,dy]T. AccordinglyX = HV = [Xp,Xp] and
N Y = [Yp, Yp]. Note that both channel coefficients and data
Z — have the same sparsity pattern in (4), which can be exploited
to improve the activity detection accurady. can be seen as
g PRB a temporary variable, whose sparsity constraint in (5b) wil
z affect the solution ofH and D. Specifically, for K active
£ o . devices, X is row-sparse(i.e., it has only a few non-zero
Tim?  Physical Resource Block e ol rows), that forms a multiple-measurement vector (MMV) [29]
system.
Fig. 3. Proposed mMTC transmission scheme. (Interleawnipdluded in With consideration of the multi-information, we formulate
the encoding block for brevity.) the CS based 2-step-EDT framework as
min [[Y — SX|[ (5a)
methods such as Least Squares (LS) or Minimum Mean Square '
Error (MMSE). st ”XHfOWﬁ < K, (50)
X = H[P, D], (5¢)
[1l. BACKWARD SPARSITY ADAPTIVE MATCHING Vk=1...N, (5d)
PURSUIT WITH CHECKING AND PROJECTING g(Dky,y) =1, (5e)
D({k},;) e (AUO)™, (5)

In this section, we first propose the 2-step-EDT framework
that considers multiple information source (multi-infation) where ||-||r0W7O representsliow,0-pseudo norm that outputs
including the joint sparsity of multiuser channel and datzhe number of non-zero rows of the input matrix, ahd
the modulation constellation and the data length diversitgpresents the Frobenius norm. The device activity infoiona
of multiple devices. Then a novel algorithm is designed faind the sparsity level are contained in the row-sparserpatte
solving the proposed optimization problem. of X = HI[P,D]. Specifically, the devicé is not active,

i.e., ar = 0, if elements of thekth row of X are all zeros.

(5b) and (5c) depict the joint sparse property of the pilot
A. The Proposed CS Based 2-step-EDT Framework wilad data. (5e) depicts the checking mechanism when data
Multi-Information recovery is achieved, where the functig:) denotes the

Beyond the classical CS-MUD 2-step-EDT solution, w&fror checking procedure and an outpuhdicates successful
consider formulating the access and data transmission asChRCK. (5f) depicts the modulation constellation inforioat
optimization problem whose model integrates the sparsigpecifically, if the message data of the deviceccupies the
information of both channel coefficients and data symbdie Tfirst ni; symbols, then the remaining symbols in the resource
proposed scheme is shown in Fig. 3. The data bits are enco@€gl €mpty.
with a code rateR for error detection and correction. After T0 solve problem (5), in the following Section Ill-B and
interleaving, encoded bits are modulated and then the dd{C we propose a novel algorithm, namely BSAMP-CP that
SymbO|S and p||0t Symbo|s are Spread by two Spreading Cod@&plons the multi-information as described in Flg 4. Note
ie., st € S™ ands{ € S™4. Without loss of generality and that the sparsity levek' in the constraint (5b) is unknown at
to simplify notation, we consider a unique spreading éodéhe BS. Therefore, we estimate the sparsity level first. Then
st = s =), € S™ for both the pilot and the data symbolsWe solveH andD in the proposed optimization problem by
Noted that the spreading sequence are unique for each deviigsatively conducting four steps, i) activity detectiarpgiating

Next, we further consider the narrow-band system whet@e detected device s&), i) channel estimation (updatingl
the pilots (or data) of all active devices are overlappedhen tWith fixed pilot matrix P), iii) data recovery (updating the
Physical Resource Blocks (PRBs) resource as shown in Fiita matrixD for a fixed channel matrid) and iv) channel
3. For a narrow-band system, the channel response coefficigiinement (updating théf with fixed data and pilot matrix

can be considered as a single element. Here, we consider We would like to clarify thatS is not adjusted after
sparsity estimation. Owing to the data length diversittinest-

2|n [22), it is observed that the optimal throughput perfonma is achieved ing S is much e_aSier than reco‘_/eriﬂg ar_‘dD- SpeCiﬁca"y=
whenm, = my BSAMP-CP estimates the sparsity level in a backward manner



