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Abstract 

 

OBJECTIVE: A post hoc analysis to investigate the association between 1-year changes 

in albuminuria and subsequent risk of cardiovascular and renal events.  

RESEARCH DESIGN AND METHODS: LEADER was a randomized trial of liraglutide up 

to 1.8 mg/day versus placebo added to standard care for 3.5–5 years, in 9,340 participants 

with type 2 diabetes and high cardiovascular risk. We calculated change in urinary 

albumin-to-creatinine ratio (UACR) from baseline to 1 year in participants with >30% 

reduction (N=2,928), 30–0% reduction N=1,218) or any increase in UACR (N=4,124) 

irrespective of treatment. Using Cox regression, risks of major adverse cardiovascular 

events (MACE) were analyzed alongside a composite nephropathy outcome (from 1 year 

to end of trial in subgroups by baseline UACR [<30 mg/g, 30–300 mg/g or ≥300 mg/g]). 

The analysis was adjusted for treatment allocation alone as a fixed factor and for baseline 

variables associated with cardiovascular and renal outcomes. 

RESULTS: For MACE, hazard ratios (HRs) for those with >30% and 30%–0% UACR 

reduction were 0.82 (95% CI 0.71–0.94; P=0.006) and 0.99 (0.82–1.19; P=0.912), 

respectively. For the composite nephropathy outcome, respective HRs (95% CI) were 0.67 

(0.49–0.93; P=0.02) and 0.97 (0.66–1.43; P=0.881). Results were independent of baseline 

UACR and consistent in both treatment groups. After adjustment, HRs were significant and 

consistent in >30% reduction subgroups with baseline micro- or macroalbuminuria.  

CONCLUSIONS: A first-year albuminuria reduction was associated with fewer 

cardiovascular and renal outcomes, highlighting the importance of measuring albuminuria 

during treatment to monitor cardiovascular and renal risk.  



Evidence from observational studies and clinical trials in diabetes has demonstrated 

albuminuria to be a strong predictor of cardiovascular (CV) (1; 2) and renal events (3-5). 

The clinical use of albuminuria groups, i.e. normo-, micro- and macroalbuminuria (based 

on urinary albumin-to-creatinine ratio [UACR] values of 0−<30 mg/g, 30−300 mg/g and 

≥300 mg/g, respectively),  and provide useful parameters for treatment decisions. Recent 

large meta-analyses strengthen an emerging body of evidence for the role of albuminuria 

as a renal risk factor and its reduction as a target for treatment in kidney disease (6; 7). In 

the latter meta-analysis, treatment for the most part was based on inhibition of the renin-

angiotensin system (RAAS) or other antihypertensive agents.    

Recent data from a number of trials indicate that glucagon-like peptide-1 receptor agonists 

(GLP-1 RAs) lower albuminuria and also provide CV and renal benefits in participants with 

type 2 diabetes (T2D) (8-12). The GLP-1 RAs liraglutide and semaglutide have shown 

both CV (9) and renal benefits (10) in participants with T2D and high CV risk in the 

Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results 

(LEADER) and Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes 

(SUSTAIN 6) trials (9; 13). In both trials, there was a significant reduction in albuminuria 

and a prevention of development of macroalbuminuria in the GLP-1 RA-treated groups. In 

addition, in the Researching Cardiovascular Events With a Weekly Incretin in Diabetes 

(REWIND) trial, the GLP-1 RA dulaglutide demonstrated a 18% overall reduction in UACR 

alongside a 15% reduction in the composite renal outcome compared with placebo in a 

cohort of participants with T2D with and without established CV disease (14). 

Using the data from the LEADER trial, we tested the hypothesis that a reduction in UACR 

is associated with a reduction of CV and renal risks in a cohort treated with a GLP-1 RA or 



placebo, on a background of control of established CV risk factors and continuous use of 

RAAS blockade in the vast majority of participants. 

 

METHODS 

 

The LEADER trial (NCT01179048) design, detailed methods, and primary results have 

been published previously (9; 15). In brief, 32 countries participated in this randomized, 

double‑blind, placebo-controlled trial, which was designed to assess the CV safety of 

liraglutide in participants with T2D at high CV risk. A total of 9,340 participants were 

randomized 1:1 to receive either subcutaneous liraglutide (1.8 mg/day or the maximum 

tolerated dose of 0.6–1.8 mg/day), or matching placebo, both in addition to standard of 

care therapy. The treatment period was 3.5–5 years, with a 30-day follow-up period. The 

vast majority (>80%) of the participants were treated with inhibitors of the RAAS system, 

more than 40% received insulin, 88% any glucose-lowering agent and 76% lipid-lowering 

agents. 

