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Abstract 
Background: Most publicly available genomes of Salmonella enterica 
are from human disease in the US and the UK, or from domesticated 
animals in the US. 
Methods: Here we describe a historical collection of 10,000 strains 
isolated between 1891-2010 in 73 different countries. They encompass 
a broad range of sources, ranging from rivers through reptiles to the 
diversity of all S. enterica isolated on the island of Ireland between 
2000 and 2005. Genomic DNA was isolated, and sequenced by 
Illumina short read sequencing. 
Results: The short reads are publicly available in the Short Reads 
Archive. They were also uploaded to EnteroBase, which assembled 
and annotated draft genomes. 9769 draft genomes which passed 
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quality control were genotyped with multiple levels of multilocus 
sequence typing, and used to predict serovars. Genomes were 
assigned to hierarchical clusters on the basis of numbers of pair-wise 
allelic differences in core genes, which were mapped to genetic 
Lineages within phylogenetic trees. 
Conclusions: The University of Warwick/University College Cork 
(UoWUCC) project greatly extends the geographic sources, dates and 
core genomic diversity of publicly available S. enterica genomes. We 
illustrate these features by an overview of core genomic Lineages 
within 33,000 publicly available Salmonella genomes whose strains 
were isolated before 2011. We also present detailed examinations of 
HC400, HC900 and HC2000 hierarchical clusters within exemplar 
Lineages, including serovars Typhimurium, Enteritidis and Mbandaka. 
These analyses confirm the polyphyletic nature of multiple serovars 
while showing that discrete clusters with geographical specificity can 
be reliably recognized by hierarchical clustering approaches. The 
results also demonstrate that the genomes sequenced here provide 
an important counterbalance to the sampling bias which is so 
dominant in current genomic sequencing.

Keywords 
Salmonella, Large scale genomic database, High throughput 
sequencing, Population genomics
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Introduction
Salmonella enterica is the one of the four global causes of  
diarrhoeal diseases in humans (World Health Organization Fact 
Sheets, 2018), and has been estimated to be responsible for 94 
million annual cases of nontyphoidal gastroenteritis (Majowicz 
et al., 2010). Most cases of salmonellosis are mild but  
the infections can be life-threatening, especially when salmo-
nellosis manifests as typhoid fever caused by serovar Typhi  
(Wong et al., 2016), enteric fever due to serovars Paratyphi A 
or Paratyphi C (Zhou et al., 2014; Zhou et al., 2018b), or extra-
intestinal disease with serovars Choleraesuis (Zhou et al., 
2018b) or Typhimurium (Kingsley et al., 2009; GBD 2017 
Non-Typhoidal Salmonella Invasive Disease Collaborators, 
2019). S. enterica also infects domesticated animals in large  
numbers, and was the primary cause of food-borne out-
breaks reported in Europe (European Food Safety Authority, 
2007), leading to European regulations intended to reduce 
the numbers of animal herds contaminated with Salmonella  
(Regulation (EC) No 2160/2003).

The volume of bacterial genome sequencing is increasing dra-
matically. Since 2012, unprecedentedly large numbers of Sal-
monella genomes were sequenced by the Sanger Institute  
(Feasey et al., 2016; Wong et al., 2016), the Food and Drug 
Administration (Feldgarden et al., 2019), CDC/PulseNet 
International (Gerner-Smidt et al., 2019; Nadon et al., 2017) 
and Public Health England (Ashton et al., 2016; Waldram 
et al., 2018). In August 2020, EnteroBase (Alikhan et al.,  
2018; Zhou et al., 2020a) contained >260,000 Salmo-
nella genomes which had been assembled from sequence 
reads in the public short read archives, or uploaded by its 
users. However, the global population genetic diversity of  
Salmonella encompassed by these genomes is not necessarily 
representative of total global diversity. Almost all of the bacte-
rial strains were sequenced for epidemiological tracking of the 
sources of food-borne diseases. Most of them were from human 
infections in North America and England. Similarly, almost 
all public Salmonella genomes from domesticated animals are  
from North America, which causes even greater sample bias.

Serovars Typhi, Paratyphi A and Paratyphi C are specific for 
humans, and other serovars show signs of adaptation to other 
hosts (Baumler et al., 1998; Kingsley & Baumler, 2000). How-
ever, only limited data are available for most other serovars 

and from inter-continental comparisons (Cheng et al., 2019). 
We note that S. enterica can be isolated from rivers, ponds  
and drinking water (Meinersmann et al., 2008; Uesbeck, 
2009; Walters et al., 2011; Walters et al., 2013) as well as salt 
water (Mannas et al., 2014; Martinez-Urtaza et al., 2004). 
Reptiles are often infected by Salmonella (Corrente et al., 
2017; Kanagarajah et al., 2018; Mukherjee et al., 2019;  
Pulford et al., 2019), and S. enterica strains can invade plant  
cells, and survive in soil (Dyda et al., 2020; Jechalke  
et al., 2019; Schikora et al., 2012). The degree of overlap 
between bacterial populations from those sources and those 
that infect humans and animals has not yet been adequately  
addressed.

These uncertainties raise the following specific questions. 
Does the natural diversity and broad population structure  
of S. enterica differ between continents, or by source? Are  
S. enterica populations uniform across smaller geographic  
entities with multiple legal entities but continuous contact, such 
as the island of Ireland? Do isolates from water and reptiles cause  
gastroenteritis in humans? A broad sampling of Salmo-
nella from diverse geographical sources and multiple hosts 
is needed to answer these questions, and to counteract the  
current extreme bias in the public databases of Salmonella 
genomes.

Between 2007 and 2012, the authors of this manuscript and 
their colleagues (see Acknowledgements) shared representa-
tive isolates of S. enterica from their strain collections with 
MA at University College Cork in order to address these ques-
tions. Single colony isolates were cultivated and stored frozen 
in robotic instrumentation-friendly vials in microwell-format  
storage racks. At that time, the primary sequence-based  
genotyping for large collections was classical MultiLocus  
Sequence Typing (7-gene MLST) (Kidgell et al., 2002;  
Maiden et al., 1998) (Box 1), and several thousand isolates 
from the strain collection were subjected to this procedure 
(Achtman et al., 2012; Zhou et al., 2020a). These analyses did 
not extend to the entire strain collection, and it has therefore  
not been previously described in detail. The entire collec-
tion accompanied MA to University of Warwick in 2013, 
and is now being maintained for posterity as “the Achtman  
collection” by Jay Hinton, University of Liverpool.