P“"ﬁm Data Diversity set 7(*=1) and the sparsity leve$ = card(7(~1)), that are

Frame length

&Active Set {b}

the set of detected devicag(®) = (). Specifically, in order
to consider the information of the detected device§ i1,
we cancel the interference of the devices7iff—» and set
the residual by conducting

JLFixed H X4y

Data Fixed V: Channel Re-
Recovery estimation

Checking

Sy B o Fafatery | e | obtained from the — 1th iteration. _
Activity Detection I3 - For thetth iteration, we conduct the SAMP for MMV in
Ch{ 5slandq;( o PR :EQ I I I I the inner loop under the initialized conditions of the iresed
anne an ctivity O 3 | . _ . . ;.
E— (—— Detection | |1 < N sparsity level between the— 1th andtth iterationss’ = 1,
:
I
|
|

—A : » 0) _ T
|_ —_— — ‘F &Acti;e_s_et_{b,e} R( ) = Y(:,end—t:end) - S(:,T(tfl))S(:yT(t—l))Y(:,e‘nd—t:end)'
| I . @)
| Do the data Ii @f{zczvcedsz}t In the jth inner iteration, in order to obtain the 3ét that in-
bits pass the |1 ——— -l cludes indices corresponding to tkelargest correlations, we
I . p g
data valid |

compute the correlation betweéhand the residuaRU—1),
ie.,

W = maxid (diag((SHR(jfl))(SHR(jfl))H) , 5’) . (8)

checking at !

the decoder | I
1

| :.Modu]ation SymbolI
10 Empty H B - -
| ackward Activity Detection . L .
_ _ _ _lieRrecovered symbol 3 __( _________________ Y wheremaxid (x,s') outputss’ indices corresponding to thé
largest magnitude elements in the vectoM/e merge setyV

Fig. 4. The proposed 2-step-EDT using CS-MUD solution expip multi- 519 Q(jfl) into a candidate support set
information.

C=0U " Vyw, (9)

exploiting the data length diversity information, wherdivae and select the’ elements that are the most likely to be active
devices with more transmitted data are detected earlier &noim the candidate support set by conducting

the detection result is used for subsequent sparsity estima ) o
and activity detection for the remaining devices. Moreopver QY = maxid (dlag((
for solving H and D, BSAMP-CP exploits the information where

of constellation projecting and error checking to improke t

~ o~ o~

SLoV)ELoY).s), @0

performance of reconstruction. Y =Y cnd—tiend) — S(:,T<H>)Szz,mm)Y(:,endft:end),
(11)
B. Estimating Sparsity Level S=s- S(:VT(H))SIHT@,D)S, (12)

_For the sparsity estimation, BSAMP-CP modifies the clagye the projection ON (..cnd—t:ena) @NdS 0N the null space
sical Sparsity Adaptive Matching Pursuit (SAMP) [30] algogy S(. ).

rithm by exploiting the data length diversity. The perforo@  Then we calculate the residual by
of BSAMP-CP for solving (5) is related to two factors, i.e., ,
the number of columns and non-zero rows of the makix R =Y (. end-t:end)
The grater the number of columns, the better the performance — S(:’QUT(FU)S](LHQUT(FD)Y(:vendftzend)'
Also, the fewer the non-zero rows, the better the performanc ) L o
Therefore, we conduct the sparsity estimation in a backwafd IR'llr > [[RU~V[|g, that indicates convergence at the
manner, i.e., in theth iteration of the sparsity estimation, itcurrent sparsity level, we updaté = s’ + 1. Otherwise we

(13)

So|ves the Optimization pr0b|em Update the reSidUal{(j) = Rl and enter intO thq -+ ].th
iteration until the stopping criterion is met.
min ||X(Comp(7-(t—1))’endft:end)HroWO (6a) To ensure the desired performance of the sparsity estima-
ST ’ ) tion, the stopping criterion design of the inner loop isicat
SL Y .end—t:ena) = SX(: end—tiena) [F < €, (6D)  Here we consider the design via the use of the average energy

with fewer supports to be detected but using fewer measuPJ-the residual, i.e.,

ment columns, where theomp(-) denotes the complement E {||R||§} = (m — s®)to2. (14)
of the input set,X(. cna—r.cna)y denotes the sub-matrix con-

sisting of the lastt columns of the matrixX and 7(*~1)  wherem is the number of rows of the sensing matgixs®* <
(0 < card(T~Y) < K) denotes the set that includes indiced” where s'*) is the true sparsity level of the lastcolumns
corresponding to the detected device in the 1)th iteration. of the matrixX, andc? is the variance of AWGN. The proof
As t increases, the number of measurement columns increaség14) is presented in Appendix A.

