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Abstract: 

The hierarchical multiscale analysis normally utilises a microscopic representative 

volume element (RVE) model to capture path/history-dependent macroscopic 

responses instead of using phenomenological constitutive models. However, for 

problems involving large deformation, the current RVE model used in geomechanics 

may lose representative properties due to the progressive distortion of the RVE box, 

unless a proper reinitialization is applied. This work develops an adaptive RVE model 

in conjunction with an evolutionary periodic boundary (EPB) algorithm for hierarchical 

multiscale analysis of granular materials undergoing large deformation based on a 

recent RVE model proposed for coupling molecular dynamics and the material point 

method. The proposed adaptive RVE model avoids the reinitialization of the RVE box 

that even undergoes extremely large shear deformation; meanwhile, it accounts for the 

deformation history of the RVE model and treats the interaction between boundary 

particles and other image particles in a more efficient way. Numerical examples with 

extremely large deformation are used to illustrate the adaptive granular RVE model 

enhanced by the proposed EPB algorithm. Furthermore, some key features of this new 

methodology are further discussed for clarification.  
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1 Introduction 

Granular materials are commonly encountered in geotechnical engineering, where large 

deformation processes, such as slope failure, happen from time to time. Current 

constitutive models are limited in accurately predicting large deformation of granular 

geomaterials. Over the past fifteen years, efforts have been made to study the physics 

of granular materials and simulate their mechanical behaviour using multiscale 

numerical tools, such as the combination of the discrete element method (DEM) with 

the continuum-based finite element method (FEM), the finite difference method (FDM) 

and the material point method (MPM) 1-4.  

Two primary classes of multiscale models in geomechanics can be found in the 

literature 5, 6. One is called the concurrent approach where the entire domain is 

partitioned into a discrete subdomain (simulated by DEM) and a continuum subdomain 

(simulated by FEM or FDM) 1, 2, 7. The nature of concurrent multiscale models is that 

both the discrete subdomain and the continuum subdomain are independently solved in 

a single timestep but coupled at their interfaces; i.e. the two subdomains act as dynamic 

boundary conditions for each other. The other class of multiscale models is called the 

hierarchical approach where the whole model is simulated by macroscopic methods 

(e.g. FEM or MPM), but instead of using the phenomenological constitutive relations, 

the constitutive laws are provided by the microscopic modelling (e.g. DEM) in 

conjunction with some homogenization schemes.  

The current study falls into the hierarchical multiscale modelling approach. The early 

work of hierarchical multiscale modelling in geomechanics can be traced back to the 

literature 8-13. Andrade and Tu 14, 15 proposed a multiscale method in the modelling of 

granular materials. This method performs grain-scale computations by DEM to obtain 
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the evolution of basic plastic variables and then passes the data to continuum 

computations by FEM. Later, Miehe et al. 13, Nitka et al. 16, 17, Nguyen et al. 18, and Guo 

and Zhao 19 developed conceptually similar multiscale approaches in which FEM is 

used to simulate the macroscopic deformation while the granular RVE modelled by 

DEM is utilised to consider grain interactions at the micro-level. The computational 

homogenisation is used to derive the constitutive relations based on the numerical 

responses of the DEM model at each Gauss point of FEM and periodic boundary 

conditions (PBC) are applied to the RVE to eliminate boundary effects. More extended 

applications with a similar hierarchical multiscale technique to geomechanics were 

reported in 20-28. Furthermore, Shahin et al. 29 investigated the influence of RVE with 

different particle positions (randomness) on the FEM×DEM multiscale modelling. Liu 

et al. 30 developed a nonlocal multiscale discrete-continuum model based on the 

generalised mathematical homogenisation scheme. Argilaga et al. 31 enhanced the 

coupled technique by adopting operators different from the consistent tangent matrix 

and by developing ad-hoc solution strategies to improve the stability and numerical 

efficiency of the method. Liu et al. 32 combined the hierarchical FEM–DEM approach 

with a servo-control methodology to improve the micro-scale boundary conditions. 

Although the multiscale analysis using DEM-FEM provides new insights into some 

complex geotechnical problems, it is still challenging to simulate granular materials 

with large deformation due to mesh distortion issues in FEM 33, 34. To overcome this 

difficulty, researchers attempted to combine DEM and MPM as an alternative to the 

FEM-DEM technique. Compared to FEM, MPM is more suitable for modelling 

problems involving large deformation because the complicated remeshing is avoided 

34. Liu et al. 3, 35 first developed a coupled MPM-DEM technique and applied it to 

simulate granular flows that impact solid blocks. Then, Liang and Zhao 36 coupled DEM 

with MPM to investigate large deformation of granular materials in geomechanics.  