Box 1. Explanations of acronyms and specialized 
designations

MLST: MultiLocus Sequence Typing in which each sequence 
               �variant of a gene is assigned a unique numerical  

designation. The Sequence Type (ST) is the set of the 
allelic numbers for an individual strain or genome, 
and is also assigned a unique ST number. e.g. ST4 
might consist of alleles 1 2 1 1 3 5 1. First described for 
Neisseria meningitidis in 1998 and now extended to a 
large number of bacterial species ( Jolley et al., 2018).

7-gene MLST (S. enterica): Classical MLST involving 7 housekeeping  
             � � �genes (Achtman et al., 2012; Kidgell et al., 2002). STs are 

grouped together in eBurst Groups (eBGs) based on 
minimal spanning trees, which correspond to  
serovars and are curated manually.

          Amendments from Version 1
This version of the manuscript contains minor changes and 
additional comments or insights that were stimulated by the 
helpful suggestions by the two reviewers. In addition, the 
previous version of Figure 4B had inverted the association of 
Clades A and C with HierCC clusters and these inversions were 
also used in the text. The new Figure 4B and the modified text 
has the correct associations of these clades. This opportunity 
was also used to remove some inadvertent typographical 
mistakes and improve the flow of several sentences.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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wgMLST (Salmonella): Whole genome MLST based on 21,065 
             �  �genes from a pan-genome based on 537 representative 

Salmonella genomes (Alikhan et al., 2018).

cgMLST (Salmonella): Core-genome MLST based on a subset 
              � �of 3002 genes from the wgMLST scheme that were 

present in ≥98%, intact in ≥94% and of unexceptional 
diversity in 3144 representative Salmonella genomes 
(Alikhan et al., 2018). STs are referred to as cgSTs.

Lineage: A deep branch in a phylogenetic tree which seems to 
         �    � � ��represents a distinct monophyletic group according to 

visual examination.

HierCC: �Single linkage hierarchical clustering of cgSTs based on 
a maximal internal distance of a certain number of  
different alleles in pairwise comparisons (Zhou et al., 
2020b). HC100, HC900, HC2000: hierarchical clusters 
with maximal length of internal branches of 100, 900 
and 2000 alleles. HC900 is roughly equivalent to eBGs, 
but more reliable due to the higher resolution. HC2000 
roughly equates to Lineages, except that HC2000 is 
based on a network approach with a defined algorithm 
whereas Lineage designations are based on trees and 
are subjective.

Genomic sequencing of large numbers of samples has recently 
become feasible even for modestly-sized research groups 
(Loman et al., 2012), as documented by the recent sequenc-
ing of several thousand genomes from extra-intestinal human 
infections with non-typhoidal Salmonella in the Americas 
and Africa (Perez-Sepulveda et al., 2020). Here we provide  
an overview of the UoWUCC (University of Warwick/Uni-
versity College Cork) 10K genomes project, in which 9769  
S. enterica genomes were sequenced from strains in the 
Achtman collection in order to address the questions posed  
above.

Results
Themes within the 10K genomes project. Table 1 provides 
an overview of the sources of most of the bacterial isolates 
whose genomes were sequenced, grouped into sub-collections  
according to theme. The “Rivers” theme includes 466 isolates  
from rivers in the United States and England, as well as from 
drinking water and faecal samples from healthy individuals in 
central Benin, Africa. The “Ireland” collection of 3880 strains  
were isolated from humans, livestock and food: 2125 from the 
Republic of Ireland and 1755 from Northern Ireland. We also 
sequenced 1131 isolates from Taiwan which represented the  
PFGE diversity of multiple Salmonella serovars from humans 
and reptiles. The “Reptiles” theme consisted of 794 other  
isolates from Austria, Australia, the Netherlands, Germany and  
Finland from serovars that infect both reptiles and humans. 
Finally, 3320 isolates were sequenced to cover “General diversity”, 
including non-Typhi isolates from long-term human carriers in  
Germany; reference strains for phage types of serovars Enteri-
tidis and Typhimurium; diverse veterinary isolates from England; 
and Typhimurium from the mesenteric lymph nodes of asymp-
tomatic pigs in Canada. The “General diversity” sub-collec-
tion also included members of the SARA and SARB collections 
as well as human isolates from diverse global sources. The 
UoWUCC 10K collection spans the time frame from 1891 

Table 1. Sources of 9591 Salmonella isolates that were 
sequenced within the UoWUCC 10K genomes project.

Themes and Sources Number Description

Rivers Total: 466

A. Boehm (Stanford) 19 Central California rivers 
(Walters et al., 2011; 
Walters et al., 2013)

R. Meinersmann 
(USDA)

188 Upper Oconee river, 
Georgia (Meinersmann  
et al., 2008)

A. Uesbeck (Univ. of 
Cologne)

177 Drinking water in wells 
and ponds, Benin 
(Uesbeck, 2009)

J. Wain (HPA, Colindale) 82 Thames River. England

Republic of Ireland Total: 2125

A. Coffey (CIT) 61 Food

M. Murphy (Cork 
County Vet lab)

67 Livestock, County Cork

D. Bolton (Teagasc, 
AFRC)

37 Livestock, bovine

D. Prendergast (DAFM) 479 Domesticated animals 
and food

M. Cormican (NSRL, 
Galway)

1126 Human

N. Leonard (UCD, 
Dublin)

317 Porcine

S. Fanning (UCD, 
Dublin)

38 Environment

Northern Ireland Total: 1755

J. Moore (Belfast City 
Hospital)

899 Human

S. Strain (AFBI, Belfast) 449 Animal Health

B. Madden (AFBI, 
Belfast)

407 Agri-Food

Taiwan Total: 1131

Chao-Chin Chang 
(SVM, NCHU)

48 Reptile isolates

Chien-Shun Chiou 
(CDC)

1083 Human isolates

Reptiles and human 
isolates of the same 
serovar

Total: 794

C. Kornschober 
(Austria)

366 Austria

D. Gordon (Canberra) 15 Australian deserts 
(Parsons et al., 2011)

X. Huijsdens (RIVM) 296 Netherlands

R. Helmuth (BfR Berlin) 85 Germany (Achtman et al., 
2012)

S. Pelkonen (EVIRA, 
Finland)

32 Finland
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to 2018 (Figure 1A), but 94% (9206/9769) of its strains were  
isolated before 2011. It also spans a wide range of geographic 
diversity, and the bacteria were isolated from 73 countries  
on all the continents except Antarctica (Figure 1B).