while the non-zero lines oX . cpq—t.cna), 1-€., the sparsity  Furthermore, the true sparsity level is unknown to the
level, also increases. At the same time, in tiie iteration BS and has the property that?) < m due to the sporadic
of sparsity level estimation, we have the prior known suppaactivity of the devices. Therefore we can omft) in (14).



Then one arrives at the stopping criterion which controés tflgorithm 1 Backward Sparsity Adaptive Matching Pursuit

temporal energy of the residual, i.e., with Checking and Projecting (BSAMP-CP))
Initialization :
IR|Z = amio®, (15) T=T'=0,8=0H=0" andD = 0",

Step 1. Sparsity Estimation
wherea € (0,1) is the scaling factor empirically selected UpdateS by conducting (7) and iterating (8) to (13) until
close tol. convergence;
When the inner loop terminates, we update the detectetfP 2: Activity Detection o
device indices set by ® = 71 U Q, update the sparsity UpdateT by conducting (16) and iterating (8) to (10) and
level S = S+’ and start thét + 1)th iteration of the sparsity _ (19) .unt|l convergence,
estimation until¢ equals to the number of columns of the>teP 3: Channel Estimation

received signal matri®. Finally the sparsity leveb can be _ UpdateH by (20) and (21);
obtained. Step 4: Date Recovery

Update D by (23) and the constellation projection, and
update7’ by (24);

C. SolvingH and D Step 5: Channel Refinement
UpdateH by (25);
1) Activity Detection: Step 6: lterate Steps 2 to 5 until both thg and 7’ are

Activity detection is based on Subspace Pursuit (SP) [31]unchanged between two iterations.
with appropriate modifications to exploit the data validity
information yielded by the error detection decoder and the
constellation projecting information. The SP can be viewed 3) channel Estimation:
as a special case of the Sparsity Adaptive Matching Pursuitip the channel estimation, by considering the constraint
(SAMP) [30] with “known sparsity level”. The differences sp) we update the sub-matriX 7., of X = H[P,D] =
compared with the classical SP can be summarized as fO||O\{\ﬁ.P, Xp] by using LS, i.e., ’

Firstly, the initial residual is obtained by

X7 =Sl nY. (20)

R=Y-=ScnHanV. (16)  After obtaining the updateX ;- .,, considering the constraints

. . . (5c), we can estimate the channel ma by usin
whereH - and V., are obtained in the channel refine °%) . 7) by using

ment procedure that considers the modulation constatlatio hy = XP(vV:)PIU o (21)
information. Secondly, we utilize the projection of sigril ’
and the sensing matrig on to the null space 08, ru-1), wherev € 7.

considering the data validity checking information. 3) Data Recovery: _ _ _

Let S be the sparsity level obtained from the sparsity level GVENH(r,7), the data matriD can be obtained by solving
estimation, and let7’ (0 < card(7’) < K) be the set min ||Yp — S Hr D7 |12 22)
that includes the indices corresponding to the devices &hos D,

recovered data passes the validity checking (indicatiagttie using LS again, i.e.,

data are successfully recovered) obtained in the lastiberaf i

BSAMP-CP. DefineQ") as the set of estimated supports in the D1, = (S(:7T)H(T7T)) Yp- (23)

jth inner iteration withQ(®) = 7 —77. In the following steps, _ o

we conduct the activity detection by updating the estimated!" the previous iteration of BSAMP-CP, the data of the
supportsQ with the fixed sparsity leved’ = S — card(7”) in dewcgs with indices in7” are deemed valid having pgssed

a greedy manner. In thth iteration of activity detection, we CN€cking, thus these devices can be regarded as being accu-

firstly conduct (8) to (10) under the conditions of rately recovered. This means t_hat_ we only need to conduct
data recovery for the devices with indicesin— 7' that are
Y-v_ S(:,T’)SZ; T,)Y, (17) likely to be active. Now we deal with the constraint in (5e).

