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The 20th century witnessed a dramatic transition in the burden from infectious diseases. In the USA,

the yearly mortality rate per 100,000 population fell from around 800 in the early 1900s to about 50

by mid-century (Armstrong et al., 1999, Hansen et al., 2016). These gains in public health were made

possible by a series of significant innovations, not least by the development of treatments and vaccines.

Since the 1950s, these mortality rates have remained relatively stable, despite increases in deaths due

to diseases such as HIV/AIDS in the 1980s. This relative stability of mortality numbers over the past

decades may have lead to complacency, with many advanced economies still ill-equipped to contain large-

scale epidemics. Yet as is now clear, societies must confront the diffi cult question of how to best organize

themselves in a world where new infectious diseases keep appearing and may remain endemic. A case in

point is COVID-19, which is causing devastating health and economic effects around the world.

Much recent research on COVID-19 resorts to modelling the economic control of infection with

variations of the classical SIR framework, in which recovery from the disease confers permanent immunity.

Yet according to the WHO, “There is currently no evidence that people who have recovered from COVID-

19 and have antibodies are protected from a second infection.”This is important, because much of current

policy is based on the assumption that herd immunity will eventually set in. The focus on getting

through the first wave of the epidemic potentially leaves us exposed and unprepared to what comes after,

if immunity wanes over time. At the time of writing, we still lack a vaccine or treatments that clearly

reduce mortality from SARS-CoV-2, although there is cautious optimism that some pharmaceutical

innovations may be on the horizon. Regardless, imperfect vaccine effi cacy and incomplete coverage

may alter the dynamics of the disease without fully eradicating it. Thus we may have to rely on some

combination of non-pharmaceutical interventions and innovate on how we structure work and social life

for the foreseeable future.

In this paper, we analyze optimal social distancing measures using a stylized yet flexible epidemic

model with population turnover and waning immunity. We calibrate the model to the USA and perform

comparative analysis with different assumptions about the waning period and disease-induced death

rates. The calibrated epidemiological model has three important properties. First, with inflows to

the population through births or migration, the disease becomes endemic. This means that if left

uncontrolled, it will never be eradicated, in contrast to a closed population model in which recovery

confers permanent immunity. Second, the path to the endemic steady state displays damped oscillations,

which are intrinsic to the disease dynamics and unrelated to temporal forcing or time-varying behavior.

Third, the periodicity of the oscillations and the speed of convergence to steady state depend on how

fast immunity wanes. For this model, we find that it is optimal to have strict social distancing measures

from the onset of the epidemic and which are continued for several months. These are then temporarily

relaxed before being brought back at the start of the second wave, and subsequently maintained at a

permanent moderate level. This policy achieves two goals: it suppresses and postpones the initial large

infection wave, and delays all future waves as much as possible.

The fundamental difference between the models with permanent and waning immunity is that in the

latter, the build-up of susceptibles happens faster, thereby generating additional waves of infection and

deaths in the short and medium run. Waning immunity is thus similar to increasing the mortality of

the disease relative to the case of permanent immunity. Optimal policy is sensitive to this difference and

therefore prescribes stricter social distancing measures under waning immunity.

We also perform sensitivity analysis with respect to the speed at which immunity wanes and the

infection fatality rate (IFR). For the calibrated benchmark and with immunity waning after one year,

moderate changes in the two parameters change the policy in an intuitive manner; higher IFR and faster
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loss of immunity both increase the severity of the disease and prompt stricter measures to be imposed.

But for very fast loss of immunity or high IFR, there is a qualitative shift and the optimal policy no

longer leads to an endemic steady state. Instead, significant and permanent social distancing is imposed

from the outset, resulting in asymptotic eradication of the disease.

The recent literature on the economics of the COVID-19 epidemic is too vast to do justice in this

space; for reference, we therefore mention just a few examples. Eichenbaum et al. (2020), Alvarez et al.

(2020), Kaplan et al. (2020) and Krueger et al. (2020) all consider macroeconomic models in the SIR

mold. In contrast, Toxvaerd (2019) and Rowthorn and Toxvaerd (2020) consider optimal control of an

epidemic with reinfection in an SIS model. The model we consider here nests both the SIR and the SIS

models, as it features both immunity and possible reinfection. Rachel (2020) considers the conditions

under which a second wave can come about, in a simple closed population SIR setting.

1. A Model of Waning Immunity with Optimal Social Distancing

Time is continuous and for notational simplicity, we drop the time subscripts t from all time varying

variables.

1.1. The Epidemic Model. The population is of size N . Susceptible individuals S become exposed

to the disease by interacting with others who are either exposed E or infected I. This happens at rate

β (I + εE) /N , where β > 0 is the rate of infection transmission upon contact with someone infectious,

and 0 < ε ≤ 1 allows for reduced infectiousness of those that are exposed but not symptomatic (Brauer
and Castillo-Chavez, 2012). Exposed individuals transition to the infected state at some rate κ > 0. Once

infected, an individual recovers and transitions to recovered R at rate γ > 0, and while in this state,

enjoys immunity to new infection. Recovered individuals cannot become infected, but their immunity

wanes over time and they transition back to the class of susceptibles at rate α ≥ 0. We allow for inflows
of susceptible individuals into the population through births ν ≥ 0, for outflows through natural death
at rate µ ≥ 0 from any health state and through disease-induced mortality at rate δ ≥ 0. Individuals in
D died either from natural causes or from the disease. For any policy choice d, to be described below,

the dynamics of the epidemic model are summarized by the following equations:

Ṡ = ν − (1− d)β (I + εE)S
N

+ αR− µS, (1)

Ė = (1− d)β (I + εE)S
N

− (κ+ µ)E, (2)

İ = κE − (γ + δ + µ) I, (3)

Ṙ = γI − (α+ µ)R, (4)

Ṅ = ν − µN − δI, (5)

Ḋ = δI + µN, (6)

for some initial states N0, S0, E0, I0 and R0. We use the acronym SEIRS whenever α 6= 0 (waning

immunity) and SEIR when α = 0 (permanent immunity).

The model is closely related to the one presented by Kissler et al. (2020), but differs in some key

aspects. First, we only consider the transmission of SARS-CoV-2 and do not model the transmission of

other coronavirus strains that could induce cross-immunity. The evidence for cross-immunity between

other coronavirus strains and SARS-CoV-2 is limited and is unlikely to play a major role in the epidemic

dynamics discussed here. Furthermore, the present model allows for exposed individuals to transmit the

virus, due to mounting evidence that pre-symptomatic transmission is key to the spread of SARS-CoV-2
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(Li et al., 2020). Additionally, we introduce the policy instrument d, which we will discuss in more detail

below.