Sequence reads, genomes, genotypes and metadata. After 
Illumina short read sequencing (see Methods), the sequence 
data files were uploaded to the Short Reads Archive at EBI, 
where they are publicly available for downloading. Genomes 
were assembled within EnteroBase using its standard pipe-
lines (Zhou et al., 2020a), and the 9769 genome assem-
blies that passed stringent quality control criteria (Figure 2)  
and manual curation (Table 2) are publicly available via Entero-
Base for inspection, analysis and downloading. EnteroBase 
also contains the relevant metadata, serovar predictions and 
MLST genotype assignments for classical 7-gene MLST (STs) 
(Achtman et al., 2012; Maiden et al., 1998), ribosomal gene 
MLST (Alikhan et al., 2018; Jolley et al., 2012), core genome  
MLST (cgMLST, cgSTs) (Alikhan et al., 2018; Zhou et al., 
2020a) and whole genome MLST (Zhou et al., 2020a) (Box 1). 
The 10K genomes collection is identified by “M. Achtman” 
in the metadata field “Lab Contact”, and the original sources of  
the bacterial strains are listed in the metadata field “Comments”.

General overview of population structures. The 10K col-
lection accounts for 28% (9206/33,052) of all Salmo-
nella genomes in EnteroBase (3 Aug 2020) whose strains 
had been isolated before 2011. Previously, 7-gene MLST 
STs were clustered in eBurst groups (eBGs) (Box 1) 
which correlate strongly with serovar (Achtman et al., 2012; 
Alikhan et al., 2018). STs are now being replaced by cgSTs  
(3002 genes) (Box 1), which offer a broad range of resolu-
tion that is informative over the entire range from epidemiologi-
cal tracking of micro-clades up to the sub-division of species at  
the genus level. eBGs are being replaced by hierarchical clus-
ters of cgSTs (HierCC) in which internal branches can differ  
by up to 900 alleles (HC900 clusters) (Zhou et al., 2020b)  
(Box 1). HC900 clusters provide higher resolution than eBGs, 
are more accurate and their cgST assignments remain stable even 
after the addition of large numbers of new genomes (Alikhan  
et al., 2018). Figure 3 shows the broad range of core genomic 
diversity which is present in the 33,052 pre-2011 genomes. 
These data demonstrate that the 10K genomes are broadly rep-
resentative of all HC900 clusters in EnteroBase with only few 
exceptions. The exceptions include serovars Typhi, Paratyphi 
A and Paratyphi C which were not addressed because they had 
already been extensively investigated elsewhere (Wong et al., 
2015; Wong et al., 2016; Zhou et al., 2014; Zhou et al., 2018b), 
and several other serovars were not sequenced because they  
were rare in the sampled countries.

Similar to eBGs, most HC900 hierarchical clusters are associ-
ated with a single predominant serovar. Many HC900 clusters 
correspond to distinct clades, and share only very few alle-
les with any other HC900 cluster, resulting in an almost star-
like phylogeny for many serovars (Figure 3). However, some 
HC900 clusters do share some identical allelic sequences,  

Themes and Sources Number Description

General diversity Total: 3320

Roy Curtiss 3rd 33 Human carrier strains, 
Germany, 1980s

S. Porwollik (SKCC) 25 General diversity 
(Porwollik et al., 2004)

E. De Pinna (HPA) 90 Enteritidis Phage type 
references, UK (Ward  
et al., 1987)

H.L. Andrews-
Polymenis

52 Typhimurium Phage type 
references, Germany 
(Andrews-Polymenis  
et al., 2004)

G. Wise (VLA, 
Weybridge)

436 Animals, England

S. Quessy (McGill) 18 Mesenteric lymph nodes 
from asymptomatic 
swine, Canada (Perron  
et al., 2008)

F. Boyd 61 Original SARA/SARB 
(Achtman et al., 2013)

L. Harrison (Univ of 
Pittsburgh)

314 Humans, Global 
(Krauland et al., 2009)

J. Wain (HPA, Colindale) 103 Humans, England 
(Achtman et al., 2012)

F.-X. Weill (Institut 
Pasteur)

137 Humans, France 
(Achtman et al., 2012)

W. Rabsch (Robert 
Koch-Institut, 
Wernigerode)

232 Humans, Germany 
(Achtman et al., 2012)

Z. Jaradat ( JUST, 
Jordan)

23 Humans, Jordan

M. Zaidi (Mexico) 64 Humans, Mexico 
(Wiesner et al., 2009)

R. Kingsley (Sanger) 389 Humans, Mali (Tapia  
et al., 2015)

J. Bouldin (USDA) 29 Virulent Enteritidis 

C. Kornschober 
(Austria)

86 Boar & Swine, 
Choleraesuis, Austria

U. Methner (Friedrich-
Loeffler-Institut)

28 Boar & Swine, 
Choleraesuis, Germany 
(Methner et al., 2010)

I. Rychlik (VRI, Czech 
Republic)

86 Human, Typhimurium, 
Czech Republic 
(Matiasovicova et al., 
2007)

E. Litrup & M. Torpdahl 
(SSI, Denmark)

1036 Human, 1 strain 
per MLVA type of 
Typhimurium , Denmark 
(Lindstedt et al., 2007)

N. Williams (University 
of Liverpool - IIGH)

78 Badger, Agama

UowUCC: University of Warwick/University College Cork.
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allowing higher order phylogenetic relationships to be resolved 
for those lineages (Box 1). One such Lineage is Lineage 3/
Clade B (Achtman et al., 2012; den Bakker et al., 2011; Didelot  
et al., 2011; Parsons et al., 2011) which encompasses multi-
ple polyphyletic serovars that undergo inter-serovar recombi-
nation. Lineage 3 is clearly delineated in Figure 3, and the data 
confirm that it encompasses multiple HC900 clusters. The tree 
confirms other previously described, high level relationships  
such as the Typhi/Para A Lineage containing HC900 clus-
ters corresponding to serovars Typhi, Paratyphi A and Sendai  

(Didelot et al., 2007), and the Para C Lineage containing HC900 
clusters corresponding to serovars Paratyphi C, Cholerae-
suis, Typhisuis, Lomita and Birkenhead (Key et al., 2020; Zhou 
et al., 2018b). However, Figure 3 also includes other poorly 
described, higher order lineages that each encompass multiple  
HC900 clusters and their serovars, including the Typhimurium  
and Enteritidis Lineages.