Currently, applications of multiscale techniques to the simulation of granular 

geomaterials are still uncommon due to high demanding computing costs. This trend 

will change with the development of emerging heterogeneous computer architectures, 
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such as CPU and GPU clusters. In such a multiscale technique, RVE is the key element 

because its computational efficiency and accuracy play a dominant role in the 

multiscale analysis. In existing multiscale techniques where RVE is used to replace 

constitutive models, homogeneous deformation tends to be assumed in the RVE, which 

is, however, inadequate for problems involving large deformation. Another issue with 

existing methods is that the RVE box can become severely distorted in large 

deformation cases. When an RVE box becomes slender in any direction it will lose the 

representative nature and thus cannot be regarded as a valid RVE anymore. The contact 

detection between boundary particles and those image particles is also an issue that can 

be conducted more efficiently. In the conventional deformed RVE model, the number 

of boundary particles can increase gradually under a consecutive shearing deformation. 

Hence more computational cost and memory are required for handling the interaction 

of boundary particles and those image particles from the opposite side.  

Given the aforementioned problems, this work aims to improve existing granular RVE 

models by adapting a recently proposed RVE model 37 for molecular dynamics (MD). 

To overcome the distortion of the RVE box and the associated time-consuming contact 

detection between boundary particles and image particles, an adaptive RVE model 

equipped with an evolutionary periodic boundary (EPB) algorithm is developed, by 

which the mentioned issues can be well resolved.  

 

2 An adaptive granular RVE model 

An RVE is the smallest volume over which a measurement can be made to yield a 

representative value for the whole system. It is often used in studying material 

properties and multiscale simulations. Fig. 1 illustrates the RVE model used in existing 

multiscale methods, where the RVE box deforms with loading.  

Different from most multiscale methods where homogeneous deformation is assumed 

within the RVE model, we adopt an RVE model that is proposed for a coupled MD-

MPM technique 37, in which the strain rate or velocity gradient is assumed the same. 
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This assumption is general and could be more reasonable in problems involving large 

deformation. The velocity gradient ∇𝒗 passed to the RVE model from the macroscopic 

method, MPM, can be uniquely decomposed into an upper triangular matrix of strain 

rate and a spin tensor as  

 ∇𝒗 =

[
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑥

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑧

𝜕𝑥

𝜕𝑣𝑧

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑧 ]
 
 
 
 

= [

𝜀𝑥̇𝑥 2𝜀𝑥̇𝑦 2𝜀𝑥̇𝑧

0 𝜀𝑦̇𝑦 2𝜀𝑦̇𝑧

0 0 𝜀𝑧̇𝑧

] + [

0 −𝑤𝑧 𝑤𝑦

𝑤𝑧 0 −𝑤𝑥

−𝑤𝑦 𝑤𝑥 0
] (1) 

where 𝜀𝑖̇𝑗 is the strain rate components with 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧. It should be highlighted that 

the decomposition (Eq. 1) is different from the standard decomposition in continuum 

mechanics, where the velocity gradient is decomposed into a symmetric strain rate 

tensor and an anti-symmetric spin tensor associated with the vorticity. The upper-

triangular strain rate matrix plays a key role in the determination of image particles 

below (see Eqs. 6-9), and therefore will be further explained in our evolutionary 

periodic boundary algorithm to be presented in Table 1. 

In the study of constitutive models, the principle of objectivity indicates that the rotation 

transformation of coordinates does not affect the stress. Therefore, for the large 

deformation problem with a low strain rate, the spin tensor can be neglected. To 

minimise the effect of RVE boundaries, the periodic boundary is always applied in RVE 

simulations. However, the deformed RVE algorithm in existing multiscale methods is 

only valid for problems with limited or moderate deformation. When subjected to large 

deformation, the RVE box may become a slender diamond or parallelogram in two-

dimensional cases as shown in Fig. 2, thereby losing its representative nature due to the 

presence of only limited particles in the narrow direction. In three-dimensional (3D) 

cases, severe distortion of an RVE box can also be encountered. In such a situation, the 

reinitialization of the RVE box becomes essential.  