The primary outcome was the time from randomization to first occurrence of a composite 

of major adverse CV events (MACE), consisting of CV death, nonfatal myocardial 

infarction, or nonfatal stroke. Secondary time-to-event outcomes included a four-

component nephropathy composite (new onset of persistent macroalbuminuria or a 

persistent doubling of serum creatinine, i.e. confirmed by a second reading (15) and 

estimated glomerular filtration rate [eGFR] ≤45 ml/min/1.73 m2, need for continuous renal-

replacement therapy [in the absence of an acute reversible cause], and death from renal 

disease).  



In this post hoc analysis, we analyzed the risk of MACE and a three-component 

nephropathy composite (doubling of serum creatinine and eGFR <45 ml/min/1.73m2, renal 

replacement therapy, or renal death) in participants with a UACR measurement at baseline 

and at 1 year after randomization. The component ‘new onset of persistent 

macroalbuminuria’ was excluded from the renal composite outcome for this analysis, as 

one subgroup in the current analysis comprised participants with pre-existing 

macroalbuminuria. Participants were stratified into three categories according to change in 

UACR from baseline to 1 year (>30% reduction, 30‒0% reduction, and any increase from 

baseline). These thresholds for changes in albuminuria were chosen based on previous 

analyses of trials using RAAS inhibition (4; 16; 17). In addition, the analyses were 

repeated in subgroups with baseline normo-, micro- and macroalbuminuria. For the 

purposes of comparison, the group with any increase in UACR from baseline served as 

the reference.  

UACR and serum creatinine levels were measured at randomization, after 12 months and 

annually thereafter, and at trial completion; additionally, serum creatinine level was 

measured at month 6. All measurements were done centrally (15). UACR or creatinine 

measurements less than limit of quantification (LLoQ) were imputed using a value of ½ x 

LLoQ; those measurements greater than the higher limit of quantification (HLoQ) were 

imputed using the HLoQ value. 

CV and renal events included in the composite outcomes were adjudicated by an 

independent, blinded committee (15). Time to event from 1 year to end of study according 

to change in UACR from baseline to the 1-year visit, and UACR groups at baseline were 

analyzed using a Cox proportional-hazards model. The analysis was adjusted for 

treatment allocation alone (liraglutide versus placebo) as a fixed factor and also for 



treatment and covariates (age, gender, systolic and diastolic blood pressure, eGFR, body 

weight, HbA1c, UACR and smoking status at baseline and changes in systolic and diastolic 

blood pressure, eGFR, body weight, and HbA1c from baseline to the 1-year visit). All 

participants who underwent randomization and who had measurements of UACR at 

baseline and at the 1-year visit were included and, if there was no event, censored from 

analysis at time of death or the end of follow-up, whichever came first. Events within the 

first year were excluded from the analysis. Change in UACR at 1 year was analyzed using 

a mixed-effects model for repeated measures on log-transformed values according to 

UACR baseline subgroup (normo-, micro- or macroalbuminuria) adjusted for continuous 

UACR at baseline (log transformed), age, anti-diabetic medication at baseline, gender, and 

interaction between randomized treatment and UACR subgroup. For each UACR baseline 

subgroup the change in continuous UACR from baseline was derived as a ratio 

(summarised in percentages) according to treatment and across treatment.  

We assessed the impact of regression to the mean by calculating the ‘nonparametric’ 

regression dilution coefficient using the MacMahon-Peto method dividing UACR data into 

deciles (18) (Supplementary Fig. S1). Additionally, we calculated this coefficient using a 

linear model with the log-transformed UACR values at 1 year as a dependent variable, and 

the log transformed UACR values at baseline as a covariate and then used the reciprocal 

of the regression coefficient to estimate the ‘parametric’ dilution coefficient. These 

analyses could be potentially impacted by a survival bias within the first year as patients 

with a high UACR at baseline risk were at a higher risk for all-cause death, specifically 

within the first year of follow-up and during the trial. 



The trial was approved by ethics committees/institutional review boards, and all patients 

provided written informed consent. The trial was conducted in accordance with the 

Declaration of Helsinki.  

RESULTS 

 

Of the 9,340 participants randomly assigned in the LEADER trial, 9,113 had UACR 

measured at baseline (15). The patient disposition is shown in Supplementary Fig. S2. 

After 1 year, 8,270 patients (89% of the randomized population) had a follow-up 

albuminuria measurement and were included in this post hoc analysis. The demographics 

of this subgroup population are given in Table 1 and did not differ in any notable way from 

the full study population. 

UACR changes at 1 year 

Approximately half of the patients had an increase in albuminuria during the first year of 

the trial (n = 4,124; 47% of the population in this analysis), of which 498 patients (12.1%) 

experienced CV events and 113 (2.7%) renal events. The remainder of the population had 

a reduction of up to 30% from baseline (n = 1,218; 14%) or >30% reduction (n = 2,928; 

34%) from baseline UACR during the first year. Overall reduction in UACR was 3.5% (95% 

CI: 1%−6%); UACR decreased by 15% (95% CI: 13%−18%) in the liraglutide group 

compared with an estimated increase of 10% (95% CI: 7%−14%) in the placebo group. 