Typhimurium Lineage. In 1991, the SARA strain collection of 
72 representatives of the so-called “S. typhimurium complex”  

Figure 1. Sources of bacterial isolates for the 10K UoWUCC Salmonella Genomes Project. A) Semi-logarithmic histogram of numbers 
of genomes in EnteroBase by year of isolation. Genomes from the 10K project with known dates of isolation are shown in blue and other 
Salmonella genomes in yellow. Inset: Genomes which were isolated between 1990 and 2010. B) Geographic distribution of sources of 
isolation. Dot circles are proportional to numbers of strains as indicated in the Key legend at the lower right. Inset: Expanded map of the 
region near the English Channel.
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Figure 2. Quality control of 10K genomes. Default EnteroBase criteria are indicated by vertical dashed lines. Numbers of genomes in the 
10K project which passed these cut-off criteria are indicated in blue and failures in yellow, with the total numbers of failures near the tops 
of the figures in yellow. The quality criteria consisted of N50 ≥20,000, genomic assembly size between 4 MB and 5.8 MB, a maximum of 600 
contigs and a low fraction of uncalled, low quality bases (N’s).

was chosen on the basis of multilocus enzyme electrophoretic 
typing (Beltran et al., 1991). SARA includes representatives 
of serovars Typhimurium, Saintpaul, Heidelberg, Paratyphi 
B/Java and Muenchen. The Typhimurium Lineage defined by 
cgMLST also encompasses serovars Typhimurium, Saintpaul, 
and Heidelberg (Figure 3), but not Paratyphi B/Java or Muenchen, 
which are quite distinct in Maximum Likelihood trees of core 
SNPs (Zhou et al., 2018b). The genomes in the Typhimurium  
Lineage define multiple HC2000 hierarchical clusters:  
HC2000_2, HC2000_13082, HC2000_1285 and HC2000_79072 
(Box 1) (Figure 4A). Many of the serovars in the Typhimurium 
Lineage are polyphyletic, and fall into multiple HC900 clus-
ters within HC2000_2 (Typhimurium: HC900_2, HC900_6511 
and HC900_6910; Heidelberg: HC900_536, HC900_977;  
Saintpaul: HC900_79, HC900_5927; Stanleyville: HC900_143, 
HC900_9898), which are intermingled in the tree with still other 
HC900 clusters of serovars Reading, Coeln, Ball, Haifa, and 
Kisangani (Figure 4A). The other HC2000 clusters include a few 
strains each from serovars Kibusi, Hull and Landau, and each 
consists of a single HC900 cluster. MLST clustering of Salmo-
nella based on assignments to 7-gene STs (Achtman et al., 2012) 
has been widely used (Bawn et al., 2020; Cheng et al., 2019). 

The resolution of such MLST typing is limited and the  
relationship of STs to HierCC clusters is not necessarily uni-
form. For example, almost all HC900_1898 (Reading) genomes 
belong to ST1628, and almost all HC900_536 (Heidelberg) 
genomes are ST15. However, HC900_79 (Saintpaul) contains 
multiple common STs (27, 50, 680 and others). And the main 
Typhimurium cluster, HC900_2, is predominantly ST19 but also 
contains ST34, ST36, and ST313, which correspond to distinct  
HC100 or HC400 internal clusters. We conclude that the results 
presented here provide an unprecedented overview of the high 
order population structure of the Typhimurium Lineage and note 
that additional analyses will be needed to elucidate the inter-
nal structure of individual HC900 clusters at higher resolu-
tion. Our preliminary analyses indicated that the evolutionary  
history of HC2000_2 is likely to have been complicated and 
involved multiple recombinational events. Elucidating this his-
tory will be facilitated by the genomes in the 10K genomes 
collection because they straddle the entire diversity just  
described.

Enteritidis Lineage. The Enteritidis Lineage (Figure 3) includes 
one predominant HC2000 cluster, HC2000_12, as well as three 
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Table 2. Summary of the fate of 
10,316 sets of short reads.

Category Number 
of records

Failed Quality 
Control

129

Mix-up/
contamination

418

Inconsistent MLST 
type

11

Inconsistent 
Serovar

374

Entire microwell 
plate(s)

33

Final dataset 9769

Consistent MLST ST 1801

Consistent serovar 7713

No independent 
verification

255

NOTE: The table ignores 1208 DNA 
samples which failed quality control 
at the Sanger Institute, and were not 
sequenced. New DNAs for 724 of them 
passed QC and are included in the table.

smaller HC2000 clusters. HC2000_12 includes HC900_12, 
which contains most of the genomes of serovar Enteritidis 
strains from Europe, North America and Africa, as well as one 
HC900 cluster for each of the related serovars (Feasey et al., 
2016; Langridge et al., 2015) Gallinarum (HC900_5460), Pul-
lorum (HC900_4908) and Dublin (HC900_25) (Figure 4B).  
HC2000_12 also includes two other HC900 clusters of sero-
var Enteritidis (HC900_2226 and HC900_3589), which are 
more distinct from HC900_12, the major Enteritidis cluster, than 
are the Pullorum, Gallinarum or Dublin clusters. The Enteri-
tidis Lineage contains a second HC2000 cluster for serovar 
Berta (HC2000_125), and two additional clusters of Enteritidis  
(HC2000_6961, HC2000_1570). 

Recent analyses have separated Enteritidis into clade B, which  
corresponds to HC900_12, and two other distinct clades of  
Enteritidis, A and C, which are common in Australia (Graham  
et al., 2018; Luo et al., 2020). (These were originally referred 
to as lineages but clades are substituted here to prevent confu-
sion with the Lineages in Figure 3). Clade A corresponds to 
HC900_3589, which is part of HC2000_12, and clade C to  
HC2000_1570 (Figure 4B). There are currently a total of five 
Enteritidis clades within the Enteritidis Lineage (Figure 4B).  
Similar to the Typhimurium Lineage, Enteritidis and related 
serovars are polyphyletic and likely reflect a complicated  
evolutionary history.

The 10K genomes are distributed across the breadth of the 
entire Enteritidis lineage, except for Pullorum, which has 

largely been eradicated from the countries that were sampled  
(Le Bouquin et al., 2020). Interestingly, the 10K genomes 
collection also includes old isolates of Enteritidis clades A 
and C which are currently particularly common in Australia.  
Strain E2387 in HC2000_1570 (clade C) is the original refer-
ence strain for phage type PT14, and was isolated in England  
in 1968, long before any descriptions of clade C in Australia.  
The 10K collection also includes three older strains in HC900_
3589 (clade A): strain P106993, the reference strain for PT26, 
was isolated in England in 1987, and the recent Australian clade  
A isolates were also PT26. Two other HC900_3589 strains 
were isolated from snakes in Germany in 2002 and 2003. 
Similarly, the sole genome in HC2000_6961 is the refer-
ence strain for PT11b, strain PT187803, which was isolated in  
Canada in 1989.