To overcome the aforementioned problems, an advanced RVE model that can account 

for the deformation history of the deformed RVE domain was recently proposed 37 by 
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using a lattice matrix 𝑳(𝑡). 𝑳(𝑡) records the deformation history of a deformed RVE 

box, and takes the form  

 𝑳(𝑡) = [

𝐿𝑥𝑥 𝐿𝑥𝑦 𝐿𝑥𝑧

𝐿𝑦𝑥 𝐿𝑦𝑦 𝐿𝑦𝑧

𝐿𝑧𝑥 𝐿𝑧𝑦 𝐿𝑧𝑧

] (2) 

where 𝐿𝑥𝑥,  𝐿𝑦𝑦,  𝐿𝑧𝑧 are the axial lengths (projection lengths along coordinate axes) 

of the deformed RVE domain, respectively; and the off-diagonal elements represent the 

shearing deformation of the RVE in different directions. Initially, the off-diagonal 

elements, 𝐿𝑖𝑗(𝑖 ≠ 𝑗), of a cubic RVE domain are set to be zero. 

In this advanced RVE model, the RVE box always maintains a cuboid shape. Consider 

a 2-dimensional (2D) case subjected to a shear deformation as shown in Fig. 3 where 

the initial lattice (i.e. the RVE domain) at time 𝑡1 is shown on the left. A timestep later 

the lattice becomes a parallelogram as shown by the dotted lines on the right due to the 

deformation. The lattice dimensions increase from 𝐿𝑥𝑥(𝑡1) and 𝐿𝑦𝑦(𝑡1) to 𝐿𝑥𝑥(𝑡2) 

and 𝐿𝑦𝑦(𝑡2) respectively and the shearing deformation increases from zero to 𝐿𝑥𝑦(𝑡2). 

To avoid the reinitialization of the deformed RVE that has undergone large deformation, 

a new rectangle in bold, with the same axial lengths (𝐿𝑥𝑥(𝑡2) and 𝐿𝑦𝑦(𝑡2)) as the 

deformed RVE box, is introduced to represent material properties around a material 

point or Gauss point in continuum models. Following a similar procedure, a deformed 

3D RVE can be replaced by a cuboid RVE. This new rectangle (2D) or cuboid (3D), 

with the Gauss or material point as its origin, will be the new RVE domain for the next 

time step. Depending on the specific deformation state, the dimension of the new RVE 

may change over time. Here we coin the term “adaptive RVE” to denote this 

continuously updated rectangle or cuboid, as it is adjusted every single timestep 

according to the periodicity of the deformed RVE model.  

Then, the particles outside this new adaptive RVE need to be mapped back to the 

domain using their image counterparts. Let 𝒙𝒐(𝑡) be the position of a particle outside 

the domain at time 𝑡, its image counterpart within the domain is given by 𝒙𝒊(𝑡, 𝒏) 

 𝒙𝒐(𝑡) = {𝑥𝑜 ,  𝑦𝑜 ,  𝑧𝑜} (3) 
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 𝒙𝒊(𝑡, 𝒏) = 𝒙𝒐(𝑡) + 𝑳(𝑡) ∙ 𝒏 (4) 

where 𝑳(𝑡) is the lattice matrix of the deformed RVE; 𝒏 is a column vector of the 

periodicity numbers in the three axial directions and given by  

 𝒏 = {𝑛𝑥,  𝑛𝑦,  𝑛𝑧}
𝑇
 (5) 

The deformation history of the lattice matrix of an RVE can be updated by the 

deformation gradient 𝑭 at the macroscopic level 

 𝑳(𝑡 + ∆𝑡) = 𝑭 ∙ 𝑳(𝑡) = (𝐼 + ∇𝒗∆𝑡) ∙ 𝑳(𝑡) = (𝐼 + [

𝜀𝑥̇𝑥 2𝜀𝑥̇𝑦 2𝜀𝑥̇𝑧

0 𝜀𝑦̇𝑦 2𝜀𝑦̇𝑧

0 0 𝜀𝑧̇𝑧

] ∆𝑡) ∙ 𝑳(𝑡) (6) 

As the lattice matrix 𝑳(𝑡) is updated from the upper-triangular strain rate matrix, the 

lattice matrix is also upper-triangular. Substituting Eq. 6 into Eq. 4 gives the mapped 

coordinates of the image particle 

 𝑥𝑖(𝑡, 𝒏) =  𝑥𝑜(𝑡) + 𝐿𝑥𝑥𝑛𝑥 + 𝐿𝑥𝑦𝑛𝑦 + 𝐿𝑥𝑧𝑛𝑧  (7) 

 𝑦𝑖(𝑡, 𝒏) =  𝑦𝑜(𝑡) + 𝐿𝑦𝑦𝑛𝑦 + 𝐿𝑦𝑧𝑛𝑧 (8) 

 𝑧𝑖(𝑡, 𝒏) =  𝑧𝑜(𝑡) + 𝐿𝑧𝑧𝑛𝑧 (9) 