By demodulating and decoding the ddda;_7- .), we obtain
N a sequence of data bits. We add the indices of devices that
S=S- S(:7T,)SI:7T,)S. (18) passed the error detection procedure at the decodgf amd
obtain the update@™ via
Next, by projectingY into the null space 08,. o7+, we , , Py , B
obtain the rzsidual as P e T =T UK eT =T, eDqwyy) =11 (24)
' that can be exploited in the following activity detectioropess
RY =Y - S(.oum)8], our Y- (19) to improve performance. The functigs{-) denotes the error
checking procedure and an output set tiodicates valid data.
Finally, when the stopping criterion is met, a more accurate Furthermore, according to the modulation constellation
active set7 = QU T’ can be obtained. constraint in (5f), we update the data matix_7 . by



projecting the data symbols to the constellation points (asimber of columns oX. Then we can obtain the following
shown in Fig. 4) and the updated data mafidx;_.) can Theorem and thus unveil the rationale of the improvement
be used in following channel refinement. We would like tgielded by exploiting data length diversity.
emphasize that although projection and checking/cooecti Theorem 1:A necessary and sufficient condition for u-
may increase|Y — SX||r, it does not imply the grow of niquely determining the matriX is that
the recovery errof| X — X*||r, whereX* is the ground truth. .
According to our numerical experiments, the use of projecti spark(S) > 2K — min{K, np +na} + 1. (27)
and checking/correction leads to improved average perforRemark 1:To unveil the improvement of the proposed
mance in comparison to one that dose not employ projectigfpthod that exploits the data length diversity, we define
and checking/correction. That means the gain brought by they ny + ng) = 2K — min{K,n, + ng} + 1. If it holds
projection and checking/correction overweighs the retdyi nat
rare case that projection and checking/correction leathtw p
estimation. h(s® — s 1) <h(K,n, + ng) (28)

4) Channel Refinement:

wih the updated date mairx Dir_rony gl e reconshnct
we can also obtain an updated ;_ra-1,y = 9 y P
: performance.

[Pr_7a-1 .y, D_ga-n . Note that in the channel
estimation (21), we update the channel mafix; -, only
using the information of the pilot matriR . . By exploiting
both the pilot and data information iV .), we conduct
the channel refinement oH; ) with fixed V1. by
conducting

Next, we explain the rationale of the improvement by
exploiting the data length diversity in detail. AccordimgTthe-
orem 1, without employing the backward estimation apprpach
the lower bound ofpark(S) for recoveringX accurately is
2K — min{K,n, + nq} + 1. When we use the backward
approach, we only need to detect the additiorf&l — s(*—1)
hy = X(,U7:)ng ) (25) supports in theth iteration, since the remaining*~") sup-

' ports have been obtained in previous iterations. Thereafore

wherev € T and the channel matri¥l can be exploited in the tth iteration, the sensing matri8 needs to satisfy the
the activity detection in next iteration of BSAMP-CP. condition

Finally, we enter next iteration of BSAMP-CP from (16) : -1 . " -1
until both 7 and 7’ are unchanged between two iterations, spark() > 2(s*) —s7V) — min{s® — 57, ¢} 41
implying i) there are no more accurately detected devices an = h(é’(t) — st t)
i) there is no new device whose data has been successfully re (29)
ceived on application of BSAMP-CP. The proposed BSAMRgy recover accuratelK . .4 -cna)- If the condition (31)
CP is summarized in Algorithm 1. holds for anyt, the lower bound condition afpark(S) for
the accurate reconstruction using a backward approach is
IV. ANALYSIS max(h(s®) —st=D 1)) (t = 1,...,n,+ng), which is smaller
In this section, we firstly unveil the rationale of the impeev than2K —min{ K, n,+na}+1, i.e., the bound without using
ment yielded by exploiting the data length diversity. Them wthe backward approach. Furthermore, the spar of upper
provide an convergence analysis on the proposed BSAMpaunded byspark(S) < m + 1, wherem is the number of
CP, that involves a weaker restricted isometry propertyPjRIrows of the sensing matri$. This implies that the bound

[32] condition than doing the classical SP algorithm, angsth also gives the minimumn for exact reconstruction, and the
explains the advantage of the proposed method. exact reconstruction oX with the backward approach can

be guaranteed to have a lower than without the backward
fe\pproach. This is the key to the performance improvement

ﬁénR?glgliSI;;I the Improvement yielded by Exploition OféDaylelded by conducting the proposed algorithm using the back
9 y ward approach.