Similar to Typhimurium, the primary Enteritidis cluster,  
HC900_12 largely consists of a single 7-gene ST, ST11. Accord-
ing to cgMLST and HierCC, most HC900_12 genomes are asso-
ciated with HC100_87 and HC100_12, but it also contains at 
least eight additional, distinct tight clusters (HC100_12675, 
2452, 13575, 447, 12703, 1522, 1404, 31939). Some of these 
correspond to 7-gene STs such as ST136 (HC200_12703) and 
ST183 (HC200_1404) (Achtman et al., 2012; Langridge et al.,  
2015) or the geographically associated Enteritidis lineages within 
SNP trees designated as the Central/Eastern Africa (HC100_
12675) and West African (HC100_2452) lineages (Feasey et al.,  
2016). The others do not seem to have been previously  
described. Once again, the availability of the UoWUCC genomes 
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Figure 3. Genomic diversity of 33,052 pre-2011 genomes in EnteroBase, including 9206 from the 10K genome project (red 
perimeters). The figure shows a Ninja NJ (Wheeler, 2009) tree of the numbers of different alleles between cgSTs as generated within 
EnteroBase using GrapeTree (Zhou et al., 2018a). Nodes from 41 common HC900 clusters are indicated by distinct colors, HC900 
designations and predominant serovars. Lineages of HC900 clusters are indicated in yellow. The Enteritidis and Typhimurium Lineages are 
explored in greater detail in Figure 4 and the Mbandaka Lineage in Figure 5. Node sizes are proportional to the numbers of genomes they 
include. Nodes that include genomes from the 10K genomes project are highlighted by red perimeter. An interactive version can be found 
at http://enterobase.warwick.ac.uk/a/46053, in which the user can use other metadata for coloring genomes. Scale bar: 300 alleles.

will assist future reconstructions of global diversification  
and dispersion of individual lineages.

Mbandaka Lineage. The 10K genomes are also likely to be 
useful for fine-scale analyses within clades with even more lim-
ited genetic diversity. We provide an initial example of this 
utility by zooming in on the Mbandaka Lineage (Figure 3).  
Serovar Mbandaka was first isolated in 1948 but has now 
become a common source of salmonellosis in humans in the 
EU and elsewhere (Cheng et al., 2019; Hoszowski et al., 2016). 
Examination of the sources of the genomes of the Mbandaka 
Lineage up to 2010 (Figure 5) provides a different perspective 

because most were from environmental samples, animal  
feed, sewage, rivers and dairy products with a smaller proportion 
from chickens, cows, plants, pigs and humans (Figure 6). Thus, 
Mbandaka seems to be commonly shed to the environment by 
livestock rather than being a primary human pathogen. 

The Mbandaka Lineage shows so little diversity that almost 
all of its genomes are included in the tight HC100_4 clus-
ter (Figure 5 and Figure 6), which has a maximal internal 
branch length of 100 different alleles. Mbandaka cgMLST  
genotypes cluster very tightly by geographic source and by 
host, yielding fairly uniform clusters of isolates from cows, 
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Figure 4. Detailed representations of HC 2000 and 900 clusters in the Typhimurium Lineage (A) and the Enteritidis Lineage (B). Each 
consists of a NINJA NJ tree of the subset of nodes encompassed by the corresponding Lineages from the tree in Figure 3. The figure 
indicates HC2000 clusters in larger font and gray shading. Designations for individual HC900 clusters and their predominant serovar 
include the total number of isolates (black) and the number from the 10K genomes project (red) in parentheses. In part B, Clade A and C 
designations from citations (Graham et al., 2018; Luo et al., 2020) are indicated for HC900_3589 and HC2000_1570, respectively. Interactive 
versions can be found at http://enterobase.warwick.ac.uk/a/46227 (A) and http://enterobase.warwick.ac.uk/a/46226 (B), in which the user 
can use other metadata for coloring genomes. Black arrowheads: tree root. Scale bar: 200 alleles.

plants, dairy products, and chicken farms (chickens plus  
environmental swabs) (Figure 6). In 2015, a recombinational 
variant of Mbandaka was designated as serovar Lubbock 
(Bugarel et al., 2015). Figure 7 shows the current composition 
of HC100_4, in which Lubbock constitutes a micro-clade. Even  
today, almost all clades are country-specific, but each country  
contains multiple micro-clades. 

The 10K genomes project provided 25% (208/601) of the 
H100_4 genomes in EnteroBase that were isolated prior 
to 2011. These 208 genomes were from multiple themes 
in Table 1, from diverse geographical sources, and were  
scattered throughout the cgST tree among isolates from other 
global sources (Figure 5). Most of the 16 Mbandaka bacte-
rial strains from the Republic of Ireland were from dairy  
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Figure 5. Genomic diversity of 601 pre-2011 genomes from HC100_4 of which 208 were from the 10K genomes project (red 
perimeters). The figure shows a Ninja NJ (Wheeler, 2009) tree of the numbers of different alleles between cgSTs as generated within 
EnteroBase using GrapeTree (Zhou et al., 2018a). The geographical sources of some of the isolates from the 10K genomes project are 
indicated to demonstrate that multiple micro-clades were present in individual countries. An interactive version can be found at http://
enterobase.warwick.ac.uk/a/46139, in which the user can use other metadata for coloring genomes. The same tree colored by general 
source can be found in Figure 6 and a tree showing all modern Mbandaka and Lubbock genomes can be found in Figure 7. Scale bar: 10 
alleles. Color Key at right.

products, humans and pigs. Northern Ireland was the source 
of 151 other Mbandaka strains, predominantly from chicken 
farms and animal feed. Multiple micro-clades from each of 
these two geographic sources were inter-dispersed among 
other Mbandaka genomes. However, the genomes from Ireland  
did not cluster together with those from Northern Ireland even 
though their geographic sources are at most a few hundred kilom-
eters apart. Exceptionally, one genome from Ireland (a chicken 
isolate) clustered tightly with genomes from Northern Ireland.  
The primary clades found in Ireland and Northern Ireland 
were not found in any other country, and they have remained 

genetically discrete from other geographical sources up to recent 
times (18 Aug 2020) when HC100_4 contained 2955 genomes 
of serovars Mbandaka and Lubbock (Figure 7). Most of the  
additional strains isolated since 2011 are from the US or the 
UK, and show broad continental specificity, interspersed 
with the isolates from the 10K collection which are spread  
throughout the entire Mbandaka tree.