Assuming that the velocity gradient around a material point or Gauss point is constant, 

the velocity distribution of particles inside the RVE box is linear. Therefore, the 

velocity of an image particle in the new RVE box can be updated based on the distance 

between its original position and the current position by  

 𝒗𝑖(𝑡) = 𝒗𝑜(𝑡) + ∇𝒗 ∙ (𝑳(𝑡) ∙ 𝒏) (10) 

where 𝒗𝑜 is the velocity of the original particle, 𝒗𝑖 is the velocity of the image particle 

in the new RVE box and its component form is given as follows  

 𝑣𝑖𝑥 = 𝑣𝑜𝑥 + 𝜀𝑥̇𝑥(𝑥𝑖 − 𝑥𝑜) + 2𝜀𝑥̇𝑦(𝑦𝑖 − 𝑦𝑜) + 2𝜀𝑥̇𝑧(𝑧𝑖 − 𝑧𝑜) (11) 

 𝑣𝑖𝑦 = 𝑣𝑜𝑦 + 𝜀𝑦̇𝑦(𝑦𝑖 − 𝑦𝑜) + 2𝜀𝑦̇𝑧(𝑧𝑖 − 𝑧𝑜) (12) 

 𝑣𝑖𝑧 = 𝑣𝑜𝑧 + 𝜀𝑧̇𝑧(𝑧𝑖 − 𝑧𝑜) (13) 
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The theoretical part of the adaptive RVE model for granular materials has been 

addressed above. The modelling of such an RVE model is mainly using DEM in a 

multiscale technique. Within each time step, the acceleration and velocity of a particle 

are assumed constant, based on the assumption that if a sufficiently small timestep is 

taken, the stress wave arising at the contact point of two particles will not propagate 

further to other particles. Hence, the contact interaction is only local. In DEM, the time 

integration of particle motion is achieved by the central difference method. The 

movement of a particle is governed by Newton’s second law 

 𝑚𝒂 + 𝑐𝒗 = 𝒇𝒄 + 𝒃 (14) 

 𝐼𝜽̈ = 𝑻𝒄 (15) 

where 𝑚  is the mass of the particle; 𝒂  and 𝒗  are the acceleration and velocity, 

respectively; 𝑐 is the damping coefficient; 𝒇𝒄 is the resultant contact force acting on 

the particle; 𝒃 is the body force; 𝐼 is the second moment of inertia of the particle;  𝜽 

is the rotation angle; and 𝑻𝒄 is the torque due to the tangential force applied at the 

contact point. 

The contact force model used to handle the particle-particle collision can be treated as 

a serial connection of a dashpot and a spring. The spring has normal and tangential 

components. For spherical particles, the normal force 𝒇𝑛 can be modelled by the Hertz 

contact model given by Eq. 16 and the tangential part 𝒇𝑡 can be accounted for by the 

Coulomb friction model given by Eq. 17.  

 𝒇𝒏 = 𝑘𝑛𝜹𝑛
3/2 (16) 

 𝒇𝑡 = min {𝒇𝑡
𝑝 + 𝑘𝑡∆𝜹𝑡, 𝜇𝒇𝑛} (17) 

where 𝑘𝑛  and 𝑘𝑡  are the normal and tangential stiffnesses of contact; 𝜹𝑛  is the 

relative normal displacement; 𝒇𝑡
𝑝
 is the tangential force at the previous time step, and 

∆𝜹𝑡  is the incremental tangential displacement between two particles; 𝜇 is the 

coefficient of friction. The dashpot with a constant damping coefficient 𝑐 is used to 

characterise energy dissipation during collision. 
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3 Macroscopic Cauchy stress and evolutionary periodic boundary 

In the hierarchical multiscale modelling approach, the macroscopic method (FEM or 

MPM) is used to calculate the overall deformation of granular materials at the 

engineering scale, while the microscopic method (DEM) is utilised to compute the 

stress in the RVE model at the grain level. At each time step, the deformation gradient 

calculated by FEM or MPM is passed to DEM, from which the microscopic models 

will compute the averaged Cauchy stress of the RVE based on the induced particle 

geometry and contact forces. Then, the averaged stress will be used in the macroscopic 

simulation at the next time step.  

In a granular particle system, if the macroscopic length scale is sufficiently large 

compared to the characteristic particle size, the generalized macroscopic momentum 

equation 38, 39 can be written as 

 
𝜕𝜌𝒗̃

𝜕𝑡
+ ∇ ∙ (𝜌𝒗𝒗̃) = ∇ ∙ 𝝈 + 𝜌𝒃  (18) 

where 𝜌 is the bulk density of a granular packing; 𝒗̃ is the averaged velocity of the 

material point in continuum-based models; and 𝝈  is the Cauchy stress defined in 

continuum mechanics. 