The performance of the sparsity level estimation for s@vin

(6) is related to two factors, i.e., i) the number of columng_ Convergence Analysis on the Proposed BSAMP-CP

t and ii) the increased number of non-zero rows between i o S
X(c.ond—tiend) AN X ena—t 1 1:end)s s — s(t=1) According The proposed BSAMP-CP exploits prior information in

to [33], a necessary and sufficient condition for uniquel ach iteration, that involves the data length diversitpinfa-
determining the matrisX is that ion in the sparsity level estimation and the error detectio

checking information in the activity detection, in order to
K < spark(S) — 1 +mnk(X), (26) improve the reconstruction performance. In more detad, th
2 prior information in the sparsity level estimation is theléx

where K is the sparsity of matrixX, spark(-) is the smallest of the detected devices in the— 1 iteration. In the activity
number of columns of input matrix that are linearly depernderdetection, the prior information is the indices of the degic
rank(-) is the rank of input matrix, anfl is the sensing matrix. that pass the error detection at the decoder.
With the assumption of the full rank matriX, we can replace  Therefore, we consider analyzing the use of checking
rank(X) in (26) with min{ K, n, + nq}, wheren, +nq is the feedback information in the activity detection processthas




techniques used in this section and the result obtained ¢ | i

also applicable to the analysis of the utilization of datagkh 09 }~\ A \0\
diversity information in sparsity level estimation. In shpart, ' N,
we consider the noiseless case for simplicity. Moreovee di | Mo

SP-MMV
=A CoSaMP-MMV L
= SAMP (Classical Model)

0.7 SAMP-MMV

to the robustness of the error detection yielded by the aklant
decoder (Owing to the error detection process, an inactee u

activity

T

is not likely to pass the error checking procedure and so e S it Ot

unlikely to give rise to errors in the prior information SEt), 0.6 |78 [roposea Paan-cr

we assume that there is no errors in the prior information s o o Miniization

T' (0 < card(T’) = r < S) and the sparsity estimation is > |, 5 0 a5 30 35 40 45
perfect, i.e.,S = K. K

The_ main idea in the_ ana|y5i§ is that t_o prove tha_t the_ E€NergY. 5. Comparison of activity detection ratio for varyingetnumber of
of residual decreases in each iteration in the activityatite active devicesk (SNR = 30dB, m = 42, np = 1 andng = 3).

procedure.
Theorem 2:It holds that
V. EXPERIMENTAL RESULTS
HR(l)H < _ 2035 r(1 +d35-1) HR(1_1)H . (30) _ _ _ ,
P~ (1= 2035_r)(1 — 035_r)3 P In this section, we investigate the performance of the pro-

B posed solution, and compare it with several existing sofigti
" summarized as follows.

i) Algorithms based on SP include modified SP for MMV

The detailed proof of the theorem is given in Appendix
Remark 2:The coefficient function

25(1 + 6)

f(0) = ——F~"3 (31) (SP-MMV), modified compressive sampling matching
(1-24)(1~9) pursuit for MMV (CoSaMP-MMV) [35], SP with pro-
is monotonically increasing over the interjél 0.5). jection (i.e., iterative SP with a proposed projection pro-

In order to guarantee exact reconstruction, the theotetica cedure exploiting constellation information) assuming a
question in CS is what conditions should the sensing matrix known sparsity level and SP with checking (i.e., iterative
S satisfy. The most widely used condition in the literature is ~ SP with the proposed checking procedure that exploits

the RIP. Let the coefficient in Theorem 2 be the checking feedback information).
2035 (14 035_) ii) Algorithms based on SAMP, which include modified
(1= 2035 (1 — 695 )7~ © (32) SAMP for MMV (SAMP-MMV) and SAMP using the

classical CS-MUD activity detection model (i.e., jointly
conduct activity detection and channel estimation without

Theorem 3:Let X € CN*(+7a) be a row-sparse matrix exploiting the data sparsity feature, and then conduct data