Discussion
One Health approach. MA initiated a broadly-based collection 
of Salmonella from diverse sources in 2008. At the same time, 
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Figure 6. As Figure 5, except that the nodes are colored by general source.

the One Health Initiative (Kahn et al., 2020) independently pro-
posed combining global epidemiological and other information  
about pathogens that originated from human and animal infec-
tions, as well as from the environment. For the last few years, 
comparisons of bacterial isolates from multiple sources have been 
pursued for Salmonella and other food-borne pathogens by the 
Food and Drug Administration in the United States, which has  
sequenced numerous bacterial strains isolated from plants and 
the environment in addition to food samples. The FDA has 
also been exemplary in sequencing genomes from around the  
globe, and in establishing the GenomeTrakr website to pro-
vide access to those genomes and their properties (Timme et al.,  
2019). GenomeTrakr also includes numerous genomes of human 
isolates that have been sequenced by the Sanger Institute and 
the CDC. Unfortunately, most of these entries lack the metadata 
required to inferface with information from food and environ-
mental sources. The genome sequencing efforts by Public Health  

England since 2015 are also highly laudable, and they publish 
short reads together with the corresponding metadata from  
all human Salmonella isolates from England and Wales in the 
ENA Sequence Reads Archives (Ashton et al., 2016; Waldram  
et al., 2018). However, very few genomes of Salmonella from 
non-human sources in England are publicly available, and the 
rest of Europe is only now beginning to sequence and publish 
genomic sequence reads and their metadata. Furthermore, most 
European countries continue to maintain separate networks of 
laboratories for isolates from humans and from domesticated 
animals or food, with the two networks being separately coor-
dinated by ECDC and EFSA. These two organisations have 
not yet implemented universal genomic sequencing (EFSA  
(European Food Safety Authority) and ECDC (European Cen-
tre for Disease Prevention and Control) 2019; ECDC (European  
Centre for Disease Prevention and Control), et al., 2019), and are 
not yet actively supporting it. Thus, the aims of the One Health 
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Figure 7. Genomic diversity of 2955 genomes from HC100_4 from EnteroBase (18/08/2020) of which 208 were from the 10K 
genomes project (red perimeters). The figure shows a Ninja NJ (Wheeler, 2009) tree of the numbers of different alleles between cgSTs 
as generated within EnteroBase using GrapeTree (Zhou et al., 2018a). The geographical sources of all isolates are color-coded (Key at lower 
left) and the location of serovar Lubbock is shaded. Unshaded isolates are serovar Mbandaka. An interactive version can be found at http://
enterobase.warwick.ac.uk/a/46122, in which the user can use other metadata for coloring genomes. Scale bar: 10 alleles.

Initiative are not being adequately met for Salmonella, and the 
completion of the UoWUCC 10K Salmonella genomes project  
is a major step forward towards those goals.

Accuracy. According to our experience, a few percent of iso-
lates from all reference/diagnostic laboratories are incor-
rectly serotyped (Achtman et al., 2012). Sporadic curation of 
EnteroBase has also revealed numerous instances where the 
metadata in the short read archives were inconsistent with the 
serovars that were predicted from the assembled sequences. 
Such discrepancies likely reflect laboratory mistakes or  
typographical errors and/or data transmission glitches. We manu-
ally curate such discrepancies in EnteroBase when we notice 
them. In several cases we have deleted the genomes. How-
ever, we usually simply replace obviously false serovars with 
the predicted serovars from the genomic assemblies (Robertson  
et al., 2018; Zhang et al., 2019), and currently almost 20% of 
the serovar metadata for Salmonella in EnteroBase are based 

on such predictions. For other cases we have replaced false 
metadata with the corresponding published data, e.g. for the  
Murray collection (Baker et al., 2015).

The SARA (Beltran et al., 1991) and SARB (Boyd et al., 1993) 
collections are invaluable reference sets for the genetic diver-
sity of the serovars that they represent, but these collections 
are badly contaminated in multiple laboratories (Achtman 
et al., 2013), and many of their supposed genomes in the pub-
lic domain were sequenced from contaminants. We sequenced 
a clean set of those strains (Achtman et al., 2013), and ensured  
that public genomes from contaminated variants were either 
deleted from EnteroBase, or were relegated to the category of 
sub-strains (Zhou et al., 2020a), which are not visible with-
out special intent. However, there are too many sets of short 
reads in the public domain to manually correct all of them, 
and EnteroBase perpetuates numerous false metadata that  
accompanied short reads.
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The metadata for the 10K genomes are much more accurate  
than is the rule for public genomes because we manually 
curated them for plausibility (see Methods), and only those that  
survived curation remain in EnteroBase (Table 2). As a 
result, the 10K genomes are likely to contain fewer mistaken  
combinations of genomes and metadata than has been the norm.

Historical reconstructions. Possibly scientists that focus on 
contemporary outbreaks of human salmonellosis might argue 
that the 10K genomes are irrelevant because almost all those  
strains were isolated before 2011, and many even date back to 
the 1980s and earlier. Instead, many previous analyses of popu-
lation patterns have been biased to isolates from a single country 
and/or a narrow range of years of isolation. A broad resource of 
older genomes will provide the historical background needed  
to reconstruct evolutionary patterns over decades and pos-
sibly even over centuries. For example, it was only possi-
ble to describe the evolutionary history over millennia of a  
Salmonella branch that includes serovar Paratyphi C (Key  
et al., 2020) because rare serovars had been sequenced within the 
10K genomes project. 

Several other dramatic examples of the value of historical iso-
lates are provided here, e.g. old reference strains for phage 
types of Enteritidis from Europe that predated by decades the  
dates that related bacteria were isolated in Australia. Many 
public health laboratories are forced to discard older strains 
due to space constrictions, e.g. the clinical strains from the 
Republic of Ireland are no longer available except within the  
Achtman collection.

Geographical diversity. The strains analysed here are not only 
old; they also represent unique diversity that is not otherwise  
represented among the >275,000 Salmonella genomes currently 
in EnteroBase. One example are genomes of Agama from badgers 
in Woodchester Park in England, which are uniquely represented 
by genomes within this project and allowed the reconstruction  
of transmission chains between neighboring setts (Zhou et al., 
2020a). Another important example is Mbandaka from chickens 
and chicken farms in Northern Ireland in the early 2000s. The  
only Mbandaka genomes in EnteroBase that stem from Northern  
Ireland are the 152 genomes in the 10K project, and in 2020 
they still differed from all 2800 other Mbandaka/Lubbock  
genomes in EnteroBase

Does natural diversity of S. enterica differ between conti-
nents, or by source? S. enterica is a transmissible pathogen with  
multiple hosts. We therefore expected the 10K Genomes project 
to provide multiple additional examples of global transmis-
sions and spread from diverse zoonotic and environmental 
sources to humans. One such example was finding old isolates of  
Enteritidis clades in Europe that were thought to be specific 
to Australia. Unexpectedly, we also found support for geo-
graphic and host-specificity, for example a specific clade of  
Mbandaka isolates among chickens in Ireland.