The Cauchy stress can be expressed as the combination of the Reynolds stress 𝝈𝑹 and 

the contact stress 𝝈𝒄 

 𝝈 = 𝝈𝑹 + 𝝈𝒄 (19) 

where the Reynolds stress 𝝈𝑹 is defined by the velocity fluctuation (𝒗𝑖 − 𝒗̃) of 

each particle: 

 𝝈𝑹 = −
1

𝑉
∑ 𝑚𝑖(𝒗𝑖 − 𝒗̃)𝑛

𝑖=1 (𝒗𝑖 − 𝒗̃) (20) 

where 𝑉 is the volume of the particle packing; 𝑛 is the total number of particles; 𝑚𝑖 

and 𝒗𝑖 are, respectively, the mass and velocity of the particle 𝑖. The contact stress 

𝜎𝑅 is defined as 
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 𝝈𝒄 =
1

𝑉
∑ ∑ 𝑹𝒊

𝑛𝑐
𝑖

𝑗=1
𝑛
𝑖=1 𝒇𝒊𝒋  (21) 

where 𝑛𝑐
𝑖  is the total contact number of particle 𝑖 with surrounding particles; 𝑅𝑖 is the 

radius of particle 𝑖 and 𝒇𝒊𝒋 is the contact force between particles 𝑖 and 𝑗.  

Both the Reynolds stress 𝜎𝑅  and the contact stress 𝜎𝑐 can be directly calculated from 

the RVE based microscopic simulations. It is reported that the Reynolds stress is at least 

one order smaller than the contact stress in a dense granular flow. This will also be 

demonstrated by our RVE simulations.  

The Cauchy stress is calculated from the particles in the RVE including the boundary 

particles and is then used to launch the macroscopic computation in the multiscale 

modelling. However, for the contact stress, the contact between boundary particles and 

their images at the opposite face also need to be considered. In the conventional 

deformed RVE model, the number of boundary particles could increase gradually due 

to the continuous shearing deformation. Take a simple shear case similar to the one 

shown in Fig. 3 as an example. The growth of the inclined lengths (for 2D) or areas (for 

3D) of the left and right boundaries will lead to an increase of the number of boundary 

particles, while the boundary lengths/areas of other boundary faces remain constant. 

Hence more computational costs are required for handling the interaction between 

boundary particles and their image particles at the opposite face with the evolution of 

shear deformation.  

Next we will propose a general and efficient periodic boundary algorithm for detecting 

contacts of boundary particles. This algorithm is based on the above adaptive RVE 

model and considers the deformation history of the RVE box using the lattice matrix 

𝑳(𝑡). The basic idea of this algorithm is to divide the RVE domain/lattice into regular 

grids with each grid cell accommodating 10 to 20 particles and find the images of the 

particles at the boundary layers. Eqs. 7-9 indicate that the x coordinate of a particle is 

related to its movement in the x, y and z directions, while the shift of the particle along 

the x-direction does not affect its y and z coordinates. Therefore, for a shear deformation 

along the x-direction, it is more effective to process the image particles at the top and 
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bottom boundaries first and then to the image particles from the left and right 

boundaries including the images of the bottom and top boundary particles. This step is 

the key to avoiding the complicated treatment of corner particles. A full EPB algorithm 

for 3D cases is summarised in Table 1 below: 

Table 1 The 3D evolutionary periodic boundary (EPB) algorithm 

Step 1: Loop over all cells at the bottom layer 

  Loop over all particles in the cell under consideration 

  
 

a) 

 

Update particle coordinates by  𝑥 = 𝑥 + 𝐿𝑥𝑧 , 𝑦 = 𝑦 + 𝐿𝑦𝑧 , 𝑧 = 𝑧 + 𝐿𝑧𝑧 

(short for shift); If it is outside the domain (−
𝐿𝑥𝑥

2
,
𝐿𝑥𝑥

2
) × (−

𝐿𝑦𝑦

2
,
𝐿𝑦𝑦

2
), map it 

back to this domain using image (cut & map) 

  
 

b) Find the cell that accommodates the updated particle and record the particle 

information in this cell for subsequent contact calculation 

 
  End loop  

 End loop  

Step 2: Similar to Step 1, map image particles of the top layer  

Step 3: Loop over all cells at the front layer including the cells mapped in Steps 1 and 2 

  Loop over all particles in the grid under consideration 

  
 a) Update particle coordinates by  𝑥 = 𝑥 + 𝐿𝑥𝑦 , 𝑦 = 𝑦 + 𝐿𝑦𝑦; (If it is outside the 

domain (−
𝐿𝑥𝑥

2
,
𝐿𝑥𝑥

2
), map it back to this domain using its image particle) 