Compared with any increase in UACR (reference), patients with a decrease of up to 30% 

had a similar risk of MACE (12.1%) with a hazard ratio (HR) of 0.99 (95% CI 0.82−1.19), P 

= 0.912. For the composite nephropathy outcome, the HR (95% CI) was 0.97 (0.66−1.43), 

P = 0.881. For patients with a 1-year reduction in UACR of more than 30% from baseline, 

the HR (95% CI) for MACE was 0.82 (0.71−0.94), P = 0.006, and 0.67 (0.49−0.93), P = 



0.02 for the composite nephropathy outcome. The associations between early change and 

subsequent MACE and renal outcomes were consistent in the liraglutide and placebo 

group (P-values for interaction were 0.516 and 0.839 for MACE and renal events, 

respectively). Subgroups of baseline albuminuria  

In patients with normoalbuminuria at baseline, after 1 year, there was a mean relative 

reduction in UACR of 14% (95% CI: 9%, 18%). In patients with microalbuminuria, an 

increase in UACR of 12% (95% CI: 4%, 20%) was estimated, and in those with 

macroalbuminuria, UACR more than doubled (120% [95% CI: 92%, 153%]). 

Supplementary Fig. S3A shows the unadjusted HRs for MACE by normo-, micro- and 

macroalbuminuria subgroups and change in UACR, respectively. An albuminuria reduction 

of more than 30% from baseline was associated with a reduction in risk of MACE in 

patients with micro- or macroalbuminuria. The P-value for interaction between baseline 

category and change in UACR adjusted for treatment was 0.26. Fig. 1A shows the 

adjusted HRs for MACE with a >30% reduction in micro- and macroalbuminuria subgroups 

significantly associated with lower risk.                 

Similarly, Supplementary Fig. S3B shows the unadjusted HRs for the composite 

nephropathy outcome in the same subgroups. Here, a reduction in albuminuria of more 

than 30% was associated with renal benefit in patients with macroalbuminuria. The P-

value for interaction between baseline category and change in UACR adjusted for 

treatment was 0.89. Fig. 1B depicts the same association, but with adjusted HRs and here 

a >30% reduction was associated with less renal risk in subgroups with baseline micro- or 

macroalbuminuria. In addition, a minor reduction from baseline albuminuria was 

associated with less renal risk. The demographics of the subgroups population are given in 

Supplementary Table S1. 



The cumulative distribution of change from baseline to 1-year in UACR (logarithm to the 

ratio between 1-year measurement and baseline), is shown in Fig. 2. No interactions were 

seen between UACR change and use of RAAS inhibitors at baseline according to the 

three UACR groups for the two endpoints (data not shown). 

Supplementary analyses  

Analyses showed that for each standard deviation (SD) increase in UACR from baseline 

(log transformed) to 1-year, the HR (95% CI) was 1.19 (1.12−1.27) for MACE, and 1.79 

(1.52−2.12) for renal outcome. A 1% decrease in glycated hemoglobin (HbA1c) from 

baseline to 1 year in  was  associated with change in UACR (β) = 0.14, P < 0.001) , 

adjusted for baseline HbA1c and log-transformed UACR.  

Additionally, analyses with relative change in UACR between baseline and 1-year were 

performed. These adjusted analyses showed that for patients with macroalbuminuria, a 

doubling of UACR increased the risk of first MACE and risk of renal event by 25% (95% 

CI: 11%−41%) and 44% (95% CI: 27%−65%), respectively. For patients with 

microalbuminuria and normoalbuminuria, the corresponding numbers were 0−1% and 

0−3% for first MACE and first renal event, indicating a very modest risk of UACR increase 

for these endpoints. We used clinically relevant changes in UACR used in previous 

studies. (3, 19) Regression to the mean sensitivity analyses  

Pooled across treatment groups, there was modest evidence of regression to the mean 

UACR; the nonparametric dilution coefficent (representing regression on the change from 

baseline) using the MacMahon-Peto method and the parametric dilution coefficient 

(representing baseline) were 1.24 and 1.22, respectively. Every one SD increase in UACR 

at baseline was associated with 35% higher risk of first MACE (95% CI 27−43). Applying 



the nonparametric dilution coefficient increased this estimate to 43% (95% CI 34−56). 

Correspondingly, every one SD increase in baseline UACR was associated with a 3.6-fold 

(95% CI 4.03−5.27) higher risk of a renal event which increased after applying the dilution 

coefficient to a 5.6-fold (95% CI 5.63−7.85) higher risk.  