We first discuss the dynamics without any policy intervention (d = 0) assuming a naive population.

In the Online Appendix, we show that the uncontrolled dynamic system admits two steady states: a

disease-free steady state and an endemic steady state. For any given parameterization, only one steady

state is stable and stability is determined by the basic reproduction rate R0. For calibrated SARS-CoV-2
parameters, we show that the stable steady state for the uncontrolled system with d = 0 is the endemic

one. This is true even with permanent immunity, because R0 does not depend on α and is always larger
than one. The dynamics of the system exhibit damped oscillations and the periodicity of these depends

on the key parameter α: as immunity wanes faster, the consecutive waves arrive faster. Intuitively,

the damped oscillations are generated because both demographics and waning immunity replenish the

pool of susceptibles, creating the potential for additional waves. Births constitute a direct source of

susceptibles, while waning immunity speeds up this accumulation by drawing on the pool of recovered

people. Thus waning immunity causes additional waves to appear earlier than they would have under

permanent immunity. With permanent immunity, it can take very long before enough births accumulate

to create another spike in prevalence.1 We also emphasize that in the SEIR model without demographics

the disease always dies out over time and does not display any oscillatory behavior, while the SEIR with

demographics may have oscillatory behavior, depending on parameters (see Online Appendix). Thus the

seemingly simple addition of births and deaths to the model has important implications for the behavior

of the disease dynamics.

Next, we consider a simple non-optimizing policy of treating d as a constant parameter that reduces

the contact rate between susceptible and infectious individuals, and can be interpreted as a measure of

social distancing, i.e. capturing any broad contact-reducing measure that can be scaled from a complete

lockdown of all social activity d = 1, to a laissez-faire outcome without any restrictions at all d = 0.

The system still exhibits two steady states, one endemic and one disease-free, and only one can be stable

for each set of parameters. In the Online Appendix, we show that the endemic steady state remains

stable whenever distancing is below a threshold level d̃ ≡ 1 − 1/R0, while the disease is asymptotically
eradicated for d > d̃. Although not optimal, this policy experiment is useful for interpreting the dynamics

of the optimal social distancing policy.

1.2. The Economic Model with Optimal Social Distancing. We assume that susceptible, ex-

posed, infected, recovered and deceased individuals earn instantaneous flow payoffs yS , yE , yI , yR and

yD, respectively. Interpreting this model as a reduced-form macroeconomic framework, these parameters

can be thought of as income generated per each type of individual in the economy. We assume that

yS = yE ≥ yR > yI > yD = 0. (7)

This captures the following: first, exposed individuals are not yet symptomatic and thus have the same

income as those who are susceptible. Second, infected individuals experience a decrease in income from

becoming infected, e.g. due to a drop in productivity, and an increase once they recover. Last, deaths

constitute a welfare loss counted as the opportunity cost of income earned while still alive.

Given some planning horizon, a benevolent utilitarian social planner now chooses the degree of social

distancing 0 ≤ d ≤ 1 at each moment to optimally reduce the infectiousness parameter to (1− d)β and
1 In practice, this may take several decades. Conceivably, the nature of the disease may change over such long time

horizons, as well as react to external factors like pharmeceutical innovations, policy and behavioral responses.
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solve the problem

max
d∈[0,1]

{∫ T

0
e−ρt

(
ySS (t) + yEE (t) + yII (t) + yRR (t)−

θ

2
d (t)2

)
dt+

∫ ∞
T

e−ρtyN(t)dt

}
, (8)

subject to (1)-(6), initial conditions N0, S0, E0, I0, R0, where θd2/2 with θ > 0 is the aggregate cost of

social distancing.

The planner’s objective has two parts. Until time T , the planner trades off costs and benefits of

infection control. At time T , the nature of the problem changes and the infection ceases to be a concern

to the planner: from T onwards, every individual earns y ≡ yS per instant and there are no more

expenses of social distancing.2 For any finite horizon T <∞, this situation can be interpreted as one in
which radical pharmaceutical innovations make social distancing obsolete at a known point in time. E.g.,

Acemoglu et al. (2020) assume that at some finite time T , perfect and costless vaccines and treatments

become simultaneously available. Our formulation ensures that the value of lives beyond time T still

features in social welfare and thus influence optimal policy. As T → ∞, our model approximates an
infinite horizon model, which is nevertheless compatible with the potential arrival of pharmaceutical

interventions, since vaccine coverage may be incomplete, some people may be reluctant to vaccinate

themselves or their children, or vaccines may not confer perfect protection and wane in effect over time.

Thus the infinite horizon setting can be thought of as the worst-case scenario in a world in which vaccines

eventually become available, but do not completely eradicate the disease.

In the Online Appendix, we derive and state the necessary conditions for an optimal policy and show

that it takes the form

d∗ = max

{
0, min

{
1,

(
eρt

θ
(λS − λE)β

(I + εE)S

N

)1/η}}
, (9)

where λS and λE are the costate variables for constraints (1)-(2) respectively. The optimal d∗ equates

the marginal cost of social distancing with its marginal benefit. Social distancing reduces additional

transition from susceptible to infectious at rate β (I + εE)S/N . This increases social welfare at rate

(λS − λE), which is the net cost of additional exposed people in terms of shadow prices.

2. Projected Epidemic Scenarios

The dynamics under optimal control are solved for numerically by using a forward-backward sweep

method, as described in Lenhart and Workman (2007), with details given in the Online Appendix.

2.1. Calibration. We calibrate our model to the USA at weekly frequency. As the benchmark case,

we set the planning horizon to T = 100 years. We measure the population in millions of individuals, so

that the initial conditions for the model are N0 = 330. We assume that initially, there are one in ten

million individuals infected, so I0 = 0.000033 and that E0 = 3 × I0, i.e. that there are initially some
exposed individuals who are still presymptomatic. These numbers are taken from Atkeson (2020).

The epidemic parameters are taken from Kissler et al. (2020) and amended with more up-to-date

estimates where necessary. We set ν = 3.8/52, since there are approximately 3.8 million babies born in

the USA per year. The natural death rate is set to µ = 1/(80× 52) to capture an average expected life
span of 80 years. The transition rate from infected to recovered is set to γ = 7/14, capturing estimates

2 Implicit in this formulation is the assumption that a period of life is valued at the income generated by an individual
in the same period. In a recent paper, Hall, Jones and Klenow (2020) explain that empirically the ‘value of a year of life’
can be up to six times the annual consumption of a representative individual.
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that it can take up 14 days for infected individuals to recover. We set β = 3 × γ, to match the usual
calibration which assumes that the basic reproduction rate for SARS-CoV-2 is somewhere between 2.5

and 3.5. The literature suggests that the median incubation period is five days, so we set κ = 7/5 (see

Kissler et al., 2020).