. . : . recovery [21]) without knowing the sparsity level.
with the sparsity leveb, let its corresponding measurement be.. - . .
Y = SX € Cmx(n+na) and letT” (0 < card(T7) = r < S) iii) Traditional 4-step random access procedure in LTE (the

be the prior information set. If the spreading masisatisfies nu_mber of preambles in _each cellis sevido guarantee
. fairness and orthogonality).
the RIP with constant i . . :
In the simulation, we integrate our method into the Orthog-
d35—r < 0.165, (33) onal Frequency Division Multiple (OFDM) system. In the
) . OFDM system with a frequency-selective channel, depending
then the exact reconstruction & can be guaranteed via 8y, gevice mobility and the multipath effect, the conseautiv
finite number of iterations. B PRBs lying within the coherence time and bandwidth can
As the proposed algorithm is modified from the converyg ¢onsidered as a Time-Frequency-Coherent Blocks (TFCBs)

tional SP, we can notice that the obtained RIP conditiqBy) Therefore the channel response coefficient in eachBrFC
(03s—» < 0.165) is weaker than the RIP condition for

conventional SP&s < 0.165) due to the introduction of prior
informationr. The checking mechanism affects the size-of
The more devices pass the checking process, the largger

and so we obtain the sufficient condition for exact recomstru
tion which is stated in the following theorem.

TABLE Il
SYSTEM PARAMETERS

Note thatr = 0 if there is no checking mechanism. According Parameter Value Explanation
to the definition of RIP [34], for any two integerls, < K, ~ Frame Length 10 ms

haves . < 6 Therefore. Theorem 3 provid relativ Subframe Length 1ms 10 subframes per frame
We haveor, = 0k,. Iherelore, Theorem 5 provides a relative gior | ength 0.5 ms 2 slots per subframe
weak RIP constrain owing to the prior information brought by Resource Allocation Unit 1 PRB 1 PRB = 0.5 ms180 kHz
the error checking mechanism, that makes the spreadingkmatrchannel Type Rayleigh fading

. ith I b f Moreover Channel Bandwidth 1.4MHz 6 PRBs per slot
satlsfy_RIP with a smaller number of rows. Ve,  Subcarrier Bandwidth 15 kHz
according to the increasing monotonicity of the coefficientNo. of Subcarriers 72 Unused frequency band is
function f(5) in Remark 2, it holds thaf(dzs_,) < f(d35). o of TECBS . used as guard-bands
This means that the energy of reS|.duaI decrea_lses fas'Fer Wikibdulation 16QAM
each iteration when using the checking mechanism and isplieChannel Coding (2,1,6) Convolutional code + CRC

faster Convergence Interleaver 3x 2 Block
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il SP-MMV
600 |=A CosaMP-MMV
=@ SAMP (Classical Model)

\?500 = S??{:hhgx;éclmn
3= SP with Checking
% 400 =@= Proposed BSAMP-CP ~
- S-OMP =
3 = = I,,-norm Minimization s =A CoSaMP Y
2‘300 2 = § .l -‘ SAMP (Classical Model)
eh oo 10 SAMP 1
8 200 27 _mme—— SP with Projection
= .,"{’ == SP with Checking
Sl Peg =@ Proposed BSAMP-CP
100 [ S-OMP
[—_— 12]-n01‘m Minimization d
0 I 10-2 I I I
5 10 15 0 10 20 30 40 50
SNR (dB)
Fig. 6. Comparison of throughput for varying the number dfvacdevices Fig. 8. Comparison of relative channel estimation error arying SNR
K (SNR = 30dB, m =42, np =1 andng = 3). (K =30, m =42, np =1 andng = 3).
N asp > ! 2@ = SAMP (Classical Mode) i
=A CoSaMP SAMP-MMV
0.8 |=® SAMP (Classical Model) K 0.8 | —©=—"Proposed BSAMP-CP 1
T |=% SAMP T awens Actual Sparsity Level
SP with Projection
0.6 | == SP with Checking Z06f )
S 7 | =@~ Proposed BSAMP-CP e —tt - o
< S-OMP - \ g,
= (0.4 | === 1, -norm Minimization irc 045 |
0.2 0.2 1
0‘(’ = | . . . . . . 06 e e
0 5 10 15 20 25 30 35 40 45 15 16 17 18 19 20 21
SNR (dB) S
Fig. 7. Comparison of data recovery ratio for varying SNR & 30, Fig. 9. Comparison of sparsity level estimation distribot{SNR= 30dB
m =42, np =1 andng = 3). and K =18, m =42, np, = 1 andng = 3).