CONCLUSIONS 

 

The results of this post hoc analysis from the LEADER trial indicate that a1-yearreduction 

in UACR from baseline to 1 year predicts future benefits on CV and renal outcomes. For 

example, a >30% reduction of UACR from baseline was associated with a reduced risk of 

the composite nephropathy outcome. These associations were confirmed after adjusting 

for clinical variables at baseline and changes in covariates up till 1 year. Indeed, 

approximately a third of the LEADER population experienced a substantial reduction, 

(i.e. >30%) of UACR which was seen more frequently with liraglutide than with placebo. 

Nevertheless, no treatment interaction was observed with the association of change in 

UACR and MACE or renal outcomes, indicating that the renal benefit of UACR reduction 

was not restricted to liraglutide-treated patients alone.  

In subgroups with micro- or macroalbuminuria at baseline, we found that a 1-year 

reduction in albuminuria >30% was associated with improved CV and renal outcomes. 

These findings are reassuring, as these subgroups with elevated albuminuria also carry 

the highest risk of CV and renal events. Any effort to reduce albuminuria should be 

implemented in routine clinical diabetes care.  

These findings from LEADER are of particular interest given that most other evidence of 

associations of changes in UACR and outcomes have come from trials investigating 

initiation of RAAS blockade, a well-known mechanism to reduce UACR. In LEADER, the 



vast majority of enrolled participants were on standard dose RAAS blockade at 

randomization and remained on that therapy for the duration of the trial.  

Our findings are in line with previous observational and post hoc studies (19) and recent 

meta-analyses (6; 7) performed in cohorts where treatment was mostly based on initiation 

of RAAS inhibitors or non-GLP-1 RA antihypertensive treatments. .  

Of note is the dual benefit associated with a significant reduction of albuminuria for the CV 

and renal outcomes. We observed a 25% and 58% relative risk reduction of these 

outcomes, respectively, in the group with baseline microalbuminuria (based on the 

adjusted analyses); a >30% reduction in albuminuria after 1 year in the group with 

baseline macroalbuminuria was associated with a 43% lower risk of both CV and renal 

outcomes. Few other targeted risk factor interventions in T2D are associated with this 

magnitude of risk reduction.  

Previous post hoc analyses investigating the benefit of albuminuria reduction are mostly 

from randomized trials of mono- or dual-RAAS-blocking therapies. In an analysis of the 

Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial 

(ONTARGET) and Telmisartan Randomized Assessment Study in ACE Intolerant Subjects 

with Cardiovascular Disease (TRANSCEND) trials, two large CV randomized clinical trials 

ran in parallel in patients with vascular disease or high risk diabetes, many of whom had 

albuminuria, Schmieder et al. (20) reported that a two-fold or greater decrease in 

albuminuria predicted both CV and renal benefit compared to a minor change in 

albuminuria.  

Similarly, in the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist 

Losartan (RENAAL) it was demonstrated that >30% reduction from baseline albuminuria 



was associated with both greater CV and renal protection (4; 21). We chose the same 

cutoff (>30% reduction) for our analysis, and it is interesting that this is still clinically 

significant in a modern cohort of patients with T2D, most of whom were on RAAS-blocking 

treatment. (2).. A large meta-analysis of 41 randomized clinical trials recently 

demonstrated close associations between albuminuria reduction and lower risk of renal 

outcome. In the analysis, a 30% decrease in albuminuria was associated with a 27% lower 

risk for a composite renal endpoint of end-stage renal disease, eGFR <15 ml/min/1.73m2 

or doubling of serum creatinine (6). In addition, in a real-world setting, Italian authors 

demonstrated that a remission of albuminuria category led to a reduction in renal risk in a 

cohort gathered from 100 diabetes centers(22).  

The novelty of our analysis is that the LEADER trial was not investigating RAAS blocking 

or antihypertensive treatment, but a diabetes treatment with pleiotropic effects. This 

supports focus on albuminuria reduction as an overall clinical treatment goal, alongside the 

reduction in glycemic control, blood pressure, and lipid levels in diabetes treatment 

guidelines (23). The drawback at present is that we are lacking prospective intervention 

trials that target higher and lower goals of UACR, and examine renal and CV outcomes, 

comparable to intensive versus standard goals of blood pressure or glycemic control.  