The parameter ε captures the infectivity of individuals that are exposed but not yet symptomatic.

We assume as a benchmark that ε = 0.5 (Davies et al., 2020) and note that the results are not very

sensitive to small changes in this parameter. The parameter δ captures the death rate of infected

individuals due to SARS-CoV-2 . Estimates for the IFR for SARS-CoV-2 vary. Research articles with

data from China (Verity et al., 2020), France (Salje et al., 2020), Switzerland (Perez-Saez et al., 2020)

and Iceland (Gudbjartsson et al., 2020) estimate the IFR to 0.66%, 0.7%, 0.64% and 0.3% respectively.

A meta-analysis of estimated IFRs from July 2020 suggests a point estimate of 0.68% (Meyerowitz-

Katz and Merone, 2020). On this background, we use IFR of 0.65% as the benchmark value and set

δ = 0.0065× γ.
Next, we assume as a benchmark that α = 1/52, so that immunity wanes in one year after infection.

At the time of writing, the duration of immunity for SARS-CoV-2 is still uncertain. Immunity to

other coronaviruses is known to decline over time: in one study, volunteers were intentionally infected

with a coronavirus strain (229E) that usually causes common cold symptoms. Many participants were

successfully re-infected with the same virus one year later (Callow et al., 1990). Other mild coronaviruses

often have immunity that wanes between less than one year to two years after infection (Kissler et al., 2020

and Galanti and Shaman, 2020). The duration of immunity for SARS and MERS have been estimated to

be about two and three years, respectively (Mo et al., 2006 and Payne et al., 2016). SARS-CoV-2 has not

been circulating long enough to definitively conclude how long immunity lasts. However, recent studies

have shown that one key element of the immune response, the B cell response, does wane substantially in

the weeks following infection (Seow et al., 2020). There is also at least one confirmed case of re-infection

with SARS-CoV-2 from Hong-Kong, as reported in To et al. (2020) and a case of re-infection in Nevada,

USA is currently being investigated. While at the moment it appears that immunity lasts at least 4

months, as suggested by the comprehensive study from Iceland by Gudbjartsson et al. (2020), further

longitudinal studies are needed to determine the mean duration of immunity.

Turning to the economic parameters, we normalize the production per individual to a unit, and set

yS = yE = yR = 1 and yI = 0.9. We set θ/2 = 330×0.165 so that the cost of distancing per individual of
the initial population is consistent with the magnitudes reported by Strong and Wellbourn (2020), who

estimate that the decline in income per capita due to social distancing across a variety of sectors and

lockdown scenarios is between 4.6 and 25.6%. The parameter values we use in our simulations are listed

in Table 1 of the Online Appendix.

For these parameters, the stable steady state is endemic and the path to steady state exhibits damped

oscillations. The constant threshold parameter d̃ above which the disease is asymptotically eradicated is

71.54%.

2.2. The effects of optimal social distancing. Our simulations are based on T = 100 years,

however for clarity of exposition the figures show only the first six years from the onset of the epidemic,

which is a relevant time frame for practical policy design in the short and intermediate run. Figures

1 and 2 show the disease dynamics for the SEIR and SEIRS models respectively, for the benchmark

calibration. In each of these, the top four panels show the dynamics of both the uncontrolled epidemic

(dotted lines) and those under optimal social distancing (solid lines). The bottom left panel shows the
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differences in cumulative disease-induced deaths and the bottom right panel the path of optimal social

distancing.

We first describe how the dynamics of the two uncontrolled models compare. The uncontrolled

SEIRS dynamics initially share some properties with the uncontrolled SEIR counterparts. Susceptibles

initially decrease while recovered individuals increase. Infection first picks up and then decreases, an

effect of susceptibles becoming scarcer and some herd immunity setting in. In the SEIRS model, because

immunity wanes over time, a large number of recovered individuals that accumulate at the initial stages

of the epidemic quickly migrate back to the pool of susceptibles, forming the basis of an additional

wave of infection. This new reservoir of susceptibles creates a smaller second wave of infection, with the

concomitant effects on susceptibles and recovered individuals. This is seen as a second wave of infections,

peaking about one year after the first wave. In the SEIR model, this process takes much longer: the

number of susceptibles actually increases very slowly after the first wave and creates a second smaller

wave of infections, about 53 years after the peak of the first wave (see Online Appendix).

Next, we turn to the optimal social distancing policy. In the SEIR framework, the path of optimal

social distancing in the intermediate run looks a lot like the policies that have been used in many countries

to control the epidemic: in the beginning there is little social distancing, which then sharply increases

as the first peak approaches, and then sharply decreases as infected individuals recover, gain immunity

and remain healthy thereafter. Around the peak, sometime in week 19 after the epidemic starts, optimal

social distancing in the SEIR framework reaches its maximum level of 33%, however this lasts for a short

period of time, and is essentially phased out by week 35. The effects of the social distancing policy are a

flattened curve and a slightly lengthier epidemic. The number of infected individuals under the optimal

policy at the peak of the epidemic is about 23% smaller than that in the uncontrolled model. Once

the first wave has passed, social distancing is kept at a very low level for about five decades, when a

second wave in infection occurs. At this point (and similarly for subsequent waves), social distancing

is temporarily and slightly intensified. In the SEIRS framework, the optimal social distancing policy

is quite different in the short and medium run. Significant restrictions at 54% distancing are imposed

from the very start and maintained for the best part of one year. After that, restrictions are temporarily

phased out until the second wave approaches, at which point control efforts are intensified and social

distancing is again increased to 20%. Social distancing eventually settles on a permanent moderate level

of 12%.

Some comments are in order. First, even under optimal social distancing, the different trajectories

remain non-monotone and so it is part of the optimal policy to allow infection to increase temporarily.

While social distancing clearly suppresses peak prevalence in both settings, under waning immunity it

also serves to delay the time of the first and subsequent waves. Under permanent immunity, the timing

of the first wave is almost unchanged, although the magnitude is of course decreased relative to the

uncontrolled dynamics.