EnteroBase contains >275,000 Salmonella genomes, but most 
of them are from common serovars infecting humans in the  
US and the UK. The 10K genomes project has added numerous 

additional details to the global genetic and genomic diversity 
of Salmonella. In turn, that additional diversity warrants an  
extensive investigation of the entire dataset. However, such 
an ambitious project would exceed the capabilities of a small 
group of scientists, including the authors of this report on their 
own. We therefore heartily invite the entire global Salmonella  
community to join in this investigation.

Methods
Bacterial isolates. S. enterica isolates from multiple sources 
were collected at University College Cork by MA from 
2008–2012, and their metadata were stored in a BioNumerics 
(Biomerieux) database. The metadata included country, year, 
and source of isolation, but none of the details that might 
allow identification of individual farms or people from whom 
they were isolated. No ethical permissions are required for  
transfer of such bacterial samples.

Microbiological cultivation was performed as described in  
detail elsewhere (O’Farrell et al., 2012). Isolated single bac-
terial colonies were used to inoculate 1.4 ml growth/freezing 
medium in 2-D bar-coded, screw-capped FluidX tubes (O’Farrell  
et al., 2012) whose physical locations were stored in an  
ItemTracker database. These tubes were grown overnight 
with shaking at 37°C, and stored at -80°C. All subsequent  
operations were performed with automated microbiology as 
described (O’Farrell et al., 2012). Cross-contamination from 
other tubes with these automated methods is not detectable in  
the sub-cultures, but can occur at a frequency of 1/500 in the 
parental tubes. Therefore, whenever the stock tubes were used 
for DNA isolation of a particular isolate, the most recently fro-
zen serial sub-culture was used to inoculate one new subculture  
for freezing and storage as well as a second subculture for DNA 
isolation. DNA was isolated from many of these strains, and sub-
jected to classical 7-gene multilocus sequence typing (MLST)  
(Achtman et al., 2012; Achtman et al., 2013; O’Farrell et al., 
2012).

The strain collection, robotic equipment and databases accom-
panied MA to the University of Warwick in 2013, where the 
same procedures were implemented, except that DNA isolation 
was performed with a Qiagen QiaCube. We chose over 10,000 
isolates of S. enterica for genome sequencing (Table 1 and 
Table 2), with priority given to isolates whose DNA had previ-
ously been isolated and 7-gene MLST performed. Once those  
samples had been processed, DNAs were isolated from addi-
tional strains in the collections in Table 1. DNA concentra-
tions were calibrated with Pico Green fluorescence to ensure 
that each sample contained at least 400 ng of DNA. Each 
sample was diluted into two 0.5 ml FluidX screw-capped,  
2-D bar-coded tubes. One set of duplicate tubes was shipped to 
the Sanger Institute, Hinxton, UK for draft genome sequenc-
ing, and the second was maintained as a reserve at University of  
Warwick.

Draft genome sequencing. At the Sanger Institute, DNA sam-
ples were quantified once again, with a Biotium Accuclear 
Ultra high sensitivity dsDNA Quantitative kit using a Mos-
quito LV liquid handler, an Agilent Bravo WS automation 
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system and a BMG FLUOstar Omega plate reader. DNAs 
which passed quality control were cherry-picked and diluted 
to 200 ng in 120 µl using a Tecan liquid handling platform.  
The microwell plates containing cherry-picked DNAs were  
sheared to 450 bp using a Covaris LE220 instrument.

Sheared samples were purified on the Agilent Bravo WS using 
Agencourt AMPure XP SPRI beads on a Beckman BioMek 
NX96 liquid handling platform. Library construction (end-
repair, adapter-tailing and ligation) were then performed with an 
NEB Ultra II custom kit (Agilent Bravo WS), followed by PCR 
reactions to generate sequencing libraries using Kapa HiFi Hot 
start mix (Kapa Biosystems) and IDT 96 iPCR tag barcodes  
(IDT). The PCR cycles were: 95°C for 5 minutes; 6 cycles 
of 98°C for 30 seconds, 65°C for 30 seconds and 72°C for 
2 minutes and were terminated by incubation at 72°C for  
5 minutes. The IDT 96 iPCR barcodes consisted of the first 
96 primers in the 384 set in Supplementary table S1 of Quail  
et al. (Quail et al., 2014). The resulting DNA was then puri-
fied again using Agencourt AMPure XP SPRI beads and  
quantified with the Biotium Accuclear Ultra high sensitivity 
dsDNA Quantitative kit. Libraries were pooled in equimolar 
amounts, 384 at a time, using a Beckman BioMek NX-8 liq-
uid handling platform. The pooled libraries were normalised to  
2.8 nM prior to cluster generation on an Illumina cBOT, and 
were then sequenced with paired ends (2 × 150 bp) on one lane 
of an Illumina HiSeq X 10.

Post-sequencing procedures. Sets of short reads were extracted 
from the storage system at the Sanger Institute with the  
“path-find” module (Bio-Path-Find), and uploaded into  
EnteroBase together with the corresponding metadata that 
had been stored in the BioNumerics database. The short reads 
were assembled by EnteroBase using the then current back-
end pipelines (versions 3.61 - 4.1) (Zhou et al., 2020a). For 
those strains where 7-gene MLST had been performed, we also  
created an identical sub-strain except that the experimental 
field in EnteroBase for 7-gene MLST data was filled from the  
data in the BioNumerics database.

Manual curation. Manual curation of the assembled genomes  
was performed within EnteroBase to generate the most accu-
rate dataset that was possible. Where the data were available, we 
compared the genome-derived predictions for each isolate with 
serotype assignments from laboratory experiments and/or his-
torical MLST data. To this end, we created a custom view and  
user-defined fields that contained an arbitrary sequential Plate 
number for each rack of 96 tubes (95 DNAs plus a blank in micro-
well format, i.e. from A1 to H12) and information on the rows 
and columns of the tubes as well as their barcodes. We created  
one workspace for all the strains and their sub-strains for each 
microwell rack. 7-gene MLST data from the older ABI-based 
sequence data were compared with 7-gene MLST predic-
tions from the genome assemblies. In initial comparisons, dis-
crepancies between the two sources of data were pursued by  
inspecting the original sequence traces. However, all discrepan-
cies reflected false calls of the ABI data. Thereafter, we treated 
discrepancies of up to one allele as indicating consistency, and 
discarded genomes with discrepancies of 2-7 alleles. For genomes 

without prior 7-gene MLST data, we compared the serovar 
based on agglutination tests with the serovars predicted from the 
genomic assemblies by SeqSero2 (Zhang et al., 2019), SISTR1  
(Robertson et al., 2018) and 7-gene MLST eBurstGroups 
(eBGs) (Achtman et al., 2012). Discrepancies were examined 
for plausibility according to antigenic formulas (Grimont & 
Weill, 2007), and genomes with gross discrepancies were dis-
carded. Some 255 genomes lacked metadata on serovar but the  
remaining metadata on source and year of isolation was con-
sidered reliable, and these were kept despite the lack of inde-
pendent confirmation of a lack of contamination. The numbers  
in these different categories are summarized in Table 2.