We need a better mechanistic understanding of the potential damage caused by 

albuminuria in order to develop appropriately targeted therapies. In the meantime, it is 

comforting that several GLP-1 RAs now have documented albuminuria-lowering effects 

that may well contribute to their overall renal benefit. Studies have shown reductions in 

albuminuria of 17−32% with liraglutide (11; 24),  2−39% with lixisenatide (25), and 29% 

with dulaglutide (26). Dipeptidyl peptidase-4 inhibitors, on the other hand, seem to have 

less albuminuria-lowering potential, as demonstrated in the placebo-controlled Efficacy, 



Safety & Modification of Albuminuria in Type 2 Diabetes Subjects with Renal Disease with 

LINAgliptin (MARLINA) trial in which linagliptin led to a nonsignificant 6% albuminuria 

reduction (27). Similar effects sizes were observed in the DELIGHT trial, where saxagliptin 

was added to dapagliflozin (28). However, the subsequent linagliptin outcome trial 

Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With 

Type 2 Diabetes Mellitus (CARMELINA) (29) showed potential for reduced albuminuria 

progression, HR 0.86 (0.78–0.95) P = 0.003, as did a previous analysis of the Does 

Saxagliptin Reduce the Risk of Cardiovascular Events When Used Alone or Added to 

Other Diabetes Medications (SAVOR-TIMI 53 ) trial with saxagliptin, which also showed 

significant reduction of albuminuria in the normoalbuminuric range (P = 0.021) (30). 

There are limitations to our analysis. Although LEADER was a large trial with a long follow-

up, this remains a post hoc analysis with all the inherent problems that preclude causal 

inferences. Firstly, it is not clear whether the reductions in albuminuria are the cause of 

improved outcomes or merely markers of other factors such as general endothelial 

integrity. Also, the LEADER trial was conducted in a population with T2D with high CV risk, 

thus the findings from this analysis may not be generalizable to a broader patient 

population. UACR measurement was based on a single urine sample, which may lead to 

higher variability compared to using two or three samples and potential regression to the 

mean. However, it has been shown that a single sample can be used in a large study 

population with T2D and macroalbuminuria (31). Morning spot urine samples are well 

suited for use in clinical trials of albuminuria, and logistically challenging 24-hour urine 

collections are not needed (32; 33). Futhermore, UACR measurements at an earlier stage 

of treatment, such as after 3 or 6 months of treatment, would have helped to describe the 

time course of albuminuria changes. Finally, no control for multiplicity was performed.  



In conclusion, the results of the current study in a large, contemporary population of 

patients with T2D followed for a median of 3.8 years confirm the close association of 

reductions in UACR with reduced risk for major CV and renal outcomes in patients with 

T2D at high CV and moderate renal risk. These data strongly support the concept of a 

randomized controlled trial testing lower and higher target levels of UACR on major CV 

and renal outcomes.  

 

ACKNOWLEDGMENTS 

F.P., H.J.L.H., B.J.v.S. and P.R. initiated the study, S.R. performed the analyses and all 

authors discussed the analysis plan and results and provided input to the manuscript. 

Medical writing and submission support were provided by Aneela Majid, PhD, and Izabel 

James, MBBS, of Watermeadow Medical, an Ashfield company, part of UDG Healthcare 

plc, funded by Novo Nordisk A/S. All authors had access to final study results. F.P. drafted 

this manuscript, which was revised and approved by all authors, who also assume 

responsibility for its content. F.P. is the guarantor of this work and, as such, had full access 

to all the data in the study, and takes responsibility for the integrity of the data and the 

accuracy of the data analysis. 

This post hoc analysis was presented at Kidney Week 2018 in San Diego.  

Duality of interest  

F.P.: research grants from AstraZeneca, Novo Nordisk and Novartis; lecture fees from 

Novartis, Eli Lilly, MSD, AstraZeneca, Sanofi, Novo Nordisk and Boehringer Ingelheim; 

served as a consultant for AstraZeneca, Bayer, Amgen, Novo Nordisk and MSD.  



S.C.B.: honoraria, teaching and research sponsorship/grants from Abbott, AstraZeneca, 

Boehringer Ingelheim, Bristol-Myers Squibb, Cellnovo, Diartis, Eli Lilly & Co, 

GlaxoSmithKline, Merck Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi-

Aventis, Schering-Plough, Servier, Takeda; funding for development of educational 

programs from Cardiff University, Doctors.net, Elsevier, Onmedica, Omnia-Med, 

Medscape. He owns a share of Glycosmedia and has provided expert advice to the All-

Wales Medicines Strategy Group and National Institute for Health and Care Excellence 

(NICE) UK. 

O.M.: advisory board: Novo Nordisk, Eli Lilly, Sanofi, Merck Sharp & Dohme, Boehringer 

Ingelheim, AstraZeneca; grants paid to institution as study physician by AstraZeneca; 

research grant support through Hadassah Hebrew University Hospital: Novo Nordisk; 

speaker's bureau: AstraZeneca, Novo Nordisk, Eli Lilly, Sanofi, Merck Sharp & Dohme, 

Boehringer Ingelheim. 

H.J.L.H.: consulting for AbbVie, Astellas, AstraZeneca, Boehringer Ingelheim, Fresenius, 

Gilead, Janssen, Merck, Mitsubishi Tanabe, Mundi Pharma, with all honoraria paid to his 

employer. 