Second, for both models the optimal policy is such that the disease remains endemic, since the optimal

social distancing never reaches the threshold of d̃ = 71.54%. It is simply too costly for society to eradicate

the disease, given the parameters that characterize it. Instead, the optimal policy is a permanent low

level management of the disease with social distancing of approximately 12%. This result clearly depends

both on the parameters that describe the epidemic, e.g. the IFR, the speed of waning immunity, etc., and

on the configuration of the optimal policy problem, i.e. the discount rate, how costly social distancing

is, how much income is lost when individuals are infected and how much value lost lives have. As we

will show in the next section, when the disease becomes very deadly (high δ) or immunity wanes very
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fast (high α), the optimal policy may be to steer the system to the disease-free steady state. In practice,

this entails a very high level of social distancing at or above d̃ and eradicates the disease asymptotically.

Third, the optimal suppression policies under the two models are qualitatively very different at the

early stages of the epidemic. With permanent immunity, the best policy is to delay intervention for several

weeks until infection picks up and then impose strict restrictions on social interaction. In contrast, with

waning immunity, it is optimal to immediately impose strict measures and keep them in place for a period

of about a year. From the perspective of a policy maker, it is therefore important to have a sense of which

of the two models best describes the ongoing COVID-19 pandemic. While it is of course impossible to

know at this early stage whether immunity wanes in the medium run, various medical studies suggest

that the relation of SARS-Cov-2 to other coronaviruses with waning immunity may be a good indicator

for this.

Fourth, when comparing the difference in cumulative disease-induced deaths between controlled and

uncontrolled models, we see that after six years there are approximately 102, 120 deaths difference for

the SEIR model, while for the SEIRS model, the optimal policy saves the lives of approximately 1.423

million people.

Last, the figures for the two models suggest that the numbers of infected individuals at about four

months into the epidemic are substantially higher than those currently projected for the USA.3 A variety

of factors may contribute to explaining this. First, epidemic parameters such as the IFR, the incubation

period, or the infectivity of presymptomatic individuals are not yet fully understood. In practice, they

may differ from the ones used here. Second, it is thought that there are many more cases of infected

individuals than those confirmed by testing, since a large fraction of the population are tested only

when they exhibit symptoms; numerous reports since February 2020 suggest that more than one third

of the world’s population could end up being infected. In a recent unpublished paper, Swanson and

Cossman (2020) suggest that the estimated number of cases in the USA is somewhere between 7.5 and

14 times higher than the reported number of infected cases. At the time of writing of the first draft,

on June 1, 2020, there were about 1.8 million reported/confirmed cases, which implies that the actual

number of cases of infection may currently be between 13.5 and 25 million individuals. Our benchmark

calibration generates numbers of comparable order of magnitude for weeks 16 and 17 of the epidemic,

for the uncontrolled model. Last, the calculation of the optimal social distancing policy does not factor

in any spontaneous social distancing that individuals may engage in (see Toxvaerd, 2020).

3. Sensitivity Analysis

3.1. Waning immunity. Figure 3 shows the prevalence of infection and the optimal social distancing

policy for α = 1/26, 1/52 (benchmark), 1/104 and 0 (SEIR). Infection prevalence in the uncontrolled

models always exhibit a first peak 19 weeks into the epidemic, and these first peaks are almost identical

irrespective of the waning period. As the first wave subsides, a new wave occurs with arrival time that

depends on how quickly immunity wanes and a peak of lower size, that is smaller for longer-lasting

immunity. As α approaches zero, we revert to the SEIR model, which does not generate a second wave

within intermediate time horizons. Under optimal social distancing, these dynamics look qualitatively

similar to those in the uncontrolled system. With waning immunity, the controlled infection dynamics

display damped oscillations, a behavior inherited from the underlying epidemic model. But the optimal

policy has two additional effects: all waves are suppressed and they are pushed forward in time.

3Our assumption is that the epidemic in the USA is initiated some time in early February, which means that at the time
of writing of the first draft of this paper in late May 2020, the USA was in week 16-17 of the epidemic.
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In the bottom panel, we show the optimal social distancing policy for the different values of α. As

α decreases, the optimal policy prescribes an immediate and substantial reduction in social interactions

lasting from three to six months, followed by intermittent periods of heightened control in order to

manage subsequent waves of infection. We also observe that aggressive social distancing at the start of

the epidemic for larger α pushes the first peaks forward. This happens because as immunity wanes more

rapidly, the policy maker hopes to suppress as many of the potential peaks as possible before the end of

the planning horizon. Finally, as immunity wanes very fast, for α = 1/26, there is a major shift in optimal

policy. The effective disease mortality and loss of income now become so high that the optimal policy

steers the system away from the endemic steady state, and towards asymptotic eradication of the disease.

In the lower panel, we note that optimal social distancing in this case approaches the level d̃ = 71.54%,

the threshold that ensures asymptotic eradication. In this disease-free steady state, it would never be

optimal to impose distancing at a higher level than d̃, as distancing is costly and this level ensures that

the disease is approximately eradicated. In the Online Appendix we also report the numbers of deaths

after 6 years and at the end of horizon for each case analyzed.

3.2. Disease-induced mortality. In Figure 4, we present the dynamics of infected individuals for

three values of the IFR, namely 0.3%, 0.65% (benchmark) and 1.2%. The effects of these differences

in the death rate δ are imperceptible for the uncontrolled system (top panel). However, the controlled

dynamics of infected individuals differ significantly for the three parameters. At the end of six years,

the reduction in cumulative disease-induced deaths relative to the uncontrolled model is 158,010, 1.423

million and 17.476 million people for IFRs 0.3%, 0.65% and 1.2% respectively. Thus the optimal policy

can make a substantial difference in terms of the total number of lives saved.

The optimal policy for social distancing is intuitive: the higher the IFR is, the stricter are the measures

for social distancing at the start of the epidemic, and the longer they last. Following the initial relaxation

of the measures, the social distancing increases again to suppress the second wave, in a monotonic way.

As was the case with very fast immunity waning, when the IFR is suffi ciently high, e.g. 1.2%, there

is a qualitative shift in optimal policy and the system is steered towards asymptotic eradication rather

than to the endemic steady state. The intuition for this mirrors that for the case of high α. In fact, this

observation suggests a strong link between the effective mortality rate of the disease and the degree of

waning immunity: when immunity is not permanent, individuals are repeatedly subject to infection and

the risk of death. This means that the IFR may be a poor measure of the overall mortality across the

epidemic. It also shows that if policy makers conduct cost-benefit analysis based on estimated IFRs and

erroneously assume that immunity is permanent, they may be seriously underestimating the magnitude

of the disease burden.

3.3. Planning horizon. We close by considering the cases of T = 2, 4, 6 years and compare them

with the long horizon case T = 100 years, shown in Figure 5. To interpret the different effects, we note

that in short horizons, optimal policy has two goals. First, it directly trades off costs of social distancing

with disease-induced costs, namely lost income and increased mortality over the time interval [0, T ].