can also be considered as a single element. Table Il shows phation of sparsity information of data symbols. Furthems,
system parameters used in the simulation. The channel ndisean be observed that the throughput of all methods firstly
n is generated by a Gaussian distribution with the varianggcreases and then falls with the growing number of active
determined by the required signal to noise ratio (SNR). Futlevices, as the inter-device interference becomes sevtte w
thermore, we follow the system design in LTE and considerlargerK” where the number of misdetected devices becomes
12 (frequency domain subcarriers)7 (time domain units}= larger. In Fig. 5, whenkK e [5,20], all CS-MUD solutions
84 resource units in each PRB (as shown in Fig. 3) arthieve improved performance in comparison to the LTE
consider two time domain continuous PRBs as one TFC®Ilution. The interpretation is that CS-MUD approacheshav
(thereforemrrop = 84 x 2 = 168). The number of potential very few errors while the LTE solution has a relatively large
devices in each TFCB & = 126 and the length of spreadingnumber of collisions due to the limited number of orthogonal
code ism = 42 or 63, therefore the overloading factor ispreambles. Furthermore, we can notice that wien> 40,
300% or 200%. There areK active devices in each TFCBthe gain of the SP with checking against the traditional SP-
for requesting access and data transmission and the rasailtsMMV becomes small. This is because the severe interference
obtained ovehb00 realizations. in the case of a largel. The severe interference reduces
Figs. 5 and 6 show the performance of activity detection afidle performance of the data recovery and the available check
system throughput for varying the number of active devicetgedback information becomes scarce, which reduces time gai
respectively. We use the throughput over the entire barttiwidivailable from exploiting checking feedback information.
and activity detection rati@uacrivity = C‘“d(B as the perfor- In Figs. 7 and 8, we investigate how the SNR affects
mance indicators, whei® denotes the setm which the devicethe performance of data recovery and channel estimation.
are correctly detected. It is observed that when the numidéere we define the data recovery ratio /@as,., = %K(V),
of active devicesk € [20,45] the proposed BSAMP-CP whereV denotes the set of devices whose data are correctly
outperforms all the other methods, which is owing to the usecovered, and define the relative channel estimation esor
of multi-information. Specifically, the gap between SP-MM\channer = M where H.; and H .0 repre-
and the SP with projection demonstrates the gain brought §gnt the estlmated channel matrix and actual channel matrix
the projection procedure exploiting the constellatioroinfa- respectively. We can see that both the channel estimation
tion. The gap between SP-MMV and the SP with checkirend data recovery performance of the proposed BSAMP-CP
demonstrates the gain of exploiting the checking feedbaake superior to all competitors, especially when the SNR is
information. Moreover, the gap between SAMP-MMV andreater thar20dB. Even when the SNR reach&8dB, the
SAMP with classical model intimates the gain owing to the exelative channel estimation error of proposed BSAMP-CIP sti
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1 we analyze the computational complexity of the proposed
\k’\ o BSAMP-CP in Algorithm 1. For the sparsity level estimation

0.8+ R 5 : . o . L
*x—ﬁ -—o in Step 1, the main cost lies in the correlation maximization

2060 ",..t,‘”&g‘:ﬁ'@.& procedure (8) and the residual calculation (13). Theretioee
= g Bop ER-0 o o computational complexity of the inner loop of the Step 1 is

% 0.4 [~k K= 15, SNR@B) = 10 ety a - of the order of O(Nmt + m?(s*~1) + s')). For setting the

e e ‘4.,*_‘_*11'::*.*. R in (7), the complexity is aboud(m?(card(7 1) +t)).