J.F.E.M.: speaker honoraria from Amgen, AstraZeneca, Boehringer Ingelheim, Braun, 

Fresenius, Gambro, Eli Lilly & Co, Medice, Novo Nordisk, Relypsa, Roche; research 

support from European Union, Canadian Institutes Health Research, Boehringer 

Ingelheim, Celgene, Novo Nordisk, Roche, Sandoz; consultation fees from AstraZeneca, 

Bayer, Celgene, Fresenius, Eli Lilly & Co, Lanthio Pharma, Novo Nordisk, Relypsa, Sanifit, 

Vifor Pharma.  



R.P.’s services were paid directly to AdventHealth (formerly Florida Hospital), a nonprofit 

organization, including consultancy and speaker fees from AstraZeneca, Takeda and Novo 

Nordisk; consultancy fees from Boehringer Ingelheim, GlaxoSmithKline, Hanmi 

Pharmaceutical Co. Ltd., Janssen Scientific Affairs LLC, Ligand Pharmaceuticals, Inc., Eli 

Lilly, Merck, Pfizer and Eisai, Inc.; research grant from Gilead Sciences, Inc., Lexicon 

Pharmaceuticals, Ligand Pharmaceuticals, Inc., Eli Lilly & Co, Merck, Sanofi US LLC and 

Takeda.  

I.R.: personal fees from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, 

Concenter BioPharma and Silkim, Eli Lilly, Merck Sharp & Dohme, Novo Nordisk, 

Orgenesis, Pfizer, Sanofi, SmartZyme Innovation, Panaxia, FuturRx, Insuline Medical, 

Medial EarlySign, CameraEyes, Exscopia, Dermal Biomics, Johnson & Johnson, Novartis, 

Teva, GlucoMe, DarioHealth. 

B.J.v.S.: Novo Nordisk A/S employee and shareholder. 

T.I. and S.R.: Novo Nordisk A/S employees and shareholders. 

P.R.: lectures for AstraZeneca, Bayer and Boehringer Ingelheim; served as a consultant 

for AbbVie, AstraZeneca, Bayer, Eli Lilly, Boehringer Ingelheim, Astellas, Janssen and 

Novo Nordisk; all fees given to Steno Diabetes Center Copenhagen; equity interest in 

Novo Nordisk. 



References   

 

1. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Halle JP, Young J, Rashkow A, Joyce C, 
Nawaz S, Yusuf S, Investigators HS. Albuminuria and risk of cardiovascular events, death, and heart failure 
in diabetic and nondiabetic individuals. JAMA 2001;286:421-426 
2. Heerspink HJ, Ninomiya T, Persson F, Brenner BM, Brunel P, Chaturvedi N, Desai AS, Haffner SM, 
McMurray JJ, Solomon SD, Pfeffer MA, Parving HH, de Zeeuw D. Is a reduction in albuminuria associated 
with renal and cardiovascular protection? A post hoc analysis of the ALTITUDE trial. Diabetes Obes Metab 
2016;18:169-177 
3. Heerspink HJ, Kropelin TF, Hoekman J, de Zeeuw D, Reducing Albuminuria as Surrogate Endpoint C. Drug-
Induced Reduction in Albuminuria Is Associated with Subsequent Renoprotection: A Meta-Analysis. J Am 
Soc Nephrol 2015;26:2055-2064 
4. Eijkelkamp WB, Zhang Z, Remuzzi G, Parving HH, Cooper ME, Keane WF, Shahinfar S, Gleim GW, Weir 
MR, Brenner BM, de Zeeuw D. Albuminuria is a target for renoprotective therapy independent from blood 
pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in 
NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am Soc Nephrol 2007;18:1540-1546 
5. Atkins RC, Briganti EM, Lewis JB, Hunsicker LG, Braden G, Champion de Crespigny PJ, DeFerrari G, Drury 
P, Locatelli F, Wiegmann TB, Lewis EJ. Proteinuria reduction and progression to renal failure in patients with 
type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis 2005;45:281-287 
6. Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, Chan TM, Hou FF, Lewis JB, 
Locatelli F, Praga M, Schena FP, Levey AS, Inker LA, for the Chronic Kidney Disease Epidemiology 
Collaboration*. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-
analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 2019; 
7. Coresh J, Heerspink HJL, Sang Y, Matsushita K, Arnlov J, Astor BC, Black C, Brunskill NJ, Carrero J-J, 
Feldman HI, Fox CS, Inker LA, Ishani A, Ito S, Jassal S, Konta T, Polkinghorne K, Romundstad S, Solbu MD, 
Stempniewicz N, Stengel B, Tonelli M, Umesawa M, Waikar SS, Wen C-P, Wetzels JFM, Woodward M, 
Grams ME, Kovesdy CP, Levey AS, Gansevoort RT, for the Chronic Kidney Disease Prognosis Consortium and 
Chronic Kidney Disease Epidemiology Collaboration*. Change in albuminuria and subsequent risk of end-
stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. 
Lancet Diabetes Endocrinol 2019; 
8. von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-
hypertensive and renal effects of liraglutide treatment. Diabet Med 2015;32:343-352 
9. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter 
NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, Committee LS, Investigators LT. 
Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016;375:311-322 
10. Mann JFE, Orsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornoe K, Zinman B, Buse 
JB, Committee LS, Investigators. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 
2017;377:839-848 
11. von Scholten BJ, Persson F, Rosenlund S, Hovind P, Faber J, Hansen TW, Rossing P. The effect of 
liraglutide on renal function: A randomized clinical trial. Diabetes Obes Metab 2017;19:239-247 
12. Zobel EH, von Scholten BJ, Lindhardt M, Persson F, Hansen TW, Rossing P. Pleiotropic effects of 
liraglutide treatment on renal risk factors in type 2 diabetes: Individual effects of treatment. J Diabetes 
Complications 2017;31:162-168 
13. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, 
Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsboll T. Semaglutide and Cardiovascular Outcomes 
in Patients with Type 2 Diabetes. N Engl J Med 2016;375:1834-1844 
14. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Botros FT, Riddle 
MC, Ryden L, Xavier D, Atisso CM, Dyal L, Hall S, Rao-Melacini P, Wong G, Avezum A, Basile J, Chung N, 
Conget I, Cushman WC, Franek E, Hancu N, Hanefeld M, Holt S, Jansky P, Keltai M, Lanas F, Leiter LA, Lopez-