Second, by influencing the number of deaths over the planning horizon, the optimal policy indirectly

affects the size of the population and thus the initial condition for the post-planning value of life, captured

by the salvage value at T . The shorter the horizon is, the more weight is given to the second goal, while

when T →∞, this second concern becomes negligible due to discounting. It therefore has little effect on
the optimal policy away from the end time.

When T →∞, the optimal policy consists of intense initial levels of social distancing to suppress and
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postpone the first large peak, and subsequent smaller and sustained levels in social distancing to manage

later peaks. But as the horizon becomes finite and shorter, the presence of the salvage value becomes so

important that all else equal, the planner now has a strong incentive to maximize the number of people

alive at date T , thus reaping maximal benefits from the lives after time T . In the simulations, this effect

shows as a substantial ramping-up of social distancing towards the end of the planning horizon. For

shorter planning horizons both the effort for peak reduction and the effort to increase end of horizon

survivors are present in the optimal policy. As the planning horizon increases, the policy responds more

to the disease dynamics, reflected in the varying intensity of social distancing seen in the graphs for

T = 4, 6. In contrast, for the case T = 2, the horizon becomes so short that waning immunity has less

effect, while increasing the number of survivors becomes the paramount policy concern.

4. Conclusion

In this paper, we study optimal social distancing measures to contain COVID-19. Relative to the baseline

closed-population model with permanent immunity, we make two important departures. First, we add

demographics to the epidemic model and second, we allow for the possibility of waning immunity. These

two features interact in interesting ways. We find that for the parameters describing SARS-CoV-2 the

population turnover is suffi cient for the disease to become endemic, ceteris paribus. The path to the

steady state involves damped oscillations in the underlying epidemic model, which is in turn reflected

in the optimal path of social distancing and disease prevalence. We also find that the periodicity of the

damped oscillations depends on how fast immunity wanes. For our benchmark scenario where immunity

wanes after one year, the system approaches the steady state fast and most oscillations occur within the

first six years of the epidemic.

Damped oscillations are a well-known property of SIR-type models with demographics (e.g. Keeling

and Rohani, 2008) and characterizes infectious diseases such as measles (Grenfell et al., 2001 and Grenfell

and Bjørnstad, 2005), syphilis (Grassley et al., 2005) and smallpox (Greer et al., 2020). Measles is an

interesting example, as it is vaccine preventable and recovery induces permanent immunity. Grenfell

et al. (2001) show that measles not only displays damped oscillations when uncontrolled, but has

remained endemic even in the post-vaccine era. To date, smallpox is the only known vaccine preventable

infectious disease that has been completely eradicated. As argued by Grenfell and Bjørnstad (2005),

nonlinear interactions between pathogens and the human immune system can generate periodicity in

disease incidence and prevalence, without the need for temporal forcing or behavioral changes. This

turns out to be the case in our model for SARS-CoV-2.

As a practical matter, it is too early to tell whether immunity to reinfection is permanent or not. This

can only be established through longitudinal studies, which may take years. Experience from related

viruses suggest that there is a realistic prospect that some waning may take place, in which case societies

may be forced to find ways to live with the disease, rather than return to pre-epidemic norms. For this

reason, it is important to start planning for that possibility now. The present research is a first step

in this direction and we show that ignoring demographics, or relying on the emergence of permanent

immunity, may give incomplete policy recommendations.

Our analysis applies more broadly and offers insights for how to implement optimal disease control

whenever new infectious diseases appear. Many infections only induce temporary immunity, making

their control substantially more diffi cult and underscoring the importance of using epidemic models

that capture the long-term dynamics that waning immunity implies. Pandemic influenza strains, for

example, normally enter into circulation with seasonal influenza viruses and continue to cause disease
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well after the declared pandemic has ended. Active tuberculosis disease can recur periodically over

the course of an infection and re-infection with new strains is common in high-prevalence settings.

Some sexually transmitted infections, such as gonorrhea, induce virtually no immunity. For SARS-

CoV-2, a model with waning immunity aligns with the most up-to-date information about the virus’

immunogenic characteristics. Other illnesses require models with different structures to capture the

specific epidemiological characteristics that affect long-term transmission dynamics. No model is able

to capture all elements of a disease’s transmission patterns, yet some choices are clearly better than

others; one would never use a traditional permanently-immunizing SIR model to describe the dynamics

of gonorrhea, for example. For long-term economic planning, it is imperative to work with models that

capture key characteristics of the disease in question.
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Figure 1: Dynamics for the SEIR model (α = 0) under the benchmark parameterization. Dotted lines:
dynamics under uncontrolled (epidemic) model. Solid lines: dynamics under optimal social distancing.
Lower left panel: difference in cumulative disease-induced deaths under controlled and uncontrolled
dynamics. Lower right panel: optimal social distancing.
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Figure 2: Dynamics for the SEIRS model under the benchmark parameterization. Dotted lines: dynamics
under uncontrolled (epidemic) model. Solid lines: dynamics under optimal social distancing. Lower left
panel: difference in cumulative disease-induced deaths under controlled and uncontrolled dynamics.
Lower right panel: optimal social distancing.
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Figure 3: Sensitivity with respect to the duration of immunity. Top panel shows the number of infected
individuals in the epidemic (uncontrolled) model, middle panel shows the infected for in the optimally
controlled model and the bottom panel shows the optimal social distancing policy. All panels are plotted
for 1/α = 26, 52, 104, and ∞ weeks.
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Figure 4: Sensivity with respect to the infection fatality rate. Top panel shows the number of infected
individuals in the epidemic (uncontrolled) model, middle panel shows the infected in the optimally
controlled model and the bottom panel shows the optimal social distancing policy. All panels are plotted
for infection fatality rate 0.3%, 0.65% (benchmark) and 1.2%.
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Figure 5: Sensivity with respect to the planning horizon T . Top panel shows the number of infected
individuals in the epidemic (uncontrolled) model, middle panel shows the infected in the optimally
controlled model and the bottom panel shows the optimal social distancing policy. All panels are plotted
for planning time horizons T = 2, 4, 6 and 100 years.
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A. Flow Chart of the SEIRS Model with Demographics

Figure 1: States and flows in the SEIRS model.
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B. Tables

Parameter Value Source
ν 3.8/52 USA average 3.8 million births per year
µ 1/(80× 52) USA life expectancy 80 years
γ 7/14 Kissler et al. (2020)
β γ × 3 Kissler et al. (2020)
κ 7/5 Kissler et al. (2020) and references therein
ε 1/2 Davies et al. (2020)
δ γ × 0.0065 IFR, various sources.
α 1/52 Kissler et al. (2020)
ρ 0.04/52 Standard yearly macro discount rate, 4%
yS 1 Normalized to 1 unit of income
yE 1 Equal to yS
yI 0.9 10% reduction in productivity due to infection
yR 1 Equal to yS
y 1 Income per person after T , equal to yS
η 1 Quadratic costs
θ/2 330× 0.165 Aggregate income loss (Strong and Wellbourn, 2020)
T 100× 52 Approximation of long/infinite horizon
N0 330 US population, 330m
I0 0.000033 1 in 10 m initially infected, Atkeson (2020)
E0 3× I0 Atkeson (2020)

Table 1: Parameter values for benchmark simulations.