 

  
 b) Find the cell accommodating the updated particle and record the particle 

information for this cell 
  

End loop  

 End loop  

Step 4: Similar to Step 3, map image particles of the back layer  

Step 5: Loop over all cells at the left layer including the cells mapped in Steps 1-4 

  
Loop over all particles in the cell under consideration 

  
 a) 

 

Update particle coordinates by  𝑥 = 𝑥 + 𝐿𝑥𝑥    

  
 b) Find the cell accommodating the updated particle and record the particle 

information in this cell 
  

End loop  

 End loop  

Step 6: Similar to Step 5, map image particles of the right layer  

 

To facilitate the understanding of the proposed EPB algorithm, a two-dimensional 

procedure is illustrated in Fig. 4, where the primary steps are included.  

In our proposed evolutionary periodic boundary, the total number of boundary particles 

are almost unchanged due to the constant total boundary area in a simple shear problem. 
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In contrast to the conventional deformed RVE box, fewer boundary particles and 

images need to be handled.  

 

4 Numerical examples  

4.1 Simple shear and complex-loading tests 

To validate the proposed adaptive RVE model with the EPB algorithm, we consider a 

3D system of 864 particles undergoing an extremely large simple shear deformation. 

For simplicity, we only adopt spherical particles of uniform size in this work. The 

granular model with porosity ( 𝑛 = 0.548 ) is shown in Fig. 5. The dimensions 

𝐿𝑥𝑥,  𝐿𝑦𝑦,  𝐿𝑧𝑧 of this RVE box are all 2.0 𝑚; the particle diameter is 0.2 m and the 

density is 2650 𝑘𝑔/𝑚3. This granular model can be treated as an initial representative 

element of a material point in the macroscopic simulations of a debris flow. The normal 

and tangential stiffnesses of contact are 2 × 107 𝑁/𝑚  and 2 × 106 𝑁/𝑚 , 

respectively. The coefficient of friction used in the Coulomb friction model is 0.3. The 

damping coefficient 𝑐  is 20 𝑁𝑠/𝑚 . The timestep is 3.688 × 10−5 𝑠 . The total 

simulated physical time is 20 𝑠. Initially, particles do not interact with each other and 

are stationary. To mimic a simple shear deformation, a shear rate (𝛾̇𝑥𝑧 = 2𝜀𝑥̇𝑧 = 0.5) is 

applied to the RVE model, which gives a total shear deformation of 10𝐿𝑥𝑥. Because of 

the applied shear rate 𝛾̇𝑥𝑧, the particle velocity (𝑣𝑥) is proportional to its 𝑧 coordinate 

(i.e. 
𝜕𝑣𝑥

𝜕𝑧
= 𝛾̇𝑥𝑧 ). This relatively simple system has been studied extensively, mainly 

as a means of assessing the validity of kinetic theories.  

The configurations of the particles and their velocities 𝑣𝑥  at four different shear 

deformation stages are given in Fig. 6. During the simple shearing, the upper and 

bottom boundaries remain parallel and maintain a constant distance (𝐿𝑧𝑧 ), but are 

translated relative to each other. By selecting the origin of the coordinate system at the 

centre of the RVE box, it can be found that the lateral movements of particles within 

the upper and lower domain are exactly opposite against the x-y plane. Although 
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particles collide with their neighbours, their velocities (𝑣𝑥) are generally proportional 

to their 𝑧 coordinates at the end of each time step. 

It should be noted that the total shear deformation (𝐿𝑥𝑧 = 10𝐿𝑥𝑥) of this RVE model is 

extremely large. For such a case, the conventional deformed RVE domain will deform 

into a slender parallelepiped as shown in Fig. 7. Within a conventional hierarchical 

multiscale modelling framework, such a distorted RVE box may give rise to three issues 

in a standard RVE model:  

1) the increasing large deformation may deteriorate the representative capability of a 

traditional RVE in the narrow direction along which it is insufficient to apply the 

periodic boundary on the RVE domain;  

2) for a three-dimensional case, an RVE box could be distorted/twisted under complex 

loading conditions, giving rise to a great challenge in tracking the RVE boundaries; 

3) it may be unreasonable to assume that the whole deformed RVE undergoes uniform 

strain condition in such a slender domain of the deformed RVE. 

However, as demonstrated by the current example, these issues have been well resolved 

by our proposed periodic boundary. No matter how large a shear deformation occurs, 

the adaptive RVE box is always maintained as a cube in this simulation.  