Jaramillo P, Cardona Munoz EG, Pirags V, Pogosova N, Raubenheimer PJ, Shaw JE, Sheu WH, Temelkova-
Kurktschiev T, Investigators R. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of 
the REWIND randomised, placebo-controlled trial. Lancet 2019;394:131-138 
15. Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, Pocock S, Steinberg WM, Bergenstal 
RM, Mann JF, Ravn LS, Frandsen KB, Moses AC, Buse JB. Design of the liraglutide effect and action in 
diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J 2013;166:823-830 e825 
16. Heerspink HJ, Persson F, Brenner BM, Chaturvedi N, Brunel P, McMurray JJ, Desai AS, Solomon SD, 
Pfeffer MA, Parving HH, de Zeeuw D. Renal outcomes with aliskiren in patients with type 2 diabetes: a 
prespecified secondary analysis of the ALTITUDE randomised controlled trial. Lancet Diabetes Endocrinol 
2016;4:309-317 
17. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, 
Brenner BM. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with 
nephropathy. Circulation 2004;110:921-927 
18. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, Stamler J. Blood 
pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective 
observational studies corrected for the regression dilution bias. Lancet 1990;335:765-774 
19. Jun M, Ohkuma T, Zoungas S, Colagiuri S, Mancia G, Marre M, Matthews D, Poulter N, Williams B, 
Rodgers A, Perkovic V, Chalmers J, Woodward M, Group AC. Changes in Albuminuria and the Risk of Major 
Clinical Outcomes in Diabetes: Results From ADVANCE-ON. Diabetes Care 2018;41:163-170 
20. Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, McQueen M, Koon T, Yusuf S, 
Investigators O. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J 
Am Soc Nephrol 2011;22:1353-1364 
21. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, 
Brenner BM. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons 
from RENAAL. Kidney Int 2004;65:2309-2320 
22. Viazzi F, Ceriello A, Fioretto P, Giorda C, Guida P, Russo G, Greco E, De Cosmo S, Pontremoli R, Group 
AM-AS. Changes in albuminuria and renal outcome in patients with type 2 diabetes and hypertension: a 
real-life observational study. J Hypertens 2018;36:1719-1728 
23. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: <em>Standards 
of Medical Care in Diabetes—2020</em>. 2020;43:S98-S110 
24. Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B, Buse 
JB. Liraglutide and Renal Outcomes in Type 2 Diabetes. New England Journal of Medicine 2017;377:839-848 
25. Muskiet MHA, Tonneijck L, Huang Y, Liu M, Saremi A, Heerspink HJL, van Raalte DH. Lixisenatide and 
renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of 
the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2018;6:859-869 
26. Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, Botros FT. Dulaglutide 
versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease 
(AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 2018;6:605-617 
27. Groop PH, Cooper ME, Perkovic V, Hocher B, Kanasaki K, Haneda M, Schernthaner G, Sharma K, Stanton 
RC, Toto R, Cescutti J, Gordat M, Meinicke T, Koitka-Weber A, Thiemann S, von Eynatten M. Linagliptin and 
its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the 
randomized MARLINA-T2D trial. Diabetes Obes Metab 2017;19:1610-1619 
28. Pollock C, Stefánsson B, Reyner D, Rossing P, Sjöström CD, Wheeler DC, Langkilde AM, Heerspink HJL. 
Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of 
dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney 
disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 
2019;7:429-441 
29. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, Alexander JH, Pencina M, Toto RD, 
Wanner C, Zinman B, Woerle HJ, Baanstra D, Pfarr E, Schnaidt S, Meinicke T, George JT, von Eynatten M, 
McGuire DK, Investigators ftC. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults 