At the end of 6 years At the end of horizon T

T = 100 years Epi model Econ model Diff Epi model Econ model Diff
IFR = 0.30%, α = 1/52 4.496m 4.338m 158,010 61.744m 60.341m 1.403m
IFR = 0.65%, α = 1/52 9.636m 8.212m 1.423m 123.440m 116.670m 6.767m
IFR = 1.20%, α = 1/52 17.490m 14,174 17.476m 202.450m 351,920 202.100m
IFR = 0.65%, α = 1/26 16.716m 13,561 16.702m 203.141m 346,360 205.790m
IFR = 0.65%, α = 1/52 9.636m 8.212m 1.423m 123.440m 116.670m 6.767m
IFR = 0.65%, α = 1/104 5.764m 5.516m 248,120 69.296m 67.266m 2.070m
IFR = 0.65%, α = 0 2.061m 1.959m 102,120 3.280m 3.067m 213,590

IFR = 0.65%, α = 1/52 Epi model Econ model Diff
T = 2 years 3.852m 2.317m 1.535m
T = 4 years 6.784m 3.660m 3.123m
T = 6 years 4.496m 4.121m 3.754m

Table 2: Disease induced deaths for different scenarios. The benchmark case is highlighted in bold.
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C. Long Run Dynamics of the Epidemic Model

The system of differential equations for the epidemic model is given by:

Ṡ = ν − β (I + εE)S
N

+ αR− µS, (1)

Ė = β
(I + εE)S

N
− (κ+ µ)E, (2)

İ = κE − (γ + δ + µ) I, (3)

Ṙ = γI − (α+ µ)R, (4)

Ṅ = ν − µN − δI. (5)

We start by describing the basic reproductive rate R0, i.e. the number of secondary infectives per
index case in a (naive) population of susceptibles.1 Under the assumption that at the start of time

the entire population is susceptible, the average number of new infections per infectious individual is

determined by the transmission rate times the mean time that the exposed and infected individuals

are infectious, i.e. by the following expression:

R0 =
κ

κ+ µ

β

γ + δ + µ
+

εβ

κ+ µ
. (6)

We note that the basic reproduction rate is independent of the waning immunity parameter α, because

this parameter has no effect on how many infectives are generated per infectious individual.

To determine possible long run outcomes, we first note that in a long run steady state where

population does not grow, we have that ν = µN∗ + δI∗. The model has two such steady states, the

disease-free steady state and the endemic steady state. These can be recovered analytically as follows:

• Disease-free steady state: In this steady state I∗ = 0 and E∗ = 0. Then N∗ = ν/µ and

R∗ = 0, S∗ = ν/µ.

• Endemic steady state: We require that I∗ 6= 0, and assuming κ 6= 0 and α+ µ 6= 0, then

E∗ =

(
γ + δ + µ

κ

)
I∗ ≡ φI∗, (7)

R∗ =

(
γ

α+ µ

)
I∗ ≡ ψI∗. (8)

From the first ODE by setting Ṡ = 0, and substituting in the above we can show that

S∗

N∗
=

1

R0
. (9)

This means that in the endemic steady state of the SEIRS model with demographics (births

and deaths), the proportion of susceptibles is inversely proportional to the basic reproduction

rate R0.2 With these expressions in place we can derive the population at the endemic steady
1This definition is taken from Keeling and Rohani (2008).
2Similar results can be shown for variations of such models with demographics, as explained in Keeling and Rohani

(2008).
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state to be

N∗ = ν

(
δ

1 + φ+ ψ

(
1− 1

R0

)
+ µ

)−1
(10)

and the following relations

E∗

N∗
=

φ

1 + φ+ ψ

(
1− 1

R0

)
, (11)

I∗

N∗
=

1

1 + φ+ ψ

(
1− 1

R0

)
, (12)

R∗

N∗
=

ψ

1 + φ+ ψ

(
1− 1

R0

)
. (13)

To analyze the stability of the two steady states, we derive the Jacobian of the system:

J (S,E, I,N) =


−β (I+εE)N − (α+ µ) −βε SN − α −β S

N − α β (I+εE)S
N2 − α

β (I+εE)N βε SN − (κ+ µ) β S
N −β (I+εE)S

N2

0 κ −κφ 0

0 0 −δ −µ

 . (14)

For the disease-free steady state, this becomes

JDF =


− (α+ µ) −βε− α −β − α −α

0 βε− (κ+ µ) β 0

0 κ −κφ 0

0 0 −δ −µ

 (15)

and for the endemic steady state, this becomes

JE =


−β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
− (α+ µ) −βε 1

R0 − α −β 1
R0 − α β

(
1+εφ
1+φ+ψ

)(
1− 1

R0

)
1
R0 − α

β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
βε 1
R0 − (κ+ µ) β 1

R0 −β
(

1+εφ
1+φ+ψ

)(
1− 1

R0

)
1
R0

0 κ −φκ 0

0 0 −δ −µ

 .
(16)

It can be shown that whenever R0 < 1, then the disease-free steady state is stable and the endemic
steady state is unstable, while whenever R0 > 1, the disease-free steady state is unstable and the

endemic steady state is stable. We can also confirm numerically that for our calibrated parameters

and the ranges of parameters relevant for SARS-CoV-2, the disease-free steady state is unstable (i.e.

at least one eigenvalue of JDF has strictly positive real part) , while the endemic steady state is stable

(i.e. all eigenvalues of JE have strictly negative real parts). Importantly this is true for both α 6= 0,
i.e. for waning immunity and for α = 0, i.e. for the SEIR model, for which immunity of individuals

is permanent. Additionally, the endemic steady state exhibits damped oscillations (again irrespective

of α), because JE has eigenvalues that are conjugate complex.