0.2 K =40, SNR(dB) = 15 S, A~ Considering the activity detection in Step 2, most cost is
=ude= K =25 SNR(dB) = 30 ek, ) . . L7 . ..
=\ = K = 40, SNR(dB) = 30 ‘ ‘ *-4.% inthe correlation maximization procedure (8), the prajegt

00 5 10 15 >0 procedure (18) and the residual calculation (19), whichehav
Iterations the complexity in the order a®(mN (n, +nq+m)) in each

Fig. 10. Convergence performance of the Step 1 in BSAMP-GRtfe INNEr iteration of Step 2. Except for the activity detectitire
sparsity estimation and preliminary activity detection & 42, n, +nq = complexity of Steps 3 to 5 in each outer iteration of BSAMP-

20). CP is of the order 0O((n, +n,4)3S). As we can see in Table
[, the running time of proposed BSAMP-CP is comparable
l%: =0 =K =15, SNR(dB) = 15 to the SAMP.
0s !il** Ak ;; ;zﬁggg; ig _Fig. 10 and 11 shows the convergence performance qf Step
: ‘-\-"t R e ooy, -k K=10, ZEE%E) 18 1 in SSAMP-CP_ aind the cc_)mplete BSAMP-CP, respectively.
coely e e e e L 30 Sreas) - 10K Defining the activity detection error ratio and data recgver
"’§ ‘I\I b error ratio aSactivity = 1 — Hactivity andegata = 1 — fldatas
Y04 fllQ‘-* ] respectively. Note that the number of iterations in Step 1 is
(S . equal ton, + ng, which is set to b&0 in Fig. 10. As shown
0.2 ! '9-9—6-0-0-6 ©-6--0-0-6-0-0-0-6-6-6 in the two figures, the activity detection error ratio and the
1 b S S S A data recovery error ratio tend to decrease with more itarati
004'“‘“'?"""*%‘“‘“"'1‘5""’* 50  Furthermore, we can notice that in Fig. 11 the BSAMP-CP
Tterations requires more iterations to achieve convergence for a Harge
Fig. 11. Convergence performance of the proposed BSAMPsGR-(42, number of _activr_e devices. I_t is also shown that the required
np =1 andng = 3). number of iterations to achieve convergence for a low SNR,

e.g.,15dB is more then the case at a high SNR, e46dB.

This is reasonable as more iterations are required to onerco
decreases, while other solutions have reached a perfoemalh€ impact of noise and interference in the difficult cases, i
floor. Fig. 9 depicts the sparsity level estimation distiibn, @ low SNR or a large number of active devices.
where we set the sparsity leval = 18. pgparsity represents VI
the ratio of the number of correct estimation times. We can
see that the proposed BSAMP-CP more accurately estlmate
the sparsity level.

Table IIl provides the comparison of the average computl
time (in seconds) and the performance of activity detectidfi
and data recovery. We use activity detection rai@; ity =
card(B) and data recovery ratiQui.a = <9Y) as the
performance indicators whet# denotes the set in which the
devices are correctly detected, andlenotes the set of devrce

CONCLUSION

In this paper, we address the mMTC scenario, and pro-
ose the 2-step-EDT framework. To solve the optimization
roblems in the proposed framework, we propose an algo-
ﬁ’hm called BSAMP-CP, which conducts the activity level
stimatlon active device detection, channel estimatind a
data recovery in two phases. Specifically, in the first phase,
the BSAMP-CP conducts the activity level estimation in a
backward manner exploiting the data Iength diversity infar

and the modulation constellation information into account
is of the same order of magnitude as the other methods. Ncifli/irthermore we provide a theoretical analysis of the conve
gence of the proposed BSAMP-CP in the noiseless case and
TABLE IIl the rationale behaind the improvement yielded by explgitin
COMPARISON OF THEPERFORMANCE OFACTIVITY DETECTION, DATA the data |ength diversity. Simulation results show thatptrce
RECOVERY AND AVERAGE COMPUTING TIME (IN SECONDS) posed solution improves the performance of activity daect

ace) Thdex SF T CoSaMP | SAMP | BSAMP-CP channel estimation data recovery and the throughput of the
Lactivity | 0.8558 | 0.6875 | 0.9008 0.9717 system in comparison to the traditional 4-step access guoee
(42,24) | pgata | 0.6533] 03308 [ 0.7958 | 0.9433 in LTE and other typical CS-MUD solutions for the mMTC.
Time 0.0772| 0.0436 | 0.0827| 0.1268
Hactivity 0.8750 0.7617 0.8811 0.9622 REFERENCES
7 4444 | 0.7322 } . L
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