With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. 
JAMA 2019;321:69-79 
30. Mosenzon O, Leibowitz G, Bhatt DL, Cahn A, Hirshberg B, Wei C, Im K, Rozenberg A, Yanuv I, Stahre C, 
Ray KK, Iqbal N, Braunwald E, Scirica BM, Raz I. Effect of Saxagliptin on Renal Outcomes in the SAVOR-TIMI 
53 Trial. Diabetes Care 2017;40:69-76 
31. Kropelin TF, de Zeeuw D, Andress DL, Bijlsma MJ, Persson F, Parving HH, Heerspink HJ. Number and 
frequency of albuminuria measurements in clinical trials in diabetic nephropathy. Clin J Am Soc Nephrol 
2015;10:410-416 
32. Eshoj O, Feldt-Rasmussen B, Larsen ML, Mogensen EF. Comparison of overnight, morning and 24-hour 
urine collections in the assessment of diabetic microalbuminuria. Diabet Med 1987;4:531-533 
33. Lambers Heerspink HJ, Gansevoort RT, Brenner BM, Cooper ME, Parving HH, Shahinfar S, de Zeeuw D. 
Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc 
Nephrol 2010;21:1355-1360 

 

  



Table 1 – Baseline demographics of the LEADER population included in the current 

post hoc analysis according to baseline albuminuria status  

 
UACR <30 mg/g 

(n = 5,256) 

UACR 30–300 mg/g 

(n = 2,180) 

UACR ≥300 mg/g 

(n = 834) 

Male, n (%) 3,277 (62.3) 1,492 (68.4) 569 (68.2) 

Age, years 64.0 ± 7.1 64.8 ± 7.1 64.3 ± 7.2 

Diabetes duration, years 11.9 ± 7.7 13.5 ± 8.1 15.7 ± 8.0 

Geographic region, n 

(%) 
   

Europe 2,037 (38.8) 739 (33.9) 214 (25.7) 

North America 1,479 (28.1) 661 (30.3) 241 (28.9) 

Asia 355 (6.8) 212 (9.7) 104 (12.5) 

Rest of the world 1,385 (26.4) 568 (26.1) 275 (33.0) 

HbA1c, % 8.5 ± 1.4 9.0 ± 1.6 9.0 ± 1.7 

mmol/mol* 69.2 ± 15.0 74.5 ± 17.7 74.7 ±18.9 

BMI, kg/m2 32.6 ± 6.2 32.3 ± 6.2 32.0 ± 6.4 

Body weight, kg 91.8 ± 20.1 91.2 ± 21.4 89.7 ± 21.8 

Systolic blood pressure, 

mmHg 
133.5 ± 16.4 138.2 ± 17.7 145.1 ± 20.0 

Diastolic blood 

pressure, mmHg 
76.6 ± 9.8 77.7 ± 10.4 79.2 ± 10.6 

Heart failure,† n (%) 759 (14.4) 300 (13.8) 95 (11.4) 

Severe or moderate 

renal disease,‡ n (%) 
861 (16.4) 533 (24.5) 426 (51.1) 

eGFR, ml/min/1.73m2 84.3 ± 25.3 79.8 ± 27.5 63.1 ± 28.5 

Data are means ± SD or number of patients (% of total liraglutide- or placebo-treated patients).  

*Calculated not measured; †Chronic heart failure (New York Heart Association class II or III). ‡Based on 

MDRD eGFR. 

BMI, body mass index; MDRD, Modification of Diet in Renal Disease; n, number of patients. 

 



Figure legend 

 

Figure 1 – Cardiovascular (A) and renal (B) events by baseline albuminuria and 

change in albuminuria from 1 year and onwards (adjusted values).  



 



Cardiovascular events defined as the time from randomization to first occurrence of a composite of CV 

death, nonfatal myocardial infarction, or nonfatal stroke. Renal events defined as a three-component 

nephropathy composite (doubling of serum creatinine and eGFR <45 ml/min/1.73m2, renal replacement 

therapy.  

 

Figure 2 – Cumulative distribution of UACR from baseline to 1-year 

 

 

UACR, urinary albumin-to-creatinine ratio.  

 

 

 

 

 