After excluding 129 assembled genomes that failed Entero-
Base quality control criteria and 418 genomes with dra-
matically discrepant 7-gene MLST sequence types and/or  
serovar (Table 2), we retained genomes from 9769 strains from 
the 10K collection (http://enterobase.warwick.ac.uk/a/45743). The 
short sequence reads of the final set of strains were deposited in 
EBI.

Analysis. All analyses were performed within EnteroBase with 
the tools that were described by Zhou et al., (Zhou et al., 2020a), 
as specified in the figure legends. All trees were created with 
the version of GrapeTree (Zhou et al., 2018a) that is integrated 
into EnteroBase, and can be interactively interrogated within  
EnteroBase. 

Data availability
Underlying data
Short read sequences are available for public access at the Short 
Reads Archive (SRA) at EBI under BioProject accessions 
PRJEB20997 and PRJEB33949.

NCBI BioProject: Salmonella enterica ancient DNA and modern 
demography. Accession number: PRJEB20997

NCBI BioProject: EnteroBase - User Uploads from M. Achtman  
to EnteroBase Salmonella database. Accession number: 
PRJEB33949

All other data is available for public access in EnteroBase  
http://enterobase.warwick.ac.uk in the Salmonella data-
base. Individual strains and genomes from this project can be 
located with the same BioProject accession codes and also by 
the metadata field containing the text “M. Achtman”. All the  
analyses described were performed with software that are  
available within EnteroBase. Access to the individual trees 
with the option of colour-coding by other metadata is publicly  
accessible at: 

Figure 3: http://enterobase.warwick.ac.uk/ms_tree/46053;

Figure 4A: http://enterobase.warwick.ac.uk/ms_tree/46227;

Figure 4B: http://enterobase.warwick.ac.uk/ms_tree/46226;

Figure 5, 6: http://enterobase.warwick.ac.uk/ms_tree/46139;

Figure 7: http://enterobase.warwick.ac.uk/ms_tree/46122.
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In this major study, the Achtman group have assembled a fascinating collection of 10,000 
Salmonella isolates that spanned more than a century, and were obtained from a wide range of 
mammalian, reptilian and environmental sources. 
 
By generating high-quality genome sequence, and doing analysis with the impressive EnteroBase 
resource, the paper not only provides invaluable genome-based information concerning the true 
diversity of the Salmonella genus, but also contributes new insights into the relatedness of the 
important Enteritidis and Typhimurium serovars. The focus on the Mbandaka Lineage is both 
timely and interesting. 
 
The manuscript is extremely well-written, and requires very few modifications. Some minor 
comments are listed below. 
 
Minor comments:

In the Introduction, I suggest that rather than citing the Kingsleyet al (2009) paper, a more 
recent publication is referred to Stanaway, JD et al. (2019)1. 
 

○

In the first paragraph of the “general overview of population structures” section, I wasn’t 
clear what the phrase “excluded from the 10 genomes” meant. Could this be clarified? 
 

○

In the second paragraph of the “general overview of population structures” section, please 
add an additional reference for Clade B such as den Bakker HC et al. (2011)2. 
 

○

The scale bar described in legend to Figure 4 shows “200 alleles”. Is this the same as “200 
SNPs”? If so, please use the term “SNPs” rather than “alleles” in this legend (and in other 
relevant figure Legends in the paper). 
 

○

At the beginning of the discussion, the term “catholic” is used to describe the UoWUCC 
collection. As the word “catholic” is not used as commonly as he used to be, I suggest it is 
changed to “wide-ranging” or similar. 
 

○

On page 10, change “all human Salmonella isolates in England” to “all human Salmonella 
isolates in England and Wales”. 
 

○

In the sentence that begins “In contrast to” on page 12, I was not clear what the words 
“accurate” and “plausibility” meant. Please rephrase. 
 

○

In the sentence that begins “As a result,” on page 12, I was not clear what the word 
“cleanest” meant. Please rephrase. 
 

○

On page 14, the important manual curation process is described. I suggest that an 
additional sentence is added at the beginning of this section to clarify the rationale of this 
approach for readers. One option would be to begin “Manual curation of the assembled 
genomes was performed within EnteroBase to generate the most accurate dataset possible. 
For individual genomes to be assigned to the final dataset, the genome-derived predictions 
needed to be consistent with either serotype or MLST data for each isolate. To this end…”, 
but of course the authors should make the sentence their own.

○
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The authors reported a timely and laudable effort to substantially enrich publicly available 
genome data of Salmonella. This contribution is particularly valuable by 1) ameliorating the 
inherent and entrenched sampling bias toward certain countries and origins in public depositories 
of Salmonella genomes, and 2) accompanying genome resources with a powerful set of analytical 
and graphical tools as part of EnteroBase.  
 
Taking the "Enteritidis Lineage" for example, existing epidemiology of Enteritidis is largely based 
on commonly circulating strains in North America and Europe, which often describes the 
population structure of the serotype as homogenous and clonal (although with the recognition of 
rare strains that are distantly related to the major Enteritidis clades). The UoWUCC 10K genomes 
project highlights the phylogenetic diversity of the serotype, as nicely demonstrated in the paper 
by an interactive figure that is easily accessible and highly customizable.  
 
In the discussion, it would be helpful if the authors could explicitly answer or echo the four 
questions raised in the introduction (Does the natural diversity and broad population structure of 
S. enterica differ between continents, or by source? Are S. enterica populations uniform across 
smaller geographic entities with multiple legal entities but continuous contact, such as the island 
of Ireland? Do isolates from water and reptiles cause gastroenteritis in humans?) 
 
As a minor issue, certain source categories in Table 1 appear to overlap with each other, such as 
"livestock" and "domesticated animals". Some categories may need more precise definition, such 
as "environment". 
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