To quantitatively characterise the mechanical behaviour of the RVE model undergoing 

large deformation, variations of the diagonal and off-diagonal components of the 

contact stress are given in Fig. 8. It is found that the diagonal components (𝜎𝑥𝑥 and 𝜎𝑧𝑧) 

increase dramatically when the loading is applied, and then gradually decrease to some 

constant values. This phenomenon is associated with the evolution of angular velocities 

of particles and has been reported in granular physics 39, 40. Particles are at rest at the 

beginning, but once the shear rate ( 𝛾̇𝑥𝑧) is applied, the angular velocity of particles 

increases quickly due to interactions with neighbours. It is also found that the stress 

components 𝜎𝑥𝑥 and 𝜎𝑧𝑧 are always greater than 𝜎𝑦𝑦, because the shear loading is 

applied along the 𝑥 direction with the gradient in the 𝑧 direction. From Fig.8b, we 

can see that the off-diagonal components of the contact stress are symmetric and lower 
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than the diagonal components. Compared to the 𝜎𝑥𝑧 and 𝜎𝑧𝑥 components, other off-

diagonal components can be ignored.  

Fig. 9 shows the variation of the primary components of the Reynolds stress which is 

the other part of the Cauchy stress. Similar to the contact stress, the magnitudes of 𝜎𝑥𝑥 

and 𝜎𝑧𝑧 of the Reynolds stress are smaller than 𝜎𝑦𝑦 . Particularly, the Reynolds stress 

is at least one order smaller than the contact stress in the current granular model 

(porosity 𝑛 = 0.548).  

The above simple shear problem, where only shearing deformation is considered and 

the adaptive RVE domain is constant, clearly demonstrates the merits of the adapted 

RVE model with an evolutionary periodic boundary for problems involving large 

deformation.  

To further illustrate the adaptive RVE model, we consider a more complex loading case 

with 2𝜀𝑥̇𝑧 = 1.5 and 𝜀𝑥̇𝑥 = −0.03 so that the adaptive RVE domain is changing. The 

granular packing is comprised of 463 particles with particle diameter ranging from 0.19 

to 0.28 m. Initially, the dimensions 𝐿𝑥𝑥,  𝐿𝑦𝑦,  𝐿𝑧𝑧 of this RVE box are all 2.0 𝑚. The 

material parameters are the same as the previous simple shear case. Snapshots of the 

RVE model and variations of particle velocity at different instants are shown in Fig. 10. 

Similar to the simple shear case, the velocity distribution is spatially linear due to the 

applied shear rate. In particular, the RVE domain is reducing in the 𝑥 direction with 

time. The specific evolution of the diagonal components of the lattice matrix is shown 

in Fig. 11.  

 

4.2 Effects of porosity on the mechanical behaviour of granular materials  

Next, we will investigate the effect of the solid volume fraction or porosity on the 

mechanical response of granular flows subject to large deformation using the proposed 

algorithm. To achieve this goal, two more RVE models with porosities of 0.738 and 

0.282 respectively are generated (see Fig. 12). These two RVE models, together with 

the above model with 𝑛 = 0.548, will be used as representatives for loose, medium 
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dense and dense specimens, respectively. These RVE models share the same 

dimensions and particle-scale properties and undergo the same external shear rates.  

Fig. 13 compares the variations of the hydrostatic pressure (𝑝 = −
𝜎𝑖𝑖

3
) of the three RVE 

models. Apparently, the pressure increases with the decrease of the porosity. Similar 

results can be found in the off-diagonal components. For simplicity, only the 

component 𝜎𝑥𝑧 is compared in Fig. 14. 

Shear localisation is a remarkable sign of the instability of ductile solid materials, such 

as granular materials. When the material deforms sufficiently into the plastic state, a 

homogeneous deformation pattern gives way to highly localised deformation featured 

as a “shear band”41. It mainly occurs in dense granular materials under large 

deformations. The conventional RVE model with homogeneous deformation 

assumption is unable to reasonably reflect such a strain localisation phenomenon at the 

RVE level. To overcome this issue, attempts have been made to improve the 

conventional RVE model by introducing high-order continuum mechanics, such as 

Corsserat continuum 42, 43 and micromorphic continuum 44, 45 to RVE. If the RVE 

domain is much smaller than the characteristic length of macroscopic shear bands, the 

RVE is still a representative of the local material point. It is found that our adaptive 

RVE model based on the classical continuum mechanics is capable of capturing shear 

localisation. The shear localisation phenomenon can be reflected from the strain-

softening effect of the stress-strain curves, which is shown in Fig.14.  