The figures that follow show the uncontrolled disease dynamics in the following cases for short

and long horizons for permanent immunity α = 0 (Figure 2) and waning immunity α = 1/52 (Figure

3). For all these, the initial condition of the population has now been set to the disease-free steady

state N∗ = 304 million people.
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Figure 2: SEIR with demographics, uncontrolled dynamics. Top three rows show first six years,
bottom three rows 300 years.
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Figure 3: SEIRS with demographics, uncontrolled dynamics (α = 1/52). Top three rows show first
six years, bottom three rows 300 years.
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D. Infectivity Reductions in the Epidemic Model

In the main analysis, we interpret the policy instrument d as some measure that reduces contacts

between at-risk individuals and infectious individuals and we allow the social planner to vary this

instrument at will over time. It is instructive to consider the dynamics of the model with some fixed

value of d, which can be interpreted as other measures which reduce the infectiousness of the disease.

For example, mass vaccination with incomplete vaccination coverage or with vaccines that only confer

partial protection (as is the case with many vaccines) would effectively reduce the infectiousness

parameter of the disease below the level β in such a manner.

Let the epidemic model now be described by

Ṡ = ν − (1− d)β (I + εE)S
N

+ αR− µS, (17)

Ė = (1− d)β (I + εE)S
N

− (κ+ µ)E, (18)

İ = κE − (γ + δ + µ) I, (19)

Ṙ = γI − (α+ µ)R, (20)

Ṅ = ν − µN − δI, (21)

where here we think of d ∈ [0, 1] as a constant parameter. The interpretation is the same as in the
main part of the paper, i.e. that d is a way of reducing the contact rate between susceptibles and

infectious individuals (exposed and infected) and can be loosely interpreted as a measure of social

distancing. In this version of the model, the basic reproductive rate is given by

R̃0 =
κ

κ+ µ

β (1− d)
γ + δ + µ

+
εβ (1− d)
κ+ µ

. (22)

There are again two steady states, one endemic and one disease-free, and only one of them can be

stable for each set of parameters. Specifically, if R̃0 > 1, then the endemic steady state is stable, while
when R̃0 < 1 the disease-free steady state is stable. To link this with the original epidemic model, we
note that the condition for the disease-free steady state to be stable is equivalent to requiring that

d > 1− 1

R0
≡ d̃, (23)

where R0 is the rate of the basic epidemic model given in (6). This expression is very useful for
understanding and interpreting the effects of the optimal social distancing policy: it shows that

with enough social distancing (anything above a threshold d̃) it is possible to eradicate an otherwise

endemic disease. As will be the case for some extreme parameterizations of the model, the social

planner will optimally choose a long run social distancing policy that will be just about enough to tip

the dynamics of the system towards the disease-free steady state. For which parameters this happens

depends on the optimal control parameters, i.e. the cost of social distancing, the loss of income from

those infected, the loss of lives, etc. For our benchmark calibration as given in Table 1, the value of

this threshold is d̃ = 0.7154.
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E. Optimal Social Distancing Policy

The planner’s problem is

max
d∈[0,1]

{∫ T

0
exp (−ρt)

(
ySS (t) + yEE (t) + yII (t) + yRR (t)−

θ

2
d2
)
dt (24)

+

∫ ∞
T
exp (−ρt) yN(t)dt

}
.

The second integral, which represents the scrap or salvage value for the optimal control problem,

is the integral from time T to infinity of the discounted value of the income generated by the total

population, where the dynamics of the population are now determined by the ODE for N , but without

the disease induced death rate. We assume that the income produced by each individual after T is y,

and it satisfies y = yS . That is,

V =

∫ ∞
T
exp (−ρt)N (t) ydt. (25)

The ODE for population is Ṅ = ν − µN and therefore its solution is

N (t) =
ν

µ
+ C exp (−µt) , (26)

where C is the constant to be determined by the size of the population at time T . For N (T ) at the

start of the integral we have

N (T ) =
ν

µ
+ C exp (−µT ) =⇒ C =

(
N (T )− ν

µ

)
exp (µT ) . (27)

Therefore after T , the population evolves according to

N (t) =
ν

µ
+

(
N (T )− ν

µ

)
exp (−µ (t− T )) , for t ≥ T . (28)

With this in place we can now derive the scrap value to be

V =

∫ ∞
T

y exp (−ρt)N (t) dt (29)

=

∫ ∞
T

y exp (−ρt)
[
ν

µ
+

(
N (T )− ν

µ

)
exp (µT ) exp (−µt)

]
dt (30)

= exp (−ρT )
[
ν

ρµ
+

(
N (T )− ν

µ

)
1

ρ+ µ

]
y. (31)

Therefore, the problem of the planner can be rewritten as

max
d∈[0,1]

{∫ T

0
exp (−ρt)

(
ySS + yEE + yII + yRR−

θ

2
d2
)
dt (32)

+exp (−ρT )
[
ν

ρµ
+

1

ρ+ µ

(
N (T )− ν

µ

)]
y

}
.
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We start with the five differential equation constraints that describe the dynamics of the system:

Ṡ = ν − (1− d)β (I + εE) S
N
+ αR− µS, (33)

Ė = (1− d)β (I + εE) S
N
− (κ+ µ)E, (34)

İ = κE − (γ + δ + µ) I, (35)

Ṙ = γI − (α+ µ)R, (36)

Ṅ = ν − µN − δI. (37)

Because of the accounting equation, the social planner’s problem can be reduced to one with only four

differential equation constraints. We do so by eliminating R and substituting in R = N − S −E − I.
The constraints thus become

Ṡ = ν + αN − (α+ µ)S − αE − αI − (1− d)β (I + εE) S
N
, (38)

Ė = (1− d)β (I + εE) S
N
− (κ+ µ)E, (39)

İ = κE − (γ + δ + µ) I, (40)

Ṅ = ν − µN − δI. (41)

Letting the costate variables for the constraints be denoted by λS , λE , λI and λN , the planner’s

Hamiltonian is given by

H = e−ρt
[
(yS − yR)S + (yS − yR)E + (yI − yR) I + yRN −

θ

2
d2
]

(42)

+λS

[
ν + αN − (α+ µ)S − αE − αI − (1− d)β (I + εE) S

N

]
+λE

[
(1− d)β (I + εE) S

N
− (κ+ µ)E

]
+ λI [κE − (γ + δ + µ) I]

+λN (ν − µN − δI) .

The first order condition with respect to d is

∂H

∂d
= −e−ρtθd+ (λS − λE)β (I + εE)

S

N
= 0, (43)

and therefore the optimal d must satisfy

d =
eρt

θ
(λS − λE)β (I + εE)

S

N
. (44)

Additionally, the optimal d∗ must belong to the set of admissible controls, and since it is bounded

and must satisfy 0 ≤ d ≤ 1, it follows that:

d∗ = max

{
0,min

{
1,
eρt

θ
(λS − λE)β (I + εE)

S

N

}}
. (45)

A detailed explanation and derivations of how the maximum principle applies to bounded controls

can be found in Lenhart and Workman (2007, ch. 7).
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The laws of motion for the costate variables are given by

λ̇S = λS

[
β(1− d)(I + εE)

N
+ α+ µ

]
− λEβ(1− d)

(I + εE)

N
− e−ρt (yS − yR) , (46)

λ̇E = λS

[
α+ βε(1− d) S

N

]
+ λE

[
κ+ µ− (1− d)βε S

N

]
− κλI − e−ρt (yS − yR) , (47)

λ̇I =

[
α+ β (1− d) S

N
)

]
λS − β(1− d)

S

N
λE + (γ + δ + µ)λI + λNδ − e−ρt (yI − yR) , (48)

λ̇N = −λSα− λS(1− d)β (I + εE)
S

N2
+ λE(1− d)β (I + εE)

S

N2
+ µλN − e−ρtR yR. (49)

Last, we also need the following transversality conditions to be satisfied:

λS (T ) = λE (T ) = λI (T ) = 0 (50)

and the last transversality condition equates λN to the derivative with respect to N(T ) of the term∫ ∞
T

e−ρtN(t)ydt = exp (−ρT )
[
ν

ρµ
+

1

ρ+ µ

(
N (T )− ν

µ

)]
y. (51)

This yields

λN (T ) = exp (−ρT )
y

ρ+ µ
. (52)

We should point out that the conditions (43), (46), (47), (48), (49), (50) and (52) are necessary for

optimality but not suffi cient. This stems from the fact that the Hamiltonian (42) is non-concave in the

state variables. For this type of problem, neither Mangasarian nor Arrow type suffi ciency conditions

apply and alternative methods must be used to verify the optimality of a given candidate path.3

These typically rely on characterizing paths that satisfy the necessary conditions in a neighborhood

of multiple steady states and then directly computing and comparing value functions for any regions

of the state space in which those multiple paths overlap. In our simulations, we characterize the

trajectory of state and costate variables that satisfies the necessary Hamiltonian and transversality

conditions. As we have shown, for every parametrization the model exhibits two steady states, of

which only one is stable. Moreover, for the parameterizations that we have worked with, we have

found no instances of multiple equilibrium paths that satisfy the necessary conditions for optimality.

F. Numerical Solution Method

To solve the model numerically, we use a forward-backward sweep method as described in detail in

Lenhart and Workman (2007, ch. 4 and 12). We outline the method here and provide the details of

the numerical setup used for generating the figures in the paper.

First, the time interval [0, T ] is split into equal intervals each of which has length h < 1, and using

this time gird of M +1 points, the continuous time state and costate variables are approximated with

vectors of length M + 1. The algorithm for finding the optimal policy involves the following steps:

• Step 1: Set initial guess for [d1, ..., dM+1], typically set to zeros.

3Brock and Dochert (1983) introduced the generalized maximum principe in the context of growth models, while
Brock and Starrett (2003) applied this technique to shallow lake systems. Deissenberg et al. (2004) contains an excellent
synthesis of this literature. Rowthorn and Toxvaerd (2020) apply these techniques to the optimal control of disease
dynamics.
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• Step 2: Use initial conditions for N1 ≡ N (0), S1 ≡ S (0), E1 ≡ E (0) and I1 ≡ I (0) as deter-

mined by the model calibration and solve forward in time the system of differential equations

(38)-(41), using a 4th order Runge-Kutta forward sweep.

• Step 3: Use the transversality conditions (50) and (52), i.e. the costates evaluated at time T ,
the current vector of d, and the vector of state variables from Step 2, to solve backward in time

the system of differential equations (46)-(49), using a 4th order Runge-Kutta backward sweep.

• Step 4: Use the current vector of states (from Step 2) and costates (from Step 3) to evaluate

dnew using (45). Update d using a convex combination of the old and new d, using an updating

‘gain’parameter 0 < g < 1:

d = g ∗ dnew + (1− g) ∗ dold (53)

• Step 5: Iterate until convergence according to a required tolerance level toler.

Our results and graphs were generated using the following specifications: First, we use h = 1/10.

For the smallest time interval we work with, i.e. T = 104 weeks, this implies a grid of more than

1,000 points, which is suffi cient for a good approximation. We have also tried values of h = 1/50 and

h = 1/100 and found that the improvements in precision are insignificant. Since a larger number of

grid points greatly increases computational time, we kept 1/10 as our benchmark value for h.

Second, we use an updating gain parameter of g = 0.01 for almost all simulations, apart from a

few simulations with high δ, or high α, and/or large (approximately infinite) time T . The smallest

updating gain we used was g = 0.0005. Smaller gain improves the stability of the algorithm, but

increases the computing time considerably.

Third, for the convergence of the ‘while’loop we use tolerance level tol = 1e− 13. Requiring tight
tolerance for the numerical simulations is very important for good accuracy of the algorithm because

of the control bounds. If the tolerance is wide, then the algorithm may ‘converge’too quickly and

produce solutions that are on the lower or upper bound of the control (i.e. at 0 or 1) for most of the

time horizon, and which are not optimal.

Fourth, for most of our simulations, our approximation of a very long horizon is done by setting

T = 100 years. For ‘infinite’horizon approximations we discard the last 200-400 weeks to avoid end-

of-horizon distortions. The Matlab code for the simulations is provided on the corresponding author’s

website.

G. Optimal Social Distancing in SEIR Without Demographics

The following two figures show the dynamics and optimal policy for the SEIR model (i.e. permanent

immunity) in (a) the benchmark case, i.e. with natural births and deaths, and (b) in a version

without demographics, i.e. ν = µ = 0, both showing the first six years of simulations for T = 100

years. We note that the main differences between these sets of plots are quantitative rather than

qualitative. Notably, optimal social distancing is significantly higher when a closed population is

considered. Intuitively, when the population is not replenished by new births, each individual life

receives a much higher weight in the planner’s objective and hence there is a much stronger need to

avoid infections. Disregarding demographics may thus lead to policy recommendations that inflate

the need for disease control, relative to the model with population turnover.
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Figure 4: SEIR model with demographics. Benchmark values 3.8 million births per year and life
expectancy of 80 years. Dotted line is uncontrolled (epidemic) model and solid line under optimal
social distancing policy.
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Figure 5: SEIR model without demographics (ν = µ = 0). Dotted line is uncontrolled (epidemic)
model and solid line under optimal social distancing policy.
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