To examine the relationship between the Reynolds stress (𝝈𝑹) and the contact stress 

(𝝈𝒄), four more test cases with different porosities are further carried out. Variations of 

the ratio of the trace of the Reynolds stress (𝜎𝑖𝑖_𝑅) to the trace of the contact stress 

(𝜎𝑖𝑖_𝑐) are given in Fig.15, which shows that the ratio increases with the increase of the 

porosity. For the two dense packings (𝑛 = 0.282 and 𝑛 = 0.371), the Reynolds stress 

is at least three orders smaller than the contact stress; while in the loose packing (𝑛 =

0.738), they are of a similar scale: the Reynolds stress is only half of the contact stress. 

This indicates that the Reynolds stress in a loose granular system is as important as the 
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contact stress; while for dense particle packings, the Reynolds stress can be ignored. 

This conclusion is consistent with the findings in the field of granular physics for a 

dense granular system. The above results also confirm that it is acceptable to only 

consider the contact stress as Cauchy stress in multiscale simulations for most 

geotechnical problems where medium dense or dense granular specimen are mainly 

encountered.  

 

5 Concluding remarks  

This study has proposed an enhanced granular RVE model aiming to extend the 

applicability of multiscale techniques to problems encountering extremely large 

deformation. The key contribution is the proposed adaptive RVE box and the associated 

evolutionary periodic boundary algorithm. Meanwhile, to account for the deformation 

history of the RVE lattice, the lattice matrix 𝑳 is used to effectively map the images of 

boundary particles. The simple shear test of the three granular packings with various 

porosities have illustrated the applicability and capability of the proposed RVE model. 

The results also show that for a granular model subjected to a large deformation process, 

Reynolds stress can be ignored for dense particle packings; while for loose particles 

systems, Reynolds stress and contact stress are of the same importance. The essential 

features of the proposed adaptive RVE model can be summarised as follows: 

(1) In the adaptive RVE model, the gradient of deformation, instead of homogenous 

deformation in existing RVE models, is achieved by using a constant velocity 

gradient, and the velocity gradient is decomposed into an upper-triangular strain 

rate matrix and a spin tensor. The latter can be ignored for problems involving only 

a small strain rate.  

(2) This adaptive RVE model is mass conserved. During the whole simulation, only the 

original inhabitant particles or their image particles will be included in the new 

adaptive RVE box, and no new particles will be generated or removed. Therefore, 

the number of particles in the simulation always remains the same. 
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(3) By only considering the first order gradient of deformation, the adaptive RVE 

model is capable of capturing shear localisation at the RVE level in the framework 

of classical continuum mechanics. 

(4) Compared to the conventional deformed RVE model, our evolutionary periodic 

boundary algorithm can treat the interaction between boundary particles and image 

particles at the opposite faces more efficiently.  

It should be noted that the effect of the spin tensor is ignored for small strain rate 

problems in this work. Its effects on high strain rate problems need further investigation. 

In addition, the present adaptive RVE model is limited in overcoming the invalidity of 

a slender RVE box caused by extremely large compression deformation. Improvements 

of this adaptive model to incorporate spin tensor and to resolve the large compression 

deformation problems will be reported elsewhere.  
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Figures 

 

Fig. 1 Deformed RVE box under shearing in conventional multiscale analysis 

 

 

Fig. 2 Invalid RVE after large deformation 

 

 

Fig. 3 The evolution of the adaptive RVE domain 

 



22 

 

 

(a) Map image particles of the bottom layer 

 

 

(b) Map image particles of the left layer 

 

 

(c) Images of all boundary particles 

Fig. 4 Schematic chart of 2D periodic boundary algorithm 
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Fig. 5 Setup of granular RVE model (𝑛 = 0.548) 

 

 

 

Fig. 6 Snapshots of RVE model at different shear deformation stages 
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Fig.7 Large deformation of the conventional RVE box 

 

 

a) diagonal components 

 

b) off-diagonal components 

Fig. 8 Variations of contact stress (𝑛 = 0.548) 
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Fig. 9 Variation of Reynolds stress (𝑛 = 0.548) 

 

Fig. 10 Snapshots of RVE model with complex loading at different instants 
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Fig. 11 Variation of 𝐿𝑥𝑥,  𝐿𝑦𝑦,  𝐿𝑧𝑧 

 

a) loose (𝑛 = 0.738) 

 

b) dense (𝑛 = 0.282) 

Fig. 12 Two granular packings with different porosities 
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Fig.13 Comparison of hydrostatic pressure 

 

 

Fig.14 Comparison of off-diagonal component 𝜎𝑥𝑧 

 

 

Fig. 15 Ratio of trace of Reynolds stress to trace of contact stress 


